1,656 research outputs found

    Workflow Scheduling Techniques and Algorithms in IaaS Cloud: A Survey

    Get PDF
    In the modern era, workflows are adopted as a powerful and attractive paradigm for expressing/solving a variety of applications like scientific, data intensive computing, and big data applications such as MapReduce and Hadoop. These complex applications are described using high-level representations in workflow methods. With the emerging model of cloud computing technology, scheduling in the cloud becomes the important research topic. Consequently, workflow scheduling problem has been studied extensively over the past few years, from homogeneous clusters, grids to the most recent paradigm, cloud computing. The challenges that need to be addressed lies in task-resource mapping, QoS requirements, resource provisioning, performance fluctuation, failure handling, resource scheduling, and data storage. This work focuses on the complete study of the resource provisioning and scheduling algorithms in cloud environment focusing on Infrastructure as a service (IaaS). We provided a comprehensive understanding of existing scheduling techniques and provided an insight into research challenges that will be a possible future direction to the researchers

    PFAS: A Resource-Performance-Fluctuation-Aware Workflow Scheduling Algorithm for Grid Computing

    Full text link

    A mathematical programming approach for resource allocation of data analysis workflows on heterogeneous clusters

    Get PDF
    Scientific communities are motivated to schedule their large-scale data analysis workflows in heterogeneous cluster environments because of privacy and financial issues. In such environments containing considerably diverse resources, efficient resource allocation approaches are essential for reaching high performance. Accordingly, this research addresses the scheduling problem of workflows with bag-of-task form to minimize total runtime (makespan). To this aim, we develop a mixed-integer linear programming model (MILP). The proposed model contains binary decision variables determining which tasks should be assigned to which nodes. Also, it contains linear constraints to fulfill the tasks requirements such as memory and scheduling policy. Comparative results show that our approach outperforms related approaches in most cases. As part of the post-optimality analysis, some secondary preferences are imposed on the proposed model to obtain the most preferred optimal solution. We analyze the relaxation of the makespan in the hope of significantly reducing the number of consumed nodes

    Task scheduling techniques for asymmetric multi-core systems

    Get PDF
    As performance and energy efficiency have become the main challenges for next-generation high-performance computing, asymmetric multi-core architectures can provide solutions to tackle these issues. Parallel programming models need to be able to suit the needs of such systems and keep on increasing the application’s portability and efficiency. This paper proposes two task scheduling approaches that target asymmetric systems. These dynamic scheduling policies reduce total execution time either by detecting the longest or the critical path of the dynamic task dependency graph of the application, or by finding the earliest executor of a task. They use dynamic scheduling and information discoverable during execution, fact that makes them implementable and functional without the need of off-line profiling. In our evaluation we compare these scheduling approaches with two existing state-of the art heterogeneous schedulers and we track their improvement over a FIFO baseline scheduler. We show that the heterogeneous schedulers improve the baseline by up to 1.45 in a real 8-core asymmetric system and up to 2.1 in a simulated 32-core asymmetric chip.This work has been supported by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of Excellence. The Mont-Blanc project receives funding from the EU’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 610402 and from the EU’s H2020 Framework Programme (H2020/2014-2020) under grant agreement no 671697. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243).Peer ReviewedPostprint (author's final draft

    An Enhanced Model for Job Sequencing and Dispatch in Identical Parallel Machines

    Get PDF
    This paper has developed an efficient scheduling model that is robust and minimizes the total completion time for job completion in identical parallel machines. The new model employs Genetic-Fuzzy technique for job sequencing and dispatch in identical parallel machines. It uses genetic algorithm technique to develop a job scheduler that does the job sequencing and optimization while fuzzy logic technique was used to develop a job dispatcher that dispatches job to the identical parallel machines. The methodology used for the design is the Object Oriented Analysis and Design Methodology (OOADM) and the system was implemented using C# and .NET framework. The model was tested with fifteen identical parallel machines used for printing. The parameters used in analyzing this model include the job scheduling length, average execution time, load balancing and machines utilization. The result generated from the developed model was compare with the result of other job scheduling models like First Come First Sever (FCFS) scheduling approach and Genetic Model (GA) scheduling approach. The result of the new model shows a better load balancing and high machine utilization among the individual machines when compared with the First Come First Serve (FCFS) scheduling model and Genetic Algorithm (GA) scheduling model. Keywords:  Parallel Machines, Genetic Model, Job Scheduler, Fuzzy Logic Technique, Load Balancing, Machines   Utilization DOI: 10.7176/CEIS/11-2-05 Publication date: March 31st 202

    CASCH: a tool for computer-aided scheduling

    Get PDF
    A software tool called Computer-Aided Scheduling (CASCH) for parallel processing on distributed-memory multiprocessors in a complete parallel programming environment is presented. A compiler automatically converts sequential applications into parallel codes to perform program parallelization. The parallel code that executes on a target machine is optimized by CASCH through proper scheduling and mapping.published_or_final_versio

    Economical Task Scheduling Algorithm for Grid Computing Systems

    Get PDF
    Task duplication is an effective scheduling technique for reducing the response time of workflow applications in dynamic grid computing systems. Task duplication based scheduling algorithms generate shorter schedules without sacrificing efficiency but leave the computing resources over consumed due to the heavily duplications. In this paper, we try to minimize the duplications of tasks from the schedule obtained using an effective duplication based scheduling heuristic without affecting the overall schedule length (makespan) of grid application. Here, we suggested an economical duplication based intelligent scheduling heuristic called economical duplication scheduling in grid (EDS-G). The simulation results show that EDS-G algorithm generates better schedule with lesser number of duplications and remarkably less resource consumption as compared with HLD, LDBS in the simulated heterogeneous grid computing environments

    Modeling an Integrated Public Transportation System - a case study in Dublin, Ireland

    Get PDF
    The efficiency of the public transport system in any city depends on integration of its major public transport modes. Suburban railway and public buses are the modes normally used by the majority of commuters in metropolitan cities of developed and developing countries. Integration of these two services reduces overall journey time of an individual. In this research, a model is developed for operational integration of suburban trains and public buses. The model has two sub models: a Routing Sub Model and a Scheduling Sub Model. In the Routing Sub Model, feeder routes are generated for public buses which originate from a railway station. A Heuristic Feeder Route Generation Algorithm is developed for generation of feeder routes. In the Scheduling Sub Model, optimal coordinated schedules for feeder buses are developed for the given schedules of suburban trains. As a case study the Dun Laoghaire DART (Dublin Area Rapid Transit) (heavy rail suburban service) station of Dublin in Ireland is selected. Feeder bus services are coordinated with existing schedules of the DART on the developed feeder route network. Genetic Algorithms, which are known to be a robust optimization technique for this type of problem, are used in the Scheduling Sub Model. Finally the outcome of the research is a generated feeder route network and coordinated services of feeder buses on it for the DART station
    • …
    corecore