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Abstract
Scientific communities are motivated to schedule their large-scale data analysis work-
flows in heterogeneous cluster environments because of privacy and financial issues. 
In such environments containing considerably diverse resources, efficient resource 
allocation approaches are essential for reaching high performance. Accordingly, this 
research addresses the scheduling problem of workflows with bag-of-task form to 
minimize total runtime (makespan). To this aim, we develop a mixed-integer linear 
programming model (MILP). The proposed model contains binary decision varia-
bles determining which tasks should be assigned to which nodes. Also, it contains 
linear constraints to fulfill the tasks requirements such as memory and scheduling 
policy. Comparative results show that our approach outperforms related approaches 
in most cases. As part of the post-optimality analysis, some secondary preferences 
are imposed on the proposed model to obtain the most preferred optimal solution. 
We analyze the relaxation of the makespan in the hope of significantly reducing the 
number of consumed nodes.

Keywords Heterogeneous cluster environments · Scheduling · Data analysis 
workflow · Mixed integer linear programming · Makespan minimization · Post-
optimality analysis

1 Introduction

Data analysis workflows (DAWs) consist of tasks with control or data depend-
encies. The use of DAWs to help scientists organize the steps involved in large-
scale, complex scientific processes is a well-known paradigm [1, 2]. Generally, 
the structure of a DAW is represented with a directed acyclic graph (DAG). Some 
workflows are known as bag-of-tasks (BoT) workflows which consist of a set of 
concurrent bags; each includes a large number of independent homogeneous tasks 
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[3]. Scientists often use a heterogeneous cluster infrastructure to run their DAWs 
where a set of computing nodes are interconnected with a high-speed network. 
This choice is due to privacy and financial issues and because it provides high-
performance computing environments. Hence, large-scale scientific workflows can 
be run within a reasonable time [4]. In such an environment, the main goal is to 
schedule the tasks of the DAW to the computing resources so that the total run 
time (makespan) is minimized. Generally, scheduling a DAG in heterogeneous 
systems is a well-known problem in scheduling theory and is NP-Hard [5] because 
of the heterogeneity within the computing system and the precedence constraints 
between tasks.

The current research investigates the problem of BoT DAWs scheduling in hetero-
geneous cluster infrastructures by using mathematical programming. Mathematical 
models are applicable in scientific and engineering problems, especially those related 
to optimization. The main advantages of a mathematical model can be highlighted as 
follows [3, 6]:

• In a mathematical model, the objective function, decision variables, and the prob-
lem constraints are expressed using mathematical expressions. These models pro-
vide insight into the problem structure. Some critical information, such as post-
optimality analysis or trade-offs, can be derived explicitly.

• The model can be adapted when the problem conditions change. Modifying the 
key features of the model (decision variables, constraints, or objective functions) 
is possible since the underlying mathematical programming engine and algo-
rithms always remain the same. Therefore, maintaining mathematical optimiza-
tion applications is easier than using heuristics.

• When we construct a mathematical optimization model for a scientific approach, 
this approach improves as related optimization algorithms improve.

The model adopted in this work is a  Mixed Integer Linear Programming (MILP) 
model. It provides comprehensive, clear, and flexible descriptions of our assignment 
problem. This model, because of its linear structure, is also one of the simplest math-
ematical models that can be solved in a reasonable time through efficient algorithms 
[7]. A proper combination of compute nodes is selected for the DAW execution so 
the objective function is minimized, and problem constraints are satisfied. After solv-
ing the model, some post-optimality analyses are performed.

The contributions of the current study are highlighted as follows:

• The problem of DAW scheduling in a heterogeneous cluster environment is for-
mulated as a MILP model to minimize makespan. We compared our approach to 
five well-known and novel approaches on three different cluster sizes for four dif-
ferent scientific workflows. Comparative results show that our approach outper-
forms related approaches in 75% of cases.

• As a part of the post-optimality analysis, choosing a preferred solution among the 
set of (possible) alternative optimal solutions is investigated.

• Relaxation of the makespan in the hope of significantly reducing the number of 
consumed nodes is probed in another post-optimality analysis.
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The paper is organized as follows: Sect. 2 presents a review of the related work, and 
Sect. 3 illustrates the system model consisting of the infrastructure model, the work-
flow model and the problem statement. Section 4 introduces the proposed mathemati-
cal model. Section 5 discusses the numerical results, and Sect. 6 provides concluding 
remarks and plans for further studies.

2  Related works

Much research has been done on the problem of scientific DAW scheduling. In a 
cloud infrastructure, the objective is cost minimization because cloud providers offer 
a pay-as-you-go model for leasing resources, while in a cluster infrastructure the 
main goal is makespan minimization [4, 8].

Generally, workflows are scheduled using static or dynamic methods [9, 10]. Static 
scheduling approaches address the problem of assigning a set of tasks to compute 
resources in advance. It is assumed that accurate information about workflow and 
infrastructure resources can be obtained before scheduling, while dynamic sched-
uling approaches don’t require such assumptions. In this paper, we propose a static 
scheduling approach for scientific DAWs.

Since obtaining an optimal solution for the DAWs scheduling problem is difficult 
within a reasonable time in most cases, heuristic-based algorithms have been widely 
used in the past few decades [8, 9]. Heuristics provide approximate solutions within 
polynomial time periods. These algorithms for the workflow resource allocation 
problem in an HPC system can be classified into three groups: list-based, clustering-
based, and duplication-based scheduling [11, 12].

A list scheduling algorithm has two phases. The first phase consists of giving 
a priority to each task of the workflow. The second phase selects the computing 
node that will execute the task. List-based algorithms are superior to the other 
groups of heuristic algorithms [13]. HEFT [14] computes the priority or rank of 
each task ti using an upward rank value which indicates the length of the critical 
path from task ti to the exit task. In the task assignment phase, HEFT assigns each 
task to a node that allows completing the task the earliest. HEFT uses an insertion 
policy in which tries to insert a task at the earliest idle time between two already 
scheduled tasks on a computing node, if the slot is large enough to accommodate 
the task. The PEFT algorithm [15] is an effective list-based scheduling technique 
with a look-ahead feature. It predicts the impact of an assignment for all successor 
tasks of the current task without sacrificing the time complexity. This prediction is 
based on an "optimistic cost table (OCT)" which is used to rank tasks of the work-
flow, and to select a processor for a task. The IPPTS algorithm [16] introduced the 
"looking ahead" as a new feature in the task prioritization phase while considering 
the "out-degree" of a task, and used "downward-upward" approach to look ahead 
in the computing node selection phase. The IPEFT algorithm [17] calculates the 
priority of the tasks based on a pessimistic cost table and uses a critical node cost 
table to predict features. In [18], an estimation of distribution algorithm (EDA) 
enhanced by path relinking is proposed to minimize makespan. To describe the 
relative position relationships between two tasks, a specific probability model is 
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created and the task processing permutations are generated by sampling such a 
model.

In our proposed method, it is assumed that the workflows are in the form of BoT; 
however, there is no such assumption in heuristic methods (e.g., HEFT) and they can 
be used in the most general form of workflows. Therefore, it is expected that heu-
ristic methods provide a lower makespan allocation than the proposed method, but 
because the heuristic methods obtain sub-optimal solutions, this does not happen in 
some cases. On the other hand, the proposed method has other advantages over heu-
ristic methods. Firstly, despite accepting the above-mentioned limitation, because the 
proposed method obtains an optimal solution, its solutions are competitive with the 
solutions of heuristic methods that operate without the above-mentioned limitation 
and obtain sub-optimal solutions. Secondly, the proposed method has a very impor-
tant advantage that the heuristic method lacks. By using mathematical models, one 
can apply secondary criteria to the set of optimal solutions (expertise) and provide 
post-optimality analysis. For this purpose, we need an explicit representation of all 
optimal solutions. In mathematical models, this can be done by adding a constraint 
that guarantees optimality, whereas heuristic methods lack this capability. More pre-
cisely, in mathematical programming, the optimality condition is imposed by adding 
an equality or inequality to the set of constraints of the problem. Thus, the feasible 
space of the augmented problem is the same as the set of all the optimal solutions to 
the original problem. Therefore, any type of secondary preference can be applied to 
this set; equivalently, any secondary objective function can be optimized on it.

A clustering algorithm has three phases [19, 20]: clustering, cluster-merging, and 
task-ordering within clusters. In the clustering phase, the highly communicating 
tasks are grouped into clusters. Then, the clusters are merged to be mapped to the 
bounded number of computing nodes (cluster-merging phase). In the task-ordering 
phase, task priority is determined to obtain a schedule. The CMWSL algorithm [21] 
calculates the lower bound of the total execution time for each node by taking into 
account both the system and application characteristics. As a result, the number of 
nodes used for actual execution is adjusted to minimize the Worst Schedule Length 
(WSL). The actual task assignment and task clustering are then performed to mini-
mize the schedule length until the total execution time in a task cluster exceeds the 
lower bound. The RBCA and DBCA algorithms [22] addressed runtime and depend-
ency imbalance problems, respectively. The dependency imbalance may occur when 
a task requires data from other tasks clustered in different task clusters; thus, this 
delays the release of subsequent tasks and increases the overall makespan. The runt-
ime imbalance occurs when the tasks are assigned to the different task clusters with 
a significant difference in execution time; thus, the execution of task clusters on the 
next level of the workflow will be delayed and it affects the overall makespan of the 
workflow. To avoid the dependency imbalance, DBCA clusters the tasks with high 
dependency correlation(similarity of two tasks in terms of data dependency) together 
while RBCA clusters the tasks into multiple task clusters with roughly equal work-
load summation.

Most clustering-based algorithms (e.g. DBCA and RBCA) select the optimal num-
ber of task clusters equal to the number of computing nodes. Furthermore, they try to 
reduce data transfer time by grouping highly communicating tasks into a common 
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task cluster. Employing all computing nodes may not lead to minimum makespan. 
In our proposed approach, the highly communicating tasks are implicitly grouped by 
considering the data transfer time in the objective function. Moreover, unlike clus-
tering-based algorithms, the proposed approach does not necessarily use all of the 
computing nodes. Notably, as a post-optimality analysis, the proposed approach can 
yield the minimum number of consumed nodes with the minimum makespan (See 
Sect. 5.2.1).

In duplication-based algorithms, the main idea is to duplicate tasks on multiple 
computing nodes so that the results of the duplicated tasks are available on multi-
ple nodes to trade computation time for communication time[11, 13]. At first, the 
TDCA algorithm [23] assigns tasks to computing nodes to generate several initial 
clusters. In the next step, a task duplication method is applied to modify the initial 
clusters to reduce the makespan iteratively, so new clusters are added if necessary. 
Then, TDCA merges some clusters and decreases the number of occupied computing 
nodes to obtain a preliminary schedule. Finally, a task insertion scheme is adopted 
which inserts a task to an idle time slot located before its successor tasks if this inser-
tion could make the successor start earlier.

It is concluded from the above-mentioned discussion that achieving a low value 
of makespan requires a large number of iterations, which leads to a large amount of 
running time for the algorithm. As is expected the experimental results show that the 
proposed approach outperforms the TDCA method for all cases in the viewpoint of 
makespan.

3  System model

This section describes the infrastructure model and the workflow model. At the end, 
it introduces the problem statement.

3.1  Infrastructure model

We assume that the target computing environment is a heterogeneous cluster, which 
is a common configuration used for workflow execution [24, 25]. A heterogeneous 
cluster consists of multiple compute nodes that are different in the amount of cores, 
memory, and performance characteristics. Also, nodes are usually connected to a dis-
tributed file system via a fast interconnection network. We assume that each node k 
of the cluster is connected to the network via a dedicated link characterized by its 
bandwidth BWk . Notably, our model takes data transfer between tasks into account, 
in addition to the individual task run times themselves (see Sect.  4). However, we 
do not model the effects of potential network contention due to too many concurrent 
data transfers (see, e.g., [26]). We plan to extend our model to include such effects as 
future work.
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3.2  Workflow model

As previously stated, a workflow consists of a set of computational tasks with spe-
cific inter-dependencies represented by a DAG. Dependencies indicate data flow and 
execution priority between tasks. We consider the following four scientific workflows 
from various applied scientific fields:

• Epigenome: Biology
• LIGO: Gravitational physics
• Montage: Astronomy
• CyberShake: Earthquake science

The specifications of these workflows can be found in the Pegasus Workflow Gen-
erator.1 A small structure of the workflows is shown in Fig. 1. Some task distribu-
tion patterns are commonly used in scientific workflows: pipeline, scatter, gather, 
broadcast, reuse, and distribute [27, 28]. In these patterns, every level of the 
DAG contains a group of parallel homogeneous tasks or a single task namely a 
Bag-of-Task(BoT). A bag includes tasks located in the same level of DAG which 

Fig. 1  The general structure of scientific DAWs [27]

1 https:// confl uence. pegas us. isi. edu/ displ ay/ pegas us/ Workfl owGe nerat or.

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
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have approximately the same characteristics (e.g. runtime and required memory). 
Studies of the real-world characteristics of parallel workloads show that between 
34% and 89% of applications running on parallel systems have a BoT structure 
[29]. Given that no data dependency exists between the tasks in a bag, they can 
be executed parallelly. In this study, we propose a model that is applicable to 
those workflows that have BoT structures. Such partitioning enables us to con-
sider a few bags instead of many tasks individually [3, 30].

3.3  Problem statement

This study addresses the scheduling of scientific workflow applications in het-
erogeneous cluster environments through mathematical programming with an 
objective of makespan minimization. We assumed that m computing nodes are 
available in a cluster environment and that the workflow application consists of n 
bag-of-tasks at the n levels. We formulated this scheduling problem as an MILP 
model.

Figure  2 provides an overview of the system model. During the first step, 
specifications of the cluster infrastructure and the workflow are collected. It can 
be done by existing approaches to profile the cluster nodes performance [4, 24] 
and analyzing existing task performance metrics from historical workflow execu-
tions. In the second step, these specifications are submitted to the scheduler as 
input for an MILP mode. Then, by solving the MILP model, optimal assignment 
is obtained. Finally, the optimal assignment is used to run the DAW in the cluster.

Fig. 2  Overview of the system model
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4  The proposed mathematical model

A mathematical planning study involves: providing a mathematical model for the 
problem being evaluated, solving the model, and performing a post-optimality analy-
sis. In the proposed model, the objective function and constraints are expressed by 
linear functions of decision variables. The decision variables contain non-negative 
integer, binary, and real variables. Thus, the proposed model is an MILP model. Due 
to the simple structure of the model, efficient computational algorithms and software 
programs are available to solve it. In the following, we explain how to create con-
straints and express the objective function as a function of decision variables.

The input data for the mathematical model are described in Table  1. Also, this 
table explains decision variables existing in the proposed model. The workflow char-
acteristics (e.g., number of levels and tasks in each level) and the infrastructure speci-
fications (e.g., number of cores and size of memory) are available.

The makespan of a workflow includes executional and data transfer times and the 
objective function minimizes the makespan. The model has binary and real deci-
sion variables. For example, assignment of tasks to computing nodes of the cluster 
is determined by binary variables. Also, some other auxiliary variables have been 
used in the proposed model. In addition, the model fulfills constraints on the work-
flow requirements and infrastructure resource limitations. For example, it ensures that 
each task is assigned to only one computing node and the memory requirement is ful-
filled, etc. The objective function, constraints, and decision variables are as follows:

(1)(MILP model) Total Run-Time = minMSn

(2)

subject to:

m∑

k=1

xijk = 1 ∀i ∈ {1, 2,… , n},∀j ∈ Ji

(3)
∑

j∈Ji

xijk ≤ �ik ⋅ �i ∀i ∈ {1, 2,… , n},∀k ∈ {1, 2, ...,m}

(4)
∑

j∈Ji

xijk ≥ �ik ∀i ∈ {1, 2,… , n},∀k ∈ {1, 2,⋯ ,m}

(5)�ik ⋅Memi ≤ memk ∀i ∈ {1,… , n},∀k ∈ {1,⋯ ,m}

(6)Zi ≥ �i−1,k − �i,k ∀i ∈ {2,… , n},∀k ∈ {1, 2,… ,m}

(7)Zi ≥ �i,k − �i−1,k ∀i ∈ {2,… , n},∀k ∈ {1, 2,… ,m}
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(8)Θik ≤
1

2
(�ik + Zi) ∀i ∈ {2,… , n},∀k ∈ {1,… ,m}

(9)Θik ≥ (�ik + Zi) − 1 ∀i ∈ {2,… , n},∀k ∈ {1,… ,m}

Table 1  Models parameters/variables and their description

Notation of parameters Description

CN = {node1, node2, ..., nodem} Cluster node set
m The number of nodes of the cluster
CNk kth node of the cluster
memk Accessible memory size of CNk for running tasks
Ck The number of cores CNk

Pk The performance of each core of CNk (e.g. floating point operations 
per second)

BWk The bandwidth of network for CNk

A = {B1,B2, ...,Bn} The set of bags of the workflow
n The number of level(Bags) of the workflow
Bi ith bag of the workflow
�i The number of tasks contained in Bi

Wi Required amount of computation for one task of Bi(e.g. number of 
floating point operations)

IDSi Input data size for Bi

ODSi Output data size for Bi

Ji The set of tasks of Bi

Memi Required memory for each task of Bi

TSKij jth task of Bi

Notation of decision variables Description

xijk 1 iff Tskij is assigned to CNk , otherwise 0
�ik 1 iff at least one task of Bi is assigned to CNk , otherwise 0
Zi 0 iff all tasks of Bi and Bi−1 are assigned to a common node of the 

cluster, otherwise 1
Θik 1 iff Zi =1 and �ik = 1 , otherwise 0
yijk 1 iff Zi =1 and �ik = 1 and xijk = 1 , otherwise 0
uijk 1 iff Zi+1 =1 and �ik = 1 and xijk = 1 , otherwise 0
Ri The time for transferring of required input data for Bi by CNk from the 

shared storage of the cluster
WRi The time for transferring of output data of tasks of Bi by CNk to the 

shared storage of the cluster
MSi The makespan of Bi

STi The start time of executing of Bi

ETi The executional time of tasks of Bi
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(10)yijk ≤
1

3
(xijk + �ik + Zi) ∀i ∈ {2,… , n},∀j ∈ J,∀k ∈ {1,… ,m}

(11)yijk ≥ (xijk + �ik + Zi) − 2 ∀i ∈ {2,… , n},∀j ∈ J,∀k ∈ {1,… ,m}

(12)uijk ≤
1

3
(xijk + �ik + Zi+1) ∀i ∈ {1,… , n − 1},∀j ∈ J,∀k ∈ {1,… ,m}

(13)
uijk ≥ (xijk + �ik + Zi+1) − 2 ∀i ∈ {1,… , n − 1},∀j ∈ J,∀k ∈ {1,… ,m}

(14)Ri ≥
IDSi

BWk

⋅ Θik ∀i ∈ I1,∀k ∈ {1,… ,m}

(15)Ri ≥
IDSi

BWk

⋅

∑

j∈Ji

yijk ∀i ∈ I2,∀k ∈ {1,… ,m}

(16)WRi ≥

(
ODSi

BWk

⋅ Θik

)
∀i ∈ I1,∀j ∈ J,∀k ∈ {1,… ,m}

(17)WRi ≥

(
ODSi

BWk

⋅

∑

J

uijk

)
∀i ∈ I2,∀k ∈ {1,… ,m}

(18)ETi ≥

�∑
j∈Ji

xijk

�
⋅Wi

Pk ⋅ Ck

∀i ∈ {1, 2,… , n},∀k ∈ {1, 2,… ,m}

(19)STi+1 = STi + ETi + Ri +WRi ∀i ∈ {1,… , n − 1}

(20)MSi ≥ STi + ETi + Ri +WRi ∀i ∈ {1,… , n}

(21)xijk ∈ {0, 1} ∀i ∈ {1, 2,… , n},∀j ∈ J,∀k ∈ {1, 2,… ,m}

(22)yijk ∈ {0, 1} ∀i ∈ {1, 2,… , n},∀j ∈ J,∀k ∈ {1, 2,… ,m}

(23)uijk ∈ {0, 1} ∀i ∈ {1, 2,… , n − 1},∀j ∈ J,∀k ∈ {1, 2,… ,m}

(24)�ik ∈ {0, 1} ∀i ∈ {1, 2,… , n},∀k ∈ {1, 2,… ,m}

(25)Θik ∈ {0, 1} ∀i ∈ {1, 2,… , n},∀k ∈ {1, 2,… ,m}
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Below, the roles of the constraints and objective function of the model are explained 
in detail:

• The objective function, presented in Eq. (1), indicates the makespan of the last 
bag which is equal to the makespan of the workflow, including execution and 
data transferring times. The model minimizes this objective function.

• Constraints (2) state that each task must be assigned to only one node of the 
cluster.

• Constraints (3) and (4) guarantee that all tasks in Bi must be assigned. Pre-
cisely, �ik = 1 ( �ik = 0 ) iff 

∑
xijk > 0 ( 

∑
xijk = 0).

  If multiple tasks are assigned to a node, the node will execute them sequen-
tially. Therefore, the memory constraint should be satisfied for each task indi-
vidually. Constraints (5) guarantee that each task of each bag is assigned to the 
nodes that can satisfy its memory requirements.

• Constraints (6) and (7) show that if all tasks of Bi and Bi−1 are assigned to a 
common node of the cluster, then Zi = 0 . Thus, data transfer time must be dis-
regarded from the analysis.

  Remark: Constraints (6) and (7) can guarantee Zi = 1 when tasks of bagi 
and bagi−1 are assigned to different nodes and if they are assigned to the same 
node, both constraints lead to Zi ≥ 0 . In mathematical models, some constraints 
are intentionally ignored because they are automatically satisfied in optimality, 
since the mathematical models obtain global optimal solution. In addition, this 
ignoring leads to a simplification of the problem and reduces the number of 
computations. The proposed model takes advantage of this property of math-
ematical models. More precisely, the constraints (8)– (13) are linearized forms 
of the decision variables Θik , yijk , and uijk . On the other hand, the constraints 
(14)–(17) show the effect of the decision variable Zi in the calculation of the 
data transfer time. Since makespan = execution time + data transfer time , the 
optimal value of the objective function leads to the minimization of data trans-

(26)Zi ∈ {0, 1} ∀i ∈ {1, 2,… , n}

(27)MSi ∈ ℝ
+ ∀i ∈ {1, 2,… , n}

(28)STi ∈ ℝ
+ ∀i ∈ {1, 2,… , n}

(29)ETi ∈ ℝ
+ ∀i ∈ {1, 2,… , n}

(30)WRi ∈ ℝ
+ ∀i ∈ {1, 2,… , n}

(31)Ri ∈ ℝ
+ ∀i ∈ {1, 2,… , n}
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fer time. Therefore, in order to keep optimality, when two bags i and i − 1 are 
assigned to the same node, Zi must be zero.

• Constraints (8) and (9) determine the value of decision variable Θik . Indeed, 
Θik = 1 iff Zi =1 and �ik = 1 , otherwise Θik = 0 . Precisely, these constraints are 
equivalent to the nonlinear equation: Θik = �ik ⋅ Zi.

• Constraints (10) and (11) determine the value of decision variable yijk . Indeed, 
yijk = 1 iff Zi = 1 and �ik = 1 and xijk = 1 , otherwise yijk = 0 . Precisely, these con-
straints are equivalent to the nonlinear equation: yijk = Zi ⋅ �ik ⋅ xijk.

• Constraints (12) and (13) determine the value of decision variable uijk . Indeed, 
uijk = 1 iff Zi+1 =1 and �ik = 1 and xijk = 1 , otherwise uijk = 0 . Precisely, these con-
straints are equivalent to the nonlinear equation: uijk = Zi+1 ⋅ �ik ⋅ xijk.

• Constraints (14) determine the value of data transfer time of input data for Bi 
which i is in I1. We divide the bag’s index into two groups, I1 and I2—I1 for the 
bags that tasks have a same input data and I2 for others bags.

• Constraints (15) determine the value of data transfer time of input data for Bi 
which i is in I2.

• Constraints (16) determine the value of data transfer time of output data for Bi 
which i is in I1.

• Constraints (17) determine the value of data transfer time of output data for Bi 
which i is in I2.

• Constraints (18) determine the value of execution time of Bi . The tasks of Bi can 
be assigned to different nodes of the cluster simultaneously. 

(
∑

j∈Ji
xijk)⋅Wi

Pk⋅Ck

 denotes 
just the execution time of those tasks assigned to CNk . Thus, the execution time of 
Bi is max 

(
∑

j∈Ji
xijk)⋅Wi

Pk⋅Ck

.
• Constraint (19) determines the value of start time of Bi and guarantees that the 

model fulfills the sequence of two sequential bags.
• Constraint (20) calculates the makespan of Bi.

A mathematical model related to a decision-making problem includes decision vari-
ables that represent the number of certain resources for use or the level of certain 
activities. The value of decision variables is specified during the problem-solving 
process. The decision variables in the model are defined in Eqs. (21)–(31).

For a cluster node having Ck processors(cores), parallel execution time Tp of a task 
ti can be calculated using Amdahl’s law [31]:

where Tp(ti, 1) is the execution time of ti in single processor and, � is the fraction of ti 
that cannot be parallelized. We assume that tasks of the workflow can be parallel-
ized completely, so: Tp(ti,Ck) =

Tp(ti,1)

Ck

Tp(ti,Ck) =

(
� +

1 − �

Ck

)
⋅ Tp(ti, 1)
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5  Experimental results

The proposed mathematical model was implemented by CPLEX Solver2 version 
20.1.0. To perform experiments, we used a system with an Intel core i7-6500U CPU, 
a 2.5 GHz 8 GB RAM. We performed numerical experiments for the Epigenome, 
LIGO, Montage, and CyberShake workflows, whose specifications were taken from 
the Pegasus Workflow Generator.

In this section, the proposed approach is compared with related ones. We pre-
sented an example to illustrate the performance of the proposed MILP model and 
other related approaches. Then, two post-optimality analysis scenarios were pre-
sented. Finally, the running time of the MILP model and other related works were 
reported.

5.1  Comparing the proposed approach with related methods

For evaluating performance, we compare our approach to several related approaches. 
As previously stated, heuristic-based algorithms have been widely proposed to 
address the problem of DAWs scheduling in the past few decades [8, 9], therefore we 
selected well-known, efficient (HEFT, CPOP) and state-of-the-art (RBCA, DBCA, 
TDCA) heuristic algorithms to evaluate our approach. Moreover, these algorithms 
have been selected from all three groups of heuristic-based scheduling algorithms 
(list-based, clustering-based, and duplication-based).

For the comparison fairly, we assume the following for all approaches:

• The communication time is zero when two dependent task ti and tj are scheduled 
on the same node.

• Any task can be started only after completing all precedent tasks and receiving 
input data.

• Any tasks must be assigned to one node only once.
• All tasks are non-preemptive tasks.
• A computing node of the cluster can run only one single task at any time.

In the following, the algorithms HEFT, CPOP, RBCA, DBCA and TDCA are briefly 
described for comparison with our proposed MILP approach.

• Heterogeneous Earliest Finish Time (HEFT): The HEFT [14] algorithm 
is a well-known static and list-based algorithm for the workflow scheduling 
problem. It has two main phases: task prioritization phase and task assign-
ment phase. In the task prioritization phase the algorithm computes the prior-
ity or rank of each task ti using an upward rank value. ranku(ti) calculated by 
Eq.  32 which indicates the length of the critical path from task ti to the exit 
task where W̄i is the average execution time of task ti on all nodes, C̄i,j is the 

2 https:// www. ibm. com/ produ cts/ ilog- cplex- optim izati on- studio.

https://www.ibm.com/products/ilog-cplex-optimization-studio
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average communication time between tasks ti and tj across all pairs of nodes 
and ranku(texit ) = ̄Wexit . In the task assignment phase, HEFT assigns each task 
to a node that allows completing the task the earliest. It is mentionable that the 
HEFT algorithm also uses an insertion policy in which tries to insert a task in 
at the earliest idle time between two already scheduled tasks on a computing 
node, if the slot is large enough to accommodate the task. 

• Critical Path on Processor(CPOP): The CPOP algorithm [14] has the same 
phases as the HEFT algorithm with different strategies. In the task prioriti-
zation phase, both the upward and downward rank values are considered. 
rankd(ti) calculated by Eq.  33 represents the longest distance from the entry 
task to the task ti , not including the computation cost of the ti . The priority of 
each task ti is assigned with the summation of upward and downward ranks 
( rankd(ti) + ranku(ti) ). The length of the critical path is equal to the priority 
value of the entry task, and the entry task is selected as the first critical task. 
Then, the immediate successor task of the selected task that has the highest 
priority value is selected as the next critical task. This process continues until 
the exit task. In the computing node selection phase, the critical path node is 
the node that minimizes the computation time of all tasks on the critical path. 
A non-critical task is assigned on a node that minimizes the earliest execution 
finish time of the task with considering the insertion scheduling policy. 

• Runtime Balance Clustering Algorithm (RBCA): The RBCA algorithm [22] 
is one of the most novel static and cluster-based algorithms for the workflow 
scheduling problem. Although cloud computing is considered as the infra-
structure, this approach is comparable with our approach, because, like our 
approach, the objective of RBSA is minimizing the overall makespan of the 
workflow. It also applies horizontal task clustering for a workflow that merges 
the tasks of the same horizontal level in a workflow into a specific number 
of task clusters. In [22], it has been explained that runtime imbalance occurs 
when the tasks are assigned to the different task clusters with a large difference 
in execution time. In such a status, the execution of task clusters on the next 
level of the workflow will be delayed, thus affecting the overall makespan of 
the workflow. RBCA tries to balance the run time of defined task clusters using 
a backtracking strategy. It minimizes the value of TBM(Time Balance Meas-
urement) metric. TBM is calculated by Eq. 34 which represents the maximum 
summation of runtime among defined task clusters where the tasks of a level 
of the workflow are clustered into m task cluster (C1,… ,Cm) ; taskTimeSum(Ci) 
represents the sum of runtime of all tasks in cluster Ci . RBCA chooses the 
number of compute nodes as the number of task clusters. 

(32)ranku(ti) = W̄i + max
tj∈successor(ti)

{ranku(tj) + C̄i,j}

(33)rankd(ti) = max
tj∈predecessor(ti)

{rankd(tj) + W̄j + C̄i,j}
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• Dependency Balance Clustering Algorithm (DBCA): The DBCA algorithm 
is a new static and cluster-based algorithm presented in [22] like RBCA. It also 
applies horizontal task clustering and considers the number of compute nodes as 
the number of task clusters. DBCA tries to tackle over dependency imbalanced 
problem. The dependency imbalance may occur when a task requires the data 
from other tasks clustered in different task clusters. This delays the release of fol-
lowing tasks and thus increases the overall makespan. To avoid the dependency 
imbalance, DBCA clusters the tasks with high dependency correlation(similarity 
of two tasks in terms of data dependency) together.

  The dependency correlation between two tasks ti and tj is calculated by Eq. 35 
where succ(ti) represents the set of immediate successors of task ti , and |succ(ti)| 
represents the number of immediate successors of task ti . 

• Task Duplication-based Clustering Algorithm (TDCA): The TDCA algorithm 
[23] includes four phases which is an improved extension of the TANH algorithm 
[32]. In the first phase, it assigns tasks to computing nodes to generate several ini-
tial clusters. In the second phase, a task duplication method is applied to modify 
the initial clusters to reduce the makespan, so new clusters are added if neces-
sary. In the third phase, TDCA merges some clusters and decreases the number 
of occupied computing nodes to obtain a preliminary schedule. Finally, in the last 
phase, a task insertion scheme, introduced in DCPD [33], is adopted which inserts 
a task to an idle time slot located before its successor tasks if this insertion could 
make the successor start earlier.

5.1.1  An illustrative example

To illustrate the performance of the proposed approach compared to related work, 
we use the workflow in Fig. 3, which is roughly similar in structure to the Epig-
enome workflow. Assume that the cluster infrastructure consists of three compute 
nodes N1, N2, and N3 with different computing power. The average data transfer 
time required between two tasks is shown by the values on the edges. The execu-
tion time of the tasks on each of the nodes in the cluster is also shown. Figure 4 
shows how our MILP approach and the heuristic algorithms schedule the work-
flow of Fig. 3. It also shows the scheduling length (makespan).

Regarding the upward ranking of the HEFT, tasks of the same level have the 
same priority. Therefore, the tasks of a level can be prioritized in ascending order 

(34)TBM = max {taskTimeSum(Ci)} i = 1,… ,m

(35)

cor(ti, tj) =
|succ(ti) ∩ succ(tj)|
√

|succ(ti) ⋅ succ(tj)|

=

√
|succ(ti) ∩ succ(tj)|

|succ(ti)|
⋅

√
|succ(ti) ∩ succ(tj)|

|succ(tj)|
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of their number. So, the scheduling order of the tasks for the HEFT algorithm is 
T1 , T2 , T3 , T4 , T5 , T6 , T7 , T8 , T9 , T10.

The CPOP algorithm identifies four critical paths of equal weight which 
are { T1 − T2 − T6 − T10 }, { T1 − T3 − T7 − T10 }, { T1 − T4 − T8 − T10 }, and 
{ T1 − T5 − T9 − T10 }. On the other hand, the critical node is N3 because it mini-
mizes the execution time of the tasks on the critical path. All tasks are scheduled 
on N3 and the makespan is 270 if all four paths are considered critical path. If only 
one of them is considered the critical path, the makespan is 225.

The DBCA and RBCA algorithms give the same result. This is because the lev-
els in the DAG are completely homogeneous. This homogeneity covers both the 
runtime and the dependencies of the tasks. Since they cluster and assign the tasks 
of each level of the DAG based on the number of nodes, all nodes are used.

The TDCA algorithm assigns all tasks to node N3. Since N3 is better than the 
other nodes for all tasks, all schedules from the other nodes are merged onto the 

Fig. 3  A workflow with 10 tasks and computation time of tasks on three nodes of a cluster

Fig. 4  Scheduling of workflow in Fig.  3 with a MILP (makespan=211), b HEFT(makespan=222), 
c CPOP (makespan=225), d RBCA (makespan=242), e DBCA (makespan=242), f TDCA (makes-
pan=270)
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best node. The algorithm may work better for cluster infrastructures where no sin-
gle node is best for all tasks, so different tasks may have different preferred nodes.

5.1.2  Comparison results

To compare the MILP model with other approaches, we performed experiments on 
the Epigenome, LIGO, Montage, and CyberShake workflows with four workflow 
sizes (about 30, 50, 100, and 1000 tasks). We looked into three cluster sizes, namely 
small, medium, and large (consist of 4, 8, and 16 computing nodes, respectively) with 
the following parameters:

• The small cluster:
  P[CNk] = {15, 10, 25, 20}

  C[CNk] = {10, 6, 4, 8}

  BW[CNk] = 1000

  mem[CNk] = {5000, 2000, 4000, 8000}

• The medium cluster:
  P[CNk] = {10, 25, 15, 15, 30, 12, 10, 30}

  C[CNk] = {14, 4, 10, 8, 4, 12, 16, 6}

  BW[CNk] = 1000

  mem[CNk] = {1000, 1050, 5000, 2000, 4000, 8000, 6000, 3000}

• The large cluster:
  P[CNk] = {10, 25, 15, 15, 30, 12, 10, 30, 25, 10, 15, 30, 25, 12, 10, 20}

  C[CNk] = {14, 4, 10, 8, 14, 12, 16, 6, 4, 12, 8, 6, 8, 10, 14, 8}

  BW[CNk] = 1000

  mem[CN
k
] = {1000, 1050, 5000, 2000, 4000, 8000, 6000, 3000, 1100, 1250, 5500, 2300, 4300, 8100, 6200, 3900}

The numerical results are provided in Tables 2, 3, 4 and Figs. 5, 6, 7. It should be 
noted that the all bars in Figs. 5, 6, 7 are extracted from the data in Tables 2, 3, 4 
which are normalized using the maximum value of makespan for different workflow 
sizes.

Table 2  Obtained makespan of different approaches for scientific workflows on the small cluster

The bold values mean the best results

Approach Epigenome LIGO Montage Cybershake

24 47 100 30 50 100 25 50 100 30 50 100

MILP 149.4 262.23 531.96 16.895 28.51 47.53 1.02 2 3.35 7.56 8.78 14.42
HEFT 155.73 261.79 536.2 17.76 28.39 50.26 1.47 2.06 3.17 8.54 9.86 13.05
CPOP 149.4 262.55 534.82 17.76 28.39 53.52 1.53 2.23 3.54 8.82 10.33 14.46
RBCA 181.54 342.33 984.6 18.99 47.3 94.58 1.68 2.97 5.19 12.26 13.09 18.6
DBCA 181.54 342.33 984.6 18.99 47.3 94.58 1.68 2.97 5.19 12.26 13.09 18.6
TDCA 181.97 382.63 643.39 21.27 30.08 57.12 1.54 2.35 3.46 13.43 13.79 16.01
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As previously stated in Sect. 2, in contrast to heuristic methods, we assumed that 
the workflows are in the form of BoT. Therefore, the heuristic methods are expected 
to give a lower makespan than that of our proposed method. But as seen in the 
experimental results of makespan reported in Tables 2, 3 and 4, in 75% of cases, our 

Fig. 5  Normalized makespan for the workflows with different sizes on the small cluster

Table 3  Obtained makespan of different approaches for scientific workflows on the medium cluster

The bold values mean the best results

Approach Epigenome LIGO Montage Cybershake

24 47 100 30 50 100 25 50 100 30 50 100

MILP 81.5 129.43 255.03 8.05 11.05 19.06 0.94 1.2 1.21 7.95 8.32 8.55
HEFT 93.36 144.26 262.48 8.06 13.23 23.66 1.15 1.37 1.58 7.47 8.49 8.98
CPOP 90.4 142.06 262.48 7.97 13.21 24.82 1.15 1.47 2.08 7.47 8.49 8.99
RBCA 87.44 139.13 307.71 7.97 13.21 28.42 1.15 1.42 2.09 10.15 10.52 11.62
DBCA 87.44 139.13 307.71 7.97 13.21 28.42 1.15 1.42 2.09 10.15 10.52 11.62
TDCA 87.5 152.79 259.61 8.77 14.53 28.27 1.08 1.48 2.2 7.84 8.49 9.09
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approach outperforms to other approaches. It should be noted that in almost all other 
cases (except one), our approach is ranked second in terms of makespan.

Fig. 6  Normalized makespan for the workflows with different sizes on the medium cluster

Table 4  Obtained makespan of different approaches for scientific workflows on the large cluster

The bold values mean the best results

Approach Epigenome LIGO Montage Cybershake

24 47 100 30 50 100 25 50 100 30 50 100

MILP 70.05 87.39 146.32 6.74 7.05 10.65 0.88 1.01 1.04 6.17 7.02 7.58
HEFT 79.95 100.04 157.38 6.71 8.06 13.54 1.05 1.17 1.38 6.72 6.73 6.74
CPOP 79.95 100.04 157.38 6.65 8.04 13.09 1.05 1.15 1.51 6.72 6.73 6.74
RBCA 76.98 97.17 154.42 6.65 7.96 13.59 1.05 1.17 1.42 8.81 9.14 9.48
DBCA 76.98 97.17 154.42 6.65 7.96 13.59 1.05 1.17 1.42 8.81 9.14 9.48
TDCA 77.03 97.19 154.49 7.31 8.76 15.99 1.04 1.25 1.63 6.72 7.08 7.69
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5.2  Post‑optimality analysis

In the theory of decision-making, although optimizing the objective function is the 
main issue, it is not necessarily the end of the story: employing a post-analysis can 
optimize other parameters. In this section, we present two interesting cases of post-
optimality analysis.

5.2.1  Choosing a preferred solution among the set of alternative optimal solutions

As a post-optimality analysis, choosing a preferred solution among the set of alterna-
tive optimal solutions referred to as the preferred optimal solution is important from 
the decision-maker’s perspective.

In our case, this can be done in the form of Phase 2 optimization. After solving Model 
MILP in the first phase and calculating the optimal value of makespan (denoted by t∗ ), in 
phase 2 we optimize the objective function expressing the secondary preferences on the 
set of alternative optimal phase solutions of Phase 1.

Phase 1: Solving the MILP model as follows:

Fig. 7  Normalized makespan for the workflows with different sizes on the large cluster
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One of these secondary preferences (which can be important here) is to choose a 
type of assignment in which the least possible number of nodes are used while get-
ting the best makespan. In a cluster environment that includes a limited number of 
computing nodes, the fewer nodes we utilize to run applications, the less energy will 
be consumed, and the more users can start running their applications. For this pur-
pose, for each node CNk , we define a binary variable �k as follows:

According to the definition of decision variables in Phase 1, we want to hold the fol-
lowing proposition for each index k:

It can be shown that in optimality (in optimal solutions) of the following model the 
above-mentioned proposition holds:

Phase 2: Solving the MILP-ON model

where M is a large enough positive number that its value can be any number greater 
than or equal to the number of bags of the workflow multiplied by the number of 
tasks. We define binary quantity �ik in the sense that �ik = 1 if only if at least one 
task of Bi is assigned to the CNk equivalently to Eq.  42. Also, we define positive 
integer quantity NNi as Eq. 43 that calculates the number of used nodes of the clus-
ter for each Bi.

t∗ = minMSn

subject to: Eqs. (2) − (31)

(36)𝜂k =

�
1 if

∑
i

∑
j xijk > 0

0 O.W

(37)
∑

i

∑

j

xijk > 0 ⟺ 𝜂k = 1 ∀k ∈ {1, 2, ...,m}

(38)(MILP-ON model) min
∑

k

�k

(39)
subject to: Eqs. (2) − (31)

MSn ⩽ t∗ + �

(40)
∑

i

∑

j

xijk ≤ M ⋅ �k ∀k ∈ {1, 2, ...,m}

(41)�k ∈ {0, 1} ∀k ∈ {1, 2, ...,m},

(42)
∑

j

xijk > 0 ⟺ 𝜂ik = 1 ∀i ∈ {1, 2, ..., n},∀k ∈ {1, 2, ...,m}

(43)NNi =
∑

k

�ik ∀i ∈ {1, 2, ..., n}
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We conducted an experiment for the workflow of Fig.  8 which has four bags 
( B1, ...,B4 ). The simulated cluster environment consists of 8 computing nodes 
( k = 8 ). Parameters of the DAW and computing nodes are as the following:

• P[CNk] = {100, 80, 60, 80, 40, 100, 200, 190}

• C[CNk] = 1

• BW[CNk] = 1000

• mem[CNk] = {1000, 1050, 5000, 2000, 4000, 8000, 6000, 3000}

• W[Ti] = {1000, 500, 500, 500, 500, 400, 400, 400, 400, 800}

• Mem[Ti] = {5000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 4000}

• IDS[Ti] = {0, 10, 10, 10, 10, 20, 20, 20, 20, 20}

• ODS[Ti] = {10, 20, 20, 20, 20, 20, 20, 20, 20, 0}

Solving the MILP model in Phase 1, the optimal makespan is 18.05. In the 
obtained optimal solution, assignments are as depicted in Fig.  9a. Solving the 

Fig. 8  A workflow with 10 tasks 
and four bag-of-tasks

Fig. 9  Two different optimal assignments with the same makespan
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MILP-ON model in Phase 2, assignments of the optimal solution are as depicted 
in Fig. 9b with the same makespan. In the second alternative optimal solution, the 
number of consumed nodes for B2 and B3 is three which is less than that of the first 
optimal solution(four nodes). In general, not all the optimal solutions of phase 1 
might be obtained, and indeed, it is not necessary to do that. However, in the sec-
ond phase, the most preferred optimal solution can be found.

5.2.2  Relaxation of the makespan in the hope of significantly reducing the number 
of consumed nodes

Sometimes in decision-making, slight appeasement in one goal (even if it is our 
main goal) may lead to a significant improvement in other goals or preferences. In 
such cases, by relaxing(increasing here) the mentioned objective function at dif-
ferent levels, various values are obtained for other goals and preferences. These 
results show a kind of trade-off between considered goals. The results of this trade-
off are provided for the decision-maker in the form of a table called the trade-off 
table for making a preferred decision. There are two main motivations for relaxing 
the makespan: 

Table 5  Makespan relaxation for Epigenome workflow ( t∗ = 97.85)

The number of consumed nodes in each bag(level).

Relaxed Makespan

#Bag 97.85 97.90 97.95 103 110 130 163

1 1 1 1 1 1 1 1
2 6 1 1 1 1 1 1
3 6 3 1 1 1 1 1
4 6 6 6 5 4 3 2
5 6 6 6 5 4 3 2
6 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1
Sum 28 20 18 16 14 12 10

b Makespan relaxation VS. number of consumed node improvement.

Δ t∗ + Δ �(%) �(%) Gain-to-Loss ( �
�
)

0.05 97.9 0.05 28.57 559.14
0.1 97.95 0.10 35.71 349.46
5.15 103 5.26 42.86 8.14
12.15 110 12.42 50.00 4.03
32.15 130 32.86 57.14 1.74
65.15 163 66.58 64.29 0.97
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1. As makespan increases, the number of occupied nodes decreases; consequently, 
the amount of energy consumption decreases.

2. Increasing the makespan reduces the number of nodes occupied, so more users 
can run their programs.

We conducted experiments on the Epigenome, LIGO, Montage, and CyberShake 
workflows with 100 tasks. The simulated cluster environment consists of sixteen 
compute nodes with the following parameters:

• P[CNk] = {15, 10, 20, 5, 10, 20, 30, 25, 18, 26, 17, 25, 30, 21, 10, 30}

• C[CN
k
] = {20, 32, 28, 16, 10, 30, 32, 8, 12, 28, 24, 12, 18, 6, 8, 16}

• mem[CN
k
] = {50, 100, 200, 850, 150, 100, 250, 300, 50, 100, 200, 850, 150,

100, 250, 300}

• BW[CNk] = 1000

The numerical results are provided in Tables  5, 6, 7,  8. t∗ denotes the optimal 
makespan obtained by solving the MILP model, � is the percentage of reduction 
in the number of nodes consumed, � is the percentage of increase in the makespan 
and Δ is the amount of relaxing the makespan. From the numerical results reported 
in Tables 5, 6, 7, 8, the following points can be highlighted:

Table 6  Makespan relaxation for LIGO workflow ( t∗ = 59.98)

(a) The number of consumed nodes in each bag(level).

Relaxed Makespan

#Bag 59.98 60.30 60.80 62.30 65 70 76

1 2 2 2 1 1 1 1
2 2 2 2 2 2 2 1
3 2 2 1 1 1 1 1
4 2 2 2 2 1 1 1
5 2 2 2 2 2 1 1
6 2 1 1 1 1 1 1
Sum 12 11 10 9 8 7 6

(b) Makespan relaxation VS. number of consumed node improvement.

Δ t∗ + Δ �(%) �(%) Gain-to-Loss ( �
�
)

0.32 60.3 0.53 8.33 15.62
0.82 60.8 1.37 16.6 12.19
2.32 62.3 3.87 25 6.46
5.02 65 8.37 33.33 3.98
10.02 70 16.71 41.67 2.49
16.02 76 26.71 50 1.87
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– A very small relaxation in makespan leads to a considerable reduction in the num-
ber of consumed nodes. For example in Table  5b just relaxing 0.05 percent in 
makespan leads to a 28.57 percent reduction in the number of consumed nodes. 
This fact is depicted in Fig  10. Thus, the ratio of gain (saved nodes) to loss 
(increasing makespan) is 559.14.

– As shown in Tables  5, 6, 7,  8, as the amount of relaxation in the makespan 
increases, the rate of improvement in the number of nodes consumed decreases so 
that a more value of gain-to-loss ratio occurs near the optimal value of makespan.

5.3  Running time

In this subsection, we express the running time of the MILP, HEFT, CPOP, RBCA, 
DBCA and TDCA approaches. Table 9 shows the running time of the approaches for 
the Epigenome, Montage, Cybershake and LIGO workflows for a different number 
of tasks. As can be seen, in most cases, the running time of the TDCA is better than 
the other ones. Moreover, the running time of the MILP approach is about a second 
in most cases while the running time of heuristic approaches is less than one second 
in all cases. Nevertheless, the running time of MILP is negligible compared with the 
workflow execution time.

Table 7  Makespan relaxation for Cybershake workflow ( t∗ = 49.50)

(a) The number of consumed nodes in each bag(level).

Relaxed Makespan

#Bag 49.50 49.51 49.52 49.53 49.56 49.90 52

1 2 2 2 2 2 1 1
2 2 2 2 2 2 2 1
3 1 1 1 1 1 1 1
4 9 5 3 2 1 1 1
5 1 1 1 1 1 1 1
Sum 15 11 9 8 7 6 5

(b) Makespan relaxation VS. number of consumed node improvement.

Δ t∗ + Δ �(%) �(%) Gain-to-Loss ( �
�
)

0.01 49.51 0.02 26.67 1320
0.02 49.52 0.04 40 990
0.03 49.53 0.06 46.67 770
0.06 49.56 0.12 53.33 440
0.4 49.9 0.81 60 74.25
2.5 52 5.05 66.67 13.2
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6  Conclusion and future works

We proposed a mathematical model (MILP model) for BoT scientific workflow 
scheduling in heterogeneous cluster environments which minimizes the makespan. 
The problem was formulated as an MILP model and solved by the CPLEX solver in 
a reasonable time. In a mathematical model, the objective function and the problem’s 
constraints are expressed using some explicit mathematical expressions of decision 
variables.

This provides a useful insight into the structure of the problem. Some critical 
information, such as post-optimality analysis or trade-offs, can be derived explicitly. 
We compared our approach against related approaches. In our proposed approach, 
it is assumed that the workflows are in the form of BoT; however, there is no such 
assumption in comparative heuristic methods and they can be used in the most gen-
eral form of workflows. Therefore, heuristic approaches are expected to give a lower 
makespan than that of our proposed approach, but since they give sub-optimal solu-
tions, this does not happen in most cases, so that our approach outperforms other 
approaches in 75% of the cases. It should be noted that in almost all other cases 
(except one), our approach is ranked second in terms of makespan.

Table 8  Makespan relaxation for Montage workflow ( t∗ = 0.46)

(a)The number of consumed nodes in each bag(level).

Relaxed Makespan

#Bag 0.46 0.48 0.50 0.53 0.55 0.60 0.70

1 10 9 7 6 5 4 3
2 10 9 7 6 5 4 3
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1
Sum 27 25 21 19 17 15 13

(b)Makespan relaxation VS. number of consumed node improvement.

Δ t∗ + Δ �(%) �(%) Gain-to-Loss ( �
�
)

0.02 0.48 4.35 7.41 1.70
0.04 0.5 8.70 22.22 2.56
0.07 0.53 15.22 29.63 1.95
0.09 0.55 19.57 37.04 1.89
0.14 0.6 30.43 44.44 1.46
0.24 0.7 52.17 51.85 0.99
0.34 0.8 73.91 59.26 0.80
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We also investigated choosing a preferred solution among the set of (possible) 
alternative optimal solutions as a part of the post-optimality analysis. As another part 
of the post-optimality analysis, relaxation of the makespan is explored in the hope of 
significantly reducing the number of consumed nodes.

Fig. 10  The effect of makespan relaxation on the total number of consumed nodes

Table 9  Running time of the approaches for the workflows in seconds with different sizes

The bold values mean the best results

Approach Epigenome LIGO Montage Cybershake

24 47 100 30 50 100 25 50 100 30 50 100

MILP 1 2.01 9 0.854 0.870 0.900 1 1.245 6 0.789 0.923 1.2
HEFT 0.167 0.218 0.220 0.054 0.335 0.001 0.248 0.105 0.001 0.130 0.453 0.247
CPOP 0.096 0.144 0.315 0.076 0.121 0.239 0.411 0.182 0.001 0.231 0.174 0.327
RBCA 0.017 0.029 0.046 0.022 0.027 0.054 0.133 0.050 0.169 0.027 0.025 0.047
DBCA 0.025 0.046 0.100 0.037 0.054 0.103 0.076 0.140 0.854 0.043 0.069 0.182
TDCA 0.893 0.001 0.013 0.003 0.008 0.025 0.003 0.007 0.035 0.002 0.006 0.028
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The proposed mathematical model also provides an explicit framework for impos-
ing any possible secondary preferences which have not been considered here and may 
be needed in the future. In the future, we intend to extend our proposed approach to 
take into account communication congestion and study its effect on the scheduling of 
a workflow in heterogeneous cluster environments.
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