
TASK SCHEDULING AND
RESOURCE ALLOCATION

ON PARALLEL AND DISTRIBUTED
MACHINES

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2022

Chong Ke

Department of Computer Science

Contents

Abstract 10

Declaration 12

Copyright 13

Acknowledgements 14

1 Introduction 15

1.1 Motivation . 17

1.2 Contribution . 17

1.3 Thesis structure . 18

2 Task graphs and scheduling 19

2.1 Task graphs . 19

2.2 Scheduling . 23

2.3 Constraints . 26

3 Scheduling models 28

3.1 Classic model . 28

3.1.1 A scheduling example in the classic model 30

3.2 Contention model . 32

3.2.1 One-port model . 33

3.2.2 A scheduling example in the one-port model 34

2

4 Existing scheduling approaches 37
4.1 List scheduling . 37

4.1.1 Static list scheduling algorithms 38

4.1.2 Dynamic list scheduling algorithms 38

4.1.3 List scheduling in the classic model 39

4.1.4 Some list scheduling approaches 43

4.2 Clustering scheduling . 46

4.2.1 Generic clustering algorithms 47

4.2.2 Clustering algorithms in the classic/one-port model 49

4.3 Other scheduling algorithms . 51

4.4 Summary . 55

5 A look-forward algorithm for task scheduling 56
5.1 Introduction . 56

5.2 Task scheduling (DAG, model, basic list scheduling) 59

5.3 HEFT, look-ahead and look-forward algorithm 61

5.3.1 HEFT . 61

5.3.2 Look-ahead . 63

5.3.3 Look-forward . 64

5.4 Experimental evaluation . 64

5.4.1 DAX and generator . 64

5.4.2 The simulator and settings . 66

5.4.3 Results . 67

5.4.4 Discussion . 86

5.4.5 Algorithm execution time . 87

5.5 Summary . 88

6 Look-forward scheduling in the contention model 93
6.1 List scheduling in the one-port model 93

6.2 Look-forward algorithms under the contention model 98

6.3 Experimental setup . 98

6.3.1 Graphs . 98

6.3.2 DAX generator and simulator settings 101

3

6.3.3 Results and evaluation . 102
6.4 Summary . 103

7 The identical data problem 107
7.1 The identical data problem description 108
7.2 Identical data in list scheduling algorithms 111
7.3 Using the look-forward algorithm for identical data under the contention

model . 113
7.4 Experimental evaluation . 113

7.4.1 HEFT scheduling versus look-forward 116
7.5 Summary . 117

8 Conclusion 126

Bibliography 128

Word Count: 24271

4

List of Tables

5.1 Communication improvement of look-ahead and look-forward when the
number of resources is 10 . 78

5.2 Communication improvement of look-ahead and look-forward when the
number of resources is 2 . 79

5

List of Figures

2.1 Incoming and outgoing nodes and edges 20

2.2 Node level . 22

2.3 Dominant sequence example . 23

3.1 A fully connected network system . 30

3.2 Scheduling example in classic model 31

3.3 Contention model and path finding . 33

3.4 One-port model . 34

3.5 Scheduling example in the one-port model 35

4.1 An example to illustrate how communication cost may affect the sched-
ule length. 40

5.1 Average makespan with standard deviation using Montage workflow,
CCR 0.5 and 2 resources . 69

5.2 Average makespan with standard deviation using Montage workflow,
CCR 0.5 and 10 resources . 69

5.3 Average makespan with standard deviation using Montage workflow,
CCR 1.0 and 2 resources . 70

5.4 Average makespan with standard deviation using Montage workflow,
CCR 1.0 and 10 resources . 70

5.5 Average makespan with standard deviation using Montage workflow,
CCR 2.0 and 2 resources . 71

5.6 Average makespan with standard deviation using Montage workflow,
CCR 2.0 and 10 resources . 71

6

5.7 Average makespan with standard deviation using ligo workflow, CCR
0.5 and 2 resources . 72

5.8 Average makespan with standard deviation using ligo workflow, CCR
0.5 and 10 resources . 72

5.9 Average makespan with standard deviation using ligo workflow, CCR
1.0 and 2 resources . 73

5.10 Average makespan with standard deviation using ligo workflow, CCR
1.0 and 10 resources . 73

5.11 Average makespan with standard deviation using ligo workflow, CCR
2.0 and 2 resources . 74

5.12 Average makespan with standard deviation using ligo workflow, CCR
2.0 and 10 resources . 74

5.13 Average makespan with standard deviation using cybershake workflow,
CCR 0.5 and 2 resources . 75

5.14 Average makespan with standard deviation using cybershake workflow,
CCR 0.5 and 10 resources . 75

5.15 Average makespan with standard deviation using cybershake workflow,
CCR 1.0 and 2 resources . 76

5.16 Average makespan with standard deviation using cybershake workflow,
CCR 1.0 and 10 resources . 76

5.17 Average makespan with standard deviation using cybershake workflow,
CCR 2.0 and 2 resources . 77

5.18 Average makespan with standard deviation using cybershake workflow,
CCR 2.0 and 10 resources . 77

5.19 Average makespan with standard deviation using epigenomics work-
flow, CCR 0.5 and 2 resources . 78

5.20 Average makespan with standard deviation using epigenomics work-
flow, CCR 0.5 and 10 resources . 79

5.21 Average makespan with standard deviation using epigenomics work-
flow, CCR 1.0 and 2 resources . 80

5.22 Average makespan with standard deviation using epigenomics work-
flow, CCR 1.0 and 10 resources . 80

7

5.23 Average makespan with standard deviation using epigenomics work-
flow, CCR 2.0 and 2 resources . 81

5.24 Average makespan with standard deviation using epigenomics work-
flow, CCR 2.0 and 10 resources . 81

5.25 Communication amount of montage workflow under 2 resources 82

5.26 Communication amount of montage workflow under 10 resources . . . 82

5.27 Communication amount of cybershake workflow under 2 resources . . . 83

5.28 Communication amount of cybershake workflow under 10 resources . . 83

5.29 Communication amount of epigenomics workflow under 2 resources . . 84

5.30 Communication amount of epigenomics workflow under 10 resources . 84

5.31 Communication amount of ligo workflow under 2 resources 85

5.32 Communication amount of ligo workflow under 10 resources 85

5.33 Average algorithm execution time (in microseconds) of montage work-
flow under 2 resources . 88

5.34 Average algorithm execution time (in microseconds) of montage work-
flow under 10 resources . 89

5.35 Average algorithm execution time (in microseconds) of cybershake
workflow under 2 resources . 90

5.36 Average algorithm execution time (in microseconds) of cybershake
workflow under 10 resources . 90

5.37 Average algorithm execution time (in microseconds) of epigenomics
workflow under 2 resources . 91

5.38 Average algorithm execution time (in microseconds) of epigenomics
workflow under 10 resources . 91

5.39 Average algorithm execution time (in microseconds) of ligo workflow
under 2 resources . 92

5.40 Average algorithm execution time (in microseconds) of ligo under 10
Resources . 92

6.1 Graph example for edge scheduling 96

6.2 Fork and join graph . 98

6.3 Fork-join graph . 100

6.4 Series-parallel graph . 101

8

6.5 Out-tree graph . 102
6.6 In-tree graph . 103
6.7 Fork graph under the contention/one-port model 104
6.8 Fork-join graph under the contention/one-port model 104
6.9 SerieParallel graph under the contention/one-port model 105
6.10 In Tree graph under the contention/one-port model 105
6.11 Out Tree graph under the contention/one-port model 106

7.1 Identical data . 108
7.2 Identical data in one-port model . 109
7.3 Identical data in classic model . 111
7.4 Schedule identical data . 112
7.5 HEFT scheduling evaluation (CCR=0.1) 113
7.6 HEFT scheduling evaluation (CCR=1) 114
7.7 HEFT scheduling evaluation (CCR=10) 115
7.8 Look-forward algorithm(CCR=0.1) 116
7.9 Look-forward algorithm(CCR=1) . 117
7.10 Look-forward algorithm(CCR=10) . 118
7.11 Fork without identical data comparison 119
7.12 Fork with identical data comparison 119
7.13 Fork-join without identical data comparison 122
7.14 Fork-join with identical data comparison 122
7.15 SerieParallel without identical data comparison 123
7.16 SerieParallel with identical data comparison 123
7.17 Out Tree without identical data comparison 124
7.18 Out Tree with identical data comparison 124
7.19 In Tree without identical data comparison 125
7.20 In Tree with identical data comparison 125

9

Abstract

TASK SCHEDULING AND RESOURCE ALLOCATION

ON PARALLEL AND DISTRIBUTED MACHINES

Chong Ke
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2022

Task scheduling is a significant problem for parallel and distributed systems. As a
mature and important topic, scheduling has attracted much attention among scholars.
How to examine this topic in depth has become interesting and challenging. In this
thesis, the author discusses it from three different aspects. Firstly, as a core question
in high-performance computing, the scheduling algorithms are the main concern. The
author proposes a novel algorithm called ‘the look-forward algorithm’. Different from
other algorithms, the look-forward algorithm provides a novel way of task allocation,
which fully considers the DAG structure and incoming and outgoing communications.
Experimental results show that the look-forward algorithm can get up to 40% improve-
ment compared to the benchmark HEFT algorithm [THW02], especially when the num-
ber of tasks increases. Secondly, the author considers scheduling using a communication
contention model [SS05, SS04, CCK12]. Research has shown the contention model has
more stability and accuracy than the classic model in describing communication but it is
also more complicated than the classic model because of the communication contention.
The author extends the look-forward algorithm for contention model scheduling so that
the algorithm can appropriately consider communication. Thirdly, after this algorithm

10

and scheduling model, the author focuses on communication data. A new problem, the
identical data problem, is proposed. Identical data means that exactly the same data
is sent from one task to other tasks, which can be used to reduce the communication
among processors. Taking this into account, a new algorithm based on the look-forward
algorithm is proposed. All three algorithms in this thesis are evaluated using simula-
tion.

11

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

12

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis)
owns certain copyright or related rights in it (the “Copyright”) and s/he has given
The University of Manchester certain rights to use such Copyright, including for
administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate, in
accordance with licensing agreements which the University has from time to time.
This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-
lectual property (the “Intellectual Property”) and any reproductions of copyright
works in the thesis, for example graphs and tables (“Reproductions”), which may
be described in this thesis, may not be owned by the author and may be owned by
third parties. Such Intellectual Property and Reproductions cannot and must not
be made available for use without the prior written permission of the owner(s) of
the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?

DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.

library.manchester.ac.uk/about/regulations/) and in The University’s
policy on presentation of Theses

13

Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor Rizos Sakellar-
iou. Five years ago, I came to the United Kingdom alone and chose him as my supervi-
sor. He taught me how to do good research and led me to the area of parallel/distributed
computing. I am thankful for his useful academic advice and weekly discussions. I am
also thankful for his suggestion for each of my ideas and for his patience to allow me
making mistakes.

I also would like to thank my father, my mother, my beautiful sister and my lovely
brother for their constant encouragement and support. They give me the strength to
overcome every difficulty in my academic and personal life. I also would like to thank
my friend Sarad Venugopalan for discussing my topic with me and giving me much
inspirations.

A special thanks to my thesis checking team: Beibei Zhai, Simar Kalra, Sarad Venu-
gopalan, Di Wang and Mark Tooley. Thanks for helping me to check every word of my
thesis.

Finally, I would like to express my sincere thanks to the University of Manchester.
It is a beautiful place and an amazing university.

14

Chapter 1

Introduction

Parallel computing has entered into the mainstream in the computing industry, as multi-
core processors have now become widely available. This makes parallel programming
more relevant than ever, but, regrettably, programming in a parallel system is still diffi-
cult and challenging. One of the crucial aspects is scheduling of the tasks of applications
onto the processors of the parallel system. Such scheduling is computationally NP-hard
[JSM91, KN84, TBW92]. Furthermore, the time needed to transfer data between pro-
cessors can partially or completely eliminate the benefits of the parallel execution of
tasks, which makes scheduling even more difficult.

With processors running at speeds close to their theoretical limit, single-processor
systems will not meet the demand of computing. For some time, one proposed way has
been the use of parallelism in hardware through multi-core or even dual-core processing
systems [AIAS87]. This made scientists work towards the goal of parallelism. The good
news today is that parallel and distributed systems [VR01] have entered into the main-
stream, as multi-core processors are found everywhere, especially on-chip multiproces-
sor systems. Simply duplicating processors however does not automatically speed up
application execution because the programs cannot automatically run concurrently. To
execute an application consisting of several tasks on parallel/distributed machines, the
tasks must be arranged in space and time on the multiple processors. In other words,
the tasks must be mapped to the processors and ordered for execution. Besides this,
the resources (jobs, tasks, communications) also need to be carefully assigned to the
processors [Sin07]. These steps, which are referred to as task scheduling and resource

15

16 CHAPTER 1. INTRODUCTION

allocation, fundamentally determine the efficiency of the application’s parallelization,
that is, the speedup of its execution in comparison to a single-processor system.

Even before multi-core processor systems were readily available, scientists realized
the importance of task scheduling and resource allocation in program parallelisation.
Many parallel models and relevant distributed computing algorithms have been pro-
posed [CTS97, Ert98, BD04]. However, these types of distributed approaches are con-
strained by their NP-hard complexity [TBW92, SKH95]. That is, the heavy inner cores’
communication costs can partially or completely eliminate the benefit of the parallel
execution of codes. Some fundamental heuristics, such as list scheduling, clustering,
genetic approaches and others, have been studied to solve this problem, even though
these heuristics can also have their shortcomings.

Except for the parallel model and distributed heuristics, scientists have been making
many efforts towards studying parallel architectures. Flynn’s taxonomy classifies the
basic parallel architectures according to the multiplicity of the instruction and the data
flows [Sny88]. SIMD (single instruction multiple data), MIMD (multiple instructions
multiple data) are the two basic architectures within Flynn’s taxonomy. Besides Flynn’s
taxonomy, it is generally agreed that memory architectures (including both centralized
or shared memory and distributed memory) and the message passing model are also
important for this topic. In order to represent the tasks and resources in a computer,
relevant graph theory constructs are used, especially task graphs, flow graphs and de-
pendence graphs [Sin07].

A program to be scheduled is represented by a directed acyclic graph (DAG)
[Han94], where a node represents a task and an edge between two nodes represents the
communication between two tasks. A contention model, the so-called one-port model
[BMRR06], is introduced in Section 3.2.1 to represent a parallel/distributed system.
When the communication costs and data transmission contention are considered, it is
difficult to find an efficient schedule for task scheduling [SS05, RSS90]. One reason is
that the conflict in the communication contention will make it hard for the scheduling
algorithm to make a decision for every node. One approach to reduce the contention cost
is to consider identical data under the contention/one-port model. Some new algorithms
that can handle contention for identical data are proposed in this thesis.

List scheduling and clustering [SS01, CR92, GY92a, Gra99, PLW96, YG93, CJ01]
are two important types of scheduling heuristics in the traditional task scheduling area,

1.1. MOTIVATION 17

especially under the classic model [SSS06, Sin07]. Considering identical data has only a
little effect on the schedule length in the classic task scheduling model (see Section 3.1)
but may be essential in a contention model (see Section 7.1). As only a few algorithms
have been proposed under the contention model [SSS06], this work will focus on task
scheduling under the contention model while also considering identical data. However,
with respect to the contention model, neither list scheduling nor clustering is efficient
in finding a good schedule length for task scheduling. As the typical list scheduling
algorithms do not look forward and cannot consider the contention between two pro-
cessors (even though the typical clustering scheduling algorithm may look forward in
some ways), it is almost impossible to determine which nodes should be scheduled in
the same cluster when communication contention is taken into consideration.

1.1 Motivation

High-performance computing areas are developing very fast these days. Cloud com-
puting but also grid computing or transparent computing all rely on large-scale parallel
or distributed systems. How to schedule parallel tasks in these parallel/distributed ma-
chines is one of the most important problems as this will affect the whole performance
of an application. A lot of research work has been done in task scheduling or resource
allocation in the parallel and distributed scheduling research area. DAG scheduling and
the DAG model are the most significant methods used to schedule parallel tasks. Many
problems are still challenging to researchers. For example, existing approaches cannot
fully consider problems such as inaccuracy in task execution time (especially when the
computation costs of tasks are unknown), intensive communication, different commu-
nication models, highly heterogeneous platforms and so on. If these problems could
be addressed or better solutions could be found, the whole performance of the systems
would be improved and the resources would be managed more efficiently.

1.2 Contribution

This thesis examines how it might be possible to improve DAG scheduling in paral-
lel and distributed systems. There are three keywords in this work: algorithm, model

18 CHAPTER 1. INTRODUCTION

and data. These three aspects are studied in this work. Firstly, considering that the
scheduling algorithm can reduce the schedule length and improve the efficiency of the
whole system, after investigating the two fundamental heuristics for task scheduling –
list scheduling and clustering – this thesis constructs a novel algorithm named look-
forward to do DAG scheduling (see Chapter 5). The experiments show that this algo-
rithm can significantly reduce scheduling length. Secondly, this thesis studies the con-
tention model and provides a new algorithm that can be used under a contention model
and reduce communication contention (see Chapter 6). Thirdly, a newly proposed algo-
rithm can facilitate efficient scheduling in the contention model when identical data are
considered. This algorithm introduces identical data into the task scheduling domain.
When considering identical data, scheduling algorithms can reduce the schedule length
by making good use of the properties of identical data (see Section 7.1). Since, when
considering identical data, the classic model task scheduling model may not offer much
improvement (see Section 3.1), in this part of the thesis, a contention scheduling model,
the one-port model, is used.

1.3 Thesis structure

The rest of this thesis is structured as follows: Chapter 2 gives some background on
task scheduling. An overview of the notions of task graph and scheduling will be in-
troduced there. Chapter 3 reviews the task scheduling models. The properties of the
classic model and contention/one-port model and how to define identical data will be
discussed in detail. Chapter 4 provides an introduction to some existing scheduling ap-
proaches. Chapter 5 includes a detailed discussion of the look-forward algorithm and
its advantages and drawbacks. Chapter 6 discusses the contention model and extends
the look-forward algorithm to deal with a contention model. Chapter 7 takes into ac-
count identical data and considers how it could benefit from the look-forward algorithm.
Finally, Chapter 8 looks at the whole thesis and makes suggestions for further research.

Chapter 2

Task graphs and scheduling

2.1 Task graphs

One of the foundational problems for parallel and distributed computing is task schedul-
ing in parallel or distributed systems. When an application or a job has many tasks and
runs on a multi-core or multiprocessor system, these tasks should be assigned to the
cores or processors carefully to make them execute correctly and have a short execution
time or low resource consumption. This assignment will be done via task scheduling.
Task scheduling allocates the tasks to the processors and schedules these tasks in the
allocated processors by giving each task a start time [Sin07]. The difference between
allocation and scheduling is discussed in Section 2.2. In this work, the main job of a task
scheduling algorithm is to find a close-to-optimal executing sequence for the application
under different task scheduling models (see Chapter 3).

Before discussing task scheduling in parallel and distributed systems, it is necessary
to introduce the basic concepts of a task graph, scheduling and related nomenclatures.
In the task scheduling area, a task graph is used to represent the application or job that
is of interest to the user. It is often represented by a directed acyclic graph (DAG). A
directed acyclic graph is a graph whose vertices are connected by directed edges and has
no directed cycles: that is, there is no path that starts from one vertex v and follows a
sequence of vertices and directed edges and then goes back to v. In a DAG, the vertices
are labelled nodes, the weight of the nodes represents the computing cost and the weight
of a uni-directional edge corresponds to the communication cost between tasks.

19

20 CHAPTER 2. TASK GRAPHS AND SCHEDULING

For task scheduling, the program to be scheduled is represented by a directed acyclic
graph (DAG) G = (V,E,w,c), called task graph [XW01, KA99], where V denotes the
finite set of tasks and E represents the finite set of edges. The non-negative weight w(n)

associated with node n ∈V gives the computing cost of a task, the non-negative weight
c(ei j) associated with edge ei j ∈ E is the communication cost between two tasks. As
shown in Figure 2.1, a node ni or i∈V (in this figure ni is labelled as i to make it simple)
of a DAG represents a task and a directed edge ei j ∈ E from node ni to n j, ni, n j ∈ V

represents the communication edge of two tasks. When two tasks are allocated on the
same processor, there is no communication cost between these two tasks.

i

a b c d

j

i

j

(1) (2)

Figure 2.1: Incoming and outgoing nodes and edges

Some important notions relevant to the task graph are as follows:

Incoming and outgoing nodes. As shown in Figure 2.1(1), node ni and n j are con-
nected by edge ei j. Node ni is the incoming node of ei j and node n j is the outgoing node
via ei j. An edge can only have one incoming node and one outgoing node.

Incoming and outgoing edges. As shown in Figure 2.1(1), node ni and n j are con-
nected by edge ei j. Edge ei j is the outgoing edge of ni and the incoming edge of n j.
One node can have more than one outgoing or incoming edges. For example, in Figure
2.1(2), edges to nodes a,b,c,d are the outgoing edges of node ni and edges from nodes
a,b,c,d are the incoming edges of node n j.

2.1. TASK GRAPHS 21

Parent nodes and children nodes. Let G = (V,E,w,c) be a task graph, ni ∈ V is a
node in G. The parent nodes of ni are all the incoming nodes of ni. The children nodes
of ni are all the outgoing nodes of ni.

Path. A path p in a task graph G = (V,E,w,c) is a sequence of nodes (v0,v1....vn)

such that from each node vk, there is an edge to the next node vk+1 in the sequence. A
path p in G must be finite. A finite path p always has a first node, nstart , called the start
node, and a last node, nend , called the end node. Both of them are called end or terminal
nodes of the path. The other nodes in the path are internal nodes [ACKZ05].

Node level. Let G = (V,E,w,c) be a task graph; the node level is the number of
nodes in the shortest path from the start node (source node, entry node) to the end node
(terminal node, exit node). The start node (source node, entry node) indicates a node
without incoming communication and parent nodes. The end node (terminal node, exit
node) indicates a node without outgoing communication and children nodes. As shown
in Figure 2.2, all the nodes ni ∈V are separated into different levels by the dotted lines.
For example, node a is in level 0 and nodes e,g are in level 2. The number of the level
is the node level of a node.

Path length. Let G = (V,E,w,c) be a task graph and p = (v0,v1....vn) be a path in
G = (V,E,w,c). The length of path p is the sum of all nodes’computation costs w and
all edges’communication costs c:

len(p) = ∑
v∈p

w(v)+ ∑
ei j∈p

c(ei j)

Critical path. [RVB07] Let G = (V,E,w,c) be a task graph; in task graph G, a node
without an incoming edge is called a source node and a node without an outgoing edge
is called a terminal node. If p is a path in G = (V,E,w,c) and len(p) is the length of
the path p and the start node of p is a source node of G, the end node of p is a terminal
node of G. A critical path cp in a task graph G = (V,E,w,c) is one of the longest paths
of G:

cp(G) = maxp∈G{len(p)}

22 CHAPTER 2. TASK GRAPHS AND SCHEDULING

a

b c

2

3 3

4

3

2

3

4

3

2

6

1

d

e

f

g

h

3

2

4

2

3

5

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 2.2: Node level

Dominant sequence. The critical path is the maximal length path of a task graph. The
dominant sequence is another maximal length path of the graph. As shown in Figure 2.3,
nodes a,d,c,g and f have already been scheduled or allocated to processors and nodes
b,e and h have not yet been considered by the scheduling algorithm. Let Vscheduled be the
set of nodes that have already been scheduled or allocated and Vothers be the set of nodes
that have not been checked. Then Vscheduled , Vothers and the edges ei j between these
nodes can form a new graph G1 (if two nodes are on the same processor, the weight
of the edge between them is zero). Sometimes the scheduling algorithms need to find
the longest path of G1, which is called the dominant sequence. The method of how to
calculate the dominant sequence is introduced by Gerasoulis and Yang [GY92a, GY93,
YG94, YG93]. The dominant sequence is often used in clustering algorithms for task
scheduling (see Section 4.2).

2.2. SCHEDULING 23

P1 P2 P3 P4

0

5

10

15

20

a

b c
d

e

f

g

h

Figure 2.3: Dominant sequence example

2.2 Scheduling

Processor allocation [MVZ93, CS87] Let G = (V,E,w,c) be a task graph and P be a
parallel or distributed system. Processor allocation of G = (V,E,w,c) means allocating
all the nodes n ∈ V to some or all processors p ∈ P. Note that each node n ∈ V is
allocated to only one processor.

Node start time and finish time Let G = (V,E,w,c) be a task graph, P be a parallel
or distributed system and S be a schedule of task graph G = (V,E,w,c) on system P. For
each scheduled node n, there is a start time ts(n) and a finish time t f (n) for n, where ts(n)

is the start execution time of node n and t f (n) is the end execution time of n [STK09].
When node n is allocated to processor p, the start execution time of n can be denoted by
ts(n, p). Correspondingly, the end execution time of n can be denoted by t f (n, p). The

24 CHAPTER 2. TASK GRAPHS AND SCHEDULING

finish time t f (ni, p) of node ni on p ∈ P is given by:

t f (ni, p) = ts(ni, p)+w(ni).

In other words, the finish time is the start time plus the task’s computation weight.

Data ready time (DRT) [STK09, TS84] Let G = (V,E,w,c) be a task graph and P

be a parallel or distributed system. The data ready time of ni ∈ V on processor pi ∈ P

is the time when all the incoming communications of ni are finished. The term incom-
ing communications refers to communications that come from other nodes to node ni.
Normally, the data ready time of ni on processor pi is:

tdr(ni) = max
n j∈pred(ni)

(t f (e ji,proc(n j), pi). (2.1)

In Equation 2.1, pred(ni) means all the predecessor nodes of node ni, proc(n j) means
the processor in which the node n j is allocated, e ji means the edge between nodes n j

and ni, t f (e ji,proc(n j), pi) means the finish time of edge e ji, which starts from processor
proc(n j) and ends on processor pi.

Node scheduling Let G = (V,E,w,c) be a task graph and P be a parallel or distributed
system. A scheduling of node ni ∈ V is a method to first allocate ni to a processor
p ∈ P and then calculate the start time ts(n, p) and finish time t f (n, p) for ni. Often, the
allocation of node ni is based on the earliest start time of ni, which means ni is allocated
to the processor where it can start earliest. The earliest start time ts(ni, p) of node ni on
p ∈ P is given by:

ts(ni, p) = max(DRT, t f (p)),

where DRT is an abbreviation for data ready time [SS04], also discussed above, and
t f (p) is the finish time of processor p. Please note that node allocation will choose a
processor for the node (or allocate the node to one processor). The node does not have
a start time ts(n, p) and finish time after node allocation. This is also called processor
allocation (see Section 2.2). Node scheduling does the node/processor allocation first
and then gives a start time ts(n, p) and a finish time t f (n, p) to the node. Then, t f (p) is
the finish time of processor p.

2.2. SCHEDULING 25

Free node Let G = (V,E,w,c) be a task graph, P be a parallel or distributed system
and S be a schedule of task graph G = (V,E,w,c) on system P. Node ni ∈ V is a free
node if ni has no incoming node or all its incoming nodes are scheduled. In some
literature, a free node is also called a ready node.

Edge scheduling [SSS06, WSF89, GDP08] Let G = (V,E,w,c) be a task graph and
P be a parallel or distributed system. Scheduling of edge ei j ∈ E is a method to find a
schedule path (see Section 2.1) for ei j and calculate the start time ts(ei j) and finish t f (ei j)

of ei j. Often, edge scheduling is used when the path cannot transfer communication
concurrently and there is contention in the path.

Edge finish time Let G = (V,E,w,c) be a task graph, P be a parallel or distributed
system and S be a schedule of task graph G = (V,E,w,c) on system P. The edge ei j ∈ E

is the edge between nodes ni,n j ∈ V and ei j is communicated from processor psrc to
pdst . The edge finish time of ei j is:

t f (ei j, psrc,pdst) = t f (ni,psrc)+

{
0 i f psrc = pdst

c(ei j) otherwise

Processor finish time Let G = (V,E,w,c) be a task graph, P be a parallel or dis-
tributed system and p ∈ P be the processors in the parallel or distributed system.
When a node ni is scheduled in a processor pi, the processor will have a finish time
t f (pi) = t f (ni, pi). If ni is the last node that executes on processor p, the processor fin-
ish time of p equals the finish time of node ni. Whenever a new node is scheduled on
pi, the finish time of pi will change.

Inter-processor communication and local communication [LCC+13, KDR13,
JFKG13] Inter-processor communication means the communication between two dif-
ferent processors. When a node ni on processor pi needs to send or receive data from
a node n j on processor p j(pi 6= p j), this data transfer is called inter-processor com-
munication. When two nodes, ni and n j, which are on the same processor pi need to
communicate with each other, this communication is called local communication. Nor-
mally, the local communication time is very small and can be ignored by the system

26 CHAPTER 2. TASK GRAPHS AND SCHEDULING

model, meaning that the local communication cost is assumed to be zero.

2.3 Constraints

In order to make the schedule feasible, two conditions, called exclusive processor al-
location and precedence constraints [Sin07, STK09, CS87] must be fulfilled by all the
nodes and edges in G = (V,E,w,c). Exclusive processor allocation requires that the
nodes allocated on the same processor must be executed one after the other (only one
node can be executed in this processor at any time). A precedence constraint requires
that a non-source node can only be executed when all its incoming edges have finished.

Exclusive processor allocation Let G = (V,E,w,c) be a task graph, P be a parallel
or distributed system and S be a schedule of task graph G = (V,E,w,c) on system P. If
two nodes, ni,n j ∈ V , are scheduled on the same processor pi, their execution must be
satisfied, which can be formally described as:

ts(ni)< t f (ni)≤ ts(n j)< t f (n j) or ts(n j)< t f (n j)≤ ts(ni)< t f (ni).

That is because ni and n j are on the same processor and one processor can only
execute one node at a time. So the finish time of one node must be earlier or the same
as the start time of the other node. Only nodes that can potentially run in parallel need
to satisfy this constraint.

Precedence constraint Let G = (V,E,w,c) be a task graph, P be a parallel or dis-
tributed system and S be a schedule of task graph G = (V,E,w,c) on system P. For
node ni ∈V , if e ji is anyone of node ni’s incoming edges, then the following constraint
specifies the precedence relation:

ts(ni)≥ t f (ei j,proc(n j), pi).

This means node ni must not start earlier than the finish time of any of its incoming
edges. A node must be started after all its communication data is ready, which means
all precedence constraints are met. In scheduling algorithms, all nodes must satisfy the
exclusive processor allocation and precedence constraint properties.

2.3. CONSTRAINTS 27

Finally, for any source node nsource, the start time of nsource will meet the following
constraint:

ts(nsource)≥ 0

This constraint implies that the whole application will always have a positive execu-
tion time.

Chapter 3

Scheduling models

3.1 Classic model

The parallel or distributed system in which the tasks will be executed will be discussed
in this section. In order to discuss the target parallel/distributed system, a model which
represents the processors and the connections between these processors must be de-
fined. Most scheduling algorithms employ a strongly idealized model of the target par-
allel/distributed system. This model, which shall be referred to as the classic model
[FAdM+12, AFJ+13], is defined as a parallel or distributed system P which consists
of a finite number of processors and a fully connected communication network. The
properties of the classic model are defined by O. Sinnen [Sin07] as follows :

1. Dedicated System. The target system can only execute one program or one task
graph at a time. When the system P is executing a task graph G, nothing else can
be executed on P until G is finished.

2. Dedicated Processor. When the processor p ∈ P is executing one task or node ni,
p cannot execute anything until ni is finished.

3. Local communication has zero cost. When two nodes ni and n j are executed by
the same processor, the communication between them is defined as local commu-
nication. Compared to remote communication, where ni and n j are on different
processors, the local communication cost is so small that it can be ignored by the
scheduling algorithm. This property has an important effect in the task scheduling

28

3.1. CLASSIC MODEL 29

area for the reason that many tasks may be scheduled on the same processor in
order to keep the communication cost between them zero.

4. Communication is performed by a communication subsystem. This means that
the processors are not involved in the communication. When tasks between two
processors need to communicate with each other, which is called inter-processor
communication, the processors just give the information to the communication
subsystem and the subsystem will do the communication independently. Proces-
sors will not spend time in the communication.

5. Communication can be performed in parallel. Many communications that pass
through the same links between processors can be done in parallel. For example
processor p1 can send data to processors p2, p3, p4 at the same time without any
resource contention.

6. The communication network is fully connected. This means every processor p

in the parallel/distributed system can communicate directly with every other pro-
cessor via a dedicated link between them. Figure 3.1 shows an example of a
fully connected communication network system. In this system, every processor
is connected to every other processor directly via a link. Note that these links can
perform multiple communications in parallel in the classic model.

Based on this system model, the edge finish time only depends on the finish time of the
origin node and the communication time. The edge finish time of ei j is given by

t f (ei j, psrc, pdst) = t f (ni, psrc)+0,

if psrc = pdst , and
t f (ei j, psrc, pdst) = t f (ni, psrc)+ c(ei j),

otherwise. Thus, communication can overlap with the computation of other nodes, an
unlimited number of communications can be performed at the same time, and commu-
nication has the same cost c(ei j), regardless of the origin and the destination processor,
unless the communication is local.

30 CHAPTER 3. SCHEDULING MODELS

p1 p2

p3

p4

p5

Figure 3.1: A fully connected network system

3.1.1 A scheduling example in the classic model

Based on the task graph and the general scheduling model discussed in Chapter 2, this
subsection gives an example of scheduling under the classic model. Figure 3.2 depicts a
sample task graph (see Figure 3.2(a)), and a Gantt chart of a schedule on four processors
(see Figure 3.2(b)). A Gantt chart is an intuitive and common graphical representation of
a schedule, in which each node is drawn as a rectangle. In Figure 3.2(b), the horizontal
axis represents the processors in the parallel/distributed system and the vertical axis
represents the execution time. The rectangles in the Gantt chart reflect the nodes in
the task graph. Obviously, the start time of a node is aligned with the top side of the
corresponding rectangle and the node finish time with the bottom side. The computation
time is the length of the rectangle.

A simple scheduling procedure was used to create the schedule for Figure 3.2, where
the node scheduling order is (a,b,c,d,e, f ,g,h) and the algorithm allocates nodes to
processors in a round robin fashion, starting with p1. As seen in the Gantt chart, the
start time of node a executed on processor p1 is ts(a) = 0 and the computation cost
is w(a) = 2, the finish time of node a is t f (a) = ts(a) +w(a) = 2. Node b needs to
receive communication data from node a and in order to make node b start from the
earliest start time, b should start at ts(b) = t f (eab, p1, p2) = t f (a)+ c(eab) = 2+3 = 5.
The computation cost of node b is w(b) = 3 and the finish time of node b is t f (b) =

ts(b)+w(b) = 8. Node c also receives data from node a; the start time ts(c) = 3 is the

3.1. CLASSIC MODEL 31

P1 P2 P3 P4

0

5

10

15

20

a

b
c

2

3
3

4

3

2

3

4

3

2

6

1

d

e

f
g

h

3

2

4

2

3

a

b

c

d

e

5

f

g

h

(a) (b)

25

3

1

3

4

2

3

2

4

5

6

Figure 3.2: Scheduling example in classic model

earliest possible on p3. So again, in this case, the communication between node a and
c is remote and therefore there is a delay of 1 time unit corresponding to the weight of
edge eac. The finish time is t f (c) = ts(c)+w(c) = 6. When coming to node d, d has the
earliest start time ts(d, p4) = 5, for the reason that d is on a different processor than node
a, which makes the communication remote. The finish time is t f (d) = ts(d)+w(d) = 7.
For node e, the start time is ts(e) = t f (b)+w(ebe) = 11 and the finish time is t f (e) =

ts(e)+w(e) = 15. Node f has two incoming edges, ee f and eb f . As node f on a remote
processor relates to node e and on a local processor relates to node b, the data ready
time of node f is tdr(f , p2) = 18, the start time is ts(f) = max{tdr(f , p2), t f (p2)}= 18
and the node finish time is t f (f) = ts(f) +w(f) = 21. The same logic applies to h,
which has three incoming communication edges e f h,ech,egh, so the data ready time is

32 CHAPTER 3. SCHEDULING MODELS

tdr(h, p3) = ts(h) = 23 and the node finish time is t f (h) = ts(h)+w(h) = 25 . The final
schedule length of this task graph is 25.

3.2 Contention model

Most scheduling algorithms are developed in the idealized classic model, which is not
very realistic for modern parallel/distributed systems [SS05]. In a real parallel/dis-
tributed system, the inter-processor communication may have resource contention and
the communication network may not be fully connected. In order to make task schedul-
ing more than just a theoretical exercise, a more realistic model is necessary. The
contention model includes the consideration of communication contention. It has the
following properties (summarized from O. Sinnen’s book [Sin07] in Chapter 4):

1. Dedicated System. No other program or task is executed on the system while the
scheduled task graph is executed.

2. Dedicated Processor. The processor p∈ P can execute only one task at a time and
the execution is not preemptive.

3. Local communication has zero costs. The communication cost between two tasks
in the same processor can be ignored.

4. Communication is performed by a communication subsystem. This communica-
tion subsystem may not be fully connected and cannot perform multiple commu-
nications in parallel.

The contention model does not have properties 5 and 6 of the classic model, which
makes scheduling in the contention model much more complicated than in the classic
model. Without property 5 of the classic model, the communication cannot be per-
formed in parallel. For example, when processor p1 is sending data to processor p2, a
node n in processor p3, which also needs data from p1 at the same time, n needs to wait
until processor p1 is free, as there is contention for communication resources between
p1 and p3. Without property 6 of the classic model, the scheduling algorithm needs to
find a scheduling path for every communication action. Due to the fact that the com-
munication processors are not fully connected, not every two processors may connect

3.2. CONTENTION MODEL 33

directly, so a suitable path needs to be found first for the communication. Figure 3.3
gives an example of the contention model. In this model, the processors are not fully
connected and the unidirectional arrows represent the links between the processors. The
communication can only be transferred along the direction of the arrows. When any pro-
cessor needs to communicate with any other processor, a connected route between them
needs to be found. For example, when processor p2 wants to send a data to processor
p4, the only path it can find is path p = (L2,L3). When processor p1 needs to send a
data to processor p4, there are two paths, p1 = (L1,L2,L3) and p2 = (L4), which can
be chosen by processor p1. The scheduling algorithm should choose the best path for
every communication in this contention model.

p1 p2

p3p4

L1

L2

L3

L4

Figure 3.3: Contention model and path finding

3.2.1 One-port model

A contention task scheduling model named the one-port model [BMRR06] is intro-
duced in this section. The task scheduling model assumes a specific parallel/distributed
system, which consists of a set of processors connected by a communication network
[SS05]. Every node ni ∈V of a task graph G= (V,E,w,c) is executed on a set of proces-
sors P and the communications c(ei j) between the nodes are transferred between pro-
cessors via the communication network. A task scheduling model represents a physical
target parallel/distributed system. The proposed algorithms in this work are evaluated
under the one-port model. The one-port model has the following properties:

1. Each processor has one in-port and one out-port.

34 CHAPTER 3. SCHEDULING MODELS

Figure 3.4: One-port model

2. All the processors are connected to a switch.

3. The cost of communication between tasks executed on the same processor, local
communication, is negligible and considered to be zero.

4. The cost of communication between tasks executed on different processors, inter-
processor communication, may be significant and needs to be considered.

5. Each processor can only execute one task at a time. Each port can only transfer
exactly one inter-processor communication at a time too.

6. The switch is assumed to perform all of the communications in parallel without
contention.

As illustrated in Figure 3.4, processors A, B and C are connected to a switch S. The
directed edge from one processor to a switch represents an out-port and the directed
edge from switch S to a processor represents an in-port. The communication between
every two processors must pass through the switch S. An one-port model connecting an
unlimited number of processors is called the unlimited model in this text. The unlimited
model can simplify the complexity of the list scheduling algorithm.

3.2.2 A scheduling example in the one-port model

An example of task graph scheduling in the one-port model is given in Figure 3.5.
A simple procedure was used to create the schedule for Figure 3.5(a), where the

node scheduling order is (a,b,c,d,e, f ,g,h) and the algorithm allocates the nodes to

3.2. CONTENTION MODEL 35

P1 P2 P3 P4

0

5

10

15

20

a

b
c

2

3
3

4

3

2

3

4

3

2

6

1

d

e

f
g

h

3

2

4

2

3

a

b

c

d

e

5

f

g

h
(a) (b) 25

3

1

3

4

5

2

2

4

6

Figure 3.5: Scheduling example in the one-port model

processors in a round robin fashion, starting with p1. The schedule in Figure 3.5(b)
illustrates the execution of nodes in the one-port model and every node is scheduled
to be processed by a specific processor by the scheduling algorithm. As seen in the
Gantt chart, the start time of node a executed on processor p1 is ts(a) = 0 and the
computation cost w(a) = 2, the finish time of node a is t f (a) = ts(a)+w(a) = 2. Node
b needs to receive remote communication data from node a and in order to make node
b have the earliest start time, b should be started at ts(b) = t f (eab, p1, p2) = t f (a) +

c(eab) = 2+ 3 = 5. The computation cost of node b is w(b) = 3 and the finish time
of node b is t f (b) = ts(b) + w(b) = 8. Node c also receives data from node a, the
start time ts(c) = t f (eac, p1, p3) = t f (a) + c(eab) + c(eac) = 2+ 3+ 1 = 6. Note that
the communication cost c(eab) must be added. That is because in the one-port model,
according to properties 1 and 5, each processor has only one out-port and each port can
only transfer one communication at a time, hence the communications eab and eac are
transferred one by one. So, in this case, the communication between node a and c is

36 CHAPTER 3. SCHEDULING MODELS

remote and therefore there is a delay of 4 time units corresponding to the weights of
edge eab and eac. The finish time is t f (c) = ts(c)+w(c) = 9. Node d has the earliest
start time is ts(d) = t f (a)+ c(eab)+ c(eac)+ c(ead) = 2+ 3+ 1+ 3 = 9, as the three
communications eab,eac and ead are serialized through the out-port of p1. The finish
time is t f (d) = ts(d)+w(d) = 11. For node e, the start time ts(e) = t f (b)+w(ebe) = 11
and the finish time is t f (e) = ts(e)+w(e) = 15. Node f has two incoming edges ee f ,eb f .
As node f is in a remote processor relative to node e and in a local processor relative
to node b, the data ready time of node f is tdr(f , p2) = 18, the start time is ts(f) =

max{tdr(f , p2), t f (p2)} = 18 and the node finish time is t f (f) = ts(f) + w(f) = 21.
The same is true for node h, which has three incoming communications from edges
e f h,ech,egh, so the data ready time is tdr(h, p3) = ts(h) = 23 and the node finish time is
t f (h) = ts(h)+w(h) = 25. The final schedule length of this task graph is 25.

Compared with the example in Section 3.1.1, even though these two examples
have the same schedule length 25, there are many differences between the classic
model and the one-port model. In the classic model, node c has a start time of
ts(c) = t f (eac, p1, p3) = t f (a) + c(eac) = 2 + 1 = 3. In the one-port model, the start
time of node c is ts(c) = t f (eac, p1, p3) = t f (a)+ c(eab)+ c(eac) = 2+3+1 = 6. That
is because in the one-port model, the out-port of processor p1 can only send one com-
munication at any one time. When p1 wants to send data c(eac) to p3, it needs to wait
for the out-port to finish sending data c(eab); the same is true for the start time of node
d. Generally speaking, communication contention will increase the start time of some
nodes and make the schedule length longer than the schedule length obtained with the
classic model, which ignores communication contention altogether.

Chapter 4

Existing scheduling approaches

4.1 List scheduling

List scheduling is one of the most popular scheduling heuristics for task scheduling. A
good list scheduling algorithm can have low complexity and produce a short schedule
length [THW02]. Generally speaking, a list scheduling algorithm will work iteratively
in a loop. In each step of the loop, it will choose a node from the set of unscheduled
nodes by the priority order; then, it will schedule this node according to a specific
algorithm. The loop will not stop until all the nodes of the task graph are scheduled.
The most important problems are how to determine the priorities of the nodes and how
to schedule these nodes onto the processor in order to achieve a good scheduling result.

Normally, there are two kinds of list scheduling algorithms that are distinguished
by the static and dynamic node priorities [SS04]. Static priorities mean all the node’s
priorities are determined by list scheduling at the same time and cannot be changed after
the priorities are determined. The list scheduling algorithms which use the static pri-
orities are called static list scheduling algorithms. Dynamic priorities mean the node’s
priorities are not fixed. In each step of the loop, the list scheduling algorithm will re-
calculate the priorities and make decisions by the new priorities. The list scheduling
algorithms which use dynamic priorities are called dynamic list scheduling algorithms.
Obviously, static priority algorithms have lower complexity and are much simpler than
dynamic priority algorithms, but a good dynamic priority algorithm may result in a
shorter scheduling length. Dynamic scheduling is often used when the computation or

37

38 CHAPTER 4. EXISTING SCHEDULING APPROACHES

communication costs are uncertain. This means the algorithm does not know exactly
what the computation or communication cost is and cannot give accurate priorities to
the nodes. Most of the dynamic scheduling algorithms change the priority list each time
before a node is scheduled. Sometimes, dynamic scheduling may also be used when the
system structure is unstable, for instance, because some virtual machines change.

4.1.1 Static list scheduling algorithms

A static list scheduling algorithm first assigns a priority to all the nodes ni ∈V . Then it
sorts the nodes into a list L by their priorities. The static list scheduling algorithm will
maintain a loop. In each step of the loop, the algorithm will choose a node ni ∈ L with
the highest priority and schedule each node ni on a processor pi in the sorted order. The
loop will be repeated until all the nodes ni ∈ L are scheduled. The process by which
the algorithm chooses a processor pi for node ni, is called allocation of processor pi for
node ni. The process by which a node ni allocated to a processor pi is given a start time
ts(ni, pi) and a finish time t f (ni, pi) is called scheduling ni on processor pi. The priority
order of the nodes is usually in non-ascending order and must satisfy the precedence
constraints. The basic steps of static list scheduling are given below [SS04]:

1. Sort all nodes ni ∈ V into list L, according to a priority scheme and precedence
constraints.

2. For each n ∈ L do:

(a) Choose a processor p ∈ P for n.

(b) Schedule n on P.

4.1.2 Dynamic list scheduling algorithms

A dynamic list scheduling algorithm is different from a static priority algorithm. In a
dynamic list scheduling algorithm, the algorithm assigns each node ni ∈V a priority in
each step of the loop, chooses the node n with the highest priority, and then schedules
this node n. In the next step of the loop, the algorithm will recalculate the priorities of all
the unscheduled nodes nunsch, then choose another node n′ with the highest priority and
schedule n′. This loop will repeat the same operation until all the nodes are scheduled.

4.1. LIST SCHEDULING 39

In each loop iteration, one task will be scheduled and then the next loop iteration is
processed. The priority scheme may change at the beginning of each loop iteration,
and the reason why the priority will change is the dynamic algorithm chooses the best
priority scheme according to the situation. The basic steps of dynamic list scheduling
can be seen as follows:

1. If there are unscheduled nodes then do:

(a) Sort all unscheduled nodes ni ∈V into a list L, according to a priority scheme
and precedence constraints.

(b) Choose the node n ∈ L with the highest priority.

(c) Choose a processor p ∈ P for n.

(d) Schedule n on P and go back to the beginning of the loop.

4.1.3 List scheduling in the classic model

For the classic model, there are many different proposed list algorithms in the litera-
ture. As discussed in Section 3.1, the classic model has various properties. A good
algorithm should make good use of these properties, to achieve low complexity and a
short schedule length. The most important property is that the local communication has
zero communication cost. When considering the factors that affect the whole length of
the schedule, one of the most important factors is the communication cost between the
nodes, especially in the one-port model. A task graph with a higher communication cost
will often have a longer scheduling length, because the nodes need to spend more time
waiting for the communication data transfer from another processor. An example of this
is given in Figure 4.1.

In Figure 4.1, graph 1 and graph 2 have the same structure and are scheduled by the
same algorithm. The schedule S of graph 1 and graph 2 indicates that nodes a,b are al-
located to processor p1 and node c is allocated to processor p2. As shown in Figure 4.1
(b), even though graph 1 and 2 have the same structure and the same scheduling algo-
rithm is used, they still have a different schedule length. Nodes a and b have the same
start time and finish time, but node c in graph 2 needs to wait more time to get the data
from node a, which makes the schedule length much longer than that of graph 1. So,

40 CHAPTER 4. EXISTING SCHEDULING APPROACHES

Figure 4.1: An example to illustrate how communication cost may affect the schedule
length.

heavier communication cost can expand the schedule length. Studying how to reduce
this waiting cost is a good strategy to reduce the whole schedule length.

In the given example, the scheduling algorithm should aim to allocate node c on
processor p1 and the schedule length of graph 2 will be reduced from 14 to 6. That is
because if node c is allocated to processor p1 (the same processor with its parent node
a), node c does not need to wait for the data from node a, as the cost is assumed to be
zero for local communication. If the proposed list scheduling algorithm can make full

4.1. LIST SCHEDULING 41

use of this property in the classic model, the whole scheduling length can be reduced.

No matter whether someone makes use of dynamic list scheduling or static list
scheduling, how to get the priorities of the nodes and in what way to choose a pro-
cessor for a node are the most important questions that an algorithm needs to address.
Many suggested ways of finding good priorities can be found in the literature, based on
the critical path (see Section 2.1), node level (see Section 2.1), dominant sequence (see
Section 2.1) and communication cost. Because a heavier communication cost can ex-
pand the schedule length, the nodes with a heavier communication cost are more likely
to affect the whole schedule length. Usually, the nodes incurring a heavier incoming
communication cost are given higher priority in order to boost their priority and sched-
ule them early compared to other nodes. Based on this view, the priority of each node
ni ∈V is calculated by:

∑
j∈pred(i)

c(e ji)

wi
,

where j is the number of ni’s predecessor nodes and the edges e ji (j ∈ pred(i)) are
the incoming edges of node ni. Please note that this formula summarizes the relevant
literature, it is not a new contribution of this thesis. The priority order of the nodes is in
descending order; if two nodes have the same priority, they are ordered by random and
the order is called non-ascending order. The priority order must satisfy the precedence
constraints (see Section 2.3).

When it comes to the processor choice, the processor pi that allows node ni to have
the earliest start time will be chosen. In order to find this processor pi, the algorithm
should calculate the start time ts(ni) on every processor and return the specific processor
pi allowing the earliest start time of node ni. Algorithm 4.2 shows how to choose a
processor for a free node ni. In Algorithm 4.2, ts(ni) and proc(ni) mean the start time
and the allocated processor of ni. Every time the algorithm checks a processor, the start
time and finish time of all the processors should go back to the state where Algorithm
4.2 begins. That is because Algorithm 4.2 is only used to choose a processor for node
ni and it will not change the state of any other nodes and processors. Algorithm 4.1 is
used in Algorithm 4.2 to help Algorithm 4.2 get the data ready time. Please note that all
the algorithms in Chapter 4, including Algorithm 4.1 to Algorithm 4.6, are summarized
from the literature, they are not new contributions of this thesis.

42 CHAPTER 4. EXISTING SCHEDULING APPROACHES

Algorithm 4.1 Get tdr(ni, p), the DRT of ni on processor p,
1: Input: node ni, processor p

2: Output: data ready time of ni on p

3: Find all incoming edges Incom{ni} of ni

4: DRT← 0
5: for all edge e ji ∈ Incom{ni} do
6: schedule edge e ji

7: if edge e ji’s finish time t f (e ji, proc(n j), p)> DRT then
8: DRT=t f (e ji, proc(n j), p)

9: end if
10: end for

Based on the previous discussion, a generic static list scheduling algorithm is given
to show how to schedule the nodes in classic model. The priority of each node ni ∈V is
calculated by the formula:

∑
j∈pred(i)

c(e ji)

w(ni)
,

where wi is the weight of the node ni and edge e ji is the incoming edge of node ni and
satisfies the precedence constraints. Once again, this formula results from the literature,
it is not a new contribution of this thesis. The allocated processor is chosen by Algorithm
4.2 and the data ready time (DRT, see Section 2.2) is calculated by Algorithm 4.1.

As shown in Algorithm 4.3, the given algorithm first calculates the priorities by a
specific formula and then sorts the nodes by the priority order. Then the algorithm will
schedule each node using Algorithm 4.2 and Algorithm 4.1. The start time of node
ni on a processor pi is the later one among the data ready time DRT and processor
finish time t f (pi). After scheduling ni on processor pi, ni will be given a start time
ts(ni, pi) and a finish time t f (ni, pi) = ts(ni, pi) + w(ni) and the finish time of t f (pi)

will be modified to t f (pi) = t f (ni, pi). This algorithm can make the nodes with heavier
incoming communication costs have a higher priority. To do so, it considers the effect
of communication cost on the whole scheduling and because it chooses the processor
for each node by the earliest start time first, the property of local communication cost
is zero (see Section 3.1 property 3). It is considered that this algorithm can reduce the

4.1. LIST SCHEDULING 43

Algorithm 4.2 Choose a processor pi for node ni (classic model)
1: Input: node ni

2: Output: processor pi for node ni

3: ttemp← ∞, ptemp← null.
4: for all processors pi ∈ P do
5: if ttemp >max(tdr(ni, pi), t f (pi)) then
6: use Algorithm 4.1 to get tdr(ni, pi)

7: ttemp← max(tdr(ni, pi), t f (pi)

8: ptemp← pi

9: end if
10: end for
11: ts(ni)← ttemp, proc(ni)← ptemp

whole schedule length.

4.1.4 Some list scheduling approaches

This section examines some list scheduling approaches from the literature. This thesis
will later propose some new list scheduling algorithms. The detailed differences and
contributions of the proposed algorithms compared to the following approaches will be
discussed in Chapter 5, Chapter 6, and Chapter 7.

HEFT and CPOP [THW02]: HEFT is a typical list scheduling algorithm. HEFT can
have both low-complexity and good performance. As HEFT is targeting hetero-
geneous environments, the computing cost for one node is different in different
machines. Thus, one problem is how to select an appropriate weight for each
node. HEFT uses the average value and the upward ranking to calculate the prior-
ities of nodes. There are two phases in HEFT, which correspond to the two steps
of list scheduling heuristics. The first is the task prioritizing phase. Every task
ni is given a priority by the upward rank value, ranku(ni). Tasks are sorted in a
task list in decreasing order of priority. When two tasks have the same upward
value, tie-breaking is done randomly. The second phase is the processor selection
phase. Processor selection is the most important part of HEFT. Different from
some other list algorithms which select the processor by the earliest start time,

44 CHAPTER 4. EXISTING SCHEDULING APPROACHES

Algorithm 4.3 List scheduling (classic model)
1: Input: a task graph G = (V,E,w,c)

2: Output: a schedule for all nodes ni ∈ V

3: Calculate the priority of each node ni as ∑ j∈pred(i) c(e j,i)/wi

4: Order all nodes ni ∈ V into list L by priority and precedence constraints (non as-
cending order)

5: for all node ni ∈ L do
6: Choose a processor pi for node ni (Algorithm 4.2)
7: Schedule ni on processor pi

8: Finish time t f (pi)← ts(ni, pi)+w(ni)

9: end for

HEFT chooses the processor by the earliest finish time. This makes HEFT more
effective in heterogeneous environments. There is also an insertion-based policy
to help HEFT selecting processors. As HEFT is based on the list scheduling,
it is as low-complexity as any list scheduling heuristic. The original HEFT pa-
per also proposes a critical-path-on-a-processor (CPOP) algorithm. CPOP finds
all the tasks in a critical path and schedules these tasks in one processor. CPOP
tries to use the critical path to reduce the scheduling length. HEFT is used in
a heterogeneous environment (distributed computing) which is different from a
homogeneous environment (parallel computing).

HBMCT [SZ04a] : HBMCT uses a hybrid heuristic also targeting heterogeneous en-
vironments. Three phases are included: ranking, group creation and scheduling
independent tasks. In the first phase, each node is given a rank value by the up-
ward ranking. Nodes are sorted in descending order of priority. In the second
phase, nodes are divided into groups. The nodes in one group are independent of
each other. In the third phase, any heuristic for scheduling the independent tasks
can be used to schedule the nodes of the groups in the second phase. The original
paper proposes a balanced minimum completion time (BMCT) heuristic to sched-
ule the independent nodes. The basic ideas of BMCT are: schedule a group, then
find the maximum finish time machine m; if moving any task ni in machine m to
machine n can reduce the makespan, then reallocate this task to machine n; do

4.1. LIST SCHEDULING 45

this until no better machine is found then schedule the next group. HBMCT uses
a level-based idea to split the nodes into groups, then uses the earliest start time to
schedule each node, finally, it uses a balance-swap idea to reduce the makespan.

DLS [SL93]: Dynamic level scheduling is a compile-time scheduling heuristic. List
scheduling does two things at each step: choose a node ni then choose a processor
pi for ni. DLS chooses one node ni and a processor pi for ni that make DL(ni, pi)

have a max value. DL(ni, pi) is defined by DL(ni, pi) = SL(ni)− EST (ni, pi),
where SL(ni) means the static level of node ni (the upward rank of ni) and
EST (ni, pi) is the earliest start time of ni on pi. DL(ni, pi) shows how well node ni

matches pi. Note that this is a dynamic priority list scheduling and it is different
from level-base algorithms.

FCP [RvG99]: FCP stands for fast critical path. FCP is also a kind of a list scheduling
algorithm. The difference is in the first phase of FCP, it only sorts a constant size
of ready tasks in a priority-list, other ready nodes are added in a FIFO-queue. In
the second phase of FCP, instead of considering all processors as possible targets
for a given task, FCP only chooses between two processors: the one from which
the last messages to the given task arrive and the one that becomes idle at the
earliest.

LMT [IÖF95]: Levelized min-time is a two-phase algorithm. The first phase groups
the tasks that can be executed in parallel using the level attribute (the upward
value or bottom level). The second phase assigns each task to the fastest available
processor (the processor that minimizes the sum of the node’s computation cost
and the total communication costs with nodes in the previous levels). The nodes
at lower level have higher priority than nodes at higher level. Within the same
level, the nodes are sorted by the computation cost.

Rescheduling [SZ04b]: This is a run-time scheduling policy. It suggests a reschedul-
ing policy to reduce the actual makespan. This policy tries to reduce the time of
rescheduling while optimising the makespan. The interesting parts are the defi-
nitions of spare time and slack time, which may be used by other algorithms. A
delay = RST −EST is defined where RST is the real start time and EST is the

46 CHAPTER 4. EXISTING SCHEDULING APPROACHES

static earliest start time that any algorithms statically estimated before reschedul-
ing. If one node has delay > slack or spare, the remaining non-executed nodes
can be rescheduled.

Weight [ZS03]: An experimental investigation into the rank function of the heteroge-
neous earliest finish time scheduling algorithm. It investigates the effects on the
makespan of 6 different ways to calculate the weight of a node and 2 different
ways to calculate the priorities (upward ranking and downward ranking). The in-
teresting part is the 6 different ways to calculate the weight: (i) Mean value (M),
the average over all the input arguments including average communication cost
and average communication cost; (ii) Median value (ME), median value over all
the input arguments; (iii) Worst value (W), the worst value (i.e., maximum com-
putation cost and the communication cost between the two machines on which
each of the two communicating tasks has its highest computation cost); (iv) Best
value (B), the best value (i.e., minimum computation cost and the communica-
tion cost as determined by the procedure described previously); (v) Simple worst
value (SW), the worst value for both computation cost and communication cost;
(vi) Simple best value (SB), the minimum value for both computation cost and
communication cost.

Multiple DAGs [ZS06]: the method focuses on scheduling more than one DAG at the
same time and trying to make sure that every DAG has a fair execution time.
The idea is based on merging all the DAGs into a single bigger composite DAG.
Then, this DAG will be scheduled by a conventional DAG scheduling algorithm.
In order to keep fairness, two policies are investigated. One fairness policy is
based on finish time and the other is based on current time. Different definitions
of fairness are proposed, such as: slowdown, unfairness, average slowdown.

4.2 Clustering scheduling

Clustering is another important heuristic for task scheduling [GY92a, YG94, GY93].
With list scheduling, the tasks are always allocated and scheduled one by one, based on
the priorities and the given scheduling algorithm. Determining the order of scheduling
each task in list scheduling may have some good or bad effects on other tasks, something

4.2. CLUSTERING SCHEDULING 47

that will affect the final schedule length. When a list algorithm schedules a task or node,
it needs to consider all the effects on the other nodes and make a good decision to get the
shortest schedule length or a schedule of lower complexity. Unfortunately, as schedul-
ing is an NP-hard problem, no existing list scheduling algorithm can do this perfectly.
Clustering gives a different way of finding a solution to the task scheduling problem.
Task scheduling allocates every node of a processor and schedules these nodes to the
processors. When analyzing these allocations and schedules, it is easy to find that some
nodes are allocated and scheduled on the same processor. This is because the algorithm
thinks it can get a better result (shorter schedule length, lower complexity or something
else) by placing them together on the same processor. Clustering is developed based on
this idea: the nodes can be divided into different groups and all the nodes in one group
should be scheduled on the same processor. So, how to determine these groups is the
main challenge that clustering needs to accomplish.

4.2.1 Generic clustering algorithms

Clustering Let G= (V,E,w,c) be a task graph. A clustering C = (p0, p1, p2, p3, ...p|V |)

is a schedule of G in a parallel/distributed system P. This schedule divides all the
nodes into different groups. Each group belongs to one processor p. The number
of groups |C| is the same as the number of processors |V |.

Clusters Let G = (V,E,w,c) be a task graph. A clustering C = (p0, p1, p2, p3, ...p|V |)

is a schedule of G in a parallel/distributed system P. Each element p of C =

(p0, p1, p2, p3, ...p|V |) is called a cluster c. All the processors p ∈ C are called
clusters of C.

Clustering determines which nodes should always be scheduled into the same cluster. In
order to obtain this information, clustering scheduling uses an edge zeroing technique,
which means when two nodes ni and n j are determined to be in the same cluster p, then
the edge weight c(ei j) between them is zeroed. The basic principle of the edge zeroing
technique is that if zeroing this edge ei j will not increase the whole scheduling length
sl, then this operation is accepted by the clustering algorithm and the two nodes ni and
n j connected by this edge ei j are placed in the same cluster p. If ni and n j are in two
different clusters pi and p j, pi and p j will be combined into one cluster pi by putting

48 CHAPTER 4. EXISTING SCHEDULING APPROACHES

all the nodes of cluster p j into cluster pi. From this basic principle, it is easy to see
that the core problem of the technique is how to find the scheduling length sl before and
after the algorithm and to ascertain whether an edge should be zeroed. Unfortunately,
it is hard for a clustering scheduling algorithm to get the scheduling length sl directly
in a contention model. In a clustering algorithm, if an edge is determined to be zeroed,
the process of how to zero an edge is implemented by a function fzeroing(ei j). Function
fzeroing(ei j) tries to zero the edge ei j and returns a new clustering for the task graph
G = (V,E,w,c).

The three generic steps of a clustering algorithm [Sin07] are as follows:

1. Find a clustering C of G (using the basic principle, described in the previous
paragraph, and specific algorithm. This step is done in the unlimited processors
virtual system, that is |C|= |V |).

2. Mapping clusters on physical processors (each cluster assigned to an independent
processor. This step is done in the limited reality processors system P, that is
|C| ≥ |P|). The limited processors system means the number of processors P is
limited or finite.

(a) Sorting clusters C in non-descending order of the total computation weight
w(C);

(b) for i=1 to |C| do

(c) Mapping clusters Ci to processor Pimod|P|; where|P| means the number of
processors (limited reality processors system), imod|P| means the modulus
(%) operation of taking the modulo of i against |P|.

3. Schedule nodes on each processor (determine the scheduling order of the nodes
and decide the start and finish times).

In Algorithm 4.5, firstly, the algorithm will create an initial clustering C0 for the task
graph G. Each node ni belongs to a separated cluster pi in C0. Secondly, the algorithm
will try to check all the edges (the order of the edges can be decided by any specific
algorithm, for example, ordering the edges by the communication cost). For each edge
ei j, Algorithm 4.5 will try to zero it, then get the new clustering Ci+1. If the schedule

4.2. CLUSTERING SCHEDULING 49

Algorithm 4.4 Function fzeroing(ei j)

1: Input: an edge e(i j)

2: Output: new clustering Ci+1 and the edges that should be zeroed.
3: Let e(i j) be an edge to be checked
4: if proc(ni) = proc(n j) then
5: Ci+1=Ci

6: else
7: Create new clustering Ci+1: merge clusters proc(ni) and proc(n j) into one cluster

and zero all the edges between cluster proc(ni) and proc(n j)

8: end if

length sl(Ci+1) ≤ sl(Ci), then this zeroing operation for ei j is accepted and Ci+1 will
become the new clustering. If not, edge ei j will remain the same, nothing will be done
by the algorithm and the clustering should go back to Ci. The algorithm will go on until
all the edges are checked and the final clustering will be the result of step one. In step
two (see the above three generic steps), a simple load balancing scheme is used to map
the clusters to the physical processors. The total computation weight w(C) = ∑n∈C w(n)

of each cluster is calculated and mapped to the processors in non-descending order,
which can make every processor have a balanced computing load. In step two, every
node already has an allocated processor. The algorithm will schedule these nodes on
the allocated processors by the node’s priorities. The priorities of the nodes can be
calculated by the formula:

∑
j∈pred(i)

c(e ji)

wi
,

where wi is the weight of and e ji is the incoming edge of node ni. Please note that this
formula results from the literature, it is not a new contribution of this thesis. Algorithm
4.6 shows the process in step 3.

4.2.2 Clustering algorithms in the classic/one-port model

As most parts of the clustering algorithms for both the classic model and the one-port
model are the same except for the scheduling of the edges, clustering algorithms in the
one-port model are introduced in what follows. One of the most important problems is

50 CHAPTER 4. EXISTING SCHEDULING APPROACHES

Algorithm 4.5 Generic clustering algorithm (step 1)
1: Input: a task graph G = (V,E,w,c)

2: Output: new clustering C

3: Create initial clustering C0, each node belongs to one separated and distinct cluster
p∈C0

4: i← 0
5: for all edge ei j ∈ E do
6: call fzeroing(ei j)

7: calculate new clustering Ci+1

8: if sl(Ci+1)> sl(Ci) then
9: Ci+1←Ci

10: end if
11: i← i+1
12: end for

how to get the schedule length sl(Ci) and sl(Ci+1), especially under the contention/one-
port model, because the algorithm cannot know the whole schedule length until all the
nodes are scheduled. In reality, the schedule length of a clustering is often replaced by
the critical path or dominant sequence. This is due to the fact that, once the algorithm
zeroes an edge ei j, it indicates putting the outgoing node n j on the same processor
proc(ni) as its parent node ni, so that the local communication w(ei j) can be zeroed.
When the algorithm has a clustering, it has already known which nodes are allocated to
the local processor. In this situation, the algorithm needs only to find the critical path or
dominant sequence, which can represent the approximate schedule length in the classic
model. Indeed, the critical path or dominant sequence is approximate and makes sense
only in the classic model. The critical path and dominant sequence cannot represent the
schedule length in the contention/one-port model. In order to get the schedule length
sl(Ci) and sl(Ci+1), the critical path is chosen as the approximate schedule length. The
critical path can be found by a depth first search (DFS) algorithm [Tar72].

4.3. OTHER SCHEDULING ALGORITHMS 51

Algorithm 4.6 Clustering algorithm (step 3)
1: Input: a task graph G = (V,E,w,c)

2: Output: a schedule of all nodes ni ∈ V

3: Calculate the priority of each node ni as ∑ j∈pred(i) c(e ji)/wi

4: Order all nodes ni ∈ V into list L by priority and precedence constraints (non-
ascending order)

5: for all node ni ∈ L do
6: Get ni’s allocated processor pi

7: Get data ready time (DRT) of ni on pi (Algorithm 4.5)
8: Get finish time t f (pi) of pi

9: Get start time ts(ni, pi)=max(DRT,t f (pi))
10: Schedule ni on processor pi

11: end for

4.3 Other scheduling algorithms

Other than the above, there are also some additional approaches for parallel task
scheduling. These approaches use some ideas that differ from standard list schedul-
ing and clustering scheduling and offer some new perspectives to carry out scheduling,
which can be useful in appreciating the objectives of this thesis. Some of the approaches
are presented below:

Duplication-based scheduling [AK98, CC91, DA97, LLLW06, PC01, RA00, STK09,
ZB97]. Duplication-based scheduling algorithms copy some tasks into some pro-
cessors when the processors sit idle. By copying a task, this task’s children nodes
do not need to receive data from it if the children nodes are allocated on the same
processor with it. Copying can avoid the communication transfer between the
processors, which may reduce the start time of the children nodes. Note that
some systems do not support the duplication mechanism and, at the same time,
duplicating the nodes may make the load of systems heavier. If the focus is to
reduce the scheduling length and the duplication mechanism is supported by the
systems, duplication-based scheduling can be a good strategy.

52 CHAPTER 4. EXISTING SCHEDULING APPROACHES

AVL-tree-based cloud computing [CHJC14]: task scheduling based on load approx-
imation in real-time average cloud computing environment. The tasks provided
by the users are ranked by a reciprocal pairwise comparison matrix and the ana-
lytic hierarchy process (AHP). An AVL tree is a height-balanced tree to make the
binary trees as flat as possible. Each device is logically connected based on the
rule of the binary tree and the comparison factor of the binary tree is the avail-
able load of devices. The device’s left devices’ load is smaller than the device’s
load and the device’s right devices’ load is larger than the device’s load. By using
the AVL binary tree approach, the tree operation’s time complexity is O(logn) in
terms of the add operation, delete operation and resource allocation of the cloud
device. Concerning task priority, the basic concept is to give tasks for which the
requested load is closest to the average load of the cloud environment a high exe-
cution priority. If no cloud device can provide the requested load for the selected
task, the next task with the closest current cloud load is selected to execute. In
terms of device selection, the device whose average system load with the new
task is closest to the average system load before assigning the new task will be
selected.

The analytic hierarchy process [EKP+13]: task scheduling and resource allocation
in a cloud computing environment. This is task-oriented resource allocation in
a cloud computing environment. A task-oriented resource allocation model us-
ing the analytic hierarchy process is proposed. An induced bias matrix (IBM)
only based on the original inconsistent comparison matrix is proposed to identify
the inconsistent elements and improve the consistency ratio (CR) when the CR is
more than 0.1. In the proposed framework, computing tasks are collected in the
task pool. Tasks are ranked and submitted to computing resources distributed in
cloud computing nodes. The computing resources are allocated according to the
weights of tasks. The proposed framework will be further illustrated in the fol-
lowing section. The tasks are scheduled by resources such as network bandwidth,
completion time, task costs, reliability, and so on. When the cloud computing ser-
vice providers receive the tasks from users, the tasks can be pairwise compared
using the comparison matrix technique. The cloud computing providers nego-
tiate with the users on the requirements of tasks including network bandwidth,

4.3. OTHER SCHEDULING ALGORITHMS 53

completion time, task costs, and reliability of task.

Bayesian optimization algorithm [YXP+11]: task scheduling using Bayesian opti-
mization algorithm for heterogeneous computing environments. This research
presents a novel scheduling algorithm based on the Bayesian optimization algo-
rithm (BOA) for heterogeneous computing environments. This algorithm is di-
vided into two phases. First, a Bayesian algorithm is used to get population of
assignments; second, list scheduling is used to get the makespan. After the first
phase, each node has a processor assigned and then list scheduling is used to or-
der the nodes and schedule each node on its assigned processor. The Bayesian
algorithm works as follows:

• Generate initial population of assignments, P(t = 0), randomly.

• Choose candidate solutions S(t) from P(t). (step 2)

• Learn the Bayesian network and get the conditional probability tables (CPTs). For
a DAG, the DAG is an initialization Bayesian network. Learning the Bayesian net-
work will add some dependencies between sibling nodes. As a result, all the sib-
ling pairs will be checked for whether there should be an extra edge between them.
The BD (bayesian-dirichlet) metric is chosen to determine the sibling edges. In
this way, the Bayesian network can be obtained.

• Sampling of Bayesian network. Firstly, the algorithm computes an ancestral or-
dering of the nodes, where each node is preceded by its parents. Then, the values
of all variables in a new candidate solution are generated based on the correspond-
ing CPTs in the network under the ordering computed.

• Incorporate a new population into P(t).

• Repeat step 2, until the average makespan of population is not improved.

• Select the best solution from P(t).

Instruction Set extensions [ANF12]: instruction set architecture extensions for a dy-
namic task scheduling unit. This is heterogeneous multiprocessor system-on-chip
task scheduling. It extends the instruction set architecture to improve performance

54 CHAPTER 4. EXISTING SCHEDULING APPROACHES

for dynamic data dependency checking, task scheduling, processing element (PE)
allocation and data transfer management. The CellSs programming model can
get task level parallelism. The dynamic task scheduler can be implemented in
hardware as an accelerator or in software, running on a general purpose core.
Checking the data dependencies at run time is the most time consuming part of the
software approach (for a dynamic task scheduler). This paper extends the instruc-
tion set of CoreManager. The added instructions belong to the large instruction
word (VLIW), single instruction multiple data (SIMD), data dependency check-
ing. The results, after adding the SIMD and VLIW, show a reduction of up to
97% is achieved.

Load balanced [KA11]: load balanced min-min algorithm for static meta-task
scheduling in grid computing. This approach proposes a load balanced min-
min (LBMM) algorithm. Compared to the traditional min-min algorithm, LBMM
can reduce the makespan, achieve load balance and increase resource utilization.
First, the algorithm schedules the tasks using the min-min algorithm (makespan is
ms1). Then it reschedules some of the tasks to reduce the makespan and achieve
the load balance. For rescheduling, firstly, the algorithm chooses the heaviest load
resource Ri, and finds the minimum execution time task ti. Secondly, it finds an-
other resource Ri which caused time ti to have the maximum finish time fmax(ti);
if fmax(ti)< ms1, it reschedules ti in resource, else it finds the next maximum fin-
ish time resource for ti. Thirdly, it repeats these steps until the shortest makespan
is found.

Chemical reaction optimization [XLL11]: chemical reaction optimization for task
scheduling in grid computing. Several versions of the Chemical Reaction Op-
timization (CRO) algorithm have been proposed for the grid scheduling problem.
Simulation results show that the CRO methods generally perform better than other
existing methods and performance improvement is especially significant in large-
scale applications. A grid usually consists of five parts: clients, the global and
local grid resource brokers (GGRB and LGRB), grid information server (GIS),
and resource nodes. Clients register their requests for processing their computa-
tional tasks at GGRB. Resource nodes register their donated resources at LGRB
and process clients’ tasks according to the instructions from LGRB. In practice, a

4.4. SUMMARY 55

client and a resource node can be on the same computer. GIS collects the resource
information from all LGRBs, and transfers it to GGRB. GGRB is responsible for
scheduling. A solution to task scheduling is looked as a molecule. Many solutions
are a set of molecules. These solutions are represented in two ways (permutation-
based and vector-based). These molecules will have collisions. During the col-
lision different operators will be done, which corresponds to on-wall ineffective
collision, intermolecular collision, synthesis, molecular decomposition; then a
new molecule is obtained, which means a new solution is obtained. These reac-
tions last until there is a satisfactory solution.

Priority-Based scheduling [ZTS15]: priority-based scheduling heuristic to maximize
parallelism of ready tasks for DAG applications. This approach proposes a
priority-based scheduling heuristic (PB) for just-in-time scheduling. It aims at
maximizing the parallelism of ready tasks during the execution of DAG applica-
tion so as to minimize the makespan. The main objective is to get as many ready
tasks as possible. In order to get this, the PB algorithm gives every node a prior-
ity by the principle of DQ>LQ>EQ. DQ: Direct Quotient, the number of tasks
which become ready immediately after the completion of the current node. LQ:
Level Quotient, the maximum length from a node to the exit node. EQ: Export
Quotient, to distinguish between nodes with the same DQ and LQ. The node with
the highest DQ has the highest priority; if two nodes have the same DQ, the one
which has the highest LQ will have higher priority; when the LQ is the same, use
the EQ.

4.4 Summary

This chapter has reviewed list scheduling and a number of task scheduling algorithms
from the literature. The next chapter will propose a new task scheduling algorithm with
good performance characteristics.

Chapter 5

A look-forward algorithm for task
scheduling

The task scheduling problem for heterogeneous systems is focused on achieving a min-
imal scheduling length with a reasonable algorithm execution time. Even though thou-
sands of algorithms have been proposed to study this NP-complete problem [Ull75],
there is still much room for improvement in an innovative way. In this chapter, a novel
predictive, decision-making algorithm called the look-forward algorithm is proposed to
further consider the structure of DAGs and communications, information that can be
used to get a good schedule length result. Simulation results show that a significant
improvement in scheduling length can be achieved by the look-forward algorithm de-
scribed in this chapter with an appropriate execution time.

5.1 Introduction

The key problem of task scheduling is mapping the tasks onto different resources,
which means the algorithm should decide what tasks should be executed using which
resources, with a start time and a finish time for each task. These resources include
multi-processors, multi-cores, different servers and distributed platforms. In order to
achieve a correct and efficient schedule, the decision-making strategy must follow the
task precedence constraint [BHR09] (such as task i must be executed and completed

56

5.1. INTRODUCTION 57

before task j can start if there is a communication c(ei j) from task i to j) and the pro-
cessor constraint [SSS06] (e.g. if task i and j are executed by the same resource r, their
execution times cannot overlap). At the same time, the competition for resources, over-
all scheduling length, use of memory, communication intensity or algorithm execution
time should also be considered for different purposes of scheduling. In this thesis, the
core concern is to achieve the minimal scheduling length with a reasonable algorithm
execution time.

No matter what methodology the algorithm uses to do the scheduling, when it comes
to mapping a specific task i onto a processor p (or resource r), how to choose the pro-
cessor p becomes particularly important. Different solutions have been proposed during
the development of task scheduling. At the beginning, the algorithm chooses p by the
priorities of the processors, which means the highest priority processor p will be chosen
for task i. A simple way is to choose the processors with a round-robin sequence, each
processor is given a sequence number and chosen by the circular order of the numbers
[CB76]. This simple way can give every processor an equal chance to execute tasks, but
shortages are also common, as the processor may be too busy to execute the previous
tasks and the new task has to wait, even though other processors are free to execute it at
the same time, or the chosen processor may spend time being idle when the incoming
task is not ready, because the precedence constraint conditions are not satisfied.

Another popular way to prioritise the processor is to use the first free proces-
sor [ERLA94]. This is understandable; the first available processor is chosen to
execute the next ready task. As the algorithms have developed, some other ways
[BSB+01] of handing the processor priority have been devised, such as: opportunis-
tic load balancing [FGA+98, AHK98], minimum execution time [FGA+98, AHK98],
minimum completion time [AHK98], min-min [FGA+98, AHK98, IK77], max-min
[LMXZ14, MXL14, FGA+98, AHK98]. Generally speaking, relying on processor pri-
ority is a way of balancing workload and is often used for independent tasks. The most
common way to consider about dependent tasks is to choose the processor with the
earliest start/finish time [CB76, Ull75]. When combined with a good task priority al-
gorithm (for example, Max-min [MXL14, LMXZ14]), choosing the earliest start/finish
processor will create an algorithm with a good workload for dependency tasks without
communication delays.

When communication delays are integrated into the scheduling problem [YG93,

58 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

CC91], things become much more difficult. Communication delays start to play an
important role in affecting the scheduling. Not only the workload balance of the proces-
sors, but also the overall schedule length must be considered. However, a good workload
balance algorithm does not necessarily imply a minimal schedule length solution. Com-
pared to task scheduling without communication delays, some additional issues, such
as communication or the structure of tasks, need to be considered. Focusing has moved
from the priority decision of processors to the priority of tasks when mapping a spe-
cific task i onto a processor p (or resource r). In this thesis, the words ‘processor’ and
‘resource’ are used interchangeably, so are the words ‘task’ and ‘node’.

Even though the task scheduling with communication delays problem has been
proved to be NP-hard [SS01, STK09], many heuristic-based algorithms, such as: het-
erogeneous earliest finish time (HEFT) [THW02], dynamic level scheduling (DLS)
[SL93], critical path on a processor (CPOP) [SS10], fastest critical path (FCP) [RvG99],
levelized-min time (LMT) [IÖF95] have been proposed to give some good performance
solutions. These algorithms use different ways to improve the performance, and all of
them accept one idea of mapping one task i by finding a resource r in which the task
has the earliest finish time (EFT), but not by the priority of the processors. EFT causes
every task to be finished at the earliest finish time, so that the whole application can
be finished in a minimal time. Generally speaking, it has good performance and low
complexity, so it has been used as a mainstream task scheduling algorithm since it was
proposed.

However, the EFT idea has also some shortcomings: first, it only considers the
finish time of the current scheduling task, but not the whole structure of the task graph.
Since the whole structure of the task graph is already known previously, algorithms
should make full use of this information and not only develop a scheduling idea as if the
structure is unknown. Some algorithms, like genetic algorithms [Gra99], evolutionary
algorithms [ASA16], electromagnetism-like algorithms [ASK+13], are good, but are
often used when the structure and information are unknown. In this thesis, the structure
of a task graph is supposed to be known; some structures with join nodes (the nodes
which have more than one incoming parent nodes) cannot fully be considered by the
EFT time based algorithm.

Second, the basic EFT idea cannot consider resource competition between one task

5.2. TASK SCHEDULING (DAG, MODEL, BASIC LIST SCHEDULING) 59

and the lower priority nodes (not only the children tasks). Because of resource compe-
tition between the tasks, a task needs to compete for a resource (local resource, fastest
resource or earliest finished resource) with other tasks. One task to be finished in the
earliest finished resource may force the lower priority task to choose a later resource.
Current studies use a priority queue to consider the resource competition problem. Each
task is given a priority by the importance and precedence constraint but none of these
priority-based algorithms can determine an optimal priority order due to the NP-hard
property of task scheduling. Using only a priority queue is far from enough to solve the
resource competition problem.

The shortcomings of basic EFT have already been realized by many researchers;
lots of new efforts have been made to overcome these problems, such as clustering
heuristic [GY92b, PLW96], insertion technique [THW02], task duplication technique
[RA00, STK11], task swapping [SZ04a]. The clustering heuristic has evolved from the
idea of using basic EFT to map a task onto a processor. It tries to put the heavy com-
munication tasks in one cluster and put them on the same processor. It is a successful
idea which makes it essentially the second mainstream task scheduling heuristic besides
the list scheduling heuristic. Clustering heuristics started to use the whole structure of
DAG in a general but not in a detail-aware way. They are also developed under unbound
processors; if the actual processors are less than what is needed to process the clusters,
problems may arise [GY92a, GY93]. Recent studies also show that clustering schedul-
ing is an adapted form of list scheduling if certain conditions are met [Sin07]. Inser-
tion, duplication and swapping are some techniques used to remedy the shortcomings
of basic EFT. Another solution that needs to be mentioned is the look-ahead algorithm
[BSM10], which uses a look-ahead variant combined with the HEFT algorithm to solve
the problem (see the detailed discussion in Section 5.3).

5.2 Task scheduling (DAG, model, basic list scheduling)

An application can be decomposed into many dependent tasks before it can be executed
on the distributed machines. These dependent tasks and the dependencies among them
are represented by a directed acyclic graph (DAG) [SZ04a], where a vertex represents
a task and an edge between two vertices represents the communication between these
two tasks. A directed acyclic graph is a graph whose vertices are connected by directed

60 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

edges and which has no directed cycles. That is, it contains a set of vertices and directed
edges; two vertices are connected by only one edge and there should be no path that
starts from one vertex v and follows a sequence of vertices and edges and then goes
back to v. In a DAG, the vertices are named nodes or tasks; the weight of the nodes
represents the computing cost and the weight of the edge corresponds to the communi-
cation cost between tasks. Each task has a computation time and the computation time
is different for different resources, depending on the speed of the resources, and each
edge has a communication time. Task scheduling is also called DAG scheduling when
the application is represented by a DAG. A definition of a DAG is given below.

For task scheduling, the application to be scheduled is represented by a directed
acyclic graph (DAG) G = (V ;E;w;c), also called task graph [GY93, SKS07], where
V denotes a finite set of tasks and E represents a finite set of edges. The non-negative
weight w(n) associated with node n ∈ V gives the computing cost of a task; the non-
negative weight c(ei j) associated with edge ei j ∈ E is the communication cost between
two tasks.

A parallel/distributed system is the target computing environment in which the tasks
will be executed. To discuss the target parallel/distributed system, a model which can
represent the processors and the connection between these processors must be defined.
Most scheduling algorithms employ a strongly idealized model of the target parallel/dis-
tributed system. This model, which shall be referred to as the classic model, has been
defined in Section 3.1. The classic model represents a parallel/distributed system P

which consists of a finite number of processors and a fully connected communication
network. The target system can only execute one program or one task graph at a time.
If two tasks are allocated to the same processor, the communication between them is
called local communication. Local communication is very small and can be ignored by
the scheduling algorithm. This property has an important effect on task scheduling for
the reason that many tasks may be scheduled on the same processor in order to zero the
communication between them.

The scheduling algorithm is the algorithm approach that is used to allocate and
schedule tasks into the target parallel/distributed system. If these tasks are executed
in a random or disorganized order, the target system may need a long time to finish
the application and a lot of computing resources will be wasted. A good task schedul-
ing algorithm can help the system to finish its tasks as quickly as possible, reduce the

5.3. HEFT, LOOK-AHEAD AND LOOK-FORWARD ALGORITHM 61

time that resources are idle and finally improve the whole performance of the system.
There are two mainstream scheduling heuristics for task scheduling, list scheduling and
clustering scheduling heuristics. The algorithms included in this thesis all fall under
the category of list scheduling heuristics. List scheduling is one of the most popular
scheduling heuristics for task scheduling. A good list scheduling algorithm can have
low complexity and a short schedule length. The basic steps of static list scheduling are
given below [SS04]:

1. Sort all nodes ni ∈ V into list L, according to a priority scheme and precedence
constraints.

2. For each n ∈ L do:

(a) Choose a processor p ∈ P for n.

(b) Schedule n on P.

5.3 HEFT, look-ahead and look-forward algorithm

This thesis presents a look-forward algorithm. This algorithm will be compared to a
benchmark algorithm called HEFT [THW02] and another algorithm called look-ahead
[BSM10]. In these three algorithms, the priority of each node ni ∈ V is calculated by
the upward rank [THW02]. The upward rank of a task ni is recursively defined by:

ranku(ni) = wi +max{n j ∈ succ(ni)(ci, j + ranku(n j))},

where wi is the weight of task ni, ci, j is the communication cost of edge ei j, succ(ni) is
the set of all the immediate successors of task ni.

5.3.1 HEFT

HEFT is a typical list scheduling algorithm. There are two phases in HEFT, which
correspond to the two key phases of list scheduling heuristics. The first is the task pri-
oritizing phase. Every task ni is given a priority by the upward rank value, ranku(ni).
Tasks are sorted in a task list in decreasing order of priority. When two tasks have the

62 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

same upward value, tie-breaking is done randomly. The second phase is the processor
selection phase. Processor selection is the most important part of HEFT. The algorithm
will choose a processor for task ni. Different from some other list scheduling algorithms
which select the processor by the earliest start time, HEFT chooses the processor by the
earliest finish time of ni. This makes HEFT particularly effective for the heterogeneous
environments. There is also an insertion-based policy to help HEFT select processors.
The algorithm will choose an earlier slot for a task and insert it into the slot if it is avail-
able. As HEFT is based on list scheduling, it has as low complexity as list scheduling
heuristics. The HEFT algorithm can be seen in Algorithm 5.1 where ranku means the
upward rank of the tasks, EFT means the earliest finish time of the task t and FT (t,ri)

means the finish time of task t on resource ri.

Algorithm 5.1 HEFT planning algorithm
1: Input: a task graph G = (V,E,w,c)

2: Output: a schedule for all tasks ti ∈ V

3: rank tasks ti ∈ V using the ranku

4: while there are unscheduled tasks do
5: t ← unscheduled task with highest ranku

6: EFTt ← MAXVALUE

7: MAXVALUE is a maximum number
8: r← NULL

9: for all resource ri ∈ the resources set R do
10: schedule t on ri

11: get FT (t,ri) finish time of t on resource ri using insertion-based scheduling
policy

12: if EFTt > FT (t,ri) then
13: EFTt ← FT (t,ri)

14: r← ri

15: end if
16: end for
17: schedule t on r

18: end while

5.3. HEFT, LOOK-AHEAD AND LOOK-FORWARD ALGORITHM 63

5.3.2 Look-ahead

In order to address the shortcomings of the basic EFT idea, previous research has pro-
posed a look-ahead idea [BSM10]. It proposes an improvement of HEFT, where the
locally optimal decisions made by the heuristic do not rely on the earliest finish time of
one single task, but instead look ahead in the schedule and take into account the children
tasks. Different from other algorithms, the look-ahead algorithm will schedule a task
by the earliest finish time of this task’s children tasks. The heuristic makes the deci-
sion by choosing the resource that makes all the children of the task have the earliest
finish time. Look-ahead checks the finish time of the children nodes; if one resource
can make the children nodes have an earlier finish time, this resource will be chosen.
In this way, the look-ahead algorithm can consider the join node structures of a DAG
and because the parent node will consider the children nodes, it can also consider the
resource competition between parent nodes and children nodes. The experiments show
that in comparison to HEFT, look-ahead can improve the schedule in most of the cases,
especially in cases where the communication cost is higher with respect to computation.
The details of the look-ahead algorithm can be seen in Algorithm 5.2.

Algorithm 5.2 Look-ahead planning algorithm
1: Input: a task graph G = (V,E,w,c)

2: Output: a schedule for all tasks ti ∈ V

3: rank tasks ti ∈ V using the ranku

4: while there are unscheduled tasks do
5: t ← unscheduled task with highest ranku

6: L← children of t

7: for all resource ri ∈ the resources set R do
8: schedule t on ri

9: schedule all tasks ∈ L on using HEFT

10: EFTri ← maximum EFT for tasks ∈ L

11: return to the schedule state at the beginning of this loop
12: end for
13: schedule t on ri such that EFTri ≤ EFTrk

14: end while

64 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

5.3.3 Look-forward

Most of the existing approaches accept the heuristic of scheduling one task by finding
a resource by which the task has the earliest finish time (EFT). EFT causes every task
to be completed as soon as possible, so that the whole application can be completed
in a short time. Even though look-ahead provides a step in the right direction to cope
with the shortcomings of basic EFT idea, its decision making method, the earliest finish
time of all the children nodes, may still make some poor decisions. That is because it
cannot consider the bad effects from some unscheduled but higher priority nodes (higher
priority than children nodes), which means the benefit from look-ahead will be reduced
or eliminated by these unscheduled but higher priority nodes. Meanwhile, it does not
consider the resource competition between higher priority tasks and the children nodes.
Based on these observations, a look-forward idea is proposed to solve this problem.

This look-forward algorithm uses a new heuristic; the higher priority node should
also take into account lower priority nodes. Look-forward is a further improvement of
the look-ahead algorithm. It inherits the heuristic of look-ahead where parent nodes
should look ahead to the earliest finish time of all the children nodes. But it also con-
siders the bad effects from the unscheduled but higher priority nodes (higher than the
children nodes) which are being looked forward. As to the question of what higher
priority tasks the look-forward algorithm should consider: the look-forward algorithm
keeps a node set L; every time when it schedules a node ti, it puts ti’s children nodes
into L and then chooses the resource that makes all the nodes in L have the earliest fin-
ish time. If ti is inside L, then L is emptied first and the loop for ti is repeated. The
look-forward algorithm can be seen in Algorithm 5.3.

5.4 Experimental evaluation

5.4.1 DAX and generator

A workflow generator is used to generate the input workflows. This generator uses
the information gathered from actual executions of scientific workflows as well as the
understanding of the processes behind these workflows to generate realistic, synthetic
workflows resembling those used by real-world scientific applications. The format of

5.4. EXPERIMENTAL EVALUATION 65

Algorithm 5.3 Look-forward planning algorithm
1: Input: a task graph G = (V,E,w,c)

2: Output: a schedule for all tasks ti ∈ V

3: rank tasks ti ∈ V using the ranku

4: L← NULL

5: while there are unscheduled tasks do
6: t ← unscheduled task with highest ranku

7: if t /∈ L and children of t /∈ L then
8: L← children of t

9: end if
10: if t ∈ L then
11: L← NULL

12: L← children of t

13: end if
14: for all resource ri ∈ the resources set R do
15: schedule t on ri

16: schedule all tasks ∈ L using HEFT

17: EFTri ← maximum EFT for tasks ∈ L

18: return to the schedule state at the beginning of this loop
19: end for
20: schedule t on ri such that EFTri ≤ EFTrk

21: end while

the workflow is called ‘DAX’. A DAX consists of information about tasks, input and
output files and the relationship between tasks and files. A task has a runtime which
can be used to calculate the computation time of this task and a file has a data length
which can be used to calculate the communication cost during different target systems.
Four kinds of DAX are generated: Montage [BCD+08], LiGo [BCD+08], Epigenomics
[BCD+08], CyberShake [BCD+08]. The computation cost and communication cost of
each task were generated from the interval (500, 4000). In order to generate differ-
ent CCR values (CCR is the rate of communication cost divided by computation cost)
for each DAX, the communication costs will be changed according to the CCR before
scheduling. For each type of DAX, three kinds of CCR (0.5, 1.0, 2.0) are chosen to do

66 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

the experiments. All the workflows are run by HEFT, MHEFT, look-ahead and look-
forward algorithms. Each algorithm runs 200 randomly generated workflows under 2
resources and 10 resources for each type of workflow. Except for the four kinds of
workflow, a test workflow which has the same structure as the one in the HEFT paper
[THW02] is also produced to test the accuracy of the algorithms.

5.4.2 The simulator and settings

WorkflowSim [Che13] is used to simulate the running of the workflows. WorkflowSim
is an open source workflow simulator that extends CloudSim by providing workflow
level support for simulation. It models a workflow with a DAG model and supports an
elaborate model of node failures, a model of delays occurring in different layers and
components, and includes implementations of several of the most popular dynamic and
static workflow scheduling algorithms (e.g., HEFT [THW02], look-forward (see Section
5.3), min-min [KA11]) and task clustering algorithms (e.g., runtime-based algorithms,
data-oriented algorithms and fault-tolerant clustering algorithms). There are two lay-
ers in WorkflowSim: workflow planning layer (HEFT, DLS [SL93], FCP [RvG99],
LMT [IÖF95]) and workflow scheduling layer (static scheduling, FCFS, MAXMIN).
The HEFT, look-ahead and look-forward algorithms all work on the workflow planning
layer. In order to keep the result of planning layer algorithms, a static scheduling algo-
rithm will be used in the workflow scheduling layer. DAXs are used as the input file
of WorkflowSim, the output is a schedule for each DAX. WorkfowSim reads the DAXs
files, then runs the planning algorithms (e.g., HEFT, look-ahead, look-forward); after
finishing the planning algorithms, the results will be sent to a simulator and the simu-
lator will run the tasks by scheduling them with our algorithms then get the scheduling
time of DAX. For each workflow, the simulation runs for different algorithms and under
different target machines. The output data for all the workflows will be collected to
analyze the results. The average scheduling length for each kind of DAX and for each
algorithm will be obtained. The four algorithms are implemented in WorkflowSim and
the workflows are also tested under WorkflowSim.

A HEFT planning algorithm based on the paper “Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing” [THW02]) has been im-
plemented and used to test the workflows. A HEFT planning algorithm called MHEFT

5.4. EXPERIMENTAL EVALUATION 67

is implemented and compared to a standard HEFT with different workflows. The result
shows that MHEFT and HEFT have the same performance.

5.4.3 Results

The experiments show the results of the HEFT, MHEFT, look-ahead and look-forward
algorithms on 2 or 10 resources and using CCR 0.5, 1.0 and 2.0. The main purpose
is to compare the look-forward with the HEFT and look-ahead algorithms. The hori-
zontal axis shows the number of tasks in DAGs and the vertical axis shows the average
makespan.

Figure 5.1 to Figure 5.6: these six figures present the results of Montage workflow
with different CCR values (0.5, 1.0 and 2.0). The results allow us to make the following
observations: HEFT and MHEFT have the same performance as expected. Both look-
ahead and look-forward work better than HEFT in most cases. When the number of
tasks is small, the look-ahead and the look-forward algorithms obtain similar results.
But, in some cases, look-ahead works slightly better than the look-forward algorithm
when the number of tasks is small (for example, when the number of tasks is 24, CCR
2.0 and using 10 resources, look-ahead achieved a 21.8% improvement but look-forward
achieved a 19.14% improvement). With an increasing number of tasks, look-forward
starts to work better than look-ahead (see Figure 5.1 to Figure 5.6 when the number of
tasks is 50, 100, 200, 500, 700, 1000). Look-ahead obtains less and less improvement
with an increasing number of tasks: for example look-ahead obtains a benefit from
10.91% to -0.78% when the number of tasks increases from 24 to 700, CCR 1.0 and
10 resources (see Figure 5.4). Look-forward has a trend where the higher the number
of tasks the better improvement it can make: for example look-forward obtained an
improvement from 5.11% to 48.27% when the number of tasks increases from 24 to
1000, CCR 0.5 and 10 resources (see Figure 5.2). When the number of tasks is more
than 500, look-forward obtains more than a 35% improvement in all the cases, more
than 40% improvements when the number of tasks is more than 700, while look-ahead
obtains little improvement sometimes even negative improvement.

Figure 5.7 to Figure 5.12: these six figures present the results of the LiGo work-
flow with different CCR. The results of the LiGo workflow are similar to the Montage
workflow in Figure 5.1 to Figure 5.6. As the number of tasks increases, look-forward

68 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

works better and better than both HEFT and look-ahead; look-ahead obtains less and
less improvement compared to HEFT. Some new observations can be seen: look-ahead
becomes unstable when the CCR reduces. When the CCR is reduced, look-ahead can-
not always obtain a stable benefit and in many cases it even obtains worse results when
the CCR becomes smaller (see Figure 5.12, 5.10 and 5.8 look-ahead parts). When CCR
reduces from 2.0 to 0.5, look-ahead obtains improvements from 5.46% to -1.83%). By
contrast, look-forward kept obtaining a stable benefit when the CCR is changed. The
improvements of look-forward are around 2.45% to 9.11%. For all the cases, the results
show that look-forward works better than look-ahead.

Figure 5.13 to Figure 5.24: Figures 5.13 to 5.24 present the results of CyberShake
and Epigenomics workflow with different CCR. The results of CyberShake and Epige-
nomics also prove that look-forward works better than look-ahead when the number of
tasks increases and works more stably than look-ahead when the CCR is changed. It
also shows that look-forward works better than look-ahead and HEFT in all the tested
cases. For the CyberShake workflow, look-ahead obtains around 0.33% to 1.85% im-
provement when the number of resources is 2 and obtains around -4.5% to 3.16% im-
provement when the number of resources is 10. At the same time, look-ahead will
obtain 1.08% to 8.57% improvement when the number of resources is 2 and will obtain
2.15% to 46.6% improvement when the number of resources is 10. For the Epigenomics
workflow in general, look-ahead obtains a benefit of -2.5% to 2.13%, on average, it will
obtain around 1% improvement. Look-forward obtains a benefit of 1.31% with CCR
0.5 and a number of resources 2 to 23.25% with CCR 2.0 and a number of resources
10; the range is different for different CCR values, number of tasks and resources (see
Figures 5.19 to 5.24).

5.4. EXPERIMENTAL EVALUATION 69

Figure 5.1: Average makespan with standard deviation using Montage workflow, CCR
0.5 and 2 resources

Figure 5.2: Average makespan with standard deviation using Montage workflow, CCR
0.5 and 10 resources

70 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

Figure 5.3: Average makespan with standard deviation using Montage workflow, CCR
1.0 and 2 resources

Figure 5.4: Average makespan with standard deviation using Montage workflow, CCR
1.0 and 10 resources

5.4. EXPERIMENTAL EVALUATION 71

Figure 5.5: Average makespan with standard deviation using Montage workflow, CCR
2.0 and 2 resources

Figure 5.6: Average makespan with standard deviation using Montage workflow, CCR
2.0 and 10 resources

72 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

Figure 5.7: Average makespan with standard deviation using ligo workflow, CCR 0.5
and 2 resources

Figure 5.8: Average makespan with standard deviation using ligo workflow, CCR 0.5
and 10 resources

5.4. EXPERIMENTAL EVALUATION 73

Figure 5.9: Average makespan with standard deviation using ligo workflow, CCR 1.0
and 2 resources

Figure 5.10: Average makespan with standard deviation using ligo workflow, CCR 1.0
and 10 resources

74 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

Figure 5.11: Average makespan with standard deviation using ligo workflow, CCR 2.0
and 2 resources

Figure 5.12: Average makespan with standard deviation using ligo workflow, CCR 2.0
and 10 resources

5.4. EXPERIMENTAL EVALUATION 75

Figure 5.13: Average makespan with standard deviation using cybershake workflow,
CCR 0.5 and 2 resources

Figure 5.14: Average makespan with standard deviation using cybershake workflow,
CCR 0.5 and 10 resources

76 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

Figure 5.15: Average makespan with standard deviation using cybershake workflow,
CCR 1.0 and 2 resources

Figure 5.16: Average makespan with standard deviation using cybershake workflow,
CCR 1.0 and 10 resources

5.4. EXPERIMENTAL EVALUATION 77

Figure 5.17: Average makespan with standard deviation using cybershake workflow,
CCR 2.0 and 2 resources

Figure 5.18: Average makespan with standard deviation using cybershake workflow,
CCR 2.0 and 10 resources

78 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

Figure 5.19: Average makespan with standard deviation using epigenomics workflow,
CCR 0.5 and 2 resources

Figure 5.25 to Figure 5.32: Figures 5.25 to 5.32 present the amount of communi-
cation of the four algorithms. Comparing to HEFT, look-forward reduces the amount
of communication in all the cases and look-ahead can reduce the amount of communi-
cation in most of the cases. In some cases, look-ahead increases the communication a
little (see Figure 5.31 look-ahead parts, number of tasks 500, 700, 1000). Compared to
look-ahead, look-forward can reduce communication more especially when the number
of tasks increases. When the number of tasks is less than 200, both look-ahead and look-
forward can obtain improvements upon HEFT and look-forward works slightly better
than look-ahead. When the number of tasks is more than 200, the improvement levels
can be seen in Table 5.1 and Table 5.2.

(resource10) Improvements (%) Montage CyberShake Epigenomics LiGo

500 tasks Look-ahead/Look-forward 3.45/22.55 6.03/7.57 8.41/10.2 9.37/11.95

700 Look-ahead/Look-forward 3.14/22.28 5.74/9.11 6.93/9.44 6.59/8.75

1000 Look-ahead/Look-forward 3.11/20.91 5.23/12.56 5.99/10.98 5.54/7.86

Table 5.1: Communication improvement of look-ahead and look-forward when the
number of resources is 10

5.4. EXPERIMENTAL EVALUATION 79

Figure 5.20: Average makespan with standard deviation using epigenomics workflow,
CCR 0.5 and 10 resources

(resource 2) Improvements (%) Montage CyberShake Epigenomics LiGo

500 tasks Look-ahead/Look-forward 6.54/8.51 3.99/3.39 6.82/7.68 -1.85/3.05

700 Look-ahead/Look-forward 5.68/10.58 2.92/2.91 5.8/8.31 -2.71/3.06

1000 Look-ahead/Look-forward 6.13/13.12 2.74/2.39 3.91/5.71 -1.56/3.88

Table 5.2: Communication improvement of look-ahead and look-forward when the
number of resources is 2

80 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

Figure 5.21: Average makespan with standard deviation using epigenomics workflow,
CCR 1.0 and 2 resources

Figure 5.22: Average makespan with standard deviation using epigenomics workflow,
CCR 1.0 and 10 resources

5.4. EXPERIMENTAL EVALUATION 81

Figure 5.23: Average makespan with standard deviation using epigenomics workflow,
CCR 2.0 and 2 resources

Figure 5.24: Average makespan with standard deviation using epigenomics workflow,
CCR 2.0 and 10 resources

82 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

Figure 5.25: Communication amount of montage workflow under 2 resources

Figure 5.26: Communication amount of montage workflow under 10 resources

5.4. EXPERIMENTAL EVALUATION 83

Figure 5.27: Communication amount of cybershake workflow under 2 resources

Figure 5.28: Communication amount of cybershake workflow under 10 resources

84 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

Figure 5.29: Communication amount of epigenomics workflow under 2 resources

Figure 5.30: Communication amount of epigenomics workflow under 10 resources

5.4. EXPERIMENTAL EVALUATION 85

Figure 5.31: Communication amount of ligo workflow under 2 resources

Figure 5.32: Communication amount of ligo workflow under 10 resources

86 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

5.4.4 Discussion

From the above results, some observations can be made. First, both look-ahead and
look-forward algorithms can obtain improvement upon HEFT. There are two reasons to
explain this: communication and DAG structure. When communication comes into task
scheduling, it obviously affects the whole scheduling length. Both look-ahead and look-
forward can ‘foresee’ some key tasks and their communications; if an algorithm finds
that some communication will affect the scheduling, it will choose the best destination
resource to avoid or reduce the negative effect of this communication. By applying this
way step by step, the whole scheduling length can be reduced. The other reason is the
DAG structure. One typical structure is the ‘join structure’. When a task t has more than
one incoming communication, this task is called a join task. The parent tasks of t, join
task t and communications E between them constitute a join structure. Most of the list
scheduling algorithms using traditional EFT, such as HEFT, cannot fully consider the
join structure. However, look-ahead and look-forward consider the resources available,
which makes the join task t have the earliest finish time at the stage of scheduling the
parent tasks. This naturally considers the join structure and communications between
them. So, both look-ahead and look-forward can reduce the scheduling length compared
to basic EFT-only algorithms.

Secondly, with an increasing number of tasks, look-ahead obtains less and less ben-
efit but look-forward obtains more and more benefit. That is because both look-ahead
and look-forward use a prediction tactic to make decisions. The benefits of this predic-
tion tactic can only be obtained when the planned future happens without interruption.
Any unexpected interference can make the planned future change and waste a lot of
resources. Look-ahead looks into the earliest finish time of the children tasks which
involves considering the communications and structure of DAG; it satisfies the finish
time of some parent tasks and makes a plan for the children tasks. The problem is that
there are many tasks which have a higher priority than the planned children tasks among
the parents and children tasks. These higher priority tasks will preemptively seize the
resources of the planned children tasks, and then an unpredictable interruption happens.
The decision-making tactic starts to make poor decisions. The larger size a DAG has,
the poorer the decisions that look-ahead may potentially make. So look-ahead will get
less and less benefit with the number of tasks increasing; in some cases, look-ahead can

5.4. EXPERIMENTAL EVALUATION 87

even lead to a result worse than HEFT (see Figure 5.6). Based on these considerations,
the look-forward algorithm considers not only the children tasks but also the higher pri-
ority tasks. It carefully chooses some higher priority tasks and the children tasks, using
a complete way of reasoning to add these tasks to a scheduling list or to release them
from it in an appropriate time frame and trying to avoid or reduce the interruptions from
the higher priority tasks. Then, it uses a new prediction strategy which can consider the
communications and the structure of the DAG, with generally good decision-making.
That is why look-forward can keep obtaining benefits, even though the number of tasks
of a DAG increases.

Thirdly, compared to HEFT, both look-ahead and look-forward can reduce the com-
munications; look-forward reduces communication more than look-ahead. As discussed
in point one of Section 5.4.4, the two algorithms ‘foresee’ some future tasks and avoid
the costly communications among the current and future tasks; the amount of commu-
nication is reduced in this way. Both the algorithms consider the join DAG structure,
which can also reduce the communications. The reasons why look-forward reduces
communication further is that look-forward fixes the poor decision-making problem
which has been discussed in point two of Section 5.4.4. One more reason is that look-
forward considers more tasks than look-ahead which makes it more stable and poten-
tially reduces communication more than look-ahead.

Some other observations, like the fact that look-forward remains stable even when
the CCR changes, were also made.

5.4.5 Algorithm execution time

Figures 5.33 to 5.40 present the average algorithm execution time of four algorithms.
Both look-ahead and look-forward need to consider more tasks than HEFT when
scheduling one task; as expected, look-ahead and look-forward require more time to
execute than HEFT. Because look-ahead considers only the children tasks but look-
forward considers both the children tasks and some higher priority tasks, the execution
time of look-forward is 1 or 2 times higher than that of look-ahead. Nevertheless, this
higher execution time may be worthy for a static algorithm, especially in situations
where a shorter makespan is important.

88 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

Figure 5.33: Average algorithm execution time (in microseconds) of montage workflow
under 2 resources

5.5 Summary

This chapter presented a look-forward approach to schedule DAGs in heterogeneous
systems. The look-forward algorithm is also a forecast algorithm but considers the
higher priority and unscheduled tasks. The simulation experiments show that look-
forward can significantly improve the schedule made by HEFT and look-ahead, es-
pecially in cases where there is a large number of tasks. As the number of tasks in-
creases, look-forward shows more stable and effective performance than look-ahead,
which proves that the scheduling strategy we propose is effective. The proposed al-
gorithm can shorten the makespan in some cases by up to 40%, which is a significant
improvement. Despite the increased time complexity, this time consumption can be
controlled to be lower than many other higher time complexity algorithms; at the same
time, it can make more reduction in schedule length than these algorithms. As this is a
static algorithm, the time complexity is acceptable when considering the improvement
it can make.

Further work can study how look-forward works when communication becomes

5.5. SUMMARY 89

Figure 5.34: Average algorithm execution time (in microseconds) of montage workflow
under 10 resources

important. One example is the contention model problem. In the contention model, al-
gorithms need to consider communication contention during scheduling. Look-forward
can ‘foresee’ the communications, and may solve the communication contention prob-
lem. The other problem is the identical data problem. Identical data should be consid-
ered during the scheduling, in order to find a suitable way to schedule identical data and
obtain the benefit. Look-forward may be a good algorithm to do it. These problems will
be considered in the following chapters.

90 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

Figure 5.35: Average algorithm execution time (in microseconds) of cybershake work-
flow under 2 resources

Figure 5.36: Average algorithm execution time (in microseconds) of cybershake work-
flow under 10 resources

5.5. SUMMARY 91

Figure 5.37: Average algorithm execution time (in microseconds) of epigenomics work-
flow under 2 resources

Figure 5.38: Average algorithm execution time (in microseconds) of epigenomics work-
flow under 10 resources

92 CHAPTER 5. A LOOK-FORWARD ALGORITHM FOR TASK SCHEDULING

Figure 5.39: Average algorithm execution time (in microseconds) of ligo workflow un-
der 2 resources

Figure 5.40: Average algorithm execution time (in microseconds) of ligo under 10 Re-
sources

Chapter 6

Look-forward scheduling in the
contention model

Section 3.2 has provided an introduction to the contention model, has detailed the differ-
ences between the contention model and the classic model and described one important
contention model called the one-port model. In this chapter, scheduling in the contention
model will be studied further.

6.1 List scheduling in the one-port model

As there are many differences between the classic model and the contention model when
it comes to handling contention, new algorithms which take into account the properties
of the contention model, should be developed. In this work, the one-port model is
chosen as the contention model. The main differences between the one-port model
and the classic model are that communication cannot be performed in parallel under
the one-port model and that any communication must pass through an out-port of the
sender processor and an in-port of the receiver processor. As communication cannot be
performed in parallel, any communication should consider the conflict with other data
transfers. The communication may need to wait for the processor to finish transferring
the other data, which will increase the whole schedule length. Besides, the out-port and
in-port on the path of each communication transfer may have different slack time which
will require the relevant algorithms to handle the out-port and in-port separately. As a

93

94CHAPTER 6. LOOK-FORWARD SCHEDULING IN THE CONTENTION MODEL

result of the communication transfers from the out-port to the in-port, the start time of
the communication on the in-port cannot be earlier than the start time on the out-port.

In order to solve these problems, a technique called edge scheduling [SSS06,
WSF89, GDP08] (see Section 2.2) needs to be introduced first. Compared with schedul-
ing in the classic model, the edges in the one-port model should be scheduled carefully.
(Note that this does not mean edges in the classic model need not be scheduled. Because
one edge ei j in the classic model needs only a start time ts(ei j) = t f (pi) and a finish time
t f (ei j) = ts(ei j)+w(ei j), which is easy to determine, it is not common to refer to edge
scheduling in the classic model). The edge scheduling technique schedules an edge ei j

between two processors pi and p j, which will consider the conflicts between the com-
munications and the transfer on the out-port of pi and the in-port of p j. The generic
algorithm of edge scheduling can be seen in Algorithm 6.1.

In Algorithm 6.1, ts(ei j, p(i,out)) means the start time of edge ei j on processor pi’s
out-port, t f (ei j, p(i,out)) means the finish time of edge ei j on processor pi’s out-port,
ts(ei j, p(j,in)) means the start time of edge ei j on processor p j’s in-port, t f (ei j, p(j,in))

means the finish time of edge ei j on processor p j’s in-port, t f (p(i,out) means the finish
time of processor pi’s out-port, t f (p(i,in) means the finish time of processor pi’s in-port.
This algorithm schedules edge ei j on the out-port and in-port separately. ts(ei j, p(i,out))

should be the later of processor pi’s finish time and the out-port of processor pi’s finish
time t f (p(i,out))). ts(ei j, p(j,in)) should be the later of ts(ei j, p(i,out)) and the in-port of
processor p j’s finish time t f (p(j,in)). When the edge is scheduled on the out-port or
in-port, the completion of the out-port or in-port should be renewed. Note that pi means
the allocated processor of edge ei j’s incoming node, p j means the allocated processor
of edge ei j’s outgoing node, p(i,out) means the out-port of processor pi and p(j,in) means
the in-port of processor p j. At the very beginning, all the start time and finish time of
processors, ports, nodes and edges are zero.

Algorithm 6.1 gives a way to schedule one edge ei j from processor pi to processor
p j. Some nodes have more than one incoming edge, for example in Figure 6.1, node
OUT has 10 incoming edges. According to the basic steps of list scheduling, before
scheduling node OUT , the finish time and data ready time (DRT) of OUT should be de-
termined. When scheduling node OUT , all the 10 incoming edges should be scheduled.
The following algorithm shows how to get the DRT for one node ni on one processor
pi. In Algorithm 6.2, the Incom(ni) means all the incoming edges of ni, proc(n j) means

6.1. LIST SCHEDULING IN THE ONE-PORT MODEL 95

Algorithm 6.1 Edge Scheduling. ei j from processor pi to processor p j (one-port model)
1: Input: processor pi, processor p j, edge ei j

2: Output: finish time of processor pi’s out-port t f (p(i,out))

3: Output: start time of edge ei j on pi’s out-port ts(ei j, p(i,out))

4: Output: finish time of edge ei j on pi’s out-port t f (ei j, p(i,out))

5: Output: finish time of processor p j’s in-port t f (p(j,in))

6: Output: start time of edge ei j on p j’s in-port ts(ei j, p(j,out))

7: Output: finish time of edge ei j on p j’s in-port fs(ei j, p(j,out))

8: Get finish time t f (pi) of pi

9: Get finish time t f (p(i,out)) of pi’s out-port
10: ts(ei j, p(i,out))← max(t f (pi),t f (p(i,out)))
11: t f (ei j, p(i,out))← ts(ei j, p(i,out))+c(ei j)

12: t f (p(i,out))← t f (ei j, p(i,out))

13:

14: Get finish time t f (p j) of p j

15: Get finish time t f (p(j,in)) of p j’s in-port
16: ts(ei j, p(j,in))← max(ts(ei j, p(i,out)),t f (p(j,in)))
17: t f (ei j, p(j,in))← ts(ei j, p(j,in))+c(ei j)

18: t f (p(j,in))← t f (ei j, p(j,in))

the allocated processor of edge e ji’s incoming node n j, t f (e ji, proc(n j), pi) means the
finish time of edge e ji, p(i,in) means the in-port of processor pi, t f (e ji, p(i,in)) means
the finish time of edge e ji on the in-port of processor pi. The DRT (see Equation 2.1)
should be the time after all the incoming edges are scheduled. This algorithm uses the
equation DRT = max(t f (e ji, proc(n j), pi),DRT) to get the final data ready time of the
target node ni in each loop. Compared to the classic model (see Algorithm 4.1), this
algorithm schedules the incoming edges and considers the contention between the out-
port and in-port of the processor in the one-port model. Each edge may have an effect
on the final data ready time in the one-port model.

After getting the data ready time, the start time ts(ni, pi) of a node ni on processor
pi is given as ts(ni, pi) = max(DRT, t f (pi)). This formula gives a way of finding ni’s
start time on a specific processor pi. In a parallel/distributed system, there are many
processors to which a node can be allocated. In order to find one suitable processor for

96CHAPTER 6. LOOK-FORWARD SCHEDULING IN THE CONTENTION MODEL

IN

OUT

A B C D E F G H I J

2

4 4 5 4 3 2 45 2

2
6

3 4 2 4 2 3
1010

10
3 3 10 5 4 7

8

3

4

6

5

Figure 6.1: Graph example for edge scheduling

Algorithm 6.2 Get the DRT of ni on processor pi (one-port model)
1: Input: processor pi, node ni

2: Output: data ready time (DRT) of node ni

3: DRT← 0
4: Find all incoming edges Incom{ni} of ni

5: for all edge e ji ∈ Incom{ni} do
6: Schedule edge e ji on out-port of proc(n j)

7: Schedule edge e ji on in-port of pi

8: Finish time t f (e ji, proc(n j), pi)← t f (e ji,(p(i,in)))

9: DRT← max(t f (e ji, proc(n j), pi), DRT)
10: end for

node ni, the algorithm needs to check all the processors and find the earliest start time
amongst these processors. The processor, which allows node ni to be started earliest,
will be chosen as ni’s processor. Algorithm 6.3 shows how to choose a processor p

for node ni. No matter whether in the classic model or in the one-port model, both
algorithms use the principle of choosing the minimal start time first. So, from Algorithm
4.2 in classic model and Algorithm 6.3 in the one-port model, it is easy to see that these
two algorithms are similar in every way, except in how to obtain the data ready time for
a node ni. Every time the algorithm checks a processor and the start time and finish time
of all the processors and processor’s ports, it should go back to the previous status when
Algorithm 6.3 begins. That is because Algorithm 6.3 only chooses a processor for node
ni and it will not change any other status of the nodes and processors.

6.1. LIST SCHEDULING IN THE ONE-PORT MODEL 97

Algorithm 6.3 Choose a processor pi for node ni (one-port model)
1: Input: node ni

2: Output: processor pi for node ni

3: ttemp← ∞, ptemp← null

4: for all processors pi ∈ P do
5: Get the DRT of ni on processor pi (Algorithm 6.2)
6: if ttemp > max(DRT, t f (pi)) then
7: ttemp← max(DRT, t f (pi))
8: ptemp← pi

9: end if
10: end for
11: ts(ni)← ttemp, proc(ni)← ptemp

Algorithm 6.4 shows the steps of the static list scheduling algorithm in the one-port
model. It has the same steps as the basic steps of static list scheduling, except for the
priority part and how to choose a processor for a node ni. In fact, the greatest differences
between the one-port model and the classic model are edge scheduling (Algorithm 6.1)
and data ready time (Algorithm 6.2).

Algorithm 6.4 List scheduling (one-port model)
1: Calculate the priority of each node ni as ∑ j∈pred(i) c(e j,i)/wi

2: Order all nodes ni ∈ V into list L by priority and precedence constraints (non-
ascending order)

3: for all node ni ∈ L do
4: Choose a processor pi for node ni (Algorithm 6.3)
5: Schedule ni on processor pi

6: end for

98CHAPTER 6. LOOK-FORWARD SCHEDULING IN THE CONTENTION MODEL

6.2 Look-forward algorithms under the contention
model

Even though most list scheduling algorithms can be converted into the contention model
by using Algorithms 6.4, 6.3 and 6.2, this kind of conversion is still not enough. Because
of the communication contention, the resource competition moves from the processor to
the communication network. Using the earliest finish time is no longer an efficient way
to do the scheduling. When doing scheduling, the algorithm needs to consider both the
incoming port and the outgoing port. A block in one port may lead to communication
contention. In order to solve this problem, we propose to add a look-forward aspect to
the contention model. It has been demonstrated in Chapter 5, even in the classic model,
look-forward still has better performance. Because look-forward typically ‘looks’ a lit-
tle farther than the other algorithms, it can consider the whole situation rather than only
finding an earlier time. Algorithm 6.5 shows the detail of how to use the look-forward
algorithm in the contention model. ‘Status 1’ means the status before the scheduling;
EFTri means the earliest finish time of task rt .

6.3 Experimental setup

6.3.1 Graphs

In order to evaluate the algorithms, six types of DAGs (directed acyclic graphs) are
chosen and introduced as follows:

Fork Graph Join Graph

Figure 6.2: Fork and join graph

6.3. EXPERIMENTAL SETUP 99

Algorithm 6.5 Look-forward algorithm, contention model
1: Input: a task graph G = (V,E,w,c)

2: Output: a schedule for all tasks ti ∈ V

3: rank tasks using ti ∈ V the ranku

4: L← NULL

5: while there are unscheduled tasks do
6: t ← unscheduled task with highest ranku

7: if t /∈ L and children of t /∈ L then
8: L← children of t

9: end if
10: if t ∈ L then
11: L← NULL

12: L← children of t

13: end if
14: status 1
15: for all resource ri ∈ the resources set R do
16: schedule t on ri using Algorithm 6.4
17: schedule all tasks ∈ L using Algorithm 6.4
18: EFTri ← maximum EFT for tasks ∈ L

19: return to status 1 (recover the ports)
20: end for
21: schedule t on ri such that EFTri ≤ EFTrk using Algorithm 6.4
22: end while

Figure 6.2 shows the example of a fork graph and a join graph. A fork graph consists
of a node with two or more outgoing edges and child nodes. If a fork node’s outgoing
edges all represent the same data, these edges will be called edges with identical data.
The join graph is a node with two or more incoming edges and parent nodes. It is easy
to see that it is only meaningful to have identical data for fork-graphs or fork parts of a
graph. Identical data taken by a join graph would not be realistic. So, in this work, the
join graph is not tested by the algorithm. Figure 6.3 shows the example of a fork-join
graph. A fork-join graph is the combination of a fork graph and join graph. The fork
part of the graph is connected by a join part. A fork-join graph is an important graph for

100CHAPTER 6. LOOK-FORWARD SCHEDULING IN THE CONTENTION MODEL

Fork-join Graph

Figure 6.3: Fork-join graph

parallel task scheduling.

Figure 6.4 shows the example of a series-parallel graph. Before series-parallel is
defined, the two-terminal graph needs to be introduced. A two-terminal graph is a graph
with two distinguished vertices, s and t, called source and sink, respectively. Let X be a
two-terminal graph, sx,tx are the source and sink vertices of X . Let Y be a two-terminal
graph, sy, ty are the source and sink vertices of Y . If a composition is operated by
merging sx,sy to be a new source vertex of Z and merging tx, ty to be a new sink vertex
of Z, this composition is called parallel composition. If a composition is operated by
merging tx,sy and sx, ty become the source and sink vertices of Z, this composition is
called series composition. If a graph is constructed by a sequence of series composition
or parallel composition, this graph is a series-parallel graph. The example can be seen in
Figure 6.4. Figure 6.5 shows the example of an out-tree. Figure 6.6 shows the example
of an in-tree.

6.3. EXPERIMENTAL SETUP 101

Series-parallel Graph

Figure 6.4: Series-parallel graph

6.3.2 DAX generator and simulator settings

As mentioned in Section 5.4.1, DAX represents the input workflow file which contains
the information of tasks, input and output files, task runtime, communication file and
the relationship between tasks and files. The task runtime can be used to calculate the
computation time of this task and the communication file can be used to calculate the
communication cost during different target systems. A DAX file is generated by the
workflow generator (see Section 5.4.1). The generator generated the DAX files with the
corresponding computation cost and communication cost from the interval (20, 1000).
Three different CCR values (0.1, 1.0, 10) are generated for the experiments; in this ex-
periment, the six kinds of DAXs mentioned in Section 6.3.1 are generated by the work-
flow generator. All the workflows are run by HEFT and look-forward algorithms. Each
algorithm runs 200 randomly generated workflows under 2 resources and 10 resources
for each type of workflow.

A simulator called WorkflowSim is used to simulate the running of the workflows.

102CHAPTER 6. LOOK-FORWARD SCHEDULING IN THE CONTENTION MODEL

2

2 3

2 3 4 2 3 4

10 1

10 1
9

10 1
9

Figure 6.5: Out-tree graph

The details of WorkflowSim can be found in Section 5.4.2. DAXs are used as the in-
put file of WorkflowSim. The HEFT planning algorithm and the look-forward based
planning algorithm under the contention model are implemented to do scheduling in the
simulator.

6.3.3 Results and evaluation

As shown in Figures 6.7, 6.8, 6.9, 6.10, 6.11, three observations can be made as follows:
firstly, when the CCR is small, for instance CCR=0.1 (see Figures 6.7, 6.8, 6.9, 6.10,
6.11), both HEFT scheduling and look-forward scheduling have similar results. That
is because when the CCR is small, the communications are very small too. Under
these conditions, scheduling is more likely to be affected by the computation costs of
the nodes; the communications are less important to the scheduling system. Secondly,
when the CCR is large, for instance CCR=10, look-forward works better than HEFT
under the join structures, such as in the In-Tree graph and fork-join graph (see Figures
6.8, 6.10). The reason why look-forward works better is that look-forward considers
both the incoming communications and the outgoing communications of each node.
This will be useful, especially in a join-structure. Lastly, both the HEFT algorithm and
the look-forward algorithm can be transferred from the classic model to the contention
model using Algorithms 6.5 and 6.4. Both of them can create good schedules under the
one-port/contention model.

6.4. SUMMARY 103

In-tree

Figure 6.6: In-tree graph

6.4 Summary

This chapter has investigated the look-forward algorithm under the contention model.
The next chapter will analyze this further taking into account an additional property of
task graphs concerning identical data.

104CHAPTER 6. LOOK-FORWARD SCHEDULING IN THE CONTENTION MODEL

Figure 6.7: Fork graph under the contention/one-port model

Figure 6.8: Fork-join graph under the contention/one-port model

6.4. SUMMARY 105

Figure 6.9: SerieParallel graph under the contention/one-port model

Figure 6.10: In Tree graph under the contention/one-port model

106CHAPTER 6. LOOK-FORWARD SCHEDULING IN THE CONTENTION MODEL

Figure 6.11: Out Tree graph under the contention/one-port model

Chapter 7

The identical data problem

In scheduling algorithms for parallel computing, communication between tasks plays an
important role in the achievable performance. When a task needs to send the same data
to more than one task, this data is called identical data. Identical data will be sent many
times to different target tasks, each of which will receive the same data. If some of the
target tasks are on the same processor, the processor only needs to receive the identical
data once. Based on this property, this research takes into account identical data in
scheduling algorithms in order to reduce the schedule length for task scheduling. As
already known, in parallel or distributed systems, when communication costs and data
transmission contention are both considered, it becomes difficult to find an efficient
schedule for tasks. Clearly, identical data relate to the outgoing data, which is data that
goes out from a source task. An algorithm needs to consider incoming data too to find
the earliest finish time of tasks while the use of identical data in outgoing data is also
considered.

Most of the existing scheduling approaches only care about the incoming edge for a
task. This is because these algorithms prefer to execute a target task as soon as possible.
As mentioned, the look-forward algorithm allocates a task by the earliest finish time of
the children tasks and some other low-priority tasks. When look-forward is applied, it
automatically considers the incoming edges of one task and the outgoing edges between
this task and its children tasks. This means that, naturally, the look-forward algorithm
can be used for the identical data problem too.

107

108 CHAPTER 7. THE IDENTICAL DATA PROBLEM

7.1 The identical data problem description

A

B C D E F G

2 2 2 2 2 2

2

2 2 2 2 2
2

Figure 7.1: Identical data

Consider Figure 7.1, which shows a fork graph. Node A sends data to nodes B, C,
D, E, F and G. All the communication costs are assumed to be 2 (units do not matter
in this discussion). When all data transmitted from node A to children nodes are the
same, these data are called identical data. Note that this definition is based on content
and not on the communication cost. Sending identical data can occur in any graph, not
only fork graphs, whenever a node has at least two out-edges. To consider identical data
in the scheduling model, the following new property is introduced:

1. No repetitive transfer. This means that if one processor p1 transfers several iden-
tical data items to another processor p2, p1 needs only to transfer these identical
data only once to p2 and p2 only needs to receive these identical data from p1

only once.

This property is appropriately relevant to the contention model and the one-port model.
When one processor p1 sends more than one data item to a processor p2 under the
one-port model at the same time, for the reason that p1 has only one out-port and this
out-port can only send one data item at a time, there would be contention on the out-port
of p1; also there would be contention on the in-port of p2, which will have an in-port
conflict when receiving data from p1. So p1’s out-port and p2’s in-port need to send
and receive these data items one by one, something which will expand the schedule
length. However, if these data are identical data, according to the new property of no
repetitive transfer (see identical property 1), these data will need to be transferred only

7.1. THE IDENTICAL DATA PROBLEM DESCRIPTION 109

once, both on the out-port of p1 and the in-port of p2 and the scheduling length will be
reduced. In the classic model, the communication can be performed in parallel which
means even if one processor p1 sends many data items to processor p2, these data can
be transferred in parallel without effect to each other and the whole schedule length will
not be increased, as in the one-port model. As the identification of identical data implies
only one transfer to another processor, this is an efficient way to reduce the scheduling
length in the one-port model.

For example, assuming that the nodes of Figure 7.1 are scheduled in alphabetic
order and are allocated to the processor in a round-robin fashion starting with p1, the
following examples show the schedule of Figure 7.1 with identical data.

P1 P2 P3

0

5

10

15

P1 P2 P3

0

5

10

15

A

D

B

C

E

F

G

A

B

C

D

G

E

F

Without indentical data With identical data

Graph (1) Graph(2)

Figure 7.2: Identical data in one-port model

Figure 7.2 gives a scheduling of Figure 7.1. In Figure 7.2, Graph (1) shows the
schedule without considering identical data. Graph (2) shows the schedule considering

110 CHAPTER 7. THE IDENTICAL DATA PROBLEM

the identical data. The arrows indicate the communication from node A to the other
nodes. The start of the arrow corresponds to the start time of this communication; the
end of the arrow corresponds to the finish time and destination of this communication.
The number of arrows represents the number of data items that should be sent by node
A. In graph (1), node c needs to wait for processor p1 to send data identified by the
communication edges w(eAB) and w(eAC) one by one. That is because the target system
is the one-port model; the contention on the out-port of p1 needs to be considered. In
this model, there is a delay of four time units for node C. In the same way, node E

should wait the transfer of w(eAB), w(eAC) and w(eAE). So there will be a two time units
gap between nodes B and E. Similarly, there is a delay of two time units between nodes
C and F . The whole schedule length of Graph (1) in Figure 7.2 is 12. When considering
identical data, the processor p1 only needs to send the data once to processors p2 and p3.
Even though they are in the one-port model, node E and F do not need to wait for the
data w(eAE) and w(eAF). So there would be no gaps between nodes B and E and nodes
C and F . Compared to Graph (1), the whole schedule length can be reduced from 12 to
10. The more out-degrees node A has, the more the schedule length can be reduced.

Figure 7.3 shows a schedule for the graph in Figure 7.1. The difference between Fig-
ure 7.3 and Figure 7.2 is that the nodes in Figure 7.2 are scheduled in a contention/one-
port model in order to show that the property of identical data is appropriate for the
contention model or the one-port model but the nodes in Figure 7.3 are scheduled in a
classic model in order to demonstrate that the property of identical data is not appropri-
ate for the classic model. Figure 7.3 Graph (1) shows the schedule without considering
the identical data. Graph (2) gives the schedule considering the identical data. The
arrows have the same meaning as in Figure 7.3. The number of the arrows indicates
how many data items should be sent by node A. As shown in Graph (2), when consid-
ering identical data, processor p1 does not need to send communication edges w(eAE)

and w(eCF). Processor A needs only to transfer two data items to the other processors.
In Graph (1), processor p1 needs to send four communications to the other processors.
Even though Graph (1) and Graph (2) have different communication to be transferred
these two schedules have the same length. This is because processor p1 is in the classic
model; no matter how many data it should send at a time, all these data can be sent in
parallel, without any interference among them.

In conclusion, identifying identical data will be useful in the contention or one-port

7.2. IDENTICAL DATA IN LIST SCHEDULING ALGORITHMS 111

P1 P2 P3

0

5

10

15

P1 P2 P3

0

5

10

15

A

D

B C

E F

G

A

B C

D

G

E F

Without indentical data With identical data

Graph (1) Graph(2)

Figure 7.3: Identical data in classic model

model but will not make a difference in the classic model. The following algorithm,
when considering identical data, will always assume that the contention or one-port
model is used.

7.2 Identical data in list scheduling algorithms

To include the consideration of identical data in the list scheduling algorithm, a tech-
nique called ‘sibling checking’ is introduced in this section. When scheduling an edge
ei j from processor pi to p j, the algorithm has to check whether ei j contains identical
data. This step can be done by an identical tag in the algorithm. If ei j contains iden-
tical data, then the algorithm needs to know whether ei j needs to be scheduled. This

112 CHAPTER 7. THE IDENTICAL DATA PROBLEM

is because if any other identical data has been scheduled to be sent from processor p1

to processor p j, ei j does not need to be scheduled again. For example, in Figure 7.4,
when edge eAE is being scheduled, and if the algorithm knows edge eAB has been sched-
uled, then the algorithm will know edge eAE does not need to be scheduled again. The
sibling checking technique is a way to take into account identical data and address this
problem. When the algorithm is scheduling an edge ei j, node ni and node n j are the in-
coming node and outgoing node of ei j respectively, the sibling checking technique will
check all n j’s sibling nodes whose parent node is ni; if any of these nodes are scheduled
on the same processor proc(n j) with n j, ei j does not need to be checked again. For
example, in Figure 7.4, when the algorithm is scheduling edge eAF , the sibling checking
will check all of node F’s siblings nodes B,C,D,E,G. If it finds that node C and node F

have the same parent node A, then it will tell the algorithm that edge eAF does not need
to be scheduled.

P1 P2 P3

0

5

10

15

A

B

C

D

G

E

F

With identical data

Graph(2)

A

B C D E F G

2 2 2 2 2 2

2

2 2 2 2 2
2

Fork graph with Identical data

Graph(1)

communication from
P1 to P3

Figure 7.4: Schedule identical data

Algorithm 7.1 shows how to use the sibling checking technique to schedule an edge
in the one-port model. In Algorithm 7.1, ei j is the edge that needs to be scheduled.
Nodes ni,n j are the incoming and outgoing nodes of ei j. proc(n j) is the processor to
which node n j is allocated. vchildren(ni) denotes all the children nodes of ni. The other
expressions have the same meaning as Algorithm 6.1. The first part of Algorithm 7.1 is

7.3. USING THE LOOK-FORWARD ALGORITHM FOR IDENTICAL DATA 113

the sibling checking technique which is used to decide whether edge ei j is an identical
data that need not be scheduled. According to the results of the first part, the second
part schedules edge ei j as a common edge or does it as an identical edge which can be
zeroed.

7.3 Using the look-forward algorithm for identical data
under the contention model

Algorithm 7.2 (see page 121) shows the look-forward-based algorithm for identical data
under the contention model.

7.4 Experimental evaluation

Figure 7.5: HEFT scheduling evaluation (CCR=0.1)

As shown in Figures 7.5, 7.6 and 7.7, there are some observations that can be made
for list scheduling under the one-port model. Firstly, when CCR = 0.1, no matter
whether or not identical data are considered, the results will not differ much. In fact
the results are the same, which can be seen in Figure 7.5. That is because considering

114 CHAPTER 7. THE IDENTICAL DATA PROBLEM

Figure 7.6: HEFT scheduling evaluation (CCR=1)

the identical data reduces the communication effect for the whole schedule, but when
CCR = 0.1 the communication costs have little effect and the identical data awareness
will not help to reduce the schedule length. Secondly, when CCR = 1.0 or 10, the com-
munication costs have a greater effect on the schedule length. For the fork graph, the
schedule length is reduced when considering identical data (see Figures 7.6 and 7.7).
This is because all the edges of the fork graph are edges of identical data, which can be
used to reduce the schedule length. For the fork-join graph, when considering identical
data, the schedule length is reduced a little; sometimes it is even increased (Figure 7.7
shows when considering the identical data, the schedule length increases in the fork-
join graph). The reason for this situation is that list scheduling with identical data can
reduce the length of the fork part, but when it comes to the join part, it cannot help. The
scheduling of the fork part might make decisions that will increase the inter-processor
communication of the join part, which will finally have a negative effect on the overall
schedule length. For the series-parallel graph, the result is similar to the fork-join graph
(see Figures 7.6 and 7.7). The fork parts can be reduced, but the communication in the
other parts reduces the benefit gained due to the identical data in fork parts. For the
in-tree, as no node has more than one out-going edge, there is no identical data in the
in-tree. In Figures 7.5, 7.6 and 7.7, the results before and after considering the identical

7.4. EXPERIMENTAL EVALUATION 115

Figure 7.7: HEFT scheduling evaluation (CCR=10)

data are the same. As there are many fork parts in the out-tree, the schedule length is
expected to reduce when considering identical data. However, the result shows only a
small reduction. The reason is that the max branch (the biggest number of out-going
edges of a node) of the out-tree is only 3, hence, considering identical data has little
benefit.

Figures 7.8, 7.9 and 7.10 give the results for the look-forward algorithm under the
one-port model. Firstly, the lower CCR, that is CCR = 0.1, will weaken the benefit
associated with the consideration of identical data. Figure 7.8 shows that no matter
whether identical data is considered or not, the results are the same. Secondly, for
the fork graph, the identical data reduces significantly the schedule length as the CCR
increases (see Figures 7.9 and 7.10 fork graph.). Thirdly, for the fork-join graph, as
look-forward can ‘look’ into the join parts and make the decision at the same time as
considering the nodes of the fork part, it can reduce the schedule length by considering
the identical data. This is a clear advantage of the look-forward algorithm. The bar
charts depicted in Figures 7.9 and 7.10 show that the look-forward algorithm can reduce
the schedule length of the fork-join graph. Fourthly, as there is no identical data in the
in-tree, the result is the same as when considering identical data (see Figures 7.8, 7.9 and
7.10). As for the out-tree, the small max-branch property, as discussed above, makes

116 CHAPTER 7. THE IDENTICAL DATA PROBLEM

Figure 7.8: Look-forward algorithm(CCR=0.1)

the benefit of identical data disappear (see Figure 7.9 and 7.10).

7.4.1 HEFT scheduling versus look-forward

Comparing the results for HEFT scheduling and look-forward, there are some results
that demonstrate the differences between these two algorithms. These can be seen in
Figures 7.11, 7.12, 7.13, 7.14, 7.15, 7.16, 7.17, 7.18, 7.19 and 7.20. First, when the
CCR is too small, for instance CCR = 0.1, both HEFT scheduling and look-forward
scheduling will have a similar result and cannot make full use of the identical data. The
first part of Figures 7.11 to 7.20 can show this result. Second, Figures 7.11 and 7.12
show that for the fork graph, both HEFT scheduling and look-forward can obtain the
benefit of considering identical data and achieve a similar result. For the fork-join (see
Figure 7.14), series-parallel (see Figure 7.16) and in-tree (see Figure 7.20), because
look-forward can consider the entire graph and HEFT scheduling can only consider the
fork part of a graph, look-forward produces a better schedule than list scheduling. For
the out-tree graph, with the increase of CCR, HEFT scheduling may provide a better
schedule length than look-forward (see the third part of Figures 7.17 and 7.18). That
is because out-trees have only fork parts which is beneficial for HEFT scheduling and

7.5. SUMMARY 117

Figure 7.9: Look-forward algorithm(CCR=1)

in the proposed HEFT scheduling algorithm, HEFT scheduling gives a better way to
assign the priorities of nodes than look-forward. There are only join parts in the in-
tree graph. As look-forward can look forward for the fork parts and HEFT scheduling
cannot consider the join parts of a graph, look-forward can exhibit a better performance
than HEFT scheduling. The results in Figures 7.19 and 7.20 support the above analysis.

7.5 Summary

To sum up, when the communication costs have enough of an effect on the whole graph,
the proposed HEFT scheduling algorithm and look-forward can create good schedules
under the one-port/contention model. When considering identical data for a further
reduction in schedule length, both HEFT scheduling and look-forward can reduce the
schedule length significantly for the fork graph (see Figures 7.7, 7.10, 7.11, 7.12). HEFT
scheduling is not efficient at considering identical data in the fork-join graph (see Fig-
ures 7.7 and 7.6), but look-forward can overcome this shortcoming and can further re-
duce the schedule length of fork-join graph after considering identical data (see Figures
7.10 and 7.14). For the series-parallel and in-tree graphs, look-forward also performs
better than HEFT scheduling (see Figures 7.16 and 7.20), when considering identical

118 CHAPTER 7. THE IDENTICAL DATA PROBLEM

Figure 7.10: Look-forward algorithm(CCR=10)

data. Note that even though look-forward achieves a better result in many graphs than
HEFT scheduling, HEFT scheduling has a better priority algorithm than look-forward,
which may make it better in a few situations, such as the out-tree graph in Figures 7.18
and 7.17.

7.5. SUMMARY 119

Figure 7.11: Fork without identical data comparison

Figure 7.12: Fork with identical data comparison

120 CHAPTER 7. THE IDENTICAL DATA PROBLEM

Algorithm 7.1 Edge scheduling ei j with identical data (one-port model)
1: Input: processor pi, processor p j, edge ei j

2: Output: finish time of processor pi’s out-port t f (p(i,out))

3: Output: start time of edge ei j on pi’s out-port ts(ei j, p(i,out))

4: Output: finish time of edge ei j on pi’s out-port t f (ei j, p(i,out))

5: Output: finish time of processor p j’s in-port t f (p(j,in))

6: Output: start time of edge ei j on p j’s in-port ts(ei j, p(j,out))

7: Output: finish time of edge ei j on p j’s in-port fs(ei j, p(j,out))

8: temp← 0
9: if ei j is identical data then

10: Get all children nodes vchildren(ni)of ni

11: for all node n ∈ vchildren(ni) do
12: if n is scheduled in proc(n j) then
13: temp← 1
14: end if
15: end for
16: end if
17:The above part checks whether ei j should be scheduled............
18: if temp ≡ 0 then
19: Get finish time t f (pi) of pi

20: Get finish time t f (p(i,out)) of pi’s out-port
21: ts(ei j, p(i,out))← max(t f (pi),t f (p(i,out)))
22: t f (ei j, p(i,out))← ts(ei j, p(i,out))+c(ei j).
23: t f (p(i,out))← t f (ei j, p(i,out))

24:

25: Get finish time t f (p j) of p j

26: Get finish time t f (p(j,in)) of p j’s in-port
27: ts(ei j, p(j,in))← max(ts(ei j, p(i,out)),t f (p(j,in)))
28: t f (ei j, p(j,in))← ts(ei j, p(j,in))+c(ei j)

29: t f (p(j,in))← t f (ei j, p(j,in))

30: else
31: ts(ei j)← 0
32: t f (ei j)← 0
33: end if

7.5. SUMMARY 121

Algorithm 7.2 Look-forward algorithm for the contention model
1: Input: a task graph G = (V,E,w,c)

2: Output: a schedule for all tasks ti ∈ V

3: rank all tasks ti ∈ V using the ranku

4: L← NULL

5: while there are unscheduled tasks do
6: t ← unscheduled task with highest ranku

7: if t /∈ L and children of t /∈ L then
8: L← children of t

9: end if
10: if t ∈ L then
11: L← NULL

12: L← children of t

13: end if
14: status 1
15: for all resource ri ∈ the resources set R do
16: schedule t on ri using Algorithm 7.1 and Algorithm 6.4
17: schedule all tasks ∈ L using Algorithm 7.1 and Algorithm 6.4
18: EFTri ← maximum EFT for tasks ∈ L

19: return to status 1 (recover the ports)
20: end for
21: schedule t on ri such that EFTri ≤ EFTrk using Algorithm 7.1 and Algorithm 6.4
22: end while

122 CHAPTER 7. THE IDENTICAL DATA PROBLEM

Figure 7.13: Fork-join without identical data comparison

Figure 7.14: Fork-join with identical data comparison

7.5. SUMMARY 123

Figure 7.15: SerieParallel without identical data comparison

Figure 7.16: SerieParallel with identical data comparison

124 CHAPTER 7. THE IDENTICAL DATA PROBLEM

Figure 7.17: Out Tree without identical data comparison

Figure 7.18: Out Tree with identical data comparison

7.5. SUMMARY 125

Figure 7.19: In Tree without identical data comparison

Figure 7.20: In Tree with identical data comparison

Chapter 8

Conclusion

This thesis studied DAG scheduling with respect to the classic model and the one-
port/contention model. As task scheduling is an NP-hard problem, many scheduling al-
gorithms have been proposed to solve this problem under the classic model, but very few
of them function effectively under the one-port/contention model. In order to find suit-
able algorithms to solve the scheduling problem in both the classic and contention mod-
els, this thesis studied the two most important fundamental heuristics of task scheduling:
list scheduling and clustering. On the basis of list scheduling and clustering in the clas-
sic model, this thesis suggested a new algorithm, called look-forward algorithm, to per-
form DAG scheduling. The experimental results show that the look-forward algorithm
reduces the schedule length with an acceptable run time.

This thesis has extended the proposed look-forward algorithm into the contention
model area. Different from the classic model, the contention model needs to con-
sider communication contention. This consideration places additional constraints on
the scheduling algorithm. Not only does the algorithm need to get better at scheduling,
but the communication contention also needs to be fully resolved. Look-forward uses
a novel method to allocate the tasks. It allocates them by the earliest finish times of
their children tasks and some selected lower-priority tasks, but not by the mainstream
approach of the earliest finish time of the task itself. This unique method not only helps
look-forward perform better in the classical model but also allows it to fully consider
the incoming and outgoing communication and structure of the DAG, which helps it
perform well in the contention model.

126

127

After consideration of the contention model, this thesis focused on the communi-
cation data. An identical data problem is suggested and studied. Considering identical
data can be used to reduce the scheduling length, especially in the contention model,
but it is not so easy to combine this with other algorithms. After examining the ex-
perimental results, we believe the identical data can be considered by the look-forward
algorithm, because look-forward can consider both the incoming data and the outgo-
ing data, which will provide a good balance between identical data and the out-port
contention. This thesis focused on how to develop good scheduling algorithms in the
one-port model and how to consider identical data in this model.

Based on the above study, there is some future work that should be considered. For
example, additional experiments should be undertaken to test the proposed algorithms.
Also, additional graphs should be used to test identical data. When considering identical
data, the algorithms assume all fork parts have identical data. This assumption could
be relaxed. Future work could analyse a variety of graphs, for example, graphs where
30%, 50%, 70% and 100% of the fork parts deal with identical data.

Bibliography

[ACKZ05] M. Andrews, J. Chuzhoy, S. Khanna, and L. Zhang. Hardness of the undi-
rected edge-disjoint paths problem with congestion. In Foundations of

Computer Science. FOCS 2005. 46th Annual IEEE Symposium on, pages
226–241, 2005.

[AFJ+13] P.-A. Arras, D. Fuin, E. Jeannot, A. Stoutchinin, and S. Thibault. List
scheduling in embedded systems under memory constraints. In Computer

Architecture and High Performance Computing (SBAC-PAD), 2013 25th

International Symposium on, pages 152–159, 2013.

[AHK98] R. Armstrong, D. Hensgen, and T. Kidd. The relative performance of var-
ious mapping algorithms is independent of sizable variances in run-time
predictions. In Proceedings Seventh Heterogeneous Computing Workshop

(HCW’98), pages 79–87, March 1998.

[AIAS87] George B Adams III, Dharma P Agrawal, and Howard Jay Siegel. A sur-
vey and comparison of fault-tolerant multistage interconnection networks.
IEEE Computer, 20(6), 1987.

[AK98] Ishfaq Ahmad and Yu-Kwong Kwok. On exploiting task duplication in
parallel program scheduling. Parallel and Distributed Systems, IEEE

Transactions on, 9(9):872–892, 1998.

[ANF12] Oliver Arnold, Benedikt Noethen, and Gerhard Fettweis. Instruction
set architecture extensions for a dynamic task scheduling unit. In VLSI

(ISVLSI), 2012 IEEE Computer Society Annual Symposium on, pages
249–254. IEEE, 2012.

128

BIBLIOGRAPHY 129

[ASA16] S. A. Arshad, H. F. Sheikh, and I. Ahmad. A comparison of evolution-
ary techniques for task-to-core scheduling algorithms with performance,
energy, and temperature optimization. In Proceedings Seventh Interna-

tional Green and Sustainable Computing Conference (IGSC), pages 1–8,
November 2016.

[ASK+13] I. A. Abed, K. S. M. Sahari, S. P. Koh, S. K. Tiong, and P. Jagadeesh. Using
electromagnetism-like algorithm and genetic algorithm to optimize time
of task scheduling for dual manipulators. In Proceedings IEEE Region 10

Humanitarian Technology Conf, pages 182–187, August 2013.

[BCD+08] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. Su, and K. Vahi.
Characterization of scientific workflows. In Proceedings Third Workshop

Workflows in Support of Large-Scale Science, pages 1–10, 2008.

[BD04] Samuel I Brandt and Jan DeHaan. System and user interface for processing
task schedule information, March 30 2004. US Patent 6,714,913.

[BHR09] Anne Benoit, Mourad Hakem, and Yves Robert. Contention awareness
and fault-tolerant scheduling for precedence constrained tasks in hetero-
geneous systems. Parallel Computing, 35(2):83–108, 2009.

[BMRR06] Olivier Beaumont, Loris Marchal, Veronika Rehn, and Yves Robert. Fifo
scheduling of divisible loads with return messages under the one-port
model. In Parallel and Distributed Processing Symposium, 2006. IPDPS

2006. 20th International, pages 14–pp. IEEE, 2006.

[BSB+01] Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L Bölöni,
Muthucumaru Maheswaran, Albert I Reuther, James P Robertson,
Mitchell D Theys, Bin Yao, Debra Hensgen, and Richard F Freund. A
comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems. Journal of Par-

allel and Distributed computing, 61(6):810–837, 2001.

[BSM10] Luiz F Bittencourt, Rizos Sakellariou, and Edmundo RM Madeira. DAG
scheduling using a lookahead variant of the heterogeneous earliest finish

130 BIBLIOGRAPHY

time algorithm. In Parallel, Distributed and Network-Based Processing

(PDP), 2010 18th Euromicro International Conference on, pages 27–34.
IEEE, 2010.

[CB76] Edward Grady Coffman and John L Bruno. Computer and job-shop

scheduling theory. John Wiley & Sons, 1976.

[CC91] Jean-Yves Colin and Philippe Chrétienne. CPM scheduling with small
communication delays and task duplication. Operations Research,
39(4):680–684, 1991.

[CCK12] Pravanjan Choudhury, PP Chakrabarti, and Rajeev Kumar. Online
scheduling of dynamic task graphs with communication and contention
for multiprocessors. Parallel and Distributed Systems, IEEE Transactions

on, 23(1):126–133, 2012.

[Che13] WorkflowSim: A Toolkit for Simulating Scientific Workflows in Distributed

Environments, 2013.

[CHJC14] Chuan-Feng Chiu, Steen J Hsu, Sen-Ren Jan, and Jyun-An Chen. Task
scheduling based on load approximation in cloud computing environment.
In Future Information Technology, pages 803–808. Springer, 2014.

[CJ01] Bertrand Cirou and Emmanuel Jeannot. Triplet: a clustering scheduling
algorithm for heterogeneous systems. In Parallel Processing Workshops,

2001. International Conference on, pages 231–236. IEEE, 2001.

[CR92] Yeh-Ching Chung and Sanjay Ranka. Applications and performance anal-
ysis of a compile-time optimization approach for list scheduling algo-
rithms on distributed memory multiprocessors. In Supercomputing’92.

Proceedings, pages 512–521. IEEE, 1992.

[CS87] Ming-Syan Chen and Kang G. Shin. Processor allocation in an n-cube
multiprocessor using gray codes. Computers, IEEE Transactions on,
100(12):1396–1407, 1987.

BIBLIOGRAPHY 131

[CTS97] Chantana Chantrapornchai, Sissades Tongsima, and EH-M Sha. Impre-
cise task schedule optimization. In Fuzzy Systems, 1997., Proceedings of

the Sixth IEEE International Conference on, volume 3, pages 1265–1270.
IEEE, 1997.

[DA97] Sekhar Darbha and Dharma P Agrawal. A task duplication based scalable
scheduling algorithm for distributed memory systems. Journal of Parallel

and Distributed Computing, 46(1):15–27, 1997.

[EKP+13] Daji Ergu, Gang Kou, Yi Peng, Yong Shi, and Yu Shi. The analytic hierar-
chy process: task scheduling and resource allocation in cloud computing
environment. The Journal of Supercomputing, 64(3):835–848, 2013.

[ERLA94] Hesham El-Rewini, Theodore G Lewis, and Hesham H Ali. Task schedul-

ing in parallel and distributed systems. Prentice-Hall, Inc., 1994.

[Ert98] Tuna Ertemalp. Method and apparatus for arranging and displaying task
schedule information in a calendar view format, April 28 1998. US Patent
5,745,110.

[FAdM+12] S.J. Filho, A. Aguiar, F.G. de Magalhaes, O. Longhi, and F. Hessel. Task
model suitable for dynamic load balancing of real-time applications in
NoC-based MPSoCs. In Computer Design (ICCD), 2012 IEEE 30th In-

ternational Conference on, pages 49–54, 2012.

[FGA+98] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman,
D. Hensgen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile,
L. Moore, B. Rust, and H. J. Siegel. Scheduling resources in multi-user,
heterogeneous, computing environments with smartnet. In Proceedings of

the Seventh Heterogeneous Computing Workshop (HCW’98), pages 184–
199, March 1998.

[GDP08] Shashidhar Gandham, Milind Dawande, and Ravi Prakash. Link schedul-
ing in wireless sensor networks: distributed edge-coloring revisited. Jour-

nal of Parallel and Distributed Computing, 68(8):1122–1134, 2008.

132 BIBLIOGRAPHY

[Gra99] Martin Grajcar. Genetic list scheduling algorithm for scheduling and al-
location on a loosely coupled heterogeneous multiprocessor system. In
Design Automation Conference, 1999. Proceedings. 36th, pages 280–285.
IEEE, 1999.

[GY92a] Apostolos Gerasoulis and Tao Yang. A comparison of clustering heuris-
tics for scheduling directed acyclic graphs on multiprocessors. Journal of

Parallel and Distributed Computing, 16(4):276–291, 1992.

[GY92b] Apostolos Gerasoulis and Tao Yang. A comparison of clustering heuris-
tics for scheduling directed acyclic graphs on multiprocessors. Journal of

Parallel and Distributed Computing, 16(4):276–291, 1992.

[GY93] Apostolos Gerasoulis and Tao Yang. On the granularity and clustering
of directed acyclic task graphs. Parallel and Distributed Systems, IEEE

Transactions on, 4(6):686–701, 1993.

[Han94] Simon Handley. On the use of a directed acyclic graph to represent a
population of computer programs. In Evolutionary Computation, 1994.

IEEE World Congress on Computational Intelligence. Proceedings of the

First IEEE Conference on, pages 154–159. IEEE, 1994.

[IK77] Oscar H. Ibarra and Chul E. Kim. Heuristic algorithms for scheduling in-
dependent tasks on nonidentical processors. Journal of ACM, 24(2):280–
289, April 1977.

[IÖF95] Michael A Iverson, Füsun Özgüner, and Gregory J Follen. Parallelizing
existing applications in a distributed heterogeneous environment. In 4th

Heterogeneous Computeing Workshop(HCW’95. Citeseer, 1995.

[JFKG13] J. Jackson, M. Faied, P. Kabamba, and A. Girard. Distributed constrained
minimum-time schedules in networks of arbitrary topology. 29(2):554–
563, 2013.

[JSM91] Kevin Jeffay, Donald F Stanat, and Charles U Martel. On non-preemptive
scheduling of period and sporadic tasks. In [1991] Proceedings Twelfth

Real-Time Systems Symposium, pages 129–139. IEEE, 1991.

BIBLIOGRAPHY 133

[KA99] Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison of
the task graph scheduling algorithms. Journal of Parallel and Distributed

Computing, 59(3):381–422, 1999.

[KA11] T Kokilavani and Dr DI George Amalarethinam. Load balanced min-min
algorithm for static meta-task scheduling in grid computing. International

Journal of Computer Applications, 20(2):43–49, 2011.

[KDR13] R. Khogali, O. Das, and K. Raahemifar. Mobile parallel computing algo-
rithms for single-buffered, speed-scalable processors. In Trust, Security

and Privacy in Computing and Communications (TrustCom), 2013 12th

IEEE International Conference on, pages 1832–1839, 2013.

[KN84] Hironori Kasahara and Seinosuke Narita. Practical multiprocessor
scheduling algorithms for efficient parallel processing. IEEE Transactions

on Computers, 33(11):1023–1029, 1984.

[LCC+13] Jinho Lee, Moo-Kyoung Chung, Yeon-Gon Cho, Soojung Ryu, Jung Ho
Ahn, and Kiyoung Choi. Mapping and scheduling of tasks and communi-
cations on many-core SoC under local memory constraint. IEEE Transac-

tions on Computers, 32(11):1748–1761, 2013.

[LLLW06] Chun-Hsien Liu, Chia-Feng Li, Kuan-Chou Lai, and Chao-Chin Wu. A
dynamic critical path duplication task scheduling algorithm for distributed
heterogeneous computing systems. In Proceedings 12th International

Conference Parallel and Distributed Systems - (ICPADS’06), volume 1,
pages 8 pp.–, 2006.

[LMXZ14] X. Li, Y. Mao, X. Xiao, and Y. Zhuang. An improved max-min task-
scheduling algorithm for elastic cloud. In Proceedings of the Consumer

and Control 2014 International Symposium, pages 340–343, June 2014.

[MVZ93] Cathy McCann, Raj Vaswani, and John Zahorjan. A dynamic processor
allocation policy for multiprogrammed shared-memory multiprocessors.
ACM Transactions on Computer Systems (TOCS), 11(2):146–178, 1993.

134 BIBLIOGRAPHY

[MXL14] Y. Mao, C. Xi, and X. Li. Max-min task scheduling algorithm for load
balance in cloud computing. In Proceedings of International Conference

on Computer Science and Information Technology, 2014.

[PC01] Chan-Ik Park and Tae-Young Choe. An optimal scheduling algorithm
based on task duplication. In Parallel and Distributed Systems, 2001.

ICPADS 2001. Proceedings. Eighth International Conference on, pages
9–14. IEEE, 2001.

[PLW96] Michael A. Palis, Jing-Chiou Liou, and David S. L. Wei. Task clustering
and scheduling for distributed memory parallel architectures. Parallel and

Distributed Systems, IEEE Transactions on, 7(1):46–55, 1996.

[RA00] Samantha Ranaweera and Dharma P Agrawal. A task duplication based
scheduling algorithm for heterogeneous systems. In Parallel and Dis-

tributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th

International, pages 445–450. IEEE, 2000.

[RSS90] Krithi Ramamritham, John A. Stankovic, and P-F Shiah. Efficient schedul-
ing algorithms for real-time multiprocessor systems. Parallel and Dis-

tributed Systems, IEEE Transactions on, 1(2):184–194, 1990.

[RVB07] M. Rahman, S. Venugopal, and R. Buyya. A dynamic critical path algo-
rithm for scheduling scientific workflow applications on global grids. In
e-Science and Grid Computing, IEEE International Conference on, pages
35–42, 2007.

[RvG99] Andrei Rădulescu and Arjan JC van Gemund. On the complexity of list
scheduling algorithms for distributed-memory systems. In Proceedings

of the 13th International Conference on Supercomputing, pages 68–75.
ACM, 1999.

[Sin07] Oliver Sinnen. Task scheduling for parallel systems, volume 60. Wiley,
2007.

BIBLIOGRAPHY 135

[SKH95] Behrooz A Shirazi, Krishna M Kavi, and Ali R Hurson. Scheduling and

load balancing in parallel and distributed systems. IEEE Computer Soci-
ety Press, 1995.

[SKS07] Oliver Sinnen, Alexander Vladimirovich Kozlov, and Ahmed Zaki Semar
Shahul. Optimal scheduling of task graphs on parallel systems. Parallel

and Distributed Computing and Networks, 551, 2007.

[SL93] Gilbert C Sih and Edward Lee. A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures. Paral-

lel and Distributed Systems, IEEE Transactions on, 4(2):175–187, 1993.

[Sny88] Lawrence Snyder. A taxonomy of synchronous parallel machines. Tech-
nical report, DTIC Document, 1988.

[SS01] Oliver Sinnen and Leonel Sousa. Comparison of contention aware list
scheduling heuristics for cluster computing. In Parallel Processing Work-

shops, 2001. International Conference on, pages 382–387. IEEE, 2001.

[SS04] Oliver Sinnen and Leonel Sousa. List scheduling: extension for contention
awareness and evaluation of node priorities for heterogeneous cluster ar-
chitectures. Parallel Computing, 30(1):81–101, 2004.

[SS05] Oliver Sinnen and Leonel A Sousa. Communication contention in task
scheduling. Parallel and Distributed Systems, IEEE Transactions on,
16(6):503–515, 2005.

[SS10] S. Selvarani and G. S. Sadhasivam. Improved cost-based algorithm for
task scheduling in cloud computing. In Proceedings IEEE Int. Conf. Com-

putational Intelligence and Computing Research, pages 1–5, December
2010.

[SSS06] Oliver Sinnen, Leonel Augusto Sousa, and Frode Eika Sandnes. Toward
a realistic task scheduling model. Parallel and Distributed Systems, IEEE

Transactions on, 17(3):263–275, 2006.

136 BIBLIOGRAPHY

[STK09] Oliver Sinnen, Andrea To, and Manpreet Kaur. Contention-aware schedul-
ing with task duplication. In Job Scheduling Strategies for Parallel Pro-

cessing, pages 157–168. Springer, 2009.

[STK11] Oliver Sinnen, Andrea To, and Manpreet Kaur. Contention-aware schedul-
ing with task duplication. Journal of Parallel and Distributed Computing,
71(1):77–86, 2011.

[SZ04a] Rizos Sakellariou and Henan Zhao. A hybrid heuristic for dag scheduling
on heterogeneous systems. In Parallel and Distributed Processing Sym-

posium, 2004. Proceedings. 18th International, page 111. IEEE, 2004.

[SZ04b] Rizos Sakellariou and Henan Zhao. A low-cost rescheduling policy for
efficient mapping of workflows on grid systems. Scientific Programming,
12(4):253–262, 2004.

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM jour-

nal on computing, 1(2):146–160, 1972.

[TBW92] Ken W Tindell, Alan Burns, and Andy J. Wellings. Allocating hard real-
time tasks: an NP-hard problem made easy. Real-Time Systems, 4(2):145–
165, 1992.

[THW02] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-effective
and low-complexity task scheduling for heterogeneous computing. Paral-

lel and Distributed Systems, IEEE Transactions on, 13(3):260–274, 2002.

[TS84] Tuomenoksa and Siegel. Task preloading schemes for reconfigurable
parallel processing systems. IEEE Transactions on Computers, C-
33(10):895–905, 1984.

[Ull75] Jeffrey D. Ullman. NP-complete scheduling problems. Journal of Com-

puter and System sciences, 10(3):384–393, 1975.

[VR01] Paulo Verissimo and Luis Rodrigues. Distributed systems for systems ar-

chitects, volume 1. Springer, 2001.

BIBLIOGRAPHY 137

[WSF89] L Darrell Whitley, Timothy Starkweather, and D’Ann Fuquay. Scheduling
problems and traveling salesmen: The genetic edge recombination opera-
tor. In ICGA, volume 89, pages 133–40, 1989.

[XLL11] Jin Xu, Albert Lam, and Victor OK Li. Chemical reaction optimization
for task scheduling in grid computing. Parallel and Distributed Systems,

IEEE Transactions on, 22(10):1624–1631, 2011.

[XW01] Yuan Xie and Wayne Wolf. Allocation and scheduling of conditional task
graph in hardware/software co-synthesis. In Design, Automation and Test

in Europe, 2001. Conference and Exhibition 2001. Proceedings, pages
620–625. IEEE, 2001.

[YG93] Tao Yang and Apostolos Gerasoulis. List scheduling with and without
communication delays. Parallel Computing, 19(12):1321–1344, 1993.

[YG94] Tao Yang and Apostolos Gerasoulis. DSC: Scheduling parallel tasks on an
unbounded number of processors. Parallel and Distributed Systems, IEEE

Transactions on, 5(9):951–967, 1994.

[YXP+11] Jiadong Yang, Hua Xu, Li Pan, Peifa Jia, Fei Long, and Ming Jie. Task
scheduling using bayesian optimization algorithm for heterogeneous com-
puting environments. Applied Soft Computing, 11(4):3297–3310, 2011.

[ZB97] Avi Ziv and Jehoshua Bruck. Performance optimization of checkpoint-
ing schemes with task duplication. Computers, IEEE Transactions on,
46(12):1381–1386, 1997.

[ZS03] Henan Zhao and Rizos Sakellariou. An experimental investigation into
the rank function of the heterogeneous earliest finish time scheduling al-
gorithm. In Euro-Par 2003 Parallel Processing, pages 189–194. Springer,
2003.

[ZS06] Henan Zhao and Rizos Sakellariou. Scheduling multiple DAGs onto het-
erogeneous systems. In Parallel and Distributed Processing Symposium,

2006. IPDPS 2006. 20th International, pages 14–pp. IEEE, 2006.

138 BIBLIOGRAPHY

[ZTS15] Wei Zheng, Lu Tang, and Rizos Sakellariou. A Priority-Based Scheduling
Heuristic to Maximize Parallelism of Ready Tasks for DAG Applications.
In Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM

International Symposium on, pages 596–605. IEEE, 2015.

