1,942 research outputs found

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    A Review of Radio Frequency Based Localization for Aerial and Ground Robots with 5G Future Perspectives

    Full text link
    Efficient localization plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned aerial vehicles (UAVs), which would contribute to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities for enhancing localization of UAVs and UGVs. In this paper, we review the radio frequency (RF) based approaches for localization. We review the RF features that can be utilized for localization and investigate the current methods suitable for Unmanned vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localization for both UAVs and UGVs is examined, and the envisioned 5G NR for localization enhancement, and the future research direction are explored

    Localisation of sensor nodes with hybrid measurements in wireless sensor networks

    Get PDF
    Localisation in wireless networks faces challenges such as high levels of signal attenuation and unknown path-loss exponents, especially in urban environments. In response to these challenges, this paper proposes solutions to localisation problems in noisy environments. A new observation model for localisation of static nodes is developed based on hybrid measurements, namely angle of arrival and received signal strength data. An approach for localisation of sensor nodes is proposed as a weighted linear least squares algorithm. The unknown path-loss exponent associated with the received signal strength is estimated jointly with the coordinates of the sensor nodes via the generalised pattern search method. The algorithm’s performance validation is conducted both theoretically and by simulation. A theoretical mean square error expression is derived, followed by the derivation of the linear Cramer-Rao bound which serves as a benchmark for the proposed location estimators. Accurate results are demonstrated with 25%–30% improvement in estimation accuracy with a weighted linear least squares algorithm as compared to linear least squares solution

    Tracking Target Signal Strengths on a Grid using Sparsity

    Get PDF
    Multi-target tracking is mainly challenged by the nonlinearity present in the measurement equation, and the difficulty in fast and accurate data association. To overcome these challenges, the present paper introduces a grid-based model in which the state captures target signal strengths on a known spatial grid (TSSG). This model leads to \emph{linear} state and measurement equations, which bypass data association and can afford state estimation via sparsity-aware Kalman filtering (KF). Leveraging the grid-induced sparsity of the novel model, two types of sparsity-cognizant TSSG-KF trackers are developed: one effects sparsity through â„“1\ell_1-norm regularization, and the other invokes sparsity as an extra measurement. Iterative extended KF and Gauss-Newton algorithms are developed for reduced-complexity tracking, along with accurate error covariance updates for assessing performance of the resultant sparsity-aware state estimators. Based on TSSG state estimates, more informative target position and track estimates can be obtained in a follow-up step, ensuring that track association and position estimation errors do not propagate back into TSSG state estimates. The novel TSSG trackers do not require knowing the number of targets or their signal strengths, and exhibit considerably lower complexity than the benchmark hidden Markov model filter, especially for a large number of targets. Numerical simulations demonstrate that sparsity-cognizant trackers enjoy improved root mean-square error performance at reduced complexity when compared to their sparsity-agnostic counterparts.Comment: Submitted to IEEE Trans. on Signal Processin

    Sistemas de posicionamento baseados em comunicação por luz para ambientes interiores

    Get PDF
    The demand for highly precise indoor positioning systems (IPSs) is growing rapidly due to its potential in the increasingly popular techniques of the Internet of Things, smart mobile devices, and artificial intelligence. IPS becomes a promising research domain that is getting wide attention due to its benefits in several working scenarios, such as, industries, indoor public locations, and autonomous navigation. Moreover, IPS has a prominent contribution in day-to-day activities in organizations such as health care centers, airports, shopping malls, manufacturing, underground locations, etc., for safe operating environments. In indoor environments, both radio frequency (RF) and optical wireless communication (OWC) based technologies could be adopted for localization. Although the RF-based global positioning system, such as, Global positioning system offers higher penetration rates with reduced accuracy (i.e., in the range of a few meters), it does not work well in indoor environments (and not at all in certain cases such as tunnels, mines, etc.) due to the very weak signal and no direct access to the satellites. On the other hand, the light-based system known as a visible light positioning (VLP) system, as part of the OWC systems, uses the pre-existing light-emitting diodes (LEDs)-based lighting infrastructure, could be used at low cost and high accuracy compared with the RF-based systems. VLP is an emerging technology promising high accuracy, high security, low deployment cost, shorter time response, and low relative complexity when compared with RFbased positioning. However, in indoor VLP systems, there are some concerns such as, multipath reflection, transmitter tilting, transmitter’s position, and orientation uncertainty, human shadowing/blocking, and noise causing the increase in the positioning error, thereby reducing the positioning accuracy of the system. Therefore, it is imperative to capture the characteristics of different VLP channel and properly model them for the dual purpose of illumination and localization. In this thesis, firstly, the impact of transmitter tilting angles and multipath reflections are studied and for the first time, it is demonstrated that tilting the transmitter can be beneficial in VLP systems considering both line of sight (LOS) and non-line of sight transmission paths. With the transmitters oriented towards the center of the receiving plane, the received power level is maximized due to the LOS components. It is also shown that the proposed scheme offers a significant accuracy improvement of up to ~66% compared with a typical non-tilted transmitter VLP. The effect of tilting the transmitter on the lighting uniformity is also investigated and results proved that the uniformity achieved complies with the European Standard EN 12464-1. After that, the impact of transmitter position and orientation uncertainty on the accuracy of the VLP system based on the received signal strength (RSS) is investigated. Simulation results show that the transmitter uncertainties have a severe impact on the positioning error, which can be leveraged through the usage of more transmitters. Concerning a smaller transmitter’s position epochs, and the size of the training set. It is shown that, the ANN with Bayesian regularization outperforms the traditional RSS technique using the non-linear least square estimation for all values of signal to noise ratio. Furthermore, a novel indoor VLP system is proposed based on support vector machines and polynomial regression considering two different multipath environments of an empty room and a furnished room. The results show that, in an empty room, the positioning accuracy improvement for the positioning error of 2.5 cm are 36.1, 58.3, and 72.2 % for three different scenarios according to the regions’ distribution in the room. For the furnished room, a positioning relative accuracy improvement of 214, 170, and 100 % is observed for positioning error of 0.1, 0.2, and 0.3 m, respectively. Ultimately, an indoor VLP system based on convolutional neural networks (CNN) is proposed and demonstrated experimentally in which LEDs are used as transmitters and a rolling shutter camera is used as receiver. A detection algorithm named single shot detector (SSD) is used which relies on CNN (i.e., MobileNet or ResNet) for classification as well as position estimation of each LED in the image. The system is validated using a real-world size test setup containing eight LED luminaries. The obtained results show that the maximum average root mean square positioning error achieved is 4.67 and 5.27 cm with SSD MobileNet and SSD ResNet models, respectively. The validation results show that the system can process 67 images per second, allowing real-time positioning.A procura por sistemas de posicionamento interior (IPSs) de alta precisão tem crescido rapidamente devido ao seu interesse nas técnicas cada vez mais populares da Internet das Coisas, dispositivos móveis inteligentes e inteligência artificial. O IPS tornou-se um domínio de pesquisa promissor que tem atraído grande atenção devido aos seus benefícios em vários cenários de trabalho, como indústrias, locais públicos e navegação autónoma. Além disso, o IPS tem uma contribuição destacada no dia a dia de organizações, como, centros de saúde, aeroportos, supermercados, fábricas, locais subterrâneos, etc. As tecnologias baseadas em radiofrequência (RF) e comunicação óptica sem fio (OWC) podem ser adotadas para localização em ambientes interiores. Embora o sistema de posicionamento global (GPS) baseado em RF ofereça taxas de penetração mais altas com precisão reduzida (ou seja, na faixa de alguns metros), não funciona bem em ambientes interiores (e não funciona bem em certos casos como túneis, minas, etc.) devido ao sinal muito fraco e falta de acesso direto aos satélites. Por outro lado, o sistema baseado em luz conhecido como sistema de posicionamento de luz visível (VLP), como parte dos sistemas OWC, usa a infraestrutura de iluminação baseada em díodos emissores de luz (LEDs) pré-existentes, é um sistemas de baixo custo e alta precisão quando comprado com os sistemas baseados em RF. O VLP é uma tecnologia emergente que promete alta precisão, alta segurança, baixo custo de implantação, menor tempo de resposta e baixa complexidade relativa quando comparado ao posicionamento baseado em RF. No entanto, os sistemas VLP interiores, exibem algumas limitações, como, a reflexão multicaminho, inclinação do transmissor, posição do transmissor e incerteza de orientação, sombra/bloqueio humano e ruído, que têm como consequência o aumento do erro de posicionamento, e consequente redução da precisão do sistema. Portanto, é imperativo estudar as características dos diferentes canais VLP e modelá-los adequadamente para o duplo propósito de iluminação e localização. Esta tesa aborda, primeiramente, o impacto dos ângulos de inclinação do transmissor e reflexões multipercurso no desempenho do sistema de posicionamento. Demonstra-se que a inclinação do transmissor pode ser benéfica em sistemas VLP considerando tanto a linha de vista (LOS) como as reflexões. Com os transmissores orientados para o centro do plano recetor, o nível de potência recebido é maximizado devido aos componentes LOS. Também é mostrado que o esquema proposto oferece uma melhoria significativa de precisão de até ~66% em comparação com um sistema VLP de transmissor não inclinado típico. O efeito da inclinação do transmissor na uniformidade da iluminação também é investigado e os resultados comprovam que a uniformidade alcançada está de acordo com a Norma Europeia EN 12464-1. O impacto da posição do transmissor e incerteza de orientação na precisão do sistema VLP com base na intensidade do sinal recebido (RSS) foi também investigado. Os resultados da simulação mostram que as incertezas do transmissor têm um impacto severo no erro de posicionamento, que pode ser atenuado com o uso de mais transmissores. Para incertezas de posicionamento dos transmissores menores que 5 cm, os erros médios de posicionamento são 23.3, 15.1 e 13.2 cm para conjuntos de 4, 9 e 16 transmissores, respetivamente. Enquanto que, para a incerteza de orientação de um transmissor menor de 5°, os erros médios de posicionamento são 31.9, 20.6 e 17 cm para conjuntos de 4, 9 e 16 transmissores, respetivamente. O trabalho da tese abordou a investigação dos aspetos de projeto de um sistema VLP indoor no qual uma rede neuronal artificial (ANN) é utilizada para estimativa de posicionamento considerando um canal multipercurso. O estudo considerou a influência do ruído como indicador de desempenho para a comparação entre diferentes abordagens de projeto. Três algoritmos de treino de ANNs diferentes foram considerados, a saber, Levenberg-Marquardt, regularização Bayesiana e algoritmos de gradiente conjugado escalonado, para minimizar o erro de posicionamento no sistema VLP. O projeto da ANN foi otimizado com base no número de neurónios nas camadas ocultas, no número de épocas de treino e no tamanho do conjunto de treino. Mostrou-se que, a ANN com regularização Bayesiana superou a técnica RSS tradicional usando a estimação não linear dos mínimos quadrados para todos os valores da relação sinal-ruído. Foi proposto um novo sistema VLP indoor baseado em máquinas de vetores de suporte (SVM) e regressão polinomial considerando dois ambientes interiores diferentes: uma sala vazia e uma sala mobiliada. Os resultados mostraram que, numa sala vazia, a melhoria da precisão de posicionamento para o erro de posicionamento de 2.5 cm são 36.1, 58.3 e 72.2% para três cenários diferentes de acordo com a distribuição das regiões na sala. Para a sala mobiliada, uma melhoria de precisão relativa de posicionamento de 214, 170 e 100% é observada para erro de posicionamento de 0.1, 0.2 e 0.3 m, respetivamente. Finalmente, foi proposto um sistema VLP indoor baseado em redes neurais convolucionais (CNN). O sistema foi demonstrado experimentalmente usando luminárias LED como transmissores e uma camara com obturador rotativo como recetor. O algoritmo de detecção usou um detector de disparo único (SSD) baseado numa CNN pré configurada (ou seja, MobileNet ou ResNet) para classificação. O sistema foi validado usando uma configuração de teste de tamanho real contendo oito luminárias LED. Os resultados obtidos mostraram que o erro de posicionamento quadrático médio alcançado é de 4.67 e 5.27 cm com os modelos SSD MobileNet e SSD ResNet, respetivamente. Os resultados da validação mostram que o sistema pode processar 67 imagens por segundo, permitindo o posicionamento em tempo real.Programa Doutoral em Engenharia Eletrotécnic

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Acoustical Ranging Techniques in Embedded Wireless Sensor Networked Devices

    Get PDF
    Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environments; where, typically, there is a need for higher degree of accuracy. In this article, we focus on robust range estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in delivering high ranging accuracy, we present the design, implementation and evaluation of acoustic (both ultrasound and audible) ranging systems.We distill the limitations of acoustic ranging; and present efficient signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution, tolerance to Doppler’s effect, and audible intensity. We evaluate our proposed techniques experimentally on TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate an operational range of 20 m (outdoor) and an average accuracy 2 cm in the ultrasound domain. Finally, we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve better performance

    Mitigating the Multipath Effects on Radio Tomographic Imaging

    Get PDF
    Various radio tomographic imaging (RTI) models and reconstruction methods are equipped with capabilities to mitigate the effects of multipath interference. This thesis combined the network shadowing (NeSh) and weighting-g models in conjunction with Tikhonov regularization and low-rank and sparse decomposition (LRSD). MATLAB was used to implement the four combinations for six experimental data sets and produce attenuation images. The attenuation images were analyzed qualitatively and quantitatively to accomplish the goal of determining which combination performed best at locating human targets. After analyzing the results, it was determined that no single combination outperformed the others for at least three out of the five quantitative metrics. Therefore, a rating technique was used instead to normalize the average results of each metric and find the mean across each combination\u27s newly normalized average results. In accordance with the normalization scale, the lowest and best rating revealed the optimum combination was the weighting-g model implemented in conjunction with LRSD

    Ibeacon based proximity and indoor localization system

    Get PDF
    User location can be leveraged to provide a wide range of services in a variety of indoor locations including retails stores, hospitals, airports, museums and libraries etc. The widescale proliferation of user devices such as smart phones and the interconnectivity among different entities, powered by Internet of Things (IoT), makes user device-based localization a viable approach to provide Location Based Services (LBS). Location based services can be broadly classified into 1) Proximity based services that provides services based on a rough estimate of users distance to any entity, and 2) Indoor localization that locates a user\u27s exact location in the indoor environment rather than a rough estimate of the distance. The primary requirements of these services are higher energy efficiency, localization accuracy, wide reception range, low cost and availability. Technologies such as WiFi, Radio Frequency Identification (RFID) and Ultra Wideband (UWB) have been used to provide both indoor localization and proximity based services. Since these technologies are not primarily intended for LBS, they do not fulfill the aforementioned requirements. Bluetooth Low Energy (BLE) enabled beacons that use Apple\u27s proprietary iBeacon protocol are mainly intended to provide proximity based services. iBeacons satisfy the energy efficiency, wide reception range and availability requirements of LBS. However, iBeacons are prone to noise due to their reliance on Received Signal Strength Indicator (RSSI), which drastically fluctuates in indoor environments due to interference from different obstructions. This limits its proximity detection accuracy. In this thesis, we present an iBeacon based proximity and indoor localization system. We present our two server-based algorithms to improve the proximity detection accuracy by reducing the variation in the RSSI and using the RSSI-estimated distance, rather than the RSSI itself, for proximity classification. Our algorithms Server-side Running Average and Server-side Kalman Filter improves the proximity detection accuracy by 29% and 32% respectively in contrast to Apple\u27s current approach of using moving average of RSSI values for proximity classification. We utilize a server-based approach because of the greater computing power of servers. Furthermore, server-based approach helps reduce the energy consumption of user device. We describe our cloud based architecture for iBeacon based proximity detection. We also use iBeacons for indoor localization. iBeacons are not primarily intended for indoor localization as their reliance on RSSI makes them unsuitable for accurate indoor localization. To improve the localization accuracy, we use Bayesian filtering algorithms such as Particle Filter (PF), Kalman Filter (KF), and Extended Kalman Filter (EKF). We show that by cascading Kalman Filter and Extended Kalman Filter with Particle Filter, the indoor localization accuracy can be improved by 28% and 33.94% respectively when compared with only using PF. The PF, KFPF and PFEKF algorithm on the server side have average localization error of 1.441 meters, 1.0351 meters and 0.9519 meters respectively
    • …
    corecore