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A procura por sistemas de posicionamento interior (IPSs) de alta precisão tem 
crescido rapidamente devido ao seu interesse nas técnicas cada vez mais 
populares da Internet das Coisas, dispositivos móveis inteligentes e 
inteligência artificial. O IPS tornou-se um domínio de pesquisa promissor que 
tem atraído grande atenção devido aos seus benefícios em vários cenários de 
trabalho, como indústrias, locais públicos e navegação autónoma. Além disso, 
o IPS tem uma contribuição destacada no dia a dia de organizações, como, 
centros de saúde, aeroportos, supermercados, fábricas, locais subterrâneos, 
etc. As tecnologias baseadas em radiofrequência (RF) e comunicação óptica 
sem fio (OWC) podem ser adotadas para localização em ambientes interiores. 
Embora o sistema de posicionamento global (GPS) baseado em RF ofereça 
taxas de penetração mais altas com precisão reduzida (ou seja, na faixa de 
alguns metros), não funciona bem em ambientes interiores (e não funciona 
bem em certos casos como túneis, minas, etc.) devido ao sinal muito fraco e 
falta de acesso direto aos satélites. Por outro lado, o sistema baseado em luz 
conhecido como sistema de posicionamento de luz visível (VLP), como parte 
dos sistemas OWC, usa a infraestrutura de iluminação baseada em díodos 
emissores de luz (LEDs) pré-existentes, é um sistemas de baixo custo e alta 
precisão quando comprado com os sistemas baseados em RF. O VLP é uma 
tecnologia emergente que promete alta precisão, alta segurança, baixo custo 
de implantação, menor tempo de resposta e baixa complexidade relativa 
quando comparado ao posicionamento baseado em RF. 

No entanto, os sistemas VLP interiores, exibem algumas limitações, como, a 
reflexão multicaminho, inclinação do transmissor, posição do transmissor e 
incerteza de orientação, sombra/bloqueio humano e ruído, que têm como 
consequência o aumento do erro de posicionamento, e consequente redução 
da precisão do sistema. Portanto, é imperativo estudar as características dos 
diferentes canais VLP e modelá-los adequadamente para o duplo propósito de 
iluminação e localização. Esta tesa aborda, primeiramente, o impacto dos 
ângulos de inclinação do transmissor e reflexões multipercurso no 
desempenho do sistema de posicionamento. Demonstra-se que a inclinação 
do transmissor pode ser benéfica em sistemas VLP considerando tanto a linha 
de vista (LOS) como as reflexões. Com os transmissores orientados para o 
centro do plano recetor, o nível de potência recebido é maximizado devido aos 
componentes LOS. Também é mostrado que o esquema proposto oferece 
uma melhoria significativa de precisão de até ~66% em comparação com um 
sistema VLP de transmissor não inclinado típico. O efeito da inclinação do 
transmissor na uniformidade da iluminação também é investigado e os 
resultados comprovam que a uniformidade alcançada está de acordo com a 
Norma Europeia EN 12464-1. 

O impacto da posição do transmissor e incerteza de orientação na precisão 
do sistema VLP com base na intensidade do sinal recebido (RSS) foi também 



investigado. Os resultados da simulação mostram que as incertezas do 
transmissor têm um impacto severo no erro de posicionamento, que pode ser 
atenuado com o uso de mais transmissores. Para incertezas de 
posicionamento dos transmissores menores que 5 cm, os erros médios de 
posicionamento são 23.3, 15.1 e 13.2 cm para conjuntos de 4, 9 e 16 
transmissores, respetivamente. Enquanto que, para a incerteza de orientação 
de um transmissor menor de 5°, os erros médios de posicionamento são 31.9, 
20.6 e 17 cm para conjuntos de 4, 9 e 16 transmissores, respetivamente. 

O trabalho da tese abordou a investigação dos aspetos de projeto de um 
sistema VLP indoor no qual uma rede neuronal artificial (ANN) é utilizada para 
estimativa de posicionamento considerando um canal multipercurso. O estudo 
considerou a influência do ruído como indicador de desempenho para a 
comparação entre diferentes abordagens de projeto. Três algoritmos de treino 
de ANNs diferentes foram considerados, a saber, Levenberg-Marquardt, 
regularização Bayesiana e algoritmos de gradiente conjugado escalonado, 
para minimizar o erro de posicionamento no sistema VLP. O projeto da ANN foi 
otimizado com base no número de neurónios nas camadas ocultas, no número 
de épocas de treino e no tamanho do conjunto de treino. Mostrou-se que, a 
ANN com regularização Bayesiana superou a técnica RSS tradicional usando 
a estimação não linear dos mínimos quadrados para todos os valores da 
relação sinal-ruído. 

Foi proposto um novo sistema VLP indoor baseado em máquinas de vetores 
de suporte (SVM) e regressão polinomial considerando dois ambientes 
interiores diferentes: uma sala vazia e uma sala mobiliada. Os resultados 
mostraram que, numa sala vazia, a melhoria da precisão de posicionamento 
para o erro de posicionamento de 2.5 cm são 36.1, 58.3 e 72.2% para três 
cenários diferentes de acordo com a distribuição das regiões na sala. Para a 
sala mobiliada, uma melhoria de precisão relativa de posicionamento de 214, 
170 e 100% é observada para erro de posicionamento de 0.1, 0.2 e 0.3 m, 
respetivamente. 

Finalmente, foi proposto um sistema VLP indoor baseado em redes neurais 
convolucionais (CNN). O sistema foi demonstrado experimentalmente usando 
luminárias LED como transmissores e uma camara com obturador rotativo 
como recetor. O algoritmo de detecção usou um detector de disparo único 
(SSD) baseado numa CNN pré configurada (ou seja, MobileNet ou ResNet) 
para classificação. O sistema foi validado usando uma configuração de teste 
de tamanho real contendo oito luminárias LED. Os resultados obtidos 
mostraram que o erro de posicionamento quadrático médio alcançado é de 
4.67 e 5.27 cm com os modelos SSD MobileNet e SSD ResNet, 
respetivamente. Os resultados da validação mostram que o sistema pode 
processar 67 imagens por segundo, permitindo o posicionamento em tempo 
real. 
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abstract 

 
The demand for highly precise indoor positioning systems (IPSs) is growing 

rapidly due to its potential in the increasingly popular techniques of the 
Internet of Things, smart mobile devices, and artificial intelligence. IPS 
becomes a promising research domain that is getting wide attention due to its 
benefits in several working scenarios, such as, industries, indoor public 
locations, and autonomous navigation. Moreover, IPS has a prominent 
contribution in day-to-day activities in organizations such as health care 
centers, airports, shopping malls, manufacturing, underground locations, etc., 
for safe operating environments. In indoor environments, both radio frequency 
(RF) and optical wireless communication (OWC) based technologies could be 
adopted for localization. Although the RF-based global positioning system, 
such as, Global positioning system offers higher penetration rates with 
reduced accuracy (i.e., in the range of a few meters), it does not work well in 
indoor environments (and not at all in certain cases such as tunnels, mines, 
etc.) due to the very weak signal and no direct access to the satellites. On the 
other hand, the light-based system known as a visible light positioning (VLP) 
system, as part of the OWC systems, uses the pre-existing light-emitting 
diodes (LEDs)-based lighting infrastructure, could be used at low cost and 
high accuracy compared with the RF-based systems. VLP is an emerging 
technology promising high accuracy, high security, low deployment cost, 
shorter time response, and low relative complexity when compared with RF-
based positioning. 

However, in indoor VLP systems, there are some concerns such as, 
multipath reflection, transmitter tilting, transmitter’s position, and orientation 
uncertainty, human shadowing/blocking, and noise causing the increase in 
the positioning error, thereby reducing the positioning accuracy of the system. 
Therefore, it is imperative to capture the characteristics of different VLP 
channel and properly model them for the dual purpose of illumination and 
localization. In this thesis, firstly, the impact of transmitter tilting angles and 
multipath reflections are studied and for the first time, it is demonstrated that 
tilting the transmitter can be beneficial in VLP systems considering both line of 
sight (LOS) and non-line of sight transmission paths. With the transmitters 
oriented towards the center of the receiving plane, the received power level is 
maximized due to the LOS components. It is also shown that the proposed 
scheme offers a significant accuracy improvement of up to ~66% compared 
with a typical non-tilted transmitter VLP. The effect of tilting the transmitter on 
the lighting uniformity is also investigated and results proved that the 
uniformity achieved complies with the European Standard EN 12464-1.  

After that, the impact of transmitter position and orientation uncertainty on 
the accuracy of the VLP system based on the received signal strength (RSS) 
is investigated. Simulation results show that the transmitter uncertainties have 
a severe impact on the positioning error, which can be leveraged through the 
usage of more transmitters. Concerning a smaller transmitter’s position 



uncertainty of 5 cm, the average positioning errors are 23.3, 15.1, and 13.2 
cm for 4-, 9-, and 16- transmitter cases, respectively. While for a smaller 
transmitter’ orientation uncertainty of 5°, the average positioning errors are 
31.9, 20.6, and 17 cm for 4-, 9-, and 16- transmitter cases, respectively. Next, 
an investigation of the design aspects of an indoor VLP system is performed 
in which an artificial neural network (ANN) is used for positioning estimation 
by considering a multipath channel. The study considers the influence of 
noise as a performance indicator for the comparison between different design 
approaches. Three different ANN algorithms are considered, namely, 
Levenberg-Marquardt, Bayesian regularization, and scaled conjugate gradient 
algorithms, to minimize the positioning error in the VLP system. The ANN 
design is optimized based on the number of neurons in the hidden layers, the 
number of training epochs, and the size of the training set. It is shown that, 
the ANN with Bayesian regularization outperforms the traditional RSS 
technique using the non-linear least square estimation for all values of signal 
to noise ratio.  

Furthermore, a novel indoor VLP system is proposed based on support 
vector machines and polynomial regression considering two different 
multipath environments of an empty room and a furnished room. The results 
show that, in an empty room, the positioning accuracy improvement for the 
positioning error of 2.5 cm are 36.1, 58.3, and 72.2 % for three different 
scenarios according to the regions’ distribution in the room. For the furnished 
room, a positioning relative accuracy improvement of 214, 170, and 100 % is 
observed for positioning error of 0.1, 0.2, and 0.3 m, respectively. Ultimately, 
an indoor VLP system based on convolutional neural networks (CNN) is 
proposed and demonstrated experimentally in which LEDs are used as 
transmitters and a rolling shutter camera is used as receiver. A detection 
algorithm named single shot detector (SSD) is used which relies on CNN (i.e., 
MobileNet or ResNet) for classification as well as position estimation of each 
LED in the image. The system is validated using a real-world size test setup 
containing eight LED luminaries. The obtained results show that the maximum 
average root mean square positioning error achieved is 4.67 and 5.27 cm with 
SSD MobileNet and SSD ResNet models, respectively. The validation results 
show that the system can process 67 images per second, allowing real-time 
positioning. 
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Chapter 1: Introduction  

1.1 Background 

Indoor positioning systems (IPSs) have gained increasing attention from the academic and 

industrial communities with numerous applications, including pedestrian navigation, asset 

tracking, inventory management, automatic driving, autonomous robot movement, etc [1]. Many 

broad and essential applications, such as surveillance, object, and navigation tracking services, can 

be provided by indoor localization that can be utilized in different areas (i.e., museums, 

warehouses, parking facilities, shopping malls, and supermarkets). Global positioning system 

(GPS) is a well-known system used for outdoor localization, though it is not suitable for indoor 

localization for the following reasons. Firstly, there is a severe attenuation of GPS signals when 

electromagnetic waves penetrate through walls. Therefore, these GPS signals are not detectable in 

most indoor locations, which results in compromised performance. Secondly, the GPS uses the 

information of the traveling time of the signal to estimate the coordinates of the user. However, 

multipath reflections severely affect signals where the precision of time information is mainly 

affected, and indoor positioning performance is degraded for indoor environments. 

Earlier, several technologies (e.g., ultrasounds [2], radio waves [3]–[5], ultra-wideband (UWB), 

Wi-Fi, and Bluetooth) have been investigated for indoor localization. However, these positioning 

systems have drawbacks that restrict their pervasive usage. The ultrasound wavelength is generally 

enormous as well as its velocity is influenced by environment temperature, which may bring about 

huge-ranging and localization errors. Radio frequency (RF)-based systems face several problems 

including electromagnetic radiations and multipath fading effects in the indoor environment. These 

multipath fading effects increase localization errors and electromagnetic radiations limit the 

application in RF-sensitive areas (e.g., medical). In general, Bluetooth- and Wi-Fi-based systems 

have a limited range of issues and need network access authorization. The UWB technology 

transmits short RF pulses with a low-duty cycle (less than 0.5 percent), which provides precise 

localization and tracking for mobile devices in indoor environments [6]. Despite the advantage of 

precise localization, the UWB technology is still not perfect for IPSs. It has not been embraced 

widely because of its cost, complexity, and need for synchronization between transmitters and the 

targets [7]. 

In ancient times, light has been used to find or locate for a long period; for instance, stars have 

been used to navigate around the globe [8]. The astrolabe quadrant uses the position of stars and 
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sun to determine the time and their latitude based on the angles [9]. In recent years, visible light 

communication (VLC) has gained much attention from researchers due to the significant progress 

in the manufacture of light-emitting diodes (LEDs). VLC, which is license-free, and free from RF-

induced electromagnetic interference, is ideal in many applications, including hospitals. In 

addition, VLC uses the pre-existing LEDs infrastructure as a transmitters that can provide 

illuminance and communication simultaneously [10]. The rapid development of VLC networks 

has encouraged researchers to propose positioning solutions based on this technology. Visible light 

positioning (VLP) using LEDs is an emerging optical wireless technology, considered as an 

integrated or alternative technology to RF. The LEDs offer high bandwidth, high security, high-

speed data transmission, low implementation cost, and low power consumption. In indoor 

environments, the VLP technology provides high accuracy from millimetre to meter levels in the 

localization since the effect of multipath optical signals is significantly lower than with RF signals 

[10]; and typically, the reflected optical signals have significantly lower power than the line of 

sight (LOS) signals [10]. The RF spectrum is becoming congested and overcrowded; on the 

contrary, the VLC spectrum is widely available and free from regulations.  

In VLP systems, photodetectors (PDs) or image sensors (ISs) are commonly used as receivers. 

The formers promise a high data-rate and low-cost optical wireless links. In contrast, the latter 

offers higher positioning accuracy, but at the cost of a complex positioning algorithm and limited 

positioning speed. Currently, VLP technologies, are based on the triangulation techniques where 

the distance or angle between the transmitter and the receiver needs to be estimated. The distance 

or the angle can be determined in several ways, including received signal strength (RSS), angle of 

arrival (AOA), time of arrival (TOA), and time difference of arrival (TDOA). These methods 

present their intricacies. The major drawback of AOA is that the system needs expensive sensor 

arrays or ISs to measure the incident angle with high accuracy [11]. TOA needs accurate 

synchronization between the transmitter (i.e., LED) and the receiver, which increases the 

deployment cost [12]. On the other hand, RSS requires a precise determination of the incident 

signal power, thus being strongly dependent on the signal-to-noise ratio (SNR) [13]. Simple 

approaches rely on proximity-based and scene analysis, which trades simplicity with accuracy. 

These are suitable for low accuracy systems, not demanding high location precision. A positioning 

system must consider many factors when selecting an IPS, such as, positioning accuracy, 

availability, cost, complexity, system integration, and scalability. 
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1.2 Motivation 

As of now, researchers have explored many possibilities when designing VLP systems and 

algorithms. The indoor positioning market has already generated revenues of USD 6.54 billion in 

2020 and has a target to hit USD 35.65 Billion by 2028, as depicted in Fig. 1.1 [1]. Many potential 

approaches have been investigated exploring an accurate positioning system. Since the 1970s, the 

GPS has evolved to the point where precise location data is available via satellite infrastructure. 

Since then, IPS has been rapidly proposed and developed. From the late 1990s, technologies 

involving IPS began to evolve after mobile network services entered a prosperous era. IPS is 

always a concern since technologies for outdoor positioning provide inadequate performance 

inside the buildings. Even with a reasonable solution to the problem of outdoor positioning with 

systems such as GPS, these systems are not suitable for indoor positioning. 

 

Fig. 1.1. Market revenue of indoor positioning ([1]). 

The use of VLP is one approach with a lot of potential where white LEDs are used for indoor 

lighting and high-speed data transmission. VLP can benefit from this technology by using LED 

lighting as positioning beacons that send their location via VLC. LEDs are quickly becoming the 

standard choice for indoor lighting because of their energy efficiency and longer lifespan, and they 

may be found in all buildings in the future. Therefore, VLP has become an attractive technology 

because of its low infrastructure costs and ability to achieve precise positioning accuracy. 

1.3 Problem Statement and Objectives 

VLP systems face many challenges that should be addressed, such as the VLP system error 

performance, optimized positioning algorithms for different scenarios, implementation, and 

validation in live scenarios.  
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This Ph.D. work aims to achieve high-precision indoor localization techniques for indoor 

scenarios. The particularity of this work is the possible presence of objects and/or obstacles in the 

environment. The simplicity of infrastructure deployment and its cost-effectiveness are among 

other requirements that will be considered. In addition, the transmitted signal through LEDs will 

be adapted appropriately to offer both indoor localization and illumination. The design of 

reconfigurable light source emission parameters will also be considered to optimize the positioning 

accuracy or transmission quality. The theoretical work will be complemented with simulation and 

experimental work that includes the development of a comprehensive experimental testbed for the 

proposed indoor VLC system. A comprehensive system performance measurement including 

SNR, accuracy, positioning error amongst others, will be carried out and compared with the 

predicted and simulated results.  

 

There are four identified objectives which are as follows: 

1. To achieve multi-precision in indoor localization. Solutions should tackle an application-

oriented approach, where precision can be adapted to multiple contexts.  

2. To develop a theoretical model for simulation and performance evaluation, which is suitable 

for VLP systems.  

3. To design, develop and evaluate a low complexity system and compare results with the 

predicted data. The achieved solution will search for appropriate methodologies able to 

leverage system complexity.  

4. To analyze system performance under realistic conditions. 

1.4 Thesis Contributions  

The original contribution of this research is summarized in Chapter 5 in the following manner: 

1. In section 5.3, it has been demonstrated that tilting the transmitter and multipath 

reflections can have a significant effect on the performance of indoor VLP systems, and 

a novel system is proposed where tilting the transmitter is proven to be beneficial when 

considering both LOS and NLOS paths for transmissions. This analysis is done by 

employing a low complex linear least square algorithm with polynomial regression. It is 

revealed that the proposed scheme significantly improves accuracy by ~66% compared 

with a typical non-tilted transmitter VLP system.  

2. In section 5.4, the impact of transmitter position and orientation uncertainty on the 

accuracy of the VLP system based on the RSS is investigated. It is inferred from the 
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simulation results that transmitter uncertainties have a severe impact on the positioning 

error, which can be mitigated through the usage of more transmitters. 

3. In section 5.5, a theoretical analysis is conducted to study various artificial neural 

network (ANN) design aspects to estimate the positioning of an indoor VLP system by 

considering multipath transmission. This study compares different design approaches 

based on the influence of noise as a performance indicator. In comparison, the ANN 

with Bayesian regularization outperforms the traditional RSS technique using the non-

linear least square estimation.  

4. In section 5.6, a novel indoor VLP system is presented based on support vector machines 

and polynomial regression. Two different multipath environments of an empty room 

and a furnished room are compared in this work.  

5. In section 5.7, an experimental demonstration of an indoor VLP system based on 

convolutional neural networks (CNN) is done by employing LEDs as transmitters and a 

rolling shutter camera as a receiver. This system is validated using a practical test setup 

containing eight LED luminaries. The results reveal that this system can process 67 

images per second, allowing real-time positioning and the maximum average root mean 

square positioning error achieved is 4.67 and 5.27 cm using single shot detector (SSD) 

MobileNet and SSD ResNet models, respectively. 

1.5 Thesis Structure 

This dissertation is organized as follows: After the introduction and stating the objectives of 

this work in Chapter 1, a detailed review of the state of the art in VLP is presented in Chapter 2, 

highlighting the recent research and recent techniques employed in this research field. Chapter 3 

comprises the fundamentals of the VLC system including system modeling employed in this thesis. 

The classification of VLP systems is also detailed in this chapter. Next, the methodology explored 

in the work including different traditional and machine learning algorithms is detailed in Chapter 

4. The results of this work are discussed in Chapter 5, utilizing a compendium of publications. 

Finally, an overview of the conclusions reached from this study and future research directions are 

presented in Chapter 6. 
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Chapter 2: State of the Art 

In this chapter, a detailed literature survey on the major techniques used in the VLP systems 

is performed.  

The positioning system provides the location coordinates of an object or a person in a given 

environment. There can be two types of positioning: indoor and outdoor. There are many reliable 

solutions for outdoor positioning, for instance, GPS is a famous example of outdoor positioning. 

It is popular all over the world. It provides reliable positioning with an error in the order of meters. 

On the other hand, GPS does not work well for indoor positioning. The radio waves do not 

penetrate through the walls. It results in high inaccuracy in indoor positioning. Other IPS have 

been proposed in recent years, for instance, ultrasound, Wi-Fi, Bluetooth, ZigBee, RF- 

identification (ID), and UWB. However, these systems face many issues. For instance, ultrasound-

based positioning systems require additional hardware, and it is sensitive to the environment. 

Although Bluetooth and Wi-Fi provide low installation costs, these methods are highly susceptible 

to interference from walls, buildings, therefore they do not provide high accuracy in case of indoor 

positioning. RF-ID and ZigBee require dedicated beacons to perform positioning, which increases 

the cost. UWB uses electromagnetic waves that consist of a sequence of very short pulses. This 

method is more precise and expensive, but cannot be used in some areas, such as hospitals and 

airports.   

 

Fig. 2.1.Trend of VLP in years [14]. 
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On the other hand, VLP systems provide high accuracy at a low cost and complexity as 

compared to other existing technologies. One of the main advantages of VLP systems is using 

LEDs as a transmitter that are already installed in almost every place. In recent years, VLP has 

become an interesting research topic due to the tremendous advantages of LEDs, as evident in Fig. 

2.1.   

 

Fig. 2.2. Different techniques used in VLP [15]–[18]. 

Fig. 2.2 summarizes the state of the art focusing on different positioning methods till now. 

In the following sections, each of these techniques is discussed one by one: 

RSS: Is one of the triangulation techniques, which has been extensively utilized in IPSs 

and VLP systems because of its simplicity, that determine the received signal strength and measure 

the propagation loss of the emitted signal. A path loss model is employed to measure the position 

estimation. There is no requirement of any other additional devices to determine the RSS values, 

as it uses only a single PD. In [19], an IPS based on VLC was proposed with a carrier allocation 

modulation method. This system is able to provide accurate estimates with an average positioning 

error of 6 cm by utilizing the normalization method. In [20], a new regression-based approach was 

used to investigate an RSS-based VLP system along with linear least square (LLS)- and non-linear 

least square (NLLS)-based estimations. The results revealed that, the minimum error is around 0.6 

m utilizing the polynomial regression approach compared with the other traditional approaches. 

An efficient RSS-based VLP algorithm was proposed in [21] to estimate the three-dimensional 
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location of a receiver, by combining two-dimensional trilateration with the NLLS. The 

computational time for NLLS is limited to approximately 17 millisecond (ms), which is further 

reduced to less than 2 ms using a fast search algorithm. As we can see in Fig. 2.2, RSS is the most 

exploited technique for the VLP system (nearly 36 %) [16], [18], [22]. 

TOA and TDOA: Are two important positioning methods, which have been employed from 

earlier years. In fact, the well-known GPS also uses TOA to determine the location all over the 

world. TOA implies the absolute travel time of a signal from the transmitter to the receiver. 

However, it requires accurate synchronization between transmitter and receiver [23], [24]. TDOA 

computes the difference in propagation time between the transmitter and the receiver for 

estimation. Therefore, IPS uses TDOA rather than TOA in order to avoid synchronization. 

However, time synchronization is required between the transmitters. TDOA is more used than 

TOA, see Fig. 2 [12], [25]–[33]. In [34], a novel TOA positioning system was analyzed where 

TOA based distance estimation was employed. Cramer-Rao bounds was derived to calculate the 

theoretical limits on estimation accuracy for the intensity-modulated sinusoidal signals. The results 

showed that, it is possible to achieve an accuracy of about 5 cm by assuming the perfect 

synchronization between the transmitter and the receiver. A 3-D indoor positioning algorithm was 

proposed [35], where the positioning accuracy was ensured by taking the transmitter shapes into 

consideration. The results revealed that the average error of 1.8 cm was achieved.  

AOA: AOA-based positioning systems determine the angle of arrival of the detected 

signals from several transmitters. The intersection of direction lines is a measure of the target 

position. The advantage of using AOA-based systems is that no synchronization is required 

between the transmitter and the receiver [36]–[59]. In [60], a switching estimated receiver position 

scheme has been proposed where 6 axes sensor was employed. The positioning accuracy was 

improved by optimizing error distance estimation. This system was capable to improve more than 

30% of accuracy as compared to conventional positioning schemes. It is easy to compute the AOA 

of the incoming signal by utilizing imaging sensors as receivers. Nevertheless, the imaging 

receiver has limited resolution, which can downgrade the accuracy of positioning when the target 

moves away from transmitters. A further drawback of AOA techniques includes high complexity 

and the additional cost of the imaging receivers.  

Fingerprinting: Is a positioning algorithm where, at first fingerprints are collected for a 

sample of positions in a room. Then, the location of the target is estimated by comparing the real-

time measurement with these collected fingerprints. It is also known as scene analysis. Fingerprint 
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includes all positioning techniques, that are stated prior, such as RSS, AOA, TOA, and TDOA. 

RSS-based fingerprinting is the most commonly used fingerprinting method due to its low 

complexity. In [61], the performance limits of fingerprinting-based localization were investigated 

which includes multipath reflection as a source of information (i.e., fingerprinting map). Accuracy 

limitations were determined by Cramer Rao lower bound (CRLB) for various numbers of PDs 

employed in the proposed system. The results showed that the root mean square (RMS) positioning 

accuracy achieved were 45, and 5 cm for one and four PDs, respectively. The main advantage of 

using this technique is time and power-saving since it requires less time to match fingerprints. 

Conversely, there is a drawback also. For a particular environment, it needs precise pre-calibration. 

Therefore, it can only be used for a specific scenarios [16]. 

Proximity:  Is a positioning technique that depends on a dense grid of different reference 

points, where each reference points have a known position. If a target receives the signal with the 

strongest intensity, then it is assumed to be close to that transmitter. Also, if the target receives 

multiple signals with the same intensity, it is supposed to be in the center of transmitters (one with 

the same intensity). This technique is simple and straightforward to implement in comparison with 

other positioning techniques. But it does not provide precise estimation as it relies on the density 

of receivers distributions [10], [16]. 

PDOA: The phase difference of arrival (PDOA) is the positioning technique where 

distance differences are computed by the phase difference of arriving signals. In [62], an improved 

PDOA scheme was proposed for indoor VLP that precluded the use of local oscillators (LOs) at 

the receiver. There was no need for synchronization between transmitters and receivers. This 

scheme could reduce the complexity of the system and provided relaxation to the frequency 

allocation constraints and conclusively improved the positioning accuracy. In [63], differential 

PDOA (DPDOA) was experimentally demonstrated for the first time. This algorithm also did not 

require any LOs. Additionally, a Kalman filter was used for reducing the variation of the estimation 

of distance difference and a neural network was adopted for reducing positioning shifting error 

respectively. This error was induced by the non-uniform initial time delay of off-the-shelf white 

LEDs. The experimental results showed that the proposed system was capable of achieving an 

average RMS and maximum RMS errors of 1.8 and 0.08 m, respectively, with a 1×1.2 m2 coverage 

and a 2 m height. This system was the first system based on DPDOA to provide sub-decimeter 

accuracy. 
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Image Processing: Is a technique where an IS or a camera is used as a receiver. A lot of 

research has been developed in recent years. For instance, the effects of camera parameters were 

investigated in [64] on the performance of an indoor VLP system based on an IS or a camera. The 

results revealed that the error can be improved by increasing the number of LED transmitters and 

increasing the field of view (FOV) of the camera. In [65], a new 2-D ANN-based VLP system was 

proposed, where the LEDs were grouped into blocks. The block coordinates were encoded using 

under-sampled modulation. A camera was used as the receiver to decode the block coordinate, and 

the system achieved a mean error of 1.49 cm. A novel VLP system was proposed in [66], based 

on the features of the receiver signal and the relative position of the two LEDs images on the 

camera sensor, which reduced the dependency on the LEDs’ brightness level and the higher pixel 

resolution. It was revealed that, the system was able to determine the receiver’s position with an 

error of less than 5 cm for a height of 170 cm. In [67], a camera-assisted RSS for VLP systems 

was proposed, where the simultaneous visual and strength information of visible light was used 

with LLS method to achieve the precise positioning at a low computational cost. Simulation results 

revealed that the proposed system achieved an average three-dimensional (3D) positioning error 

of ~12.5 cm.  

Sensor fusion: Is a method where different types of sensors are combined together to 

provide better performance of the system. Magnetic compass, gyroscopes, and accelerometer are 

the famous sensors, which are being used in positioning. For instance, magnetometers, proximity 

sensors, gyroscopes, and many other sensors are inbuilt under mobile devices which can be used 

for positioning and orientation purposes. For instance, in [68], a tightly coupled visible light and 

inertial positioning system were presented where the inertial measurement unit (IMU) and VLC 

information were fused together to make the system capable of providing continually location 

service. The results showed that the proposed method increases the percentage of image frame 

utilization from 51.4% to 100 % in the same dataset. A new loosely-coupled VLP-inertial fusion 

method was proposed in [69] for VLP, where the robustness was improved by using IMU and a 

rolling shutter camera. The results showed that the average accuracy achieved was 2.1 cm for 

stationary localization and the average computational time was around 33 ms. Different sensor 

fusion-based VLP systems have been investigated in [70]–[75], which have shown higher 

positioning accuracy. 

Machine learning: Is an ensemble of techniques, such as, ANNs and CNN that gives the 

system the capability to automatically learn and improve from the experience without being 
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explicitly programmed. VLP systems can use this technology in terms of data cleaning 

classification and regression. There is a lot of research on VLP systems based on machine learning 

techniques that have been reported in the literature. For instance, in [76], machine learning was 

introduced for VLP for the first time. The system is capable of reaching 0.31 m of average accuracy 

in an indoor environment of a dimension of 4.3  4  4 m3. In [77], a pointwise reinforcement 

learning (PWRL) algorithm was proposed for a VLP system based on the multi-detector. The 

experimental results showed an improvement of around 70 % positioning accuracy. In [78], an 

enhanced machine learning-based IPS was proposed using LED lights. This solution improved 

positioning accuracy as well as reduced computational time. A novel dual-function machine 

learning and signal preprocessing were employed to achieve highly precise positioning. In 

addition, [79]–[82] are some research that has improved the accuracy of the VLP system.  

ANN: Is a machine learning method that is biologically inspired. ANNs are inspired by the 

human brain and replicate the way that humans learn. For instance, in [83], both RSS and ANN 

methods were proposed to achieve an accurate indoor VLP system with a diffuse optical channel. 

An accuracy of 6.39 cm was achieved with the averaged error being ~13 times smaller than the 

RSS-based positioning system. In addition, a low-cost indoor VLP system was proposed using a 

machine learning algorithm in [84], which was achieved an error of 3.65 cm with a height tolerance 

of 15 cm. In [85], a VLP system based on the RSS and a deep ANN-based Bayesian regularization 

VLP system was proposed (the study considered only LoS signal transmission). The results 

showed that, only 20 training points were used to achieve the minimum error of 3.4 cm. In [86], 

an ANN-based approach was proposed exploiting the distortions caused by inaccurate modeling 

(phase and intensity models) in both the PDOA and RSS-based positioning systems. The pre-

trained models were applied to the ANN-based VLP system for reduced complexity and enhanced 

robustness, showing an error of 12 cm.  

Deep Learning: Is an another prominent technology, which is also a machine learning 

approach that outperforms traditional methods in a wide range of applications and has been 

extensively employed in estimating the receiver position [87]. For instance, in [88], two deep ANN 

models based on multilayer perceptron and CNN were used to efficiently map the instantaneous 

received SNR with user 3D position and user equipment orientation. The results revealed that the 

average positioning errors were 10.53 and 13.04 cm for CNN and multilayer perceptron, 

respectively. [89] describes a new VLP indoor localization technique based on a CNN-based 

algorithm with handover probability analysis. The algorithm was categorized into two modes: 
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offline and online. Firstly, the algorithm was trained utilizing a dataset of received VLC signal and 

data generated from the smart device in the offline mode. Secondly, users assessed their position 

in the online mode based on the received VLC signal. The simulation results revealed that the 

average positioning error achieved was 4.31 cm for the proposed algorithm. 

Fuzzy logic: Is an extension of binary logic to multilevel logic. Fuzzy logic techniques can 

proficiently manage the linguistic rules, thus becoming an attractive technique for various range 

of applications, for instance, indoor localization. In [90], a novel fuzzy-based positioning system 

has been introduced by using VLCs. transmitters are used to process data and deliver the computed 

position of a receiver to the system. A particle swarm optimization technique has been used to get 

the optimal configuration of the proposed fuzzy logic controllers (FLCs). The proposed system 

shows better results with the optimization of the membership function of FLCs. Moreover, optimal 

localization reliability has been produced by adjusting the range of FLCs. The results revealed that 

the average error achieved was 0.75 m with the proposed system. 

SPAO: Simultaneous positioning and orientation (SPAO) is a scheme where both 

positioning and orientation can be achieved at the same time. It does not require prior knowledge 

of the target height and orientation angle. In [91], a novel successive LLS algorithm was proposed 

to get a simple LiFi localization solution. This system does not require precise orientation 

alignment of the transceiver or any earlier information about the user height. The proposed 

algorithm is capable of attaining a precise solution with a fast convergence rate by providing a 

proficient closed-form update equation for both user location and orientation angle. It is remarked 

that in the case of LOS-only, a localization error of 0.48 cm has been achieved with an SNR of 40 

dB. Besides, the LLS algorithm can achieve 0.1 to 0.5 m error for a general scenario with the 10% 

non-line of sight (NLOS) signal power over the total RSS. RSS-based SPAO is a non-convex 

optimization problem for VLCs because of the nonlinear RSS model. A new multi-scale particle-

assisted stochastic search (PASS) algorithm has been proposed in [92] with a problem-specific 

update rule design in order to solve the non-convex SPAO problem. A closed-form CRLB has also 

been derived for localization error and VLC based SPAO performance limits are revealed. The 

proposed PASS algorithm investigated the diverse update information to handle the non-convex 

optimization problem, therefore enhancing the evolution efficiency. It is presented from the results 

that user position and orientation accuracies are linear to SNR and direction information. 

Moreover, the orientation and positioning accuracies decay with four and six powers of the 

transmission distance respectively. 
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RSS and Other positioning techniques: RSS can be used with a combination of other 

techniques (AOA, TDOA, TOA) in order to improve the positioning estimation, for instance, in 

[93], a quasi-synchronous VLP system has been investigated where TDOA technique is employed 

to estimate positioning. It is a hybrid TDOA-RSS localization system where TDOA information 

is utilized with channel attenuation information. Moreover, position estimation based CRLB has 

been derived in a typical 3D scenario to specify the accuracy limits for this system. After that, a 

direct positioning technique was adopted to compute the maximum likelihood position estimator. 

Also, the author proposed a two-step position estimator, where TDOA and RSS estimates were 

computed in the first step and then the estimation of position is implemented in the second step. 

The mean square error (MSE) of both approaches was closely matched at high SNRs. Additionally, 

time information (TDOA) was erroneous at low SNR, so as to result in distortion of the overall 

performance of the two-step approach in comparison with direct approach. It was analyzed that 

the two-step approach was more appropriate at high SNRs while the direct approach was more 

convenient at low SNRs due to its improved performance.  

Other techniques: There are some other optimization models that have been used for VLP 

systems. For example, in [94], a 3D high precise IPS was proposed by using Tabu search. Tabu 

search is a dominant global optimization algorithm. This was the first time that the Tabu search 

algorithm was applied to the VLP system. The localized ID information is sent by each LED, Tabu 

search algorithm was used to locate the photodiode after the receiver detected ID information 

(optical signal) from different LEDs. The experiment results revealed that the positioning effect 

was superior to the existing indoor 3D positioning. Some other techniques, such as, area-based 

optimization models, fine-grained indoor localizations have been reported in the literature in [71], 

[95]–[99]. 
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Chapter 3: Fundamentals of Visible Light Positioning Systems 

This chapter compiles the basic technical knowledge needed for the development of the VLP 

systems used in this thesis. The principles described include the fundamentals of VLC technology 

and optical wireless channel modelling. The main aspects of optical camera communication (OCC) 

and VLP technology are also detailed. Moreover, VLP systems are categorized based on the 

receiver detector. 

3.1 Visible Light Communication Systems 

The carrier frequency of RF lies between 30 MHz and 5 GHz, while the band of VLC is within 

the THz range, as depicted in Fig. 3.1. RF communication systems operate at wavelengths between 

centimeters and kilometers, while VLC operates at wavelengths around several hundred 

nanometers [100].  

 

Fig. 3.1. Wavelengths and frequencies of radio and optical carriers. 

In general, VLC is a subset of the optical wireless communication (OWC) technology defined 

in IEEE 802.15.7 in order to complement the ubiquitous RF-based mobile communications and is 

designed to be incorporated with high capacity mobile data networks [101]–[104]. The VLC 

technology became more prominent due to its efficiency in utilizing pre-existing LEDs-based 

lighting infrastructure as the transmitter to provide significant improvements in luminous 

efficiency, data communication, and indoor localization [102]. LEDs can be switched at high 

speeds as compared to other lighting sources, which allows data transmission that can be detected 

by PDs or ISs. Figure 3.2 illustrates the physical layer architecture of a unidirectional VLC system 

[105]. 
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Fig. 3.2. The physical layer architecture of a VLC system [105]. 

VLC systems consist of an LED driving circuit front end and receiving front end. A major reason 

for the synergy between VLC systems and lighting systems is the use of the same lighting devices, 

namely LEDs. VLC systems utilize pre-installed LEDs as a transmitter. Therefore, an LED driver 

is used on the transmitter side to combine signal transmission with lighting requirements. Another 

feature of the transmitter is the light modulation. The VLC technology uses an intensity 

modulation/direct detection scheme, in which the electrical signal modulates the light produced by 

the LED. On the receiver side, the basic elements consist of a PD or IS array, amplifier, and analog-

to-digital converter. Other tasks pertaining to signal demodulation are typically done by digital 

signal processors or field-programmable gate arrays. The transmitter, receiver, and channel 

characteristics are detailed in the following subsections. 

3.1.1 VLC Transmitters 

VLC systems will have synergy with lighting systems since they both utilize the same 

lighting devices, i.e., LEDs, which are also used in lighting systems. An LED bulb is composed of 

several LED chips that act as transmitters, as illustrated in Fig. 3.3. Since LEDs are not 

monochromatic, they radiate light in a wide spectral range. Considering that LEDs are also used 

as an illumination source, the luminance should be considered between 300 and 1500 lx (1 lx = 1 

lm/m2), which is standardized by International Organization for Standardization (ISO) for the 

typical working environment [106]. LEDs are usually cost-effective, power-efficient, illumination-

efficient, compact, and low maintenance. In contrast to traditional light sources such as compact 

fluorescent light and incandescent bulbs, LEDs can switch on and off at high speeds, making them 

an ideal option for communication. A LED source has a specific radiation pattern usually modelled 

by a Lambertian law [100], and its bandwidth ranges between 20 MHz and 100 MHz [105]. On 
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the transmitter side, the LED driver provides the transmission of the signal as well as lighting 

requirements. 

 

Fig. 3.3. VLC transmitter. 

Mathematical representation of spatial power distribution of LED is given as: 

 
𝐼𝜃  = 𝐼0cos

𝑚𝜃, (3.1) 

where 𝐼𝜃 represents the intensity in the direction specified by the angle of 𝜃 with the normal 

direction, and 𝐼0 represents the intensity in direction of the LED symmetrical axis, i.e., the normal 

direction. Parameter v is Lambertian order which is given by: 

𝑣 = −
ln(2)

ln (cos (Θ1
2
))
, (3.2) 

where Θ1
2

  is the light source irradiance half-power angle (HPA). 

3.1.2 VLC Channel Modelling 

VLC systems use a white LED with transmitted power 𝑃𝑡,𝑘 as the light source and the signal is 

modulated and transmitted using an optical wireless channel. The received power 𝑃𝑟,𝑘 at the 

receiver from the kth transmitter will be a combination of power from both LOS and NLOS paths 

and can be expressed as: 

 
𝑃𝑟,𝑘  = ∑𝑃𝑟,𝑘(LOS) +∑𝑃𝑟,𝑘(NLOS), (3.3) 

where 𝑃𝑟,𝑘(LOS) and 𝑃𝑟,𝑘(NLOS) represents the received power for LOS and NLOS at the kth 

transmitter, respectively. The received power from LOS path can be expressed as [107]: 
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∑𝑃𝑟,𝑘(LOS) = ∑𝑃𝑡,𝑘 𝐴𝑟ℛ (
𝑣 + 1

2𝜋
)
cos𝑣(𝜔𝑘) cos(𝜑)

‖𝑑𝑘‖
2

𝑇𝑠(𝜑)𝑔(𝜑),

𝐾

𝑘=1

 (3.4) 

where 𝑃𝑡,𝑘 is the transmit power, 𝑑𝑘 is the distance between kth transmitter and the receiver, K is 

the total number of transmitters [107]. 𝜔𝑘 and φ are the irradiance angle from the kth transmitter to 

the receiver and the receiving incident angle, respectively. 𝐴𝑟 and ℛ are the PD’s active area and 

responsivity, respectively. 𝑇𝑠(𝜑) and 𝑔(𝜑) are the gains of the optical filter and the concentrator 

at the receiver, respectively.  

 

Fig. 3.4. A typical indoor VLC system [108]. 

Considering the NLOS path, the total received power can be expressed as [109]: 

∑𝑃𝑟,𝑘(NLOS) =∑∑
𝜌𝑃𝑡,𝑘 𝐴𝑟ℛ (

𝑣 + 1

2𝜋
)𝐴ref

cos𝑣(𝜔𝑘,𝑤) 𝑐𝑜𝑠(𝜑𝑘,𝑤)

𝜋(‖𝑑𝑘,𝑤‖‖𝑑𝑤,𝑟‖)
2 ×

 𝑇𝑠(𝜑𝑤,𝑟) 𝑔(𝜑𝑤,𝑟) cos(𝜔𝑤,𝑟) cos(𝜑𝑤,𝑟)
wall

,   

𝐾

𝑘=1

 
(

(3.5) 

where 𝑑𝑘,𝑤, 𝜑𝑘,𝑤 , and 𝜔𝑘,𝑤 are the distances, receiving incident angle, and the irradiance angle 

between the kth transmitter and the reflective area, respectively. 𝑑𝑤,𝑟,  𝜑𝑤,𝑟, and 𝜔𝑤,𝑟 are the 

distances, receiving incident angle, and the irradiance angle between the reflective area and the 

receiver, respectively. ρ is the reflection coefficient that relies on the reflective surface material, 

and 𝐴ref is the reflection area [109].  

3.1.3 VLC Receivers 

A VLC system commonly utilizes two types of detectors: (i) PDs; and (ii) ISs, i.e., multi-array 

PDs like those used in cameras. The former is a low-cost device and provides a larger detection 

area (or higher bandwidth). This latter camera, which consists of multiple PDs (i.e., pixels) in 

orthogonal alignment, can provide large detection areas as well as multi-input, multi-output 
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(MIMO) capabilities but requires complex processing. A brief overview of each detector is 

provided in the following subsections. 

3.1.3.1 Photodiode 

A semiconductor LED produces state-solid lighting by combining electrons and holes in order 

to release light, which is released as photons of a specified wavelength. It is also possible to induce 

current over the semiconductor device from incident photons, which is the reverse process. The 

conduction path is created because of travelling photons providing electrons in the valence band. 

These devices are referred to as PDs. It is an electronic device that can detect the presence of light 

by converting light energy into electrical energy. PDs with large surfaces are recommended for 

optimal VLC reception. The common PD is illustrated in Fig. 3.5. 

 

Fig. 3.5. A typical photodiode.  

The output current or voltage of the PD is proportional to the amount of received optical power. 

In addition, PD has a limited bandwidth ranging from several MHz to several GHz. Larger 

bandwidths lead to a smaller detection area [46]. The responsivity R of PD is considered as one of 

the most important factors that determine the efficiency of the PD, which is given by: 

 𝑅 =
𝜂𝑞

ℎ𝜈
, (3.6) 

where 𝜂 is the quantum efficiency, ℎ𝜈 is the incident photon energy and q is the electron charge. 

3.1.3.2 Image sensor 

ISs create a two-dimensional (2D) representation of a scene using an array of PDs and lenses. 

In recent years, their widespread availability in consumer electronics, as well as urban 

infrastructures, has been characterized as a promising alternative for optical wireless 

communications systems. The general IS array is illustrated in Fig. 3.6. 
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Fig. 3.6. An image sensor array. 

An electronic camera consists of a lens, a color filter, a 2D array of PDs, and a post-processing 

unit [110]. The main purpose of the ISs is to convert light into electrons using either charge-

coupled devices (CCDs) or complementary metal-oxide semiconductors (CMOS) PD arrays. In 

CMOS ISs, there are two modes of capturing: global shutter (GS) and rolling shutter (RS). In the 

GS, the entire image is exposed at the same time to light, while in the RS system, pixels are exposed 

sequentially in a row-by-row manner, with a small time delay between rows (see Fig. 3.7) [111].  

 

Fig. 3.7. Row-by-row and simultaneous frame exposure in RS and GS acquisition mechanisms 

[111]. 

The RS technique consists of exposing each row of pixels at once, which results in an image of 

an LED that produces pulsed light showing white and dark stripes. The number of stripes and their 

width depend on the frequency of the blinking light and the distance between the sensor and LED. 

Furthermore, in the case of RS-based IS, when a square wave with different frequencies is 

received, the captured width of the stripes will be inversely proportional to the frequency of the 

receiving signals (i.e., the higher frequency will provide smaller stipes width). This allows for 

frequency modulation of data symbols, also known as frequency-shift keying (FSK). In addition, 

different ISs may capture stripes of varying widths with the same fixed-frequency light source 
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since the analog-to-digital conversion time (light to 2D image conversion) is affected by the 

manufacturer. 

3.2 OCC Systems 

According to the standards, a VLC system that uses an IS as a receiver is known as an OCC 

system since it does not need any hardware modifications [112]–[114]. As explained earlier, the 

IS present in the camera consists of many individual micro-scale PDs, that are stacked together to 

make a matrix, when paired with a lens, can be utilized to provide a MIMO system, i.e., enabling 

spatial separation of light sources on the IS. Furthermore, the SNR in IS-based VLC systems is 

independent of transmission distance [115]. It is important to note that the incident light power 

level per pixel remains the same if the projected image of the transmitting LEDs covers a number 

of pixels. 

In recent years,  CMOS ISs are widely available in current smartphones [111], [116], since 

OCC technology takes advantage of a CMOS IS and RS for receiving information from an LED 

light source, at a higher frequency than the maximum frames per second of the device. This 

technology is an attractive alternative to PDs. ISs offer many advantages over PDs, such as, a 

larger field of view, spatial separation of light, and the ability to process various wavelengths 

provided by color filters [110]. On the other hand, CMOS RS-based ISs are only capable of low 

frame rates (between 30 and 60 frames per second), with OCC being limited to a data rate of range 

between 0.01 and 100 kbit/s [117].  

3.3 Visible light Positioning Systems 

 

Fig. 3.8. A generalized model of indoor VLP. 
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VLP is a technology of determining the location of a receiver using the visible light signal 

transmitted from a base station. Usually, LEDs are used as the transmitters whereas the PDs or IS 

array are used to receive the positioning signal, which could contain information such as, the 

location of the LED or the LED-ID, or any other information relevant to the positioning process.  

A generalized indoor VLP system is illustrated in Fig. 3.8, which utilizes pre-installed LEDs to 

transmit a positioning signal. Note that, in order to determine the location of the mobile device, it 

is always necessary to determine the information about the location of the LED lamps. The 

transmitter establishes world coordinates in the room using the Cartesian coordinate system. A 

unique coordinate is assigned to each LED. The implementation principle of the VLP system is 

illustrated in Fig. 3.9.  

 

Fig. 3.9. The implementation principle of the VLP system. 

In VLP systems, each LED transmits information on its unique landmark, (i.e., LED-ID, which 

can be either modulated signals or light characteristics of LEDs) through the optical wireless 

channels. The unique LED-ID creates a high-level and low-level voltage using the LED driver, 

that subsequently transmits the light intensity signal through fast on-off switching. Generally, 

indoor positioning systems include more than one LED in a room. As a result, it is necessary for 

the receiver to simultaneously receive LED-ID information from all the LEDs within the room. 

There are different multiplexing techniques, such as, frequency division multiplexing [118], time-

division multiplexing [119], for avoiding the conflicts between different LED-ID signals. The 

signal is then transmitted through the optical wireless channel. At the receiver side, the receiver 
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receives the LED-ID information transmitted by each LED using a light-sensing device (IS array 

or PDs). Then, the received signals are demodulated, decoded in order to determine the world 

coordinates of each LED. After that, the receiver estimates the position by adopting an appropriate 

positioning algorithm, such as, RSS, TOA, or AOA.  

The VLP system can be classified into two categories based on the receiver used, i.e., PD-based 

VLP and OCC-based VLP, which is depicted in Fig. 3.10. In PD-based VLP, the PDs are used as 

a receiver while in the latter one, an IS array is used as a receiver. 

 

Fig. 3.10. A broad classification of the VLP system. 

3.3.1 PD-based VLP 

When an LED transmitter emits light, it propagates via an optical wireless channel, which 

results in intensity and phase variations. A PD is a solid-state device that detects incident light and 

converts it into an electric current that is directly proportional to the incident optical power. The 

signals received from each LED (whereby each LED has its own code and multiplexing protocol 

allowing differentiation between them) are then further processed. Most PD-based VLP systems 

rely on RSS, AOA, or TDOA information of received optical signals. These positioning algorithms 

are detailed in the following subsections. 

3.3.1.1 Receiver Signal Strength 

As described earlier in Chapter 2, RSS is one of the widely adopted triangulation techniques 

used in indoor positioning systems and VLP systems [16]. As the name implies, RSS is the strength 

of a received signal measured at the receiver. This is the simplest technique for realization and 

does not need any synchronization requirement between transmitter and receiver. In this technique, 

firstly received signal strength is determined and then, the propagation loss of the emitted signal 

is measured.  
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Fig. 3.11. Positioning based on RSS. 

According to geometric properties, it is necessary to have a minimum of three transmitters at 

the center of the circle, where the estimated distance is regarded as the radius of the circle, see Fig. 

3.11. Let (𝑥𝑘, 𝑦𝑘) and (𝑥𝑟 , 𝑦𝑟) represent the position of kth transmitter and the position of the 

receiver (target), respectively. The transmitter coordinates and the receiver coordinates are related 

with measured distance, 𝑟𝑘 using the following equations: 

(𝑥𝑟 − 𝑥𝑘)
2 + (𝑦𝑟 − 𝑦𝑘)

2 = 𝑟𝑘
2, (3.7) 

where k = 1, 2, … , K and K is the total number of transmitters involved in the measurement. 

An important aspect of RSS is the measurement of 𝑟𝑘, i.e., the projection of the distance vector 

𝑑𝑘 on the x-y plane, see Fig. 3.8. The distance can also be computed as: 

‖𝑑𝑘‖
2 = ‖𝑟𝑘‖

2 + ℎ2, (3.8) 

where h is the vertical distance between the transmitter and the receiver planes. Therefore, the 

estimated distance between the receiver and the kth transmitter can be estimated by solving (3.4) 

and (3.8), which is given by: 

𝑟𝑘 =
√((

𝑣 + 1

2𝜋
)
𝑃𝑡,𝑘 𝐴𝑟ℛℎ

𝑣+1

𝑃𝑟,𝑘(LOS)
)

2
𝑣+3

− ℎ2, (3.9) 

After estimating the horizontal distance, 𝑟𝑘 LLS estimation algorithm is applied for position 

estimation. 

3.3.1.1.1 Linear Least Square estimation 

LLS is a general estimation method introduced by A. Legendre in the early 1800’s. By 

considering the estimated distances of LOS paths, LLS is used to analyse the performance of the 



26 
 

VLP system in our work, which has a low complexity compared to NLLS. As mentioned earlier, 

(3.7) can be further re-written as: 

{
 

 
(𝑥𝑟 − 𝑥1)

2 + (𝑦𝑟 − 𝑦1)
2 = 𝑟1

2

(𝑥𝑟 − 𝑥2)
2 + (𝑦𝑟 − 𝑦2)

2 = 𝑟2
2

⋮
(𝑥𝑟 − 𝑥𝐾)

2 + (𝑦𝑟 − 𝑦𝐾)
2 = 𝑟𝐾

2

, (3.10) 

A closed-form solution using the LLS estimation method is used to estimate the position of the 

receiver which is given by: 

𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝐵, (3.11) 

𝐴 = [

𝑥2 − 𝑥1 𝑦2 − 𝑦1
𝑥3 − 𝑥1 𝑦3 − 𝑦1
𝑥4 − 𝑥1 𝑦4 − 𝑦1

] ,   𝐵 = 0.5 × [

(𝑟1
2 − 𝑟2

2) + (𝑥2
2 + 𝑦2

2) − (𝑥1
2 + 𝑦1

2)

(𝑟1
2 − 𝑟3

2) + (𝑥3
2 + 𝑦3

2) − (𝑥1
2 + 𝑦1

2)

(𝑟1
2 − 𝑟4

2) + (𝑥4
2 + 𝑦4

2) − (𝑥1
2 + 𝑦1

2)

]. (3.12) 

where 𝑋 =  [
𝑥𝑟
𝑦𝑟
], which is the estimated receiver position. 

3.3.1.2 Angle of Arrival 

 

Fig. 3.12. Positioning based on the AOA. 

As the name suggests, AOA is a technique that measures the angle of arriving signals from 

different reference points to the receiver. Fig. 3.12. depicts the mechanism of AOA. One of the 

main advantages of AOA-based VLP systems is that they do not require any time synchronization 

between the transmitter and receiver. They do not need a precise measurement of signal strength. 

Furthermore, ISs (i.e., cameras) are easier to use for finding the AOA of the signals than complex 

antenna arrays, RF-based positioning systems. For mathematical expression, let 𝛼𝑘 denote the 

AOA measurement with respect to the kth transmitter, which is given as: 

tan𝛼𝑘 =
𝑦𝑟 − 𝑦𝑘
𝑥𝑟 − 𝑥𝑘  

 (3.13) 
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LLS solution of AOA-based system is solved by the matrix form represented in the general 

expression, where A and B matrices are given by: 

            𝐴 = [
−sin𝛼1 cos𝛼1
⋮ ⋮

−sin𝛼𝐾 cos𝛼𝐾

],          𝐵 =  [
𝑦1cos𝛼1 − 𝑥1sin𝛼1

⋮
𝑦𝐾cos𝛼𝐾 − 𝑥𝐾sin𝛼𝐾

]. (3.14) 

3.3.1.3 Time of Arrival/ Time difference of arrival 

One of the most prevailing methods for positioning is TOA used in GPS. TOA is the 

absolute travel time of a wireless signal from the transmitter to the receiver. GPS precision is 

achieved through very tight synchronization conditions between all satellites within the network, 

often relying on atomic clocks. Thus, IPSs normally adopt TDOA instead of TOA to avoid the 

requirement of precise synchronization. Although, time synchronization is still required between 

the transmitters. Fig. 3.13. shows the intersection of hyperbolas which determine the location of 

the target. 

 

Fig. 3.13. Positioning based on the TDOA. 

Each hyperbola in Fig. 3.13 represents a set of possible positions of the receiver which are 

determined by single measurement of the differences in range. Each hyperbola is represented as:  

𝐷𝑘,𝑘+1 = 𝑟𝑘+1 − 𝑟𝑘 = √(𝑥𝑘+1 − 𝑥𝑟)2 + (𝑦𝑘+1 − 𝑦𝑟)2 −√(𝑥𝑘 − 𝑥𝑟)2 + (𝑦𝑘 − 𝑦𝑟)2 (3.15) 
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where 𝐷𝑘,𝑘+1 is the difference between the ranges 𝑟𝑘+1and 𝑟𝑘. For the TDOA technique, LLS 

solution is solved by the matrix form represented in the general expression, where A and B matrices 

are given by:  

𝐴 = [

𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝐷2,1
⋮ ⋮ ⋮

𝑥𝐾 − 𝑥1 𝑦𝐾 − 𝑦1 𝐷𝐾,1

] , 𝐵 =  [

(𝑥2
2 + 𝑦2

2) − (𝑥1
2 + 𝑦1

2) − 𝐷2,1
2

⋮
(𝑥𝐾

2 + 𝑦𝐾
2) − (𝑥1

2 + 𝑦1
2) − 𝐷𝐾,1

2
].  (3.16) 

3.3.2 OCC based VLP 

OCC-based VLP systems utilize IS arrays or cameras as a receiver. Cameras are optical devices 

that enable incident light to capture an image on a light-sensitive surface (image sensor) which 

translates the 3D world into a 2D projection in front of them. In general, it consists of an image 

sensor and a lens, which focus and direct light rays into the image sensor. Ideally, a pinhole camera 

model can be used to describe this 2D-to-3D mathematical relationship. According to this model, 

the incident light passes through the lens (i.e., an infinitely small hole) of the camera during the 

illumination process and creates an inverted image on the image plane. An image plane can be 

defined as an infinite plane with an infinite sampling resolution. A pinhole camera is therefore 

considered to have infinite depth of field, because everything in the image is projected in focus. It 

has a focal length (F) similar to the real camera that corresponds to the distance between the image 

plane and the focal center (Fc). This focal length impacts the FOV and the amount of distortion 

caused by perspective. For instance, a longer focal length provides a narrower FOV with less 

perspective distortion while a shorter focal length leads to a wider FOV with more perspective 

distortion. In the end, the image of the scene is projected onto the image plane which has been 

flipped onto both axes by the passing of light rays through the pinhole [120]. Figure 3.14 illustrates 

the geometrical model for the pinhole camera. 
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Fig. 3.14. A geometrical model for the pinhole camera. 

According to the standard camera coordinate system (CCS), the Xc axis points to the right, the Yc 

axis points downwards, and the Zc axis points to the front. As shown in Figure 3.14, an arbitrarily 

selected point P is projected onto the image plane at (u,v) in the image coordinate system (ICS). 

Note that, matrix representations are used for all operations in this subsection, and homogeneous 

coordinates are also utilized to represent multiple points in both 2D and 3D space. In the pinhole 

camera model, a distortion-free projective transformation that translates 3D points in world 

coordinates (𝑋𝑤, 𝑌𝑤, 𝑍𝑤) into 2D positions in image coordinates (u,v) is given by [121]: 

 

𝑠 [
𝑢
𝑣
1
] = [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧

] [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

],  (3.17) 

which is equivalent to: 

 

𝑠 [
𝑢
𝑣
1
] = 𝐴[𝑅|𝑡] [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

],  (3.18) 

where 

 

𝐴 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

],  (3.19) 
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𝑅 = [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧

],  (3.20) 

 
𝑡 = [

𝑡𝑥
𝑡𝑦
𝑡𝑧

],  (3.21) 

where s is the projective transformation's arbitrary scaling, A is the camera intrinsic matrix 

composed of the focal lengths 𝑓𝑥 and 𝑓𝑦 which are expressed in pixels, and the principal point 

(𝑐𝑥, 𝑐𝑦), R and t are the rotation matrix and translation vector, respectively. With the following 

expressions, focal lengths are converted from meters to pixels: 

 
𝑓𝑥 = 𝐹

𝑁𝑥
𝑊
,  (3.22) 

 
𝑓𝑦 = 𝐹

𝑁𝑦

𝑊
,   (3.23) 

where F is the focal length in meters, W and H are the width and height of the image sensor, which 

is also in meters, 𝑁𝑥 and 𝑁𝑦 are the total number of pixels in both axes. The translation vector (𝑡𝑥, 

𝑡𝑦, 𝑡𝑧) corresponds directly to the position of the camera in the world coordinate system (WCS). 

In order to determine the camera's orientation, R is represented by three rotation matrices 

signifying rotations around each angle, which is given by: 

 𝑅 = 𝑅𝑧𝑅𝑦𝑅𝑥 , (3.24) 

 

𝑅𝑥 = [

1 0 0
0 cos(𝜃𝑥) − sin(𝜃𝑥)

0 sin(𝜃𝑥) cos(𝜃𝑥)
],   (3.25) 

 

𝑅𝑦 = [

cos(𝜃𝑦) 0 sin(𝜃𝑦)

0 1 0
− sin(𝜃𝑦) 0 cos(𝜃𝑦)

],   (3.26) 

 
𝑅𝑥𝑧 = [

cos(𝜃𝑧) − sin(𝜃𝑧) 0

sin(𝜃𝑧) cos(𝜃𝑧) 0
0 0 1

].   (3.27) 

The angles (𝜃𝑥, 𝜃𝑦, 𝜃𝑧) are the Euler angles which represent the orientation of the camera in the 

WCS, in radians. Note that, lens distortion is not considered in our work. 
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Chapter 4: Methodology 

This chapter focuses on the methods developed and employed in this thesis which include the 

estimation methods, ANNs, CNNs, required for positioning. Both PD-based VLP systems using 

RSS algorithm as well as OCC-based VLP systems using a camera as a receiver are employed in 

our work. Note that each publication covered in Chapter 5 provides a detailed description of the 

precise method by which the experiments or simulations were carried out. 

4.1 Non-Linear Least Square Estimation  

LLS estimation can be extended for use with a much larger and more general class of functions 

with NLLS estimation. An NLLS model can incorporate almost any function that can be written 

in closed form. Nevertheless, the process of estimating the unknown parameters in the function is 

conceptually similar to that of LLS. However, the LLS estimation solution may not offer a high 

positioning accuracy [122]. This is especially true for situations where the received signal strength 

cannot be modelled precisely by the LOS model, this happens in regions close to walls or corners 

of a room, or due to the presence of furniture or users in the environment. NLLS estimation can be 

used to estimate the target location, in which the solution can be estimated by attaining �̃� = [�̃�, �̃�] 

that minimizes a cost function given by: 

�̃� =  ∑(√(𝑥𝑟 − 𝑥𝑘)2 + (𝑦𝑟 − 𝑦𝑘)2 − 𝑟𝑘)
2

.

𝐾

𝑘=1

 (4.1) 

An iterative procedure is utilized to estimate �̃� by employing the trust-region reflective 

algorithm [123]. In this algorithm, first, an estimate is introduced as �̃�0, followed by computing 

the corresponding cost function �̃�0. Next, several points about �̃�0 are replaced in (4.1), and the 

one that minimizes the cost �̃�1 is selected as �̃�1. The receiver coordinates �̃� will eventually be 

obtained following several iterative steps to ensure convergence of �̃�. In our work, the initial value 

for �̃�0  is estimated using an LLS approach. 

4.2 Polynomial Regression  

Polynomial regression is a type of regression. When there is a non-linear relationship between the 

dependent and independent variables, then some polynomial terms are added to the linear 

regression in order to convert it into polynomial regression. In the case of NLOS links, high errors 

are introduced in the channel due to the presence of reflections [35,36], therefore the distance 

estimation approach using (3.9) is no longer valid. Therefore, it is possible to use polynomial 
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regression to generate a polynomial fitted model for the power and distance relationship defined 

by: 

𝑑𝑘  = 𝑎0 + 𝑎1𝑃𝑅,𝑘 + 𝑎2(𝑃𝑅,𝑘)
2
+⋯+ 𝑎𝑗(𝑃𝑅,𝑘)

𝑗
, (4.2) 

where aj is the coefficient of the fitted polynomial at jth degree polynomial and 𝑃𝑅,𝑘 is the total 

received power at the receiver from kth transmitter. Note, 𝑑𝑘 is computed using (4.2), which is then 

substituted into (3.8) to determine 𝑟𝑘. After that, LLS estimation or NLLS estimation is used for 

estimating the receiver position. The polynomial regression has a huge impact on the positioning 

error. For instance, Fig 4.1 shows the cumulative distribution function (CDF) against the 

positioning errors for NLLS estimation with and without polynomial regression. It is realized that, 

there is an evident improvement in the positioning accuracy by using NLLS estimation with 

polynomial regression for power-distance modeling. Therefore, the polynomial regression can 

improve the accuracy of position estimation without the inclusion of high complexity algorithms. 

However, there are some limitations of the polynomial regression; for instance, the coefficients of 

the polynomial model must be provided along with the transmitter’s positions in practical 

scenarios.  

 

Fig. 4.1. CDF of the positioning error computed by NLLS and NLLS with polynomial regression 

estimation [108]. 
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4.3 Support Vector Machines 

Support vector machines (SVM) is a supervised machine learning algorithm used for 

solving classification and regression problems. SVM classifies data by achieving the best 

hyperplane that distinguishes all data points of one class from those of another class. The best 

hyperplane is the one with the largest margin between two (different) classes. Although SVMs 

were originally developed for binary class classification, they can be extended to multiclass 

classification. The multiclass problem is split into multiple binary classification cases, also known 

as one-vs-one classification, as depicted in Fig. 4.2.  

 

Fig. 4.2. The schematic diagram of one-vs-one multiclass SVM. 

In one-vs-one classification, a series of classifiers are employed to each pair of classes, 

with the most frequent class identifier [124]. SVMs also need the training of different classifiers 

using the data from each pair of classes. The number of classifiers 𝑁𝑐 required for one-vs-one 

multiclass classification can be retrieved by [124]: 

 
𝑁𝑐 = 

𝛿 × (𝛿 − 1)

2
, (4.3) 

where 𝛿 represents the number of classes. In this work, the SVM is used to classify the minimum 

positioning error based on different regions, so the number of classes is given by the number of 

regions.  

For non-linear problems, the training data is not linearly separable in the original input 

space. Therefore, mapping of the original input space into a high-dimensional space is done using 

a concept called kernel trick [124]. In this algorithm, N training samples are considered. Each 
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sample is indicated by (𝑢𝑖 , 𝑝𝑖), where 𝑢𝑖  corresponds to the attribute set for the ith sample (i = 1, 2, 

…, N), and 𝑝𝑖 correspond to the ith label. The SVM classifier can be defined as: 

 

𝑓(𝑢) =  ∑ 𝐿𝑖 𝑝𝑖 𝐺(𝑢𝑖 , 𝑢𝑗) + 𝑏

𝑁

𝑖,𝑗=1

, (4.4) 

where 𝐿𝑖 is the Lagrange multiplier, and b is the bias term. 𝐺(𝑢𝑖, 𝑢𝑗) is the kernel function, and 𝑢𝑗  

is any data point in the sample. In this work, the 3rd order polynomial kernel is used, which is given 

by: 

 𝐺(𝑢𝑖 , 𝑢𝑗) = (𝑢𝑖
T. 𝑢𝑗 + 𝑐)

𝑑
, (4.5) 

where c is the constant, T represents the transpose, and d is the degree of the polynomial [124]. 

Lagrange multipliers are obtained using convex quadratic optimization algorithms [123]. 

4.4 Artificial Neural Networks  

The artificial neural network is inspired by the process of the human brain and therefore, 

is composed of neurons that work in parallel. Each neuron is capable of performing a simple 

mathematical operation individually [125]. Collectively, the neurons can evaluate complex 

problems, emulating most of the functions and providing precise solutions. The ANN is an 

interconnected network of processing elements (neurons) and it includes two different phases: (i) 

the training phase - where the ANN estimates an input-output map based on the training data set. 

During this training phase, the neuron weights are continuously adapted to minimize the error 

between the estimated output and the training data vectors. The process terminates when the 

required performance is achieved, or the complete training set is used; and (ii) the operation phase 

- where the ANN is employed to perform estimates based on the input data alone. The ANN 

structure consists of at least three layers; a single input layer, one or several hidden layers (HL), 

and a single output layer, see Fig. 4.3(a). These layers are linked together based on a collection of 

connected units or nodes, called the artificial neurons. The importance of these neurons is defined 

based on their weights and the learning process. The weight 𝑊𝑖𝑛
𝑚 has the capability to acquire and 

store experimental knowledge, where i, n, and m represent the number of neurons, inputs, and 

layers, respectively. These are also known as the synaptic weights because their working principle 

is similar to the synapses present in biological brains. It relates the nth input to the jth neuron. 
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(a) (b) 

Fig. 4.3.  The artificial neural network with: (a) basic structure, and (b) a structure of ith neuron 

with N inputs in the layer m. 

Note, the number of neurons in the hidden layer controls the weights and the bias in the 

network. Each neuron can be biased with a value bm as depicted in Fig. 4.3(b). Since Sigmoid and 

linear activation functions have been shown to perform well in regression tasks [126], they were 

selected for the hidden and output layers, respectively. The performance of an ANN algorithm is 

measured by the mean square error, which can be expressed as a function of F(𝑝𝑖
𝑚) as: 

𝐹(𝑝𝑖
𝑚) = 𝑒𝑖

𝑚 = ‖𝑡𝑖
𝑚 − 𝑎𝑖

𝑚‖2, (4.6) 

where 𝑝𝑖 is the vector containing all network weights and biases for the ith neuron (i.e., 𝑝𝑖 = 

[𝑊𝑖, 𝑏𝑖]), and 𝑎𝑖
𝑚 is the network output of the ith neuron for the mth layer and 𝑡𝑖

𝑚 is the target output 

of the ith neuron for the mth layer. The weights and the bias are updated by the backpropagation 

method [125] as:  

𝑊𝑖,𝑛+1
𝑚 = 𝑊𝑖,𝑛

𝑚 − 𝐺𝑆𝑚(𝑎𝑖
𝑚−1)𝑇, (4.7) 

𝑏𝑖,𝑛+1
𝑚 = 𝑏𝑖,𝑛

𝑚 − 𝐺𝑆𝑚, (4.8) 

where 𝐺 is the learning rate, 𝑚 =  0,1, … ,𝑀 − 1, M is the number of layers in the network, and 

(.)T is the transposed. 𝑏𝑖,𝑛
𝑚  is the bias vector. 𝑆𝑚 is the sensitivity matrix, which is evaluated from 

the least mean square error function, �̂�(𝑝𝑖
𝑚) for various values of 𝑗, wherein j is defined in the 

matrix form as 𝛾𝑖𝑊𝑖 + 𝑏𝑖. 𝛾𝑖 is the input vector of ith neuron. 

xRx

yRx

Input Layer

Hidden Layer

Output Layer
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The aim of this work is to investigate the utilization of ANN for regression analysis in the VLP 

system. A comprehensive study is done about the optimization of an ANN for VLP systems and a 

complete assessment of its performance. The error performance of the proposed system is 

evaluated under a noisy channel by considering noise over a wide range of SNR. For that, three 

different ANN algorithms, including Levenberg-Marquardt (LM), Bayesian regularization (BR), 

and scaled conjugate gradient (SCG) algorithms, are explored to minimize positioning error of the 

proposed VLP system. The error performance is analyzed and compared with the traditional RSS 

technique, which uses an NLLS algorithm along with a polynomial regression model [127]. Firstly, 

the proposed ANN is optimized based on the number of neurons in the hidden layers (HLs) and 

the number of training epochs. Finally, the noise performance of the proposed system is analyzed 

in comparison with the traditional approaches. In addition, the ANN structure in the proposed 

study is composed of four layers: an input layer, two HLs, and an output layer. Each layer has a 

different number of neurons, with the input and output layers having four and two neurons, 

respectively. The estimated x and y position coordinates are represented by the output neurons. 

The estimated distances from each transmitter are applied to the input layer with the help of (4.5). 

In our work, the number of HLs are investigated and have determined that a simple ANN 

with only one hidden layer would not provide the desired results i.e., high positioning errors. Using 

two hidden layers provided a more effective framework for achieving improved performance. 

Therefore, based on our preliminary research, the number of hidden layers are limited to two. The 

neurons in the HLs are activated using a Sigmoid transfer function, which thresholds the input data 

and outputs a continuous value between zero and one. A linear transfer function is used in the 

output layer.  

Following that, a few well-known training algorithms are adopted and used to analyze the 

positioning error of the proposed system. For our investigation, the default values of Matlab's fitnet 

tool are used to fix the parameters such as the learning rate. Note that, other parameters such as 

the number of neurons in HLs or the activation functions could also be optimized based on the 

topology of the HLs.  

The network records the trained information in 𝑊𝑖𝑛
𝑚 and 𝑏𝑚. Note, the ANN can be trained 

in supervised and unsupervised modes, where the former offers higher reliability compared with 

the latter; thus, it is adopted in this work as explained in the following subsections. 
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4.4.1 Levenberg-Marquardt Algorithm 

LM algorithm is employed to solve the NLLS problems. By leveraging the most used 

optimization algorithms (i.e., Gauss-Newton algorithm, and the steepest descent algorithm), the 

LM algorithm can avoid some problems, such as over-parameterization, local minima, and non-

existence of the inverse matrix [128]. Moreover, it inherits the speed advantage of Gauss-Newton 

algorithm and the stability of the steepest descent algorithm. The updated rule of weights and 

biases, i.e., 𝑝𝑖 is given by: 

𝑝𝑖+1 = 𝑝𝑖 − [ 𝐽𝑖
𝑇 𝐽𝑖 + 𝜇𝑖I]

−1.  𝐽𝑖𝑒𝑖, (4.9) 

where  𝐽𝑖 is Jacobian matrix of the function, 𝐹(𝑝𝑖), and 𝜇𝑖 ≥ 0 is a scalar, and I is the identity 

matrix. 

4.4.2 Bayesian Regularization Algorithm 

BR is an algorithm that updates the values of weight and bias in accordance with LM 

optimization. In this algorithm, firstly, a linear combination of the squared errors and the weights 

are minimized and then, the linear combination is modified with the aim of obtaining a network 

with good generalization qualities [125]. In BR, the mean squared error function can be defined 

as: 

𝐹(𝑝𝑖) = 𝛽𝐸𝐷 + 𝛼𝐸𝑊, (4.10) 

where 𝐸𝐷 is the squared error, 𝐸𝑊 is the sum of squared weights, which penalizes large weights in 

reaching a better generalization and smoother mapping, 𝛼, and 𝛽 are the regularization parameters 

(or objective functions), which are given as: 

 𝛼 =
𝛾𝑒

2𝐸𝑊(𝑝𝑖)
, 𝛽 =

𝑁𝑤𝑏 − 𝛾𝑒
2𝐸𝐷(𝑝𝑖).

, (4.11) 

where 𝛾𝑒 = 𝑁 − 2𝛼tr(𝐻
−1) is called the effective number of parameters, 𝐻 = ∇2𝐹(𝑝𝑖) is the 

Hessian matrix, 𝑁𝑤𝑏 is the total number of parameters (weights and biases) of the network, 

tr(𝐻−1) is the trace of the inverse of Hessian matrix. Note, the 2nd term in (4.11) is known as the 

weight decay, and therefore small values of W would reduce the overfitting of the model. 

4.4.3 Scaled Conjugate Gradient Algorithm 

Most of the conjugate gradient algorithms use line search for each iteration, thus making 

them computationally complex. Therefore, to address this the SCG algorithm is adopted developed 

by Moller [129]. SCG is based on conjugate directions without performing line search, with 



38 
 

reduced computational complexity. The SCG algorithm, which is a scaled conjugate gradient 

method for updating the weight and bias values, is robust and does not depend on the user-defined 

parameters given that the step size is a function of quadratic approximation of the error [129]. 

Different approaches are used for estimating the step size, which is given by: 

𝜉𝑖 =
𝜇𝑖
𝛿𝑖
=

−�̅�𝑖
𝑇𝐸𝑞𝑤

′ (𝑝𝑖)

�̅�𝑖
𝑇�̅�𝑖 + 𝜆𝑘|�̅�𝑖|2

 , (4.12) 

where 𝐸𝑞𝑤
′ (𝑝𝑖) is the quadratic approximation of the error function, 𝐹(𝑝𝑖). �̅�1, �̅�2, … . �̅�𝑖 is the set 

of non-zero weight vectors, and �̅�𝑘 is the second-order information. 𝜆𝑖 is the scaler to be updated 

such that:  

𝜆𝑖 = 2(𝜆𝑖 −
𝛿𝑖
|�̅�𝑖|2

) . (4.13) 

If Δ𝑖 > 0.75, then 𝜆𝑖=
𝜆𝑖

4
, and if Δ𝑖 < 0.25 then 𝜆𝑖=𝜆𝑖 +

𝛿𝑖(1−Δ𝑖)

|�̅�𝑖|
2 . 

Δ𝑖 is a comparison parameter given by: 

Δ𝑖 =
2𝛿𝑖[𝐹(𝑝𝑖) − 𝐹(𝑝𝑖 + 𝜉𝑖�̅�𝑖)]

𝜇𝑖
2 . (4.14) 

4.5 Single-Shot Detector  

SSD is an object detection model that uses feed-forward convolutional networks to generate a 

set of fixed-size bounding boxes and scores that indicate the presence of an object class instance 

in each box. Following this, an additional non-maximum suppression step is performed to detect 

final objects [130]. In SSD, only a single shot is required to detect multiple objects within the 

image. As illustrated in Fig. 4.4, the SSD object detection model comprises of two main blocks: i) 

feature extractor block and ii) extra feature block in which convolutional filters are applied for 

object detection. The model adopted in our work is the pre-trained SSD_MobileNet_v2_COCO 

and SSD_ResNet50_v1_COCO, which embeds all the enumerated features. 
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Fig. 4.4. SSD network structure of the indoor VLP system. 

In our work, two different methods are used for feature maps extraction, i.e., MobileNetV2 

[131] and ResNet [132] for high-quality image classification, which is named as the feature 

extractor network (in our case, it is either MobileNetV2 or ResNet) which will be explained later 

in this subsection. Following that, an auxiliary structure with the following key features is added 

to the network for object detection:  

Multi-scale feature maps for detection: The convolutional feature layers are added to the end 

of the feature extractor network. Each layer of this model decreases in size gradually and allows 

predictions of detections on multiple scales. Each feature layer has a different convolutional model 

for predicting detections. These multi-scale feature maps improve the accuracy of the model 

significantly. 

Convolutional predictors for object detection: SSD does not have any delegated region 

proposal network, rather it uses a very simple method. It utilizes small convolution filters to 

calculate both the location and class scores. For a feature layer of size m × n with p channels, the 

basic component for predicting parameters is a 3 × 3 × p small kernel, which produces a score for 

each category or an offset for each shape in relation to the default box coordinates. Every time the 

kernel is applied at one of the m × n locations, an output value is produced. The bounding box 

offset output value is determined relative to a default box position for each corresponding feature 

map location. 

4.5.1 SSD Training 

The most significant difference between training an SSD and a traditional detector (such as, 

region-based CNNs, i.e., R-CNNs), is that the ground truth information must be assigned to 

specific outputs in a fixed set of detector outputs. After the assignment, the loss function and 
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backpropagation are employed end-to-end [133]–[135]. In addition to selecting a set of default 

boxes and scales for detection, the training also includes hard negative mining which is explained 

below in detail: 

Matching strategy: The predictions of SSD are categorized as positive matches or negative 

matches. SSD considers the positive matches only for the calculation of localization cost (the 

boundary box mismatch). It is measured by Intersection over Union (IoU) parameter which is the 

ratio between the intersected area over the joined area for two regions. The match is positive if the 

corresponding default boundary box (not the predicted boundary box) has an IoU > 0.5 with the 

ground truth, otherwise, it is negative. Once the positive matches have been identified, the cost is 

calculated using the predicted boundary boxes. This matching strategy encourages each prediction 

to predict shapes closer to the corresponding default box. As a result, our training predictions are 

more stable and diverse. 

Training objective: The objective of SSD training is derived from the MultiBox objective 

[135], but is extended to process multiple object categories. Let 𝑥𝑖𝑗
𝑝 = {1,0} be an indicator for 

matching the ith default box to the jth ground box of the category p. In the matching strategy above, 

there is ∑ 𝑥𝑖𝑗
𝑝 ≥ 1𝑖 . The overall objective loss function is defined as a weighted sum of both 

localization loss 𝐿𝑙𝑜𝑐 and confidence loss 𝐿𝑐𝑜𝑛𝑓, which is defined as: 

 
𝐿(𝑥, 𝑐, 𝑙, 𝑔) =

1

𝑁𝑃
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝜖𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)). (4.15) 

where 𝑁𝑃 is the number of positive matches and 𝜖 is the weight for the localization loss. For 𝑁𝑃 = 

0, the loss is set to 0. The localization loss is the mismatch between the ground truth and the 

predicted boundary boxes. Smooth L1 loss is used between the predicted box l and the ground 

truth box g parameters [136]. As mentioned earlier, SSD only considers predictions from the 

positive matches, and therefore, negative matches can be ignored. Similar to Faster R-CNN [134], 

offsets are regressed for the center (cx; cy) of the default bounding box d and for its width w and 

height h. The 𝐿𝑙𝑜𝑐 and 𝐿𝑐𝑜𝑛𝑓 are computed as [137]: 

 

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) = ∑ ∑ 𝑥𝑖𝑗
𝑘 smoothL1(𝑙𝑖

𝑚 − �̂�𝑗
𝑚)

𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ}

𝑁

𝑖∈𝑃𝑜𝑠

 

�̂�𝑗
𝑐𝑥 =

(𝑔𝑗
𝑐𝑥 − 𝑑𝑖

𝑐𝑥)

𝑑𝑖
𝑤                           �̂�𝑗

𝑐𝑦
=
(𝑔𝑗

𝑐𝑦
− 𝑑𝑖

𝑐𝑦
)

𝑑𝑖
ℎ  

(4.16) 
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�̂�𝑗
𝑤 = 𝑙𝑜𝑔 (

(𝑔𝑗
𝑤)

𝑑𝑖
𝑤 )                        �̂�𝑗

ℎ = 𝑙𝑜𝑔 (
(𝑔𝑗

ℎ)

𝑑𝑖
ℎ ). 

The confidence loss is the loss of making a class prediction. Note, for the matching with (i) 

positive prediction, a loss is incurred according to the confidence score of the class corresponding 

to the prediction; and (ii) negative prediction, the loss is incurred according to the confidence score 

of the class "0" (i.e., the class "0" indicates that no object being detected). The confidence loss is 

computed as the Softmax loss over multiple classes confidences, c (class score). The Softmax loss 

consists of Softmax activation combined with a cross-entropy loss. The Softmax activation 

function provides a probability for each class, and the summation of these probabilities adds up to 

unity. The Cross entropy loss is the result of summing the negative logarithm of probabilities as 

given by: 

 

𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) = − ∑ 𝑥𝑖𝑗
𝑝 𝑙𝑜𝑔(�̂�𝑖

𝑝) − ∑ 𝑙𝑜𝑔(�̂�𝑖
0)

𝑖∈𝑁𝑒𝑔

𝑁

𝑖∈𝑃𝑜𝑠

, (4.17) 

where �̂�𝑖
𝑝 =

𝑒𝑥𝑝(𝑐𝑖
𝑝
)

∑ 𝑒𝑥𝑝(𝑐
𝑖
𝑝
)𝑝
  and the weight term 𝜖 is set to 1 by cross-validation. 

Choosing scales and aspect ratios for default boxes: The default boundary boxes are 

selected manually. For that, SSD specifies a scale value for each layer of feature maps. For 

example, if f feature maps are to be used for prediction. The scale, 𝑠𝑘 of the default boundary boxes 

for each feature map is then calculated as: 

 𝑠𝑓 = 𝑠min +
𝑠max − 𝑠min
𝑓 − 1

(𝑘 − 1),                𝑘 ∈ [1, 𝑓] (4.18) 

where 𝑠min and 𝑠max are 0.2 and 0.9, respectively. It implies that the lowest layer has a scale value 

of 0.2 and the highest layer has a scale value of 0.9, and all layers are regularly spaced between 

them. The width and height of the default box can be computed by combining the scale value with 

the target aspect ratios. For instance, for the layers making 6 predictions, SSD start with different 

aspect ratios that are imposed on the default boxes and donate them as 𝑎ratio ∈ {1,2,3,
1

2
,
1

3
}. Then 

the width and the height of the default boxes are computed as: 

 
𝑤𝑓
𝑎 = 𝑠𝑓 . √𝑎ratio, 

ℎ𝑓
𝑎 =

𝑠𝑓

√𝑎ratio 
. (4.19) 
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A default box is also added for the aspect ratio of 1, whose scale is 𝑠�́� = √𝑠𝑓𝑠𝑓+1, resulting in 6 

default boxes per feature map location. 

Hard negative mining: However, SSD makes a lot more predictions than there are objects, 

so there are more negative matches than positive matches, creating a class imbalance during 

training. The model is trained to learn background space instead of detecting objects. Although 

SSD still requires negative sampling in order to learn what is a bad prediction. Therefore, the 

negatives are sorted based on their highest confidence loss instead of using all the negatives. SSD 

selects the negatives that have the highest loss and ensures the ratio between selected negatives 

and positives is at most 3:1. This enables faster and more stable training performance. 

4.5.2 ResNet 

A ResNet is a type of neural network that consists of sequences of convolutions bypassed 

by skip connections, thus allowing the model to learn residual values within the convolutional 

layers [138]. The ResNet-50 model presented in [132], incorporates 16 bottleneck blocks and 50 

layers with trainable parameters, including a convolutional layer following the input and output 

layer.    

4.5.3 MobileNetV2 

MobileNetV2 uses a depthwise convolutional layer [131]. The number of input channels 

in the depthwise convolution layer equals the number of filter channels. This layer reduces the 

total number of parameters to a minimum. MobileNet v2 introduces a new layer called 1 × 1 

convolution layer, whose purpose is to increase the number of channels in the data prior to 

depthwise convolution is applied. There is a depthwise convolution layer followed by a 1 × 1 

convolution layer is referred to as the pointwise/projection layer. The projection layer projects data 

with a high number of channels into the output with a much lower number of channels. The residual 

connection works similarly to ResNet to add gradients in MobileNetV2. ReLU6 is used to prevent 

too many activations. 

4.6 SolvePnP Function  

The perspective-n-point (PnP) is a well-known problem, in which the position of a camera is 

determined based on a set of correspondences between points in an image and their locations in 

the real world. In order to determine the position of the receiver (i.e., camera) in OCC-based VLP 

systems, the solvePnP function is used. This function can be found in OpenCV library, which 

produces a set of six coordinates corresponding to the position and orientation of the camera in the 
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real world [121]. The most important inputs that should be considered are object points; image 

points; camera matrix and solving method. The object points are corresponding to an array with 

the world coordinates for each point. In our work, the coordinates of each LED in the WCS are 

considered as object points. The image points are the coordinates of the LED in the ICS. The 

camera matrix defines the intrinsic parameters of the camera, which can be computed based on the 

camera specification. The method of solving the problem can be classified as one of two methods: 

P3P, and ITERATIVE. With the P3P method, it requires specifically four points, which is not 

suitable for our work, since we want to be able to make the position estimation from as many 

transmitters as possible, whenever possible, and not be restricted to four. While the iterative 

method require at least four points to estimate the position and permit the inclusion of a larger 

number of points. The iterative method is based on the Levenberg-Marquardt optimization. This 

algorithm works on the premise that identifies a pose that minimizes the reprojection error, which 

is a measure of the sum of the squares of the distances between the initial coordinates of each 

image point and the reprojected coordinates resulting from each guessed pose. Therefore, the 

iterative method is utilized in our work. The position of receiver can be determined if these four 

inputs are known.  
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Chapter 5: Research Outcomes 

This chapter presents the outcomes as published and submitted research articles, including 

three published conference papers and two published peer-reviewed journal papers. The full and 

original papers with bibliographic citations and individual contributions to the report are provided 

in the following sections. 

Firstly, a detailed survey on the VLP techniques has been done in section 5.1, where all 

traditional positioning algorithms used for indoor positioning are described in detail. The current 

trends in the VLP are also explained. In section 5.2, a VLP system relying on a single transmitter 

is proposed to infer position information. The system adopts a reverse trilateration scheme, where 

a set of three photodiodes is employed to estimate the position. The reverse trilateration scheme 

adopted for this system yields to a very simple mathematical framework, suitable for low power 

and low complexity systems. The position information is inferred through the received signal 

strength, without the need for sophisticated angle measurements or precise synchronization as is 

the case in AOA and time difference of arrival systems.  

Following our previous research, it is realized that the accuracy of the RSS-based VLP 

system in indoor applications is constrained by the tilt angles of transmitters and receivers as well 

as multipath reflections. Therefore, for the first time, it is shown that tilting the transmitter can be 

beneficial in VLP systems considering both LOS and NLOS transmission paths as described in 

section 5.3. With the transmitters oriented towards the center of the receiving plane (i.e., the 

pointing center F), the received power level is maximized due to the LOS components on F. It 

revealed that the proposed scheme offers a significant accuracy improvement of up to ~66% 

compared with a typical non-tilted transmitter VLP at a dedicated location within a room using a 

low complex linear least square algorithm with polynomial regression. The effect of tilting the 

transmitter on the lighting uniformity is also investigated and results proved that the uniformity 

achieved complies with the European Standard EN 12464-1. Furthermore, it also demonstrated 

that the accuracy of VLP can be further enhanced with a minimum positioning error of 8 mm by 

changing the height of F.  

In the previous studies, it is realized that LED-based indoor VLP system where the 

transmitter’s positions are usually known, which is an advantage provided they have not been 

altered. However, when replacing the LEDs and carrying out regular maintenance ensuring 

uniform position and orientation of all light sources might not be practical. Therefore, the 
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transmitters will have some random placement and orientations, which will manifest as position 

and orientation errors. These errors can affect substantially the positioning accuracy of the system 

in applications where high accuracy is the main requirement e.g., in medical, manufacturing, etc. 

Therefore, it is believed that the approach adopted in the paper is valuable and significant. Thus, 

the impact of transmitter’s position and orientation uncertainty on the RSS-based VLP accuracy is 

studied in section 5.4.  

ANN has attracted much attention for solving regression problems. Therefore, an indoor 

VLP system that uses ANN for positioning estimation in the presence of both LOS and NLOS 

multipath signals is proposed in section 5.5. The aim of this work is to investigate the utilization 

of ANN for regression analysis in VLP systems. The error performance of the proposed system is 

evaluated under a noisy channel by adding noise over a wide range of SNR. For that, three different 

ANN algorithms including Levenberg-Marquardt, Bayesian regularization, and scaled conjugate 

gradient algorithms are explored to minimize the positioning error of our proposed VLP system. 

The error performance is analysed and compared with the traditional RSS technique which uses 

an NLLS algorithm along with a polynomial regression model. 

Following our previous research based on the polynomial regression approach, the results 

from that research suggest that, the accuracy of the polynomial regression model depends on the 

specific area within the room. Therefore, section 5.6, focuses on the new indoor VLP system that 

is proposed based on the polynomial regression and SVM. In order to analyze it, two different 

environments are considered an empty room and a furnished room, where multipath channels are 

considered and estimated using OpticStudio® software. In both environments, the total room area 

is divided into different regions, such as, corners, the middle area of the room, regions near the 

walls, or depending on furniture layout, thus creating four different scenarios. At a second stage, 

polynomial fitting is carried out for these different regions and the position is estimated for the 

entire room using the polynomial regression approach. Finally, SVM is employed to perform the 

classification and select the best region based on the lowest positioning error. 

Another prominent technology, i.e., Deep learning (DL) is a subfield of machine learning 

that outperforms traditional methods in a wide range of applications and has been extensively 

employed in estimating position. Therefore, a new visible light positioning system based on CNNs 

is proposed in which LEDs are used as transmitters and a rolling shutter camera is used as a 

receiver. A detection algorithm named SSD is used which relies on CNN (i.e, MobileNet or 

ResNet) for classification as well as position estimation of each LED in the image. Additionally, 
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a PnP problem algorithm is employed to estimate the receiver position. The system is validated 

using a real-world size test setup containing eight LED luminaries. 
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5.1 Current Trends on Visible Light Positioning Techniques 

This section is a version of the published manuscript: 

N. Chaudhary, L. N. Alves, and Z. Ghassemlooy, ‘Current Trends on Visible Light 

Positioning Techniques’, in 2019 2nd West Asian Colloquium on Optical Wireless 

Communications (WACOWC), Tehran, Iran, Apr. 2019, pp. 100–105. 

 

Connection to my Ph.D. thesis: 

Firstly, a thorough review of the literature on visible light positioning techniques was conducted. 

This section briefly reviewed conventional positioning methods based on RSS, TDOA, and AOA. 

Then, it focused on the current research trends, relying on machine learning techniques, sensor 

fusion and communication requirements. 
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I. INTRODUCTION  

The need for accurate indoor positioning systems (IPSs) 
and location-based applications are developing day by day. 
IPS offer surveillance, navigation and object tracking services, 
which have an increasing number of applications in numerous 
areas, for example, indoor parking facilities, shopping malls, 
manufacturing, supermarkets, big warehouses, and 
autonomous navigation, to mention a few. Even though, 
global positioning system (GPS) has become one of the most 
popular example for outdoor positioning systems, it is unable 
to provide high precision in indoor environments, because the 
GPS signals (i.e., radio frequency (RF)) do not penetrate well 
through the building walls, which results in disruptive errors 
and cannot be used in mines and underground environments 
[1-3]. Already, a few different technologies, for example, 
ultrasound [4], radio waves [5], [6], radio frequency 
identification (RFID) [7], [8], Zigbee, Bluetooth [9] and ultra 
wide band (UWB) [10] have been investigated for IPSs. 
Indoor positioning systems (IPS) based on ultrasounds have 
large ranging and localization errors (the accuracy is 10 cm 
range) because of the fact that its wavelength is generally 
large, and the speed of sound is influenced by the temperature 
of environment [11]. RF based localization faces several 
problems including electromagnetic (EM) radiation, which 
restrict the use of RF based systems in some areas (i.e., 
medical, etc.). Moreover, RF signals are (i) affected by 
multipath effects in the indoor environment which increase 
localization errors; and (ii) constrained by the available 
spectrum, which is highly congested. RFID and UWB 
recognize signals for positioning with the help of dedicated 
infrastructure and special devices. Other positioning methods, 
such Zigbee and Bluetooth based systems are vulnerable to 
fluctuations in signal sources. 

On a different edge, light has been used to infer location 
for a long time. Our ancestors used the stars to navigate the 
globe. The astrolabe and the quadrant are perhaps within the 
first tools to measure angles based on the light from the stars 
– a precursor of angle of arrival. More recently, the light 
intensity and pulsation of distant stars, widened our perception 

of how immense is the universe we live in. This was 
accomplished with the discovery of Cepheid stars, by 
Henrietta Leavitt, and used by Edwin Hubble, to reveal that 
the universe is much larger than our local galaxy [12-13]. 

Light emitting diodes (LEDs) based visible light 
positioning (VLP) techniques become more prominent for 
indoor positioning systems compared to other positioning 
systems because of advantages offered by the LED technology 
such as [14-17]: (i) free from EM interference; (ii) compliance 
with RoHs recommendations; (iii) longer lifetimes when 
compared with other light sources; (iv) energy efficient; and 
(v) low cost and allow fast switching – a feature which enables 
data transmission. In VLP systems, photodetectors (PDs) or 
camera (i.e., image sensors (ISs)) are commonly used at the 
Rx [18–22]. The formers are widely reported in the literature, 
whereas the latter offers higher positioning accuracy, but at 
the cost of complex positioning algorithm and the limited 
positioning speed. Currently, VLP technologies, are based on 
the triangulation technique where the distance or angle 
between transmitter (Tx) and receiver (Rx) needs to be 
estimated. The distance or the angle can be determined in a 
number of ways including received signal strength (RSS), 
angle of arrival (AOA), time of arrival (TOA) and time 
difference of arrival (TDOA) [20], [23]. These methods 
present their intricacies. The major drawback of AOA is that 
the system need expensive sensor arrays or ISs to measure the 
incident angle with high accuracy, which is needed in indoor 
environments [24]. TOA need accurate synchronization 
between Tx (LED) and Rx, which increases the deployment 
cost [25]. On the other hand, RSS needs accurate 
determination of the incident signal power, thus being strongly 
dependent on signal to noise ratio (SNR) [16]. Simple 
approaches, rely on proximity based and scene analysis, which 
trades simplicity with the accuracy [23]. These are suitable for 
low accuracy systems, not demanding high location precision. 

Machine learning has been widely used for position 
estimation of RF-based IPSs, for example Wi-Fi, ZigBee and 
UWB. In [26], machine learning has been introduced for VLP 
for the first time. The system is capable of reaching 0.31 m of 
average accuracy in an indoor environment of dimension of 

4.344 m. In [27], a VLP algorithm based on artificial neural 
network (ANN) was considered where positioning was 
achieved by a trained ANN in a diffuse channel. The sensor 
fusion and multi-technology approaches are also reported in 
the literature [34]. Additional sensors like compass or 
gyroscopes, are useful to provide attitude correction and 
heading of the sensor. Hybrid technologies are also a means 
to achieve higher positioning accuracies [37]. 
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The rest of the paper is organized as follows: Section II 
explains the VLP applications. In Section III, conventional 
positioning techniques are introduced for IPSs. Section IV 
explains the current research implied on VLP systems. In 
Section V, communication constraints are considered. Finally, 
we make a conclusion/discussion of our review in section VI. 

II. VLP APPLICATIONS 

The VLP systems will have a large number of applications. 
As the creators of the GPS system, would never have 
considered the immense scope of GPS applications as of now 
being used, it is difficult to predict all the future development 
of VLP. However, it is clear that there will be a wide range of 
applications, with various limitations. Some of the 
applications of VLP systems in indoor environments are 
shown in Fig. 1. VLP is particularly suited for various working 
scenarios, such as health care (hospitals), indoor public 
locations (shopping malls, train stations, airports, amongst 
others), tunnels, autonomous vehicles industrial facilities 
(fabrics of the future), manufacturing for robots, etc. 

III. CONVENTIONAL POSITIONING TECHNIQUES 

Figure 2 displays the conventional positioning techniques, 
which can be adopted in VLP systems. Wireless indoor 
positioning techniques can be classified in three types: 
triangulation, scene analysis (also known as fingerprinting) 
and proximity, which are described below.  

A. Triangulation  

Positioning algorithms, which use the geometric 
properties of triangles, are known as triangulation. It includes 
two methods of lateration and angulation. In lateration 
methods, the target location is evaluated by estimating its 
distance from various reference points. In VLP, the reference 
points are light sources and the target is an optical Rx. It is 
relatively difficult to measure the distance directly. Still it is 
possible to estimate distance based on different models, e.g., 
RSS, TOA or TDOA. Angulation estimates the angles with 
respect to few reference points (AOA) and location estimation 
can be completed by discovering intersection points of 
direction lines, which are radii from reference points [28].  

Mathematical modelling for triangulation methods can be 
generalized. Assume (Xi, Yi) is the position of the i-th 
reference point (i.e., Tx) in a two-dimensional space and (x, 
y) represents the position of target (i.e., Rx). Ri can be 
distance from the i-th Tx to the Rx as shown in Fig. 2(a) (in 
case of RSS) or it can be the range with respect to the i-th 
reference point, see Fig. 2(c) (in case of TOA and TDOA).  

The system is described as: 

                                        𝐴𝑋 = 𝐵,                                 (1) 

where  

                                      𝑋 = [𝑥 𝑦]𝑇,     (2) 

 

                          𝐴 = [
𝑋2 − 𝑋1 𝑌2 − 𝑌1

⋮ ⋮
𝑋𝑛 − 𝑋1 𝑌𝑛 − 𝑌1

] ,                          (3) 
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2
[

(𝑅1
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2) + (𝑋2
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2) − (𝑋1
2 + 𝑌1

2)

⋮
(𝑅1

2 − 𝑅𝑛
2) + (𝑋𝑛

2 + 𝑌𝑛
2) − (𝑋1

2 + 𝑌1
2)

] .   (4) 

And the least mean squares solution of the system is given 

by: 

                           𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝐵 ,                                  (5) 

where the matrix (ATA)-1AT is the More-Penrose pseudo 

inverse. 
RSS: This  have been broadly utilized in indoor 

positioning systems and VLP. RSS values are easy to 
measure. The DC channel gain for generalized Lambert 
emitter is given by:  

𝐻(0) = {
𝑚+1

2𝜋𝑑2 cos𝑚𝜙cos𝜓
𝐴𝑟

𝑑2 𝑇𝑠(𝜓)𝑔(𝜓),    0 ≤ 𝜓 < Ψ𝑐

     0,        otherwise
} ,   (6) 

where 𝑚 =  
−𝑙𝑛(2)

𝑙𝑛 (cos(𝐻𝑃𝐴))
,                                                        (7) 

where HPA is the half power angle for the light source, 𝜓 
is the angle of between the light source and the PD normal, 𝜙 
is the angle between the PD and the light source normal, 𝐴𝑟 is 
the PD active area and 𝑑 is the distance between the Rx and 
the light source, 𝑇𝑠(𝜓) is the Rx filter gain, 𝑔(𝜓)  is the optical 
filter gain and Ψ𝑐 is the Rx’s field-of-view. When the Rx has 
estimated the intensity of transmitted signals, each distance 
can be evaluated from the corresponding Tx and circles can be 
drawn with the radii of computed distances. The Rx’s location 
is then computed by the intersection point of the circles. We 
can use the generalized expression to estimate the user 
location [29].  

TOA and TDOA: One of the most prevailing methods 
for positioning is TOA used in GPS. TOA is the absolute 
travel time of a wireless signal from the Tx to the Rx. GPS 

 

Fig. 2. Different positioning algorithms. 

 
 

Fig. 1. Indoor VLP system applications. 
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precision is achieved through very tight synchronization 
conditions between all satellites within the network, often 
relying on atomic clocks. Thus, IPSs normally adopt TDOA 
instead of TOA to avoid the requirement of precise 
synchronization. Although, time synchronization is still 
required between the Txs. For the TOA technique, the 
mathematical expression will be same as the generalized 
expression except for the matrix A, which is represented as: 

         𝐴 = [
𝑋2 − 𝑋1 𝑌2 − 𝑌1 𝑅2 − 𝑅1

⋮ ⋮ ⋮
𝑋𝑛 − 𝑋1 𝑌𝑛 − 𝑌1 𝑅𝑛 − 𝑅1

] .                   (8) 

AOA: Is a technique where the angle of arriving signals 
is measured from different reference points to the Rx. The 
location of the target is then determined as the intersection of 
hyperbolas as shown in Fig. 2(b). The main benefit of AOA-
based systems is that there is no time synchronization 
required between the Tx and the Rx. AOA does not require 
precise signal strength measurements. In addition, it is easier 
to find the AOA of the signals in the optical field by using the 
imaging Rx (i.e., cameras) as compared to utilizing complex 
antenna arrays, which are often used in RD systems. For 
mathematical expression, let αi denote the AOA measurement 
with respect to the i-th Tx, which is given as: 

                            tan𝛼𝑖 =
𝑦−𝑌𝑖

𝑥−𝑋𝑖  
.                                         (9) 

Least square solution of AOA-based system is solved by 
the matrix form represented in the general expression, where 
A and B matrices are given by: 

            𝐴 = [
−sin𝛼1 cos𝛼1

⋮ ⋮
−sin𝛼𝑛 cos𝛼𝑛

],                                     (10) 

                 𝐵 =  [
𝑌1cos𝛼1 − 𝑋1sin𝛼1

⋮
𝑌𝑛cos𝛼𝑛 − 𝑋𝑛sin𝛼𝑛

] .                                  (11) 

B. Scene Analysis 

This refers to the positioning algorithms, which make use 
of fingerprints related to all anchor points in a scene, see Fig. 
2(d). Fingerprint measurement includes all measurement 
methods, which are mentioned previous, namely TOA, 
TDOA, RSS and AOA. Firstly, the real time measurements 
are calculated and then matched with the fingerprints to find 
the target location. The most common used fingerprinting 
technique relies on RSS. The benefit of this technique is power 
and time saving as it takes less time to match fingerprints as 
compared to perform a triangulation technique and 
computing. On the other hand, there is also a disadvantage. 
Fingerprinting requires a pre-calibration step, as the 
fingerprints may change with the system settings. 

C. Proximity 

Generally, when the Txs transmit signals with known 
locations, it is presumed that, the target, which receives the 
signal, is close by. One can determine the closest location to 
the target by comparing the RSS values of the transmitted 
signals. However, this location provides the rough estimation 
of the target location. In addition, if there are multiple signals 
having the same intensity, the target is intended to be in 
middle of these Txs. This positioning technique is relatively 
simple to implement as compared to other positioning 
methods; though, it is not extremely accurate compared to 
techniques that depend on the density of Tx distributions. 

Typically, indoor LED lamps are located 2 or 3 m from each 
other, thus, this technique might be appropriate in situations 
where coarse estimations are acceptable.  

D. Accuracy comparison 

The accuracy of several conventional positioning 
techniques is shown in Fig. 3. Accuracy results reported in 
the literature reflect different system settings and conditions. 
Results were achieved either experimentally or by 
simulation. As it can be seen, no global trend emerges from 
this comparison. The average accuracy lies in the range of 
tenths of centimeters, with lowest achievements being 
reported for RSS and TDOA based systems. 

IV. CURRENT RESEARCH TECHNIQUES  

A. Machine learning 

Machine learning provide systems the ability to learn 
automatically and improve from the experience without being 
explicitly programmed. In the case of VLP, one of the first 
used platforms for machine learning is based on data cleaning. 
Conventional least squares estimates are affected by the 
presence of outliers. Outliers, are data points, which lead to 
incorrect estimates. Amongst several possible data cleaning 
algorithms, clustering is one of the best option that can be used 
in VLP for position estimation improvement. Clustering 
algorithms, such as K-means and KNN (K nearest neighbors) 
seek to find data sets, which satisfy some distance criteria, and 
thus form clusters. In [29], DBSCAN (density-based spatial 
clustering of applications with noise), which is a clustering 
algorithm, was used to classify data into clusters and noise. 
Fig. 4 shows how clusters are formed with a set of points. The 
system comprises multiple Txs. It was found that, the position 
estimation using all Txs and least square approach can be 
biased by outliers (it produce high errors near walls and 
corners).  

The proposed approach, starts by producing a set of 
estimates for sets of 3 Txs, which in turn produces a set of 

 
 

Fig. 3. Comparison of different conventional positioning techniques. 

Current research on VLP system performance is focusing 
on approaches able to enhance system performance. Machine 
learning offers several possibilities for performance 
improvement in VLP, either through the usage of data 
cleaning methods (for instance, using clustering algorithms) 
or ANNs. Sensor fusion, is another approach for performance 
improvement. In this case, additional sensors are used to 
extend the capabilities of VLP. These section reviews, current 
results on machine learning and sensor fusion VLP enhanced 
systems. 
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disperse estimated positions, see Fig. 4. Some of these 
estimates are close to each other and form clusters, whereas 
others are disregarded as outliers. Then a learning procedure 
is applied to infer from the clusters, which is the estimated 
position. This approach improves the accuracy near walls and 
corners compared to the least squares approach. 

Other machine learning examples reported in the literature 
has focused on the usage of multiple classifiers. In [30], a new 
localization technique was proposed based on RSS of visible 
light and fusion of multiple classifiers. This technique is 
different from other RSS based algorithms. Multiple 
classifiers based on RSS fingerprinting are trained by RSS 
fingerprints offline. In the online stage, two robust fusion 
algorithms, namely, grid-dependent least square (GD-LS) and 
grid-independent least square (GI-LS) are designed based on 
these multiple classifiers outputs. The mean square position 
error probability is lower than 5 cm, which is improved by 
63.03% and 93.15% by mesh-independent mean squares and 
grid-dependent least squares, respectively. In [31], an indoor 
VLP was proposed where a ANN model was trained by 
constructing data features using time difference of arrival. The 

positioning error  of about 1.6 cm was reported for this work.  

B. ANNs 

ANNs are mathematical models, which aspires to identify 
correlations in a data set processing in the same manner as the 
human brain. ANN consists of multiple layers of connected 
neurons. Each neuron is stimulated by neurons from previous 
layers, through connections that mimic the biological 
synapses. The weights of the synapses are adjusted by a 
training procedure. The neuron action consists off 
accumulation and activation – it accumulates the signals fed 
from different synapses, and produces an outgoing signal 
through the activation function. ANNs are able to develop 
meaning from complex and uncertain information data sets. 
Traditional application examples consist pattern and feature 
extraction in images. The ANN has the ability to learn how to 
perform a task that is dependent on the information given for 
training or early experience and Self-Organization. 

An ANN model using back propagation is given by:  

          𝑦 =  ∑ 𝑤𝑖𝑥𝑖 + 𝑤0
𝑛
𝑖=1 ,                                          (12) 

where xi is the input, wi is the weight parameter and y is the 
output. In the training stage of an ANN wi are determined. 
E.g., an ANN algorithm with back propagation includes these 
steps: (i) hidden layer nodes values are calculated and used to 
compute the values of the output layer; and (ii) the errors are 
measured at the output layer and transmitted back to the 
hidden layer. The errors are then retransmitted from hidden 
layer to the input layer. The weights are updated after a single 
iteration of forward pass and back transmission. Finally, the 
algorithm is stopped when error function value become 
negligible. 

Figure 5 depicts the usage of an ANN in a VLP system. 
This approach is suitable for systems employing an image 
sensor, where multiple features of the acquired image can be 
explored for positioning. The ANN input can rely on other 
sensors, such as compass or gyroscopes. In [32], a VLP system 
was proposed where an ANN based position estimator was 
used to precisely map the calculated RSS ratios to the 
measured 3D coordinates. A high accuracy was achieved with 

a  of < 10 cm irrespective of arrangement and irradiation 
pattern of LED. The work in [27] proposed an ANN based 
VLP algorithm where positioning is achieved by a trained 
ANN in a diffuse channel. The positioning time was reduced 

about two orders of magnitude and the average  was 
decreased about 13 times when compared to typical RSS-
based positioning algorithm. Additionally, the proposed 
algorithm is suitable for several positioning algorithms due to 
its robustness with a different field-of-view of the Rx and 
wall’s reflectivity.  

C. Sensor Fusion 

This is a technique that combines several sensors to 
improve better results. The size of the sensors became 
considerably smaller and less expensive with the 
enhancements of micro-electromechanical systems (MEMS), 
therefore, their usage in terminal devices, such as smartphones 
follows an increasing trend.  

Magnetometer (magnetic compass), accelerometer and 
gyroscopes are the popular sensors, which can be used for 
positioning. A gyroscope measures the angular velocity of the 
sensor. An accelerometer determines the external exact force 
acting on the sensor. Orientation information of sensor can be 
determined by the integration of gyroscope measurements. 
E.g., suppose the coordinate system is rotating around sensor 
axes x, y and z with angular velocities α, γ and ρ, respectively 
as shown in Fig. 6 where the output of gyroscope can be taken 
to generate a composite rotation matrix as given by: 

 
Fig.4 Formation of cluster using machine learning algorithm (reprint 

with permission from [29]). 

 

Fig 5. Setup for ANN and sensor fusion. 
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          𝑅(𝛼, 𝛾, 𝜌) = 𝑅(𝛼)𝑅(𝛾)𝑅(𝜌),                              (13) 

where R(α), R(γ) and R(ρ) are the rotation matrices in x, y 
and z directions, respectively. 

 

In [33], a novel indoor VLP system was proposed based 
on the sensor fusion technique. The data is collected from the 
motion sensors and built-in image sensor and then combined 
to improve the accuracy. A singular value decomposition 
based sensor fusion (SVD-SF) algorithm was proposed, which 
is less complex. The positioning accuracy with this algorithm 
is around 44% compared to the one that utilize a single image 
sensor. A fusion positioning system based on extended 
Kalman filters was proposed in [34] where VLC position was 
fused with the inertial navigation data. This system achieved 

 in centimeters. In [35], a novel IPS was proposed where 
sensor fusion and LED beacons were utilized to determine the 
position of target sensor. The sensor fusion includes a camera, 
an inclinometer and a magnetometer. High frequency beacon 
identifiers were transmitted by LED beacons and the detected 
code was under-sampled by using a camera over a long 
distance. In this scheme, novel geometric and consensus-
based methods were used to perform localization. This system 
achieved an accuracy in the low decimeter range.  

V. COMMUNICATION CONSTRAINTS 

An important part of the VLP system is the 
communications with the infrastructure. This is generally 
accomplished using the same light sources, which act as 
reference points for positioning. A typical room has several 
light sources on the ceiling for illumination. These poses both 
advantages and disadvantages to the VLP system 
performance. More light sources are useful from a positioning 
perspective, as more sources imply accurate positioning 

information and reduced . On the other hand, multiple Txs 
(i.e., LEDs) imply increased levels of interference at the Rx. 
Methods to solve these interference problems, usually resort 
to Multiple-Input Multiple-Output (MIMO) techniques, 
equalization and advanced multilevel and multicarrier 
modulation formats (such as Orthogonal Frequency Division 
Multiplexing (OFDM), multiband carrier less amplitude and 
phase (m-CAP) modulation [36]. Using ISs as the Rxs is 
another possibility, which enables natural separation of the 
multiple Txs. 

These approaches have in general a high cost in terms of 
system complexity and time to receive data. Here, we 
concentrate on the time cost. It is of paramount importance for 
VLP systems to generate position estimates in real time. For 
the generality of the applications, the user is moving with the 
VLP sensor, as a consequence, if the estimate takes a longer 
time to be achieved, there will be a large uncertainty in the 
position. Here we propose a method to measure how fast 
positioning information can be retrieved from the network. 

The first thing to consider is the SNR, which is 
proportional to the signal strength and is inversely 
proportional to noise as given by: 

                            𝑆𝑁𝑅 =
𝑅2𝑃rSignal

2  

𝜎2 ,                                    (14) 

where R is the Rx’s responsivity, PrSignal is the received signal 
power and σ is the total noise variance. Moreover, SNR 
depend on the distance between the Tx and the Rx. If the Rx 
is too far, the distance will be large and the SNR degrades with 
the distance. The second ingredient is the bit error rate (BER), 
which is given by:   

             𝐵𝐸𝑅 = 𝑓(𝑆𝑁𝑅).                                              (15) 

Since, the received information may contain errors; a 
single packet transmission may not be enough. We may 
assume that, the network is continuously transmitting data to 
ensure that the Rx will receive the data. The packet delivery 
ratio (PDR), which is a measure the effective of the process, 
is defined as the ratio of received number of packets without 
errors to the total number of transmitted packets. For N-bits 
long packets PDR can be defined in terms of BER as: 

            𝑃𝐷𝑅 = (1 − 𝐵𝐸𝑅)𝑁 .                                        (16) 

Finally, the time to receive position information from the 
network can be evaluated by: 

            𝑇𝑟 =
𝑁𝑇𝑏

𝑃𝐷𝑅
.                                                           (17) 

where Tb is the bit duration. 

Equation (16) allows to measure how effective a given 
modulation format can be in terms of time to retrieve 
information from the network. Figure 7 depicts some 
examples of how the normalized time varies for different 
SNRs and the modulation formats. As can be seen, as the 
complexity of the modulation format increases, the 
normalized time decreases, showing that, higher order 
modulation formats are more robust against errors. 

VI. CONCLUSIONS 

This paper presented a survey on visible light positioning 
systems, with special focus on current research trends. The 
paper covered VLP applications, conventional positioning 
methods, current trends resorting to machine learning and 

 

Fig 6. Gyroscope for attitude correction 

 

Fig. 7. Normalized time of different modulation schemes with 8 (N) bits. 
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sensor fusion, and terminated with communication system 
constraints. Major observation states that, combining 
positioning and communication demands for higher 
complexity, or image sensor based systems, which are able to 
infer position and separate transmitting sources. Under these 
circumstances, usage of ANNs and neuromorphic computing 
architectures, present suitable frameworks VLP system 
development. 
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5.2 Feasibility Study of Reverse Trilateration Strategy with a single Tx for 

VLP  

This section is a version of the published manuscript: 

N. Chaudhary, L. N. Alves, and Z. Ghassemlooy, ‘Feasibility Study of Reverse 

Trilateration Strategy with a single Tx for VLP’, in 2019 2nd West Asian Colloquium on 

Optical Wireless Communications (WACOWC), Tehran, Iran, Apr. 2019, pp. 121–126. 

Connection to my Ph.D. thesis: 

A study of visible light positioning system that rely on a single transmitter to infer position 

information was conducted. The system adopted a reverse trilateration scheme, where a set of three 

photodiodes is employed to estimate the position. The reverse trilateration scheme adopted for this 

system, yields to a very simple mathematical framework, suitable for low power and low 

complexity systems. The position information was inferred through the received signal strength, 

without the need for sophisticated angle measurements or precise synchronization as is the case in 

angle of arrival and time difference of arrival systems. In this work, the results revealed that the 

proposed system showed high susceptibility to noise, thus requiring high signal to noise ratios in 

order to achieve low positioning errors. 
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Abstract— This paper describes a visible light position 

system relying on a single transmitter to infer position 

information. The system adopts a reverse trilateration scheme, 

where a set of three photodiodes is employed to estimate the 

position. The reverse trilateration scheme adopted for this 

system, yields to a very simple mathematical framework, 

suitable for low power and low complexity systems. The position 

information is inferred through Rx signal strength, without the 

need for sophisticated angle measurements or precise 

synchronization as is the case in angle of arrival and time 

difference of arrival systems. Simulation results show that the 

proposed system shows high susceptibility to noise, thus 

requiring high signal to noise ratios in order to achieve low 

positioning errors. 

Keywords—Visible light positioning, Photodiode, RSS, 

Reverse Trilateration. 

I INTRODUCTION  

The global positioning system (GPS) is an unquestionable 
reference when discussing positioning systems, which is 
widely and effectively used in outdoor environments. 
However, it lacks accuracy in indoor environments, mostly 
due to poor coverage and high signal attenuation of the radio 
waves propagating through solid objects. Thus, the need for a 
more reliable and accurate positioning technologies for indoor 
applications, which has seen a grown of research activity in 
recent years [1], [2]. Several positioning systems based on 
different technologies have been proposed, such as, wireless 
local area networks (WLAN), ultrasounds, ultra wide band 
(UWB), radio frequency identification (RFID) and Bluetooth. 
However, most of these systems have limited positioning 
accuracies [3-8]. System based on radio waves are affected by 
multipath fading [9], whereas ultrasound based systems are 
influenced by the ambient temperature [10]. UWB and RFID 
schemes have a limited range of action [11]. Finally, 
Bluetooth demands user association, a feature which is not 
always desirable [12]. 

Recently, visible light communications (VLC) has become 
an interesting and complementary communications 
technology to the radio frequency wireless systems [13]. 
Motivated by the availability of solid-state lighting devices, 
VLC systems explore synergies between illumination and data 
communications, using the same light emitting diode (LED) 
based lights. Visible light positioning (VLP), has emerged 
quite obviously as a special application of VLC, which is more 
suited for indoor scenarios. Given that, lighting systems come 
with a spatial distribution feature, using these sources as 
beacons (or base-stations) for positioning provides a fertile 
ground for research. Traditional indoor positioning techniques 

using LED includes, received signal strength (RSS), angle of 
arrival (AOA), time of arrival (TOA) and time difference of 
arrival (TDOA), as well as proximity and fingerprinting [14]. 
TOA is a well-known method for localization, which is 
complex requiring accurate synchronization between the 
transmitter (Tx) and the receiver (Rx) [15]. In TDOA systems 
the requirement for synchronization is not so stringent as for 
TOA, but still requires an accurate clock reference at the Tx 
side. AOA systems require Rx diversity in order to extract the 
angle information [16]. Image based systems use image 
sensors as a means to achieve the Rx diversity [17]. RSS 
systems estimate the position based on the received signal 
power, thus being sensitive to the noise. Nevertheless, RSS 
systems have higher accuracy compared to proximity and 
fingerprinting techniques [18], as well as being simpler and 
cost-effective.  

One common requirement for these methods is the need to 
have measurements based on 3 different sources, which is a 
mathematical imposition, where each measurement produces 
a locus of possible positions. Note that, the ambiguity is 
removed using other measurements. Therefore, considering 
these constraints, a minimal set up could be achieved using a 
single photosensitive sensor (e.g., a photodiode (PD)), and at 
least three reference Txs. There have been several 
contributions exploring minimal configurations, which are 
based on different set of configurations, or combination of 
multiple schemes. In [19], the authors described a VLP system 
using two LEDs. The proposed approach carried out two RSS 
measurements, which were sufficient to estimate the position 
to the right (or left) of the line defined by the Txs. The system 
achieved a positioning accuracy lower 20 cm under moderate 
SNR of 13 dB, despite having lower system complexity. In 
[20], a three dimensional (3D) indoor VLP system was 
proposed based on single Tx and a single tilted Rx as well as 
using RSS and AOA to improve positioning accuracy. The 
tilted Rx was mounted on a spinning platform, and the 3D 
space representation was distributed into several two-
dimensional (2D) planes, which were handled by lifting the 
Rx’s platform. The proposed VLP system offered an average 
position error (PE) of < 35mm. In [21], a compact VLP system 
with a single Tx and single tilted Rx was proposed for an 

indoor environment of 0.60.61.1 m with an average PE of 
<  25  mm. In [22], a reverse trilateration scheme employing 
three Rxs in the ceiling and one Tx in the ground was reported 
with a PE of < 0.2 m. The proposed system was relevant for 
applications where the network needs to know the position of 
the user.  

This paper focuses on the reverse trilateration scheme 
where the position sensor uses three PDs and relies on a single 
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Tx to determine the location. The system employs RSS, which 
makes this approach suitable for low power and low 
complexity applications. The paper shows theoretical analysis 
supported by simulation to investigate the system 
performance. We show that, the system’s performance is 
highly influenced by noise. We show also, that, performance 
improvements can be achieved using averaging techniques. 

The rest of the paper is organized as follows: Section II 
details the system design and modeling. Section III develops 
the system error performance analysis. Section IV presents the 
simulation set up and the achieved results. Finally section V 
gives the concluding remarks.   

II SYSTEM DESIGN AND MODELING 

The schematic of the proposed reversed trilateration 
strategy is illustrated in Fig. 1. The VLP sensor comprises 3 
PDs positioned on a circle of radius Rs. The projection of the 
distances between each PDs and the Tx are given by rk, where 
k = 1, 2 and 3. Using rk it is possible to form a well posed 
system of two equations for the center position of the sensor. 
These three distances provide the radius of three circles, 
centered at each PD, with common intercept at the Tx’s 
position. 

Let the positions of kth PD be Xo
k = (xo

k, yo
k)T with Xo

1 = (-

Rs, 0)T, Xo
2 = (Rs/2, Rs3/2)T and Xo

3 = (Rs/2, -Rs3/2)T. The 
Tx projection on the x-y plane is XT = (xT, yT)T. The position 
of the VLP sensor in the x-y plane as a function of an arbitrary 

translation X = (x, y)T and an arbitrary rotation R() is given 
by: 

 𝑿𝒌 = 𝑿 + 𝑹(𝜃)𝑿𝒌
𝒐  (1) 

The translation vector X is the center position of the sensor 
and the objective of the estimation procedure. rk defines a 
circle with the center X and passing through XT, which form a 
set of three quadratic equations in standard form as given by: 

 (𝑿𝑻 − 𝑿𝒌)
𝑇(𝑿𝑻 − 𝑿𝒌) = 𝑟𝑘

2 (2) 

Note rk is estimated using RSS. Developing equation (2) 
gives: 

 
𝑿𝑻
𝑇𝑿𝑻 + 𝑅𝑆

2 + 𝑿𝑇𝑿 − 2(𝑿𝒌
𝒐)𝑇𝑹(𝜃)𝑇(𝑿𝑻 − 𝑿)

= 𝑟𝑘
2 

(3) 

From (1) and (2) we know that (Xo
k)TXo

k = Rs
2 and R-1() 

=RT(). The quadratic terms on the left hand-side of (3) can 
be removed by subtraction, thus yielding a system of two 
linear equations, which in the matrix form is given by: 

 −2𝑅𝑠𝑨𝒔𝑹(𝜃)
𝑇(𝑿𝑻 − 𝑿) = ∆𝒓 (4) 

with 

 𝑨𝒔 =
1

𝑅𝑠
[
(𝑿𝟐

𝒐)𝑇 − (𝑿𝟏
𝒐)𝑇

(𝑿𝟑
𝒐)𝑇 − (𝑿𝟐

𝒐)𝑇
] =

1

𝑅𝑠
[
3 2⁄ √3 2⁄

0 −√3
] (5) 

 ∆𝒓 = [
𝑟2
2 − 𝑟1

2

𝑟3
2 − 𝑟2

2] (6) 

The estimated position is directly given by: 

 𝑿 = 𝑿𝑻 +
1

2𝑅𝑠
𝑹(𝜃)𝑨𝒔

−1∆𝒓 (7) 

Equation (7) exhibits some interesting features. (i) most 
terms in (7) are fixed vectors and matrix except from Δr and 

R(). The sensor matrix As, is fixed by the standard PD’s 
positions, see Fig. 1. The arbitrary rotation of the sensor can 
be dealt with using a compass or a gyroscope. Here, we 

assume that  = 0º (i.e., no rotation). Furthermore, as it will 
be demonstrated, the error performance is not affected by the 
sensor’s rotation. 

A The Rx Signal Strength 

Figure 2 depicts the set up conditions for signal 
transmission, between the Tx and the kth Rx. The objective of 
RSS is to measure rk, i.e., the projection of the distance vector 
dk on the x-y plane. These estimations are based on the DC 
channel gain of the communications link. The received signal 
for Lambertian emitter for a line of sight (LoS) path is given 
by:  

 𝑆𝑘 = 𝐻𝑜𝑇𝑠(𝜑𝑘)𝑔(𝜑𝑘)
𝑐𝑜𝑠𝑚(𝜓𝑘)𝑐𝑜𝑠(𝜑𝑘)

‖𝒅𝒌‖
2

 (8) 

where 

 𝐻𝑜 =
𝑚 + 1

2𝜋
𝐺𝑜ℛ𝐴𝑟𝑃𝑡 (9) 

 𝑚 = −
ln(2)

𝑙𝑛(𝑐𝑜𝑠(𝐻𝑃𝐴))
 (10) 

where HPA is the half power angle for the light source, 𝜓k 
is the angle between dk and the LED normal, φk is the angle 
between dk and the PD normal, 𝐴𝑟 is the PD active area, Go is 
the transimpedance gain of the Rx, ℛ is the PD responsivity 
and Pt is the transmit power. Ts (𝜑𝑘) is the Rx filter and g(𝜑𝑘) 
is the optical concentrator [23]. For the forgoing analysis, we 
will assume that, Ts (𝜑𝑘)  and g(𝜑𝑘)  are both unity. Knowing 
that ||dk

2|| = rk
2 + h2 we can solve (8) to find rk

2 as given by: 
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Fig.1. Reverse trilateration concept 
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Fig. 2. System model of a single LED-based Tx and the Rx sensor 

with three PDs 
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 𝑟𝑘
2 = (

𝐻𝑜ℎ
𝑚+1

𝑆𝑘
)

2
𝑚+3

− ℎ2 (11) 

where h is the vertical distance between the Tx and the Rx. 
Using (11), the Δr vector can be expressed as a function of the 
received signals on the 3 PDs by: 

 ∆𝒓 = (𝐻𝑜ℎ
𝑚+1)

2
𝑚+3∆𝑺 (12) 

 ∆𝑺= [
𝑆2
−

2
𝑚+3 − 𝑆1

−
2

𝑚+3

𝑆3
−

2
𝑚+3 − 𝑆2

−
2

𝑚+3

] (13) 

III  ERROR PERFORMANCE ANALYSIS 

The error performance analysis can be assessed using (7). 
The reasoning is very simple. If the detected signal is affected 
by noise, the measured signal power will contain errors, which 

are defined by small changes in Δr, i.e., Δr → Δr + r. Using 

(7) we have ΔX → ΔX + X, where X is the coordinate 

displacement due to r, which is given by: 

 𝜹𝑿 =
1

2𝑅𝑠
𝑹(𝜃)𝑨𝒔

−1𝜹𝒓 (14) 

We may transform this into a distance error, as given by: 

 𝛿𝑋 = √𝜹𝑿𝑻𝜹𝑿 =
1

2𝑅𝑠
√𝜹𝒓𝑇𝚲𝒔𝜹𝒓 (15) 

where s = (As
-1)TAs

-1. Equation (15) shows that, the 
distance error does not depend explicitly on the sensor’s 
rotation.  

A The Effect of Noise on X 

Noise can be incorporated into the error model in a very 
simple way. The effect of noise on the detected signal, by the 

kth PD is expressed by Sk → Sk + nk., where nk is the additive 
white Gaussian noise. Using the signal to noise ratio (SNR), 

, we find a simple transformation rule, which states                    

Sk → Sk(1 + 1/). Now, using (12) and (13), and re-working 
(15) we have: 

 𝛿𝑋 = 𝐺𝑆
(𝐻𝑜ℎ

𝑚+1)
2

𝑚+3

2𝑅𝑠
((1 +

1

√𝛾
)
−

2
𝑚+3

− 1) (16) 

where Gs = (ΔS
TsΔS)1/2. Equation (16) exhibits the 

distance error dependency on all the system’s parameters. It is 
noticeable that, the geometrical factor Gs depends on the 

sensor geometry (i.e., via s) and the detected signal power. 
Figure 3 depicts Gs for two different values of HPA (i.e., 60º 

and 30º), in a room of size 10102.4 m3, with one Tx 
positioned in the center. As it can be seen, Gs has a circular 
symmetry, showing that the distance error is indeed 
independent of sensor’s rotation. 

IV  SIMULATION RESULTS 

This section outlines the system set-up conditions and 
present the simulation results. The simulation set-up default 
parameter’ values are given in Table 1. 

A General Error Performance Assessment 

The effect of noise on the estimated position can be 
assessed through simulation, using Matlab. This is 
accomplished by adopting the following steps: (i) simulating 
the signal reception for a grid of possible Rx’s positions; (ii) 
using (11) to calculate rk for each PD; (iii) estimate the 
position using (7); and (iv) finally, calculate the PE as the 
difference between the estimated and real positions. This 
procedure is repeated for different SNR values.  

Figures 4 and 5, depicted the PE spatial distributions in a 

room of 10102.4 m3, for SNRs of 50 and 60 dB, 
respectively. The unusually high SNR values are a clear 
indication of the susceptibility of the sensor to noise. RSS 
relies on detected signal power, as sensor PDs are closer 
together, where the received signal power by the three PDs do 
not change much. Noise effects become of paramount 
importance under these circumstances. As it can be seen from 
Figs. 4 and 5, the error increases as we move to the periphery 
of the room, which is in agreement with the geometrical error 
dependence embedded in Gs, see Fig. 3.  

Statistically speaking, it is not very relevant to compare 
performance in terms of extreme error achievements, since the 
error changes randomly for different simulations. In addition, 

 
Fig. 3. The distance error geometrical factor Gs for two different 

HPA values. 

Table.1 Default value of the system’s parameters. 
 

Tx-Rx parameter 

Ar 100 mm2 Area of the PD 

ℛ 1 A/W Responsivity 

Pt 1 W Transmit power 

Go 1 M Rx’s gain 

HPA 60º Half power angle 

Geometrical Parameter 

dx 0.5 m x grid resolution 

dy 0.5 m y grid resolution 

nt (0, 0, -1)T TX heading vector 

nr (0, 0, 1)T RX heading vector 

XT (0, 0, h + hr)T TX position 

Rs 0.1 m Sensor radius 

h 2.2 m Ceiling height 

hr 0.2 m Sensor height 

 0º Sensor rotation angle 
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the average errors are not good performance indicators, as 
both high and low measured errors are taken into 
consideration with the equal weight. Instead, we propose a 
different error measure, which is more aligned with the 
probability theory. This measure, computes the percentage of 
estimates that fall below a certain distance criterion. In a total 

of N estimates, let (err < ε) represent the number of estimates 
with the positioning error below ε, the PE is defined by: 

 𝑒𝑟𝑟(휀) =
(𝑒𝑟𝑟 < 휀)

𝑁
 (17) 

It is readily apparent that, as N tends towards infinity, err(ε) 
tends to the probability of having error estimates below ε. In 
Figs. 4 and 5, the achieved indicators for ε=10 cm, were, 
31.5% and 79.1% for 50 and 60 dB, respectively. 

B Error Performance Rs Dependency 

Figures 6 and 7 depict the PE dependency on SNR and Rs. 
As before ε=10 cm. Fig. 6, depicts the percentage of estimates 
with the error below 10 cm, for different values of Rs (5, 7.5 
and 10 cm) for variable SNR values (20 to 70 dB). The 

simulation considered a room size of 10102.4 m3 with a 
grid resolution of 5 cm (corresponding to N = 40401 position 
estimates). As it can be seen, the number of estimates with the 
error below 10 cm tends to increase with SNR, which is in 
agreement with (16). Lower values of Rs require higher SNRs 

to achieve the same performance. Equation (16) seems to 
suggest that, the error is monotonic with Rs - higher Rs values 
mean less error. In order to further explore the error 
dependency on Rs, we repeated the simulation for fixed values 
of SNR (50, 60 and 70 dB) and for range of Rs (i.e., 1 to 20 
cm, as shown in Fig. 7. For each SNR value error performance 
increases monotonically with Rs. This behavior can be 
understood by recalling that Δs depends on the norm of the 
distance vectors dk. Since the PDs positions are function of Rs, 
dk depends on Rs as well.  

C Error Performance HPA Dependency 

Figures 8 and 9 depicts the PE dependency on both SNR 
and HPA. For this study, we followed a similar approach as 
described in section IV-B. Figure 8 depicts the percentage of 
errors below 10 cm, for fixed values of HPA (45º, 30º and 15º) 
and a range of SNR. Here too, the PE increases with the SNR 
and decreasing values of HPA. Note, lower HPA, means 
transmitting sources with higher directivity and thus higher 
values for m, which translate to less geometrical dependence 
– Gs becomes flatter. Figure 9 shows the PE as a function of 
HPA for range of SNRs. Here we see that, the PE reduces with 
increasing values of HPA as predicted from Gs.  

 
Fig. 4. The positioning error spatial distribution with SNR=50 dB. 

 
Fig. 5.  The positioning error spatial distribution with 

SNR=60 dB. 

 
Fig. 6.  The positioning error performance as function of SNR, for 

fixed values of Rs. 

 
Fig. 7. The positioning error performance as function of Rs, for 

fixed values of SNR. 
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D Error Performance using Averaging Techniques 

Figure 10 depict the averaging effect on the PE, which 
shows the error below 10 cm for fixed values of SNR of 30, 
40 and 50 dB as function of the number of averaging steps. It 
can be seen from the Fig 10 that, the error performance 
increases with the number of averaging steps and SNR. 
Therefore, it is possible to use averaging to improve PE. 

V CONCLUSIONS 

This paper presented a feasibility study on the usage of 
reverse trilateration for position estimation, based on RSS. 
The system under study, comprised a single Tx and three PDs 
based Rx. Simulation results disclosed that, the system is very 
susceptible to the noise, demanding very high SNR in order to 
achieve low positioning error performance. As a standalone 
system, the proposed scheme is not feasible. However, 
considering that RSS can be supported with averaging 
techniques (such as spread spectrum) able to improve SNR, 
the proposed system can represent a possible choice for low 
power and low complexity VLP positioning sensors. System 
performance analysis disclosed some important results, 
which could be of interest for other applications, namely: (i) 
the simple estimation equations can be of use to study and 
optimize transmitter placement in conventional trilateration 
schemes; and (ii) performance based on the probability of 

error being lower than some predefined value can be taken as 
a standard approach for performance analysis in VLP 
systems. 
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5.3 An Indoor Visible Light Positioning System Using Tilted LEDs with High 

Accuracy  

This section is a version of the published manuscript: 

N. Chaudhary, O. I. Younus, L. N. Alves, Z. Ghassemlooy, S. Zvanovec, and H. Le-Minh, 

‘An Indoor Visible Light Positioning System Using Tilted LEDs with High Accuracy’, 

Sensors, vol. 21, no. 3, p. 920, Jan. 2021. 

Connection to my Ph.D. thesis: 

The accuracy of the received signal strength-based VLP system in indoor applications is 

constrained by the tilt angles of transmitters and receivers as well as multipath reflections. 

Therefore, for the first time, it was shown that tilting the transmitter can be beneficial in VLP 

systems considering both LOS and NLOS transmission paths. With the transmitters oriented 

towards the center of the receiving plane (i.e., the pointing center F), the received power level is 

maximized due to the LOS components on F. It was also proved that, the proposed scheme offers 

a significant accuracy improvement of up to ~66% compared with a typical non-tilted transmitter 

VLP at a dedicated location within a room using a low complex linear least square algorithm with 

polynomial regression. The effect of tilting the transmitter on the lighting uniformity was also 

investigated and results proved that the uniformity achieved complies with the European Standard 

EN 12464-1. Furthermore, it was revealed that the accuracy of VLP can be further enhanced with 

a minimum positioning error of 8 mm by changing the height of F. 
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Abstract: The accuracy of the received signal strength-based visible light positioning (VLP) system 

in indoor applications is constrained by the tilt angles of transmitters (Txs) and receivers as well as 

multipath reflections. In this paper, for the first time, we show that tilting the Tx can be beneficial in 

VLP systems considering both line of sight (LoS) and non-line of sight transmission paths. With the 

Txs oriented towards the center of the receiving plane (i.e., the pointing center F), the received 

power level is maximized due to the LoS components on F. We also show that the proposed scheme 

offers a significant accuracy improvement of up to ~66% compared with a typical non-tilted Tx VLP 

at a dedicated location within a room using a low complex linear least square algorithm with pol-

ynomial regression. The effect of tilting the Tx on the lighting uniformity is also investigated and 

results proved that the uniformity achieved complies with the European Standard EN 12464-1. 

Furthermore, we show that the accuracy of VLP can be further enhanced with a minimum posi-

tioning error of 8 mm by changing the height of F. 

Keywords: localization; visible light communication; visible light positioning; received signal 

strength; linear least square; polynomial regression; Tx’s tilting 

 

1. Introduction 

Coronavirus disease 2019 (COVID-19) has had a major impact on society at a global 

level, where social distancing, monitoring, and tracking has become effective in control-

ling and reducing the spread of the virus [1]. Precise localization and tracking technolo-

gies for use in indoor and outdoor environments will play a crucial role in dealing with 

COVID-19 and other pandemic outbreaks in the future. Nowadays, indoor positioning 

has a prominent contribution in day-to-day activities in organizations such as health care 

centers, airports, shopping malls, manufacturing, underground locations, etc., for the 

safe operating environments. In indoor environments, both radio frequency (RF) and 

optical wireless-based technologies could be adopted for localization [2,3]. Although the 

RF-based global positioning system offers higher penetration rates with reduced accu-

racy (i.e., in the range of a few meters), it does not work well in indoor environments 

(and not at all in certain cases such as tunnels, mines, etc.) due to the very weak signal 

and no direct access to the satellites [4–6]. On the other hand, the light-based system 

known as a visible light positioning (VLP) system, which uses the light-emitting diodes 

(LEDs)-based lighting infrastructure, could be used at low cost and high accuracy com-

pared with the RF-based system [7,8]. 

Citation: Chaudhary, N.; Younus, 

O.I.; Alves, L.N.; Ghassemlooy, Z.; 

Zvanovec, S.; Le-Minh, H. An  

Indoor Visible Light Positioning  

System Using Tilted LEDs with High 

Accuracy. Sensors 2021, 21, 920. 

https://doi.org/10.3390/s21030920 

Received: 10 December 2020 

Accepted: 26 January 2021 

Published: 29 January 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 



Sensors 2021, 21, 920 2 of 16 
 

 

VLP can be implemented using different techniques. Proximity and scene analysis 

(i.e., fingerprinting) are considered the simplest methods with relatively low positioning 

errors εp i.e., typically in a range of 10 to 45 cm, depending on the fingerprint database [8–

10]. In the scene analysis technique, the estimation process of the relative position can be 

obtained by comparing the measured value with a pre-measured location of each posi-

tion and then matching it to determine the real position. However, the measurement can 

be affected by the distributions of base stations, i.e., transmitters (Txs), shadowing and 

blocking, as well as the absolute location (i.e., probabilistic and correlation) dependency 

on pattern recognition techniques [9]. A VLP using two photodiodes (PDs) and an image 

sensor (IS) was proposed in [7,8,11]. Note, visible light communication (VLC) with IS 

(composed of a large PD array) naturally fits well with multiple inputs multiple-output 

systems in indoor and outdoor applications. In IS-based VLP, image-processing tech-

niques can be used to determine the position but at the cost of increased complexity [12]. 

Note that, in VLP the transmission speeds (i.e., data rates) of the PD and IS are not critical 

at all since the aim is to achieve positioning with high accuracy [13]. Most research re-

ported on VLP has focused on the investigation of geometrical properties using triangu-

lation/trilateration, fingerprinting, or proximity methods to determine the transmission 

distance based on establishing a one-to-one relationship between the target location and 

its received signal strength (RSS). In such works, the analyses were based on the intensity 

modulation, angle of arrival [9], time of arrival [10], time difference of arrival [14], time of 

flight (TOF), and direct detection. In VLP systems, linear least square (LLS) or non-linear 

least square (NLLS) algorithms are often used for the position estimation [15–17]. 

Despite the fact that the user’s mobility can influence the performance of the VLP 

system, most research reported in the literature has focused primarily on static scenarios. 

The major issues of shadowing and blocking affecting user’s mobility were reported in 

[18], where the VLC system performance considering the changes in the channel condi-

tions in different indoor scenarios (i.e., a furniture equipped office room, an empty hall, 

and a corridor) was investigated. It was shown that, the cumulative distribution function 

(CDF) of the received power distribution differs in the worst case by up to 7% in a fur-

nished office (people density > 0.16 people/m2). Alternatively, the highest root mean 

square (RMS) delay spread of 6.5% in comparison with the case with no people was ob-

served for an empty hall. The results also revealed that, the corridor with the maximum 

RMS delay of 2% at the people density >0.16 people/m2 is the most robust against the 

people’s movement compared with the other two where the problem of shadowing or 

blockage could be readily avoided. Another concern with the user’s mobility is the pro-

cessing time required that needs considering with respect to the speed of movement for 

the receiver (Rx). 

In most of the reported methods, the angular dependency was neglected in 

RSS-based localization with the assumption that, the Rx has a fixed height and is pointing 

up towards the Txs [19]. However, computational and implementation costs are too high, 

and the assumptions made may not be valid in real-time application scenarios with mo-

bile Rxs, which needs further investigation. Recent works have focused on the impact of 

multipath induced reflections on the performance of VLP without considering the tilting 

angles [20–22], where it was shown that, multipath reflections considerably increase εp; 

whereas in [23], it was shown that, the channel capacity can be significantly improved by 

carefully selecting the Rx’s tilting angle ���. However, the initial research demonstrated 

that in VLP ��� usually results in increased εp (i.e., lower accuracy). 

The widely used commercially available LED spotlights in building facilitates the 

concept of using Txs with tilting features. For instance, the impact of the Tx (LED) tilting 

angle ��� on the accuracy of RSS-based VLP was studied in [24], where it was shown 

that εp increased (i.e., in the order of centimeters) with ���. In [25], a 4-LED VLP system 

using an artificial neural network (ANN) was proposed to improve the positioning ac-

curacy, which is impacted by the random and unknown static Tx tilt angle with a max-

imum variation of 2°. It was shown that ANN offered improved performance compared 
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with standard trilateration, achieving localization errors below 1 cm for the line-of-sight 

(LoS) channel. In Addition, an RSS-based localization algorithm with multidimensional 

LED array was proposed in [26], where the design of the lamp structure was introduced 

to exploit the direction of the LED in a LoS environment. The authors showed that, the 

proposed system achieved a RMS error of 0.04 and 0.06 m in two- and three-dimensional 

localization, respectively for the LED with a tilt angle of 15°. While in [27], an angle di-

versity Tx (ADT) together with accelerometers was proposed for uplink 

three-dimensional localization in a LoS environment. ADT was a combination of 19 or 37 

LEDs (LEDs array), which were placed on the ground, and PDs located on the ceiling. 

The results showed that, an average localization error of less than 0.15 m.  

The impact of non-line of sight (NLoS) path in a VLC system deployed in a refer-

enced empty room has been reported in the literature. In [28], the impact of the power 

levels from NLoS paths on the performance of VLP for different Rx positions and their 

orientations was reported. It provided a theoretical framework for the design of VLP re-

source allocation methods to improve the performance of the non-tilted Tx. Channel 

modeling and its characterisation with the existence of reflections from objects and sur-

faces were investigated in [29]. Considering the delay spread and the channel gain in a 

typical room, it was shown that it is not required to consider all objects within rooms 

[29,30]. Moreover, the use of flexible organic LED-based VLC in indoor environments 

(i.e., offices, corridors, semi-open corridors in shopping malls, etc.) was investigated in 

[31], where it was shown that the channel gain in an empty room is higher by 4.8 and 5.2 

dB compared with the fully furnished room and a semi-open corridor, respectively [31]. 

Unlike previous works, in this paper we investigate LED tilting for the first time and 

show that it can be beneficial in VLPs in improving the positioning accuracy (PA). We 

show the impact of reflections on the accuracy by means of the received power from both 

LoS and NLoS transmission paths, the positioning algorithm utilized, and the accuracy of 

the VLP system for a single PD-based static Rx (i.e., putting the Rx at fixed locations) 

where the user movement has not been considered. In this approach, the Txs are oriented 

towards the pointing center F with the (xF, yF, zF) coordinates without violating the ac-

ceptable uniformity range of the light distribution in the illuminated region. Note, F is 

selected at the center of the receiving plane in this work, and alignment is achieved with 

respect to the Tx normal ���.  

We investigate the regression, which is fitted with the received power PR points at 

various Rx locations for two different scenarios. Note, the Rx locations are within a 

squared shape region centered at F with a side length Dr. The polynomial regressions 

(PRs) are fitted with the PR points for the full and half rooms of areas of 6 × 6 and 3 × 3 m2, 

which is termed as scenarios S1 and S2, respectively-. The study is carried out using the 

LLS algorithm for position estimation, which is a low complexity solution. Hence, we 

offer a significant accuracy improvement by up to ~66% compared with a link without 

Tx’s tilt. We show εp of 1.7, and 1.3 cm for S1 and S2, respectively, and for zF of 0 m (i.e., 

the height of F from the floor level). Furthermore, we investigate zF with respect to εp and 

we show that, the lowest εp of 1.3 and 0.8 cm were for S1 and S2, respectively. 

The remainder of this paper is structured as follows. Section 2 presents the VLC 

system model used in the positioning algorithm. The positioning algorithm is briefly ex-

plained in Section 3. The results and discussion are included in Section 4. Finally, Section 

5 provides the conclusion of the paper. 

2. Proposed Visible Light Positioning (VLP) System Model 

In RSS-based localization systems, positioning accuracy depends mainly on PR. For 

NLoS links, reflection from near and far walls should be considered, which contributes to 

the degradation of PA. For example, Figure 1 illustrates a system with two Txs aligned 

with respect to F (i.e., shown as the tilted Tx normal ���), which is used to investigate the 

impact of reflections from walls on the accuracy of VLP). Here, the aim is to maximize PR 

from the LoS paths to improve accuracy at F, which is initially set at the center of the re-
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ceiving plane (i.e., ��, ��, and �� are all set to zero). The tilting orientation is estimated 

based on the position of F, which is given by: 

��� =
��
����⃗

���
����⃗ �

 , (1)

where ��
����⃗  is a vector that represents the difference between the coordinates of the kth Tx 

and point F (��, ��, ��), and ‖∙‖ is the Euclidean norm. The tilted irradiance angle ��,�
����  is 

given by: 

cos���,�
���� � =

��,�. ���

���,��. ‖���‖
, (2)

where ��,� is the distance between the kth Tx and the reflective area, and · represents the 

product dot operation. 

 

(a) 

 

(b) 

Figure 1. An example of a reflected light ray in case of light-emitting diode (LED) tilt: (a) near-wall 

reflections case, and (b) far wall reflections case. 

The NLoS power contributions from the near-wall reflections represented by the 

Tx’s cosine terms expressed in (2) can be reduced by tilting the Txs towards F (i.e., ��� is 

directed towards F that implies ��,�
���� > ��,�, where ��,� is the irradiance angle with no 

tilted Tx, see Figure 1a. Even though the Tx’s cosine terms of NLoS signals will increase 

for the far-wall reflections, which is implied by ��,�
���� < ��,�, the link experience a higher 

path loss due to the longer transmission range, see Figure 1b. Having these observations 
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in mind, we can infer that tilting the Txs can be beneficial in VLP by leveraging the effect 

of reflections from both near- and far-walls. Under this perspective, it reasonable to ex-

plore tilting based on F at the center of the receiving plane and investigate how this can 

improve PA. These observations remain valid for the entire area of the walls when con-

cerning the first reflection. Higher-order reflections also have an impact on positioning 

accuracy. However, due to the fact that these higher-order reflections have reduced 

power levels when compared with the LoS and 1st order case in regions near the center of 

the room, the previous discussion is still valid, and LoS power can be maximized by 

tilting towards the center. 

Figure 2 shows the geometrical set-up diagram of the proposed indoor VLP system, 

which is composed of 4 Txs (i.e., LEDs) and an Rx (i.e., a PD) positioned on the ceiling 

and the floor level, respectively. Each kth Tx has a known set of coordinates (xk, yk, zk), 

which is associated with the world coordinate system (WCS), with ���  of 

 [sinθ��,� cos��, sinθ��,� sin��, −cosθ��,�] where θ��,�, �� are the tilting and azimuth an-

gles, respectively and k is 1, …, 4. Note that, in this work, as a reference, an empty room is 

considered to study the impact of Tx’s tilting on the positioning accuracy. The proposed 

system can be utilized for positioning purposes where the positioning accuracy is a major 

concern. However, if indoor positioning system uses the already existing wireless com-

munication network architectures, then high accuracy may no longer be critical. There-

fore, there exists always a trade-off between accuracy and other system requirements in-

cluding scalability, complexity, coverage, etc. 

 

Figure 2. The proposed indoor visible light positioning (VLP) system with the tilted transmitter (Tx). 

Each Tx broadcast unique ID information of 2 bits, which is encoded and modulated 

using on-off keying (OOK), which allows separation at the Rx using a correlation method 

that can be received at the Rx in advance of location identification, see Figure 3. Consid-

ering the 1st order reflections, the received total power is given by: 

��  = � ������ + � �������, (3)

where ������ and ������� represent the received power for LoS and NLoS, respectively. 

Typically, the signal-to-noise ratio in standard VLC will be high (>20 dB [32]), which 

would be considered noise-free in common cases). Moreover, noise sources (mostly 

dominated by the background lights) [32] will have a similar effect on the VLP system 
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with and without tilting Tx. Thus, a noise-free system is considered in this work. The 

conventional trilateration technique based on a range of three minimum observation 

points offers the advantage of simple geometrical solutions [14]. Using the RSS algorithm 

and 4-Tx (i.e., LEDs), the ������ for the LoS path is given as [33,34]: 

� ������  = � ����

cos����
����� cos(�)

‖��‖�
��(�)�(�),

�

���

 (4)

where 

�� =
� + 1

2π
ℛ ��, (5)

and 

� = −
ln(2)

ln �cos �Θ�
�

��

 , 
(6)

where K is the total number of Txs, Θ�/� is the light source irradiance half-power angle, 

��
���� and φ are the tilted irradiance angle from the kth Tx to the Rx and the receiving in-

cident angle, respectively. �� is the distance between kth Tx and Rx. �� and ℛ are the 

PD’s active area and responsivity, respectively. ��(�) and �(�) are the gains of the op-

tical filter and the concentrator at the Rx, respectively. Note, �� (�) and �(�) are set to 

unity, φ < 90° and d ≫ ���. 

 

Figure 3. Block diagram of the proposed VLP system. 

For the NLoS path and considering only the first-order reflection, the received total 

power can be expressed as [32]: 

� ������� = � � ���������

cos����,�
���� � cos���,��

π����,�����,���
�  �����,�� ����,�� cos���,�� cos���,��

����

,   

�

���

 (7)

where ��,�, ��,�
���� , and ��,� are the distances, irradiance angle, and the receiving inci-

dent angle between the kth Tx and the reflective area, respectively. ��,�, ��,� , and ��,� 

are the distances, irradiance angle, and the receiving incident angle between the reflective 

area and the Rx, respectively, see Figure 1a. ρ is the reflection coefficient, which depends 
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on the material of the reflective surface and ���� is the reflection area. ������� for the 

signals from the NLoS paths is determined based on the Matlab code 3.2 from [32]. 

Moreover, the uniform distribution of the �� inside the illuminated zone is essential 

in indoor environments [16]. The uniformity of light distribution in the room (U) is rep-

resented as the ratio of the minimum to maximum power intensity at the receiving plane, 

which is given by: 

� =
min (��)

max (��)
 , (8)

Here we consider a grid (1 cm resolution) of 3600 Rx positions on the receiving 

plane, which is associated with WCS of (xr, yr, zr). We have also specified the dedicated 

region, which is a square shape centered at the point F and located at the receiving plane. 

The receiving positions are considered inside this region only. All the other key system 

parameters are given in Table 1. 

Table 1. The key system parameters. 

Parameter Symbol Value 

Room size (l, b, h) 6 × 6 × 3 m3 

The coordinates of   

Tx-1 (x1, y1, z1) (−1.7 m, −1.7 m, 3 m) 

Tx-2 (x2, y2, z2) (1.7 m, −1.7 m, 3 m) 

Tx-3 (x3, y3, z3) (−1.7 m, 1.7 m, 3 m) 

Tx-4 (x4, y4, z4) (1.7 m, 1.7 m, 3 m) 

Transmit power of each Tx �� 1 W 

Receiver’s field of view FoV 75° 

Reflection coefficient � 0.7 

Half power angle HPA 60° 

Photodiode area  �� 10−4 m2 

Responsivity ℛ 1 A/W 

Reflection coefficient � 0.7 

3. Positioning Algorithm 

3.1. Distance Estimation Using Polynomial Regression 

The block diagram of the proposed VLP system is shown in Figure 3, in which ��  is 

processed to estimate the Rx position. Distance estimation is the central feature of the RSS 

positioning approach, and for LoS paths it is normally deducted from (4), which is esti-

mated as: 

‖��‖� = ‖��‖� + ℎ� (9)

where h is the vertical distance between the Tx and the Rx. The estimated distance be-

tween the Rx and the kth Tx can be estimated from (4), which is given by: 

�� = ��
��C�ℎ���

������,�

�

�
���

− ℎ�, (10)

where, ������,� is the LoS received power at Rx from kth Tx. In NLoS links, this approach 

results in increased errors due to reflections [35,36], therefore the distance estimation 

approach using (10) is no longer valid. One possible approach would be to generate a 

polynomial fitted model for the power and distance relationship as defined by: 

��  = �� + ����,� + �����,��
�

+ ⋯ + �����,��
�
, (11)
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where aj is the coefficient of the fitted polynomial at jth degree polynomial and ��,� is the 

total received power at Rx from kth Tx. Note, �� is computed using (11), which is then 

substituted into (9) to determine ��. 

3.2. Linear Least Square (LLS) Estimation 

LLS is adopted to analyze the performance of the proposed system by considering 

the estimated distances of the NLoS paths, which is a low complexity solution as com-

pared with the NLLS algorithm. Following geometric properties, a minimum of 3-Tx lo-

cated at the center of the circle is required, where the estimated distance is considered as 

the circle radius. The intersection point of the three circles is considered as the measured 

position of the Rx. E.g., the kth LED luminaire is positioned at (xk, yk, zk) and the Rx is lo-

cated at (xr, yr, zr). A closed-form solution using the LLS estimation method is given by: 

� = (���)����� (12)

where 

� = �

�� − �� �� − ��

�� − �� �� − ��

�� − �� �� − ��

� ,   � =  �
��

��
� (13)

� = 0.5 × �

(��
� − ��

�) + (��
� + ��

�) − (��
� + ��

�)

(��
� − ��

�) + (��
� + ��

�) − (��
� + ��

�)

(��
� − ��

�) + (��
� + ��

�) − (��
� + ��

�)

�. (14)

4. Results and Discussion 

4.1. Impact of the Transmitter (Tx) Tilting on the Radiation Pattern 

Figure 4a shows the received power distributions for the link (i.e., received signal 

strength indicator RSSI) with and without the tilting Txs. Note, the Txs are directed to-

wards F following the proposed model in Section 2. As shown in Figure 4b, there is a 

significant improvement in the power distribution with the tilting Txs (i.e., a much more 

uniform distribution) around the center of the receiving plane. All the observed tilted Tx 

normal ��� for 4-Tx are given in Table 2. 

 

 

(a) 



Sensors 2021, 21, 920 9 of 16 
 

 

 

(b) 

Figure 4. The received power distributions for the proposed system for the Txs with: (a) no tilting, 

and (b) tilting. 

Table 2. The values of tilted Tx normal for all Txs. 

Tx Number Tilted LED Normal, ��� 

Tx-1 [0.4, 0.4, −0.8] 

Tx-2 [−0.4, 0.4, −0.8] 

Tx-3 [0.4, −0.4, −0.8] 

Tx-4 [−0.4, −0.4, −0.8] 

4.2. Polynomial Fitting 

With reference to Figure 3, �� is estimated based on PR,k and the PR (polynomial 

regression) method as outlined in Section 3.1. The accuracy and precision of fitting are 

measured by the coefficient of determination R2, which is a statistical measure of how 

close the data are to the fitted regression line, and the standard deviation. Note, PR is 

considered for various data points and categorized into two scenarios S1 and S2 based on 

the room dimensions. For scenarios S1 and S2, the PRs are fitted with the PR,k points for 

the full and half rooms of areas of 6 × 6 and 3 × 3 m2, respectively. The deviation of PR,k 

points is impacted mainly by the reflections wherein the data near the walls imply a 

larger estimation error as stated previously in the literature [19,32]. Therefore, 3600 sam-

ples (a full room with a 1 cm grid size) are considered for the polynomial fitting for S1, 

while for S2 we only have considered 900 samples (an inner half room). A stabilized re-

sidual sum of squares is achieved with the polynomial order j of 4. The polynomial coef-

ficients of the fitted curve and R2 are estimated for both S1 and S2. 

The polynomial fitted curves for VLP without and with the tilting Txs are illustrated 

in Figure 5. The green points and blue plots indicate the PR,k points for the full and half 

rooms, respectively. Figure 5a shows that, the PR,k points span between 0 and 4.2 mW, 

and are uniformly distributed for both S1 and S2. However, Figure 5b depicts that the PR,k 

points for S1 are more scattered with a smaller span of 0.5 to 3.2 mW, which corresponds 

to the corner of the room. In S2, the PR,k points are more focused towards S2 due to tilting 

of the Tx, thus the fitting data points are considered for S2 only. From the results ob-

tained, both R2 and the standard deviation are positively affected with tilting of the Tx, 

i.e., higher R2 value of 0.98 and lower standard deviation of 0.98 is achieved for the tilted 

Tx as compared with a lower R2 value of 0.96 and higher standard deviation of 1.01 in the 
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case of no tilted Tx, see Figure 5b. Table 3 shows the estimated polynomial coefficients 

and R2 values for S2 with and without the tilted Txs. 

 

(a) 

 

(b) 

Figure 5. The distance estimation for Tx-k using the polynomial regression (PR) method employed 

in S2 for the Txs with: (a) no tilting, and (b) tilting. 
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Table 3. The coefficients of the polynomial fitted curve for the scenario S2. 

Cases 
Estimated Polynomial Coefficients (No Units) 

R2 
�� �� �� �� �� 

With tilted Tx  7.38 × 104 −3.60 × 105 2.37 × 104 −6.26 × 102 8.10 0.98 

Without tilted Tx 8.86 × 106 9.93 × 105 3.96 × 104 7.35 × 102 7.44 0.96 

4.3. Impact of the Tx Tilting and the Altitude of F on VLP 

In this section, we investigate εp for different values of Dr to realize the impact of 

tilted Txs near the center of the receiving plane, and further analyze the impact of 

changing the height of zF on the positioning accuracy. Figure 6 illustrates Inv(90%) as a 

function of Dr for S1 and S2 with the LLS algorithm, which is applied for the case with 

LoS and NLoS paths to estimate the Rx’s position, as described in Section 3. The quantile 

function Inv(�) is used as a performance metric to observe the confidence interval of εp, 

which is given by: 

��,� = Inv(�) = CDF��(�) (15)

where � is the percentage of the confidence interval, and CDF represents the cumulative 

distribution function of εp. 

 

Figure 6. The measured quantile function at � of 90% for various Dr for linear least square (LLS) 

with and without the tilted Txs. 

To ensure a VLP link with high reliability, we have selected a 90% confidence in-

terval for εp to include the majority of the measured points. Note that, the Txs’ tilting an-

gle is fixed at the point F for all values of Dr. Moreover, the error can be reduced signifi-

cantly depending on S1 or S2. For instance, for S1, εp values of 1.7 and 3.6 cm are obtained 

for both tilting and non-tilting scenarios, respectively for Dr of 40 cm. In addition, we 

have achieved the accuracy improvement of 44, 24, 60, and 64% for Dr of 1, 2, 3, and 4 m, 

respectively with the maximum accuracy improvement of 66% for Dr of 3.6 m. In addi-

tion, for S2, εp of 1.3 cm is obtained for the observation area with Dr of 40 cm with the 

tilted Tx. Hence, the Tx’s tilting (LED tilting angle) can improve the positioning accuracy 

in both S1 and S2 with the same detection area of 5 × 5 m2 (up to Dr of 5 m) as compared 

with the case with non-tilting Tx. This could be explained by the fact that, for large ob-

servation areas (i.e., large Dr), the CDF of the error becomes affected by the walls and 

corners of the room, with no improvement in the accuracy. Hence, the NLoS paths be-

come dominant for regions far away from the point F, which degrades the positioning 
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accuracy. Therefore, the proposed VLP system with the tilted Txs outperforms the system 

with no tilting Txs for almost the entire room i.e., an area of 5 × 5 m2. 

We further analyze the impact of changing the height of pointing center F (i.e., zF) on 

the positioning accuracy, which is eventually the variation in the Tx’s tilting. Figure 7 

depict the Inv(90%) as a function of Dr for a range zF (i.e., −2 to 2 m) with and without the 

tilting Txs for S1 and S2. Note that, a high negative value of zF implies that the Tx is 

pointing vertically downwards towards the Rx. For instance, −∞ for zF corresponds to the 

standard non-tilted case and it does not imply reception under the floor. From the Figure 

7, it is observed that, (i) εp increases and decreases s with the positive and negative values 

of zF (i.e., zF > 0, < 0), respectively for both S1 and S2; (ii) the minimum εp of 1.3 cm is at zF 

of −0.5 m compared with 1.7 cm for zF of 0 m for S1 with Dr of 40 cm, see Figure 7a; and 

(iii) the lowest εp is achieved at −2 < zF < 0 m depending on the value of Dr. The proposed 

VLP system can be further improved for the regions with Dr of up to 5.5 m by adjusting 

the negative value of zF. For S2, the minimum εp of 0.8 cm is observed at zF of −2 m and Dr 

of 40 cm compared with 1.3 cm at F (i.e., zF = 0 m), see Figure 7b. However, the case with 

tilting Txs offers the lowest εp for Dr up to 4.36 m. 

Finally, Figure 8 shows the uniformity of light distribution U against Dr without and 

with the tilting Tx and a range of zF. The dashed line represents the EN 12464-1 European 

standard of lighting in an indoor environment [37], which defines the minimum ac-

ceptable ranges of uniformity of the light distribution. We have shown that the proposed 

VLP system with the tilting Txs is capable of providing higher uniformity for the entire 

room for zF ≤ −1 m. The uniformity of the VLP system with tilted Tx increases with the 

decreased value of zF. 

 

 

(a) 
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(b) 

Figure 7. The measured quantile function at � of 90% for various zF values for: (a) S1, and (b) S2. 

 

Figure 8. The uniformity of light distribution in different Dr w/o and with the tilting Txs. 

5. Conclusions 

In this paper, a novel approach was proposed to achieve a highly accurate indoor 

VLP system by considering multipath reflections. Initially, the Tx was tilted towards the 

center of the receiving plane to achieve higher accuracy by maximizing the received 

power level due to contributions from the LoS paths at the pointing center F. The posi-

tioning error was estimated by using the LLS algorithm with polynomial regression. We 

investigated the regression fitted with the received power points for two scenarios of S1 

and S2. The results showed a significant improvement in the accuracy by up to ~66% 

compared with a typical non-tilting Tx case. In addition, positioning errors of 1.7, and 1.3 

were obtained for the tilted Tx for S1 and S2, respectively at zF of 0 m. The results also 
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showed that, the uniformity of the proposed VLP system in line with European Standard 

EN 12464-1, therefore meeting the uniformity requirement of the visible illumination re-

gions. Furthermore, we improved the accuracy of the proposed VLP system by control-

ling the height of F by achieving the lowest εp of 1.3 and 0.8 cm for S1 and S2, respec-

tively. Ultimately, it was concluded that the proposed VLP system with the tilting Tx 

outperforms the non-tilted Tx scenario. Likewise, we could gain lower εp when consid-

ering S2, whereas εp will increase with Dr as indicated for S1. 
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Nomenclature 

Short Form  Description 

ADT Angle diversity transmitter 

ANN Artificial neural network 

CDF Cumulative distribution function 

IS Image sensor 

LEDs Light-emitting diodes 

LLS Linear least square 

LoS Line of sight 

NLLS Nonlinear least square 

NLoS Non-line of sight 

OOK On-off keying 

PA Positioning accuracy 

PDs Photodiodes 

PR Polynomial regression 

RF Radio frequency 

RMS Root mean square 

RSS Received signal strength 

RSSI Received signal strength indicator 

Rx Receiver 

TOF Time of flight 

Tx Transmitter 

VLC Visible light communication 

VLP Visible light positioning 

WCS World coordinate system 
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Abstract: This paper present simulation-based results on the impact of transmitter (Tx) position
and orientation uncertainty on the accuracy of the visible light positioning (VLP) system based on
the received signal strength (RSS). There are several constraining factors for RSS-based algorithms,
particularly due to multipath channel characteristics and set-up uncertainties. The impact of Tx
uncertainties on positioning error performance is studied, assuming a statistical modelling of the
uncertainties. Simulation results show that the Tx uncertainties have a severe impact on the posi-
tioning error, which can be leveraged through the usage of more transmitters. Concerning a smaller
Tx’s position uncertainty of 5 cm, the average positioning errors are 23.3, 15.1, and 13.2 cm with the
standard deviation values of 6.4, 4.1, and 2.7 cm for 4-, 9-, and 16-Tx cases, respectively. While for a
smaller Tx’ orientation uncertainty of 5◦, the average positioning errors are 31.9, 20.6, and 17 cm with
standard deviation values of 9.2, 6.3, and 3.9 cm for 4-, 9-, and 16-Tx cases, respectively.

Keywords: localization; VLC; visible light positioning; received signal strength; localization algo-
rithm; Tx’s uncertainty

1. Introduction

The demand for highly precise indoor positioning (IP) systems is growing rapidly
due to its potential in the increasingly popular techniques of Internet of Thing (IoT), smart
mobile devices, and artificial intelligence. Consequently, IP becomes a promising research
domain that is getting wide attention due to its benefits in several working scenarios, such
as, industries, health sectors, indoor public locations, and autonomous navigation [1]. The
traditional positioning methods, which depend on satellites such as the global positioning
system (GPS), is common nowadays for outdoor positioning; however, it is not well-suited
for indoor environments. This is because the GPS signals from the satellites suffer from
high penetration loss and multipath fading due to building walls. Some other systems also
have been proposed for IP, for example, Bluetooth, ultrasound, ultra-wideband (UWB),
wireless-Fidelity, radio frequency identification (RFID), and radio-frequency (RF)-based
techniques [2–4]. For instance, the UWB technology transmits short RF pulses with a low
duty cycle, which provides precise localization and tracking of mobile devices in indoor
environments [4]. Despite the advantage of precise localization, the UWB technology is
still not perfect for IP systems, and it has not been embraced widely because of its cost,
complexity, and need for synchronization between transmitters (Txs) and the targets [5].
Moreover, these RF-based systems may not be suitable in RF restricted areas, such as
hospitals due to the RF-induced interference [2].
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Another developed technology that makes use of the pre-installed lighting infras-
tructure is visible light positioning (VLP). VLP is based on visible light communications
(VLC), which is license-free, and free from RF induced electromagnetic interference-free,
thus making it ideal in many applications including hospitals. In addition, VLC uses the
pre-existing light-emitting diodes (LEDs) infrastructure as a Tx which has the ability to pro-
vide illuminance and communication simultaneously [6]. VLP is an emerging technology
promising high accuracy, high security, low deployment cost, shorter time response, and
low relative complexity when compared with RF-based positioning [7].

Existing VLP approaches estimate the position of a receiver (Rx) based on several char-
acteristics of light including received signal strength (RSS) [8], angle of arrival (AOA)/angle
difference of arrival (ADOA) [9], image [10], and time of arrival (TOA)/time difference
of arrival (TDOA) [11]. It has been established that, VLP based on AOA/ADOA, image,
and TOA/TDOA require auxiliary devices to capture angle/image/time. On the con-
trary, the RSS approach can be achieved by utilizing a single photodiode (PD) without the
need of any additional auxiliary devices, which makes the RSS-based approach the most
well-known method for VLP [12].

Recent research works have addressed the impact of (i) LED power uncertainty [13];
(ii) reflections from walls and objects within the transmission paths [14]; and (iii) noise
on the positioning performance [15]. The multipath channel has a direct influence on the
model for the estimation of the received signal power, which has been addressed previously
using machine learning algorithms [16]. The Tx and the Rx design specifications, such as
the Tx beam width and its tilting angle have been investigated before. For instance, in [13],
the impact of LED output power uncertainty on the accuracy of the RSS-based VLP system
was explored, with the maximum error of 17 and 40 cm for a tolerance (possible variations)
value of 5% and 20%, respectively. The performance analysis of various VLP systems
relies on line-of-sight (LOS) transmission path, which can underestimate the achievable
error bounds, due to the fact that a real scenario will definitely include non-line of sight
(NLOS) paths [14]. Therefore, NLOS transmission paths should not be neglected. In [15],
an RSS-based VLP system using received optical power from the emitting LEDs was
investigated considering signals from both LOS and NLOS paths. The results revealed that,
the positioning accuracy of <10 cm on average can be achieved at a signal-to-noise ratio
(SNR) of >12 dB.

The location of the Rx can be estimated by using different estimation methods, such
as linear least square (LLS) and non-linear least square (NLLS) [14]. In [17], a polynomial
regression-based method was used to investigate the accuracy of an RSS-based VLP system
along with LLS and NLLS estimation algorithms. The results revealed that, the positioning
error εp was <0.6 m by using the regression approach, which is much lower than other
traditional methods. In [18], the impact of the Tx’s orientation (i.e., the tilting angle) on
the positioning accuracy of the RSS-based VLP system was studied. Another estimation
method, i.e., normalized least square estimation was utilized to estimate the positioning ac-
curacy. In [19], an artificial neural network (ANN) based 4-LED VLP system was proposed
to reduce εp for the LOS path, which is affected by the random and unknown static Tx tilt
angle with a maximum variation of 2◦. It was revealed that ANN achieved localization
errors below 1 cm. In general, the positions and orientations of Txs may not be symmetrical,
which (i) depends on the indoor environments such as museums, galleries, train stations,
shopping centers, etc., where lights are pointing in different directions; and (ii) can change
when replacing lights, carrying out maintenance, etc. Therefore, the random variations in
the Tx’s orientation will lead to the random errors in VLP systems, which requires further
studies. The impact of Tx’s position and its orientation uncertainties on the positioning
estimation have not yet been systematically explored, which is the objective of this paper.

In this paper, we investigate the impact of Tx’s position and its orientation uncer-
tainties on εp of the RSS-based VLP system under multipath reflections. The uniform
distribution of light inside the illuminated place is a necessity in indoor environments. As
a result, lighting uniformity becomes a vital aspect for a well-lit environment. Moreover,
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both lighting uniformity and the positioning performance are related to the Tx’s positions
and the Lambertian half-power angles (HPA). Therefore, in this work we investigate (i)
how the uniformity of light in the room changes for different HPA and the Tx positions; and
(ii) the impact of Tx position and its orientation uncertainties on the positioning accuracy
considering the optimized Tx positions from a lighting uniformity perspective. This works
focused only on the LED uncertainties caused during installation and is an extension of our
previous work [20], where the problem of Tx’s orientation uncertainty was not considered.

The rest of the paper is organized as follows, Section 2 introduces the set-up of
the system and position estimation approaches in detail. The impact of different set-up
uncertainties and uniformity are presented in Section 3. In Section 4, a discussion of the
simulation results attained is made, followed by the final concluding remarks in Section 5.

2. VLP System Modelling
2.1. Channel Model

Our proposed VLP system is composed of a PD as an Rx, which is placed on the
ground and a number of LEDs as the Txs (i.e., 4-, 9-, and 16-LED) that are installed on
the ceiling of the room as depicted in Figure 1. The field of view (FOV) and the detection
area Ar of the PD are 70◦ and 10−4 m2, respectively. All Txs are located at the same height
h from the ground level and the coordinates of kth Tx (k = 1, . . . , K) is (xk, yk, zk), where
K is the total number of Txs. The Rx coordinate is denoted by (xr, yr, zr). The position
and orientation of the Txs is best illustrated by the Txk, with the coordinate of (δx, δy) and
the angles of α, β, and γ. Both δx and δy, and α, β, and γ, are assumed to be Gaussian
variables with N(0, σ2) and N(0, ζ2) probability distribution functions, respectively. The
distance between the Txs relies on the lighting uniformity considerations that are described
in a later section. An empty room is considered as a reference to study the impact of Tx’s
position and its orientation uncertainty on the positioning accuracy. In this work, both
LOS and NLOS transmission paths are assumed between the Txs and the Rx. However, for
the NLOS path, we only consider the first reflection due to the fact that the second order
reflections have much reduced intensities and therefore can be neglected [21]. Each Tx
broadcast a unique 2-bit ID information, which is encoded and modulated using on-off
keying (OOK), which allows separation at the Rx using a correlation method that can be
received at the Rx in advance of location identification.
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The total received optical power Pr at the PD comprises the power from the LOS and
NLOS paths, as given by:

Pr = ∑ Pr(LOS) + ∑ Pr(NLOS), (1)

where Pr(LOS) and Pr(NLOS) represent the received power for LOS and NLOS, respectively.
Generally, the SNR will be high (i.e., >20 dB) in standard VLC, which could be considered
noise-free in normal cases [22]. Thus, in this study, no actual noise (e.g., shot noise or
thermal noise) is considered as a source of “measurement noise”, to unambiguously
evaluate the effect of the Tx’s position and its orientation uncertainty.

2.2. RSS-Based Positioning

Using the RSS algorithm, Pr(LOS) for the LOS path can be expressed as [22,23]:

∑ Pr(LOS) =
K

∑
k=1

Pt ArR
(

m + 1
2π

)
cosm(ωk) cos(ϕ)

‖dk‖2 Ts(ϕ)g(ϕ), (2)

where

m = − ln(2)

ln
(

cos
(

Θ 1
2

)) , (3)

where Pt is the transmit power, dk is the distance between kth Tx and the Rx, K is the total
number of Txs, and Θ1/2 is the light source irradiance half-power angle (HPA) [22]. ωk
and ϕ are the irradiance angle from the kth Tx to the Rx and the receiving incident angle,
respectively. Ar andR are the PD’s active area and responsivity, respectively. Ts(ϕ) and
g(ϕ) are the gains of the optical filter and the concentrator at the Rx, respectively. Note,
Ts (ϕ) and g(ϕ) are set to unity.

Considering the NLOS path, i.e., the first-order reflection, the total received power
can be expressed as [22]:

∑ Pr(NLOS) =
K

∑
k=1

∑
wall

ρPt ArR
(

m + 1
2π

)
Aref

cosm(ωk,w) cos(ϕk,w)

π(‖dk,w‖‖dw,r‖)2 Ts(ϕw,r) g(ϕw,r) cos(ωw,r) cos(ϕw,r), (4)

where dk,w, ϕk,w , and ωk,w are the distances, receiving incident angle, and the irradiance
angle between the kth Tx and the reflective area, respectively. dw,r, ϕw,r, and ωw,r are the
distances, receiving incident angle, and the irradiance angle between the reflective area and
the Rx, respectively, see Figure 2. ρ is the reflection coefficient that relies on the reflective
surface material, and Aref is the reflection area. Pr(NLOS) for the signals from the NLOS
paths is obtained based on Matlab [22]. For each Tx, we integrate (4) over all the walls
accompanied by the assumption of a grid area with a resolution Aref of 0.1 m.
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2.3. Distance Estimation Using Polynomial Regression

The block diagram of the proposed VLP system is shown in Figure 3. In the case of
LOS, the horizontal distance can be computed as ‖rk‖2 = ‖dk‖2 − h2 and therefore can be
determined from (2) as given by:

rk =

√√√√√( (m + 1) ArRPt(h)
m+1

2πPr(LOS),k

) 2
m+3

− h2, (5)

where h is the vertical distance between the Tx and the Rx. Pr(LOS),k is the LOS received
power at the Rx from the kth Tx. In (5), the cosine terms are clearly stated in terms of the
set-up geometry, as h/‖dk‖. However, in case of NLOS links, high errors are introduced
in the channel due to the presence of reflections [17,24], thus, the above method fails to
determine the distance. Another method that can be used is to employ a polynomial fitted
model for the power-distance relationship [25]. In this particular case, the relation between
dk and Pr, k for the kth Tx is represented as:

dk = α0 + α1Pr,k + α2(Pr,k)
2 + . . . + αs(Pr,k)

s (6)

where Pr, k is the total received power at the Rx from the kth Tx, and αs represent the
coefficients of the fitted polynomial. Note, dk is computed using (6), which is later employed
to determine rk.
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We estimated the best polynomial fitting using 3600 data points extracted from channel
simulation, see Figure 4. Note that, the 3600 data points are considered as 3600 different
locations each within the room. The best-fitted solution was exhibited by analyzing the
value of R2 (coefficient of determination) for different orders, and a fourth order polynomial
was selected with a value of R2 of 0.8942. Note, the polynomial fitting is not highly accurate.
This is because of the data points considered within the entire room for both LOS and
NLOS paths. At the center of the room, the impact of NLOS is negligible when compared
to the regions near walls and corners. As such, fitting all the data will be dominated by the
data near walls and corners. However, it shows the best fitted solution considering that
the data points corresponding to lower received power have higher contributions to the
error compared with the data points in the center of the room. The values of polynomial
coefficients are listed in Table 1.
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Table 1. The value of polynomial coefficients for the best polynomial fitting.

Polynomial Coefficient α0 α1 α2 α3 α4

Value 8.85× 106 −9.93× 105 3.96× 104 −7.34× 102 7.4

2.4. Estimation Using Nonlinear Least Squares

The relation between the Tx coordinates (xk, yk) and the Rx coordinates (xr, yr) are
described using the following equations:

(xr − x1)
2 + (yr − y1)

2 = r1
2

(xr − x2)
2 + (yr − y2)

2 = r2
2

...
(xr − xK)

2 + (yr − yK)
2 = rK

2

, (7)

where K is the total number of Txs. NLLS estimation can be utilized to estimate the target
location, in which the solution can be estimated by attaining X̃ = [x̃, ỹ] that minimizes a
cost function given by [15]:

Q̃ = ∑
i

(√
(xr − xk)

2 + (yr − yk)
2 − rk

)2
. (8)

An iterative procedure is utilized to estimate X̃ by employing the trust-region reflective
algorithm [26]. In this algorithm, first, an estimate is introduced as X̃0, followed by
computing the corresponding cost function Q̃0. Next, several points in the neighborhood
of X̃0 are replaced in (8), and the one that minimizes the cost Q̃1 is selected as X̃1. The
Rx coordinates X̃ will eventually be obtained following several iterative steps to ensure
convergence of Q̃. In the proposed system, the initial value for X̃0 is estimated using a
linear least square approach.

2.5. Performance Metrics

εp is assumed to be a random variable (as it may rely on the uncertainties, i.e., the Tx’s
position or its orientation uncertainties, estimation process, or noise); thus, it is reasonable
to use the standard statistical analyses to access error performance. Here we use the
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probability distribution function (PDF) and the cumulative distribution function (CDF), as
a mean to calculate the 95% quantile on εp. Hence, the PDF and CDF are composed of the
spatial distribution of εp within the entire room. The PDF of εp is defined as:

fεp(p) = lim
N → ∞
ε→ 0

#εp
(∣∣εp − p

∣∣ ≤ ε
)

N
, (9)

where ε defines an error interval centered around p, and N is the number of samples. The
cardinal operator # signifies the counting of occurrences were |εp-p| < ε. The limiting
process is naturally implied by the discrete nature of the simulation. The CDF can be
expressed as:

FCDF(p) =

p∫
0

fεp(p)dp. (10)

Figure 5 depicts the CDF against εp for NLLS estimation with and without polynomial
regression. The maximum εp values estimated by NLLS and NLLS with polynomial regres-
sion are 0.6 and 1.57 m, respectively. It is observed that, there is an evident improvement
in the positioning accuracy by using NLLS estimation with polynomial regression for
power-distance modeling. Therefore, the polynomial regression can improve the accuracy
of position estimation without the inclusion of high complexity algorithms. However,
there are some limitations of the polynomial regression; for instance, the coefficients of the
polynomial model must be provided along with the Tx’s positions in practical scenarios.
Moreover, the polynomial model can deal with the empty and non-empty rooms with the
fixed furniture and objects, but with no user’s mobility.
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3. Set-Up Uncertainties

The major challenge in studying the Tx’s position or orientation uncertainties occurs in
simulation, i.e., we must use random Tx positions in order to investigate the uncertainties.
This raises the necessity to re-simulate the channel for each iteration (new random TX
position). Give that the channel estimation is by itself complex and time-consuming, this
problem becomes complex. We have developed two approaches for both Tx’s position and
its orientation uncertainties to fully analyze the problem, which is termed direct and reverse
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processes. The reason for these designations is straightforward. The direct process entails
the estimation of the position given the effect of the uncertainties on the channel. It is in this
sense, complex and time-consuming. In the reverse process, the channel is assumed fixed
and the effects of the Tx uncertainties are coupled directly into the estimation equations,
this avoids the channel simulation at each set of newly generated Tx positions.

3.1. Uncertainties of the Tx’s Position

For Tx’s position uncertainties, in the direct process, we assume that the channel is
re-stimulated for each newly generated set of Tx positions. The Tx positions are composed
by the ideal position (fixed) and a random perturbation in two-dimensions. While in the
reverse process, we assume that the channel is fixed for a set of ideal Tx positions, and the
uncertainties are directly coupled into the estimation Equation (7). To illustrate the concept,
let us consider one of the terms in (7), in the direct process, the effect of the uncertainties is
on the right side of the equation, as follows:

(xr − xk)
2 + (yr − yk)

2 = fR(xk + δx, yk + δy), (11)

where (xr, yr) and (xk, yk) are the coordinates of the Rx and the Tx (ideal positions), respec-
tively. (δx, δy) express the uncertainty at the Tx coordinates. Both δx and δy are assumed to
be Gaussian variables with N(0, σ2). The channel needs to be re-simulated at each iteration
in order to obtain fR.

In the reverse process, it is not required to re-simulate the channel at each iteration as
the uncertainties are part of the Tx position, as follows:

(xr − xk − δx)2 + (yr − yk − δy)2 = fR(xk, yk). (12)

Subtracting (11) and (12) and extracting the mathematical expectation of both sides gives:

Ur(σr) = E
[
δx2 + δy2 − 2δx(xr − xk)− 2δy(yr − yk)

]
, (13)

where σr is the Tx’s uncertainty of the reverse process. The reverse process has an expecta-
tion as stated in (13), which is given by (after solving (13)):

Ur(σr) = 2σr
2. (14)

Performing the same analysis for the direct process we have:

Ud(σd) = E[ fR(xk, yk)− fR(xk + δx, yr + δy)]. (15)

Here, the value of Ud is estimated using numerical simulation, where σd is the Tx’s
uncertainty of the direct process. Assuming that, the reverse and direct processes are
equivalent, the expectation values Ud and Ur must be equal. In this case, it is possible to
infer the relation between σd and σr. This relation can be estimated assuming that the Rx is
placed at the center of the room and a single Tx is placed in a uniform grid of positions for
the whole room. Using mathematical simulation, we have computed the values of Ud(σd)
for different values of σd, see Figure 6. Note, the two processes generate uncertainties, i.e.,
Ud and Ur and these processes would be equivalent if these uncertainties are the same for
certain values of σd and σr. This indicates that, the uncertainties from the reverse process
can be generated with the knowledge of the direct process as given by:

σ2
r =

Ud(σd)

2
. (16)

Simulating the uncertainty for the reverse process using the correction in (16) provides
the same values for the expectation as depicted in Figure 6 (curve labelled Ur).
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3.2. Uncertainties of the Tx’s Orientation

The Tx’s orientation uncertainties can be treated in a similar fashion as before. There
are, however, some aspects that need addressing. In this paper, the Tx’ orientation uncer-
tainties are modeled via three random axis-rotations of the Tx’s heading vector. Let us
consider the kth Tx’s heading vector, n̂k, which is given by:

n̂k = Rx(α)·Ry(β)·Rz(γ)·n̂0
k = R(α, β, γ)·n̂0

k (17)

where Rx(α), Ry(β) and Rz(γ) represent the three rotation matrix relative to the x-axis,
y-axis, and z-axis, respectively, α, β, and γ are three random angles with probability
distribution function N(0, ζ2), finally, n̂0

k represents the unperturbed heading vector of the
kth Tx. R(α, β, γ) is a composed rotation matrix. The effect of (17) on the Tx’s heading is
due to the cosine terms due to the Txs in (2) and (4), showing that a rotation will impact the
received signal. The next step resorts to the evaluation of the expectations due to the direct
and reverse process. In the direct process, the channel is re-simulated for each random
iteration, generating an expectation value, for the kth Tx, which is given by:

Ud(ζd) = E[ fR(xk, yk)− fR(xk, yr, R(α, β, γ))]. (18)

Ud cannot be cast in a closed-form solution. Instead, we resorted to simulation using
the approach described in the previous section, results are depicted in Figure 7.
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The expectation of the reverse process reveals some difficulties. The quadratic forms
in the left side of (7) are invariant to rotations, which would imply that orientation uncer-
tainties do not affect error performance. Since this is not the case, we approach the problem
in a similar manner as in the case of Tx’s position uncertainties, that is, assuming that the
effect of random headings can be reproduced by affecting the Tx’s positions with a random
perturbation. Following this approach, the expectation of the reverse process can be cast as:

Ur(ζr) = E
[
δx2 + δy2 − 2(xr − xk)δx− 2(yr − yk)δy

]
= 2ζr

2 (19)

where δx and δy are the equivalent position perturbations, which are functions of the
random orientation angles α, β, and γ. Equating Ud and Ur, allows to retrieve the correction
values for the angle uncertainty, ζr as a function of ζd. To show that the processes are
indeed equivalent, we performed the simulation for Ur, the results are depicted in Figure 7.
As it can be seen the two expectations match well and reveal that the effect of orientation
uncertainty is worse than the position uncertainty.

3.3. Lighting Uniformity

In the indoor environments, it is essential to uniformly distribute Pr inside the il-
luminated zone [27]. This constraint is generally assumed in well-lit spaces, where the
uniformity of light is linked to the best perception of the objects. The uniform distribution
of light in the room, Ul , is represented as the ratio of the minimum to maximum power
intensity at the receiving plane, which is given by:

Ul =
min(Pr)

max(Pr)
, (20)

Lighting uniformity relies on the three factors related to the Txs, i.e., the distance
between the Txs, HPA, and the number of Txs. Figure 8 illustrates the lighting uniformity
as a function of the number of Txs (i.e., 4 and 9) and for different values of HPA.
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It is noticed from the figure that, a higher number of Txs provide improved uniformity.
The maximum uniformity is achieved at distances of 3.4 and 2.6 m for HPA of 60◦ for 4- and
9-Tx, respectively. It is interesting to notice that, the same factors influence both lighting
uniformity and positioning accuracy. It is usually believed that, positioning accuracy can
be enhanced with higher uniformity. However, our study reveals that, this is not a general
rule, moreover, HPA seems to have a more prominent impact on the positioning accuracy
than the uniformity.

4. Simulation Results

In this section, the performance of the proposed VLP system is evaluated by simulation
results. We consider the scenario where the LED-based Txs are located on the ceiling of
a room of dimension 6 × 6 × 3 m3, which are assumed to be the same and modelled as
pointwise Lambertian sources with order m depending ζ on the value of HPA, see (2).
In practical environments also, the square LED placement layout is common. We have
considered three different cases of 4-, 9-, and 16-LEDs, which are arranged in a square grid
on the ceiling plane. The Rx is located on the ground plane. For all simulation purposes,
the resolution of the grid is fixed at 1 cm, which implies that the PD can be placed at 3600
different locations. All the key parameters for the simulation are detailed in Table 2.

Table 2. The key parameters for the indoor VLP system.

Parameter Value

Room size 6 × 6 × 3 m3

Number of LED Txs 4/9/16
Transmit power of each Tx 1 W

Rx’s field of view 75◦

Reflection coefficient 0.7
Area of PD 10−4 m2

Responsivity of PD 0.5 A/W
Tx elevation −90◦

Tx azimuth 0◦

Rx elevation 90◦

Rx azimuth 0◦
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4.1. Positioning Error Dependence on Lighting Uniformity

This section analyses the influence of lighting uniformity and HPA on εp. Here, we
vary the uniformity between 0.5 and 0.8 in steps of 0.05 and for HPA of 40◦ and 60◦. For this,
we first select the values of distance between the Txs according to the results of Figure 8.
Following this, we estimate εp for each set of conditions using NLLS and the polynomial
regression power-distance model. εp for different values of uniformity for 4-, 9-, and 16-Tx
are illustrated in Figure 9. It is observed that the minimum εp is attained for the case of
4-Tx with HPA and uniformity of 60◦ and 0.65, respectively, whereas, in the case of 9-Tx,
the minimum εp is achieved with HPA of 60◦ and uniformity equal to 0.55. For the 16-Tx
case, the minimum εp is accomplished with an HPA of 40◦ and with the uniformity of 0.65.
It is clear from Figure 9 that, (i) low to a moderate value of lighting uniformity can support
low εp; and (ii) an optimal value for the number of Txs and the associated HPA, which
do not match the optimal value of lighting uniformity conditions. Under the simulated
conditions, the optimal values for the HPA, uniformity, and distance between the Tx based
on the lowest εp are shown in Table 3.
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Table 3. The optimized values for all cases of Txs.

Number of Txs Uniformity Distance between
Txs (m) HPA (◦)

4 0.65 2.4 60
9 0.55 1.3 60
16 0.65 1.34 40

4.2. Impact of Tx’s Position and Orientation Uncertainty on Error Performance

In this section, we investigate the impact of Tx’s position uncertainties σ and the Tx’s
orientation uncertainties ζ on the error performance. We follow the same approach that
has been described in detail in Section 3.1. The simulation follows the reverse method
with 1000 random iterations for each σ value using the adjusted variance values given
by (16), where a random displacement vector (δx, δy) is added in the ideal Tx positions
as explained in (11). The quantile function QF(p) is employed as a performance metric
considering both, its average and standard deviation, over the 1000 random iterations to
obtain the confidence interval of εp, which is given by:

QF(p) = FCDF
−1(p), (21)

where p is the percentage of the confidence interval.
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Figure 10 illustrates the average and standard deviation of the 95% quantile of εp as a
function of σ for 4-, 9-, and 16-Tx for the Tx’s positioning uncertainty. It is observed that
the effect of Tx’s position uncertainty, σ, traduces in an increasing error dependence, which
is more prominent for set-ups with a lower number of Txs. The standard deviation of the
error quantile, i.e., the increasing error also confirms an increasing trend with σ, is more
evident for the 4-Tx case. It is noticed that, for σ of 5 cm the average positioning errors are
23.3, 15.1, and 13.2 cm, with the standard deviation values of 6.4, 4.1, and 2.7 cm for 4-, 9-,
and 16-Tx cases, respectively. Figure 10 suggests that the error dependence on the Tx’s
position uncertainty can be lowered by increasing the number of Txs.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 10. Comparison of positioning error for different Txs and σ. 

Figure 11 depicts the average and standard deviation of the 95% quantile of εp or as 
a function of  for 4-, 9-, and 16-Tx for the Tx’s orientation uncertainty. It is clear from the 
figure that, alike the case of Tx’s position uncertainty, the effect  has more significant 
error dependence for set-ups with a lower number of Txs. It is observed that for  of 5°, 
the average positioning errors are 31.9, 20.6, and 17 cm, with the standard deviation values 
of 9.2, 6.3, and 3.9 cm for 4-, 9-, and 16-Tx cases, respectively. The increasing error also 
proves an increasing trend with , therefore, the placement of Tx with the accurate Tx’s 
position and its orientation should be taken into consideration, as the error may rise even 
with low values of set-up uncertainties. 

 
Figure 11. Comparison of positioning error for different Txs and . 

Q
F (9

5%
) (

cm
)

0 2 4 6 8 10
(°)

0

10

20

30

40

50

60
4-Tx
9-Tx
16-Tx

Standard deviation

Average error

Figure 10. Comparison of positioning error for different Txs and σ.

Figure 11 depicts the average and standard deviation of the 95% quantile of εp or as a
function of ζ for 4-, 9-, and 16-Tx for the Tx’s orientation uncertainty. It is clear from the
figure that, alike the case of Tx’s position uncertainty, the effect ζ has more significant error
dependence for set-ups with a lower number of Txs. It is observed that for ζ of 5◦, the
average positioning errors are 31.9, 20.6, and 17 cm, with the standard deviation values of
9.2, 6.3, and 3.9 cm for 4-, 9-, and 16-Tx cases, respectively. The increasing error also proves
an increasing trend with ζ, therefore, the placement of Tx with the accurate Tx’s position
and its orientation should be taken into consideration, as the error may rise even with low
values of set-up uncertainties.
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5. Conclusions

In this paper, we demonstrated the influence of Tx’s position and orientation uncer-
tainty on the performance of VLP systems based on RSS. From the results, we can conclude
that light uniformity and Tx’s HPA are crucial design parameters for developing an efficient
VLP system. The selection of the Tx’s HPA as well as the optimum distance between Txs
have to be carefully implemented. Moreover, we showed that the best uniformity and
optimum error performance were not met for the same conditions, inferring necessary
design trade-offs. Furthermore, the effect of error dependence on Tx’s position and ori-
entation uncertainty reduced with increasing the number of Txs. In case of square grid
Tx placement for a VLP system, the number of Txs can be further explored as an added
variable to optimize both light uniformity and error performance, as it reduces the HPA for
smaller distances between Txs.
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Nomenclature

ADOA Angle difference of arrival
ANN Artificial neural network
AOA Angle of arrival
CDF Cumulative distribution function
FOV Field of view
GPS Global positioning system
HPA Half power angle
IoT Internet of things
IP Indoor positioning
LEDs Light-emitting diodes
LLS Linear least square
LOS Line of sight
NLLS Nonlinear least square
NLOS Non-line of sight
OOK On-off keying
PD Photodiode
PDF Probability distribution function
PR Polynomial regression
RF Radio frequency
RFID Radio frequency identification
RSS Received signal strength
Rx Receiver
SNR Signal-to-noise ratio
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TDOA Time difference of arrival
TOA Time of arrival
Tx Transmitter
UWB Ultra-wide band
VLC Visible light communication
VLP Visible light positioning
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Abstract: In this paper, we study the design aspects of an indoor visible light positioning (VLP) 

system that uses an artificial neural network (ANN) for positioning estimation by considering a 

multipath channel. Previous results usually rely on the simplistic line of sight model with limited 

validity. The study considers the influence of noise as a performance indicator for the comparison 

between different design approaches. Three different ANN algorithms are considered, including 

Levenberg-Marquardt, Bayesian regularization, and scaled conjugate gradient algorithms, to mini-

mize the positioning error (휀𝑝) in the VLP system. The ANN design is optimized based on the num-

ber of neurons in the hidden layers, the number of training epochs, and the size of the training set. 

It is shown that, the ANN with Bayesian regularization outperforms the traditional received signal 

strength (RSS) technique using the non-linear least square  estimation for all values of signal to 

noise ratio (SNR). Furthermore, in the inner region, which includes the area of the receiving plane 

within the transmitters, the positioning accuracy is improved by 43, 55, and 50 % for the SNR of 10, 

20, and 30 dB, respectively. In the outer region, which is the remaining area within the room, the 

positioning accuracy is improved by 57, 32, and 6 % for the SNR of 10, 20, and 30 dB, respectively. 

Moreover, we also analyze the impact of different training dataset sizes in ANN, and we show that, 

it is possible to achieve a minimum 휀𝑝 of 2 cm for 30 dB of SNR using a random selection scheme. 

Finally, it is observed that 휀𝑝 is low even for lower values of SNR, i.e., 휀𝑝 values are 2, 11, and 44 

cm for the SNR of 30, 20, and 10 dB, respectively. 

Keywords: Visible light communication (VLC), visible light positioning, multipath reflections, Non-

linear least square, artificial neural network (ANN), Bayesian regularization. 

 

1. Introduction 

The necessity for indoor location-based services has been growing over the past dec-

ades because of its significance in the development of various applications, such as smart 

home appliances, robots, supermarkets, shopping malls, hospitals, etc. Various conven-

tional positioning techniques are based on radio frequency (RF) technologies; for instance, 

the global positioning system has been used in outdoor environments. However, in in-

door environments, it suffers from multipath-induced fading, which can affect the accu-

racy of the position estimation significantly [1,2]. A number of RF-based positioning sys-

tems have also been introduced including Bluetooth [3], ultrasound [4], wireless local area 

network [5], ultra-wide band [5], and RF identification [6].  

Light-emitting diodes (LEDs)-based visible light communication (VLC) systems have 

been introduced in recent years, which have shown great potential in achieving high-
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precision indoor positioning due to the use of optical signals. These systems are known 

as visible light positioning (VLP), which allows the usage of pre-installed LED luminaries 

as transmitters (Txs) in indoor environments [7]. VLP systems are considered as an emerg-

ing and cost-effective solution compared with other technologies. VLP also leverages the 

use of well-developed algorithms, which have been developed for other technologies [8], 

including the angle of arrival (AOA), time of arrival (TOA), proximity, scene analysis, and 

received signal strength (RSS) [9]. RSS, AOA, and TOA have been explored in VLP sys-

tems with the positioning error 휀𝑝 of 10 to 40 centimeters [10]. RSS-based positioning sys-

tems are much simpler for implementation compared with TOA and AOA-based posi-

tioning systems due to the fact that, they do not need highly accurate transceiver synchro-

nization or a receiver (Rx) with efficient detection of the incidence angle [11]. Therefore, 

most of the previous studies have been focused on RSS-based VLP systems [12–16], where 

the strength of the received power is used to estimate the Rx’s position. Numerous re-

search works have reported 휀𝑝 close to 1 cm in the past three years [15,17,18]. The rela-

tively simpler algorithms, such as proximity and scene analysis, trade simplicity with the 

accuracy, are most appropriate for low accuracy systems. 

Different estimation approaches have been used to estimate the Rx’s position. For 

instance, in [19], two conventional methods relying on linear least squares (LLS) and non-

linear least squares (NLLS) were used for the position estimation. However, NLLS and 

LLS achieved the minimum 휀𝑝 values of 46.42 and 55.89 cm, respectively. An efficient 

RSS-based VLP algorithm was proposed in [20] to estimate the three- dimensional location 

of an Rx, combining two-dimensional trilateration with the NLLS. The computational 

time for NLLS is limited to approximately 17 ms, which is further reduced to less than 2 

ms using a fast search algorithm.  

Recently, an artificial neural network (ANN) has been utilized in RSS-based position-

ing systems. In [21], both RSS and ANN methods were proposed to achieve an accurate 

indoor VLP system with a diffuse optical channel. An accuracy of 6.4 cm was achieved 

with the averaged 휀𝑝 being ~13 times smaller than RSS-based positioning system. In ad-

dition, a low-cost indoor VLP system was proposed using a machine learning algorithm 

in [6], which was achieved 휀𝑝 of 3.7 cm with a height tolerance of 15 cm in line of sight 

(LoS) environment. In [22], a new 2-D ANN-based VLP system was proposed, where the 

LEDs were grouped into blocks, and the block coordinates were encoded using under-

sampled modulation. A camera was used as an Rx to decode the block coordinate, and 

the system achieved a mean 휀𝑝 of 1.5 cm in LoS channel. In [23], a VLP system based on 

the RSS and a deep ANN-based Bayesian regularization VLP system was proposed, where  

only the LoS transmission was considered). The results showed that, using only 20 train-

ing points a minimum 휀𝑝 of 3.4 cm was achieved. In [24], an ANN-based approach was 

proposed exploiting the distortions caused by inaccurate modeling (i.e., phase and inten-

sity models) in both phase difference of arrival (PDOA) and RSS-based positioning sys-

tems. The pre-trained models were applied to the ANN-based VLP system for reduced 

complexity and enhanced robustness, showing an 휀𝑝 of 12 cm in an indoor LoS channel. 

However, in many previous works, the effects of noise and multipath were not fully 

and consistently considered. For example, the works reported in [23,24] considered only 

LoS paths in the analysis of positioning performance without taking into account the mul-

tipath nature of the channel. Note, for systems using Txs and Rxs with a wide beam and 

a field of view (FOV), respectively the impact of multipath reflections is inevitable and 

therefore must be considered as was reported in [19]. The results showed that, 휀𝑝 values 

of 0.4 and 46.4 cm were achieved for the entire room without and with multipath reflec-

tions, respectively. Moreover, the impact of noise was investigated in [25], but the consid-

ered signal-to-noise ratio (SNR) was very high (i.e., 30 dB). Alternatively, in [26] the non-

line of sight (NLoS) was considered under a very low power noise level (i.e., -140 to -180 

dBm), where the minimum 휀𝑝 of 0.05 cm was achieved by analytically solving Lamber-

tian transmission equation group. In [27], both multipath reflections and the impact of 
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noise were considered, where 휀𝑝 of 28 cm was achieved but at a high SNR of 30 dB. There-

fore, the impact of multipath reflections should be considered as it severely reduces the 

accuracy of the VLP system. Although the influence of NLOS on the system performance 

has been studied extensively and reported in the literature [28,25,29,30], but not much has 

been done on the power distance relation, which is more complex. For regression analysis 

and position estimation, several machine learning approaches can be used.  

The aim of this work is to investigate the utilization of ANN for regression analysis 

in the VLP system. A comprehensive study is done about the optimization of an ANN for 

VLP systems and a complete assessment of its performance. The error performance of the 

proposed system is evaluated by considering the noise over a wide range of SNR. For that, 

three different ANN algorithms, including Levenberg-Marquardt, Bayesian regulariza-

tion, and scaled conjugate gradient, are explored to minimize 휀𝑝 of the proposed VLP 

system. The error performance is analyzed and compared with the traditional RSS tech-

nique, which uses an NLLS algorithm along with a polynomial regression model [30]. 

Firstly, the proposed ANN is optimized based on the number of neurons in the hidden 

layers (HLs) and the number of training epochs. Finally, we analyze the noise perfor-

mance of the proposed system in comparison with the traditional approaches. We show 

that, the ANN with Bayesian regularization outperforms the traditional RSS technique 

using NLLS for a wide range of SNR. Moreover, we also analyze the impact of different 

training dataset sizes when training the neural network. We also observed an improve-

ment in the positioning accuracy for the inner region by 43, 55, and 50% compared to 57, 

32, and 6% in the outer region for the SNR values of 10, 20, and 30 dB, respectively.  

The main contribution of this work is the performance evaluation and the design 

process of already existing ANN algorithms in the VLP systems considering multipath 

channel, which has not been reported previously. In addition, we have optimized the pro-

posed ANN model based on different parameters, such as the number of neurons in the 

hidden layers, the number of training epochs, and the size of the training set, which is 

proven to improve the positioning accuracy of the VLP system.  

The rest of the paper is organized as follows; Section 2 presents the system model, 

the positioning algorithms, and the polynomial regression approach in detail. The ANN 

used for position estimation and different training algorithms are presented in Section 3. 

In Section 4, simulation results are discussed in detail, and finally, Section 5 concludes the 

paper. 

2. VLP System Modelling 

2.1. System Model 

The proposed system consists of a standard empty room with several LED-based Txs 

and a single photodiode (PD)-based Rx which is facing upwards, as depicted in Fig. 1. The 

Txs and Rxs are placed on the ceiling and floor levels at heights, ht, and hr of 3 and 0 m, 

respectively from the ground. In the channel, we consider signals from both LoS and NLoS 

transmission paths. Note, for the NLOS we have limited the reflections to the 1st order due 

(i) simplicity sake [31]; and (ii)  the containing most of the transmit power  [32]. In this 

work, we have adopted a simple Lambertian model with v of 1 [33].  
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Figure 2. Block diagram of the proposed system.  

The block diagram of the proposed scheme is depicted in Fig. 2. We have not consid-

ered the synchronization issue and have assumed that each Tx transmits unique ID infor-

mation, which is encoded and modulated in the on-off keying (OOK) signal format, and 

at the Rx the received power 𝑃𝑅,𝑖 due to each Tx is determined using correlation methods, 

which is given by [30]:  

𝑃𝑅,𝑖  = ∑𝑃LoS,𝑖 +∑𝑃NLoS,𝑖 + 𝑛𝐺 , (1) 

where 𝑃LoS,𝑖  and 𝑃NLoS,𝑖  are the received power from the ith Tx due to LoS and NLoS 

paths, respectively, and 𝑛𝐺 is the additive white Gaussian noise power with a zero mean 

and variance 𝜎2 i.e., N(0, 𝜎2), which arise from the thermal noise, and dark current, sig-

nal, and background radiation-induced shot noises. Note, in VLC systems, the latter is the 

dominant noise source. 

Fig. 3 depicts the received power distribution for LoS, NLoS, and LoS with NLoS 

transmission paths. As illustrated in Fig. 3 (a), for the LoS the power is the highest directly 

beneath the Txs. The power decreases gradually with the user moving towards the corners 

and walls of the room. Fig. 3(b) shows that, for the NLoS paths, power distributions are 

the highest along the walls, thus resulting in a slight rise in the total power received at the 

Rx near the walls. Fig. 3(c) depicts the total power at Rx from both LoS and NLoS paths 

showing higher peak and average power level compared to Figs. 3(a) and (b). Note that, 

the received power from the NLoS paths leads to the overestimation of the transmission 
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distances and therefore further degrades the positioning accuracy in the localization pro-

cess.  

 

Figure 3. The received power distributions for the proposed system for: (a) LoS, (b) NLoS, and (c) 

LoS and NLoS links.  

The received power from LoS path can be expressed as [34]: 

∑𝑃LoS,𝑖  = ∑
𝑚 + 1

2𝜋
ℛ𝐴𝑟𝑃𝑡,𝑖

cos𝑚(𝜔𝑖)cos(𝜑)

‖𝑑𝑖‖
2

𝑇𝑠(𝜑)𝑔(𝜑),

𝐼

𝑖=1

 (2) 

where 𝑑𝑖 is the distance between the ith Tx and the Rx, 𝜔𝑖 is the irradiance angle from 

the ith Tx to the Rx, φ, and ℛ are the incident angle and PD responsivity, respectively. 𝑃𝑡,𝑖 

is the transmit power from the ith Tx and 𝐴𝑟 is the area of the PD. Ts(𝜑) and g(𝜑) are the 

transmittance function and the concentrator gain of the Rx, respectively that are consid-

ered to be unity for simplicity's sake. Lambertian order is given by:  

𝑣 = −
ln(2)

ln(cos(HPA))
, (3) 

where HPA refers to the half-power angle for the light source. The RSS algorithm incor-

porates a distance estimation step based on the total received power 𝑃𝑅,𝑖, where the dis-

tance between the ith Tx and the Rx is estimated as:  

𝑑𝑖 = √𝑟𝑖
2 + ℎ2, (4) 

where  𝑟𝑖  is the horizontal distance from the ith Tx to the Rx and h is the difference in 

height between the Tx and Rx, i.e., (ht− hr). The received power from the 1st order reflection 

is given by [35]: 

∑𝑃NLoS,𝑖 =∑∑
(
𝑚 + 1

2𝜋2
) 𝜌ℛ𝐴𝑟𝑃𝑡,𝑖𝐴ref

cos𝑚(𝜔𝑖,𝑤)cos(𝜑𝑖,𝑤)

‖𝑑𝑖,𝑤‖
2
‖𝑑𝑤,𝑟‖

2

× cos(𝜔𝑤,𝑟) cos(𝜑𝑤,𝑟) 𝑇𝑠(𝜑𝑤,𝑟)𝑔(𝜑𝑤,𝑟)
wall

 

𝐼

𝑖=1

, (5) 
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where 𝑑𝑖,𝑤, 𝜑𝑖,𝑤 , and 𝜔𝑘,𝑤 are the distances, receiving incident angle, and the irradiance 

angle between the ith Tx and the reflective area, respectively. 𝑑𝑤,𝑟,  𝜑𝑤,𝑟 , and 𝜔𝑤,𝑟 are the 

distances, receiving incident angle, and irradiance angle between the reflective area and 

the Rx, respectively. ρ is the reflectance factor of the reflecting surfaces and 𝐴ref is the re-

flectance area. For the NLoS case, a significant error may occur when calculating the dis-

tance due to the existence of reflections, as noted in (5). Therefore, a polynomial fitted 

model is introduced to express the relation between 𝑃𝑅,𝑖  and the total distance from ith Tx 

and the Rx [35,36], which is given by: 

𝑑𝑖(𝑃𝑅,𝑖)  = 𝑎0 + 𝑎1𝑃𝑅,𝑖 + 𝑎2(𝑃𝑅,𝑖)
2
+⋯+ 𝑎𝑔(𝑃𝑅,𝑖)

𝑔
, (6) 

where 𝑎0 ⋯𝑎𝑔  are the coefficients of the polynomial model for a 𝑔th order polyno-

mial. 

2.2. Estimation Algorithms 

In the case of LLS, 𝑎𝑔 values are initially estimated based on the fitting process for 

the given values of 𝑑𝑖  and 𝑃𝑅,𝑖 . These values are then utilized for estimation of 𝑑𝑖  and 

substitution in (4) to determine 𝑟𝑖 for each Tx. Note that,  LLS is used to find a coarse 

estimate of the Rx’s position, which is given by [19]: 

�̂� = [
�̂�Rx
�̂�Rx

] = (𝐴𝑇𝐴)−1𝐴𝑇𝐵, (7) 

where [�̂�Rx, �̂�Rx] is the estimated position of the Rx, and A and B are given as: 

𝐴 = [

𝑥2 − 𝑥1 𝑦2 − 𝑦1
⋮

𝑥𝐼 − 𝑥1

⋮
𝑦𝐼 − 𝑦1

] ,      𝐵 = 0.5 × [
(𝑟1

2 − 𝑟2
2) + (𝑥2

2 + 𝑦2
2) − (𝑥1

2 + 𝑦1
2)

⋮
(𝑟1

2 − 𝑟𝐼
2) + (𝑥𝐼

2 + 𝑦𝐼
2) − (𝑥1

2 + 𝑦1
2)
]. (8) 

However, the LLS estimation solution may not offer a high positioning accuracy [19]. This 

is especially true for the positions close to the walls and corners, where the signal power 

levels from the NLoS paths are higher. The NLLS estimation can be utilized as an alterna-

tive approach for position estimation, which minimizes the approximation error attained 

from LLS estimation [29]. The trust region algorithm is employed to solve the unrestricted 

optimization problem to realize the 3D positioning [12]. The estimated location is found at 

the minimum of the averaged squared error �̃�, which is given by: 

�̃� =  ∑(√(�̃�Rx − 𝑥𝑖)
2 + (�̃�Rx − 𝑦𝑖)

2 − 𝑟𝑖)
2

,

𝐼

𝑖=1

 (9) 

where �̃�Rx and �̃�Rx are the estimated position of the Rx. 𝑟𝑖 is computed from (4) and (6). 

In this work, we consider NLLS with a polynomial fitted model for the distance as the 

baseline for performance comparison. 

3. The Concept of Neural Network 

3.1. Use of ANN for Regression 

Even with the power versus the distance relation for NLoS described in (6), the room 

morphology (corners, walls, furniture, etc.) changes a great deal, thus making it difficult 

to infer an approximate model, which is applicable for every scenario. As a result, using 

ANN is advantageous since it is trained using 𝑃𝑅,𝑖 from each Tx and the transmission 

distance. The regression analysis is useful to model the relationship between a dependent 

variable and one or more independent variables (i.e., the input values in the model). One 

of the possible solutions for any type of regression problem is the ANN. The ANN is in-

spired by the process of the human brain and therefore, is composed of neurons that work 

in parallel. Each neuron is capable of performing a simple mathematical operation indi-

vidually [37]. Collectively, the neurons can evaluate complex problems, emulating most 
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of the functions and providing precise solutions. The ANN is an interconnected network 

of processing elements (neurons) and it includes two different phases: (i) the training 

phase - where the ANN estimates an input-output map based on the training data set. 

During this training phase, the neuron weights are continuously adapted to minimize the 

error between the estimated output and the training data vectors. The process terminates 

when the required performance is achieved, or the complete training set is used; and (ii) 

the operation phase - where the ANN is employed to perform estimates based on the input 

data alone. The ANN structure consists of at least three layers; a single input layer con-

sisting of N, one or several hidden layers (HL), and a single output layer, see Fig. 4(a). 

These layers are linked together based on a collection of connected units or nodes, called 

the artificial neurons. The importance of these neurons is defined based on their weights 

and the learning process.  

 

(a) 

 

(b) 

Figure 4. The artificial neural network with: (a) a basic structure, and (b) a structure of kth neuron 

with N inputs in the layer m. 

The weight 𝑊𝑘𝑛
𝑚  has the capability to acquire and store experimental knowledge, 

where k, n, and m represent the number of neurons, inputs, and layers, respectively. These 

are also known as the synaptic weights because their principle is like the synapses present 

in biological brains. It relates the nth input to the kth neuron. Note, the number of neurons 

in the hidden layer controls the weights and the bias in the network. Each neuron can be 

biased with a value bm as depicted in Fig. 4(b). For HLs, a sigmoid transfer function is used 

as an activation function that applies thresholding to the input data and produces outputs 

as a continuous value between zero and one, while the output layer employs a linear 

transfer function. The performance of an ANN algorithm is measured by the mean square 

error, which can be expressed as a function of F(𝑝𝑘
𝑚) as: 

xRx

yRx
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𝐹(𝑝𝑘
𝑚) = 𝑒𝑘

𝑚 = ‖𝑡𝑘
𝑚 − 𝑎𝑘

𝑚‖2, (10) 

where 𝑝𝑘 is the vector containing all of the network weights and biases for the kth neuron 

(i.e., 𝑝𝑘 = [𝑊𝑘, 𝑏𝑘]), and 𝑎𝑘
𝑚 is the network output of the kth neuron for the mth layer and 

𝑡𝑘
𝑚 is the target output of the kth neuron for the mth layer. The weights and the bias are 

updated by the backpropagation method [37] as:  

𝑊𝑘,𝑛+1
𝑚 = 𝑊𝑘,𝑛

𝑚 − 𝐺𝑠𝑚(𝑎𝑘
𝑚−1)𝑇 (11) 

𝑏𝑘,𝑛+1
𝑚 = 𝑏𝑘,𝑛

𝑚 − 𝐺𝑠𝑚, (12) 

where 𝐺 is the learning rate, 𝑚 =  0,1, … ,𝑀 − 1, M is the number of layers in the net-

work, and (.)T is the transpose. 𝑏𝑘,𝑛
𝑚  is the bias vector. 𝛾𝑘𝑛

𝑚  is the input vector, 𝑛 =

0,1, … , 𝑁, and N is the total number of inputs in the network. 𝑠𝑚 is the sensitivity matrix, 

which is evaluated from the least mean square error function, �̂�(𝑝𝑘
𝑚) for various values 

of 𝑗, wherein j is defined in the matrix form as 𝛾𝑘𝑊𝑘 + 𝑏𝑘 .  

The ANN structure in the proposed study is composed of four layers: an input layer, 

two hidden layers (HLs), and an output layer. Each layer has a different number of neu-

rons, with the input and output layers having four and two neurons, respectively. The 

estimated x and y position coordinates are represented by the output neurons. The esti-

mated distances from each Tx are applied to the input layer with the help of (6).  

In this work, we have investigated the number of hidden layers (HLs) and have de-

termined that a simple ANN with only one hidden layer would not provide the desired 

results i.e., high positioning errors. Using two hidden layers provided a more effective 

framework for achieving improved performance. Therefore, based on our preliminary re-

search, we limited the number of hidden layers to two. The neurons in the HLs are acti-

vated using a Sigmoid transfer function, which thresholds the input data and outputs a 

continuous value between zero and one. A linear transfer function is used in the output 

layer. All notations utilized in the paper are indicated in Table 1 in the appendix.  

Following that, we have adopted a few well-known training algorithms and used 

them to analyze the positioning error of the proposed system. For this investigation, we 

have used the default values of Matlab's fitnet tool to fix the parameters such as the learn-

ing rate. Note that, other parameters such as the number of neurons in HLs or the activa-

tion functions could also be optimized based on the topology of the HLs. Since Sigmoid 

and linear activation functions have been shown to perform well in regression tasks [38], 

therefore, they are used in the hidden and output layers, respectively. Having selected 

Bayesian regularization as the optimal learning algorithm, we then optimized the learning 

phase using the number of epochs and size of the training set.  

3.2. ANN Training Methods 

The network records the trained information in 𝑊𝑘𝑛
𝑚  and 𝑏𝑚. Note, the ANN can be 

trained in supervised and unsupervised modes, where the former offers higher reliability 

compared with the latter; thus, it is adopted in this work as explained in the following 

subsections. 

3.2.1. Levenberg-Marquardt Algorithm 

Levenberg-Marquardt (LM) algorithm is employed to solve the NLLS problems. By 

leveraging the most used optimization algorithms (i.e., Gauss-Newton algorithm, and the 

steepest descent algorithm), the LM algorithm can avoid some problems, such as over-

parameterization, local minima, and non-existence of the inverse matrix [39]. Moreover, it 

inherits the speed advantage of Gauss-Newton algorithm and the stability of the steepest 

descent algorithm. The updated rule of weights and biases, i.e., 𝑝𝑘 is given by: 

𝑝𝑘+1 = 𝑝𝑘 − [ 𝐽𝑘
𝑇 𝐽𝑘 + 𝜇𝑘I]

−1 −  𝐽𝑘𝑒𝑘 , (13) 
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where  𝐽𝑘 is Jacobian matrix of the function, 𝐹(𝑝𝑘), and 𝜇𝑘 ≥ 0 is a scalar, and I is the 

identity matrix.  

3.2.2. Bayesian Regularization Algorithm 

Bayesian regularization (BR) is an algorithm that updates the values of weight and 

bias in accordance with LM optimization. In this algorithm, firstly, a linear combination 

of the squared errors and the weights are minimized and then, the linear combination is 

modified with the aim of obtaining a network with good generalization qualities [37]. In 

BR, the mean squared error function can be defined as: 

𝐹(𝑝𝑘) = 𝛽𝐸𝐷 + 𝛼𝐸𝑊, (14) 

where 𝐸𝐷 is the squared error, 𝐸𝑊 is the sum of squared weights, which penalizes large 

weights in reaching a better generalization and smoother mapping, 𝛼, and 𝛽 are the reg-

ularization parameters (or objective functions), which are given as: 

 𝛼 =
𝛾𝑒

2𝐸𝑊(𝑝𝑘)
, 𝛽 =

𝑁𝑤𝑏 − 𝛾𝑒
2𝐸𝐷(𝑝𝑘).

, (15) 

where 𝛾𝑒 = 𝑁 − 2𝛼tr(𝐻−1) is called the effective number of parameters, 𝐻 = ∇2𝐹(𝑝𝑘) is 

Hessian matrix, 𝑁𝑤𝑏  is the total number of parameters (weights and biases) of the 

network, tr(𝐻−1) is the trace of the inverse of Hessian matrix. Note, the 2nd term in (15) is 

known as the weight decay, and therefore small values of W would reduce the overfitting 

of the model. 

3.2.3. Scaled Conjugate Gradient Algorithm 

Most of the conjugate gradient algorithms use a line search for each iteration, thus 

making them computationally complex. Therefore, to address this we have adopted the 

scaled conjugate gradient (SCG) algorithm developed by Moller [40]. SCG is based on 

conjugate directions without performing line search, with reduced computational com-

plexity. The SCG algorithm, which is a scaled conjugate gradient method for updating the 

weight and bias values, is robust and does not depend on the user-defined parameters 

given that the step size is a function of quadratic approximation of the error [40]. Different 

approaches are used for estimating the step size, which is given by: 

𝜉𝑘 =
𝜇𝑘
𝛿𝑘

=
−�̅�𝑘

𝑇𝐸𝑞𝑤
′ (𝑝𝑘)

�̅�𝑘
𝑇�̅�𝑘 + 𝜆𝑘|�̅�𝑘|

2
 , (16) 

where 𝐸𝑞𝑤
′ (𝑝𝑘) is the quadratic approximation of the error function, 𝐹(𝑝𝑘). �̅�1, �̅�2, … . �̅�𝑘 

is the set of non-zero weight vectors, and �̅�𝑘 is the second-order information. 𝜆𝑘 is the 

scaler to be updated such that: 

𝜆𝑘 = 2(𝜆𝑘 −
𝛿𝑘
|�̅�𝑘|

2
) . (17) 

 

 If Δ𝑘 > 0.75, then 𝜆𝑘=𝜆𝑘/4, and if Δ𝑘 < 0.25 then 𝜆𝑘=𝜆𝑘 + 𝛿𝑘(1 − Δ𝑘)/|�̅�𝑘|
2 . Δ𝑘  is a 

comparison parameter given by: 

Δ𝑘 =
2𝛿𝑘[𝐹(𝑝𝑘) − 𝐹(𝑝𝑘 + 𝜉𝑘�̅�𝑘)]

𝜇𝑘
2 . (18) 

4. Results and Discussion 

The proposed system adopted in section 2 is implemented in the simulation environ-

ment using MATLAB. Both NLLS and different ANN algorithms are applied to the pro-

posed VLP system, and the performance of all algorithms is compared. The ANN struc-

ture is composed of 4 layers, which include an input layer, two HLs, and an output layer. 

The number of neurons in each layer is variable, with 4 and 2 neurons in the input and 

output layers, respectively. The latter represents the estimated x and y position 
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coordinates. Using (6), the calculated distances from each Tx are fed to the input layer. A 

sigmoid transfer function is used as the activation function for the neurons in the HLs, 

which threshold the input data and provides the output as a continuous value between 

zero and one. The output layer employs a linear transfer function.  

Besides, the proposed positioning process includes (i) the total received power com-

puted at the Rx; (ii) the polynomial regression model used to determine the power dis-

tance relation, and the distance from each Tx to the Rx; (iii) the computed distance is used 

as the input to the NN algorithm for training purpose; and (iv) the position is estimated 

as the output of the ANN algorithm. Furthermore, for the real implementation, the use of 

these algorithms would imply two phases: the training phase, where previously collected 

data will be used for training the ANN; and the stand-alone phase, where the trained 

ANN with fixed weights will be used in the hardware for position estimation.  

 

Figure 5. Total dataset samples considered for the proposed ANN. 

In this study, two datasets are considered for training, testing, and validation of the 

ANN as depicted in Fig. 5. These datasets are composed of the received power infor-

mation for a given grid of Rxs with different noise power levels (according to the SNR).  

Table 2. The key system parameters. 

Parameter Value 

Room size 6 × 6 × 3 m3 

Locations of the Txs 

(𝑥1, 𝑦1, 𝑧1), 

(𝑥2, 𝑦2, 𝑧2) 

(𝑥3, 𝑦3, 𝑧3), 

(𝑥4, 𝑦4, 𝑧4) 

 

(-1.7, -1.7, 3), 

(-1.7, 1.7, 3), 

(1.7, -1.7, 3), 

(1.7, 1.7, 3) 

Area of PD 10-4 m2 

Half-power angle (HPA) 70° 

Responsivity of PD 0.5 A/W 

Field of view (FOV) 75° 

Transmitted power 1 W 

Reflection coefficient 0.7 

Activation function Sigmoid, linear 

Number of neurons in the input layer 4 

Number of neurons in the hidden layer 2-36 

Number of neurons in the output layer 2 

Number of hidden layers 2 

Percentage of train to test 0.8 

  ,                 ,               

  ,                 ,               

  ,                 ,               

  ,                ,              

  ,                ,              
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Note, (i) the data samples are randomly scrambled; and (ii) different datasets are used 

to avoid biasing of the training process, that is, ANN optimization is done using a single 

dataset while for the verification and testing another dataset is adopted. Therefore, 80% 

of dataset A and 20% of dataset B are used for training and for testing and validation, 

respectively. Data scrambling is used to feed the data randomly to the inputs of the neural 

network for training the network, see Fig. 5. We consider a grid (1 cm resolution) of 3600 

Rx’s positions on the receiving plane, which is divided into two regions, i.e., the inner 

region where the received power is more uniform and includes the area of the receiving 

plane within the Txs (LEDs), and the outer region representing the remaining area near 

the walls and corners as depicted in Fig. 1. All the other key system parameters are given 

in Table 2.  

4.1. VLP Error Performance 

Generally, RSS-based positioning algorithms are susceptible to the ambient induced 

shot noise, thus leading to increased 휀𝑝. In this work, we consider the impact of noise, 

which is modelled as Gaussian with N (0, 𝜎2), on the performance of VLP. A total of 1000 

iterations are performed in this simulation to gain some statistical significance. The per-

formance evaluation of the VLP system is provided in terms of the Quantile function 𝑄, 

which is a valid performance metric to show the level of accuracy. The measurement of 

the confidence interval of 휀𝑝 is carried out through the performance metrics of the 𝑄, 

which is given by [30]: 

𝑄(𝜂) =  CDF−1(𝜂), (19) 

where CDF represents the cumulative distribution function of 휀𝑝, and 𝜂 is the percentage 

of the confidence interval. 

  

(a) (b) 

Figure 6. The measured 95% quantile function for different ANN algorithms for: (a) the inner, and 

(b) the outer regions. 

Figure. 6 shows the measured 𝑄(95%) as a function of the SNR for different ANN 

algorithms in both inner and outer regions. It is observed that, LM and BR outperform 

SCG in both regions. For instance, in the inner region at the SNR of 10 dB, 휀𝑝−min are 54, 

62, and 66 cm for LM, BR, and SCG, respectively, which increases to 80, 95, and 170 cm, 

respectively for the outer region. Note, the SNR thresholds for the inner and outer regions 

are 10 and 15 dB, respectively, where beyond these values, the positioning errors remain 

almost constant at the lowest levels. Note that, we have considered the average SNR val-

ues in the analysis. The decreasing trend in the positioning error is justified by the increase 

of SNR. For high values of SNR, the effect of noise on the estimated position is reduced. 

On the contrary, for the small values of SNR, the randomness of the input data leads to 

overfitting, thus making the estimated error larger. To improve the proposed VLP system, 
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we further investigate the impact of ANN algorithms, the number of neurons in the HLs, 

and the epochs in the following sections. 

4.2. Selection of the Training Algorithm and Number of Neurons in the HL 

The number of neurons in the HL and different training methods are investigated in 

this subsection to determine the optimum algorithm based on 휀𝑝−min. The accuracy of the 

inner region is higher than the outer region due to more reflections being considered in 

the corners of the room. Therefore, we have only considered the inner region for the se-

lection of the number of neurons in both HLs. As depicted in Fig. 6, both LM and BR have 

lower 휀𝑝 compared with SCG, therefore, are considered for further analysis. Next, we in-

vestigate a different number of neurons in the HL and the training for an ideal scenario 

(i.e., no noise).  

  

(a) (b) 

Figure 7. The positioning error for the inner region for different training methods of ANN: (a) LM, 

and (b) BR. 

Table 3. Comparison of 휀𝑝−min for different training algorithms. 

Algorithms 휀𝑝 (cm) Neurons in HL 1 Neurons in HL 2 

LM 0.11 36 36 

BR 0.06 32 28 

Fig. 7 shows the surface plots for 𝑄 of 95% for the different number of neurons for 

LM and BR. As depicted in Fig. 7, 휀𝑝−𝑚𝑖𝑛  are 0.11 and 0.06 cm for (i) LM with 36 neurons 

each in the HLs of 1 and 2; and (ii) BR with 32 and 28 neurons in HLs 1 and 2, respectively. 

Based on 휀𝑝−𝑚𝑖𝑛 the number of neurons in the HL is selected for LM and BR as detailed 

in Table 3. Note, the training performance is compared for 1000 epochs between LM and 

BR with the total computation times are 22 and ~10 minutes, respectively, which is 

achieved using CPU Intel (R) Core (TM) i9-9900K CPU @ 3.60GHz, 3600 MHz, 8 Core PC, 

having 16 Logical Processors and 32 GB RAM. The epochs represent the number of times 

the ANN algorithm will run over the full training dataset. BR offers a faster training phase, 

and therefore, is selected for further investigation of the impact of a different number of 

epochs. 

4.3. Impact of Epochs and Noise Performance an the VLP System 

Firstly, the effect of epochs in the proposed VLP system is observed, where we inves-

tigate different epoch values their impacts on the error performance. Fig. 8 depicts the 

𝑄(95%) as a function of SNR for epochs of 500, 1000, and 3000 for inner and outer regions. 

We can see that, for the inner and outer regions, the epoch of 3000 offers the lowest 𝑄 for 

all values of SNR, therefore, it is considered further analysis with the noise. This shows 
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that BR is strongly affected by the number of training epochs, with a larger number of 

epochs resulting in more tuned network weights.  

 
 

(a) (b) 

Figure 8. The measured 95% quantile function for various number of epochs for BR in the: (a) in-

ner, and (b) outer regions. 

 

Figure 9. The measured 95% quantile function for NLLS and BR. 

Fig. 9 depicts the 𝑄(95%) as the function of SNR for the BR-based ANN algorithm 

and with RSS, as well as for the inner and outer regions and for the epochs of 3000. Results 

show that NLLS is more prone to the effect of noise and proximity from walls and corners 

than BR. This can be explained by the ability of the ANN to better estimate the positions 

near the walls than NLLS and the inherent immunity to the noise. As shown, 휀𝑝 is re-

duced significantly using ANN. For instance, at the SNR of 30 dB and for the inner region 

휀𝑝−min are 8 and 13 cm for BR and NLLS, respectively. Moreover, in the inner region, the 

accuracy improvement values of 46, 58, and 38% are observed for the SNR values of 10, 

20, and 30 dB, respectively. While in the case of the outer region, the accuracy improve-

ments of 50, 30, and 9% are observed for the SNR values of 10, 20, and 30 dB, respectively. 

Therefore, the BR outperforms the traditional NLLS for the SNR range of 5 – 30 dB.  

Fig. 10 depicts the error distribution plots using Bayesian Regularization algorithm 

for different ranges of SNR. It can be observed that the positioning error 휀𝑝 decreases by 

increasing the SNR values. Therefore, we can clearly see the impact of noise in these error 

plots. The main observations are detailed in Table 4. 
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Figure 10. Different error distribution plots using BR algorithm for SNR value: (a) 5 dB, (b) 10 dB, 

(c) 15 dB, (d) 20 dB, (e) 25 dB, and (f) 30 dB. 

Table 4. Final observations of the comparison of BR and traditional RSS with NLLS algo-

rithms. 

 BR RSS with NLLS 

Max. PR (µW) 6.7 × 104 6.7 × 104 

Min. PR (µW) 3.6 × 104 3.6 × 104 

Max. 휀𝑝 at 20 dB (m) 0.89 1.29 

Min.  휀𝑝 at 20 dB (m) 16 × 10-4 18 × 10-4 

Max. 휀𝑝 at 25 dB (m) 0.71 0.72 

Min.  휀𝑝 at 25 dB (m) 6.1 × 10-4 15 × 10-4 

Max. 휀𝑝 at 30 dB (m) 0.54 0.67 

Min.  휀𝑝 at 30 dB (m) 5.4 × 10-4 4.6 × 10-4 

4.4. Impact of Different Training Dataset Sizes on the VLP System 

Furthermore, we analyze the impact of different training dataset sizes denoted by In 

on the 𝑄. For this, we have considered two training scenarios: the random selection (RS), 

and the uniform selection (US). In the former, the original dataset A is down-sampled 

from the original 18,000 samples to 9000, 4500, 2250, and 1125 datasets. While, in the latter, 

the grid size is down-sampled from the original 60×60 samples to the aforementioned 

sizes. By doing so, we aim to show if the system performance depends on the selection of 

training dataset samples. Here, we have only generated results for considering only the 

data from the inner region.  

Fig. 11 shows the error performance versus the SNR for a range of In and for both RS 

and US scenarios. For the RS scenario, the 휀𝑝−min values are 2, 11, and 44 cm for the SNR 

values of 30, 20, and 10 dB, respectively with a lower In of 9000 compared to 15, 22, and 44 
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cm for the US scenario with a higher In of 18000. Results show that, the US scenario con-

ducts to larger errors, this is because we are sampling the grid resolution. This may con-

duct to overfitting problems. With the RS scenario, the accuracy improves for high SNR 

values showing that there is an optimum size for the training dataset. This can be at-

tributed to the fact that the original grid resolution is fixed, leading to less probability of 

overfitting. Therefore, considering the original dataset provides improved results. Hence, 

the proper selection of the training dataset sizes is also essential to properly design the 

system. 

 
(a) 

 
(b) 

Figure 11. The measured 95% quantile function for a different number of samples in the input 

with: (a) RS, and (b) US. 

5. Conclusions 

An indoor VLP system using an artificial neural network for positioning estimation 

in the presence of both line-of-sight and non-line-of-sight multipath signals was analyzed. 

In order to implement a realistic scenario, we studied the influence of noise in the pro-

posed system. Three different ANN algorithms of Levenberg-Marquardt, Bayesian regu-

larization, and scaled conjugate gradient algorithms were explored for minimizing the 

positioning error. The optimization of ANN was done based on the number of neurons in 

the hidden layers and the number of training epochs. We showed that, the ANN with 

Bayesian regularization outperforms the traditional RSS technique using NLLS for the 

SNR range of 5 – 30 dB. We also observed an improvement in the positioning accuracy for 

the inner region by 43, 55, and 50% compared to 57, 32, and 6% in the outer region for the 
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SNR of 10, 20, and 30 dB, respectively. We further studied the impact of different training 

dataset sizes for training the neural network.  It is concluded that, ANN is an efficient 

method that allows to achieve a minimum positioning error of 2 cm for 30 dB of SNR with 

a random selection of training dataset sizes. Finally, we observed that the positioning er-

ror is low even for a lower range of SNR, i.e., positioning error values of 2, 11, and 44 cm 

for the SNR of 30, 20, and 10 dB, respectively. In our future work, we will be developing 

an experimental test-bed for verification of the simulated results. 
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Appendix A 

Table 1. List of notations used in this paper. 

Notation Definition 

휀𝑝 Positioning error 

ht Height of the Tx 

hr Height of the Rx 

m Lambertian mode 

𝑃𝑅,𝑖 Total received power from the ith Tx 

𝑃𝐿𝑜𝑆,𝑖 Received power from the ith Tx due to the path loss 

𝑃𝑁𝐿𝑜𝑆,𝑖 Received power from ith Tx due to NLoS path 

𝑛𝐺  Additive white Gaussian noise 

𝑑𝑖 Distance between the ith Tx and the Rx 

𝜔𝑖 The irradiance angle from the ith Tx to the Rx 

φ Incident angle  

ℛ Photodiode responsivity 

𝑃𝑡,𝑖 Transmitted power from the ith Tx 

Ts(𝜑) Transmittance function 

g(𝜑) Concentrator gain of the Rx 

𝐴𝑟 Area of the photodetector 

𝑟𝑖 The horizontal distance from the Tx to the Rx 

h The difference in height between the Tx and Rx, i.e., (ht− hr) 

𝑑𝑖,𝑤, 𝜑𝑖,𝑤 , 𝜔𝑘,𝑤 The distances, receiving incident angle, and the irradiance angle 

between the ith Tx and the reflective area, respectively 

𝑑𝑤,𝑟, 𝜑𝑤,𝑟, 𝜔𝑤,𝑟 The distances, receiving incident angle, and the irradiance angle 

between the reflective area and the Rx, respectively 
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ρ The reflectance factor depending on the material of the reflective 

surface 

𝐴ref Reflectance area 

𝑎0 ⋯𝑎𝑔 Coefficients of the polynomial model for the 𝑔th order polynomial 

[�̂�Rx, �̂�Rx] The estimated position of the Rx 

�̃� Averaged squared error 

�̃�Rx , �̃�Rx The estimated position of the Rx. 

𝑊𝑘𝑛
𝑚  Weight 

𝑝𝑘 The vector containing all the network weights and biases for the kth 

neuron, i.e., 𝑝𝑘 = [𝑊𝑘 , 𝑏𝑘] 

𝑎𝑘 The network output for the kth neuron 

𝑡𝑘 The target output of the network for the kth neuron 

𝐺 Learning rate 

𝑀 Maximum number of layers  

𝑏 Bias vector 

m Number of layers  

k Number of neurons  

γ Input vector, 

N Total number of inputs  

𝑛 Number of inputs  

𝑒𝑘 Error matrix 

𝐬 Sensitivity matrix 

�̂�(𝑝𝑘
𝑚) Least mean square error function 

F(𝑝𝑘
𝑚) Mean square error 

 𝐽𝑘 Jacobian matrix 

𝜇𝑘 A scalar 

I Identity matrix 

𝐸𝐷 Squared error 

𝐸𝑊 Sum of squared weights 

𝛼, 𝛽 Regularization parameters 

𝛾𝑒 Effective number of parameters 

𝐻 Hessian matrix 

𝑁𝑤𝑏 Total number of parameters (weights and biases) of the network 

tr(𝐻−1) The trace of the inverse of Hessian matrix 

𝐸𝑞𝑤
′ (𝑝𝑘) Quadratic approximation of the error function, 𝐹(𝑝𝑘) 

�̅�1, �̅�2, … . �̅�𝑘 The set of non-zero weight vectors 

�̅�𝑘 Second-order information 

𝜆𝑘 A Scalar 

Δ𝑘 Comparison parameter 

𝜂 Percentage of the confidence interval 

Q Quantile function 

휀𝑝−min Minimum positioning error 
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𝜉𝑘 Step size 
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5.6 A Visible Light Positioning System based on Support Vector Machines 

This section is a version of the published manuscript: 

N. Chaudhary, O. I. Younus, Z. N. Chaleshtori, L. N. Alves, Z. Ghassemlooy, and S. 

Zvanovec, ‘A Visible Light Positioning System based on Support Vector Machines’, in 

2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio 

Communications (PIMRC), Helsinki, Finland, Sep. 2021, pp. 1–6. 

Connection to my Ph.D. thesis: 

A new indoor visible light positioning algorithm based on SVM, and polynomial regression 

was proposed. Two different multipath environments of an empty room and a furnished room were 

considered. The algorithm started by addressing the received power distance relation, considering 

polynomial regression models fitted to the specific areas of the room. In the second stage, an SVM 

was used to classify the best-fitted polynomial, which was used with nonlinear least squares to 

estimate the position of the receiver. The results showed that, in an empty room, the positioning 

accuracy improvement for positioning errors of 2.5 cm are 36.1, 58.3, and 72.2 % for three 

different scenarios according to the regions’ distribution in the room. For the furnished room, the 

positioning accuracy improvement of 214, 170, and 100 % were observed for positioning error of 

0.1, 0.2, and 0.3 m, respectively. 
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Abstract— In this work, a new indoor visible light positioning 

algorithm is proposed based on support vector machines (SVM) 

and polynomial regression. Two different multipath 

environments of an empty room and a furnished room are 

considered. The algorithm starts by addressing the received 

power distance relation, considering polynomial regression 

models fitted to the specific areas of the room. In the second 

stage, an SVM is used to classify the best-fitted polynomial, 

which is used with nonlinear least squares to estimate the 

position of the receiver. The results show that, in an empty room, 

the positioning accuracy improvement for the positioning error, 

𝜺𝒑  of 2.5 cm are 36.1, 58.3, and 72.2 % for three different 

scenarios according to the regions’ distribution in the room. For 

the furnished room, a positioning relative accuracy 

improvement of 214, 170, and 100 % is observed for 𝜺𝒑 of 0.1, 

0.2, and 0.3 m, respectively. 

Keywords—VLC, visible light positioning, polynomial 

regression, SVM, RSS. 

I INTRODUCTION  

Indoor positioning system (IPS) with high precision and 
low cost has become one of the most exciting features of next-
generation indoor optical wireless communication systems 
[1]. A number of potential applications include object 
tracking or human tracking, industrial manufacturing, and 
robot control and navigation [2], [3]. Several technologies 
have been exploited for IPS purposes, for instance, Wi-Fi [4], 
ultrasound [5], radio frequency identification [6], ultra-
wideband [7], Bluetooth [8], amongst others. The radio 
frequency (RF)-based approaches suffer from the influence of 
reflections, which may severely affect positioning accuracy 
(PA) [3]. Besides them, visible light positioning (VLP) 
acquires special attention due to the advantages introduced by 
the light-emitting diodes (LEDs), i.e., low-cost, ubiquitous in 
living infrastructures, longer lifetimes, and energy efficiency 
[9], [10]. In VLP systems, LEDs are used as a transmitter (Tx) 
beacon. The receivers (Rxs) may come with different 
varieties, either using photodiodes (PDs) or image sensors 
(IS) [11], [12]. Different algorithms have been utilized for 
estimating location, such as, received signal strength (RSS), 
time of arrival, angle of arrival, amongst others [13]–[15]. 
Amongst these algorithms, RSS is typically used in VLP, 
where a PD is utilized to measure the strength of the received 

information from multiple LEDs. After that, the position is 
estimated based on the trilateration or the triangulation 
approaches, where the intersection of multiple circles is 
obtained based on the inferred distance between the Rx and 
the Txs [16], [17].  

Recently, the use of machine learning in RSS-based VLP 
systems has been explored in [18]. The authors proposed the 
usage of K-Means clustering algorithm to achieve a 0.31 m of 
PA for a room of dimension 4.3×4×4 m3. Moreover, a PA of 
3.65 cm along with a height tolerance of 15 cm was achieved 
using a backpropagation algorithm -for an indoor VLP system 
in [19]. Additionally, an innovative solution was proposed for 
indoor positioning based on the dual-function machine 
learning algorithms that contain machine learning 
classification and machine learning regression functions. in 
[20]. Classification algorithms, such as, random forest and 
support vector machines (SVM) were used for obtaining the 
highest PA of 8.6 and 10.2 cm, respectively. The results 
showed that, SVM is the optimal solution for VLP systems 
with a low positioning error 𝜀𝑝.  

The previous works focused mainly on a simple line of 
sight (LoS) channel model, making it straightforward to 
estimate the received optical power Pr as a function of the 
distance d. The influence of non-line of sight (NLoS) paths in 
a VLC system implemented in a referenced empty room has 
been described in the literature. For instance, in [21], the 
impact of multipath reflections on the indoor VLP system was 
studied. The results proved that, the minimum 𝜀𝑝  achieved 

were 46.4 and 0.4 cm with and without multipath reflections, 
respectively. Therefore, reflections play an important role in 
estimating the PA, which needs considering. Estimating the 
received power versus the distance for the case of a multipath 
channel is a complex task, which depends strongly on the 
presence of corners, walls, and furniture within a room [21]. 
A new VLP system was proposed in [22], where a polynomial 
regression-based approach was utilized to improve the PA of 
the proposed system. Polynomial regression appears as a 
method to establish the relation between Pr and d, suitable for 
multipath environments. The results showed that, the 
minimum 𝜀𝑝 achieved was 0.6 m by employing a nonlinear 

least square (NLLS) with the polynomial regression model. 
Another VLP system was introduced in [23], where the LEDs 
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were tilted towards the center of the room, thus resulting in 
higher PA. The same polynomial regression approach was 
used along with a low complexity linear least squares (LLS) 
method, which showed a PA improvement of ~66%. In 
addition, by changing the polynomial fitting depending on the 
regions (i.e., inner region or the entire space) of the room, the 
PA was further enhanced. These results suggest that, the 
accuracy of the polynomial regression model depends on the 
specific area within the room. 

In this work, a new indoor VLP system is proposed based 
on the polynomial regression and SVM. Two different 
environments are considered an empty room and a furnished 
room, where multipath channels are considered and estimated 
using OpticStudio® software. In both environments, the total 
room area is divided into different regions, such as, corners, 
the middle area of the room, regions near the walls, or 
depending on furniture layout, thus creating four different 
scenarios. At a second stage, polynomial fitting is carried out 
for these different regions and the position is estimated for the 
entire room using the polynomial regression approach. 
Finally, SVM is employed to perform the classification and 
select the best region based on the lowest 𝜀𝑝.  

The rest of the paper is organized as follows, Section II 
presents the system set-up for both empty room and furnished 
room environments and the computed received power in 
detail. The polynomial fitting, positioning algorithm, and 
SVM are explained in Section III. Results and discussion are 
done in Section IV, followed by the final concluding remarks 
in Section V.  

II VLP SYSTEM MODELLING 

In this work, two different environments are considered, 

i.e., empty room and furnished room. In both environments, 

the proposed VLP system consists of several LEDs as the Txs, 

and a single PD-based Rx. All Txs are installed at the same 

height ℎ𝑘 from the ground level. The coordinates of kth Tx (k 

= 1, …, K) is (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘), where K is the total number of Txs. 

While the Rx with the coordinate (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) is placed at ℎ𝑟 

above the ground level. The system is modelled by employing 

a non-sequential ray-tracing feature of OpticStudio® for 

estimating 𝑃𝑟  at the Rx and the path lengths in a complex 3D 

environment. Then, the channel characteristics are processed 

using Matlab® for the position estimation. In the case of an 

empty room environment, a referenced empty room is 

considered to analyze the performance of the system. In the 

case of a furnished room, a usual office room is considered 

with several furniture and static users inside the room. The 

dimensions of both empty and furnished rooms are identical, 

i.e., 6 × 6 × 3 m3. Fig. 1 depicts both empty and furnished 

room environments. 

Each Tx broadcast a unique 2-bit ID information that is 

encoded and in the on-off keying (OOK) format, which 

arrives at the Rx before the location identification, thus 

allowing separation at the Rx using a correlation method [22]. 

𝑃𝑟,𝑘 at the Rx from the kth Tx will be a combination of power 

from both LoS and NLoS paths and can be expressed as: 

 
𝑃𝑟,𝑘  = ∑ 𝑃𝑟,𝑘(LoS) + ∑ 𝑃𝑟,𝑘(NLoS), (1) 

where 𝑃𝑟,𝑘(LoS)  and 𝑃𝑟,𝑘(NLoS) represents the received power 

for LoS and NLoS at the kth Tx, respectively. The values of 

𝑃𝑟,𝑘 are computed using OpticStudio®. 

III     VLP ALGORITHM 

In our work, the position estimation of the Rx includes 
three major stages (i) the receiving plane of the entire room is 
distributed into different regions, and the data from 𝑃𝑟,𝑘  is 

used for polynomial fitting. A polynomial model is inferred 
based on 𝑃𝑟  and d; (ii) these polynomial models are used to 
estimate the position for the entire room by using RSS 
algorithm; and (iii) SVM is employed for classification, to 
obtain the solution with the minimum 𝜀𝑝. The major stages 

are explained in more detail next subsections. 

3.1  RSS polynomial model 

For the polynomial fitting, firstly the room is divided into 
different regions, where 𝑑𝑘 and 𝑃𝑟,𝑘 are computed. The shape 

and the area of each region needs to be selected prior to the 
system deployment. After that, a polynomial regression 
method is used for polynomial fitting for each region. This 
allows inferring a polynomial dependent on different parts of 
the room. The room division strategy considers the influence 

 
(a)  

 
(b) 

Fig. 1. System configuration for: (a) empty room, and (b) furnished room. 
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of reflection on 𝑃𝑟 , as such, the areas near the corners or walls 
should have polynomial models different from the areas at the 
center of the room, where the impact of reflections is much 
less. The polynomial model is given by: 

𝑑𝑘  = 𝛼0 + 𝛼1𝑃𝑟,𝑘 + 𝛼2(𝑃𝑟,𝑘)
2

+ ⋯ + 𝛼𝑠(𝑃𝑟,𝑘)
𝑠
, (2) 

where 𝛼0 … 𝛼𝑠  represent the coefficients of the fitted 
polynomial obtained using the linear least-squares method.  

The next step consists of converting 𝑑𝑘 computed with (2) 
in the distance projection in the horizontal plane. The 
horizontal distance from kth Tx to the Rx 𝑟𝑘 is given by: 

 
‖𝑟𝑘‖2 = ‖𝑑𝑘‖2 − ℎ2 , (3) 

where h is the vertical distance between kth Tx and the Rx. 
Note, the value of h for all Txs is the same in this work since 
all the Txs are placed at the same height from the ground. The 
next step is to employ NLLS estimation method.  

3.2 Nonlinear least square estimation  

 In this work, the target location is estimated using the 
NLLS approximation, in which the estimated solution is 

achieved with �̃� = [�̃�, �̃�], which minimizes the cost function  
represented as: 

 
�̃� = ∑ (√(𝑥𝑟 − 𝑥𝑘)2 + (𝑦𝑟 − 𝑦𝑘)2 − 𝑟𝑘)

2

𝑖 . (4) 

The value of �̃� is estimated iteratively by employing the 
LLS and trust-region reflective algorithm [24]. Primarily, the 

value of �̃�0 is initiated from LLS, followed by computing the 

corresponding �̃�0 . Then, the consecutive points in the 

neighborhood of �̃�0 are replaced in (4), and where the value 

the minimum �̃�1 is achieved the corresponding value of  �̃�1 is 

selected. The coordinates of the Rx represented by �̃�  will 
eventually be obtained with several iterative steps to ensure 

convergence of �̃�.  

3.3  Support vector machines 

SVM is a supervised machine learning algorithm utilized 

for solving classification and regression problems. SVM 

classifies data by achieving the best hyperplane that 

distinguishes all data points of one class from those of another 

class. The best hyperplane is the one with the largest margin 

between two (different) classes. Although SVMs were 

originally developed for binary class classification, they can 

be extended to multiclass classification. The multiclass 

problem is split into multiple binary classification cases, also 

known as one-vs-one classification, as depicted in Fig. 2.  

In one-vs-one classification, a series of classifiers are 

employed to each pair of classes, with the most frequent class  

identifier [27]. SVMs also need the training of different 

classifiers using the data from each pair of classes. The 

number of classifiers 𝑁𝑐  required for one-vs-one multiclass 

classification can be retrieved by [27]: 

 
𝑁𝑐 =  

𝜂 × (𝜂 − 1)

2
, (5) 

where 𝜂 represents the number of classes. In this work, the 

SVM is used to classify the minimum 𝜀𝑝 based on different 

regions, so the number of classes is given by the number of 

regions.  

For non-linear problems, the training data is not linearly 

separable in the original input space. Therefore, mapping of 

the original input space into a high-dimensional space is done 

using a concept called kernel trick [27]. In this algorithm, N 

training samples are considered. Each sample is indicated by 

(𝑢𝑖, 𝑝𝑖 ), where 𝑢𝑖  corresponds to the attribute set for the ith 

sample (i = 1, 2, …, N), and 𝑝𝑖  correspond to the ith label. The 

SVM classifier can be defined as: 
 

𝑓(𝑢) =  ∑ 𝛼𝑖 𝑝𝑖  𝐺(𝑢𝑖 , 𝑢𝑗) + 𝑏

𝑁

𝑖,𝑗=1

, (6) 

where 𝛼𝑖  is Lagrange multiplier, and b is the bias term. 

𝐺(𝑢𝑖, 𝑢𝑗) is the kernel function, and 𝑢𝑗 is any data point in the 

 
Fig. 2. The schematic diagram of one-vs-one multiclass SVM. 

TABLE I.  SYSTEM PARAMETERS 

Room size 

Empty room 6× 6× 3 m3 

Furnished room 6× 6× 3 m3 

Tx and Rx 

Number of LED-based Txs K 4 

Transmitters xk, yk locations in meter (1.5, 1.5), (1.5, 4.5), (4.5, 

1.5), and (4.5, 4.5). 

Tx model [28] Cree Xlamp MC-E 

LED-based optical power  11 W 

Beam angle-based Tx 120  ͦ

PD Rx dimension   1 cm2 

PD field of view (FOV) 85  ͦ

Reflection specification 

Type of reflections  Purely diffuse [25] 

Number of reflections 3 

Material reflectance Wavelength-dependent 

[26] 

Wall coating material  Plaster [26] 

Number of rays 104 

Scatter fraction  1 

Chair, sofa  Leather [25] 

Human clothes Cotton [25] 

Plant  Plant [25] 

Desk, bookshelf, book Pinewood [25] 

PC, printer Black gloss paint [25] 
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sample. In this work, the polynomial kernel is used, which is 

given by: 
 𝐺(𝑢𝑖, 𝑢𝑗) = (𝑢𝑖

T. 𝑢𝑗 + 𝑐)
𝑑

, (7) 

where c is the constant, T represents the transpose, and d is 

the degree of the polynomial [27]. Lagrange multipliers are 

obtained using the convex quadratic optimization algorithms 

[24]. 

IV. RESULTS AND DISCUSSION 

4.1  System setup 

The simulation setup is composed of two different 
environments i.e., a referenced empty room and a furnished 
room. Four Txs are symmetrically placed on the ceiling at the 
height ℎ𝑘 of 3 m while the Rx is placed at the height ℎ𝑟 of 
0.8 m above the ground level. The modelling of the proposed 
system is done based on the specifications of the Txs and the 
Rx, the characteristics of CAD models of each object within 
the environment, the type of surface material (wall, floor, 
ceiling, and objects where the value of reflectance is 
wavelength-dependent), and the number of emitted rays [28]. 
All other system parameters are provided in Table I. 

The Txs are assumed to be Lambertian radiators with 
Lambertian order of 1, and optical power of each Tx is 11 W. 

The Rx’s field of view (FOV) is 85°. A grid of 1 cm resolution 
is considered on the receiving plane, which includes 3600 Rx’s 
positions. The cubic SVM algorithm is used in this work, 
where 3600 samples are considered for training the network.  
To prevent overfitting, a cross-validation process is applied to 
the SVM algorithm, in which the data set is partitioned into 5 
folds and the accuracy is measured for each fold. 

4.2  Power distribution for both environments 

The distribution of received power for both empty room 
and furnished room environment are shown in Fig. 3. In the 
case of an empty room, the received power is uniformly 
distributed around the center of the receiving plane, being 
lower at the corners and the area near the walls due to the 
reflections, see Fig. 3(a). In the case of furnished room, 𝑃𝑟  is 
lower for the regions with furniture due to the presence of 
thereflections from objects, walls, and other furniture. 
Moreover, 𝑃𝑟  is minimum near the bookshelf as can be seen in 
Fig. 3(b) (please refer to Fig 1(b) for comparison). 

4.3  Simulated scenarios for both environments 

 The receiving plane is divided into different regions and 
different scenarios are made for both empty and furnished 
rooms. The four different scenarios are illustrated in Fig. 4. 
Scenarios 1, 2, and 3 consider the empty room, while scenario 
4 is for the furnished room. 
 In scenario 1, the first region is the area near the centre of 
the room, where 𝑃𝑟  is more uniform. The second region is the 
area between the center of the receiving plane and the area near 
the walls of the room. The third region is the area near the 
walls of the room as depicted in Fig. 4(a). While in scenario 2, 
the third region includes only the corners of the room, where 
the multipath reflections will be high and the fourth region 
includes the area near the walls except the corners, see Fig. 
4(b). In case of scenario 3, the fifth region is the area of the 
receiving plane just below the LEDs as shown in Fig. 4(c). On 

 
Fig. 4. Different scenarios according to the regions: (a) Scenario 1 for empty 
room with 3 regions, (b) Scenario 2 for empty room with 4 regions, (c) 
Scenario 3 for empty room with 5 regions, and (d) Scenario 4 for a furnished 
room with 5 regions. 

 
(a) 

 
(b) 

Fig. 3. The received power distribution of the proposed VLP system: (a) 
empty room, and (b) furnished room. 
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the other hand, for the room with furniture, the regions are 
considered according to the distribution of furniture as 
presented in Fig. 4(d). Note, region 1 is the empty area of the 
furnished room, see Fig. 1(b).    
 After estimating 𝜀𝑝  for each scenario based on different 

regions, SVM is used for classification to obtain the lowest 𝜀𝑝 

based on the errors attained from each region. Fig. 5 depicts 
data scatter plots showing how data (𝜀𝑝 in different regions) 

spreads for different regions (clustered data can be adequately 
classified, while spread data can represent classification 
challenges). Fig. 5(a, b, and c) shows the data used for training 
the SVM for an empty room. For instance, Fig. 5(a) shows 
three different colour of data which represents three different 
regions and used as three different classes. Similarly, Fig. 5(b, 
and c) also represents the data of scenario 2 and scenario 3 
with 4 and 5 classes which will be used for classification. We 
can also observe from Fig. 5(d), that the data is more dispersed 

in a furnished room due to the reflections from objects and 
furniture. 

4.4  Positioning error performance of VLP 

Fig. 6 depicts the CDF plots for the empty room, where 𝜀𝑝 

of different scenarios is obtained by means of SVM and the 
NLLS with the polynomial fitting using the data points of the 
entire room. We have selected a 95% confidence interval for 
εp to include the majority of the measured points to ensure a 
VLP link with high reliability. As can be seen from Fig. 6, 
scenario 3 displays the best profile for the entire room. At the 
95% interval limit, 𝜀𝑝  values are 9, 9, 8, and 11 cm for 

scenarios 1, 2, 3, and NLLS with polynomial, respectively.   
 Next, we measured the improvement of PA by using SVM 
with relation to the NLLS for the different scenarios. Fig. 7 
illustrates the improvement of the VLP system for scenarios 
1-3 for an empty room. We can see that, the best PA is 
achieved in scenario 3. It was revealed that, the PA 
improvement for 𝜀𝑝 of 2.5 cm are 36.1, 58.3, and 72.2 % for 

scenario 1, 2, and 3, respectively. Whereas the improvement 
of 13.3, 16.9, and 21.1 % are observed for 𝜀𝑝  of 5 cm for 

scenario 1, 2, and 3, respectively. Similarly, Fig. 8 depicts the 
accuracy improvement of a furnished room for a range of 𝜀𝑝, 

higher accuracy improvement is achieved at lower values of 
𝜀𝑝 i.e., < 0.4 m. Although the improvement in the furnished 

 
Fig. 7. Improvement of VLP system with different scenarios for empty room 
environment.  

 
Fig. 8. Improvement of VLP system with different scenarios for furnished 
room environment.  

 
Fig. 5. Data used for: (a) Scenario 1 for empty room with 3 regions, (b) 
Scenario 2 for empty room with 4 regions, (c) Scenario 3 for empty room 
with 5 regions, and (d) Scenario 4 for furnished room with 5 regions. 

  
Fig. 6. Comparison of SVM with different scenarios and normal NLLS with 
polynomial for empty room environment.  
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case is high, the achieved precision is very low (i.e, higher 𝜀𝑝). 

The reason for the high error in this scenario, is the presence 
of the reflections from objects, walls, and other furniture, as 
well as the failure to find suitable polynomial models for 
regions near the furniture. 

V.   CONCLUSIONS 

This paper proposed a new indoor VLP system based on 
the polynomial regression and SVM. Achieved results showed 
that, the use of SVM allows for an accurate classification of 
the polynomial model, hence, improving the accuracy of the 
system. Tests done in a furnished environment revealed that, 
the presence of furniture makes the task of inferring suitable 
polynomial models difficult and conditions the overall 
accuracy of the system. Nevertheless, due to the simplicity of 
the approach and its feasibility for implementation, the 
proposed methods seem suitable for applications demanding 
coarse positioning accuracies, such as positioning in large 
shopping areas. 
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using Rolling Shutter Cameras  
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Connection to my Ph.D. thesis: 

A new visible light positioning system based on CNN was proposed in which LEDs were used 

as transmitters and a rolling shutter camera is used as receiver. A detection algorithm named SSD 

was used which relies on CNN (i.e, MobileNet or ResNet) for classification as well as position 

estimation of each LED in the image. Additionally, a PnP problem algorithm was employed to 

estimate the receiver position. The system was validated using a real-world size test setup 

containing eight LED luminaries. The obtained results showed that the maximum average root 

mean square positioning error achieved is 4.67 and 5.27 cm with SSD MobileNet and SSD ResNet 

models, respectively. The validation results show that the system can process 67 images per 

second, allowing real-time positioning. 
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Abstract: In this work, we propose a new visible light positioning system-based on 
convolutional neural networks (CNN) in which light-emitting diodes (LEDs) are used as 
transmitters and a rolling shutter camera is used as the receiver. A detection algorithm named 
single shot detector (SSD) is used, which relies on CNN (i.e, MobileNet or ResNet) for 
classification as well as position estimation of each LED in the image. Additionally, a 
perspective-n-point problem algorithm is employed to estimate the receiver’s position. The 
system is validated using a real-world size test setup containing eight LED luminaries. The 
obtained results show that the maximum average root mean square positioning errors achieved 
are 4.67 and 5.27 cm with SSD MobileNet and SSD ResNet models, respectively. The 
validation results show that the system can process 67 images per second, allowing real-time 
positioning.
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I. Introduction
Indoor positioning systems (IPSs) have gained increasing attention from the academic and 

industrial communities with numerous applications, including pedestrian navigation, asset 
tracking, and autonomous robot guidance [1]. IPS has already generated revenues of USD 6.54 
billion in 2020 and has a target to hit USD 35.65 Billion by 2028 [2]. Moreover, the IPS are 
used widely in smart factories to improve efficiency. For instance, intelligent transport vehicles 
are necessary to navigate through their environments and avoid collisions. A precise positioning 
plays a key role in promoting industrial automation. Despite the fact that a Global positioning 
system (GPS) provides exceptional performance in outdoor localization, it is unreliable for 
indoor localizations due to signal attenuation or signal blockage, and multipath issues [3], 
therefore, the need for indoor localization services is increasing.

In recent years, various IPS solutions, such as, WiFi-based, infrared, and Ultra-Wideband 
(UWB) have been developed [1], [4], [5]. The visible light positioning (VLP) technology is 
another promising technique that can be considered an alternative or integrated technology to 
radio waves, in which the pre-existing LED infrastructure is used as transmitter (Tx) beacons 
to provide illumination and communication simultaneously [6]. In addition to offering high 
bandwidth, high security, high-speed data transmission, and low implementation costs, LEDs 
are also energy-efficient and provide long service life [6], [7].

There are two major types of VLP devices based on the type of detector used at the receiver 
(Rx) side: photodiode (PD) [8], [9] and image sensor (IS) [10], [11]. For mobile terminals, PDs 
do not provide an ideal positioning device. The primary reason is that PD-based positioning 
will result in large errors due to the angle measurement, variation in light intensity, and received 
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signal strength measurement. Furthermore, the positioning accuracy is compromised by diffuse 
reflections of the light signal. Alternatively, IS-based VLP is better suited for navigating within 
indoor environments. In addition, IS-based VLP can easily be implemented or integrated with 
the current mobile terminals and mobile devices due to the widely used complementary metal-
oxide semiconductor (CMOS) sensor cameras [10].

The recent advances in VLP include the deployment of artificial neural networks (ANNs). 
For instance, in [12], both received signal strength (RSS) and ANN methods were proposed to 
achieve an accurate indoor VLP system in a diffuse optical channel. An accuracy of 6.39 cm 
was achieved with the averaged positioning error 𝜀𝑝 being ~13 times smaller than RSS-based 
positioning systems. In addition, a low-cost indoor VLP system was proposed using a 
backpropagation algorithm in [13], in which 𝜀𝑝 of 3.65 cm was achieved with a height tolerance 
of 15 cm. 

Another prominent technology, i.e., deep learning (DL) is a subfield of machine learning 
approach that outperforms traditional methods in a wide range of applications and has been 
extensively employed in estimating position [14]. For instance, in [15], supervised learning was 
used to train the angle of arrival information from the training locations using a deep 
convolutional neural network (CNN). In [16], two multilayer perceptron (MLP) and CNN 
based deep ANN models were used for efficient mapping of the instantaneous received signal 
to noise ratio (SNR) with the user three-dimensional (3D) position and user equipment (UE) 
orientation for joint estimation of user 3D position and orientation of UE with unknown 
emission power. The results revealed that the average 𝜀𝑝 were 10.53 and 13.04 cm for CNN 
and MLP, respectively. [17] describes a new VLP indoor localization technique based on a 
CNN-based algorithm with handover probability analysis. The algorithm was categorized into 
two modes: offline and online. Firstly, the algorithm was trained utilizing a dataset of received 
VLC signal and data generated from the smart device in the offline mode. Secondly, users 
assessed their position in the online mode based on the received VLC signal. The simulation 
results revealed that the average 𝜀𝑝 achieved was 4.31 cm for the proposed algorithm. 

In this paper, we propose a new indoor VLP system based on CNN and optical camera 
communication (OCC). A single shot detector (SSD) algorithm is used, which relies on CNN 
(i.e., MobileNet or ResNet) for classification as well as position estimation of each LED in the 
image. Firstly, the LEDs are intensity modulated with on-off keying (OOK) with a unique 
symbol period to ease their recognition. A dataset is created in which images are acquired by a 
CMOS camera and the classification and position of each visible LED in that image are labeled. 
The SSD model is trained by using the dataset, and object detection is done. Finally, the Rx 
position is estimated by using the pinhole camera model concept where three OpenCV 
algorithms are employed. 

The rest of this paper is organized as follows. The proposed system model is detailed in 
section II. In section III, a detailed explanation of SSD is given and the process of generation 
of the dataset is described. Finally, Section IV presents the experiment setup and results of the 
proposed system, followed by the conclusion.

II. System Model
The geometrical set-up diagram of our proposed VLP system is depicted in Fig. 1, in which 

a total K number of Txs (i.e., LEDs) and one Rx (i.e., a CMOS camera) are positioned on the 
ceiling and at the floor level, respectively. Each kth Tx has a known set of coordinates (xk, yk, 
zk) and (uk, vk), which is relative to the world coordinate system (WCS) and the image 
coordinate system (ICS), respectively, where k = 1,…,K. In addition, let (xRx, yRx, zRx) be the 
unknown position (coordinate) of the camera-based Rx, respectively. 



Fig. 1. Proposed indoor VLP system.

Fig. 2. Block diagram of the proposed indoor VLP system.

Figure. 2 illustrates the system block diagram, which is composed of the three main blocks, 
i.e., the Tx, a channel, and the Rx. The LED identity code is in the OOK format with the unique 
frequency for each Tx, which is high enough that human eyes cannot perceive any fluctuation 
in the light intensity - essentially flicker-free transmission. Since we are interested in using the 
LED for general-purpose illumination, their time-averaged luminous intensity is ideally 
constant and equal among them. At the Rx, an image is acquired using a CMOS camera whose 
exposure time is set to its minimum possible value. After that, the captured image is applied to 
the trained CNN-SSD model for the classification and detection of LEDs (i.e., recognition of 
LED-ID and their positions in the captured image domain). The detected LED-ID is further 
used to determine the location of LEDs in WCS, which were already stored in the database. 
Next, the SolvePnP algorithm and WCS are adopted to the detected LED position in the image 
domain and for estimating the Rx’s position, respectively for the camera to world 
transformation, which finds the pose (i.e., position and orientation) of the Rx. 

2.1 Proposed VLP system

The proposed SSD-VLP system is primarily comprised of two key procedures: LED-ID 
identification and the positioning algorithm. The former is accomplished by utilizing the CMOS 
IS's rolling shutter mechanism. Note, in CMOS -based camera the scanning of the scene is 



sequential, and the IS camera exposes the image sensor row by row of pixels. This results in an 
image that consists of bright and dark stripes, while the LED is turning on and off throughout 
the exposure time. The length of the stripes is determined by the relation between the symbol 
duration and the row sampling time, both temporal quantities. The signal should be recovered 
within the region-of-interest (ROI) where the SNR is optimal. However, as the distance 
between the LEDs and the camera increases, the projection of the LEDs in the image will 
decrease, resulting in fewer stripes. In the second key procedure, i.e., the positioning algorithm, 
the camera position is made up of six degrees of freedom (i.e., 3D rotation - x, y, and z and 3D 
rotation - roll, pitch, and yaw). Therefore, at least three image points and their corresponding 
WCS information are necessary to estimate the position of the Rx. Already a number of 
solutions are available to solve this perspective-n-point (PnP) problem [18]. In the proposed 
system, we consider the open-source implementation present in the OpenCV computer vision 
library, the solvePnP function, using the solver presented in [19], [20]. This SolvePnP algorithm 
outputs the rotation and translation vectors, which is further used to obtain the rotation matrix. 
Consequently, the Rodrigues algorithm is employed for determining the rotation matrix from 
the rotation vector [21]. As a final step, the position of the Rx is estimated using a rotation 
matrix and the translation vector. Additionally, we use the RQDecomp3x3 algorithm [22] to 
compute the orientation of the Rx.

III. SSD-CNN 
3.1 SSD model and training

SSD is an object detection model that uses feed-forward convolutional networks to generate 
a set of fixed-size bounding boxes and scores that indicate the presence of an object class 
instance in each box. Following this, an additional non-maximum suppression step is performed 
to detect final objects [23]. In SSD, only a single shot is required to detect multiple objects 
within the image. As illustrated in Fig. 3, the SSD object detection model comprises of two 
main blocks: (i) a feature extractor block; and (ii) an extra feature block in which convolutional 
filters are applied for object detection. The model adopted in this work is the pre-trained 
SSD_MobileNet_v2_COCO and SSD_ResNet50_v1_COCO, which embeds all the enumerated 
features are available in [24].

Fig. 3. SSD network structure of the proposed indoor VLP system.

In the proposed system, two different models are used for feature maps extraction, i.e., 
MobileNetV2 [25] and ResNet [26] for high-quality image classification, which we will call 
the feature extractor network (in our case, it is either MobileNetV2 or ResNet) that will be 
explained later in this section. The most significant difference between training an SSD and a 
traditional detector (such as, region-based CNNs, i.e., R-CNNs), is that the ground truth 
information must be assigned to specific outputs in a fixed set of detector outputs. After the 
assignment, the loss function and backpropagation are employed end-to-end.  

Matching strategy: The predictions of SSD are categorized as positive or negative 
matches. SSD considers the positive matches only for the calculation of localization cost (i.e., 



the boundary box mismatch). It is measured by the intersection over union (IoU) parameter, 
which is the ratio between the intersected area over the joined area for two regions. The match 
is positive if the corresponding default boundary box (not the predicted boundary box) has an 
IoU > 0.5 with the ground truth, otherwise, it is negative. Once the positive matches have been 
identified, the cost is calculated using the predicted boundary boxes. This matching strategy 
encourages each prediction to predict shapes closer to the corresponding default box. As a 
result, our training predictions are more stable and diverse.

Training objective: The objective of SSD training is derived from the MultiBox [27] 
objective, but is extended to process multiple object categories. Let 𝑥𝑝

𝑖𝑗 = {1,0} be an indicator 
for matching the ith default box to the jth ground box of the category p. In the matching strategy 
above, we can have ∑𝑖 𝑥𝑝

𝑖𝑗 ≥ 1. The overall objective loss function is defined as a weighted sum 
of both localization loss 𝐿loc and confidence loss 𝐿conf, which is defined as:

𝐿(𝑥,𝑐,𝑙,𝑔) =
1
𝑁 (𝐿conf(𝑥,𝑐) + 𝛼𝐿loc(𝑥,𝑙,𝑔)), (1)

where N is the number of positive matches, and 𝛼 is the weight for the localization loss. For N 
= 0, the loss is set to 0. The localization loss is the Smooth L1 loss [28] between the ground 
truth g and the predicted boundary box l parameters. As mentioned earlier, SSD only considers 
predictions from the positive matches, and therefore, negative matches can be ignored. Similar 
to Faster R-CNN [29], we regress to offsets for the center (cx; cy) of the default bounding box 
d and for its width w and height h. The 𝐿loc and 𝐿conf are computed as:

𝐿loc(𝑥,𝑙,𝑔) =
𝑁

𝑖∈𝑃𝑜𝑠 𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ}
𝑥𝑘

𝑖𝑗smoothL1 𝑙𝑚
𝑖 ― 𝑔𝑚

𝑗

𝑔𝑐𝑥
𝑗 =

𝑔𝑐𝑥
𝑗 ― 𝑑𝑐𝑥

𝑖

𝑑𝑤
𝑖

                          𝑔𝑐𝑦
𝑗 =

𝑔𝑐𝑦
𝑗 ― 𝑑𝑐𝑦

𝑖

𝑑ℎ
𝑖

𝑔𝑤
𝑗 = log 𝑔𝑤

𝑗

𝑑𝑤
𝑖

                        𝑔ℎ
𝑗 = log 𝑔ℎ

𝑗

𝑑ℎ
𝑖

.

(2)

The confidence loss is the loss of making a class prediction. Note, for the matching with (i) 
positive prediction, a loss is incurred according to the confidence score of the class 
corresponding to the prediction; and (ii) negative prediction, the loss is incurred according to 
the confidence score of the class "0" (i.e., the class "0" indicates that no object being detected). 
The confidence loss is computed as the softmax loss over multiple classes confidences c (class 
score). The softmax loss consists of Softmax activation combined with a cross-entropy loss. 
The Softmax activation function provides a probability for each class, and the summation of 
these probabilities adds up to unity. The Cross entropy loss is the result of summing the negative 
logarithm of probabilities as given by: 

𝐿conf(𝑥,𝑐) = ―
𝑁

𝑖∈𝑃𝑜𝑠
𝑥𝑝

𝑖𝑗log 𝑐𝑝
𝑖 ―

𝑖∈𝑁𝑒𝑔
log 𝑐0

𝑖 , (3)

where 𝑐𝑝
𝑖 = exp 𝑐𝑝

𝑖

∑𝑝 exp 𝑐𝑝
𝑖

  and the 𝛼 is set to 1 by cross-validation.

3.2 ResNet

ResNet is a type of neural network that consists of sequences of convolutions bypassed 
by skip connections, thus allowing the model to learn residual values within the convolutional 
layers [30]. The ResNet-50 model presented in [26] incorporates 16 bottleneck blocks and 50 
layers with trainable parameters, including a convolutional layer following the input and output 
layers.  



3.3 MobileNetV2

MobileNetV2 uses a depthwise convolutional layer [25]. The number of input channels 
in the depthwise convolution layer equals the number of filter channels. This layer reduces the 
total number of parameters to a minimum because this depthwise convolutional layer split the 
computation of convolution into two separable steps, resulting in the reduction of the number 
of kernel’s parameters [31]. MobileNet v2 introduces a new layer called 1 × 1 convolution 
layer, whose purpose is to increase the number of channels in the data prior to depthwise 
convolution. A depthwise convolution layer followed by a 1 × 1 convolution layer is referred 
to as the pointwise/projection layer. The projection layer projects data with a high number of 
channels into the output with a much lower number of channels. The residual connection works 
similarly to ResNet to add gradients in MobileNetV2. ReLU6 is used to prevent too many 
activations.

3.4 Dataset generation

As a prerequisite to the implementation of the VLP system based on the SSD algorithm, it 
is necessary to train the algorithm by creating a labeled dataset consisting of images like test 
images and their annotations. A series of steps are followed to generate the training dataset. 
Firstly, images are captured by a CMOS camera, which is then converted to the grayscale 
followed by the smoothing process (median blur). After that, an adaptive threshold and two 
sequential morphological operations (erosion and dilation) are employed to allow bright stripes 
standing out from the background. Afterward, the borders of the bright stripes are detected 
using contour detection. By combining contours that are close together, which represent stripes 
of a single LED, a bounding box is generated for each LED in the image adapted to its 
dimensions. This dataset is available online as well as in [32]. The overall procedure, which is 
also illustrated in Fig. 4, is repeated for all images for labeling.  In this work, the dataset (images 
and annotations) used for the training and testing are detailed in the next section.

Fig. 4 Procedure of detecting ROI and creating bounding box (labeling).

IV. Experiments and Results
4.1 Experimental Setup

The experimental setup for our SSD-VLP model is depicted in Fig. 5 (a), which is used for 
the performance evaluation and dataset generation of the proposed system. The setup consists 
of eight LEDs intensity modulated with data at frequencies in the range of 1 -to 4.5kHz with a 
500 Hz interval, see Fig. 5(b). Each LED employs a DLA G2 lamp from Tridonic, with a 
nominal power of 18 W and a diameter of 15 cm. The point with coordinates (0,0,0) 
corresponds to the bottom left corner of the room as depicted in Fig. 5. The CMOS camera (Rx) 
used in this experiment is Raspberry Pi Camera module v2, which is kept at a height of 25.6 
cm above the ground level. All key system parameters are detailed in Table I. 



             (a)

  (b)

Fig. 5 Experimental setup of the proposed system: (a) experimental set-up, and (b) the image captured with 
different symbol periods for: (1) 2kHz, (2) 4 kHz, (3) 1 kHz, and (4) 4.5 kHz.

The images of the Txs were acquired in RAW format with a resolution of 3264 × 2464 
pixels and with the exposure time set to 28 µs. In this work, firstly 495 images were taken (with 
10 degrees of rotation between each one), and then, horizontal, and vertical flip augmentation 
was used to artificially expand the size of the training datasets to improve the performance and 
ability of the models to generalize. In the present study, we are not using any other 
augmentation scale, such as, rotation or skewness augmentation, because it may change the 
virtual symbol band stripes, which may result in misclassification of LED-IDs. Therefore, a 
total of 1980 images are collected for training and testing, where 80% of the total images were 
selected for training, and the remaining 20% were considered for testing, which is widely used 
in the literature to validate the performance of the model with images not seen by the model 
before. Both SSD MobileNetV2 and SSD ResNet were trained with 10,000 iterations. 



TABLE I. The key system parameters.
Parameter Value
Room size (w,l,h) 4.2 × 2.7 × 2.71 m3

Tx specification
Hardware  Tridonic DLA G2 lamp
Locations of the Txs
(𝑥1, 𝑦1, 𝑧1),
(𝑥2, 𝑦2, 𝑧2)
(𝑥3, 𝑦3, 𝑧3),
(𝑥4, 𝑦4, 𝑧4),
(𝑥5, 𝑦5, 𝑧5),
(𝑥6, 𝑦6, 𝑧6),
(𝑥7, 𝑦7, 𝑧7),
(𝑥8, 𝑦8, 𝑧8),

(0.330, 0.485, 2.710) m,
(1.523,0.485,2.710) m, 
(2.713,0.485,2.710) m,
(2.908,0.492,2.710) m,
(0.335,2.080,2.710) m,
(1.528,2.087,2.710) m,
(2.713,2.081,2.710) m,
(2.908,2.085,2.710) m,

Tx diameter 15 cm
Tx power 18 W
Rx specification
Hardware Raspberry Pi Camera Module 

V2
Image resolution 3264 × 2464 pixels
Exposure time 28 µs
Focal length (f) 3.04 mm
Rx’s field of view (FoV) 62.2 degrees (horizontal),

48.8 degrees (vertical)
Sensor image area 3.68 × 2.76 mm2

Focal ratio (F-Stop) 2
Frame rate 15 fps
SSD specification
Number of classes 8
Number of epochs 10,000
Batch size 4
Augmentation Horizontal and vertical flip

4.2 Positioning error performance

Average precision (AP) is one of the most popular metrics to evaluate the accuracy of object 
detection methods like Faster R-CNN and SSD. It is calculated as the AP value for recall values 
ranging from 0 to 1 AP indicates retrieval performance based on recall and precision in ranked 
results, with a higher AP value showing better object detection. The precision refers to the 
percentage of correctly identified objects compared with the total number of boxes detected. 
The recall index measures the percentage of targets that are labeled as true targets considering 
the actual number of targets. The precision, recall, and AP can be computed as:

𝑅𝑛 =  
TP

TP + FN , (5)

𝑃𝑛 =  
TP

TP + FP , (6)

AP =  
𝑛

(𝑅𝑛 ― 𝑅𝑛―1)𝑃𝑛, (7)

where TP, and FN and FP are the true positive, false negative, and false positive, respectively. 
𝑃𝑛 and 𝑅𝑛 denote the precision and recall, respectively at the nth threshold. Another important 
metric is the IoU parameter, which is the ratio between the intersected area over the joined area 



for two regions. Moreover, mean AP (mAP) is used as the evaluation performance metric for 
multiclass object detection, which is computed by the mean of AP values overall classes, as 
given by:

mAP = 1
𝑁∑𝑁

𝑖=1 AP𝑖. (8)

In the validation dataset, mAP values of 0.99 and 0.81 were obtained for the IoU threshold 
of 0.5 for SSD MobileNetV2 and SSD ResNet Algorithm, respectively. The number of 
trainable parameters for MobilenetV2 and ResNet are 3.4 million [31]and 23 million [31], 
respectively. The reason behind the reduction in the number of parameters between both models 
is that the MobileNetV2 replaces the convolutional layers of ResNet with depthwise separable 
convolutional layers, which split the computation of convolution into two separable steps 
reducing the number of kernel’s parameters [31]. Therefore, the time taken to train the 
MobilenetV2 is half than ResNet. To assess how successfully the training is proceeding, we 
have used the loss value. The loss for the model is the number of incorrect predictions on the 
training samples. In the case of a perfect prediction by the model, the loss value is zero; 
otherwise, the loss is greater. The objective of training a model is to obtain weights and biases 
that are associated with low losses across all data. Different loss profiles as a function of epochs 
from SSD Mobilenet and SSD ResNet are illustrated in Fig. 6. Both models are trained for 
10,000 epochs, the total training loss is almost stable at this point. The SSD MobileNet and 
SSD ResNet model achieved total losses (including both localization and classification) of 
0.024 and 0.032, respectively at epochs values of 10,000.

 
(a)                                                                                      (b)

Fig. 6. Training losses of SSD with: (a) MobileNetV2, and (b) ResNet.

We have defined four different regularly spaced points on the floor level following 
successful training and application of the proposed SSD-VLP system to be able to analyse 𝜀𝑝. 
A set of 65 images were taken at each point (i.e., the camera is rotated from 0 to 320º and 
images are taken at interval of 5º (which is 65 images) per each location) for the evaluation 
purpose. Therefore, a total of 260 images were given used for evaluation. Fig. 7(a, and b) shows 
the real and estimated positions of the SSD MobileNetV2- and SSD ResNet-based VLP 
systems, whereas Fig. 8(a, and b) depicts the histogram of the error values for both algorithms, 
where the root mean square of 𝜀𝑝 for SSD MobileNetV2 and SSD ResNet are 4.67 and 5.27 
cm, respectively.

Fig. 9 present the cumulative distribution function (CDF) of 𝜀𝑝 resulting from the proposed 
SSD MobileNetV2 and SSD ResNet models. The 𝜀𝑝 achieved at the 95% confidence interval 
are 9.11 and 10.24 cm for SSD MobileNetV2 and SSD ResNet, respectively. The computational 
time is depended on the hardware used, the process data size, and the complexity of the 
algorithm. We evaluated the time-cost of the proposed SSD-VLP system with the input image 
size of 3264 × 2464 pixels. The average processing time of proposed SSD MobileNetV2 and 
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SSD ResNet models achieved are 14.9 and 15 ms, respectively using CPU Intel (R) Core (TM) 
i9-9900K CPU @ 3.60GHz, 3600 MHz with NVIDIA GeForce RTX 2060, 8 Core PC, having 
16 Logical Processors and 32 GB RAM.

Note that, the results presented here are not compared with other data due to (i) not using 
the same hardwares; and (ii) SSD-CNN is being used for the first time in indoor VLP with 
experimental validation. However, there are some reported works based on simulation, for 
example, [16], where the average positioning error were 10.53 and 13.04 cm for CNN and 
MLP, but the dataset used were huge (dataset of size 105).

        
     (a)                                                                                            (b)
Fig. 7. 2D Error plots of SSD with: (a) MobileNetV2, and (b) ResNet.

  
    (a)                                                                                          (b)

Fig. 8 Histogram of SSD with: (a) MobileNetV2, and (b) ResNet.

Fig. 9 CDF plot for positioning error, 𝜀𝑝 from SSD with MobileNetV2 and SSD ResNet.

1.6 1.8 2 2.2 2.4
x (m)

1

1.1

1.2

1.3

1.4

1.5

1.6

y 
(m

)

Estimated Position
Real Position

1.6 1.8 2 2.2 2.4
x (m)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

y 
(m

)

Estimated Position
Real Position

0 2 4 6 8 10 12

p (cm)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pr
ob

ab
ili

ty
 o

f o
cc

ur
an

ce

0 2 4 6 8 10 12

p (cm)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pr
ob

ab
ili

ty
 o

f o
cc

ur
an

ce

0 2 4 6 8 10 12 14

p (cm)

0

0.2

0.4

0.6

0.8

1

C
D

F

Mobilener Err
Resnet Err



V. Conclusion
In this work, we proposed an indoor VLP system based on CNN and a rolling shutter 

camera. Initially, the LEDs were modulated with OOK with a unique symbol period to ease 
their recognition. A dataset was created in which images were acquired by the CMOS camera 
and the classification and position of each visible LED in that image were labelled. A 
perspective-n-point problem algorithm was employed to estimate the receiver position.  The 
system was validated using a real-world size test setup containing eight LEDs. The obtained 
results showed that the maximum average root mean square positioning error achieved were 
4.67 and 5.27 cm with SSD MobileNet and SSD ResNet models, respectively. The validation's 
results revealed that the system can process 67 images per second, allowing real-time 
positioning.
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Chapter 6: Conclusions and Future Work 

This chapter summarizes the major contributions of this work to the VLC based indoor 

localization. Firstly, the thesis begins with an analysis of the objectives underlying the 

development of this thesis, supported by the experimental results presented in this thesis. 

Additionally, there is a discussion of how this work may lead to new research directions. 

6.1 Conclusions 

This thesis focused on the topics of VLP systems by addressing the key challenges and proposing 

novel analytical and experimental solutions. The result of this work has been a glimpse into some 

possible solutions for VLP, which are essential for its implementation. Firstly, the transmitter 

tilting was analyzed, and determined that the accuracy of the RSS-based VLP system in indoor 

applications was limited by the tilt angles of transmitters and receivers as well as multipath 

reflections. Therefore, a new indoor VLP system was proposed in section 5.3, and it was shown 

that tilting the transmitter could improve the positioning accuracy of the VLP system. For that, the 

transmitter was tilted towards the center of the receiving plane to achieve higher accuracy by 

maximizing the received power level due to contributions from the LOS paths at the pointing 

center F. The positioning error was estimated by using the LLS algorithm with polynomial 

regression. The results showed a significant improvement in the accuracy by up to ~66% compared 

with a typical non-tilting transmitter case. The results also showed that, the uniformity of the 

proposed VLP system in line with European Standard EN 12464-1, therefore meeting the 

uniformity requirement of the visible illumination regions. Ultimately, it was concluded that the 

proposed VLP system with the tilting transmitter outperforms the non-tilted transmitter scenario.  

After that, the influence of transmitter’s position and orientation uncertainty on the performance 

of VLP systems based on RSS was demonstrated in section 5.4. From the results, it was concluded 

that light uniformity and transmitter’s HPA are crucial design parameters for developing an 

efficient VLP system. The selection of the transmitter’s HPA as well as the optimum distance 

between transmitters needs to be carefully implemented. Moreover, it was shown that the best 

uniformity and optimum error performance were not met for the same conditions, inferring 

necessary design trade-offs. Furthermore, the effect of error dependence on transmitter’s position 

and orientation uncertainty reduced with increasing the number of transmitters. In the case of 

square grid transmitter placement for a VLP system, the number of transmitters can be further 
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explored as an added variable to optimize both light uniformity and error performance, as it reduces 

the HPA for smaller distances between transmitters. 

ANNs have been attracting a lot of attention regarding the solution of regression problems. 

Therefore, a comprehensive study was done about the optimization of an ANN for VLP systems 

and a complete assessment of its performance (see section 5.5). For that, an indoor VLP system 

using an ANN for positioning estimation in the presence of both LOS and non-line-of-sight 

multipath signals was analysed. Three different ANN algorithms of Levenberg-Marquardt, 

Bayesian regularization, and scaled conjugate gradient algorithms were explored for minimizing 

the positioning error. The optimization of ANN was done based on the number of neurons in the 

hidden layers and the number of training epochs. The results showed that, the ANN with Bayesian 

regularization outperforms the traditional RSS technique using NLLS for the SNR range of 5 – 30 

dB.  

Next, a new indoor VLP system based on the polynomial regression and SVM was proposed in 

section 5.6. Achieved results showed that the use of SVM allows for accurate classification of the 

polynomial model, hence, improving the accuracy of the system. Tests performed in a furnished 

environment revealed that, the presence of furniture makes the task of inferring suitable 

polynomial models difficult and constrains the overall accuracy of the system. Nevertheless, due 

to the simplicity of the approach and its feasibility for implementation, the proposed methods seem 

suitable for applications demanding coarse positioning accuracies, such as positioning in large 

shopping areas. Finally, an indoor VLP system based on CNN and a rolling shutter camera were 

proposed and demonstrated experimentally, see section 5.7. In this work, a dataset was created in 

which images were acquired by the CMOS camera and the classification and position of each 

visible LED in that image were labelled. The system was validated using a real-world size test 

setup containing eight LEDs. It is realized from the validation results that the system can process 

67 images per second, allowing real-time positioning. 

6.2 Future works 

During the research carried out for this thesis, additional opportunities and areas for further 

investigation were identified. The following recommendations are made for future works: 

1. There is presently no robust and comprehensive set of international standards that cover 

all aspects of VLP systems. In addition to specifying how LED addresses and LED IDs 

should be coded, the standards also need to detail the complete architecture to achieve 

the global position of the receiver based on its local position. For future applications, an 
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international standard need to be designed quickly. Furthermore, the standard should be 

sufficiently flexible to facilitate future modifications and extensions. 

2. A tracking system may be more suitable for moving objects since positioning systems 

can only provide disconnected positioning results. According to the literature, many 

existing positioning systems are not tracking-capable. Therefore, it will be interesting 

to add tracking capabilities to existing positioning systems. 

3. A further challenge to implement the smartphones as a receiver is synchronizing the 

inertial sensors with the camera frame. The sensor and camera frame generally use 

different clocks, which leads to inaccuracy. Different sensor types can also lead to time 

delays. In order to be able to estimate motion more accurately, the time offsets between 

sensors and cameras must be estimated. 

4. The ability for a system to perform both positioning as well as communication would 

be appreciated. However, this may require the intelligent design of the structural frame. 

For instance, the headers of the frame can be used for positioning. But then, modulation 

in such systems would also be an issue. Due to the high data rate requirement for 

communication, the VLC signal might be affected by intersymbol interference, which 

might result in positioning inaccuracy. Considering that most of the current positioning 

systems are designed exclusively for positioning, so integrating positioning with 

communication in a system is a challenge.  

5. The outdoor VLP is both fascinating and challenging. However, there are still many 

difficulties in locating objects using PDs in the outdoor environment. However, using a 

camera may become a possible method for outdoor localization in the future, as well as 

a research topic in the short term. 

6. Most existing studies on VLP systems do not take into account fundamental techniques 

such as modulation and multiplexing. Although these techniques are crucial to any 

system, there exists an open issue as to whether there can be a new modulation technique 

to eliminate flickering or a new multiplexing technique to reduce the positioning 

latency. 

7. There are still several unresolved issues regarding indoor localization using cameras 

that require further research. For instance, research areas might include investigating 

techniques for camera calibration to optimize the focal length of the lens or reduce lens 

distortion. 
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8. The smartphones are often equipped with low-cost sensors that are prone to a variety of 

systematic errors, non-negligible misalignments between sensor axes, and different 

sensitivity along various sensor axes. It is necessary to model and compensate for these 

errors (calibrate) through a real-time or off-line process. 

9. Additional sensors that complement VLP should be explored. Inertial measurement unit 

sensors have gained attention in the recent years, and its use may even become more 

useful in the future, if more research is done on it.  
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