34 research outputs found

    Takeoff and landing on slopes via inclined hovering with a tethered aerial robot

    Get PDF
    In this paper we face the challenging problem of takeoff and landing on sloped surfaces for a VTOL aerial vehicle. We define the general conditions for a safe and robust maneuver and we analyze and compare two classes of methods to fulfill these conditions: free-flight vs. passivelytethered. Focusing on the less studied tethered method, we show its advantages w.r.t. the free-flight method thanks to the possibility of inclined hovering equilibria. We prove that the tether configuration and the inclination of the aerial vehicle w.r.t. the slope are flat outputs of the system and we design a hierarchical nonlinear controller based on this property. We then show how this controller can be used to land and takeoff in a robust way without the need of either a planner or a perfect tracking. The validity and applicability of the method in the real world is shown by experiments with a quadrotor that is able to perform a safe landing and takeoff on a sloped surface

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    멀티로터 기반 다목적 비행 로봇 플랫폼을 위한 강건 제어 및 완전구동 비행 매커니즘

    Get PDF
    학위논문(박사)--서울대학교 대학원 :공과대학 기계항공공학부,2020. 2. 김현진.오늘날 멀티로터 무인항공기는 단순한 비행 및 공중 영상 촬영용 장비의 개념을 넘어 비행 매니퓰레이션, 공중 화물 운송 및 공중 센싱 등의 다양한 임무에 활용되고 있다. 이러한 추세에 맞추어 로보틱스 분야에서 멀티로터 무인항공기는 부과된 임무에 맞추어 원하는 장비 및 센서를 자유로이 탑재하고 비행할 수 있는 다목적 공중 로봇 플랫폼으로 인식되고 있다. 그러나 현재의 멀티로터 플랫폼은 돌풍 등의 외란에 다소 강건하지 못한 제어성능을 보인다. 또한, 병진운동의 제어를 위해 비행 중 지속적으로 동체의 자세를 변경해야 해 센서 등 동체에 부착된 탑재물의 자세 또한 지속적으로 변화한다는 단점을 가지고 있다. 위의 두 가지 문제들을 해결하고자 본 연구에서는 외란에 강건한 멀티로터 제어기법과, 병진운동과 자세운동을 독립적으로 제어할 수 있는 새로운 형태의 완전구동 멀티로터 비행 매커니즘을 소개한다. 강건 제어기법의 경우, 먼저 정확한 병진운동 제어를 위한 병진 힘 생성 기법을 소개하고 뒤이어 병진 힘 외란에 강건한 제어를 위한 외란관측기 기반 강건 제어 알고리즘의 설계 방안을 논의한다. 제어기의 피드백 루프 안정성은 mu 안정성 분석 기법을 통해 검증되며, mu 안정성 분석이 가지는 엄밀한 안정성 분석의 결과를 검증하기 위해 스몰게인 이론 (Small Gain Theorem) 기반의 안정성 분석 결과가 동시에 제시 및 비교된다. 최종적으로, 개발된 제어기를 도입한 멀티로터의 3차원 병진 가속도 제어 성능 및 힘 벡터의 형태로 인가되는 병진 운동 외란에 대한 극복 성능을 실험을 통해 검증하여, 제안된 제어기법의 효과적인 비행 지점 및 궤적 추종 능력을 확인한다. 완전 구동 멀티로터의 경우, 기존의 완전구동 멀티로터가 가진 과도한 중량 증가 및 저조한 에너지 효율을 극복하기 위한 새로운 매커니즘을 소개한다. 새로운 매커니즘은 기존 멀티로터와 최대한 유사한 형태를 가지되 완전구동을 위해 오직 두 개의 서보모터만을 포함하며, 이로 인해 기존 멀티로터와 비교해 최소한의 형태의 변형만을 가지도록 설계된다. 새로운 플랫폼의 동적 특성에 대한 분석과 함께 유도된 운동방정식을 기반으로 한 6자유도 비행 제어기법이 소개되며, 최종적으로 다양한 실험과 그 결과들을 통해 플랫폼의 완전구동 비행 능력을 검증한다. 추가적으로 본 논문에서는 완전구동 멀티로터가 가지는 여분의 제어입력(redundancy)를 활용한 쿼드콥터의 단일모터 고장 대비 비상 비행 기법을 소개한다. 비상 비행 전략에 대한 자세한 소개 및 실현 방법, 비상 비행 시의 동역학적 특성에 대한 분석 결과가 소개되며, 실험결과를 통해 제안된 기법의 타당성을 검증한다.Recently, multi-rotor unmanned aerial vehicles (UAVs) are used for a variety of missions beyond its basic flight, including aerial manipulation, aerial payload transportation, and aerial sensor platform. Following this trend, the multirotor UAV is recognized as a versatile aerial robotics platform that can freely mount and fly the necessary mission equipment and sensors to perform missions. However, the current multi-rotor platform has a relatively poor ability to maintain nominal flight performance against external disturbances such as wind or gust compared to other robotics platforms. Also, the multirotor suffers from maintaining a stable payload attitude, due to the fact that the attitude of the fuselage should continuously be changed for translational motion control. Particularly, unstabilized fuselage attitude can be a drawback for multirotor's mission performance in such cases as like visual odometry-based flight, since the fuselage-attached sensor should also be tilted during the flight and therefore causes poor sensor information acquisition. To overcome the above two problems, in this dissertation, we introduce a robust multirotor control method and a novel full-actuation mechanism which widens the usability of the multirotor. The goal of the proposed control method is to bring robustness to the translational motion control against various weather conditions. And the goal of the full actuation mechanism is to allow the multi-rotor to take arbitrary payload/fuselage attitude independently of the translational motion. For robust multirotor control, we first introduce a translational force generation technique for accurate translational motion control and then discuss the design method of disturbance observer (DOB)-based robust control algorithm. The stability of the proposed feedback controller is validated by the mu-stability analysis technique, and the results are compared to the small-gain theorem (SGT)-based stability analysis to validate the rigorousness of the analysis. Through the experiments, we validate the translational acceleration control performance of the developed controller and confirm the robustness against external disturbance forces. For a fully-actuated multirotor platform, we propose a new mechanism called a T3-Multirotor that can overcome the excessive weight increase and poor energy efficiency of the existing fully-actuated multirotor. The structure of the new platform is designed to be as close as possible to the existing multi-rotor and includes only two servo motors for full actuation. The dynamic characteristics of the new platform are analyzed and a six-degree-of-freedom (DOF) flight controller is designed based on the derived equations of motion. The full actuation of the proposed platform is then validated through various experiments. As a derivative study, this paper also introduces an emergency flight technique to prepare for a single motor failure scenario of a multi-rotor using the redundancy of the T3-Multirotor platform. The detailed introduction and implementation method of the emergency flight strategy with the analysis of the dynamic characteristics during the emergency flight is introduced, and the experimental results are provided to verify the validity of the proposed technique.1 Introduction 1 1.1 Motivation 1 1.2 Literature survey 3 1.2.1 Robust translational motion control 3 1.2.2 Fully-actuated multirotor platform 4 1.3 Research objectives and contributions 5 1.3.1 Goal #I: Robust multirotor motion control 5 1.3.2 Goal #II: A new fully actuated multirotor platform 6 1.3.3 Goal #II-A: T3-Multirotor-based fail-safe flight 7 1.4 Thesis organization 7 2 Multi-Rotor Unmanned Aerial Vehicle: Overview 9 2.1 Platform overview 9 2.2 Mathematical model of multi-rotor UAV 10 3 Robust Translational Motion Control 13 3.1 Introduction 14 3.2 Translational force/acceleration control 14 3.2.1 Relationship between \mathbf{r} and \tilde{\ddot{\mathbf{X}}} 15 3.2.2 Calculation of \mathbf{r}_d from \tilde{\ddot{\mathbf{X}}}_d considering dynamics 16 3.3 Disturbance observer 22 3.3.1 An overview of the disturbance-merged overall system 22 3.3.2 Disturbance observer 22 3.4 Stability analysis 26 3.4.1 Modeling of P(s) considering uncertainties 27 3.4.2 \tau-determination through \mu-analysis 30 3.5 Simulation and experimental result 34 3.5.1 Validation of acceleration tracking performance 34 3.5.2 Validation of DOB performance 34 4 Fully-Actuated Multirotor Mechanism 39 4.1 Introduction 39 4.2 Mechanism 40 4.3 Modeling 42 4.3.1 General equations of motion of TP and FP 42 4.3.2 Simplified equations of motion of TP and FP 46 4.4 Controller design 49 4.4.1 Controller overview 49 4.4.2 Independent roll and pitch attitude control of TP and FP 50 4.4.3 Heading angle control 54 4.4.4 Overall control scheme 54 4.5 Simulation result 56 4.5.1 Scenario 1: Changing FP attitude during hovering 58 4.5.2 Scenario 2: Fixing FP attitude during translation 58 4.6 Experimental result 60 4.6.1 Scenario 1: Changing FP attitude during hovering 60 4.6.2 Scenario 2: Fixing FP attitude during translation 60 4.7 Applications 63 4.7.1 Personal aerial vehicle 63 4.7.2 High MoI payload transportation platform - revisit of [1] 63 4.7.3 Take-off and landing on an oscillating landing pad 64 5 Derived Research: Fail-safe Flight in a Single Motor Failure Scenario 67 5.1 Introduction 67 5.1.1 Related works 68 5.1.2 Contributions 68 5.2 Mechanism and dynamics 69 5.2.1 Mechanism 69 5.2.2 Platform dynamics 70 5.3 Fail-safe flight strategy 75 5.3.1 Fail-safe flight method 75 5.3.2 Hardware condition for single motor fail-safe flight 80 5.4 Controller design 83 5.4.1 Faulty motor detection 83 5.4.2 Controller design 84 5.4.3 Attitude dynamics in fail-safe mode 86 5.5 Experiment result 90 5.5.1 Experimental settings 90 5.5.2 Stability and control performance review 92 5.5.3 Flight results 93 6 Conclusions 96 Abstract (in Korean) 107Docto

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Modelling and control of aerial manipulators

    Get PDF
    Hace unos años, dentro de la robótica aérea, surgió la manipulación aérea como campo de investigación. Desde su nacimiento, su impacto ha ido incrementándose poco a poco debido, sobretodo, al gran número de aplicaciones que podrían llevarse a cabo con este tipo de sistemas. Un manipulador aéreo puede definirse como una plataforma aérea la cual ha sido equipada con uno o varios brazos robóticos. Este nuevo concepto ha abierto un mundo de posibilidades para este tipo de robots aéreos. Además, gracias a la posibilidad de este tipo de robots aéreos de interactuar con su entorno, podrían llevar a cabo inspecciones de estructuras civiles o incluso, tareas de ensamblaje de estructuras y todo ello, por supuesto, de forma autónoma. Esta tesis se centra en el estudio e implementación de sistemas de manipulación aérea y, en particular, en el diseño de estrategias de control para la plataforma aérea. Este estudio comienza con el cáculo de las ecuaciones que representan la dinámica del sistema, y que nos permite analizar su comportamiento y la influencia del movimiento de los brazos robóticos en la estabilidad de la plataforma.El análisis de estas ecuaciones nos permite diseñar de esquemas de control tales como los basados en Backstepping. Pero el objetivo de esta tesis no es solo el diseño sino también la implementación de estas técnicas de control en sistemas de manipulación aérea reales y con capacidad de llevar a cabo tareas de manipulación en escenarios al aire libre. La principales contribuciones de esta tesis son el cálculo de los modelos dinámicos para cada uno de los tipos de manipuladores aéreos estudiados he implementados durante el desarrollo de la tesis. Además del uso de estas modelos para la diseño de una estrategia de control adaptable a cada una de las plataformas. También se ha diseñado un mecanismo “compliant” que ha sido integrado en un manipulador parallevar a cabo tareas de inspección estructuras por contacto, además de un control de fuerza-posición. Cada manipulador aéreo implementado durante esta tesis, excepto el en caso del helicóptero, va unido a un estudio de las especificaciones hardware necesarias para la realización de una validación del sistema mediante experimentos de vuelo en escenarios al aire libre, y en el caso de los manipuladores aéreos para inspección de estructuras, en un puente real. Cada experimento realizado ha sido analizado en detalle para corregir errores, además de para adaptar o agregar cualquier modificación estructural o de hardware necesaria

    A cumulative index to the 1973 issues of Aeronautical engineering: A special bibliography

    Get PDF
    This publication is a cumulative index to the abstracts contained in NASA SP-7037 (28) through NASA SP-7037 (39) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes
    corecore