
Chapter 6
Theory and Experiments for a Practical
Usecase

6.1 The Problem of Landing and Takeoff On/from a Sloped
Surface

In many aerial robot applications such as search and rescue, the task consists on
providing assistance in hostile environments such as mountains or civil areas after
natural catastrophes. In this scenarios it is very likely that the terrain is not flat,
making the landing and takeoff maneuvers of the aerial robot very complicate and
unsafe.

The problem of landing on a sloped (not flat) surface is a very challenging problem
for an unidirectional-thrust aerial vehicle due to its underactuation. In fact, the task
requires to control both position and attitude since the vehicle has to be oriented
as the surface on which we want to land, but this is not possible. It is well known
that one can control the position of an unidirectional-thrust aerial vehicle, but not
its attitude. The latter is indeed a byproduct of the particular position trajectory that
we want to follow (given by the differential flatness). The classical approach for
free-flying vehicles is based on motion planning [1–3] (sometimes called perching
maneuver). It consists on exploiting the flatness of the system with respect to the
position [4] to plan a desired trajectory such that the vehicle ends the maneuver
with the proper position and orientation. Different controllers can be then applied
to track this trajectory. However, the success of the maneuver requires an almost
perfect tracking that implies an almost perfect state estimation and knowledge of the
model. Otherwise, small deviations from the nominal trajectory would lead to miss
the target or to crash on it.

On the other hand, we shall show that the use of a tether is very useful to solve the
faced problem of landing and takeoff on a sloped surface. As we saw in Chap.4, for
a tethered aerial vehicle we have the great advantage to partially control the attitude
of the vehicle. Under certain conditions better stated in the following, this property
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allows to perform the landing and takeoff maneuvers in a very reliable way, even in
the presence of model errors, and for almost any sloped surface.

In Chaps. 4 and 5, we already showed the case of a tether aerial vehicle, together
with an actuated link, landing and taking off on/from a flat moving surfaces. Never-
theless, this configuration requires to add an actuator that increases the complexity
of the system and reduces its already limited payload if placed on-board. For these
reasons, to increase the applicability of the method to solve the sought problem, we
instead consider the case of a passive tether that does not require extra actuation. We
remark that the results found in Chap.4 are still valid. The only difference is that the
link length is now not controllable but remains constant.

One of the main contributions of our work is the definition of some general
conditions to perform a robust takeoff and landing.We then provide a careful analysis
and a comparison of the contact-free flight and passive-tethered methods, based on
these conditions. This study shows that,when an anchoring spot is available, the tether
solution is highly preferable with respect to the contact-free flight one since it is the
only one that allows to land on any sloped surface, and with good repeatability and
robustness to tracking inaccuracies. Focusing on the passive-tether solution, in order
to execute the maneuver respecting the inputs limits and to increase the robustness
and safety of themaneuver, we also design a planner to compute an optimal reference
trajectory. The latter is then followed by the hierarchical controller�b

HC for the output
yb (see Sect. 4.5).We chose this controller rather then one based on dynamic feedback
linearization, �b

DFL, because highly dynamic trajectory are not required for the task
(to increase the safety of the maneuver). The global method is finally tested through
exhaustive real experiments in which a quadrotor is able to perform the landing and
takeoff on/from a sloped surface tilted by an angle up to 60◦. Part of the following
results have been published in [5, 6].

6.2 Modeling

The unidirectional-thrust aerial vehicle is modeled as in Sect. 4.3 (link attached to
a fixed platform and with a fixed length, i.e., no link actuator) and its states and
control inputs are described by the same variables. We assume the vehicle equipped
with at least three landers whose ending parts form the landers plane PRL . As in the
most common case in reality, we assume zR perpendicular to PRL .1 Then we define
pRL ∈ R

3 as the projection of pR on PRL and hR = ‖pR − pRL‖ as the distance
between pR and PRL .

We assume that the landing/takeoff (LTO) surface is planar in the neighbor-
hood of the desired landing point and it is defined by PS := {p = [x y z]� ∈
R

3 | ax + by + cz + d = 0} where a, b, c, d ∈ R are the parameters of the plane.
In particular, nS = (1/

√
a2 + b2 + c2)[a b c]� are the coordinates in FW of the

unit vector normal to PS . Then we define a frame FS that is rigidly attached to

1The equal interesting but unusual case of an arbitrary PRL is left as future work.
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Fig. 6.1 Representation of
the system and its main
variables. c© 2020 IEEE.
Reprinted, with permission,
from [5]

PS , whose axes are {xS, yS, zS}. If nS = zW , i.e., PS is horizontal, then we set
{xS, yS, zS} = {xW , yW , zW }. In the others (more interesting) cases, i.e., when PS

is locally inclined, the axes of FS are set as: zS = nS , yS = (zW × zS)/ ‖zW × zS‖
and xS = (yS × zS)/ ‖yS × zS‖. The origin of FS , OS , is taken as any arbitrary posi-
tion on PS . Figure6.1 gives a schematic representation of the whole system.

6.2.1 Model in Free (Non-tethered) Flight

Recalling the modeling of a unidirectional-thrust aerial vehicle in contact-free flight
done in Sect. 3.2, its configuration is described by pR and RR and its dynamic is
given by:

mR p̈R = −mRgzW − fRzR (6.1)

JRω̇R = JRωR × ωR + τ R . (6.2)

Model (6.1) holds as long as the aerial vehicle is not in contact with the surface.
In this last case, i.e., PRL ≡ PS , (6.1) has to be extended taking into account the
reaction force of the surface, denoted by fN ∈ R, and the static friction force, denoted
by fS ∈ R

3, thus obtaining:

mR p̈R = −mRgzW − fRzR + fNnS + fS, (6.3)

where fN ≥ fN , z�
S fS = 0 and ‖fS‖ ≤ fS . For a standard surface fN = 0 and fS =

μ fN where μ ∈ R≥0 is the characteristic friction coefficient of the contact between
PRL and PS . If PRL and PS are equipped with an adhesive membrane (e.g., a Velcro
or a gecko inspired material) then fN ∈ R≤0 is the maximum negative reaction force.

In these cases both fN and fS depend on the adhesive membrane.
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6.2.2 Model in Tethered Flight

Let us consider one of the particular tethered aerial cases considered in Sect. 4.3. In
particular we consider an aerial vehicle tethered to a fixed point through a constant-
length link, such as a cable or a chain. One end of the link is attached to the aerial
vehicle at OR through a passive 3D spherical joint and the other end is attached to
an anchor point OA rigidly attached to the surface. The position of OA is described
by pA ∈ R

3 in FW and its distance from PS is given by hA = z�
S (pA − pL) ∈ R≥0,∀ pL ∈ PS .

When the link is slack and the aerial vehicle is not in contact with the LTO surface
the dynamic model of the system is given by (6.1)–(6.2).

On the other hand, when the link is taut, the system model is the one presented
in Sect. 4.3 when the link length is constant. We recall that pR ∈ Sl(pA) = {p ∈
R

3 | p = pA + ld, ∀d ∈ S2}, where Sl(pA) is a sphere of radius l centered on pA,
and d is the unit vector that represents the attitude of the link expressed in FW .

We introduce the frame FA = {OA, xA, yA, zA} defined as zA = zW , yA = yS
and xA = yA × zA/ ‖yA × zA‖. Recalling the modeling of Sect. 4.3 and assuming
FC = FA, we have that the dynamics of the system is equal to (4.3) and (4.11) for the
rotational and translational part, respectively. We recall that the model can be easily
derived from (4.10) considering only the first three row, l̇ = l̈ = 0 and replacing the
notation C with the notation A where appropriate. For the reader convenience we
report here the main equations with the proper notation that will be useful also in the
following.

The vector dA denotes the expression of d in FA. It is parametrized by the
elevation angle, ϕ ∈ [0, 2π ], and the azimuth angle, δ ∈ [−π

2 , π
2 ], such that dA =

[cos δ cosϕ − sin δ cos δ sin ϕ]�. Since the link is attached to OR , the rotational
dynamics of the vehicle is independent of the translational one and it is equal to (6.2).
We retrieve the dynamics of2 q = [ϕ δ]� with the Newton–Euler method applying
the balance of forces at OR :

mR p̈R = −mRgzW − fRzR − fLd, (6.4)

where p̈R is obtained differentiating twice pR = pA + lRAdA:

p̈R = RA
(
J̇qq̇ + Jqq̈

)
, Jq =

⎡

⎣
−l cos δ sin ϕ −l cosϕ sin δ

0 −l cos δ

l cos δ cosϕ −l sin δ sin ϕ

⎤

⎦ ,

where RA ∈ R
3×3 is the rotation matrix from FA to FW . Equations (6.2) and (6.4)

fully describe the dynamics of the system when the link is taut.

2In this chapter, since the length of the link is constant, l is not a generalized variable but becomes
a parameter of the system.
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Similarly to the non-tethered case, when the robot is tethered and in contact with
the surface, the model (6.4) is extended taking into account the reaction and friction
forces, fN ∈ R and fS ∈ R, respectively:

mR p̈R = −mRgzW − fRzR − fLd + fNnS + fS. (6.5)

6.3 Conditions for Robust Landing and Takeoff

In the following we define and analyze the problem of landing on PS at a desired
landing position p�

L ∈ PS . Analogous conditions can be drawn for the takeoff prob-
lem, which are omitted here for brevity. Denoting with tL ∈ R>0 the landing time, a
correct and robust landing is such if the following conditions are satisfied:

(1) pRL converges to p�
L , i.e., pRL(tL) = p�

L ∈ PS;
(2) the robot orientation has to be such that PRL and PS are parallel, i.e., zR(tL) =

z�
R = −zS , in order to have the robot perfectly in contact with the surface;

(3) the vehicle has to reach this configuration with almost zero kinetic energy in
order to avoid hard impacts, i.e., at time tL−, immediately before of touching the
surface, it has to be that ṗR(tL−) = 0 and ωR(tL−) = 0;

(4) all the accelerations should be also zero at tL−, i.e., p̈R(tL−) = 0 and ω̇R(tL−) =
0, thus obtaining a smooth and gentle maneuver;

Definition (Inclined hovering) The system is said in inclined hovering if zR �= −zW
and Conditions (3), and (4) coexist. �

(5) after the conclusion of the landing maneuver, at time tL+, when the robot is in
contact with the surface, p�

L has to be a stable position, i.e., zero velocity and
acceleration. This condition prevents the robot to fly away from the surface or to
slide down on it when the motors are switched off after the landing maneuver.

Remark At time tL− the robot is not yet in contact with the surface and the flying
model has to be used to describe the system (Eqs. (6.1), (6.2) or (6.4), (6.2)). On the
contrary, at time tL+ the vehicle is in contact with the surface thus Eqs. (6.3) or (6.5)
have to be used. �

Notice that the Condition (4), although not strictly necessary, lets the vehicle
approach the surface in a static equilibrium condition, passing from flight to contact
very smoothly and in a more robust way with respect to model uncertainties.

If, due to the characteristics of the system, Condition (4) is not attainable, the
landing can still be done but when at time tL+ the vehicle touches the surface, one
has to find the way (e.g., turning off the motors as quickly as possible and using a
Velcro system) to immediately pass in a stable condition in order to remain in contact
with the surface without flying away or sliding on it (Condition (5)). Nevertheless,
this could be not possible for some surfaceswithout the use of a tether or aVelcro-like
solution.
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Remark For the takeoff, only Condition (5), that now is an initial condition, has to
be fulfilled. �

6.4 Analysis and Comparison for Landing and Takeoff

In the following we analyze two different kind of approaches for the landing: the
free-flying and the tethered maneuvers. For both cases we define the conditions to
satisfy the landing objectives and illustrate the benefits of the tethered solution.

6.4.1 Contact-Free Flight Method

Replacing the conditions zS = zW and p̈R(tL−) = 0 in (6.1), it is clear that the only
case in which Condition (4) holds is when PS is horizontal. In all the other cases
p̈R(tL−) �= 0, which means that the aerial vehicle cannot approach the surface in a
fully stable condition.

For the Condition (5), imposing p̈R(tL+) = 0 in (6.3) and projecting the two sides
of (6.3) on FS , we obtain

fN = mRgz�
S zW + fR, x�

S fS = mRgx�
S zW , y�

S fS = 0. (6.6)

The first two conditions of (6.6) let us determine which is the maximum thrust at
time tL+ and the maximum slope to have Condition (5) fulfilled, i.e.:

fR(tL
+) ≤ mRgz�

S zW − fN and x�
S zW ≤ fS/(mRg). (6.7)

Thus, one can land on any point of PS only if (6.7) holds, restricting the set of
admissible slopes.

Assuming that the surface fulfills (6.7), we now investigate how to reach it, and
in particular, how to achieve the first three conditions. In the less interesting case
of a horizontal surface, one can simply follow a trajectory along zW in hovering
condition to reach p�

L with zero velocities and accelerations. In the more interesting
case of a sloped surface, this is a very challenging problem due to the underactuation
of the vehicle. From the theory it is well known that the system is differentially
flat with respect to pR and the rotation around zR [4]. Therefore one can track any
desired position trajectory, pdR(t), such that pRL(tL) = p�

L and ṗR(tL−) = 0, but the
orientation of the vehicle along the trajectory is exactly determined by pdR(t) and
its derivatives. Thus it is not possible to control the attitude independently from the
position trajectory. The classical method to overcome this issue is to use a state-
to-state planner like, e.g., the ones presented in [3] slightly modified, that gives a
particular position trajectory pdR(t) that satisfies Conditions (1), (2) and (3).
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Remark Consider an aerial vehicle that has to land on a given surface PS , at any
desired point p�

L ∈ PS . If the landing has to be performed using a contact-free flight
method then, in general:

• ifPS is non-horizontal then Conditions (1), (2), (3) can only be achieved by a very
accurate tracking of a perfectly synchronized dynamic maneuver generated using
a state-to-state kino-dynamic planner;

• Condition (5) is fulfilled iff fR(tL+) andPS are such that the two conditions in (6.7)
hold;

• Condition (4) is fulfilled iff PS is horizontal; �

Assuming that the non-easy motion planning problem is solved, one could use
different types of controllers, as the ones in [1, 7], to track the planned trajectory.
Nevertheless, these methods lack in general of robustness since small tracking errors
could lead, e.g., to miss the target or to crash on it if the velocity is not well tracked.
Furthermore, a precise model and an accurate and high-rate state estimation are
needed.

To partially solve those problems and the ones related to the sliding, a common
practical solution is to use a Velcro, as in [2, 8], to help the perching. However these
solutions are not feasible in a real environments. Velcro solution also does not permit
to easily takeoff after the perching.

6.4.2 Tethered Method

In this section we show that the tethered method overcomes the limits of contact-free
flight (in particular the impossibility to satisfy Condition (4) for sloped surfaces,
which guaranties a safer landing maneuver) thanks to the inclined equilibria.

For the tetheredmethod the landing positionmust belong toSl(pA) ∩ PS .We then
first investigate which are the points in this set that satisfy Condition (4). Consider a
generic point pL ∈ Sl(pA) ∩ PS . From simple geometry we have

d = (pL − pA + hRzS)/ l. (6.8)

Since pA, l and hR are given parameters, finding the pL that satisfies Condition (4)
is equivalent to find the d that satisfies the same condition. Projecting both sides
of (6.8) on z�

S we obtain

z�
S d = (

hR + z�
S (pL − pA)

)
/ l = (hR − hA)/ l := c. (6.9)

Then, in order to fulfill Condition (4), let us project both sides of (6.4) on the plane
{xS, yS}, and set p̈R = 0, thus obtaining

fLPS
xyd = −mRgPS

xyzW , (6.10)
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where PS
xy = [xS yS]�. Equation (6.10) implies that PS

xyd is parallel to PS
xyzW . Since

fL ≥ 0 and mRg > 0, we obtain

(PS
xyd)/

∥∥PS
xyd

∥∥ = −(PS
xyzW )/

∥∥PS
xyzW

∥∥ = [1 0]� =: zSxyW . (6.11)

Notice that (6.11) requires3
∥∥PS

xyzW
∥∥ �= 0 and

∥∥PS
xyd

∥∥ �= 0. The latter inequality
implies also that (hR − hA) �= l. From (6.9) and (6.11) and applying some simple
geometry we obtain

d = [xS yS zS]
[√

1 − c2 0 c
]� =: d̃, (6.12)

where d̃ is defined as the (unique) d for which Condition (4) is fulfilled. This proves
that, given the parameters of the system, pA, l and hR , it exists a (unique) p̃L =
pA + ld̃ − hRzS , for which Condition (4) is respected.

Remark The use of a tether creates the conditions to approach or depart from a
sloped surface in a stable equilibria condition (inclined hovering), i.e., in a more
robust and safer way. In fact, using the tether it exists a landing position in which
one can land in inclined hovering for any sloped surface (in contact-free flight this
position exists only for horizontal surfaces). Moreover, given any desired landing
position p�

L ∈ PS , one can always fulfill Condition (4) setting hA �= hR − l and

pA = p�
L + hRzS − ld̃ := p̃A. (6.13)

�

6.4.2.1 Compliance with Condition (5)

If (x�
S zW )(x�

S d) < 0, i.e., if the landing spot is below the projection of pA on PS ,
then a solution of (6.5) for p̈R(tL+) = 0 is

fL = −mRgx�
S zW

x�
S d

, fN = mRgz�
S zW − fR + fLz�

S d,

y�
S fS = fLy�

S d, x�
S fS = 0.

(6.14)

In this case the tension is always positive and, from the conditions on fN and fS
in (6.14), we can determine which is the maximum thrust intensity at time tL+ and
the maximum slope of the surface to respect the Condition (5), i.e.,

3When
∥∥
∥PS

xyzW
∥∥
∥ = 0 the surface is horizontal and anyd such that (6.9) holds, satisfiesCondition (4).

In this condition, one can still land with the tethered configuration keeping fL = 0 and using the
same method for contact-free flight.
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Table 6.1 Characteristics of contact-free flight and tethered configuration for the landing problem.
Analogous conditions hold for the take-off. c© 2020 IEEE. Reprinted, with permission, from [5]

Method Contact-free flight Tethered flight

Fulfillment of
Condition

All All but
Condition (4)
(p̈R(tL−) �= 0)

All All but Condition (4)
(p̈R(tL−) �= 0)

Surf. orientations zS = zW x�
S zW ≤
fS/(mRg)

any
∣∣−mRgy�

S d(x�
S zW x�

S d)
∣∣ ≤

fS

Anchor positions – – any any

Landing positions any any pL =
pA + ld̃ − hRzS

pL ∈ Sl (pA) ∩ PS

Max. fR at tL+ fR ≤ mRg − fN fR ≤
mRgz�

S zW − fN

fR(tL+) ≤ fR fR(tL+) ≤ fR

fR
fN fR

fN fS fR
fN fL

fR
fN fL

fS

Pros Simple system Possibility to perform the
maneuver reaching a stable
equilibria condition; a planner
is not required; robustness to
model uncertainties and tracking
errors

Conditions Not feasible for every slope;
it requires: a planner, high
tracking accuracy, precise
state estimation and knowl-
edge of the model (very low
robustness)

Need of a method to
pass from contact-free
flight condition to teth-
ered one

fR(tL
+) ≤ mRgz�

S zW
(
1 − (z�

S d/x�
S d)

) − fN =: fR (6.15)
∣∣−mRgy�

S d(x�
S zW/x�

S d)
∣∣ ≤ fS. (6.16)

If d = d̃ then the Condition (6.16) holds for any surface. In the opposite case of
(x�

S zW )(x�
S d) ≥ 0, i.e., when the landing spot is above the projection of pA on PS ,

we have that fL = 0 and the conditions in (6.7) have to be respected.
Table6.1 summarizes all the previous results. To accomplish Conditions (1), (2)

and (3) the controllers �b
HC or �b

DFL presented in Sects. 4.5.2 and 4.6.2, respectively,
can be used.Although not needed, to further improve the robustness and the reliability
of the maneuver, we designed a motion planning method presented in the following
Sect. 6.5 to optimize the motion during the landing and takeoff maneuvers. Notice
that with the tethered method we can achieve all the landing conditions for any
surface and any desired landing position by properly choosing the anchor point.
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6.5 Optimal Trajectory Planning

Given the tracking controllers of Sects. 4.5.2 and 4.6.2 for the output yb, we need to
design a feasible desired trajectory ybd(t) that fulfills the objectives of Sect. 6.3 to
successfully perform the landing. From now on we focus on the landing problem,
since the trajectory for the takeoff can computed with the same method.

We assume that in a preliminary phase the vehicle has been tethered to the anchor
point pA such that p�

L = p̃L , and the system has been steered to the state x0 for which
the link results taut. Then, the initial and final value of the trajectory, ybd(t), has to be
such that x(t0) = x0 and x(tL) = x�, where x� corresponds to the Conditions (1), (2),
(3) and (4). In the following we define the final desired output value and an optimal
planner to design a feasible and optimal trajectory that fulfills all the objectives of
Sect. 6.3, and respects the input limits.

6.5.1 Final Desired Output

Since pRL and zR are independent from ψ , then ψ� can be chosen arbitrarily. Given
a desired landing position p�

L ∈ Sl(pA) ∩ PS , one can compute the corresponding
desired link attitude d� from (6.8). Finally, from the parametrization of d and (4.26)
we can complete the remaining entries of the desired output yb�:

ϕ� = atan2
(
z�
Ad

�, x�
Ad

�
)

δ� = atan2

(
y�
Ad

�,

√
(z�

Ad
�)2 + (x�

Ad
�)2

)

ϑ�
A = atan2

(
α�
1, α

�
3

)
,

where α� = P�
LzS and P�

L is computed as in Sect. 4.4.2 from d�.
Notice that the equality yb(tL) = yb� = [ϕ� δ� ϑ�

A ψ�]�, does not necessarily
imply that zR(tL) = z�

R . Indeed, controlling ϑA we control only the direction of the
projection of zR on the plane PL . Whereas, the remaining component y�

L zR is not
directly controlled but, for the flatness, it is given by the particular trajectory yb(t)
and its derivatives. A possible solution consists on planning a proper trajectory yb(t)
such that yb(tL) = yb� and y�

L zR(tL) = yL�z�
R = 0. Though, this technique based

on motion planning shows the same drawbacks saw in Sect. 6.4 for the contact-free
flight method.

However, for the case of interestwhen all the objectives ofSect. 6.3 are fulfilled and
in particular Condition (4), a planner is not necessary. In this case, fromEq. (6.12) and
the parametrization of d, it is easy to see that d� = d̃ implies δ� = 0. Finally, thanks
to the flatness, we can demonstrate that if δ is stabilized to zero, i.e., [δ, δ̇, δ̈] = 0,
then y�

L zR is stabilized to the desired value y�
L z

�
R = 0. Let us project (6.4) on yL

considering [δ, δ̇, δ̈] = 0. We obtain:
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− fRy�
L zR = y�

LRA

[
lmR

([ −cϕ

0
sϕ

]
ϕ̇ −

[ sϕ
0
cϕ

]
ϕ̈

)
+ fL

[ cϕ

0
sϕ

]]
+ mRgy�

L zW . (6.17)

Noticing that y�
LRA = e�

2 and y�
L zW = 0, it is clear that y�

L zR = 0.
This proves that, if pA is chosen such that p�

L = p̃L , then steering yb to yb� is
sufficient to steer pRL and zR to p�

L and z�
R , respectively. In principle, we could

generate a simple sufficiently smooth trajectory (like a spline) ybd(t) from the initial
output value to yb� that fulfill all the objectives of Sect. 6.3, and then track it with one
of the controllers presented in Sects. 4.5.2 and 4.6.2, without the use of a planner.
This makes the method more robust to tracking errors since they can be recovered
by the controller avoiding the failure of the maneuver.

However, although not necessary,we still propose an optimal planner tomore intu-
itively generate a desired trajectory that fulfills the conditions in Sect. 6.3, respecting
the dynamics of the system, its input limits and other additional features in order to
obtain an even more safe and reliable landing maneuver.

6.5.2 Optimal Planner

The computation of an optimal desired trajectory that fulfills the conditions of
Sect. 6.3 can be formulated as an optimal control problem. Given the tethered system,
we face a challenging nonlinear optimal control problem in a five dimensional con-
figuration space. Even for a numerical solver it could be not easy to find a solution of
this problem and its computation could require a lot of time. A common technique
consists of simplifying the model of the system to make the problem solvable in a
reasonable amount of time.

According to this method we assume4 δ(t) = 0 for all t ∈ [t0, tL ]. In practice this
fact limits themotion of the vehicle on the 2Dvertical planePM = {xA, zA}, reducing
the configuration space to two dimensions. This is not a problem since we showed
that if δ converges to zero then also y�

L zR converges to yL
�z�

R = 0. For simplicity we
also assume a constant rotation around zR , i.e., ψ(t) = ψ� for all t ∈ [t0, tL ]. This
means that the system, while moving on PM , is fully described only by ϕ and ϑA,
equivalently to the reduced model presented in Sect. 4.3 (indeed, ϑA = θ ). We define
xM = [xM1 xM2 xM3 xM4]� = [ϕ ϑA ϕ̇ ϑ̇A]� and uM = [ fR τ A

Ry]� the state and
input of the 2D system, respectively. In particular τ A

Ry ∈ R is the torque applied by the
robot along the axis yA, i.e., τ A

Ry = y�
ARRτ R . Considering δ, y�

A and their derivatives
to zero, the dynamics can be derived as done in Sect. 4.8

[
ϕ̈

ϑ̈A

]
=

[
a1 cosϕ + a2 cos(ϕ + ϑA) fR

a3τ A
Ry

]
=: fM (xM ,uM ) (6.18)

where a1 = −g/ l, a2 = 1/(mRl), a3 = 1/(y�
ARRJR).

4This can be guaranteed by the controllers proposed in Sects. 4.5.2 and 4.6.2.
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From now onwe focus on the generation of trajectories for a quadrotor-like VTOL
since this is the robot used for the real experiments5 described in Sect. 6.6. As recalled
in Sects. 3.2 and 3.3, this particular vehicle is equippedwith four propellers, placed in
a symmetric configuration with respect to the center of gravity, each one generating
a thrust fi ∈ [ f

i
, f i ]. All together the propellers generate the total thrust fR and

torque τ R applied to the vehicle according the relation u = [ fR τ R]� = �u f where
u f = [ f1 f2 f3 f4]� and � ∈ R

4×4 is a matrix that maps u f into u (see Sect. 3.3.1).
The matrix � depends on the parameters of the vehicle. We can then express uM as
function of u f as

uM =
[
1 0
0 y�

ARR

]
�u f = �Mu f . (6.19)

Notice that �M is constant since, given the constraint of moving on PM , the vehi-
cle body rotates only around yA. Then, replacing (6.19) into (6.18) we can define
fM f (xM ,u f ) = fM(xM , �Mu f ).

It is well known that the propellers of a real quadrotor can not immediately actuate
a commanded thrust and that the time response depends on the particular motors and
propellers. In order to obtain a feasible and smoother trajectory for the system we
decided to consider a double dynamic extension of the model assuming as new input
the second derivative of the thrust, ū f = [ f̈1 . . . f̈4]�. The new extended state
becomes x̄M = [ϕ ϑA ϕ̇ ϑ̇A ϕ̈ ϑ̈A ϕ(3) ϑ

(3)
A u�

f u̇�
f ]�. The dynamics becomes

˙̄xM =

⎡

⎢⎢
⎣

0 I6 0 0
0 0 0 0
0 0 I4 0
0 0 0 0

⎤

⎥⎥
⎦ x̄M +

⎡

⎢⎢
⎣

0
f̈M f (x̄M , ū f )

0
ū f

⎤

⎥⎥
⎦ = f̄M f (x̄M , ū f ). (6.20)

We highlight the fact that for a very reactive vehicle characterized, e.g., by a low
mass and inertia, this dynamic extension could be avoided, since it would be able to
actuate fast varying inputs. Nevertheless, this allows us to generate a C3 trajectory
required by �b

DFL.
Given the system dynamics (6.20), we are ready to formalize our optimal control

problem as

min
x̄M (t),ū f (t)

J (x̄M(t), ū f (t), t, tL)

subject to, ∀ t ∈ [t0, tL ]
(a) ˙̄xM = f̄M f (x̄M(t), ū f (t)) (b) x̄M(t0) = x̄M 0

(c) f
i
≤ fi (t) ≤ f i (d) fL(t) > 0

,

(6.21)

5The method can be easily modified according to any VTOL.
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where J : x̄M , ū f → R is the cost function, (a) is the dynamics, (b) are the initial
conditions, (c) are the input limits, and (d) prevents the link to become slack. In
order to fulfill the objectives of Sect. 6.3, we define the cost function as:

J =
∫ tL

t0

(J1 + J2 + J3 + J4)dτ + J5

where

J1 = kϕ(ϕ − ϕ�)2 + kϑA(ϑA − ϑ�
A)

2 + kϕ̇ ϕ̇2 + kϑ̇A
ϑ̇2
A + kϕ̈ ϕ̈2 + kϑ̈A

ϑ̈2
A

J2 = kϑA2hϑA(ϕ)(ϑA − ϑ�
A)

2

J3 = kϕ̇ϑ̇A
hϕ̇ϑ̇A

(ϕ)(ϕ̇2 + ϑ̇2
A)

J4 = kū f ū
2
f

J5 = ktLϑA ϑ̇
2
A + ktL ϕ̇ ϕ̇2

and k� ∈ R≥0, hϑA(ϕ) and hϕ̇ϑ̇A
(ϕ) are functions that tend to 1 when ϕ is near ϕ�,

and to zero otherwise. The cost terms 1, 3, 5 together, help to fulfill the conditions of
Sect. 6.3, i.e., to steer the vehicle on the surface approaching itwith zero velocities and
accelerations. The cost term 2 enforces to approachPS with the proper attitude, such
that the landers touch the surface simultaneously. Finally, the cost term 4 avoids fast
variations on the commanded thrust that otherwise could not be actuated. Modifying
the gains of J one can adjust the trajectory to obtain different behaviors.

The solution of the optimal control problem, x̄dM(t) for t ∈ [t0, tL ], is computed
using the ACADO [9] numerical optimizer. Finally, x̄dM(t) together with δd(t) = 0
and ψd(t) = ψ� give the desired output trajectory ybd(t) to be tracked in order to
perform the landing.

6.6 Experimental Landing and Takeoff

In this section we show the main results of the experiments that validate the efficacy
of our proposed method for the problem of landing (and takeoff) on a sloped surface.

In particular, we consider the plausible scenario where a quadrotor-like vehicle
has to deploy a smaller robot or a sensor on a sloped surface tilted by 50◦, shown
in Fig. 6.4. The robot, equipped with a cable ending with a hook, starts from a non-
tethered configuration on the ground. Therefore it has to anchor the other end of the
cable to the surface to then perform the landing in a tethered configuration. Once
the robot has landed on the desired spot and deployed the robot/sensor, it can take-
off from the surface again exploiting the tether. Finally it can go back to the initial
position after having detached the cable from the surface. The hardware employed
for the experiment is the one described in Sect. 5.1.2.
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Fig. 6.2 Zoom of the hook
and the anchoring
mechanism

6.6.1 Anchoring Tools and Mechanisms

In order to pass from a contact-free flight configuration to a tethered one, a method
to fix the end of the cable to the surface has to be found. The mechanism to do so
strongly depends on the application scenario and in particular on the material of the
slope. For example, in the context of the European project Aeroarms,6 an aerial robot
has to deploy a magnetic crawler or a sensor on industrial pipes that are often non-
horizontal. In this context the landing surface is mainly a pipe made of iron/steel.
Thus in this case, and whenever the surface is made of proper metal, a magnetic
anchor can be used to enhance the physical connection between surface and the
robot. In the case of a ground, snowed, or iced surface an harpoon-like mechanism
might be envisaged.

In our experimental testbed we instead used a simpler solution based on a com-
mercial fishing hook made of three tips, and an anchoring mechanism fixed to the
surface made by a horizontal cable. In this way the robot can be tethered to the
surface by sliding the vertical cable on the anchoring mechanism until the hook is
anchored to the horizontal cable, as shown in Fig. 6.2. The hook can be detached
from the anchoring mechanism doing the opposite operation.

6.6.2 Experimental Phases

Considering the previous experimental scenario and the goal, we divided the overall
maneuver into several phases:

(a) approach to the anchor point with the hook,
(b) hooking of the anchoring system,
(c) stretching of the cable,
(d) tracking of the desired trajectory for tethered landing.

The phases from (a) to (c), described by the first row of images in Fig. 6.4, serve
to pass from the initial contact-free flight configuration to the tethered one. Using a

6http://www.aeroarms-project.eu/.

http://www.aeroarms-project.eu/
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standard contact-freeflight position controller and following a straight-line trajectory,
the robot is able to anchor the anchoring system attached to the surface with the hook
(see Fig. 6.4b.2). The trajectory is planned such that the cable attached to the robot
slides on the anchoring cable until the hook results attached to the last one.

Afterword, during phase (c), the cable is stretched following a simple radial tra-
jectory whose ending point is slightly outside the reachable region limited by the
cable length. The robot, trying to reach this ending position, as explained in [10],
will apply an extra force to the cable that will make it taut. In particular, the farther the
desired ending position, the larger the internal force on the link. Using the dynamics
of the system, the estimated state, and the control inputs, the robot can estimate the
tension on the link. This estimation is then used to understand when the cable results
sufficiently taut. Once the tension exceeds a certain security threshold a supervisor
switches from the contact-free flight controller to the tethered one. We recall that
for this experiment we use the hierarchical controller �b

HC presented in Sect. 4.5.2
whose validity has been experimentally demonstrated in Sect. 5.2. In fact, �b

HC can
guarantees sufficiently small tracking errors for the slow trajectories needed for the
safety of the maneuvers. This additionally shows that the tethered solution does not
require a very precise tracker.

Finally the planned landing trajectory is tracked. In order to compute the desired
landing and takeoff trajectories using the planner presented in Sect. 6.5, the parame-
ters of the landing surface, such as slope angle and anchoring point, must be known.
To acquire those values we applied some markers on the surface to measure its pose
with a motion capture system. However, thanks to the robustness of the method,
those parameters does not have to be very precise.

Once the robot ends the landingmaneuver the takeoff can start. The takeoffmaneu-
ver is very similar to the play-back of the previous phases. Indeed, following the pre-
vious trajectory in the opposite sense lets the hook be detached from the anchoring
mechanism to then go back to the starting point in a contact-free flight configuration.

6.6.3 Controller Switch

During the switching between the controllers, the continuity of the control input
has to be guaranteed in order to preserve the stability of the system and to avoid
undesired vibrations and jerks on the cable. This is obtained by setting as desired
output of the next controller, the value of the system output at the switching instant.
This is possible because, thanks to the flatness, there is a bijective relation between
state/input and output. Therefore, for a specific output, there exist a unique nominal
input and state to obtain it. Assume that the system is in a certain state with a certain
input, x0 and u0, respectively. Accordingly we have a particular output value y0.
Asking the next controller to keep the output value y0 we will obtain the same input
u0 and state x0, thus preserving the continuity of the control action and of the full
state.
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Fig. 6.3 Schematic representation of the software architecture. Pink blocks represent the sensors.
Green blocks represent the controllers and light yellow blocks represent the observers. Starting
from the left, p̃ and R̃ represent the measured robot position and orientation, respectively; x̂ and
f̂L represent the estimated state and link internal force, respectively; qd (t) represents the desired
output trajectory; fR and τ R represents the input of the robot, i.e., thrust intensity and torque vector;
w̃ represents the desired spinning velocity of the propellers. Finally ã and ω̃ represent the readings
of the IMU, i.e., specific acceleration and angular velocity

6.6.4 Software Architecture

A schematic representation of the software architecture is represented in Fig. 6.3. The
overall controllers and observers run on a ground PC. The desired spinning velocities
of each propeller are sent at 500Hz to the robot using a serial cable. The received
velocity commands are then actuated by a controller (presented in [11]) running on
the on-board ESC (Electronic Speed Control). The same serial communication is
used to read at 1KHz the IMUmeasurements that are then UKF-fused together with
the motion capture system measurements (position and orientation of the quadrotor
at 120Hz) to obtain an estimation of the state of the vehicle. The latter is then used
to close the control loop and to compute an estimation of the internal force along the
link when it is taut.

The controller for the contact-free flight and tethered cases run in parallel and
a supervisor, according to the state of the experiment, decides whose input has to
be applied to the real system. The user input in the supervisor is needed to trigger
situations of emergency.

6.6.5 Offset Nonideality

Another practical aspect that has to be considered is the nonzero offset between
the cable attaching point and the vehicle center of mass. Indeed, the controller �b

HC
presented in Sect. 4.5.2 assumes that this offset is equal to zero. In this way the
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robot translational and rotational dynamics can be decoupled. However, this never
happens in a practical case. Then, due to this non-zero offset, the internal force along
the cable generates a torque on the vehicle that has to be carefully compensated. This
is done computing the extra torque from the estimated tension and the estimated
offset calculated with a mechanical analysis.

Finally we highlight the fact that the maximum tiling of the surface is bounded
by the input limits. Indeed the more inclined is the slope, the less it is the thrust
required to compensate the gravity close to the surface. Due to the impossibility of
producing negative thrust for the single propeller, the almost zero total thrust implies
a reduced control authority on the total input moment that may cause the instability
of the attitude dynamics and of the whole system in general.

6.6.6 Experimental Results

In Figs. 6.4 and 6.5 the experimental results are shown. In this particular case the
robot has to land and then takeoff on/from a planar surface that is tilted by 50◦.
Figure6.4 shows the first half of the experiment, i.e., the landing, by a series of
images. In particular the first row shows the anchoring procedure done in a contact-
free flight condition. On the other hand, the second row shows the actual execution
of the tethered landing. A video of the full experiment is available at [12].

Fig. 6.4 Sequence of images of a real experiment with a sloped surface tilted by 50◦. The first
row of images represents the experimental part in which the quadrotor is in a contact-free flight
condition. In this case a standard position controller is used to track the desired position trajectory
marked with a dashed red line. The second row of images represents the experimental part in which
the quadrotor is tethered to the surface. In this case the controller proposed in Sect. 4.5.2 is used
to track the desired position and attitude trajectories marked with a dashed yellow line and a solid
blue line, respectively
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Fig. 6.5 Experimental results: plots of the state, outputs and inputs of the system during the
tethered landing and takeoff. In particular ϕ and δ describe the attitude of the cable and, given the
link constraint, the position of the vehicle with respect to the anchoring point. φ andψ are the angles
that together with ϑA describe the orientation of the robot. f1, f2, f3, f4 are the forces produced
by each propeller. Finally, fL is the intensity of the internal force along the link. The super-script
d and n represent the desired and the nominal values of a variable, respectively

Figure6.5 shows the evolution of the state, outputs and inputs of the system during
the landing and takeoff maneuvers. At time zero the tethered controller is activated
and the landing maneuver starts. At time tL the landing is accomplished and the
surface is reached. At time tG the motors are stop to simulate the deploying of a
robot/sensor. Finally, at time tT the takeoff maneuver starts.

From those plots one can see that the desired trajectory is tracked precisely, with
only some small errors due to calibration inaccuracy. Furthermore, notice that the
intensity of the internal force is always positive. This shows that the cable is kept taut
for the whole execution of the maneuvers. Despite the presence of tracking errors the
landing and takeoff maneuver are accomplished successfully and in a very safe and
gentle way. This shows the big advantage of using a tether that makes the execution
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Fig. 6.6 Execution of a tethered landing on an inclined pipe tilted by 60◦

on the task reliable and robust to tracking and modeling errors. Thanks to this we
were able to perform landing and takeoff on/from an even non-flat surface (a pipe)
tilted up to 60◦. We provide an image from such experiment in Fig. 6.6.
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