
Chapter 5
Simulation and Experimental Results

5.1 Testbed

In the following we shall present the simulation and hardware setups used for the
validation of the proposed methods.

5.1.1 Simulation Setup

All the simulations are carried out using Matlab Simulink and considering an aerial
vehicle with mass mR = 1[Kg] and inertia JR = 0.25I3[Kg m2]. We assume con-
stant link actuator radius and inertia equal to rW = 0.2[m] and JW = 0.15[Kg m2],
respectively. The values of the gains and of the desired trajectories are specified in
the following, since they are different for each controller.

5.1.2 Hardware Setup

Theunidirectional-thrust aerial vehicle used for the experiments consists of aQuadro-
tor VTOL (see Fig. 5.1), weighting about 1[Kg]. The hardware of the vehicle is the
one of a Mikrokopter1 quadrotor. It is endowed with an IMU, and four brushless
motor controllers (BLDC ESC) regulating the propeller speed using an in-house
developed closed-loop speed controller [1].

We tested our controller with two different setups:

(a) In the first, the quadrotor is linked to a fixed point on the ground by a rigid
structure made by carbon-fiber bars and 3D printed parts (see Fig. 5.1a). The

1http://www.mikrokopter.de.
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(a) Quadrotor tethered by a bar-link. (b) Quadrotor tethered by a cable-link.

Fig. 5.1 Test bed used for testing the hierarchical controller for a tethered aerial vehicle. On the
left the robot is compressing the bar with a force equal to −12 [N], being in an inclined hovering
with ϑA = −80◦. On the right the robot is pulling the cable with a force equal to 7 [N], being in an
inclined hovering with ϑA = 30◦

system implements the reduced model described in Sect. 4.3. In fact, the bar
constraints the vehicle to fly on a 2D vertical plane, but, at the same time, does
not constrain the vehicle orientation along the yR axes. The structure has been
designed such that the quadrotor can freely rotate between the two lateral bars
without touching them with the propellers. Furthermore the axis of rotation has
been brought as close as possible to the vehicle center of mass. Although this
setup constraints the vehicle on a reduced space, actually it allows the aerial
vehicle to exert on the link both tension and compression.

(b) In the second, the quadrotor is equipped with a light cable with fixed length,
ending with a triple hook that can be anchored to a platform (see Fig. 5.1b). The
other end of the link is attached to the vehicle as close as possible to its CoM.
Once the cable is made taut, the tethered quadrotor can fly on a sphere but can
exert only tension on the link.

In both cases the link has a length of 1[m] while a mass of 0.13[Kg] and less than
0.01[Kg] for the first and second setup, respectively, thus negligible w.r.t. the vehicle
one.

The control law, implemented in Matlab–Simulink, runs on a desktop PC sending
the commanded propeller velocities at 500 [Hz] through a serial communication.
The control loop is then closed based on the measurements of: (i) the position and
attitude of the vehicle provided at 1 [kHz] by a UKF that fuses the Motion Capture
(Mo-Cap) systemmeasurements at 120 [Hz]with the IMUmeasurements at 1 [kHz];
(ii) the linear and angular velocities of the vehicle provided by the same UKF filter
at 1 [KHz].
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Table 5.1 Validating experiments

Test bed Controller Section # Description Figure

Bar-link
(Fig. 5.1a)

�a
HC 5.2.1 1 Quasi static conditions,

initial tension to vertical
compression

5.2

2 Dynamic trajectory with
vertical compression

5.3

Cable-link
(Fig. 5.1b)

�b
HC 5.2.2 3 Time varying trajectory on

ϕ
5.4

4 Time varying trajectory on
ϑA

5.5

5 Time varying trajectory on
both ϕ and ϑA

5.6

5.2 Hierarchical Controllers: Experimental Validation

In order to validate and test the performance of the proposed hierarchical controllers
we tried to track some dynamical trajectories showing the ability to independently
track the entries of ya and yb. The validation has been done by real experiments
with the platform described in Sect. 5.1.2, where the other end of the link has been
anchored to a very heavy load (much more than the total lifting of the vehicle).
Figure5.1 shows the corresponding test beds.

Table5.1 gathers the executed experiments specifying the corresponding test bed,
controller and giving a short description. The reader can choose to go directly to the
section of a specific experiment or to the corresponding plots.

5.2.1 Hierarchical Controller for ya

For these first testswe use the setup of Fig. 5.1a in order to show the ability of the robot
to apply forces to the link, and so to the ground, that go from tension to compression
and vice-versa, while changing its position. We shall show such capability in two
conditions:

(1) The first is a quasi static condition. The robot is asked to follow a smooth trajec-
tory yad(t) = [ϕd(t) 0 0 fL d(t)]� with t ∈ [0, T ]where T is the final time and
ϕd(0) = 20 [◦], ϕd(T ) = 90◦, fL d(0) = 5 [N], fL d(T ) = −20N . Figure5.2
shows the corresponding results and performed motion. One can notice how
the robot is able to keep the bar vertical while pushing it. Since the desired com-
pression is grater then the gravitational one, the robot has to turn and push the
bar with an upside down orientation. Even in this unusual configuration for a
standard qudrotor, the controlled system remains stable.



80 5 Simulation and Experimental Results

20
40
60
80

100
120

-20

0

20

-200

-100

0

100

200

-2

0

2

4

0 2 4 6 8 10

5

10

15

20

0 2 4 6 8 10

0

1

2

(a) Outputs, state and inputs evolution. Only the variables along the axes of motions are shown.

(b) Sequence of snapshots of the experiment.

Fig. 5.2 Results of the the experiment 1 with the hierarchical controller for ya

(2) The second is a more dynamic trajectory. Like before, yad(t) = [ϕd(t) 0 0
fL

d(t)]� is such that ϕd(0) = 40 [◦], ϕd(T/2) = 90◦, ϕd(T/2) = 140◦, and
fL d(0) = 5 [N], fL d(T/2) = −20N , fL d(T ) = 5 [N]. Figure5.3 shows the cor-
responding results and performed motion. In Fig. 5.3b one can notice that to
follow the desired trajectory the robot has to flip performing a turn of more than
380 [◦] along yR . We remark that this is not something pre-planned but it is a by-
product of the desired internal force trajectory. Although the trajectory is really
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(a) Outputs, state and inputs evolution. Only the variables along the axes of motions are shown.

(b) Sequence of snapshots of the experiment.

Fig. 5.3 Results of the the experiment 2 with the hierarchical controller for ya

acrobatic, the controlled vehicle is able to track the trajectory with sufficient
precision.

5.2.2 Hierarchical Controller for yb

Since our control methods works only for the tethered system (nonzero internal
force), a pre-tensioning phase is needed. During this phase, the robot is controlled



82 5 Simulation and Experimental Results

with a standard position controller trying to reach a position outside of the feasible
sphere. As soon as, at time t0 the link is taut (detectable using a threshold in the
position error) the controller is activated.

In the following we shall show the results of the control action for three different
sinusoidal trajectories:

(1) sinusoidal trajectory with time varying frequency on ϕ while keeping ϑA con-
stant,

(2) sinusoidal trajectory with time varying frequency on ϑA while keeping ϕ con-
stant, and

(3) sinusoidal trajectory with fixed frequency on both ϕ and ϑA,

while δ and ψ are kept constantly to zero. We recall that since there is not a link
actuator the length of the link cannot be controlled. The first two tests are done
firstly to see that the proposed controller can track a desired trajectory on ϕ or ϑA,
independently. Secondly we want to show which is the maximum feasible frequency
for both dynamics. Notice that with the validation of controller �b

HC for the tracking
of yb, we indirectly validate the controller �a

HC for the tracking of y
a , as well. Indeed,

given the structure of�b
HC, it internally uses�

a
HC (see (4.43)).We recall that the desired

trajectoryybd(t) is transformed into a newdesired trajectoryyad(t) = ga(ybd(t),X2
C)

that is tracked by�a
HC. Checking the tracking errors of both y

b and ya , we can evaluate
both controllers.

In the first experiment we fixed the desired ϑd
A at 15[◦]. In this way we assure a

sufficiently high tension in order to avoid nominal negative tension values during the
experiment. The desired sinusoidal trajectory ϕd(t) starts with a frequency equal to
ωϕ = 2π

4 [rad/s] and it increases linearly until the value of about ωϕ = 4π
5 [rad/s]

after which the system becomes unstable. From Fig. 5.4 one can see that the tracking
of ϕ and ϑA, thus of ϕ and fL , degrades with the increasing of the frequency of the
sinusoidal trajectory. We remark that the internal force on the link shown in the plots
is an estimation, computed using the model and the knowledge of the state and the
input.

The second experiment is the dual, indeed we propose a sinusoidal desired trajec-
tory with varying frequency on ϑA while keeping a desired constant ϕd = 45[◦]. For
what concerns the frequency of the sinusoidal desired trajectory ϑd

A(t), it starts from
a value of ωϑA = 2π

6 [rad/s] and increase up to a value of about ωϑA = 8π
9 [rad/s].

After that, as it is possible to see from the plots in Fig. 5.5, the tracking error becomes
very high. However, the system remains always stable.

Finally, for the third experiment, we gave as reference a sinusoidal trajectory on
both ϕ and ϑA. The two signals have different frequency and phases, in particu-
lar ωϕ = 2π

4 [rad/s] and ωϑA = 2π
6 [rad/s], respectively. The results can be seen in

Fig. 5.6. As one can see, the trajectories are both tracked with a sufficiently small
error. This analysis finally shows that the proposed controller is able to independently
track sufficiently slow time varying desired trajectories of yb with small tracking
errors. On the other hand, as expected, the controller shows increasing tracking errors
when asked to follow more dynamic trajectories, revealing its limitations. Anyway,
a time varying reference governor (see [2] and references therein) could be applied
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Fig. 5.4 Experimental results: tracking of a sinusoidal input on elevation with varying period with
fixed attitude. fL n is the nominal internal force computed by the flatness from ϑd

A. ( f1, . . . , f4) are
the forces produced by each thruster

to improve tracking performance. We did not report the results of the tracking of δ

because they are analogous to the ones related to ϕ. We also encourage the reader to
watch the first part of [3] where some static inclined hovering for a tethered aerial
vehicle are shown.

5.3 DFL-Controller for ya with Observer

In this section we consider the generic system described in Sect. 4.3 with a cable-
like link (only positive internal forces are allowed.). Like in a real patrolling task,
the platform follows a certain trajectory in the 3D space mimicking, e.g., a ground
robot following a road. We require the aerial vehicle at time t0 to takeoff from the
moving platform, at time tcirc to circle above the platform at a certain altitude, and at
time tland to land on the moving platform. The yaw angle of the aerial vehicle has to
follow the one of the platform. Notice that takeoff and landing are performed while
the platform is moving, making these standard maneuvers non trivial.

We firstly test the controller�a
DFL for the tracking of y

a , together with the observer
designed for the generic system (see Table4.6). We set ki and k j such that the error
dynamics ξ i and ξ j have poles in (−1,−2,−3,−4) and (−1,−2) respectively.
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Fig. 5.5 Tracking of a desired sinusoidal trajectory of ϑA with varying frequency and fixed ϕ

Fig. 5.6 Experimental results: tracking of a desired sinusoidal trajectory on both ϕ and ϑA with
fixed period
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Fig. 5.7 Simulation results: plausible task trajectory. The performance for each non-ideal case are
compared. c© 2020 IEEE. Reprinted, with permission, from [4]

For the observer we choose ε = 0.1 and (α1, α2) such that s2 + α1s + α2 has roots
(−3,−4). Those values guarantee the stability and ensure a sufficiently fast expo-
nential tracking. During the takeoff the desired tension must go from a small initial
tension of 0.5[N] to a steady-state value of 3[N], that is kept for the whole of the
circling phase, and then has to go back to the initial value during the landing.

To fully validate our method for real applications we test the convergence and
the robustness for different non ideal cases commented in the following. Figure5.7
gathers the main results.
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(a) With an initial position and estimation errors, after the convergence of the
observer (less than one second) the outputs follow the desired trajectories with
high fidelity. An animation of this simulation is available at [5].

(b) With a parametric variation of 5% we notice a small constant error in the
estimation of the state, but we obtain a monotonically decreasing tracking
error thanks to the addition of an integral term in the outer loop (4.56), e.g.,
v1 = yd(4)

1 + k�
1 ξ 1 + kI1

∫ �
0 ξ1(τ )dτ .

(c) For a moving platform a standard sensory set (e.g., optical flow, IMU and mag-
netometer) usually is sufficient to measure its trajectory variables up to p̈CC and
ωC . In this case, in whichwe have a partial knowledge of the platformmotion, we
can consider as zero the higher derivatives. We observe that the estimation and
tracking errors are very small and remain always bounded under a reasonable
threshold.

(d) In the presence of Gaussian noise in the measurements with typical variance
values, we notice that the state estimate becomes slightly noisy but the error
remains bounded within small values. The non zero estimation error implies a
non zero but bounded tracking error as well.

(e) Since in practice one cannot assume the link attached exactly to OR , we tested
the method for a vertical offset of 5[cm] with respect to FR . In this case the
tracking error does not go to zero but remains bounded below a small threshold.

(f) We also compared the dynamic feedback linearizing controller with the hierar-
chical one.We noticed that to obtain good tracking performance, the hierarchical
controller requires very high gains that cause instability in the presence of the
same noisy measurements of case (d). Therefore we lowered the gains until we
obtained a stable behavior. However these gains are not enough to obtain good
tracking performance anymore. Moreover notice that the cable becomes even
slack ( fL f < 0). Further discussions about the hierarchical control will follow
in the next section.

In the following section we provide additional plots and discussions for the pre-
vious non ideal cases. We also consider other additional non idealities such as non
diagonal inertia matrix, saturation of the inputs and non ideal motors.

For each case we show the control performances plotting the tracking of each
output of interest, the global tracking error ξtrack computed as the sum of each errors,
and the inputs. Concerning fR and τW we also show the nominal input coming
from the flatness, fRn and τ n

W , that should be applied to obtain the desired output
tracking in the nominal case.We also show the observer performances comparing the
estimated state and the actual one. The estimation error eestimation is simply calculated
as the sum of the estimation error for each entry of the state. Finally we display the
trajectories of the aerial vehicle and of the moving platform in the world frame and
with respect to FC . In the 3D plots the position of the moving platform and of the
aerial vehicle in some particular instants are represented with a triangle and a square
respectively.
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5.3.1 Initial Errors

In this section we want to show the closed loop stability of the system in dynamic
condition even with some initialization error. The system starts with an error on l of
0.1[m], on ϕ and δ of 2[◦] and on fL of 0.5[N]. Similarly the initialization of the
observer is done with an error of 0.2[m] on l̂, of 5[◦] on ϕ̂ and δ̂, while their velocity
are initialized to zero.

In Fig. 5.8 one can see that after the convergence of the observer, that takes less
than one second, the controller exponentially steers the outputs along the desired
trajectories, while the moving platform is following its own dynamic trajectory.

Fig. 5.8 Simulation: initial errors
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Fig. 5.9 Simulation: parametric variations

5.3.2 Parametric Variations

The purpose of the next sections is to investigate the robustness of the proposed
method. In particular in this one, we consider some parameter variation between the
real model and controller/observer. Indeed in a real scenario we can not know exactly
each parameter of the system, thus the controller and observer would be based on
some parameter value different from the real one.

Figure5.9 displays the results of the simulation with a parametric variation of
the 5% for each entry, i.e., mR , JR , JW and rW . In order to partially compensate
the effects of the uncertainties we added in the controller an integral term with gain
kI = 3.

We can notice that due to the uncertainty of the model we have some nonzero
errors in the tracking and in the estimation of the state. Nevertheless the error system
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remains stable and thanks to the integrator terms, during the landing maneuver we
obtained a decreasing tracking error that allows a correct landing of the aerial vehicle.

We performed additional extensive simulations in which we observed that the
system remains stable up to a parametric variation of the 20%, after this value the
system results unstable. However notice that in reality those parameters are very well
measurable with small errors, certainly lower than the 20%.

5.3.3 Limited Knowledge of pWC (t)

In Sect. 4.6.1 we saw that the knowledge of X4
C is needed in order to compute the

control action. In other words, to obtain a perfect tracking one has to know the
derivative of pCC(t) up to the fourth order and of ωC(t) up to the third order. Although
those variables have to be known to obtain zero tracking error, actually, without a
posteriori knowledge of the trajectory or the model and control inputs of the system,
it is difficult to measure the higher-order derivatives. Nevertheless, in this section we
want to show that even with only a partial measurement of x4C the system stays stable
and the tracking error remains bounded.

Indeed, for a real moving platform, a standard onboard sensorial configuration,
such as optical flow, IMU and magnetometer, is sufficient to obtain ωC(t) and pCC(t)
up to its second derivative.

In Fig. 5.10b we can observe that the estimation error is almost constantly zero
even if ω̇C is assumed zero. While in Fig. 5.10a one can notice that the outputs
oscillates around the desired value and the tracking error does not go to zero but
remains bounded under a reasonable threshold. Nevertheless, with a more “aggres-
sive” platform trajectory the negative effects would be more significants. In Fig. 5.11
the entries of xiC for i = 1, 2, 3, 4 are plotted. The last five entries are assumed zero
by the observer and the controller.

5.3.4 Noise on the Measurements

In this sectionwe investigate the robustness of the proposedmethodwith the presence
of noise in the measurements. Table5.2 gathers the variance magnitude set for each
measurement. For the encoder and the gyroscopewe set some reasonable value found
in the literature [6]. On the other hand, instead of adding noise on w5 and w7 we
preferred inserting the noise directly in the measure of the rotational matrix RR , i.e.,
in WR . This is done because the direct measure of RR using the accelerometer and
the magnetometer is normally filtered with the gyroscope [7], in order to obtain a less
noisy estimation of both RR and ωR . The noise added directly to RR is comparable
to the one we would obtain after the filtering.
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Fig. 5.10 Simulation: limited measurements of the moving platform trajectory

From Fig. 5.12 we can observe that the estimated state shows some noise but the
corresponding error remains limited. Due to the noisy component on the estimated
state the outputs presents some oscillation as well, especially on the stress that seams
to be the more sensitive output to the noise. Nevertheless the tracking error remains
small and always bounded.

5.3.5 Tethered Offset

Exact attachment of the link to the center of mass of the aerial vehicle is practically
unfeasible. Therefore there will always be a non zero offset, although small, between
the tether attachment and the center of gravity. This offset makes the translational
and rotational dynamics of the aerial robot coupled and can potentially lead to the
instability of the controlled system. In this section we want to show the robustness of
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Fig. 5.11 Plot of xiC , for i = 1, 2, 3, 4. In Simulation (c) all the variables in the last five plots are
considered zero by the controller and the observer

Table 5.2 List of sensors

# Type Measurement Noise variance

w2 Abs. encoder ϑW ≈ l 0.008[rad]
w3 Abs. encoder ϕ 0.008[rad]
w4 Abs. encoder δ 0.008[rad]
w5 Accelerometer RR(p̈WR + ge3) –

w6 Gyroscope ωR 0.01[rad/s]
w7 Magnetometer RRhW –

WR Complementary filter RR 0.001
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Fig. 5.12 Simulation: noisy measurements

the proposed method when the distance between the attaching point and the center
of gravity of the aerial vehicle is non zero (Fig. 5.13). In particular in this simulation
the link is attached 5 [cm] vertically below OR with respect to FR . As expected,
the tracking error does not go to zero but however remains bounded, showing good
tracking performances. Notice that the error is higher during the circling phase since
this part of the global trajectory is very dynamical and the unmodeled effects due to
the offset are larger. However we remark that a good mechanical design could make
the tracking error almost negligible.

We tested the method with even larger offsets and we saw that the system remains
stable up to a vertical offset of 30[cm], that is an exaggerated value for the system
considered in the simulation (small-size quadrotor like vehicle). In fact, note that a
larger quadrotor means a larger inertia which actually reduces the negative effects
of the offset. In additional simulations, which are not reported here for the sake
of brevity, we also tested the robustness of the method with a more general offset
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Fig. 5.13 Simulation: non zero offset between tether attachment and center of gravity of the aerial
vehicle

(not only vertical) noticing that, within some reasonable bounds, the system remains
stable and with acceptable tracking performances.

5.3.6 Nondiagonal Inertia Matrix

In the derivation of the model and of the controller as well, we assumed a diagonal
inertia matrix. In this section we check the robustness of the method if the aerial
vehicle has a non diagonal inertia matrix. In particular, in Fig. 5.14, we show the
results for a test in which the real inertia matrix is
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Fig. 5.14 Simulation: non-diagonal inertia matrix JR

JR =
⎡

⎣
0.25 0.05 0.05
0.05 0.25 0.05
0.05 0.05 0.25

⎤

⎦ ,

while the controller still assumes a diagonal inertial matrix.
One can observe that the tracking error is not exactly zero but is kept limited

within a small bound. For the observer this does not constitute a non ideality, in fact
the estimation error is constantly zero.

With further simulations we observed that the system remains stable up to a value
of 0.15 in the off diagonal terms (60% of the values on the main diagonal). With
larger values the system becomes unstable.
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5.3.7 Input Saturation

For how we planned the desired trajectory, the nominal input needed to track the
desired outputs is always within the limits of the considered system. Indeed, exploit-
ing the flatness, we are able to a priori check if the inputs exceed the minimum and
maximum values. Nevertheless, in this section we want to show that the system is
still stable if the inputs are hardly saturated for some instants. Thus we set some
very restrictive limits on the input, i.e., fR ≤ f̄ R and τ ≤ τi ≤ τ̄ , where i = x, y, z,
f̄ R = 13[N], τ = −1[Nm] and τ̄ = 1[Nm]. In order to let the saturation show up
during execution we did not re-plan the desired trajectory.

In Fig. 5.15a it can be seen that the inputs are saturated for some time instants
during the execution of the task. When the inputs are saturated the tracking error
increases, but, as soon as the inputs come back within the limits, the error exponen-
tially decreases to zero.

We stress again the fact that the saturation of the inputs can be avoided exploiting
the flatness. Using the flatness one can check if the desired trajectory requires inputs
that are too large. In the worst case one can re-plan the trajectory such that the input
limits are respected.

5.3.8 Motor Time Constant

With this simulationwewant to further enlarge the set of non idealmodels considered
for the testing of the proposed control method. Considering an aerial vehicle actuated
by rotating propellers, in this simulation we add the dynamical model of the motors
describedwith a first order system characterized by a time constant of τM = 0.1[s]. In
practice the propeller dynamics inserts a frequency dependent phase shift between the
commanded control input and the actuated one, whose amplitude depends on the time
constant. In other words, themodels acts as a low pass filter on the commanded input,
cutting its high frequency components. Those effects could dramatically decrease the
performances or even make the system unstable. However, from Fig. 5.16, one can
notice that our method is robust to the unmodeled effects of the propellers dynamics.
Indeed, in some instant, where the trajectory is more dynamical and requires fast
varying inputs, the tracking error increases but it is always bounded and at steady
state converges to zero.

We remark that, if needed, one can increase the smoothness of the control inputs
considering an higher order in the dynamic feedback control. Indeed adding more
integrators on the control channels one can increase the degree of smoothness of the
control input thus guarantying that it is always below the cutting frequency proper of
the system, and in particular of the propellers. Another possible strategy is to exploit
the flatness to plan a trajectory that fulfills the system limitations.
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Fig. 5.15 Simulation: saturation of the input

5.3.9 Hierarchical Control Versus DFL Control for ya

As we noted in Sect. 5.2, the hierarchical controller guarantees sufficiently good
tracking performance in quasi static conditions. However the performance gets worse
when the desired velocities and accelerations increase. In this section we shall com-
pare the hierarchical controller tracking performancewith respect to the one provided
by the dynamic feedback linearizing controller. In particular, we simulate the system
with �a

HC together with the observer �a
HC, tracking the same desired trajectory yad(t)

used in Sect. 5.3, with an initial tracking error and under noisy estimated state. We
shall then compare the results with the ones obtained with �a

DFL tracking the same
trajectory, and in particular under the non ideal cases (a) and (c) of Sect. 5.3 (see
Fig. 5.7).

In Fig. 5.17 the results of the hierarchical controller in ideal conditions are
reported. The initial tracking and estimation errors are the ones of case (a) in Sect. 5.3.
After a tuning phase we were able to get a good performance and a small bounded
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Fig. 5.16 Simulation: system with motors dynamics

tracking error, even if the error does not converge exactly to zero. On the other hand,
in the same conditions the controller based on dynamic feedback linearization is
able to steer the output along the desired trajectory with zero error (see Fig. 5.7 or
Sect. 5.3.1 for more details). However, to obtain good tracking performance with
the hierarchical controller we had to set very high gains that make the system more
reactive and thus able to follow the desired trajectory. Nevertheless this requirement
has two main drawbacks.

The first drawback is that, due to the large control gains, the control effort increases
thus possibly requiring an input that is out of the physical limits of the actuators.
Indeed with this configuration we reach a maximum thrust and a maximum torque
of about 15[N] and 2.5[Nm] respectively. This values are higher than the nominal
inputs required to track the desired trajectory.

The second extremely serious issue arises in the presence of noise in the mea-
surements and so in the estimated state. Indeed, the higher the gains, the larger the
noise in the commands and the closer the controlled system is to instability. In fact,
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Fig. 5.17 Simulation results: hierarchical control in ideal conditions with initial tracking error

simulating the system with the same measurement noise described in Sect. 5.3 (see
Sect. 5.3.4 for more details) the closed loop system becomes unstable. In order to get
a stable behavior we had to significantly lower the gains, an action that, however,
clearly degrades the tracking performance. As we can see in Fig. 5.18 the perfor-
mance with noise is much worse than the one obtained using the dynamic feedback
linearizing controller in the same noisy condition.

Therefore, the hierarchical approach presents a strictly penalizing trade-off
between applicability with noise and tracking performance. One cannot obtain both.
Attainment of both objectives is instead possible with the DFL controller �a

DFL.
Nevertheless, we experimentally proven that, in standard conditions, with not too
dynamic desired trajectories, the hierarchical controller can still guarantees good
tracking performancewith aminimum implementation effort. This controller allowed
us to perform the landing and takeoff maneuvers on surfaced inclined up to 60◦, in
a very robust and reliable way. On the other hand, although the dynamic feedback
linearization control provide much better performance, even in non ideal conditions,
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Fig. 5.18 Simulation results: hierarchical control in the noisy case. To preserve stability lower gains
have to be used with noise, therefore the performance is significantly degraded. The hierarchical
controller presents a strictly penalizing trade off between tracking performance and robustness to
noise

it comes with an higher computational cost, that makes it also more difficult to be
implemented on a real robot.

5.3.10 DFL-Controller for yc in Case of Passive Link
Actuator

Recalling the discussion in Sect. 4.4.3.1, in order to obtain a steady state internal
force fL

 = 5 [N], we set the torque winch τW = −1 [N ]. To obtain a sufficiently
fast exponentially tracking, we set the controller gains ki and k4 such that the error
dynamics ξi and ξ4 have poles in (−0.5,−1,−1.5,−2) and (−0.5,−1), respectively,
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for i = 1, 2, 3. Since the observer has been already tested in the previous section,
here the control loop is closed with a direct measure of the state.

As before, we design the platformmotion and the aerial vehicle desired trajectory
in order to simulate a patrol-like task of a delimited area. The platform simply follows
a certain trajectory shown in Fig. 5.19. The aerial vehicle, after the takeoff maneuver,
at time tcirc has to loiter above the platform. Then, starting from time tland , the aerial
vehicle has to land on the platform.

To validate the control method and to test its robustness we performed several
simulations in different non ideal conditions:

(a) We initialized the systemwith an initial tracking error of 10 [◦] for the elevation,
of 5 [◦] for the azimuth and of 0.5 [m] for the link length. Looking at Fig. 5.19a
we can notice that after a transient, the controller steers the output of interest
along the desired trajectory. Notice that the internal force along the link remains
always positive and close to the desired steady state value fL

. Furthermore it is
exactly equal to fL  whenever l̈ is zero.

(b) We tested the robustness of the control method with a variation of the 5% on
all the model’s parameters (see Fig. 5.19b). Due to the mismatch between real
and nominal model, the feedback linearization is not exact and the error does
not go to zero. However it remains always bounded showing nicely degrading
and sufficiently good tracking performance. Moreover, in order to eliminate the
constant error at steady state we have seen that a simple integral term in the linear
control loop is sufficient. With further simulations we noticed that the system
remains stable showing acceptable tracking errors up to a parametric variation of
50%, proving the robustness of the proposedmethod. Above the system becomes
unstable.

(c) Although the control loop is not closedwith the observer,we tested the robustness
of the proposed method injecting Gaussian noise on the measured state used to
close the control loop. The power of the noise has the same value of the one
noticed in Sect. 5.3 out of the observer based on noisy sensors. From Fig. 5.19c
one can see that the error does not converge to zero but remains always bounded
showing good and practically viable tracking performance.

(d) In this simulation we considered the thrust and the torque of the aerial vehicle
generated by non ideal motors modeled as a first order system characterized by
a time constant of 0.2 [s]. The results displayed in Fig. 5.19d show a very small
tracking error, validating the robustness of the control method to this additional
non ideality.

5.4 Observer Based DFL-Controllers for Reduced Model

In this section we validate the observer based on IMU only, together with the 2D
version of controllers �a

DFL and �b
DFL (see [8] for the corresponding details). In the

first subsection we show the capability of �a
DFL of independently controlling ϕ and
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Fig. 5.19 Simulation results: plausible task trajectory for the case of a passive link actuator. The
performance for each non-ideal case are shown
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fL , even when the desired internal force trajectory goes from tension to compression,
and vice versa. In the second subsection we instead provide a thorough analysis of
the robustness of the 2D version of �a

DFL and �b
DFL together with the observe against

non ideal conditions.

5.4.1 Controlling fL for Both Tension and Compression

Figures5.20a, b and 5.21a, b show the behavior of the system following smooth
trajectories from an initial to a final output configuration. The plots of the tracking
errors show that the proposed controller is able, after a short transient, to perfectly
follow the time varying smooth trajectories of class C3 and C1 for the elevation
and link internal force, respectively. An animation of the presented simulations is
available at [9]. Notice that in Fig. 5.21b, the pick of torque at around time 2.6[s],
arises due to the crossing of the control singularity, i.e., zero thrust. However, since
that singularity is crossed only for one instant, the system remains stable.

We also tested controller�a
DFL to track a desired trajectory of fL that goes from an

initial tension to a final compression, while following a desired elevation motion as
well. In Fig. 5.21a it is interesting to notice that to pass from tension to compression
the vehicle turns upside-down keeping the thrust always positive. On the other side,
in the simulation of Fig. 5.21b the transition from tension to compression is obtained
with the thrust that passes through zero and inverts its sign in order to obtain the same
final compressing force of the simulation of Fig. 5.21a. This happens because in the
second case the desired trajectory requires zero thrust at a certainmoment. Then, since
it is not possible to instantaneously turn the vehicle, the controller inverts the sign
of the thrust in order to provide compression. In the case of vehicles able to provide
also negative thrust this is not a problem. While, in the case of robots providing only
positive thrust a planning phase is needed in order to generate feasible trajectories.

5.4.2 Robustness Investigation Against Non Ideal Conditions

In this section we present a comprehensive analysis of the robustness of the designed
dynamic feedback linearizing controllers together with the observer based on IMU
only, against non-ideal conditions. This shows both their strengths and possible limits
when applied on a real system. In order to test the observer based only on the IMU
measurements, the following analysis is carried out for the reduced model presented
in Sect. 4.3, consisting of an aerial vehicle constrained on a 2D vertical plane tethered
to a fixed point on the ground by a link with a constant length l = 2[m].

For this system we tested the reduced version of �a
DFL and �b

DFL together with
the observer based only on the IMU measurement. We recall that the details of such
reduced version of the presented DFL controllers can be found in [8].
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Fig. 5.20 Simulation results: controlling ϕ and the tension (on the left) or the compression (on the
right)
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Fig. 5.21 Simulation results: controlling ϕ and fL going from tension to compression. In figure
(b)
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Fig. 5.22 Simulation results: nonzero initial tracking error

Concerning the controller�a
DFL we set the gains of the linear outer control loop, k

a
1

and ka
2 , such that the error dynamics of ϕ and fL has poles in (−1,−1.5,−2,−2.5)

and (−1,−1.5) respectively. While for the controller �b
DFL we set the gains kb

1 and
kb
2, such that the error dynamics of ϕ and ϑA has poles in (−0.5,−1,−1.5) and

(−0.5,−1) respectively. For the gains of the observer we set ε = 0.1 and (α1, α2, α3)

such that the root of s3 + α1s2 + α2s + α3 are (−6,−4.5,−3). Those values guar-
antee the stability of the closed loop system and a sufficiently rapid convergence of
the observer and controller.

For the controller�a
DFL, the desired trajectory is a smooth step, continuous up to the

fourth order for ϕ and up to the second order for fL , from the initial values ϕd
0 = 45◦,

fL d0 = 3[N], to the final values ϕd
f = 135◦, fL df = 5[N], respectively. Smooth step-

like trajectories (see Fig. 5.22), as it will be clear later, have the benefit of clearly
showing the performance of the controllers under three important conditions: the
initial transient, the tracking of a fast time-varying signal, and the steady state. For
the controller �b

DFL, the desired trajectory is a smooth step, continuous up to the
third order for ϕ and up to the second order for θ , from the initial values ϕd

0 = 10◦,
ϑA

d
0 = 30◦ to the final values ϑA

d
f = 50◦, ϑA

d
f = 5◦, respectively. Notice that, since

the system is constrained to the 2Dvertical planewithyR = yW ,we have thatϑA = ϑ ,
where we recall that ϑ is the pitch of the vehicle.
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To obtain a complete validation, in the following we show a concise summary of
the results about the stability and robustness of the proposed method under different
non-ideal conditions, such as: (a) nonzero initial tracking and estimation errors, (b)
parametric variations, (c) generic CoM position and non-negligible link mass, (d)
noisy sensor measurements, and (e) non-ideal motors.

5.4.2.1 Validation for Nonzero Initial Tracking/Estimation Errors

In order to show the asymptotic convergence performance of both the controller
and the observer we initialize the control system with nonzero initial tracking and
estimation errors. One can see in Fig. 5.22 that, after the convergence of the observer,
which takes less than one second, the controller �a

DFL is able to steer the outputs
along the desired trajectories with zero error. A similar behavior is obtained for the
controller �b

DFL. We then performed many other similar simulations with different
initial errors and we observed always the same asymptotically convergent behavior,
as expected from the almost-global nature of the proposed observer and control laws.

5.4.2.2 Parametric Variations

We notice that in principle one could try to design an adaptive control law that is
able to compensate for parametric uncertainties. However, this is clearly a tough
objective, because the system is nonlinear and the available measurements are only
the (nonlinear) accelerometer and the gyroscope readings. Therefore this goal is
left as future work. Instead, we concentrate in this section on assessing the ranges
of parameter variations that causes a degradation of the performance that remains
within an acceptable bound. By doing so, we shall see in fact that the proposed
control scheme possesses a remarkable robustness even without the presence of an
adaptive design.

Considering l0,mR0 and JR0 the real parameters value and l,mR and JR the nom-
inal ones, we set l = (1 + �l)l0, mR = (1 + �mR)mR0 and JR = (1 + �JR)JR0,
where �mR , �l and �JR denote the corresponding parametric variations.

For obtaining a comprehensive analysis we tested the behavior for several differ-
ent parametric variation combinations. The results are plotted in Figs. 5.23 and 5.24,
where we show the mean tracking error, ētrack , and the corresponding standard devi-
ation σētrack , defined as

etrack(t) =
∥
∥yd1 (t) − y1(t)

∥
∥

yd1 (t)
+

∥
∥yd2 (t) − y2(t)

∥
∥

yd2 (t)

ētrack = 1

t f − t0

∫ t f

t0

etrack(t)dt
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Fig. 5.23 Simulation results: parametric variation—Controller �a
DFL (elevation and link force).

The subscript 1, 2, and 3 correspond to the three different trajectory times. Outside of the displayed
range of parametric variation the performance is unacceptable or the closed loop system results to
be even unstable. c© 2020 IEEE. Reprinted, with permission, from [8]

σētrack =
√

1

t f − t0

∫ t f

t0

(etrack(t) − ētrack)2dt,

where t0 and t f are the initial and final time, respectively. Notice that for the reduced
model y1 = ϕ and y2 = fL or y2 = ϑA for�a

DFL and�b
DFL respectively. In the plots the

solid line corresponds at the mean tracking error while the dashed lines correspond
at the mean tracking error plus and minus its standard deviation.

The effect of an unknown parameter could also change with respect to the tra-
jectory and in particular with respect to the velocity and acceleration at which the
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Fig. 5.24 Simulation results: parametric variation—Controller �b
DFL(elevation and attitude).

c© 2020 IEEE. Reprinted, with permission, from [8]

path is followed. Consequently we plotted the mean tracking error, ētrack1, ētrack2
and ētrack3, for the same type of desired path (smooth step) but executed with three
different durations (increasing velocity): (1) 7[s], (2) 5[s] and (3) 3[s] respectively.
We also analyze the error behavior dividing the trajectory into three phases: in the
Phase 1 (transient) the desired trajectory is constant and the analysis is more focused
on the convergence of the observer; Phase 2 constitutes the dynamic part where the
desired trajectory quickly goes from the initial value to the final one; the Phase 3, the
last, corresponds to the steady state condition where the desired trajectory is again
constant. We show the tracking error for each of the three phases to better understand
if a parameter variation affects more the transient, the dynamic phase, or the static
one.
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From Figs. 5.23 and 5.24 one can notice that, as expected, the performance gets
worse increasing the parametric variation. Furthermore, the same variation has more
effect if the trajectory is more “aggressive” and it is followed with higher speed
(ētrack3). This is due to the fact that with higher speed and acceleration the inertial
and Coriolis/centripetal terms become larger, and thus also the error in the feedback
linearization increases, which in turn implies a worst tracking.

Comparing the performance between the two controllers, we notice that controller
�b
DFL results to be more robust than controller �a

DFL in term of mean tracking error.
This is due to the fact that for the controller �b

DFL, the dynamics of one of the
controlled outputs, namely ϑA, is not influenced by the parameters such as mass
and length of the link. This means that any variation on these parameters does not
generates a worse tracking of ϑd

A, which results in a lower tracking error.
One can also notice that the mean tracking error is not in general symmetric with

respect to the sign of the corresponding parametric variation. For example for the
controller �b

DFL it is better to overestimate the mass, and the length of the link rather
than underestimating them, while for controller �a

DFL it results to be the opposite,
even if these consideration are more relevant for the dynamic phase. Indeed, during
the steady state phase the behavior is almost symmetrical.

Another fact that appears clear from the plots is that the variation that most influ-
ences the performance is the one on the mass of the aerial vehicle. Fortunately, in
practice this parameter can be easily measured with high precision.

5.4.2.3 Generic CoM Position and Non-negligible Link Mass

The controllers developed in this paper assume that the system can be represented
with the model given in Sect. 4.3, where the CoM of the aerial vehicle coincides with
the attachment point of the link to the vehicle and the link has a negligible mass.
Figure5.25 represents instead amore general model, for which the assumptions done
in Sect. 4.3 are not fulfilled. Taking into account the definitions made in Sect. 4.3 we
then define a body frame, Fl , attached to the link, with axes {xl , yl , zl} and origin Ol

coinciding with the center of mass (CoM) of the link. The position of Ol , defined in
FW , is denotedwithpl = [xl yl zl ]�. As forFR wehave that yl ≡ yB ≡ yW and yl ≡

Fig. 5.25 Representation of
the more general system and
its variables, still constrained
in the 2D vertical plane.
c© 2020 IEEE. Reprinted,
with permission, from [8]
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0. For the validation we model the link as a rigid body of massmL ∈ R>0 and inertia
JL ∈ R>0. Considering the inertia of the link as the inertia of an infinitesimally thin
rigid tie with uniform distributed mass, we have also that JL = mLl2/12. Assuming
links with high stiffness, the deformations and the elongations results negligible with
respect to the length of the cable itself, in the range of forces of our concern. Therefore
the link length is fixed. The link is connected at one end to a fixed point coinciding
with OW and at the other end to a point rigidly attached to the aerial vehicle whose
constant position in FR is denoted with rRl = [rx 0 rz]�. If ‖rRl‖ = 0 then the link
is directly attached to the CoM of the aerial vehicle.

The mechanical model of the more general robotic system can be then derived
writing the dynamics as the one in (4.18) plus a disturbance due to the non idealities:

M′(q′)q̈′ + g′(q′) + δ(q′, q̇′, q̈′,u′) = Q′(q′)u′,

where

δ(q′, q̇′, q̈′,u′) = M̄(q′)q̈′ + c̄(q′, q̇′) + ḡ(q′) − Q̄(q′)u′,

M̄ =
[
J̄ϕ Jϕθ

Jθϕ J̄θ

]

, c̄ =
[
c̄θ̇2

c̄ϕ̇2

]

,

ḡ =
[ mL

2 lgd⊥ · e3
−mRlgR̄W

B rRl · e3
]

, Q̄ =
[

0 0
−rRl · e3 0

]

,

where R̄W
B = ∂RW

B /∂θ , J̄ϕ = mLl2/3, J̄θ = mR ‖rRl‖2, Jϕθ = Jθϕ = −mRlR̄W
B rRl ·

d⊥, c̄ = mRlR̄W
B rRl · d.

For a plausible case in which the link consists of a cable of mass mL = 0.01mR

and inertia (during taut condition) JL = mLl2/12, and it is attached to the robot
in the position rBL = [0.03 0 0.03]�[m] with respect to FR , we noticed that the
controlled system is stable but the error does not converge exactly to zero. Indeed,
due to the nonzero ‖rRl‖, the force along the link generates an extra torque on the
aerial vehicle that is not compensated and so a constant steady state error appears.

In order to understand how each parameter of the more general model affects the
tracking performance, as before, we show in Fig. 5.26 the mean tracking error and its
standard deviation for different parameter values and in the three phases described
before. In particular the mass of the link is taken as mL = �mLmR .

We noticed that the negative effects due to a nonzero offset rBL reduce or increase
if the rotational inertia is increased or reduced, respectively. Indeed, looking at the
rotational dynamics in the case of non zero offset:

ϑ̈ = τR/JR − fLd · rBL/JR, (5.1)

one can notice that the effect of the link force on the angular acceleration decreases
if the inertia increases. Intuitively, a bigger inertia would mean a bigger mass or a
bigger dimension of the vehicle. In the second case, the bigger the vehicle the more
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Fig. 5.26 Simulation results: controller �a
DFL. Mean tracking error when changing the parameters

of the general model. c© 2020 IEEE. Reprinted, with permission, from [8]

the effect of the offset becomes negligible. For this reason in Fig. 5.26 we plot the
mean tracking error with respect to rBL

/JR , thus normalizing this effect.
We did the same test for the controller �b

DFL, which resulted to be much more
sensitive to link mass and to the offset than the controller �a

DFL. This is due to the
fact that one of the output, namely the attitude of the aerial vehicle ϑA, is directly
influenced by the offset as it is shown in (5.1) (we recall the in the 2D case ϑA = ϑ).
Furthermore, even with a small offset the tracking error is such that the actual tra-
jectory passes through the singularity of the controller �b

DFL (see Sect. 4.6.2) causing
an unstable behavior.

On the other hand, the controller �a
DFL turned to be much more robust to these

sort of structural model variations. From Fig. 5.26 we can see that the parameters
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that mostly affect an increase of the error are the entries of rBL , i.e., rBL x and rBL z .
One can notice that it is more advisable to attach the link such that one is sure that
rBL z ≤ 0, especially if agile motions are required. The effect of the displacement
along xR is instead almost symmetric. The small asymmetry is due to the particular
trajectory passing from the first to the second quadrant. The mean tracking error
increases instead almost linearly with respect to the mass of the link. Nevertheless,
even with mL equal to the 20% of mR the closed loop system remains still perfectly
stable.

5.4.2.4 Noisy Measurements

In this section we investigate the robustness of the proposed method in presence of
noisymeasurements, which always exist in reality.We consider both the accelerome-
ter and the gyroscope measures being affected by a white Gaussian noise of variance
0.1[m/s2] and 0.01[rad/s] respectively.

From Fig. 5.27 we can observe that the estimated state shows some noise but the
corresponding error remains always bounded. Due to the noisy component on the
estimated state the control action presents some oscillations that imply a non exact

Fig. 5.27 Simulation results: noisy measurements. c© 2020 IEEE. Reprinted, with permission,
from [8]
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Fig. 5.28 Simulation results: non ideal motors. Mean tracking error when changing the motor time
constant

tracking of the desired trajectory. Nevertheless the tracking error remains small and
always bounded. Notice that to achieve these results we had to reduce the gains of
both the controller and observer. Indeed, high gain values increase the convergence
speed but also amplify the sensitivity to noisy measurements. In general the two
controllers does not show particularly different behaviors in face of the presence of
noise.

5.4.2.5 Non-ideal Motors

In a real scenario, one motor cannot instantaneously change the spinning velocity of
the propeller, and in turn the thrust produced. Indeed, this discontinuous variation
of the speed would require the application of an infinite torque by the motor, that is
clearly not possible. Instead the dynamics of the motor is characterized by a certain
time constant, τM ∈ R, that quantifies the time needed to change the motor speed. In
this section we analyze this additional non ideality testing the proposed method with
different non ideal motors characterized by an increasing time constant. In Fig. 5.28
we show the relative mean and variance of the tracking error for the different time
constant values τM . The plots clearly shows that increasing the time constant the
tracking error increases as well, especially during the dynamic part of the desired
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trajectory (Phase 2). Indeed, for motors with higher time constant, the error between
commanded and actuated thrust on each propeller increases causing a bigger tracking
error. However, the system remains stable up to a time constant of 0.08[s], which is
completely acceptable in real systems.

This analysis is important for the scalability of the system. Indeed, bigger vehicles
with higher mass imply the need of an higher lift that can be in general generated by
bigger propellers. This in turn requires the use of bigger motors that are characterized
by a larger time constant. Finally, as shown in Fig 5.28, the larger mass of the system,
and so the larger time constant of the motors, reduces the tracking performance of the
system for dynamic trajectories. Therefore, when we increase the dimension and the
mass of the vehicle, in order to still obtain good tracking performance, it is necessary
to reduce the agility of the desired maneuver reducing the demanded accelerations.
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