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ESCUELA SUPERIOR DE INGENIERÍA
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Automática

V◦ B◦ Director:

Guillermo Heredia Benot

V◦ B◦ Director:
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I try to pin her down

but she’s always on the run

I wanna catch her

but I can’t slow her down
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Abstract

Born in the last years inside the aerial robotics field, aerial manipulation is a topic

whose impact has been increasing day by day. The reason is the large number of

new applications that could be developed with these robotics systems. An aerial

manipulation system consists of an aerial platform equipped with one or several robotic

arms. This concept opens up many new applications and possibilities for aerial robots.

Furthermore, the possibility to carry out autonomously industrial and infrastructure

inspections and assembly tasks at locations that are difficult to access has fostered

the interest of the research community and the public for these robots.

This thesis focuses on the study of aerial manipulation systems and, particularly in

the design of a control strategy for the aerial platform of these aerial systems. Thanks

to mathematical models of the system dynamics, the aerial manipulator behaviour can

be analysed when robotic arms carry out manipulation tasks, allowing the development

and implementation of control techniques for these systems. The aim of this thesis

has been not only the design of control techniques but also the implementation in

real aerial manipulation system with the capability to carry out manipulation tasks

in outdoor scenarios. This aim involves the study of the hardware needed and even,

in one application, the mechanical design and implementation of a compliant arm,

moreover the development of its controller.

The main contribution of this thesis is the study of the dynamic model for different

kinds of aerial manipulator systems, and especially the analysis of these dynamics

and the development of controllers to carry out manipulation tasks, while the system

stability is guaranteed. To achieve it, the mechanical design of the different prototypes

has been implemented, thanks to the study of the hardware specifications needed
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for each particular application case. Prototypes for assembly tasks and structure

inspection have been developed having into account the final goals for each application

and the scenario in which it has been tested. The validation of the proposed methods

and applications have been accomplished by the design of tests in outdoor scenarios,

analysing in detail each experiment result to correct mistakes and to adapt or add

any structural or hardware modification needed.
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Resumen

Hace unos años, dentro de la robótica aérea, surgió la manipulación aérea como campo

de investigación. Desde su nacimiento, su impacto ha ido incrementándose poco a

poco debido, sobretodo, al gran número de aplicaciones que podŕıan llevarse a cabo

con este tipo de sistemas. Un manipulador aéreo puede definirse como una plataforma

aérea la cual ha sido equipada con uno o varios brazos robóticos. Este nuevo concepto

ha abierto un mundo de posibilidades para este tipo de robots aéreos. Además, gracias

a la posibilidad de este tipo de robots aéreos de interactuar con su entorno, podŕıan

llevar a cabo inspecciones de estructuras civiles o incluso, tareas de ensamblaje de

estructuras y todo ello, por supuesto, de forma autónoma.

Esta tesis se centra en el estudio e implementación de sistemas de manipulación

aérea y, en particular, en el diseño de estrategias de control para la plataforma aérea.

Este estudio comienza con el cáculo de las ecuaciones que representan la dinámica del

sistema, y que nos permite analizar su comportamiento y la influencia del movimiento

de los brazos robóticos en la estabilidad de la plataforma.El análisis de estas ecuaciones

nos permite diseñar de esquemas de control tales como los basados en Backstepping.

Pero el objetivo de esta tesis no es solo el diseño sino también la implementación de

estas técnicas de control en sistemas de manipulación aérea reales y con capacidad de

llevar a cabo tareas de manipulación en escenarios al aire libre.

La principales contribuciones de esta tesis son el cálculo de los modelos dinámicos

para cada uno de los tipos de manipuladores aéreos estudiados he implementados

durante el desarrollo de la tesis. Además del uso de estas modelos para la diseño

de una estrategia de control adaptable a cada una de las plataformas. También se

ha diseñado un mecanismo compliant que ha sido integrado en un manipulador para
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llevar a cabo tareas de inspección estructuras por contacto, además de un control de

fuerza-posición.

Cada manipulador aéreo implementado durante esta tesis, excepto el en caso del

helicóptero, va unido a un estudio de las especificaciones hardware necesarias para la

realización de una validación del sistema mediante experimentos de vuelo en escenarios

al aire libre, y en el caso de los manipuladores aéreos para inspección de estructuras,

en un puente real. Cada experimento realizado ha sido analizado en detalle para

corregir errores, además de para adaptar o agregar cualquier modificación estructural

o de hardware necesaria.
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Chapter 1

Introduction

1.1 Introduction to Aerial Manipulation

In the research community, the interest in unmanned aerial vehicles and the possibilities

of its applications have been increasing during the last decade. The demonstrations

of UAVs capabilities have resulted in the addition of industrial companies to this

interest and therefore, the growth of investment for the development of this technology.

One example is the idea launched by an famous commerce company to use UAVs for

parcel delivery to their customers (Amazon, 2016), or the increasingly frequent use

in the cinema and television industry and the widening number of business related

to the sale of these aerial robots. Therefore, applications are continually emerging:

monitoring and inspection of civilian infrastructures, helping in the agriculture to

pest surveillance or in the rescue of survivors in natural disasters (GeoSocial, 2014),

or even archaeologists have used UAVs to digitally reconstruction of medieval towns

(Mattino, 2014). UAVs are popular inside the public opinion and, we could affirm

that it is the golden period of the aerial robotics.

In the last years, UAVs are also experiencing an evolution. UAVs have been

commonly used in passive tasks like surveillance, inspection, monitoring or remote

sensing; Recently, active tasks like grasping and assembling have been also joined

to these skills thanks to the development of prototypes with manipulation and en-

vironment interaction capabilities. In fact, According to the European Robotics

1



2 Introduction

Strategic Research Agenda (eSRA)(for Robotics in Europe, 2013) aerial robots have

to be endowed with manipulation skills to done grasping, transporting, assembly and

disassembly of mechanical parts, etc; with the intent in a near future, to be employed

as robotics workers, robots for exploration and inspection or logistic. These new UAVs

capabilities can be helpful in those jobs that are considered dangerous for a human

operator, whether to carry out these activities or, at least, to assist in hazardous and

critical situations.

As a result of to endow UAVs with manipulation and environment interaction

skills, the aerial manipulation has emerged as a new robotic research field. This field

proposes the integration between a vertical take-off and landing (VTOL) unmanned

aerial vehicles (multirotors or helicopters) and a tool to perform manipulation tasks in

the air. According to (Ruggiero et al., 2018), the most adopted solutions are a flying

hand(FH) or an unmanned aerial manipulator(UAM):

A. Flying Hands

A FH is an aerial vehicle equipped with a gripper or a multi-finger hand that can be

directly attached to the UAV or using some cables or tether mechanism. In this case,

the robot can grasp and manipulate an object when it is flying. However, the robot

tasks are limited to transport objects or performing contacts with surfaces and this is

not enough to carry out active tasks. From a theoretical point of view, (Nguyen et al.,

2015) demonstrates that for the system stabilization, it is better a gripper positioned

above the aerial vehicle.However, most studies presented in bibliography show the

gripper placed below the aerial vehicle. The reason is that to grasp an object, it is

easier to do it from the top. Furthermore, to maximize the payload of the system, it

is convenient to design low-complexity grippers with light-weight. In (Mellinger et al.,

2011) and (Lindsey et al., 2011), the designs of two kinds (impactive and ingressive)

of light-weight and low-complexity grippers are presented. The grippers are attached

to quadrotors to grasp and perch on branches or beams and pick up and transport

payloads. In particular, in (Lindsey et al., 2011), a team of these FHs is used to

carry out the construction of a cubic structure in a coordinated manner. FH are also

designed and used with helicopters. (Backus et al., 2014) presents the Yale Aerial

Manipulator. It is a robot hand placed directly on the bottom of a helicopter. The
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design presented uses an actuator per finger and studies the impact of external forces

in the palm and grasping efficiency for different object sizes depending on the palm

size. In (Pounds et al., 2011), the Yale Aerial Manipulator is used to analyse the

disturbances due to the load mass and its position concerning to the prototype center

of gravity and experiments grasping objects while hovering.

A FH can be also considered as a UAV equipped with a tool to interact with the

environment. For example, (Nguyen and Lee, 2013) presents a hybrid force/motion

control framework multirotors with rigid/light tool attached to it. Furthermore, in

(Bellens et al., 2012) hybrid pose / wrench control framework for quadrotor helicopters,

allowing direct contact of the quadrotor with its environment and stable motion while

in contact was presented. The design of a tri-tiltrotor aerial manipulator for forceful

interaction is presented in (Papachristos et al., 2014). This prototype can hold an end

effector in contact with a surface while hovering. Application examples have been also

presented, i.e, a prototype with perching and door-opening capability is presented

in (Tsukagoshi et al., 2015) and another example can be seen in (Darivianakis et al.,

2014), this case was designed for inspection operations by contact.

Figure 1.1: Example of a FH for bridge inspection by contact developed at the
University of Seville within the AEROBI-project.

The aerial manipulators in which the objects are transported through cables or

tether mechanism are considered as FHs as well. (Cruz and Fierro, 2014) addresses the

problem of lifting from the ground a cable-suspended load by a quadrotor aerial vehicle

considering that the mass is unknown. The behavior of a helicopter linked to the
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ground through a cable is studied in (Sandino et al., 2016). The challenge of a tethered

aerial robot taking off and landing on slopes surfaces is presented in (Tognon et al.,

2016), analysing the safe and manoeuvre conditions. The dynamics model for tethered

aerial robots is studied in (Tognon and Franchi, 2017), furthermore, they propose two

nonlinear control for smooth trajectories based on the differential flatness properties

of the system. In (Bernard et al., 2011), a system composed of multiple aerial robots

cooperate in search and rescue missions. The outdoor experiments presented in

this work shown autonomous helicopters transporting loads through cables to assist

victims during a rescue phase operation. Another example of multiple tethered UAVs

cooperating to manipulate and transport objects is shown in (Michael et al., 2011)

and (Fink et al., 2011). Using Newton-Euler recursive method, in (Sreenath and

Kumar, 2013), the dynamics model of multiple quadrotors cooperating to transport a

payload suspended by cables is derived and using the differential flatness property of

the system, they find dynamically feasible trajectories for the system formed by both

payload and quadrotors. (Palunko, 2012) is textbook showing the last advances in

control and planning trajectory of UAVs with suspended loads.

B. Unmanned Aerial Manipulator

The second case mentioned above is the UAM. In an UAM, an aerial vehicle

is equipped with one or more robotic arms. This solution provides to the aerial

vehicle with the capability of performing dexterous manipulation tasks and, therefore,

to accomplish more complex actions than with a simple gripper. The design of an

efficient UAM represents a difficult challenge. In bibliography there can be found

several solution approaches to solve the problem of equipping an aerial vehicle with one

or multiple robot arms. Moreover, there are examples of UAM mounting commercial

and custom robots arms. In (Heredia et al., 2014), a coaxial octocopter is equipped

with a 7-DoF commercial arm model Robai Cyton gamma 1500 to accomplish grasping

task. Other approach using commercial arm can be found in (Huber et al., 2013)

wherein a 7-DoF anthropomorphic robot manipulator like the KUKA LWR is mounted

in a helicopter. Alternatively, there are also cases in which researchers have chosen

to develop their own robot arms. This option can be desirable because of the most

commercial robot arm are too heavy to be mounted in a multirotor. Which could
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reduce the time flight or have to use an oversized aerial platform and, that fact would

affect the system operability in real scenarios. In (Kim et al., 2013), the authors

design and develop an aerial manipulator consisting in a 2-DoF robot arm mounted in

a quadrotor, showing autonomous flight experiments picking and delivering an object,

with the purpose of validating the sliding mode controller proposed. In (Jimenez-Cano

et al., 2013) an innovative backstepping-based control for aerial manipulators was

tested in flight with a lightweight prototype formed by a quadrotor equipped with a

3-DoF robot arm which links were built from polymer powder by Rapid Manufacturing.

In (Cano et al., 2013), the mechanical design of a 6-DoF lightweight manipulator for

assembling bar structures is presented. This arm prototype was specifically designed to

be mounted in a rotary-wing UAV. The robotic arm was equipped with an end-effector

developed for grasping bars. Subsequently, this prototype of UAM was used in the

experiments done to prove the multilayer control for aerial manipulators proposed

in (Ruggiero et al., 2015). Reviewing the works mentioned above, we can focus on

all of these have been designed with rotational rigid joints. Nevertheless, UAMs

with prismatic joints can be also found (Forte et al., 2012) and even prototypes with

compliant joints (Suarez et al., 2015).

Figure 1.2: Examples of AUMs developed for the ARCAS-project.

Additionally, in the last year, some works with UAMs with dual arms have been

presented. The range of aerial manipulator operations can increase thanks to the use

of a dual arm system, i. e., with the possibility to grasp heavy objects or long bars as

well as to carry out a task with an arm while the other is grabbed at a point or holds a
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camera to assist in the operation. Some examples of works about aerial manipulators

with dual arms can be found in (Danko et al., 2015), (Suarez et al., 2017) and (Suarez

et al., 2018a).

Figure 1.3: Examples of dual arm aerial manipulators developed at the University of
Seville within the AEROARMS-project.(Suarez et al., 2018b)

During assembly tasks or inspection operations, the arm movements generate a

displacement of the system center of mass and changes in the moments of inertia.

Moreover, dynamic reaction forces and torques can appear inducing stability problems

in the aerial platform. In (Pounds et al., 2012), an analysis of the stability bounds for

these changes of mass is studied. In (Suarez et al., 2018b), the interactions between

the arms and the platform are identified in testbench, showing the reaction torques

generated. The use of redundant manipulators can be also used to planning the arm

trajectories to reduce these disturbances acting over the aerial platform (Sanchez

et al., 2015). Typically, two approaches are considered to handle planning and control

problems for an aerial manipulator: a decentralized approach, in which the arm an

the aerial platform are considered as independent systems and the coupled effects

are then defined as external perturbations between each system. An example of this

approach can be seen in (Ruggiero and Lippiello, 2015) in which the authors design a

momentum-based observer to compensate the arm dynamics and aerodynamic effects.

In the other hand, we have a centralized approach in which the aerial platform and

the arm is considered as a unique system and, therefore, the solutions proposed for
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planning and control are designed taken into account the full dynamics and kinematics

of the system (Lippiello and Ruggiero, 2012).

The relevance of aerial manipulation in the last years is reflected in the number

of European projects with the goal of advancing in this field robotics. The first

European project related with aerial manipulation field was the ARCAS-project

(Aerial Robotics Cooperative Assembly System,(ARCAS-project, 2013)). The project

aims were the development and experimental validation of the first cooperative

free-flying robot system for assembly and structure construction. Many innovative

European projects have been undertaken, as a result of the ARCAS-project. With

the goal of carrying out autonomous in-depth structural bridge inspections emerged

the AEROBI-project (AErial RObotic System for In-Depth Bridge Inspection by

Contact,(AEROBI-project, 2016)). The AEROARMS-project (AErial RObotic system

integrating multiple ARMS and advanced manipulation capabilities for inspection and

maintenance,(AEROARMS-project, 2016)) aims is to perform industrial inspection and

maintenance tasks using aerial manipulators equipped with dual arms. Another related

projects are AEROWORKS (Collaborative aerial robotic workers), (AEROWORKS-

project, 2015), where the objective was to perform inspection and maintenance tasks

in infrastructure environments developing aerial robotic workers that cooperate among

themselves; and HYFLIERS (HYbrid FLying-rollIng with-snakE-aRm robot for contact

inspection,(HYFLIERS-project, 2018)) where the objective is to design and implement

hybrid robots with ground mobility and flight capability which will be equipped with

a manipulator arm to inspect industrial pipelines.

1.2 Contributions of this work

This section is dedicated to review the main scientific contributions provided by this

thesis. The scope of this work have been the study, analysis, develop and implementa-

tion of aerial manipulation system to carry out useful tasks in real applications. In

the following, we briefly present a list of these contributions:

1. Dynamic model of Aerial Manipulator Systems: To obtain the dynamic

equations of a mechanical system is a fundamental first step to understand its
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behavior and design control methods. During this thesis, we are working with

several kind of aerial manipulation prototypes. For each one its dynamic model

has been derived. Depending on the case we have explored the Lagrange-Euler

formalism, the Newton-Euler recursive formulation or even the Kane’s method.

Afterwards, this model have been used analyse the behaviour of the aerial

manipulator, to develop a simulator or to design a controller.

2. Analysis of dynamic behavior of the aerial manipulators: Thanks to the

mathematical models and real experiments done, the influence of arms movements

over the aerial platform has been studied and analyzed. For example, the changes

in the system inertia matrix and gravity terms when the arm is carrying out

any task have been characterized in chapter 2. The analysis of these interaction

in a dual-arm case has been also studied.

3. Design of an nonlinear control method for aerial manipulator(multirotor

and helicopter): A generic non linear Backstepping-based control scheme has

been proposed for aerial platforms equipped with robotic arms. This control

technique has been adapted to the different aerial manipulators studied during

this thesis and validated in real flight experiments.

4. Design and implementation of a custom compliant aerial manipulator:

An passive compliance mechanism has been designed and developed. Thanks to

this mechanism the torque over a joint can be estimated and it has been used

to implement a 4-DoF compliant robotic arm for bridge inspection by contact.

Furthermore, it allows us to develop a force position control (chapter 4).

5. Design of a force-position controller for compliant arms: A control tech-

nique for compliant aerial manipulator has been designed and implemented in a

real system. This controller allows applying a desired force over a contact surface

while rejecting the disturbance due to the natural aerial platform oscillations

and holds a desired position. The controller has been designed to carry out

bridge inspection by contact and has been tested through real flight experiments

in a bridge.
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6. Implementation of a new full-actuated multirotor configuration: Most

common configurations for multirotors are underactuated systems and it could

not be the best characteristic to perform aerial manipulation tasks. In chapter 4,

we propose a new configuration in which the aerial platform can flight forward

without generating any torque over roll and pitch angles.

7. Design of a nonlinear controller to take advantage of the ceiling effect

for bridge inspection by contact: In bridge inspections, when the rotors of

an aerial platform are closed to the structure surface appear an aerodynamic

effect called ceiling effect. This effect can destabilize the system and even cause

an accident. However it can be also profitable because it can be useful saving

energy and increasing the flight time of the platform. In chapter 4, we propose

and develop a nonlinear control scheme which using an analytical model of the

ceiling effect can generate smooth transitions between the states of into and

without contact, and even to minimize the signal thrust to save the platform

energy. The solution approach has been also tested in experiments done in a

real bridge.

All of these contributions are justified by the publications done during this thesis.

In the next section, we present a list of these publications.
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1.4 Organization of this thesis

This thesis is organized in the following way (see Figure 1.4). Chapter 2 describes the

methods used to derive the dynamics equations of aerial manipulator systems. By

way example, using the Langrange-Euler Formalism, we obtain the dynamic model of

a dual arm aerial manipulator and we use it to analyze the interaction between the

manipulators and the aerial platform. As an essential part in the analytical study of

aerial robots, we also introduce the most relevant aerodynamic forces and torque of

this system. Finally, in chapter 2, we propose a model based control scheme for aerial

manipulation systems.

Chapter 3 is dedicated a the aerial manipulation applications for assembly task

developed during the thesis. First, we describes the QARM1 and AMUSE systems.

The QARM1 prototype was an aerial manipulator consisting in a quadrotor equipped

with a custom robot arm made using Rapid prototypes system. It was a pioneer

UAM prototype inside ARCAS European proyect. In AMUSE prototype a Robai

Cyton1500 7-DoF robot arm was mounted in an octorotor in coaxial configuration.

This full equipped aerial manipulator was used in the outdoor final experiments of the

ARCAS-project. The system analysis and description as well as these experiments

results will be showed in this chapter. Furthermore, in chapter 3, we propose an

adaption for a helicopter aerial manipulation of the control approach described in

chapter 2, exploring the Kane’s method to derive the dynamic model and showing

experiments results to test and validate this approach.

Chapter 4 describes the developed aerial manipulators for structure inspection

proposed in this thesis. The first case presented is a prototype of an octorotor in coaxial

configuration equipped with a custom arm attached on the top of the mechanical

structure to perform bridge inspections by contact. A full description of the system
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is presented, analyzing the effects generated in the system due to the contact with

the bridge surface. A control scheme is proposed and the results of experiments

in a real bridge are shown. Furthermore, we present the design, development and

implementation of an aerial compliant manipulator for structure inspection. In this

case, we describe the lightweight compliance mechanism implemented and used in the

compliant arm built, an aerial platform with a new configuration specially designed

for aerial manipulation and a force-position controller to carry out inspection task.

Some experiment in real scenarios are also presented. Finally, we present a FH system

specially developed for measuring the bridge girder deflections. A nonlinear controller

that benefits from the prototype design and the ceiling effect is proposed and tested

in real scenarios.

The last chapter of this thesis has been dedicated to conclusions and future works.

Figure 1.4: Graphical representation of the thesis organization.



Chapter 2

Modelling and Control

In this chapter, first, we briefly review the theoretical methods used to derive the

dynamic model of an aerial manipulator. In the Introduction, following the criteria

given in (Ruggiero et al., 2018), we have presented two different cases of aerial manip-

ulators, flying hand(FH) and unmanned aerial manipulator(UAM). For mechanical

systems, the typical approaches to derive the dynamic model are the Lagrange-Euler

method and the Newton-Euler recursive formulation. Although, these two solutions are

equivalent, the procedure to follow differs in both methods and the resulting equations

have different properties in therms of efficiency, computational cost, etc. That is, while

in the Lagrange-Euler formalism it is possible to obtain the whole dynamic model in

symbolic matrix form, using the Newton-Euler recursive formulation, the resulting

model is more computationally efficient. An example in the use of the Lagrange-Euler

formalism for an aerial manipulator system can be seen in (Lippiello and Ruggiero,

2012). A case in which the Newton-Euler recursive formulation was used is (Kannan

et al., 2013). There is, however, another approach that can be used to derive the

dynamic model of an aerial manipulator, the Kane’s method. This method presents

the advantages of both the above approaches. These three solutions have been used

in the analysis of the dynamics of the different aerial manipulators carried out during

this thesis and, for this reason, these will be introduced briefly in the next section.

For modelling and control design in aerial manipulators it is important to consider

the aerodynamic forces and torques of the UAV, since it will have to fly very close to

13
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objects and the environment, and the airflow from the rotors may interfere with them.

The derivation of the full aerodynamic model for a rotorcraft UAV is very complex

and is out of the scope of this thesis. Nevertheless, the main aerodynamic forces and

torques generated when the UAV is flying in the proximity to surfaces have been taken

into account and are briefly analyzed in the section 2 of this chapter.

The last part of this chapter has been dedicated to control design. A non-linear

control method to accomplish manipulation tasks while guaranteeing the system

stability is presented in it. The proposed solution has been applied to the different

aerial manipulator systems and validated with simulations and real experiments. The

nonlinear control proposed is based on the Backstepping technique adding an integral

term in some cases and considering the arm dynamics and the aerodynamic forces.

We also introduce several manipulator control solutions.

The chapter is organized as follows: first, the methods to calculate the dynamic

equations through both Lagrange and Newton-Euler will be presented. The application

of the Kane’s method to derive the dynamic equations is also introduced. Next, The

aerodynamic moments and forces applied to these systems are also presented. Finally,

the control scheme proposed will be developed for a generic aerial manipulator case.

2.1 Dynamics of aerial manipulators

This section presents the derivation of the dynamic equations of an aerial manipulator.

There are several methods for obtaining the dynamics of a mechanical system. The

sets of equations generated by these methods are equivalent, but some of them may

be better suited for analysis and others for computation. In the aerial manipulation

bibliography, the methods commonly used are Euler-Lagrange and Newton-Euler, but

also Kane’s method has been used in some cases.

The Lagrange-Euler equations of motion can be obtained in a structured form allow-

ing a detailed analysis of the properties of the system but with a high computational

cost. In fact, the main disadvantage of this method is the need for the differentiation

of the energy functions such as the kinetic and potential energies, that may cause

efficiency problem for large multibody systems. The Newton-Euler method provides
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a very efficient set of recursive equations, but with a more difficult use for deriving

advanced control laws. On the other hand, the Kane’s method uses the generalised

forces to eliminate the need for analysing interaction and constraint forces between

bodies and does not employ energy functions (Kane et al., 1983) (Kane and Levinson,

1985). In other words, it could be said that it has the advantages of Newton-Euler

and Lagrange-Euler without their disadvantages, although the generalised variables

can be lees intuitive. Moreover, it is less used in general, probably due to it is less

known, and its complex notation and learning. Both methods have been explored in

this thesis.

An aerial vehicle equipped with multiple arms can be considered as a kinematic

tree in which the base body(aerial platform) is a floating-base (Featherstone, 2014).

It means a body in free motion relative to the fixed frame and not subjected to

constraints.Thus, to model a floating-base, we need to introduce a new 6-DoF joint

(three for position and three for orientation) connected between the fixed frame, S,

and the multirotor frame located in it center of gravity,B. Each arm of the aerial

manipulator will be the i-th branch of the kinematic tree with i = 1, ..., k (see Figure

2.1)

Figure 2.1: kinematic tree representing an aerial manipulator with multiple arms
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The whole system will have k branches with rk links. Moreover, we will define NB

and N = 6 +
∑k

i=1 ri as the number of bodies and degrees of freedom in the whole

system and an end-effector frame Ei (i = 1, ..., k) for each arm. Let us also consider

that there are no loops and each joint of each arm can be prismatic or revolute. In

the following, we introduce briefly the main steps of each method above mentioned to

derive the dynamic model of an aerial manipulator with the above configuration.

2.1.1 Euler-Lagrange Formalism

First of all, to obtain the system equations of motion through Euler-Lagrange, we

need to define a set of generalised coordinates, ϕ = [ϕ1 ... ϕN ]> ∈ RN . ϕ must fully

describe the configuration of our aerial manipulation system. Thus, we have that ϕ

is composed by three translation joints, p = [x y z]> ∈ R3, and three revolute joints,

η = [φ θ ψ]> ∈ R3, which represent the six DOF of the aerial vehicle plus the joints

of each manipulator arm, γi = [γi1 ... γ
i
ri

]> ∈ Rri(i = 1, ..., k). Thus, the system’s

generalised coordinates are given by

ϕ = [p η γ1 ... γk] ∈ RN with N = 6 +
k∑
i=1

ri (2.1)

Moreover, to simplify the notation, we will use ϕn (n = 1, ..., N) to refer to a

specific coordinate of ϕ where the first six correspond to [pη]> ∈ R6 and the rest to

the joints of the arms. The second step is to calculate the Lagrangian, L(ϕ, ϕ̇), which

is obtained as the difference between the kinetic and potential energies of the system.

Thus,

L(ϕ, ϕ̇) = K(ϕ, ϕ̇)− P (ϕ) (2.2)

where K(ϕ, ϕ̇) and P (ϕ) are the kinetic and potential energy both defined as a function

of the generalised coordinates. Then, the system equations of motion are calculated

by the Lagrange equations expressed by
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d

dt

∂L(ϕ, ϕ̇)

∂ϕ̇i
− ∂L(ϕ, ϕ̇)

∂ϕ̇i
= Γi i = 1, ..., N (2.3)

where Γi is the external force acting on the ith generalised coordinate. In a kinematic

tree, the kinetic energy is calculated as the sum of the kinetic energies of its bodies

and is given by

K =
1

2

NB∑
i=1

(vbi )
TMi(v

b
i ) (2.4)

where Mi is the generalised inertia matrix of the ith link defined as,

Mi =

[
miI3×3 0

0 Ii

]
(2.5)

where mi and Ii ∈ R3×3 are the mass and the inertia tensor of the ith body and

I3×3 ∈ R3×3 is an identity matrix. vbi is the velocity of the body i and is calculated as

vbi =
∑
i∈κ(i)

J bi ϕ̇i (2.6)

where J b ∈ R6×N is the body Jacobian and κ(i) is the set of points on the path

between the body i and the base, that is the fixed frame S. Then the total kinetic

energy can be obtained by the sum of the kinetic energy of each link,

K =
1

2
ϕ̇T (M(ϕ)))ϕ̇ (2.7)

where M(ϕ) ∈ RN×N is the system inertia matrix and it is defined as,

M(ϕ) =
N∑
i=1

(J bi )
TMiJ

b
i (2.8)
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On the other hand, the total potential energy must be calculated to complete the

derivation of the Lagrangian. For each link i, the potential energy can be obtained as,

P (ϕ) = mighi(ϕ) (2.9)

Where hi(ϕ) is the height of the center of gravity of the ith link. Then, the total

potential energy can be obtained as the sum of the potential energies of each link as,

P (ϕ) =
N∑
i=1

(mighi(ϕ)) (2.10)

Using the kinetic and potential energies to complete the Lagrangian and substituting

into Lagrange’s equations 2.2, the dynamic model of the system can be expressed in

matrix form as follows

M(ϕ)ϕ̈+ C(ϕ, ϕ̇)ϕ̇+G(ϕ) = Γ (2.11)

where M is are the generalised inertia matrix, G represents the centrifugal and Coriolis

terms, G is the gravity component. The terms of the Coriolis matrix can be derived

through the system inertia matrix M(ϕ) as follows

Cij(ϕ, ϕ̇) =
1

2

N∑
k=1

(
∂Mij

∂ϕk
+
∂Mik

∂ϕj
− ∂Mkj

∂ϕi
)ϕ̇k (2.12)

And the gravity vector G(ϕ) is obtained directly from the potential energy as

Gi(ϕ) = − ∂P
∂ϕi

i = 1, ..., N (2.13)
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The forces and moments acting on the system are given by

Γ =



Fa

τa

τm1

...

τmk


+ τext (2.14)

Herein Fa and τa are the forces and torques generated by the rotors of the aerial

vehicle respectively and they are related to the number of rotors and the configuration

of the multirotor. The external forces and torque are represented by τext.

2.1.2 Newton-Euler Formalism

In the Lagrangian Formalism, the system dynamics are derived using the Lagrangian

function of the whole system, that means calculating the difference between the kinetic

and potential energy. In contrast, the Newton-Euler Formalism is based on the balance

of forces and moments acting on a body of the system. This allows obtaining the

system dynamics following two recursive steps. First, the velocities and accelerations

of each body are calculated through an outward recursion from the fixed frame to

each system link. Then, the forces required to produce this acceleration are computed

using the Newton-Euler equations. In each link of a kinematic tree, the velocity and

acceleration are given by

vi = vi−1 + Φiϕ̇i (v0 = 0)

ai = ai−1 + Φiϕ̈i + Φ̇iϕ̇i (a0 = −ag)
(2.15)

Initializing a0 to −ag, the gravity effect can be added. Then, we calculate the forces

required to generate these accelerations as

fai = Iiai + vi × Iivi − f exti (2.16)
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The next step is the inward recursion, in which the force balance equation of each

body is used to compute the spatial force across the joints from the forces/torques

acting on the bodies. Then, iterating from NB to 1 we have

fi = fai − fext +
∑
j∈c(i)

fj

τi = Φ>i fi

(2.17)

More details of the equations and the recursive algorithm can be found on (Spong,

1989), (Siciliano and Khatib, 2016) and (Featherstone, 2014). Finally, the equations

obtained can be rewritten in a closed form as in 2.11.

2.1.3 Kane’s Method

The main idea in the Kane’s method is to project the forces and torques on the

directions of the generalized coordinates, transforming then into generalized forces

and then obtaining the equilibrium equations of the generalized forces (Stoneking,

2013). For this reason it is also named generalized D’Alembert’s principle. A general

procedure of the Kane’s method starts defining the locations of the center of mass

of each system body and the locations of the applied forces. Then, we select the

generalized coordinates ϕ and the generalized speeds v and the angular velocity ω

(aerial vehicle) and γ̇ in the arms’ case. Next, we construct the partial velocities, vir,

and present the Kane’s equation given by

Fr + F ∗r r = i, ..., N (2.18)

Therefore, for a system with a set of NB rigid bodies and N degrees of freedom, the

generalized active forces are given by

Fr =
∑
i∈κ(i)

[wirτi + virFi] (2.19)
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and the generalized inertia forces are given by

F ∗r =
∑
i∈κ(i)

[wir(Iiω̇i − ωi ×H) + vir(−miai)] (2.20)

The equation 2.18 is in vector form but it can be rewritten in a closed form as the

equation 2.11. This method is used in the second application of chapter 3 to derive

the dynamics of a helicopter equipped with a robotic arm.

2.2 Modelling of a Multirotor with a dual robotic

arm

In the above section, we introduce the typical methods used to derive the dynamic

model of a mechanical system. As an example, let us obtain the dynamic equations of

a dual-arm aerial manipulator through the Lagrange-Euler formalism. The followed

methodology was published in (Suarez et al., 2018b), one the publications that

contribute to this thesis.

The motivation to mount a dual arm system in an aerial platform is to extend

the grasping an manipulation capabilities with respect to a single arm case. This

configuration allows the simultaneous grasping and transportation of two objects, or

large objects that cannot be handled with a single arm, or to accomplish manual

operations in which a camera can be positioned in one arm end-effector, assisting with

visual feedback in the operation.

In other to simplify the resulting symbolic equations of the system, we have followed

an approach based on barycentric vectors. This approach was first time proposed for

space manipulator in (Papadopoulos, 1990) and applied to multiple manipulators in

(Papadopoulos and Moosavian, 1994). Its main difference with other approaches is the

calculus of system kinematics using a minimum set of body-fixed barycentric vectors

and allowing to derive the dynamics w.r.t the center of mass of the full system.
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Kinematic model

In the derivation of the kinematic and dynamic equations of a multirotor equipped

with multiple robotic arms, it results convenient to express the position of the masses

in terms of a set of body-fixed barycentric vectors. With this, the equations of motion

can be written in terms of the translation of the system center of mass with respect

to an inertial reference frame.

Figure 2.2: Scheme of multi-rotor equipped with two 3-DOF arms.

Let consider the schematic representation of the multi-rotor platform equipped

with two manipulators depicted in Figure 2.2. The position of the center of mass

and the attitude of the multi-rotor with respect to the inertial reference frame, S, are

denoted by rM and by the roll, pitch and yaw angles (φ, θ and ψ, respectively), while

pcm is the position of the center of mass of the whole system. Each of the M = 2 arms
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consists of N = 3 links for end effector positioning, being γik the k-th joint position

of the i-th arm, and lik and rik the length and position of the center of mass of the

respective link. The two additional DOF’s provided by each arm for wrist orientation

are not considered for simplicity and because they do not have a significant influence

over multirotor dynamics. Taking into account the 6 DOF’s for the position and

attitude of the aerial platform, the total number of degrees of freedom of the system

is D = 12 .

Now it is necessary to relate the position of the center of mass of every single link

with the position of the global center of mass. Let call P i
k,a ∈ R3 to the position of an

arbitrary point a on the link k of the manipulator i given by:

P i
k,a = pcm + ρik + rik,a (2.21)

where rik,a ∈ R3 is the position vector from the k-th link center of mass of manipulator

i to point a, and ρik ∈ R3 is computed in the following way:

ρik = Tη

M∑
p=1

N∑
j=1

Rp
0,jv

p
jδip

(2.22)

Here δip is the Kronecker delta, Tη ∈ R3×3 is the rotation matrix of the multirotor

with respect to the inertial frame, and Rp
0,j ∈ R3×3 is the rotation matrix between the

j-th link frame of manipulator p and the frame of the aerial platform. Taken into

account 2.21, 2.22 can be rewritten as:

P i
k,a = pcm + ρik + rik,a = pcm + Tη

M∑
p=1

N∑
j=0

Rp
0,jv

p
jk,a

vijk,a = vijk + δija · rik,a

(2.23)

where vijk ∈ R3 is the barycentric vector defined as the position vector of the k-th link

center of mass of manipulator i-th with respect to the system center of mass:
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vijk =


ri∗j = −lijµij + rijµ

i
j+1 j < k

ci∗j = −lijµij − rij(1− µij+1) j = k

li∗j = lij(1− µij)− rij(1− µij+1) j > k

(2.24)

where lij ∈ R3 and rij ∈ R3 are defined in Figure 2.2 and the mass distribution, µij, is

given by:

µij =


0 j = k
m0

mT
+
∑M

p=1

∑N(i,j,p)
k=1

mpk
mT

j = 1, ..., N

1 j = N + 1

N(i, j, p) = N − δip(N − j + 1)

(2.25)

Note from equation 2.25 that the position of the center of mass of each link respect to

the inertial frame depends on the position of all links. The system center of mass is

then computed as follows:

pcm =
1

mT

(pMm0 +
M∑
p=1

N∑
j=1

dijm
i
j)

dij = pM + Tη

j∑
p=1

(Ri
0,p−1 · rip−1 − T i0,plip)

(2.26)

The position of the end effector for each manipulator is obtained from equation 2.23:

P i
E = pcm + Tη

M∑
p=1

N∑
j=1

Rp
0,jv

p
jN,E (2.27)

where rM represents the multirotor center of mass position with respect to the inertial

frame and Ri
0,0 is the identity matrix. Using the equations 2.24 and 2.25 it results

that:
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P i
E =


riMx

riMy

riMz

+ Tη


ri0x + rli1cγi1(rl

i
2sγi2 + rli3sγi2,3)

ri0y + rli1sγi1(rl
i
2sγi2 + rli3sγi2,3)

ri0z + rli1 − rli2cγi2 +−li3cγi2,3

 (2.28)

with rlij = (rij − lij), cγij = cos(γij), sγij = sin(γij), cγij,k = cos(γij + γik) and sγij,k =

sin(γij + γik). The equations 2.22 and 2.23 can be differentiated with respect to the

time to obtain the position velocity of an arbitrary point a in the body k of the i-th

manipulator:

Ṗ i
k,a = ṗcm + ρ̇ik + ṙik,a ∈ R3

ρ̇ik =
M∑
p=1

N∑
j=0

ωpj × v
p
j(kδip)

∈ R3

ωik = ω0 + TηT
i
kq̇
i ∈ R3

T ik = [Ri
0,1u

i
1, R

i
0,2u

i
2, ..., R

i
0,ku

i
k, 0, ..., 0] ∈ R3×3

(2.29)

with ωp0 = ω0(p = 1, ...,M) denoting the multirotor angular velocity with respect to

the inertial frame and vector γ̇i = [γ̇i1 γ̇
i
2 γ̇

i
3]
> ∈ RN represents the joint rates of the

i-th manipulator. The terms uij ∈ R3 (i = 1, ...,M j = 1, ..., k) are unit column vectors

and represent the rotation axis of j-th joint of the i-th manipulator.

While the procedure introduced here to obtain the kinematic model has benefits

when the dynamics equations are presented, the kinematics can be also derived through

other methods as the use of the Product of Exponential or Denavit-Hartenberg. An

introduction to these methods can be found in Appendix A.1.

Dynamic model

The dynamic model of the dual arm aerial manipulator system is derived from the

Lagrange-Euler method described above. In this case, The vector of generalized

coordinates is defined as:

ϕ = [pcm η γ1 γ2]
> ∈ R12 (2.30)
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This vector includes the position of the center of mass of the multirotor, pcm, and

its attitude, along with the joint positions of both manipulators. The system can be

considered as a kinematic tree where the multirotor is connected to a fixed base via

a 6-DOF joint and each robot manipulator is a subtree connected to the multirotor,

being the kinetic energy of the tree equal to the sum of the kinetic energies of its bodies.

The benefit of using the barycentric vectors (equation 2.24) is that the manipulators

can be replaced by virtual manipulators whose base is the system center of mass.

Therefore, the kinetic energy of the system is given by:

K(ϕ) =
1

2
mT ṗ

>
cmṗcm +

1

2

2∑
i=1

3∑
k=1

(ωi>k I ikωik +mi
kρ̇

i>
k ρ̇

i
k) (2.31)

In this equation, the first term corresponds to the kinetic energy associated to the

translational speed of the system, while the two terms within the nested summation

are the kinetic energy due to the translation and rotation of the link masses, being ωik

the rotational speed of the k-th joint in the i-th manipulator. The potential energy

due to gravity can be calculated with respect to the system center of mass as:

V (ϕ) = gmT zcm (2.32)

where g is the acceleration due to gravity and zcm is the altitude of the center of mass

(see equation 2.26). The equation of motion of the system can be expressed in the

following general form:

M(r)ϕ̈+ C(r, ṙ)ϕ̇+G(ϕ) = Γ (2.33)

where the vector r = [η γ1 γ2]> represents the multirotor rotation and the manipu-

lators’ joint angles. The resulting inertia matrix for the developed dual arm aerial

manipulation system has the following form:
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M(r) =


I3×3mt 01×3 01×3 01×3

03×1 Mη(r) Mηγ1(r) Mηγ2(r)

03×1 M>
ηγ1(r) Mγ1(r) Mγ1γ2(r)

03×1 M>
ηγ2(r) M>

γ1γ2(r) Mγ2(r)

 (2.34)

It is interesting to note in the form of this matrix the decoupling between the translation

and rotation of the aerial manipulation system.

Analysis of interactions between the manipulators and the aerial platform

The terms Mηγ1 and Mηγ2 in equation 2.34 are the submatrices of inertia, which

represent the dynamic coupling between the multirotor and the arms. The structure

of the inertia matrix is derived from the application of the method of barycentric

vectors in the calculation of the kinematic and dynamic equations, referenced to the

center of mass of the whole aerial manipulator. This fact is evidenced by the null term

in the cross-submatrices where the acceleration of the center of mass (linear and twist)

are related. The main benefit of this method is that the equations obtained result in a

more compact and simple form for its implementation in a simulation framework, and

for the design of a model-based controller. The drawback is that the observation of

the dynamic effects associated with the interactions between the arms and the aerial

platform requires the transformation to the kinematic domain.

A MATLAB/Simulink simulator was developed for identifying the reaction torques

introduced in the base of the aerial platform due to the motion of the arms, obtaining

the dynamic/kinematic equations using the MUPAD toolbox of MATLAB. Figure

2.3 shows the inertia, Coriolis and gravity components of the torque in the three

axes when the left arm rotates from 0 to 90◦ in one second time. This estimation is

obtained from the application of the dynamic model over the data provided by the

servo actuators in the physical manipulator.

This example demonstrates that the gravity term is dominant in the pitch angle,

whereas the inertia and Coriolis terms in the roll and yaw angles are associated to

the unbalanced motion of the masses, as there is no compensation with the right arm.

What is more, the offset component in the gravity term represents the displacement
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Figure 2.3: Inertia (blue), Coriolis and centrifugal (green) and gravity (red) terms
in the XY axes for the 90◦ step in the shoulder pitch joint of the left arm. The
components in the X and Z axes are caused by the asymmetry in the motion of the
arms.

of the center of mass when the arms are attached to the aerial platform, and it should

be compensated by the integral term in the autopilot during the flight operation.

The dynamic model above described shows a strong coupling between the manipu-

lator and the multirotor, in such a way that the acceleration of any link in one arm

will affect, not only to the aerial platform, but also to the joint torque in the other

arm. Nevertheless, the torque induced in the joints by the acceleration of the aerial

platform will be in practice dissipated by the relatively high friction of the gearbox of

the servos, and by the embedded position controller. In other words, the motion of

the arms will affect the stability of the aerial platform, but the opposite effect is not

significant.
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2.3 Aerodynamic Forces and Moments

In this work, all aerial vehicles considered have been Vertical Take-off and Landing

(VTOL) platforms, such as multirotors, i.e., quadrotors, hexarotors or octorotors and

helicopters. In vehicles having rotors as propulsion system, the aerodynamic forces

and moments are calculated using momentum and blade element theory. The main

aerodynamic forces and torques that we have taken into account in this thesis are the

following:

2.3.1 Thrust Force

The thrust force is the sum of all the vertical forces acting on all the blade elements.

The thrust force of each rotor can be calculated as

Ti = CTΩ2
i (2.35)

where Ωi is the angular speed of the i-th rotor and CT is a constant which value

depends on the geometry of the propeller (diameter, pitch, airfoil distribution) and

the ambient conditions such as the air density or the relative humidity.

2.3.2 Drag Torque

The drag moment determines the power required to spin the rotor. This moment is

caused by the aerodynamic forces acting on the blade elements. The horizontal forces

acting on the rotor multiplied by the moment and integrated over the rotor.

Qi = CQΩ2
i (2.36)

where CQ is the drag coefficient which value depends on the geometry of the propeller

(diameter, pitch, airfoil distribution) and the ambient conditions such as the air density

or the relative humidity.
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2.3.3 Ground effect

The ground effect in multirotors happens when the rotors are close to the ground

and consists of a thrust increment due to the interaction of the rotor airflow with

the ground surface. In (Sanchez-Cuevas et al., 2017a), this effect was studied and

characterized in multirotors’ case and the expression of the thrust increment due to

the ground effect was calculated as:

TIGE
TOGE

=
1

1− ( R
4z

)2 −R2( z√
(d2+4z2)3

)− (R
2

2
)( z√

(2d2+4z2)3
)− 2R2( z√

(b2+4z2)3
)Kb

(2.37)

where TOGE is the thrust generated by the rotor flying out of the ground effect and

TIGE is the thrust when the rotor is under the ground effect, R is the radius of the

rotor, z is the vertical distance of the rotor to the ground, b is the distance between

two opposite rotor axes and Kb is the empirical body lift coefficient. The ground effect

can be included in the thrust model equation 2.35 resulting:

Ti = CTΩ2
i fGE(zri) (2.38)

Herein fGE(zri) is the ground effect factor that accounts for the increment in thrust

due to the ground effect and depends on the relative distance of each rotor to the

ground, zri .

Figure 2.4 compares the experimental and theoretical results of the increment in

the thrust of a quadrotor as a function of the distance to the ground plane. We can

see the results compared with a single rotor and with the PFI (Potential Flow with

the method of images, (Cheeseman and Bennett, 1957)) approximations. The PFI

is an analytical model that is used to model the ground effect in helicopters using

potential flow with a single source to model the rotor airflow and the method of images

to model the ground.
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Figure 2.4: Experimental and theoretical results of the thrust behaviour due to ground
effect for full multirotor demonstrated in (Sanchez-Cuevas et al., 2017b)

.

2.3.4 Ceiling effect

The ceiling effect appears when the aerial platform is flying close enough to a horizontal

surface from below. The main difference between the ceiling and the ground effects

is that while in the ground effect the increment in the rotor thrust takes the aerial

vehicle away from the surface, in the ceiling effect this increment in the rotor thrust

moves the UAV against the surface and thus can be dangerous and cause a crash with

the ceiling. In (Jimenez-Cano et al., 2019), the ceiling effect was modelled through an

aerodynamic analysis using CFD and was compared with experimental tests.

Figure 2.5 shows the results of Kc(zci) that appear when the rotors approach the

ceiling assuming that the power is constant. Using these results, the ceiling effect can

be mathematically modelled and included in the thrust model equation. Then, it can

be rewritten as:

Ti = Kc(zci)CTΩ2
i (2.39)
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Figure 2.5: CFD Experimental Results Comparison. Blue error bar and red error bar
are experimental results for quadrotor and multirotor respectively. Black braked line
is the model proposed in (Sanchez-Cuevas et al., 2017b) for the single rotor in ceiling
effect.

with

Kc(zci) =
1

1− 1
a1

( R
a2+zci )

2

(2.40)

where Both, a1 = 0.081 and a2 = 1.026 are values obtained through least squares

minimizing the error with the CFD results.

2.4 Control Scheme

As above mentioned, in the control problem of an aerial manipulator there are two

approaches: decentralized and centralized. In this thesis, we follow a centralized

approach. Even though we design a controller for the multirotor and other for the

manipulator, they share the full state of the system and are designed from the dynamic

model of the full system (see Figure 2.6). The multirotor controller is responsible for
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stabilizing attitude and global position of the aerial vehicle, taking into account and

compensating the movements of the arm and the contact forces with the environment.

The manipulator controller takes care of controlling arm joints angles and velocities,

and the generalized forces τ that are generated by the aerial manipulator in the

operational space, considering the movement and dynamics of the multirotor.

Figure 2.6: Control Scheme for an aerial manipulator

2.4.1 Multirotor Controller

A problem that arises in the aerial manipulators is that the dynamic behavior of the

vehicle changes due to the modification of the aerial mass distribution and dynamics

by grasping and manipulating objects. The main effects that appear and make the

dynamic behavior of the multirotor with a manipulator different from the standard

multirotor configuration that is usually considered are the following:

1. Displacement of the center mass from the vertical axis at the geometrical center.

2. Variation of mass distribution: the moments of inertia change significantly when

the arm moves.

3. The dynamic reaction forces and torques generated by the movement of the arm.
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These three effects are not usually taken into account explicitly, and are left to the

integral term in the feedback controller for correction. The effects of the displacement

of the mass center have been analyzed by some researchers. For example, (Pounds

et al., 2012) presents stability limits within which the changing mass parameters of the

system will not destabilize quadrotors and helicopters with standard PID controllers.

On the other hand, (Mellinger et al., 2011) studies the effect of grasping objects at a

point displaced from its center of mass and develops a controller that takes it into

account explicitly. In (Kemper and Fatikow, 2006), the center of mass is also considered,

but the variations of the moments of inertia are discarded. The influence of the center

of mass being above or below the equatorial multirotor plane is analyzed in (Bristeau

et al., 2009). Adaptive controllers that compensate for the unknown displacement of

the center of mass have also been presented (Palunko and Fierro, 2011) and (Antonelli

et al., 2013). Taking into account the above mentioned three effects a nonlinear

based-model controller is proposed. This control approach is generalized solution

adapted from the Variable Parameter Integral Backstepping (VPIB) controller that was

presented in (Jimenez-Cano et al., 2013). Variable Parameter Integral Backstepping

(VPIB) has shown as an effective control technique for aerial manipulation vehicles

(Heredia et al., 2014) and it is based on a nonlinear Backstepping controller whose

parameters vary accordingly with the dynamics of the manipulator and provides a

good dynamic response when the manipulator moves. Deriving the dynamic model

of the system from one the methods above mentioned, we can write these model

equations in a compact form as follows:

M(ϕ)ϕ̈+ C(ϕ, ϕ̇)ϕ̇+G(ϕ) = τ + τext (2.41)

where ϕ = (p, η, γ)T ∈ RN is the vector of generalized coordinates. Then, analyzing

the equation 2.41 and without loss of generality (Park and Khatib, 2005), it can be

rewritten as

[
Ma Mam

MT
am Mm

]
p̈

η̈

γ̈

+

[
Ca

Cm

]
+

[
Ga

Gm

]
=


Fa

τa

τγ

+ τext (2.42)
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where Ma ∈ R6×6, Mm ∈ R(N−6)×(N−6) and Mam ∈ R(6)×(N−6) are aircraft, manipulator

and coupling inertia matrices. Ca = [Cp, Cη]
T ∈ R6 and Cm ∈ RN−6 are the aerial

vehicle and manipulator Coriolis and centrifugal forces, and Ga = [Gp, Gη]
T ∈ R6 and

Gm ∈ RN−6 are the aerial vehicle and manipulator gravity forces vector. Therefore,

the multirotor equations of motion can be decoupled from the upper part of the

equation 2.42 as follows

[
Mp 0

0 Mη

][
p̈

η̈

]
+ Ca +Ga =

[
Fa

τa

]
+ τaext −Mamγ̈ −

[
0 Mpη

MT
pη 0

][
p̈

η̈

]
(2.43)

Most prototypes developed in this thesis had been made with multirotors in the

most popular configurations, i.e. quadrotors, hexarotors, octorotors, etc. These

are underactuated systems which have four control inputs, U = [Uz, Uφ, Uθ, Uψ], for

six degrees of freedom. The four control inputs correspond to the total thrust, T ,

generated by the rotors and the three torques generated by these rotors in the three

multirotor attitude angles, (τφ, τθ, τψ). These control inputs are directly related to the

generalized forces and torques of the equation 2.42 as follow

[
Fa

τa

]
=

[
Up

Uη

]
=



Rη


0

0

T


τφ

τθ

τψ


=



Ux

Uy

Uz

Uφ

Uθ

Uψ


(2.44)

where Ux and Uy are virtual control inputs that are used to command desired angles

(φd and θd) when the multirotor tracks a horizontal path. The control proposed for

the multirotor follows the classic cascade control where desired roll and pitch angles

are calculated by the desired horizontal position. Thus, we have a position controller

in an upper loop which outputs are the desired thrust, Uz, and the desired attitude,
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and the attitude controller into an inner loop which outputs are the attitude torques,

Uη (see Figure 2.7).

Figure 2.7: Control Scheme for multirotor controller

Attitude Controller

Consider the tracking error eη = ηd − η, where ηd is the desired attitude and its

dynamics:
deη
dt

= η̇d − ω (2.45)

Then a virtual control over the angular speed ω can be formulated, which is not a

control input. Therefore, the desired angular speed can be defined as follows:

ωd = kηeη + η̇d + ληχη (2.46)

with kη and λη are positive diagonal gain matrix and χη are the integral of each

tracking attitude angle error. Next, the angular velocity tracking error eη̇ and its

dynamics can be defined by:

eη̇ = ωd − ω (2.47)

deη̇
dt

= kη(η̇d − ω) + η̈d + ληeη − η̈ (2.48)
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Using 2.46, 2.46 and 2.48 the attitude tracking error dynamics equation 2.45 can be

rewritten as:
deη
dt

= −kηeη − ληeη + eη̇ (2.49)

Now, η̈ in 2.47 and 2.48 can be replaced by its expression in the dynamic model

2.43, and the control input Uη appears explicitly. Then, combining the tracking errors

of position eη and the angular speed eη̇, and the integral position tracking error χη

using the above equations the control input Uη can be calculated as:

Uη = D4(Mη)[(1−k2η+λη)eη+(kη+kη̇)eη̇−kηληχη]−F (Mη)−Cη−Gη−Mamγ̈+τ η,γext

(2.50)

where kη̇ is a diagonal positive gain matrix which determines the convergence speed of

the angular speed loop. The term D4(Mη) represents the diagonal of Mη and depends

on both the attitude angles and the arm joint angle positions. F (Mη) represents

the sum of the coupled terms such as MT
pηp̈ ∈ R3 or the coupled non-diagonal terms

derived from the inertia matrix Mη. Cη and Gη are the nonlinear terms described

above. In practice, the attitude controller terms can be rearranged in the following

way:

Uη = D4(Mη)[KP eη +KIχη +KDeη̇]− F (Mη)− Cη −Gη −Mamγ̈ + τ η,γext (2.51)

where KP , KI and KD are the parameters of a standard PID controller. The first

part of the controller can be seen as a gain-scheduled PID with the different positions

of the arm, while the nonlinear terms compensate the full coupled dynamic effects.

In this way, it is easier to tune the controller parameters starting from the standard

PIDs that are used by many multirotors as base controllers. The proof of stability for

this control approach can be seen in the appendix section.
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Position Controller

The expression of the position controller can be derived in a similar way to the steps

followed above,

Up = Mp(D
4(Rηe3))

−1[KP ep +KIχp +KDeṗ]− Cp −Gp + F p,γ
ext (2.52)

Herein Mp is a diagonal matrix which terms are the total weight of the system and

D4(Rηe3) is a diagonal matrix formed with the vector Rηe3 ∈ R3 where Rη ∈ SO(3)

is the rotation matrix of the aerial platform and e3 = (0, 0, 1)T . F p,γ
ext represents the

external forces applied over the end-effector and transformed to the translation axis

of the center of mass of the multirotor. In practice, Cp should be a zero vector and

Gp = (0, 0, g)T . Therefore, equation 2.52 is given by,

Up = MT (D4(Rηe3))
−1[KP ep +KIχp +KDeṗ]−Gp + F p,γ

ext (2.53)

where MT represents the total weight of the system. As mentioned above, the horizontal

position controller, (Ux, Uy), outputs the attitude references φd and θd in response to a

deviation from the yd or xd references respectively, which are tracked by the attitude

controller. Then, this control law is adapted to generate the attitude references φd

and θd using the elementary rotation around z,

Rz =

[
cosψ sinψ

− sinψ cosψ

]
(2.54)

where ψ is the angle with respect to the north in clockwise direction. Thus, the control

law can be rewritten as: [
θd

φd

]
= Rz

[
Ux

Uy

]
(2.55)

2.4.2 Manipulator Controller

In the design of a controller for an aerial manipulator, the mechanics of the arm joints

is one of the main system features to take into account. Typically, we found robot
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arms with rotational rigid joints (Jimenez-Cano et al., 2013). However, there are

some examples of aerial manipulators with prismatic joints (Mersha et al., 2014) and,

nowadays compliant joints are being also employed by researchers due to their benefits

when the arm performs environment contact tasks, (Suarez et al., 2015), (Yüksel

et al., 2015) (Bartelds et al., 2016) (Suarez et al., 2018a) (Suarez et al., 2018c). Other

consideration to keep in mind must be if the actuators are controlled in torque or

directly in position, velocity or acceleration. Most robot arm controllers found in the

literature were designed for actuators which are controller in torque (Villani et al.,

2000). To design the manipulator controller we start from the dynamic model of the

full system. From 2.42 the matrix equations of motion for the manipulator can be

expressed as:

Mmγ̈ + Cm +Gm = τγ + τ γext −MT
am

[
p̈

η̈

]
(2.56)

Now, let us focus on the end-effector of the manipulator as reference. Then using the

operational space formulation (Khatib, 1987), the end-effector equations of motion in

operational space can be written as:

Λ(ϕ)ẌE + µ(ϕ, ϕ̇)ẊE + %(ϕ) = Γ (2.57)

where Λ(ϕ), µ(ϕ, ϕ̇) and %(ϕ) represent the inertia matrix, the end-effector centrifugal

and Coriolis forces and the vector of gravity forces. And their relationships with the

equations of motions of the system can be expressed are given by,

Λ(ϕ) = J−Tse MmJ
−1
se

µ(ϕ, ϕ̇) = J−Tse Cm − Λ(q)h(ϕ, ϕ̇)

%(ϕ) = J−Tse Gm

h(ϕ, ϕ̇) = J̇seϕ̇

(2.58)



40 Modelling and Control

Herein, Jse is the so-called Jacobian of the system and it is used to relate the position

and orientation of the end-effector, XE = [x, y, z, φ, θ, ψ]TE ∈ R6 and the generalized

coordinates of the system, ϕ. This relationship is given by

ẊE = Jse(ϕ)ϕ̇ (2.59)

Finally, using 2.57 and 2.58, it is possible to obtain the relationship between the

generalized forces as,

τM = JTse(ϕ)Γ (2.60)

which represents the relationship between the operational forces in the Cartesian space

and the joint forces in accord with the multirotor and manipulator system equation

and the end-effector equations. Using this model and if we can estimate the external

forces, we could implement a cartesian impedance control, (Lippiello and Ruggiero,

2012). Considering the cartesian coordinates vector for the end-effector, XE. Thus,

we can derive the equation 2.59, obtaining the following result:

ẌE = Jse(ϕ)ϕ̈+ ˙Jse(ϕ)ϕ̇ (2.61)

Then, defining an actual position error as eX = Xd − XE, where Xd is the desired

position that the end-effector must reach, the control law can be defined

Uγ = g(ϕ) + J>se(Λ(ϕ)Ẍd − µ(ϕ, ϕ̇)Ẋd +Kd ˙eX +KpeX) (2.62)

where Kp and Kd are symmetric and positive definite matrices of stiffness and damping.

In the most aerial manipulator systems developed during this thesis, the robot arm

mounted has smart servos such as Herkulex or Dynamixel. These smart servos are

controlled in position with some velocity and acceleration configurations.Then, to

apply the above control technique to these robot arms would require a system torque

estimation as the complaint mechanism proposed in chapter 4. On the other hand,

with the other aerial manipulator, we do not have the possibility of implementing a

controller based in torque. Thus, to track the desired cartesian position of the desired
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path, we have to solve the inverse kinematics. To accomplish this task, we have two

options: through numerical methods or using equation 2.59. With the equation 2.59,

we can design a first order CLIK (Closed-Loop Inverse Kinematics, (Chiacchio et al.,

1991)) manipulator algorithm,

ϕ̇ = J†seKpeX + (I − JseJ̇se)ϕ̇0 (2.63)

herein J† = J>(JJ>)−1 is the Jacobian pseudo-inverse. The equation 2.63 is used to

implement a joint velocity control where (I − JseJ̇se) is the null-space and can be used

to design constraints like to limit the arm workspace to avoid collisions or minimize

the system centre of gravity movements to improve the platform stability.
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Chapter 3

Applications (I). Aerial

manipulators for grasping tasks

Chapters 3 and 4 describe the different applications in aerial manipulation developed

during this thesis. We have divided the applications into two categories: aerial

manipulators for grasping tasks, which are described in this chapter, and aerial

manipulators for structure inspections, which will be presented in the next chapter.

Furthermore, this coincides with the Framework of the European projects, ARCAS

and AEROBI, in which this thesis has been developed. The ARCAS-Project objectives

were the development of cooperative free-flying robot system for assembly and structure

construction. The ARCAS systems used aerial vehicles (helicopters and quadrotors)

with multi-link manipulators for assembly tasks. Compared to the previously published

work, the use of multi-link manipulators has several advantages over the grasping

mechanisms used in most developed systems. The arm allows for greater flexibility in

the kind of tasks that can be done, not only grasping objects but also manipulating

them, as mounting pieces, fastener installation, inspection by contact, etc. Furthermore,

the extra degrees of freedom of the arm can be used to compensate the oscillations

and perturbations that are always present in aerial vehicles, to stabilize the position of

the tool and to accommodate the effect of contact forces and torques in the assembly

tasks. The objectives of the AEROBI Project were the use of aerial manipulators for

structure inspection and we will go deeper into this project in the next chapter.

43
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In this chapter, we will focus on the aerial manipulators with multi-link arms for

grasping tasks. First, we will study the AMUSE system. This prototype consisted of a

multirotor equipped with a commercial multi-link arm and was developed during the

ARCAS FP7 European Project. In this project, the AMUSE prototype was used to

done grasping tasks in outdoor experiments. We will present its development, starting

with the first prototypes, and its implementation and proposed controller. We will also

show the outdoors experiments done. Furthermore, we will also analyze the techniques

implemented in AMUSE but for a helicopter’s case and presenting the simulation

results.

3.1 Application 1 ARCAS - Multirotor with rigid

joints arm

This section presents the AMUSE aerial manipulation system, its design, control

scheme and experiments done. The AMUSE born as an evolution of the QARM1

prototype (see Figure 3.1). The QARM1 aerial robot was a quadrotor with a 3-link

light manipulator arm developed by GRVC at University of Seville and CATEC. It

was one of the first prototypes developed at the beginning of ARCAS and was used

to carry out studies about the dynamic behavior of the system when the arm does

any movement. This prototype was a quadrotor that had a standard configuration

with four electric motors with fixed-pitch propellers at the ends of two crossbars. The

quadrotor gross weight was 980 g. including batteries, controller and sensors. It had a

three-link manipulator arm attached at the center of its belly between the two skids.

The manipulator weight was 400 g. and it had 200 g of payload.

The QARM1 had a controller board based on the Arducopter design with a

16 MHz ATMega2560 microcontroller, and a sensor board with three-axis MEMS

accelerometers and gyros, and a single frequency GPS receiver. The manipulator arm

has been specially designed and built for this purpose, given the payload limitations

of the quadrotor. The main design criteria that have been considered are to minimize

the displacement of the center of gravity and the total arm weight, and maximize the
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Figure 3.1: (Left)QARM1 quadrotor with three links manipulator arm developed
by the University of Seville and CATEC (Seville). (Right) AMUSE octoquad aerial
manipulator developed at University of Seville (AMUSE).

load to weight ratio. The different parts of the arm have been built from polymer

powder by Rapid Manufacturing.

Figure 3.2: QARM1 manipulator design.

The arm has four main parts (see Figure 3.2). The base is attached to the quadrotor

belly, and it includes the control electronics and the two servos that drive the first

two joints, to minimize the displacement of the center of mass. The two first links

are made of lattice structure to minimize weight. The first link is designed so that it

can accommodate the second bar when folded, and in this rest position the center of

mass of the QARM1 is centered at the quadrotor geometric Z axis. At the end of the

second link is the servo that drives the end effector, which has a neoprene sheet added

at the contact area to facilitate gripping of the pieces.
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Figure 3.3: Control Scheme of the QARM1

The control scheme considered for the QARM1 is shown in Figure 3.3. The

quadrotor controller block is responsible for attitude and position control of the

quadrotor. The arm joints variables are used in this controller to compensate for the

motion of the arm. For control design purposes, the quadrotor model is considered

as a standard quadrotor plus an articulated body, which causes the center of mass

to be displaced from the geometric Z axis of the quadrotor and modifies the inertia,

and both of them are dependent on the arm joint angles. On the other hand, the

arm controller block takes as inputs the state coordinates of the quadrotor, and it

commands the motors of the arm to try to compensate for the motion of its base

(quadrotor), so that the Tool Center Point (TCP) or end effector of the manipulator

maintains the desired position (to grab and release objects),or follows a predefined

trajectory. Extensive simulation tests and also outdoors experiments were done to

validate the control scheme proposed. The results of these tests have been published

in (Jimenez-Cano et al., 2013) (see Figure 3.4).

Thanks to the experience with QARM1, the next step was the design of an aerial

manipulator for outdoors with more payload and with a manipulator arm with better

handling capabilities, which is the AMUSE (Aerial Manipulator of University of
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Figure 3.4: QARM1 prototype during flight experiments.

SEville). The next subsections present a system description of AMUSE, the control

scheme and the outdoor validation experiments.

3.1.1 System Description

The AMUSE aerial platform is a multirotor with eight rotors located at the ends of

a four-arm planar structure, with two rotors positioned coaxially at the end of each

arm, which is usually known as ”octoquad” configuration. The reason to use eight

rotors is to get enough lift and payload for the application. Each pair of coaxial rotors

rotates in opposite directions to compensate the torque at each arm. The octoquad

has been preferred over the standard octocopter configuration (eight rotors distributed

in the same plane) because it is more compact, and it is better suited to fly close to

objects or other obstacles. The AMUSE octoquad aerial platform has been designed

to get additional payload so that the sensors and control computer needed to operate

outdoors and a multilink manipulator arm with enough payload can be mounted. The

AMUSE mounts eight 750W motors, model Kopterworx KW10, with 16” rotors. The

maximum thrust of each rotor is 3300 g. and it has 187 g. of weight. The rotors are

located at 41cm of the center on each of the four bars. The AMUSE total payload is

about 8 kg, which is available for sensors, processing hardware, the manipulator arm

and the arm payload.

Manipulator arms for aerial robots have strong weight limitations given the limited

payload of these aerial vehicles. Usually the main design criteria are to minimize the
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Figure 3.5: AMUSE control computers and sensors for outdoor operation.

total arm weight, maximize the load to weight ratio and minimize the displacement of

the center of gravity when the arm joints move, to facilitate control of the robot. Figure

3.5 presents the AMUSE with a 7-DoF arm developed by Robai (model Cyton Gamma

1500) and the sensors and systems mounted. In this case, the use of a commercial arm

was due to the excellent specification in the relationship reach/payload of the Robai

model and that with 7-DoF it has better manipulability than the other configurations.

Moreover, the maximum payload is 1.3 kg, which is well suited for a large set of

applications. In the Cyton Gamma 1500 robot arm, each joint is actuated by a smart

servo (Dynamixel) that can provide position, speed, load, voltage and temperature

feedback information. The 7-DoF make the Cyton arm kinematically redundant. The

extra degree of freedom gives more manoeuvrability and the ability to reach around

obstacles. The general specifications of the arm are presented in Table 3.1.

To achieve better manipulation capability, the Robai gripper was substituted by

a custom design developed at the University of Seville. The new gripper consists of

three fingers actuated by tethers and springs which simulate the tendons of a finger.

This design allows more versatility to grasp objects with different shapes. Moreover,

it has a large size grip zone which improves the grasping capability when the position

accuracy is low. The gripper developed is shown in Figure 3.6
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Table 3.1: Cyton Gamma 1500 arm general specifications.

Parameter Value
Total weight 2 kg
Payload (full-range) 1.3 kg
Payload (mid-range) 2 kg
Maximum reach 0.68 m
Footprint 0.15m×0.15m
Repeatability ±0.005 m

Figure 3.6: AMUSE hand designed and developed at University os Seville. This design
was published in (Suarez et al., 2016).

The AMUSE mounts an Autopilot designed and developed by CATEC. This

autopilot consists og a BeagleBone White computing board connected through a

vertical bus with a sensor shield. The sensor shield mounts a Cortex M3 which is

responsible for managing sensors measurements, devices inputs (UARTs and I2Cs)

and PWM outputs. The sensor shield incorporates an IMU ADIS16407, a GPS Ublox

6 and two inputs with Futaba SBUS compatibility. This shield is also used as an

interface with the Beaglebone White and to communicate it with the Robai robot arm.

The Beaglebone White is an embedded PC developed by Texas Instrument which

uses an ARM Cortex-A8 and incorporates a 256MB DDR2 RAM memory, two USB
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ports, Ethernet 10/100, etc. The CATEC autopilot uses QNX Operative System and

it allows to design and develop custom control techniques using MATLAB/Simulink.

Moreover, using Simulink external mode the data logs can be seen and analyzed in

real time, and even parameters like the control gains can be modified in real time

during the experiments.

Figure 3.7: Hardware Scheme implemented in AMUSE.

The Autopilot is connected through an Ethernet link to the High Level Computer

(HLC), which is an Intel i7-based PC. Furthermore, several cameras can be also

connected to the HLC (see Figure 3.7). One of the cameras is mounted on the end

effector and it is used for visual servoing and relative positioning of the objects that

are being manipulated. The second camera shown in Figure 3.8 is attached to the

octoquad frame pointing down, and it is used for relative positioning and hover flight

stabilization, aiding the RTK-DGPS and complementing it when it is not available

in high accuracy mode. A third camera for positioning can be also mounted on the

frame pointing down on the other side of the frame (not shown in Figure 3.8).The

HLC runs 64 bits Ubuntu server with ROS (Robot Operating System (Quigley et al.,
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2009)). It also has installed the ARUCO library (Munoz-Salinas, 2012), which can

detect different markers in real time. Markers can be placed in objects that are being

manipulated, or on ground near interest areas for aiding in positioning.

Figure 3.8: AMUSE octoquad with two cameras: one on the end effector for object
recognition and another one mounted on the frame for positioning.

To help in the positioning system, a Novatel GPS-RTK has been also incorporated

to the system. In this system a GPS-RTK device (Rover) is located onboard and it is

communicated with a GPS-RTK device that is located outboard as a fixed base. This

GPS system allows an accuracy of about 2 cm. The communication between the rover

and the base are done thanks to two radio modems at a baudrate of 115200. The

Rover is also connected to the autopilot through a serial port. An ultrasonic altimeter

is also connected by I2C to the autopilot. The ground station and AMUSE aerial

manipulator are communicated by WiFi using an Ubiquiti M5 at 5 GHz. A scheme of

the full hardware system is shown in Figure 3.7

3.1.2 Modelling and Control

As was introduced in chapter 2, the dynamic model can be derived either using the

Lagrange-Euler Formalism or the Newton-Euler recursive formulation. Defining the

vector of generalized coordinates as ϕ = (p, η, γ)T ∈ R13, where the joint coordinates

vector of the Robai arm is given by γ = (γ1, ..., γ7)
T ∈ R7. Thus, following one of

these methods, the dynamic equations in compact matrix form are given by:

M(ϕ)ϕ̈+ C(ϕ, ϕ̇)ϕ̇+G(ϕ) = τ + τext (3.1)
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where the vector τ encompasses actuator forces and torques exerted by the octoquad

rotors and the servo actuators of the arm joints, and τext includes external forces.

Since the inertia matrix is invertible, the following holds:

ϕ̈ = M(ϕ)−1[τ + τext − C(ϕ, ϕ̇)ϕ̇−G(ϕ)] (3.2)

Multirotor Controller

The AMUSE octoquad controller is adapted from the Variable Parameter Integral

Backstepping (VPIB) controller that was presented in chapter 2. It is a nonlinear

controller obtained through backstepping with an added integral term, with guaranteed

stability. The multirotor controller terms depend on the manipulator arm joint

positions and velocities, and thus the parameters and gains of the controller vary when

the arm moves. Next, the derivation of the pitch attitude controller will be presented.

The controllers for the other angles are built in a similar way. Consider the tracking

error eη = ηd − η, where ηd is the desired attitude and its dynamics:

deη
dt

= η̇d − ω (3.3)

Then a virtual control over the angular speed ω can be formulated, which is not a

control input. Therefore, the desired angular speed can be defined as follows:

ωd = kηeη + η̇d + ληχη (3.4)

with kη and λη are positive diagonal gain matrix and χη are the integral of each

tracking attitude angle error. Next, the angular velocity tracking error eη̇ and its

dynamics can be defined by:

eη̇ = ωd − ω (3.5)

deη̇
dt

= kη(η̇d − ω) + η̈d + ληeη − η̈ (3.6)
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Using 3.4, 3.5 and 3.6 the attitude tracking error dynamics equation 3.3 can be

rewritten as:
deη
dt

= −kη(eη − ληeη + eη̇ (3.7)

Now, η̈ in 3.5 and 3.6 can be replaced by its expression in the dynamic model 3.2,

and the control input Uη appears explicitly. Then, combining the tracking errors of

position eη and the angular speed eη̇, and the integral position tracking error χη using

the above equations the control input Uη can be calculated as:

Uη = M∗
η (γ)[(1−k2ηλη)eη + (kη +kη̇)eη̇−kηληχη]−Dη(ϕ, ϕ̈)−Cη(ϕ, ϕ̇)−Gη(ϕ) + τη,γ

(3.8)

where kη̇ is a diagonal positive gain matrix which determines the convergence speed

of the angular speed loop. In practice, the attitude controller terms can be rearranged

in the following way:

Uη = M∗
η (γ)[KP eη +KIχη +KDeη̇]−Dη(ϕ, ϕ̈)− Cη(ϕ, ϕ̇)−Gη(ϕ) + τη,γ (3.9)

where KP , KI and KD are the parameters of a standard PID controller, M∗
η (γ) is

a variable gain that depends on the arm joint angle positions, and Dη, Cη and Gη

are the nonlinear terms described above. The first part of the controller can be seen

as a gain-scheduled PID with the different positions of the arm, while the nonlinear

terms compensate the full coupled dynamic effects. In this way, it is easier to tune

the controller parameters starting from the standard PIDs that are used by many

multicopters as base controllers. The expression of the position controller can be

derived in a similar way.

Up = M∗
p (D(Rηe3))

−1[KP ep +KIχp +KDeṗ]−Gη(ϕ) (3.10)

Manipulator Controller

The controller for the manipulator arm joints could be derived in the same manner

that the multirotor controller from the dynamic equations of motion, thus obtaining

the required torques τ to drive the motors of the arm joints. This approach has been
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followed in (Lippiello and Ruggiero, 2012) and Huber et al. (2013), which use a torque

based impedance controller for interaction with objects in the environment. However,

there are practical limitations in the manipulator arm design that prevent its use. As

stated above, arms used for aerial manipulation have strong weight restrictions,due to

the payload limitations of the aerial platforms. The prototype arms that have been

designed for the AMUSE use standard servos or Robotis Dynamixel servos to drive

the joints. This is also the case with many other arms designed for aerial manipulation

(Cano et al., 2013). Although some of the larger Dynamixel servos have the possibility

of joint torque control, torque sensing has poor accuracy, making very difficult if not

impossible to implement torque control. The AMUSE manipulator arm implements

an admittance controller, which is a position-based Cartesian impedance controller.

The admittance controller will command a desired Cartesian position
∑

d for the end

effector Tool Center Point (TCP):

∑
d

=
∑
TCP

+
∑
int

(3.11)

where
∑

TCP is the TCP position defined by the manipulation task and trajectory

interpolation, and
∑

int is the additional displacement that would get the desired

interaction forces and torques between the end effector and the objects or the envi-

ronment, calculated by the admittance controller. Then,
∑

d is transformed through

the manipulator inverse kinematics K−1 and the desired joint position setpoints are

transmitted to the local joint embedded controllers. For the inverse kinematics a

Jacobian-based first-order algorithm has been used. This algorithm minimizes the

operational space error between the desired and the actual end-effector position and

orientation, overcoming drift problems induced by other differential kinematics schemes.

Additionally, internal motions have also been generated through the Jacobian null

space to force a prescribed configuration of the manipulator for a given end-effector

position and orientation. Thus, a strategy to minimize the distance from mechanical

joint limits has been considered. Finally, to provide a robust behavior crossing through

or close to singular configurations a modified pseudoinverse with a variable damping
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factor based on Gaussian-weighted functions of the manipulability measure has been

used.

3.1.3 Experiments

A first set of experiments have been done with AMUSE to obtain estimations of

the dynamic reaction torques and variation in moments of inertia generated by the

movement of the manipulator. These tests have been useful to gain insight into the

stability of the aerial platform and how it can be affected by these variable terms.

Then, they have been very used to adjust the controller.

Figure 3.9: Dynamic reaction torque in base generated by movement of the arm.

The results of these experiments can be seen in Figures 3.9, 3.10 and 3.11. In detail,

the dynamic reaction torque in the base of the arm is shown for a sample movement

in Figure 3.9. The measurement noise that can be seen in the figure is due to the

dynamic torque involves accelerations which are obtained using accelerometers. This
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measurement must be filtered in case of use for control directly. Figure 3.10 presents

the variation of the torque generated by the displacement of the center of mass in one

of the tests, as a function of one of the joints (joint 2 which is representative of the

movement of the arm). The arm moves from the initial take-off/landing position to

an extended position, which are shown in the two pictures of Figure 3.10.

Figure 3.10: Torque generated by displacement of center of mass.

Another interesting data obtained by the experiments is the variation of the

moments of inertia, which are presented in Figure 3.11 for the same movement of the

arm of Figure 3.10. Figure 3.11 shows the variation of the main inertia moment Ixx

and the cross-inertia moment Ixz, which are the most affected by the movement of the

arm in this experiment. The maximum variation at terms of the principal diagonal of

the inertia matrix is 5.36% and the maximum torque generated is 4.5Nm.
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Figure 3.11: Variation of moments of inertia.

Outdoor Experiments with visual Feedback

Another set of experiments has been done to test the control approach using visual

feedback in an outdoor scenario. Two cameras were mounted on the AMUSE platform:

one for manipulation tasks and another one for multirotor positioning purposes. The

manipulation camera was placed nearby the robot base pointing to the end-effector

workspace. It was found the best location to minimize interference of the arm gripper

with the localization targets. Other setups were tested such as assembling this camera

to the end-effector gripper or mounting it on the last manipulator link. However, these

configurations incurred on loss of accuracy due to several reasons: firstly the increase

and amplification of camera movements and vibrations caused by the higher distance

from de system’s CoG (Centre of Gravity) and the full mechanical chain that, in fact,

it is not a completely rigid body; secondly the error propagation because of the joint

angle measurements. Mechanical vibrations are the source of several image issues such

as blurring and distortions that may reduce visual recognition capabilities. On the

other hand, the employment of joint angles needed to adjust the measurements of a

camera placed on a manipulator increases positioning uncertainty.

The platform positioning camera was placed on the landing gear pointing towards

the ground, far away enough from possible manipulator obstructions. The ArUco vision

algorithm was implemented on the high-level computer. This algorithm computes
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Figure 3.12: Controller comparison tests using board positioning.

camera position and orientation relative to a reference frame attached to a tag or a

set of tags (board). In view of this, the target object (object to grasp) was provided

with a single tag and a 2x2m board was placed on the ground (see Figure 3.12). In

Figure 3.12, we can see a sequence of pictures of an initial experiment in which using

visual feedback for positioning, the controller is tested, evaluating the system behavior

when the arm is moving. Experiments have been performed with the backstepping

controller and with a standard PID controller that does not take into account the

movement of the arm. Figure 3.13 shows the evolution of the AMUSE multirotor

pitch attitude angle during the experiments.

The X-axis is placed on the plane of the arm and the pitch angle is defined as the

rotation of the multirotor in this plane around the Y-axis, which is perpendicular to

the plane. Thus, the pitch angle is the most influenced by the movement of the arm

in these experiments. The shadowed areas in Figure 3.13 represent the movement of

one of the arm joints (joint 3, which is moving up to 75 deg/s). Several arm joints

were moving at the same time during the experiments. Just for the sake of clarity, the

shadowed area has been included as an indication of the arm movements. In the right

plot of Figure 3.13, it is shown the evolution of the pitch angle with the PID controller.

When the arm is not moving and centered, the pitch angle presents oscillations of



3.1 Application 1 ARCAS - Multirotor with rigid joints arm 59

Figure 3.13: Evolution of the AMUSE pitch attitude angle during the experiments.
Right plot: with a standard PID controller which does not consider the arm movement
and dynamics. Left plot: with the full dynamics backstepping controller.

about 5-5.5 degrees of amplitude, which are due to the atmospheric perturbations

and the action of the controller (this is common to both controllers). But when the

arm begins to move, the oscillations with the PID controller grow rapidly to around

12 degrees. The left plot of Figure 3.13 shows the time evolution of the AMUSE

multirotor with the proposed controller in the same experiment. It can be seen that,

when the arm moves, oscillations increase only slightly to 6-6.5 degrees. Thus, the

proposed controller is able to effectively counteract the movement of the arm even

during large extents.

Figure 3.14: Left: structure bar with a marker at its base (indicated in the photo with
a yellow arrow). Right: relative pose recognition performed by ARUCO, including
relative position and orientation.

In a second round of experiments, the target was placed on a tripod next to the

board where multirotor was going to hover. The manipulator was commanded to
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grasp the bar while the whole platform was hovering counteracting the manipulator

effects. Figure 3.14 shows a sequence of pictures of this test.

Outdoor Experiments with DGPS

Also, a set of experiments has been performed in an outdoor scenario with the DGPS

sensor for positioning. These experiments have been divided into three subsets which

were the steps that have been followed to test the control law implemented at our

platform. The subsets have been called: Hover, Tracking, and Aerial Manipulation in

Hover.

Figure 3.15: Outdoor experiments of AMUSE.

Figure 3.15 shows a sequence of pictures of the complete task, where, first, the

multirotor arrives at the desired position close to the target and second, it grasps

an object while is in hovering. To carry out these tasks, we have completed the

above-mentioned steps, whose results are described in the following.
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A. Hover experiments

The first step was to test if the AMUSE platform was able to hover at the desired

position with the least possible errors, and test if the controller can reject the typical

outdoor perturbations due to wind gusts or the degradation of position accuracy due

to loss of satellites by the DGPS receiver. During these tests the manipulator was held

at a fixed position. An example from these experiments can be seen in Figure 3.16.

Figure 3.16: AMUSE position and errors in hover.

An object should be at the workspace of the robotic arm to be grasped. In aerial

manipulation, this means that the multirotor should be oscillating on the desired
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position in the range of the manipulator and the oscillations should be slow enough

to be compensated by the manipulator. Figure 3.16 shows the results of an outdoor

experiment with variable wind gusts of up to 12km/h. The multirotor was commanded

to stay at hover, and change altitude at some time instants while maintaining the

horizontal position. The maximum errors obtained in this test have been about ±8cm

approximately in X and Y axes when maintaining altitude, and a bit larger when

changing altitude. The Z errors were smaller, of about ±4− 5cm most of the time,

except when changing altitude.

Figure 3.17: Take-off and hover experiments.

Figure 3.17 shows the 2-D and 3-D trajectories of another experiment in which

the AMUSE was commanded to take off and maintain hover at a fixed point.

B. Trajectory tracking experiments

Another set of experiments has been done to test the capability of the AMUSE

to track a desired straight trajectory with the controller. The result of one of the

experiments is shown in Figure 3.18, where the reference trajectory is shown in

dashed green and the AMUSE trajectory in blue. Figure 3.18(right,bottom) shows

another experiment in which the AMUSE is commanded to track a trajectory and then

maintain hover at the end point of the trajectory. These results show, the position

accuracy flying with a DGPS. In the next, we evaluate if flying with this accuracy,

our system can achieve to grasp an object.

C. Aerial Manipulation in Hover
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Figure 3.18: Traking a trajectory.

The last experiments subset shows tests where the multirotor is flying in hover

and compensating the effects of the movements of the manipulator. The platform

stability is maintained and position errors are sufficiently small so that the object can

be maintained in the manipulator range and the arm controller can compensate for

the position errors. In these experiments, the positioning system used by the AMUSE

is a DGPS-RTK. The position of the tube is communicated to the autopilot in GPS

coordinates. The autopilot calculates the relative position of the tube with respect to

the arm base located in the aerial platform and aligned with its center of mass and

it is transmitted to the arm controller. Figure 3.19(a) shows a sequence of pictures

of these experiments. It is possible to see when the aerial manipulator is grasping a

tube. Figure 3.19(b) presents the plots of the X and Y position coordinates, as well

as the pitch and roll angles of the AMUSE multirotor in one of these experiments.

The periods where the manipulator arm is moving approaching the object to grasp it

are marked in the plots.
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(a) Sequence of pictures of the experiments

(b) Trajectory tracked by the AMUSE

Figure 3.19: Hovering and grasping experiments.

Integrated Experiments

A set of experiments where accomplished where the AMUSE performed a complete

mission in a simulated radioactive scenario, as shown in Figure 3.20. A Geiger meter
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was placed on this area where the AMUSE platform was aimed to recover that

measurement instrument among all the wreckage material.

Figure 3.20: AMUSE experiments at a simulated radioactive scenario.

To this end, the AMUSE takes-off and starts a cruise flight to the grasping area

(1). During this step, the manipulator remains in folded configuration. Once in the

desired area, the multirotor starts to hover and the manipulator unfolds. After that,

the flying platform slowly approaches the target (the Geiger meter) until the target is

in the manipulator’s workspace (2). Then, the manipulator EE approaches, grasps

the instruments and moves away with it (3). After that, the manipulator folds to a

safe configuration carrying the payload (4). Finally, the AMUSE starts a cruise flight

to a collecting area where the payload is released by the manipulator (5). The results

of these experiments were presented in the final report of the ARCAS project as the

outdoor final experiments.
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3.2 Application 2 ARCAS - Helicopter with multi-

link arm

Owing to the good results obtained applying the control proposed in a multirotor

with a robot manipulator, we decided to study this control technique for an aerial

manipulator in which the aerial platform was a helicopter. This study was published

in (Jimenez-Cano et al., 2016) and presented an elaborated model of the entire system

as well as the implementation of the proposed controlled. Simulation experiments

confirmed the validity of the proposed approach, and the results were also validated

with a high-fidelity Modelica simulation model. Most works presented in the aerial

manipulation use a multirotor as aerial platform. For example, several works use

quadrotors with different gripping mechanisms for structure construction (Lindsey

et al., 2011), whereas others like (Mellinger et al., 2011) and (Jiang and Kumar, 2013)

consider cooperative quadrotors grasping and transporting loads. In (Mellinger et al.,

2013) several lightweight, low-complexity grippers that allow quadrotors to grasp

and perch on branches or beams and pick up and transport payloads are presented.

The inertial parameters of the grasped object are estimated and used to adapt the

controller and to improve performance during the flight. Furthermore, algorithms

for quadrotor stabilization and force control are studied in (Orsag et al., 2013) and

(Fumagalli et al., 2012) In (Kim et al., 2013) a quadrotor with an arm with two degrees

of freedom was presented, and an adaptive sliding mode controller was designed. The

control of an aerial multirotor with a manipulator has been also considered in (Korpela

et al., 2012). Novel multirotor configurations have also been proposed: (Papachristos

et al., 2014) developed a tri-tiltrotor UAV that is able to exert forces with a simple

arm using thrust vectoring, (Nikou et al., 2015) presents a system that obtains the

rotor configuration for a given manipulation task through optimization and (Rajappa

et al., 2015) have presented a fully actuated hexarotor design with tilted propellers

that is able to exert forces in all directions. Works using helicopters have been also

presented like in (Pounds et al., 2011), where a small RC helicopter with a gripper is

capable of grasping objects on the ground, or in (Kondak et al., 2013) and (Chmaj

et al., 2013), where prototypes of helicopters with attached manipulators are also
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presented. Experimental results of a helicopter equipped with fully actuated redundant

manipulator arm were presented by (Huber et al., 2013). In this section, we present

an adaptation of the control strategy introduced in chapter 2 for a helicopter with

a multi-link manipulator. This adaptation is not straightforward since helicopters

have stronger coupling between rotational and translational degrees of freedom than

multirotors.

Figure 3.21: Scheme of the work developed for this case.

In the following, we develop the dynamic model for a helicopter with a 7-DoF

robot arm through the Kane’s method introduced in chapter 2. Then, we design a

control law based in the controller proposed in chapter 2 and through a high-fidelity

simulator developed in Modelica, we test the control approach. A scheme of the work

followed to carry out this case can be seen in Figure 3.21.
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3.2.1 Modelling and control

Helicopters are highly nonlinear systems with significant dynamic coupling. This

dynamic coupling is attributed to the force and torque generation process. Following

the dynamic model for helicopters described in (Sandino et al., 2011), a helicopter

can be modeled as two rigid bodies. The main rotor is modelled as a solid thin disk

rotating with constant angular speed ΩMR and mass distribution equivalent to the

rotating blades. and the inertia of both main rotor and fuselage is defined using inertia

dyadics. Then, we will consider that a helicopter equipped with a manipulator is a

mechanical system composed of 2 + n interconnected rigid bodies: helicopter fuselage

with mass mF , main rotor with mass mMR and n manipulator links (see Figure 3.22),

where each link has a mass, mi with i = 1, ..., n. We will define the inertial frame

S, a frame H fixed to the helicopter’s fuselage, a point O located at the intersection

between the rotation axis of the main rotor and that joins the tail rotor to the fuselage

and the frame B in the base of the manipulator.

Assumption 1 The helicopter is symmetric in the lateral direction and therefore, the

CoG of the fuselage is located on the rotation axis of the main rotor.

The assumption 1 is consistent with a usual practice in small helicopters, in which

the position of the center of mass is usually adjusted to be as close as possible to the

rotor rotation axis placing appropriately the equipment (batteries, sensors, computers,

etc.). This makes easier manual take-off and landing by a human pilot, which is done

in many cases for safety reasons.

Following the definition for the generalized coordinates of an aerial manipulator

introduced in chapter 3, we will define the position of the helicopter as p = (x, y, z)T

and the velocities as V = (u, v, w)T . The generalized coordinates corresponding to

the helicopter rotation will be expressed by η = (φ, θ, ψ)T and represent to the Euler

angles (roll, pitch, yaw). Finally the projections of the angular velocity of the system

into frame H will correspond to ω = (p, q, r)T and the arm’s joint are represented

by γ = (γ1, ..., γn)T . Then, the dynamic model is obtained using Kane’s method

introduced in chapter 2 and it is given by
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Figure 3.22: Helicopter with a manipulator arm: reference frames, centre of mass and
dimensions of interest for modelling purposes.

MT u̇ = fMRsθ − fTRcθsψ
MT v̇ = −fMRsφcθ + fTR(cφcψ − sφsθsψ)

MT ẇ = −gMT + fMRcφcθ + fTR(sφcψ − cφsθsψ)

ITx ṗ = tMRx + dHfTR + ηBx + ((ITy − ITz)r +$MR)

ITy q̇ = tMRy + tTR + ηBy + ((ITz − ITx)r +$MR)p

ITz ṙ = tMRz + dTRfTR + ηBz + (ITx − ITy)pq

φ̇ = −(qsψ − pcψ)/cθ

θ̇ = psψ + qcψ

φ̇ = r + sθ(qsψ − pcψ)/cθ

(3.12)

where MT = mMR+mF +
∑n

i=1mi is the total mass of the system, $MR = 2IMRxΩMR

where IMR is the main rotor’s inertia matrix. Concerning the force, f , and torque, t,

generation process, the aerodynamic contribution of the main rotor (MR) is given by

fMR and tMR while the tail rotor (TR) produces fTR and tTR. The terms ITi(i = x, y, z)
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are the values of the main diagonal of the inertia system matrix, IT ∈ R3×3 and depends

on the angular positions of the arm joints γi. Thus, IT can be calculated with respect

to the center of mass of the global system as follows:

IT = IH +
n∑
i=1

(RT
γi

(Iγi +mi(d
2
Biδij − dBidTBi))Rγi) (3.13)

where dBi =
∑k

i=1(
∏i

j=1Rγj)pBi ∈ R3(i = 1...k) is the distance between the CoG of

joint i and the manipulator base that is attached to the helicopter belly, Rγj ∈ R3×3

is the rotation matrix of the joint γj , pBi is the position of the CoG of the joint i w.r.t.

the axis of rotation joint and δij is the Kronecker delta function. The moments of

inertia of the helicopter and each arm’s link are represented by IH and Iγi , respectively.

Note that only the main moments of inertia are considered in the simplified model in

equation 3.12, since the inertia cross moments, although they vary with the movement

of the arm, are considered small. This assumption simplifies the equations greatly for

controller derivation. The Modelica high-fidelity model includes the full dynamics and

inertia characteristics of the helicopter and the arm, and the simulation experiments

in the last subsection of this chapter will serve as validation of the assumption.

In equation 3.12, the term ηB = tB + δBfB ∈ R3 collects all the torques due to

the joints torques and the accelerations of the centre of gravity of the manipulator.

Where δB is the position of the center of gravity (CoG) of a manipulator δB ∈ R3 in

frame B, it can be obtained from the CoG positions of the links using the kinematic

model of the manipulator as follows,

δB =

∥∥∥∥∥
∑k

i=1midBi∑k
i=1mi

∥∥∥∥∥ (3.14)

The justification for not including the dynamics of the manipulator arises from

the fact that in practice, it is assumed that the control of the manipulator arm is only

kinematically coupled. That is to say, the manipulator controller is decoupled from

the helicopter controller and receives the position and velocities of the manipulator

base.
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3.2.2 Controller

The controller uses the feedback signals coming from the arm joint positions and

velocities, which provide a good dynamic response when the manipulator moves. The

dynamic model of the entire system, equation 3.12, can be rewritten in a matrix form

as follows:

MT V̇ = FMR + FTR + Fgrav

IT ω̇ + ω × (ITω) = τMR + τTR + ηB
(3.15)

Then the four helicopter control inputs can be expressed as:

Uz = fMR

Uω =


tMRx

tMRy

fTR

 (3.16)

Following the control technique described in chapter 2, first of all, let consider the

tracking error eη = ηd− η ∈ R3 where ηd is the desired angular position. We need also

to define the angular rate tracking error as eω

Uω = IT (Pωeη +Dωeω − µωλη + ω̇d) + ω × (ITω)− τω

Up = MT (D∗(Rηe3))
−1(Ppep +Dpev − µpλp −

(RT
η e3)fTR

MT

− Fgrav)
(3.17)

3.2.3 Experiments

The possibility of testing control techniques for aerial vehicles with high-fidelity

simulation models is very interesting, since it allows for controller testing and validation

prior to experimentation. Modelica is an object-oriented language for modelling of

large, complex and heterogeneous physical systems, which has the characteristics of

multi-domain, non-causal and object-oriented (Elmqvist et al., 1999). Modelica now
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has been widely used in many engineering fields (Pulecchi et al., 2010), (Bonvini and

Leva, 2011) and also with aerial vehicles. (Chen et al., 2006),(Li et al., 2013) The

modular structure of Modelica makes easy to model servomotor-driven multibody

systems. In this section, first, we have developed a simulator in MATLAB/Simulink in

which several tests have been done to validate the proposed control solution. Then, we

use Modelica to model a helicopter-based aerial manipulator, which allows to capture

the whole dynamic interactions between the arm and the aerial vehicle and provides a

high-fidelity model to prove the control approach with several exhaustive tests.

Simulations with matlab

First, we present the results corresponding to the simulation test done in Matlab to

validate the proposed control algorithm. For comparison purposes, the simulations

performed with the proposed controller are presented jointly with simulations in the

same conditions with a baseline PID controller. This PID helicopter controller has a

cascaded structure with an inner angular rate control loop, a middle attitude angle

control loop and an outer position control loop, which is commonly used in many

UAVs.

Concerning the helicopter model, the geometric, mass and inertia parameters of the

CB5000 autonomous helicopter have been used for the simulations (see Table 3.2.3).

This is a small-size autonomous helicopter which is equipped with a RTK Differential

GPS, an IMU, a magnetometer and a sonar altimeter. With this information, the

simulation tool implements a very accurate model of the dynamics of the helicopter

with the manipulator arm. Furthermore, noise characteristics of the sensors as well as

uncertainties in their modelling parameters have also been accounted for. Angular

sensors operate at a sampling frequency of 100 Hz and have a standard deviation of

1.2 degrees in attitude. Position estimation is supposed to be affected by a typical

standard deviation of 0.04 m and its update frequency is fixed to 10 Hz. 1

The helicopter is also equipped with a 7-DoF robot manipulator Robai CYTON

1500. The parameters of this robotic arm that have been used for simulation are

given in Table 3.1. Dimensions, moments of inertia and mass of each manipulator link

were also estimated and included in the simulator. The first set of simulations has
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Table 3.2: Helicopter CB5000 characteristics.
Parameter Value
Helicopter mass 11 kg
Rotor diameter 1.9 m
Solidity factor 0.045
ΩMR 1300 rpm
Rotor inertia Ix = Iy = 0.0846, Iz = 0.0846(kgm2)
Fuselage inertia Ix = 0.064, Iy = 0.244, Iz = 0.18(kgm2)

been carried out to verify the tracking properties of the proposed controllers when the

arm is not moving. More precisely, the arm is extended downwards along the rotor

vertical axis. In this scenario, the system should be able to track the desired reference

trajectory at the same time that it is cancelling out the manipulator mass and inertia

effects. The moments of inertia of the system are constant since the manipulator does

not move in this first simulation experiment. The CoG of the entire system is located

along the rotor vertical axis but further down that the CoG of the aerial vehicle due

to the manipulator mass. For both the proposed controller and the cascade PID, the

evolution of the position coordinates in the inertial frame is shown in Figure 3.23.

The reference trajectory appears as a dashed line. The 3D helicopter position is

presented in Figure 3.24(left), whereas the magnitude of the position error is shown

in Figure 3.24(right). While it is true that both controllers are able to track the

reference trajectory, the proposed controller exhibits better performance and more

advanced tracking capabilities than those of the cascade PID design. In the second

set of simulations, the helicopter firstly follows a commanded trajectory to reach a

desired position and then, from such stable hover condition, the system should be

able to keep the desired position while the arm joints move at the same time.

Figure 3.25 shows the evolution of helicopter roll and pitch attitude angles during

the second part of the simulation experiment, where the arm joints are allowed to

move at certain instants (t = 15 s and t = 25 s) and the helicopter aims to achieve

stable hovering. When the arm is centered and not moving, the roll and pitch angles

present bounded oscillations of about 2 ∼ 2.5 degrees of amplitude. This effect is due

to the sensor errors and the corresponding response given by the controller (this is

common to both approaches, proposed controller and PID).
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Figure 3.23: First simulation: reference trajectory (black dashed line), x, y, z position
trajectories with proposed control (blue line) and PID (red line) controllers.

However, when the arm begins to move (t = 15 s and t = 25 s), the oscillations

produced by the cascaded PID controller (red line) grow rapidly to 12 ∼ 14 degrees in

pitch and 4 ∼ 6 degrees in roll angle. The pitch angle is the most influenced by the

movement of the arm because the manipulator end effector is tracking a trajectory

in the XZ plane in this experiment. In contrast to this undesired behaviour of the

cascaded PID strategy, the figures show that apparently there is not any performance

degradation with the proposed controller when the arm moves. Thus, the control

approach is able to effectively counteract the movement of the arm to a large extent.

Figure 3.26(a) illustrates the trajectory of the helicopter on the horizontal plane in

world coordinates that correspond to the second set of simulations. The oscillations

in roll and pitch attitude angles caused by the manipulator movement generate the
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Figure 3.24: First simulation: reference trajectory (black dashed line), x, y, z position
trajectories with proposed control (blue line) and PID (red line) controllers.

Figure 3.25: Second simulation: roll and pitch attitude angles of the control approach
(blue line) and PID (red line).

position errors observed in Figure 3.26(a), which are significantly larger with the

cascade PID controller.

In the third set of simulation experiments, the helicopter is tracking a desired

trajectory while the manipulator moves at the same time. Figure 3.26(b) shows the

tracking trajectory in the XY-plane for both approaches, cascade PID (red line) and

the control approach (blue line). On the other hand, position errors for both controllers

are represented in the upper plot of Figure 3.27. They can be seen in relation with

the movements of the manipulator joints that are shown in the lower part of the same

figure.
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Figure 3.26: Second simulation and third simulations: reference trajectory (black
dashed line), XY position trajectory with control approach (blue line) and PID (red
line).

Validation with Modelica

This section presents the results of the proposed control approach tested with a high-

fidelity model of the aerial manipulator. A detailed multibody model of the helicopter

with the manipulator arm has been developed using Modelica, which captures all the

couplings and interactions between the helicopter body, the main rotor and the arm

links and other nonlinear effects as friction in the arm joints. This provides a high-

fidelity model for validation experiments. Both the proposed controller and cascaded

PID controllers have been tested with this model. As was the case in simulations of

the previous section, the goal in these experiments is that the system be able to keep

the desired position while the arm joints move at the same time, rejecting as much

as possible the perturbations in roll and pitch. Several simulation experiments have

been performed. Figure 3.28 shows roll and pitch attitude angles with both cascade
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Figure 3.27: Third simulation: reference trajectory (black dashed line), XY position
trajectory of proposed controller (blue line) and PID (red line).

PID and proposed controllers on one of the simulations. As with the simulations in

the previous section, when the arm is moving (between t = 15 and t = 20, and t = 25

and t = 30), the pitch angle is the most influenced. Furthermore, when the arm is not

moving both the cascaded PID and the proposed controllers have similar performance.

Nevertheless, when the arm is moving the stabilization of the helicopter was faster

with the proposed controller. In this case, the oscillations produced by the cascaded

PID controller (red line) were of 10 ∼ 14 degrees in pitch during the first movement

and 5 ∼ 10 degrees during the second movement. However, the oscillations produced

with the proposed controller (blue line) were of 5 degrees in pitch during the first and

second movements.

In general, the oscillations of the attitude angles when the arm is moving are

larger in the experiments with this validation model than in the simulations of the

previous section, what could be expected since the model is more detailed and includes

couplings and nonlinear effects not present in the other model. They also show a

stronger coupling of the roll and pitch angles. However, the presented controller
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Figure 3.28: Simulation experiments with the Modelica validation model.

consistently performs better than the cascaded PID controller with much reduced

oscillations, greatly easing aerial manipulation operations.

When comparing the proposed controller strategy with the classical cascaded

PID approach, the analysis of the different simulations shown in this section allows

to conclude that performance of the controller proposed as well as its associated

responsiveness against disturbances caused by manipulator movements, are clearly

better than those exhibited by the cascaded PID design Furthermore, although the

proposed control is a model-based controller, this approach has demonstrated a

significant robustness attributes against parametric and modelling uncertainties in

the simulations.



Chapter 4

Applications (II). Aerial

manipulators for structure

inspection

Nowadays, the structural assessment of bridges involves the use of a lot of equipment,

including heavy machinery like lifters, scaffolders and cranes among others. Typically,

an inspection of a civil structure is divided into two parts. One first part of this

assessment is a visual inspection to detect cracks, corrosion, leaching and other defects.

A second part involves other tasks that require direct contact of a sensor with the

structure, i.e. using ultrasound testing sensors to measure the crack depth or measuring

beam deflection through a reflector prism and a topographic station.

New applications are continuously emerging with the continuing development of

aerial platforms. Standard multirotors with cameras have been used for an initial visual

inspection of difficult to access areas of civil infrastructures and helping to inspectors

with the first part of the assessment. However, when cracks or other damages are

detected in the images or to measure a beam deflection, the inspection has to follow

with experienced human inspectors in need of hands-on-access and forcing operators

to work in high altitude in dangerous conditions.

The use of aerial manipulators provide an excellent solution for conducting the

inspection by contact of bridge elements without human intervention and carrying

79
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Figure 4.1: Structures inspectors working at high altitude.

out tasks such as holding an ultrasonic sensor to evaluate a crack or positioning a

topographic prism to measure a beam deflection. This chapter is focusing on this

second part of the assessment of civil structures, i.e. the inspection by contact.

In this chapter, we present three aerial manipulator applications related to the

structural inspection. The first application is a multirotor equipped with a 3-DoF

arm whose goal is to use the arm to hold an ultrasound sensor in contact with the

bridge while the multirotor is hovering. In the second application the manipulator is a

lightweight compliant arm that could be used both to hold an ultrasonic sensor and to

hold a topographic prism to measure girder deflection. The last application is focusing

on the controller of an aerial platform specifically designed to optimize the task of

taking deflection measurements of bridge girders by holding in contact a topographic

prism. This application is the most advanced in AEROBI-project, carrying out even

autonomous mission to measure girder deflections of a bridge.

The first application presented was developed in the ARCAS project. Nevertheless,

it was one of the first aerial manipulator prototypes used for structure inspection by

contact, and helped in the first months of the AEROBI project. The H2020 AEROBI

project started in 2015, and was aimed at helping in the development and validation

of innovative and intelligent aerial platform prototypes for the in-depth structural

inspection of reinforced concrete bridges. The second and third applications were

developed in the framework of the AEROBI project.
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Figure 4.2: Examples of visual bridge inspections using UAVs.

4.1 Application 1 - Multirotor with multi-link arm

for structure inspection

This application deals with the works published in (Jimenez-Cano et al., 2015) about

the use of aerial manipulator as a solution for conducting the inspection by contact

of bridge elements without human intervention. The objective was to implement an

aerial manipulator system able to hold a sensor (i.e, ultrasonic sensor) in contact with

a bridge while the aerial platform is hovering. Furthermore, since in many cases the

bridge elements have to be inspected from below (i.e. the aerial robot should fly below

the bridge, and the surfaces that it has to inspect are located above the robot), a new

aerial manipulator configuration is proposed in which the arm is attached on top of

the multirotor body above the rotors, and not on the belly below the rotors as is the

case for all the published works.
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Figure 4.3: AMIS aerial manipulator for structure and bridge inspection, developed
by the GRVC at University of Seville.

Following we present a system description with the main details of the prototype.

Next, the dynamic system is introduced and a control scheme proposed. Finally, we

show the results of the tests simulation and flying experiments that were done to

validate the proposed solution.

4.1.1 System Description

For this application the AMIS (Aerial Manipulator for bridge inspection of Structure)

prototype was developed by the GRVC at University of Seville. The AMIS aerial

platform is a multirotor with eight rotors located at the ends of a four-arm planar

structure, with two rotors positioned coaxially at the end of each arm (octoquad

configuration). The multirotor has an arm manipulator attached to the upper part.

The arm has three degrees of freedom and the length of the links are 400mm, 350mm

and 50mm, respectively. Dynamixel servos have been used for the arm’s joints. The

total weight of the manipulator is 1.3 kg, and the maximum reach is about 860 mm

including the sensor head. The total weight of the multirotor with the arm is 8.6 kg.

The autopilot used in the AMIS prototype is the same that in AMUSE (see chapter 3,

section 1). AMIS incorporates a camera on-board for visual inspection, an altimeter
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Figure 4.4: AMIS system description

and an ultrasonic sensor located at the arm end-effector. This sensor is used to the

inspections by contact and, in the first experiments show in the following subsections,

it will be replaced by a mock-up sensor.

4.1.2 Modelling

In this case, we use Lagrange-Euler method to derive the system dynamics. As we

describe in the above subsection, the prototype developed was a multirotor in octoquad

configuration and equipped with a 3-DoF custom robot manipulator. Therefore, we

have a system composed of four bodies (NB = 4) and 9-DoF (N = 9). Then, the

generalized coordinates are defined as

ϕ = [p η γ]> ∈ R9 (4.1)

Following the Lagrange-Euler method describes in chapter 3, we obtain the equations

of motion for the system given by 2.41. In which the gravity force vector G(ϕ) can be

calculated as

G(ϕ) = [Gp Gη Gγ ]> (4.2)

where Gk ∈ R3 are the terms of the gravitational force vector for the position of the

multirotor, p, its orientation, η and each joint of the manipulator, γ, and can be
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calculated as

Gp = −g


0

0∑NB
1 mi

 Gη = −g
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1 mi

∂pz
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∑NB
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∂pz
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(4.3)

The equations of motion 2.41 can be rewritten without loss of generality as
Mp Mpη Mpγ

M>
pη Mη Mηγ

M>
pγ M>

ηγ Mpγ
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Gp

Gη

Gγ

 =


Fp

τη

τγ

+

[
S>a

J>

]
Fext (4.4)

where S>a is a transformation matrix that relates the external forces/torques acting

on the robotic arm and the aerial vehicle.

4.1.3 Controller

The control scheme implemented for this application uses a controller for the multirotor

and another one for the manipulator arm. Following the control scheme presented

in chapter 2, both have access to the full aerial manipulator state. The multirotor

controller is responsible for stabilizing attitude and global position of the aerial vehicle,

taking into account and compensating the movements of the arm and the contact

forces with the environment. The manipulator controller takes care of controlling arm

joints angles and velocities, and the generalized forces Γ that are generated by the

aerial manipulator in the operational space, considering the movement and dynamics

of the multirotor.

Multirotor controller

The aerial platform is an octoquad, the eight rotors have been positioned in four

coaxial pairs of rotors. It means that the multirotor behavior is like a quadrotor.

Then, the control inputs are defined as
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(4.5)

where Ω2
i,j is the angular velocity of the j-th rotor positioned in the i-th arm. Following

the proceeding defined in the chapter 2 controller section, for the dynamic model

presented the control inputs are given by

Uz =
mT

cφcθ
[Pzez + Izχz +Dzeż + z̈d]− F̃Ez

Uη = D4(Mη)[Pηeη + Iηχη +Dηeη̇ + η̈d] +
∑

Tη

(4.6)

where Pz, Iz and Dz are positive constant gains and F̃Ei (i = x, y, z) are the components

of the external force estimation vector which is used to describe the dynamics effects

over the multirotor due to the interaction between the end-effector manipulator and the

environment. The positive diagonal matrix Pη, Iη and Dη are also used as controller

gains and the vector
∑
Tη is given by

∑
Tη = Cη +Gη + Ñ γ̈ − τ̃c (4.7)

where Ñ γ̈ introduces the estimation of the dynamics coupling due to the manipulator

movements and τ̃c the estimation of the torque induced by the contact forces, Fext.

The dynamics of the interaction between the end-effector and the environment had

been modelled using a Hunt-Crossley model (Diolaiti et al., 2005) and a spring model
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had been used for modelling the contact. The environment was assumed to have a

constant stiffness. Then each contact n is given by

fnc = knẋn (4.8)

Herein fnc is the n-th contact force and ẋn is the instantaneous velocity in the contact

normal direction. In this case, these positions are defined in the end-effector frame,

hence the external force vector, F̃ext is defined as

F̃ext = S>a f
n
c (x) ∈ R6 (4.9)

The measurements of the contact forces can be carried out through a force sensor

at the end-effector. The position controller must be capable to keep the desired (x, y, z)

position while the manipulator performs the contact task with the underside of the

bridge.

End-Effector controller

The manipulator arm is attached to the multirotor body, and hence the multirotor

needs to move to a position in which the task operational space is within the arm

workspace. The multirotor is commanded to hover at this point with the controller

developed above, while the arm is performing the inspection (then ṗ ∼ 0 and (φ, θ) ∼ 0)

and the arm controller considers that these terms are small. Another consideration is

that XEd ∈ DXE where XEd and DXE represent the desired effector position and the

domain of the operational space, respectively. DXE can be calculated as:

DXE = G(
k∏
i=1

[γ−i ], γ+i ) (4.10)

where γ−i and γ+i are the minimal and maximal bounds of the i-th joint coordinate,

respectively. An effective technique for dealing with these highly nonlinear and coupled

systems is the nonlinear dynamic decoupling in operational space (Hara et al., 2012)
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which can be derived using the relationship between the generalized forces 2.60 as:

τM = JTEM
∗
MΓ∗E + C̃M + G̃∗M − JTF ∗E +MT

QM

[
p̈

η̈

]
(4.11)

with

Γ∗E = IEEẌEd + kp(XEd −XE) + kv(ẊEd − ẊE)

F ∗E = fEd + kf (fEd − fc)
(4.12)

where C̃M = CM −JTEM∗
Mh(p, ṗ) is the estimated vector of the Coriolis and centrifugal

forces into joint space of the end-effector and G̃M is estimated gravity forces vector.

The term I represents a unity matrix. kp, kv and kf are gain matrices for position,

velocity and force respectively. The contact force measurement done by the force

sensor is denoted by fc and the desired contact force is expressed by fEd. In the real

system, oscillations in the multirotor axis generate disturbances in the contact force

measured by the sensor which will be compensated by the control action, F ∗E, in 4.12

and the feedback force, F p,γ
ext in 2.53.

4.1.4 Simulations and Outdoor Experiments

This section presents the several tests that have been done using the full mathematical

model of the aerial manipulator. In simulation tests the geometric, mass and inertia

parameters used have been obtained from the prototype showed in Figure 4.3, using a

5-DoF manipulator. Furthermore, it is assumed that the multirotor is equipped with

a positioning system, an Inertial Measurement Unit (IMU), a magnetometer and a

sonar altimeter. Noise characteristics of the sensors as well as uncertainties in their

modelling parameters have also been accounted for. The IMU operates at a sampling

frequency of 100 Hz and it has a standard deviation of 1.2 degrees in attitude. Position

estimation is supposed to be affected by a typical standard deviation of 0.04 m and

its update frequency is fixed to 10 Hz.
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Figure 4.5: Simulation of the aerial manipulator flying forward and moving the arm. X,
Y, Z position errors, PID (BLUE) and control proposed (RED). Arm joints movements
(bottom right).

The first set of simulations that is presented in this subsection analyzes the behavior

of the aerial manipulator when it is flying forward to a desired position with the center

of gravity off-center, and then the arm moves constantly changing its configuration

(and the position of the CoG), which is one of the more demanding cases. Figure 4.5

shows the X,Y,Z position errors in one of these simulations, when the aerial robot is

flying toward the desired position (2,-2, 2), with the CoG off-center and there the

manipulator carries out several movements, using the attitude and position controllers
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above presented. For comparison purposes, simulations have been done also with

a standard PID multirotor controller, which is not able to compensate for the arm

movement, as the backstepping controller does to a large extent.

Figure 4.6: Simulation of the aerial manipulator hovering and touching the bridge
with the arm. X,Y,Z position errors, VPIB with contact force estimator (RED) and
control proposed without contact force estimator (BLUE).

A second set of experiments studies the behavior when the aerial robot is inspecting

a structure such as a bridge, touching it with the ultrasound sensor head located at

the end effector of the arm, and applying a contact force so that the sensor stays

in touch enough time to take measurements. Figure 4.6 shows the position errors

using the VPIB controller with contact force estimator and without using it, which is

affected by the contact forces of the arm with the bridge (beginning at t = 10 s), as

can be seen in the figure.

In the following,we present the experiments done to test the dynamic behavior of

the AMIS prototype with the developed attitude controller when it is approaching the

inspection point at the bridge, and then when the AMIS arm is touching the structure

with the sensor head to take measurements. For these experiments a dummy sensor

was used and no ultrasonic measurements were done (see Figure 4.7).
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Figure 4.7: Sequence of bridge inspection experiment.

Another very interesting point that wanted to try in the experiments was whether

the stability of the aerial vehicle was affected by the contact forces in case an extra

force was deliberately applied by the arm at the sensor head, so that the contact with

the bridge surface can be constantly maintained enough time to take the measurements

with the sensor head. From the performed experiments, it can be concluded that this

extra force did not affect the aerial manipulator stability. In fact, it was even the

opposite, the extra force decreased the multirotor pitch and roll oscillations, as can be

seen in Figure 4.8.

The figure shows the total thrust generated by the AMIS rotors and the multirotor

pitch attitude angle. It can also be seen in the figure that the total thrust can be a

good estimator of the contact forces, since the multirotor is in hover when performing

these operations. Unmanned Aerial Vehicles are evolving to include not only systems

with sensing capabilities but also with the possibility to act on the environment, and

particularly with manipulation capabilities. This work presented a new configuration

for an aerial manipulator in which the arm is attached to the top of the multirotor. This

setup is well suited for infrastructure and bridge inspection flying below the elements

that are being inspected, even by contacting the bridge surface with an ultrasonic

sensor located at the end effector of the arm. The derivation of the aerial manipulator

dynamic model and suitable controller, which has been tested in simulation and in

flying experiments. These tests suggest that the additional forces applied by the arm
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Figure 4.8: Bridge inspection experiment. Total thrust and pitch angle.

to the bridge surface to maintain contact are even beneficial for multirotor stability,

decreasing pitch and roll oscillations.

4.2 Application 2 AEROBI - Multirotor with multi-

link compliant arm for structure inspection

This application emerges from the experience obtained in the above case. For the use

of some ultrasonic sensors or to perform measurements with a topographic prism, it

is desirable to control the force exerted by the aerial manipulator over the contact

surface. A solution could be the use of a force/torque sensor but these sensors are

expensive and, in many cases, too heavies. For this reason, we decide to design a

robotic arm with compliant joints. An actuator is compliant if it is able to adapt to

the force generated when it interacts with the environment. This capability implies

that the manipulator no only can be protected against damages due to impacts, but
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it also can estimate these forces and torques measuring the deflection of the elastic

element included therein (springs or elastomers). For this reason, in this application,

we decide to develop a new lightweight compliant arm. To achieve it, an innovative

compliant actuator has been designed. Its technical details are described in the next

section.

The integration between an aerial manipulator and a topographic station is one of

the aims of this application to carry out structures inspection tasks. To achieve it,

the topographic station used in this work is a robotic Total Station (TS) developed

by Leica (Leica, 2019). The Leica Total Station is a device that may be used, among

others, for measuring distances with laser technology. It can measure the distance

to any surface or to a reflector prism. This kind of devices are commonly used in

topography and building construction and with the angles of itself can get the position

of the objective points in local axis which are defined by the user. When the total

station is working with a topographic prism, this reflects the laser in the same direction

that is received to generate the measure of its position improving the accuracy. In

addition, it is able to track the prism in case of it is moving. Another feature is

the possibility of generating point clouds thanks to its laser technology. These point

clouds can be used to create accurate 3D maps of a structures (Delgado et al., 2017).

Furthermore, in this section, we present a full aerial manipulator system including

a topographic robotic total station to perform measurements of the position of a prism

allocated as end-effector in the robot manipulator arm developed. A central feature in

the system presented is that the measurements done by the Total station are employed

to obtain the deflection of a bridge girder and, moreover, to estimate the position of

the aerial manipulator.

Next, we provide more details about the hardware used in the implementation of

the full aerial manipulator system. In addition, we derive the dynamic model and

we propose a controller for the aerial manipulator. Finally, in order to validate the

proposed controller, we present the experiments results done.
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Figure 4.9: Prototype done a contact with the ceiling bridge.

4.2.1 System Description

In a structure inspection, the main tasks are done through direct contact between the

bridge surface and suitable tools. For example, to measure the deflection of a girder

over time, a topographic station measures the position of a prism while it is in contact

with the surface of the girder. Another example is an ultrasonic sensor that is used in

contact with a crack or void to measure its dimensions. Another task is monitoring

the deterioration of the elastomeric bearings between the rafters and the pillars that

usually have difficult access. Therefore a multi-link compliant robotic arm can be

an useful tool for structural inspection. As we already mentioned, in this section we

present the prototype developed by the GRVC at University of Seville consisting of a

multirotor equipped with a custom compliant robotic arm. First, we present details in

the multirotor configuration chosen for this application. Next, we focus on the custom

compliant arm manipulator and the innovative compliant actuator developed. The

picture of the aerial manipulator system designed can be seen in Figure 4.10.
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Figure 4.10: (Right)3D Figure of the multirotor and robotic arm designed.(Left)
Picture showing the custom compliant arm developed

Multirotor configuration proposed

A novel configuration of an aerial vehicle has been proposed for this work. This

multirotor is an octorotor system with two layers, where the alternate rotors are

kept at different planes with a vertical distance between each one, enabling propellers

to overlap as shown in Figure 4.11. Thanks to this configuration, total size area of

the octorotor can be minimized without loss of flight time and payload capability

(Nandakumar et al., 2018), and it allows the system to access and navigates through

smaller spaces like, for example, between beams or columns. Furthermore, in the

bottom layer each rotor has been placed with an angle over the layer horizontal plane.

Thus, the aerial vehicle is fully actuated, since it is possible to generate horizontal

forces without tilting the platform. This is beneficial for aerial manipulation tasks

because it allows the manipulator to work like in a fixed platform, reducing the

disturbances due to the attitude oscillations in the aerial platform.
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Figure 4.11: Scheme of multirotor layers.

Lightweight Compliant Arm design

Most commercial robots manipulators have been designed without taking into account

the weight and the mass distribution in each of its links, therefore they have not made

suitable to use in aerial platforms. The center of gravity of an aerial manipulation

system is modifying its position continuously while the robotic arm is performing

a task. This variation of the position of the center of mass depends on the mass

distribution of the manipulator. Thanks to this effect, these systems present complex

coupling dynamics. Therefore, the stabilization and the design of control strategies are

hard problems for these systems. An aid to solve these problems could be the design

of lightweight arms (Suarez et al., 2015). An optimization in the mass distribution

of the robotic manipulator would reduce the influence over the aerial manipulator.

Furthermore, the contact forces generated by the interaction between the robotic arm

and the environment also affect the platform stability. Therefore, the design of a

robotic manipulator with compliant joints can present a desirable solution against the

problems caused by shocks or impacts. In ascending order, the first specification design

should be a low weight and the second, a minimization of the influence of the inertia

term of each link over the UAV. Construction materials such as aluminium, carbon

fiber or 3D-printers philaments (PLA, ABS, etc) should be considered in the design

due to their low mass density. The construction of aluminium or carbon fiber pieces for
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the implementation of a robotic arm require the use of expensive precision equipment.

Thus, we opt to make our robotic arm with 3-D printers materials. The popularity

of 3D-printers has raised in few years due to it has demonstrated to be useful for

rapid-prototyping in robotics. Furthermore, in case of damage, the reparations of our

prototype becomes easier using 3D-printers pieces. The most used materials are PLA

(Polylactic Acid) or ABS (Acrylonitrile Butadiene Styrene). For these reasons, it has

been the material chosen to make our prototype.

Herkulex smart servos have been employed as actuators for the construction of our

prototype. Thanks to these servos, the mechanical design can be simplified without

a loss of accuracy in the position control and with high torque to weight ratio. A

disadvantage is that they do not present an option of torque control. The robotic

arm must have the capability to interact with the environment and consequently, it

should support a strong exposure to impacts and overloads. For this reason, a Passive

Compliance Mechanism (PCM) has been designed. The PCM aims to absorb the

impact energy and protect the actuators. Furthermore, it has been designed like a

torque sensor and allocating one on each actuator it allows to measure the forces

acting on the arm and the contact forces applied by it. In Figure 4.12, a scheme of

PCM is shown.

Figure 4.12: (Right)Scheme of the passive compliance mechanism (PCM).(Left)3D
CATIA model of the 4-DoF robotic arm developed.
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As Figure 4.12(Right) shows, four symmetric springs (part number 4) are placed

on piece 3. These springs are used as elastic material and measurement the deflection

it is possible to estimate the torque acting on the servo. This piece 3 is attached to

the actuator (part number 1). When a force is applied to the joint, the piece 5 twists

through the servo’s rotation axis. The force is transmitted to the springs that will be

compressed. This compression generates a difference between the angle of the joint

and the servo’s angle position. The difference is measured by the potentiometer (part

number 6). To add strength to the mechanism works both pieces 2 as 7. The piece

8 is the linkage with the next joint. Thanks to the potentiometers’ measurements,

both torque and external force can be estimated and thus a force controller could

be designed. Using the complaint mechanism previously described, a four degrees of

freedom compliant arm has been developed. The Herkulex servos model selected have

been the model DSR-0201. The manipulator is formed by a shoulder yaw and pitch

joints at the base, followed by an elbow and a wrist pitch joints. The center of mass

of each link is placed within its rotation axis, thus the kinematics are simplified. The

total weight of the robotic arm is 0.4 kg. and its reach is 0.5 meters. The compliant

arm has an excellent relation between the maximum reach and weight. All joints have

a compliant mechanism with a max. deflection of 30 degrees. A 3D CATIA model of

the 4-DoF compliant arm developed is shown in Figure 4.12(Left).

Hardware Scheme

For this prototype we use a hardware architecture based on the CATEC autopilot

introduced in the above chapter, section 1. In this case, the BeagleBone White

is communicated by ethernet with a Beaglebone Black. This device manages the

signals of the sensors needed by the system (external magnetometer, altimeter SF11/C,

PX4Flow, etc) and input/outputs of each servo actuator of the robotic arm as well as

the signals of each potentiometer located in each joint. The hardware scheme can be

seen in Figure 4.13.

In the same way that in the AMUSE system, the controllers are developed using

MATLAB/Simulink and run in the BeagleBone White. The BeagleBone Black is used

to expand the inputs/outputs in the above system. For the positioning system, we use
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Figure 4.13: Hardware architecture of the system.

a laser altimeter model SF11/C, a PX4Flow and the prism position communicated

by the Total Station. These inputs are used by an Extended Kalman Filter (EKF),

calculating the position estimation of both aerial platform and arm end-effector.

Description of the bridge inspection system

To obtain the deflection of a beam, the inspection procedure will start with the creation

of the 3D map through the total station. In this map, the field inspector will select

which points of the girder are needed to calculate its deflection. The prism is placed at

the end effector of the aerial manipulator. The autopilot is communicated by wifi with

the total station, thus the platform controller will receive the position of the prism.

This position is integrated on the extended Kalman filter to obtain the full state of

the system and it can be used by the aerial manipulator position control. Thanks to

the data sent by the Total Station, the aerial platform can navigate to the inspector

selected points and to perform the measurements. The field inspector will receive

these measurements and will calculate the girder profile. Then, this calculus should
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be compared with old profiles to get the current deflection and, finally evaluate the

state of the structure and check the safety. The scheme of this full system is shown in

Figure 4.14

Figure 4.14: Scheme of multirotor layers.

4.2.2 Modelling

In chapter 2, we have presented three methods to derive the dynamics equations

of a mechanical system. All these methods consider rigid joints. However, in this

application, the prototype has been designed with compliant joints. To model these

flexible elements, we have used the reduced flexible joint robot model (Spong, 1989).

Then, through the Lagrange-Euler formulation, the dynamic model of the system is

given by,

M(ϕ)ϕ̈+ C(ϕ, ϕ̇)ϕ̇+ g(ϕ) = N(u, q, γ) + τext

Bq̈ +N(u, q, γ) = τm
(4.13)

where the inertia matrix M(ϕ) ∈ RN×N must be symmetric and positive definite. The

term C(ϕ, ϕ̇)ϕ̇ represents Coriolis and centrifugal forces and complies with the property
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Ṁ(ϕ) = C(ϕ, ϕ̇)>, which is skew-symmetric of Ṁ(ϕ) − 2C(ϕ, ϕ̇).The gravitational

force is given by g(ϕ) ∈ RN and the term τext is the vector of external forces generated

by the interaction with the environment. Matrix B is the inertia of servos’ shaft and

frame and τm is the torque generated by the motor. The vector N(u, q, γ) is used

to represent the forces and torques acting on the system, where u ∈ R6 is the forces

and torques generated by the rotors over the aerial platform presented in the above

subsection and which it is defined by the equation,

u =
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0 l2bcos(a) l1b l2bcos(a) 0 −l2bcos(a) −l1b l2bcos(a)

−l1b −l2bcos(a) 0 l2bcos(a) l1b l2bcos(a) 0 −l2bcos(a)

−d −dcos(a) d dcos(a) −d −dcos(a) d dcos(a)





Ω2
1

Ω2
2

Ω2
3

Ω2
4

Ω2
5

Ω2
6

Ω2
7

Ω2
8


(4.14)

where b and d are the thrust and drag coefficients, a is the tilt angle of the rotors in

the bottom layer and li(i = 1, 2) are the distance between the rotors and the geometric

center in each layer. The torques given by the compliant joints are defined by K(q−γ)

and then N(u, q, γ) can be expressed as

N (u, q, γ) =

[
I6×6 0

0 K

][
u

q − γ

]
(4.15)

Herein, K ∈ RN×N is a diagonal matrix and represents the elastic constant terms of

each joint and q = [q1...qk]
> ∈ RN are the servos’ angular positions.

4.2.3 Position-Force controller

In order to done the structure inspection tasks, it is needed to design a position-force

controller for the aerial manipulator system designed. The first step is to estimate the

torques and forces acting in each link. Thanks to the PCMs, it is possible to obtain

an estimation of these torques and forces. Nevertheless, the use of potentiometers and
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springs can induce errors owing to backlash or construction’s failures. To compensate

and detect these possible errors a method to estimate the deflection angle in each

joint has been implemented. Then, for each joint, we should find the position of each

joint respect to it, e. g. for the joint j we should calculate the position of j + 1, ..., k,

where k is the end-effector. E. g., for the joint j:



pj+1 =
j+1∑
i=j

T0 (η)

(
i∏

j=1

Tj (γ)

)
pi

. . .

pk =
k∑
i=j

T0 (η)

(
i∏

j=1

Tj (γ)

)
pi

(4.16)

where T0(η) is the aerial vehicle rotation matrix and can be defined as,

T0(η) =


cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (4.17)

with cα and sα defined as cos(α) and sin(α), respectively. Then, we could obtain the

position of the center of gravity using the following equation:

CoGj =

∑k
i=jmjpj∑k
i=jmj

(4.18)

where mj is the weight of the joint j. Now, we can obtain the distance between the

center of gravity and the rotation axis of the joint j, δj. Furthermore, we need to

calculate the angle, βj, of the vector formed by the position of the center of gravity

and position of the rotation axis for the joint j as (see Figure 4.15):

βj = atan2(CoGjy, CoGjx)

δj =
√
CoG2

jx + CoG2
jy

(4.19)
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Figure 4.15: Scheme used in the method followed to obtain the angle deflection.

Then the torque in the joint j due to the gravity force can be obtained as:

τj =

(
k∑
i=j

mj

)
δjgcos

(
βj +

j∑
i=1

(γi) + ρ

)
(4.20)

where g is the gravity acceleration. Finally, the angle’s deflection for each arm’s joint

j, ∇γ̂j, can be calculated as:

∇q̂j =
τjγmax
dkL

(4.21)
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where L is the free length of the spring, k is the stiffness constant, d is the radius of

the circle in which the springs are located and qmax is the arc angle formed by the

spring.

Figure 4.16: Errors between the deflection measured by the deflections estimates when
the arm is moving in the z-axis.

Figure 4.16 shows the errors between the deflections measured by the potentiometers

and the deflections estimations done through this method when the arm is moving

on the z-axis. This experiment demonstrates the errors due to backlash and friction

considering that when the arm moves slowly the errors increase and when the arm

moves fast, these errors decrease. Nevertheless, an accumulative error remains in the

measurement. Furthermore, this figure shows as the potentiometers have deg. of

accuracy. Thanks to these estimations, the measurement errors induced by backlash

can be detected and the estimation of a force applied over the end-effector can be

improved. Then, using the method developed a position-force controller has been

implemented. For the system described by 4.13, the following equations of equilibrium

can be obtained by setting the accelerations and velocities coordinates to zero (Spong,

1989),

−K(γ − q) = u

K(γ − q) + g(γ) = τext
(4.22)
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where u is the torque motor in 4.13 that serves as a control input. Thanks to the

equilibrium equation 4.22, if τext = 0 the control variable, γ̄, can be defined as

(Albu-Schaffer et al., 2005):

γ̄ = q −K−1g(γd) (4.23)

where γd is the desired joint position, then, a classical control solution for a robotic arm

with elastic joints would be compliant controller with constant gravity compensation

in which the control law would be:

u = JT (γ̄)Kxx̃(γ̄) + g(γd) (4.24)

where the control input u is obtained by a proportional term acting over the end effector

pose error, a derivative term used as a motor damping and the gravity compensation

calculated by the desired joint position, γd. Kx and Kd are the proportional and

derivative diagonal positive gain matrices. In Spong (1989), the stiffness equation is

defined as:

Kxx̃ = Kx(x− xd) = F (4.25)

where Kx is a diagonal positive gain matrix, xd is the desired end-effector position

and F is the generalized external force. Thanks to the potentiometers placed in

each joint, the arm controller can obtain the difference between the actuator angle

position and the joint angle position generated by an applied force over the arm. The

potentiometers measure the angle deflection in each joint, p̂oti = (qi − γi). Then,

equation 4.25 can be rewritten as:

F̂ = J−T (Kp̂ot− g(γ)) (4.26)

Thus the gravity compensation term can be obtained as:

g(γd) = K∇θ̂(γd) (4.27)
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where ∇q̂(γ) is the deflection angle estimation. Now, it is possible to define the force

error as:

eF = Fd − J−TK(p̂ot−∇q̂(γd)) (4.28)

And therefore, the torque control signal can be defined as:

UF = W (p, Fd,, τext)KF (Fd − J−TK(p̂ot−∇q̂(γd)) (4.29)

where KF is a diagonal gain matrix and W (p, Fd, τext) is a time-varying diagonal

weight-matrix defined as:

W (p, Fd, τext) =


0, Fd = 0 and τext = 0

αI, Fd = 0 and τext > 0

αI, Fd > 0 and τext = 0

(1− α) I, Fd > 0 and τext > 0

(4.30)

where I is an identity matrix and α(p) is given by Lippiello et al. (2013),

α(p) =
1 + α

2
+

1− α
2

tanh(k1π
p− δw

∆w − δw
− k2π) (4.31)

where α ∈ [α, 1] and δw and ∆w (∆w > δw) are distance thresholds corresponding to

α ∼= 1 and α ∼= α respectively. The gains k1 and k2 are used to modify the behavior

of the function. With W (p, Fd, τext) is possible to achieve the performance in the

three cases described previously. Basically, the function W (p, Fd, τext) works as a

state machine identifying each case and modifying the controller gains, e. g. if the

end-effector is in a desired position and an external force acts over the arm, the control

gains (initially to zero) increase according to the position error increases. It allows the

arm to find a zero-force position and protecting the system. If this force disappears

the arm recovers the desired position. Another case is when the arm has to apply a

desired force in a desired position, in this case the force control acts while the arm

is closed to the desired position. If during this case an external torque appears the

function inverts its behavior adapting the joint position to reject the external torque
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while trying to hold the desired force. Now, the force control can be introduced in the

control law 4.24:

u = J−T (γ̄)Uτ −Kdq̇ + g(γd) (4.32)

The compliant robotic arm designed uses Herkulex smart servos as actuators. A

torque controller cannot be used with these servos. Thus the control strategy should

generate a desired servo angular position to control both the end effector position and

the applied force. Therefore, the control law 4.32 must be rewritten in order to obtain

a desired servo position, qd. Using the equilibrium equation 4.22, equation 4.32 can

be rewritten as:

qd = K−1(JT (γ̄)Uτ −Kdq̇ + g(γd)) + γ0 (4.33)

where γ0 is a joint position in an equilibrium point. Supposing that the robotic arm

has rigid joints then γ0 can be calculated by integrating the joint velocity obtained by

the inverse Jacobian and an end effector pose error,

γ̇0 = J−1kp(pEEd − pEE) (4.34)

where kp is a diagonal gain matrix.

4.2.4 Experiments

One of the tasks in structural inspection is the measurement of the deflection of

the bridge’s girder over time. To accomplish enough measurement accuracy, the

topographic prism must hold in the desired position for a certain time. To complete

the task, some measurements along the girder should carry out. Therefore, the aerial

manipulator designed for the fulfilment of these tasks should be able to hold a desired

position and force in a contact point during the time needed to attain sufficient

accuracy by the sensor (see Figure 4.17).

In order to evaluate the system designed and the controller proposed both testbench

and flying experiments have been done. First, the results of the testbench experiments
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Figure 4.17: Illustration of steps followed in an experiment to achieve the beam
deflection using the system developed.

will be presented. Second, we will present the results of a flying experiment in which

the aerial platform carries out a real subtask necessary to achieve the measurement of

the deflection of a bridge’s girder.

Testbench Experiments

The arm controller should present a good performance in the following identified cases:

1. The arm is in a desired position and an external force is applied.

2. The arm reaches a desired position and applies a desired force.

3. The arm reaches a desired position, applies a desired force while an external

force acts over it.

The external forces applied in cases 1 and 3 can be generates generated by the

oscillations of the aerial platform while is flying over a desired altitude. The controller

performance has been tested for each proposed case. The first case results have been

represented in Figure 4.18.

In this case, the robotic arm was in a desired position and an external force was

applied. In this experiment an external force has been applied three times and the
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Figure 4.18: Evolution of the force and position z-axis during the first case test.

results are similar each time. When the force was applied the springs absorbed a

percentage of it, then the controller acted to try to reduce the force induced over the

servos. The result is a change in the position servos and therefore in the end effector

position. In addition, The results demonstrate the system performance when the

position of the end effector change and the external force is absorbed and viceversa,

when the external force disappears the end effector recovers it desired position. The

results of the second and third cases are shown in Figure 4.19. In these cases, first the

arm reaches a desired position and applies a desired force and then an external force

perturbation is applied over the arm while it is exercising a desired force.

Figure 4.19: Evolution of the end-effector z-axis position during the second and third
cases test.
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Figure 4.19 (right) shows as the force applied by the end effector reaches the desired

force. At the second 425 approximately, an external force appears and thanks to the

controller implemented it can be rejected. This external force increases and then it

disappears. For this reason, the figure shows an oscillation at second 432 until the

arm recovers the desired position and force. Figure 4.19 (left) shows the position in

z-axis during the experiment. It possible to analyze as the desired Z position changes

when the perturbation external force appears and when the end-effector returns to

the desired position at the same moment in which the perturbation disappears.

Flight Experiments

The goal of these experiments is to use the aerial manipulator developed to perform

the above operation, holding the topography prism in a desired position in contact

with the girder. Figure 4.20(Left) shows the force in z-axis applied by the end-effector

in the girder surface. During the experiment, the multirotor aircraft has taken off and

has been commanded to hold a desired altitude (see Figure 4.20)(Right). When the

platform has reached the desired altitude the robotic arm starts to move until the

end-effector has contacted with the surface of the girder and reaches the desired force.

This experiment can be related to the third case mentioned in the controller subsection.

In this case, the external torque has been generated by the altitude oscillations while

the end-effector was contacting with the surface of the girder.

Figure 4.20: (Left)Z axis force reference and estimation.(Right)Z error estimation.
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4.3 Application 3 AEROBI - Quadrotor with envi-

ronment interaction for structure inspection

Case 2 presents a solution for the bridge inspection using aerial manipulators. The

proposed prototype includes a compliant arm with the capability to measure the

contact forces. This approach with more development can be considered as a more

general solution, it can be used to carry out bridge girders and abutments inspections.

In this case, we present a prototype also designed to bridge inspection but focusing on

the task consisting of the measurement of the girder deflections. Furthermore, Thanks

to the design proposed, the aerodynamic effects that arise flying close to the bridge,

can be exploited to improve the main performances of the aircraft, such as, the power

consumption and the accuracy during the inspection task. A prototype developed is

shown in Figure 4.21.

Figure 4.21: CAD of the aerial platform designed (ARBI) and the real platform
developed

In the following sections, we introduce the designed proposed. Then, we derive the

equation os motion of the system including the ceiling effect. This aerodynamic effect
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was presented and modelling in chapter 2. Using this model, we propose a control

strategy that it will be validated through the flight experiments shown in the last

subsection.

4.3.1 System Description

To done the main task of this aerial manipulation application, this aerial platform has

been specially designed and implemented with the goal of maximizing the benefits of

the ceiling effect (see Figure 4.21). This platform consists of a cross layout quadrotor

with the propulsive system and the avionics onboard covered in a full carbon filter

frame. The propulsive system consists of DJI 231E rotors with 9” propellers DJI and

420Lite ESC. The onboard avionics consist of a custom autopilot code running in a

Raspberry PI 3 Model B connected to the Emlid’s sensors shield Navio2. The aerial

platform and the Ground Control Station (GCS) are connected by Wi-Fi Technology.

A range sensor model SF11/C has been also mounted in the platform. This platform

is also equipped with a passive link which has a reflector prism. This prism is used

to accomplish the measurements during the inspection and to estimate the position

of the aircraft during the flight in the position control loop. These measurements

are carrying out with a robotic total station model Leica Geosystem MS50. The

accuracy of these measurements is about 1 cm in flight and increasing during the

contact inspections to 0.1 mm. The maximum frequency of the measures is 20 Hz.

The hardware/software architecture is presented in Figure 4.22. This scheme shows

that the autopilot is connected to the GCS through Wi-Fi link. The robotic Total

station is also connected to the GCS through a serial port. The GCS receives the

prism position and sends it to the aerial platform, acting as a bridge between the

robotic total station and the aerial platform. However, the measurements of the Total

station are treated and filtered onboard for safety conditions.

The autopilot used in this work is the GRVCautopilot which has been also developed

during this thesis. This autopilot allows us to implement control techniques using

MATLAB/Simulink. Then, using MATLAB Code Generator and Simulink External

Mode, the controllers run in the aerial platform while the sensor data are synchronized



112 Applications (II). Aerial manipulators for structure inspection

Figure 4.22: Hardware/software architecture. WiFi communication is represented by
dashed arrows and wired communication by the bold arrows.

and visualized in the ground station in Real-Time. Parameters like control gains

can be also modified without any recompilation. More details about the autopilot

implemented can be seen in the appendix B.1.

4.3.2 Modelling

The dynamic model of this system has been derived using the Newton-Euler formalism

introduced in chapter 2. Thus, defining a set of generalized coordinates as ϕ =

[x, y, z, φ, θ, ψ]T , the equations of motion are given by
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ϕ̈ =



0

0

−g
θ̇ψ̇ Iy−Iz

Ix
− Jr

Ix
θ̇Ω

ψ̇ψ̇ Iz−Ix
Iy
− Jr

Iy
φ̇Ω

θ̇φ̇ Ix−Iy
Iz


+

[
1
Im
I3 0

0 σI−1

]
F (ϕ) + Fext (4.35)

with

σ =


d 0 0

0 d 0

0 0 1

 I =


Ix 0 0

0 Iy 0

0 0 Iz

 I3 =


1 0 0

0 1 0

0 0 1

 Ω = Ω1−Ω2 +Ω3−Ω4

(4.36)

Here d is the distance between the geometric center of the platform and the center

of a rotor, Ii (i = x, y, z) are diagonal terms of the inertia matrix, m is the aerial

vehicle total mass and Jr is the rotor moment of inertia. Fext includes external and

torques which are not known or modelled, such as contact forces or wind disturbance.

Last, vector F (ϕ) ∈ R6 encompasses actuator forces and torques exerted by the rotors.

These forces and torques depend on the state of the multirotor due to the aerodynamic

effects and can be calculated as

Fϕ =


R(φ, θ, ψ)e3T (ϕ)

τφ(ϕ)

τθ(ϕ)

τψ(ϕ)

 (4.37)

Defining the total thrust T (ϕ), as T (ϕ) =
∑i=4

4 Ti(ϕ), and taking into account

that the platform is a quadrotor in cross configuration, there is a direct correspondence

between the four generalized moments and the angular velocities of rotors in which

the vector F (ϕ) follows the ceiling effect model introduced in chapter 2 and it is given
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by 
T

τφ

τθ

τψ

 =


Kc(zc1)CT Kc(zc2)CT Kc(zc3)CT Kc(zc4)CT

−Kc(zc1)CT Kc(zc2)CT Kc(zc3)CT −Kc(zc4)CT

Kc(zc1)CT −Kc(zc2)CT Kc(zc3)CT −Kc(zc4)CT

CD CD −CD −CD




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 (4.38)

where zci is the distance from the i-rotor to the ceiling surface defined as follows:


zc1 = zc −

√
2
2
d(sin(θ)− cos(θ)sin(φ))

zc2 = zc −
√
2
2
d(−sin(θ) + cos(θ)sin(φ))

zc3 = zc −
√
2
2
d(sin(θ) + cos(θ)sin(φ))

zc4 = zc −
√
2
2
d(−sin(θ)− cos(θ)sin(φ))

 (4.39)

Herein zc is the distance from the center of gravity of the multirotor to the ceiling

surface.

Figure 4.23: Response of a multirotor in ceiling effect and safety flight envelope.



4.3 Application 3 AEROBI - Quadrotor with environment interaction for structure
inspection 115

4.3.3 Controller

In this section, we present a nonlinear Lyapunov-based attitude, altitude and position

controllers for bridge inspection flights. The main goal of the designed controller

is that the quadrotor can fly very close to the beams and carry out contact tasks

with safety and accuracy. The ceiling effect is the most critical aerodynamic effect

occurring during these inspection tasks. In the previous section, the ceiling effect has

been modelled and introduced in the system’s equations of motion. The relationship

between the control inputs and the angular velocities of the rotors have been shown in

equation 4.38. In this expression, the zci of each rotor has been calculated to obtain

the ceiling effect for each one. Depending of the multirotor attitude, the ceiling effect

is different in each rotor. As Figure 4.23 shows, if the aircraft has a pitch angle about

±10 degrees (flight forward), the aerodynamic ceiling effect is approximately a 22%

higher in one rotor than in the other when zc = 0.1m. However, it decreases to 5%

when the attitude angles are about ±3 degrees. Furthermore, it decreases to 2% when

zc = 0.25m. This result implies that it is possible to make the following assumptions

to increase safety during the operation:

Assumption 2 A forward flight will be done to a minimum distance of 0.25m to the

ceiling surface.

Assumption 3 The only operation allowed for distances less than 0.25m will be the

hover until reaching the contact with the surface.

Taking into account these assumptions, the equation 2.40 is linearized in intervals

in which the difference between the aerodynamic effects is less than 5% and therefore

zc ∼ zc1 ∼ zc2 ∼ zc3 ∼ zc4 . Thus, the expression for the control inputs 4.38 can be

simplified as follows:

U =


Kc(zc) 0 0 0

0 Kc(zc) 0 0

0 0 Kc(zc) 0

0 0 0 1

 =


CT CT CT CT

−CT CT CT −CT
CT −CT CT −CT
CD CD −CD −CD




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 (4.40)
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Then


T

τφ

τθ

τψ

 =


Kc(zc) 0 0 0

0 Kc(zc) 0 0

0 0 Kc(zc) 0

0 0 0 1



Uz

Uφ

Uθ

Uψ

 (4.41)

Attitude Controller

Following the control strategy introduced in chapter 2, let defined the angular and

rate tracking error as

eφ = φ− φd
eθ = θ − θd
eψ = ψ − ψd

eφ̇ = φ̇− φ̇d + kφeφ

eθ̇ = θ̇ − θ̇d + kθeθ

eψ̇ = ψ̇ − ψ̇d + kψeψ

(4.42)

Thus the control inputs are given by

Uφ =
Ix

dKc(zc)
(θ̇ψ̇(

Iy − Iz
Ix

)− Jr
Ix
θ̇Ω + Pφeφ −Dφeφ̇)

Uθ =
Iy

dKc(zc)
(φ̇ψ̇(

Iz − Ix
Iy

)− Jr
Iy
φ̇Ω + Pθeθ −Dθeθ̇)

Uψ = Iz(φ̇θ̇(
Ix − Iy
Iz

) + Pψeψ −Dψeψ̇)

(4.43)

Altitude Controller

In the first step designing the proposed altitude controller, the tracking error and the

speeds tracking error are defined as follows:

ez = z − zd
eż = ż − żd + kzez

(4.44)
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Thus the control input is given by

Uz =
m

cos(φ)cos(θ)Kc(zc)
(g + Pzez −Dzeż) (4.45)

The first one is to keep the altitude during a flight forward when R/zc > 1 and

therefore Kc(zc) ≈ 1. The second one is during a contact mission. In this case, the

attitude angles, roll and pitch, should be small and when the multirotor is flying close

to the ceiling, the function Kc(zc) should increase and the multirotor should be able

to keep the altitude as well as reducing the thrust input and therefore, minimizing

the energy consumption.

Position Controller

Following the control strategy introduced in chapter 2, let defined the position and

speed tracking error as

ex = x− xd
ey = y − yd

eẋ = ẋ− ẋd + kxex

eẏ = ẏ − ẏd + kyey
(4.46)

Thus the control inputs are given by

Ux =
m

Uz
(Pxex −Dxeẋ)

Uy =
m

Uz
(Pyey −Dyeẏ)

(4.47)

The generated position and control signals are used to obtain the desired roll, φd, and

pitch angles, θd.

4.3.4 Experiments

First experiments, which were carried out piloted by a human, show that the aircraft

is very unstable at the end of the contact phase. The results in Figure 4.24 show that

the pilot must significantly decrease the thrust signal at least until 40% less than the

thrust hover to finish the contact task. This situation leads to conditions in which the
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aircraft critically loses its altitude and could generate a dangerous flight condition.

Then, it becomes clear the need for implementing an automatic control strategy to fix

this behavior. This is one of the main conclusions of this work.

Figure 4.24: Altitude telemery results during in manual flight.

The next experiment was accomplished with the automatic control strategy pro-

posed in the controller subsection. In this case, the results of Figure 4.25 and Figure

4.26 show the altitude controller result, as well as, the values of the thrust, the

aerodynamic ceiling effect estimation and the vertical velocity. These results reveal

that the controller implemented allows the platform to fly in safe conditions when it

approaches and moves away from the bridge surface. Moreover, Figure 4.25 also shows

how the controller acts during the contact and in the second result, which is about

the thrust commanded, it can be seen that, despite the oscillations due to the error in

the state estimation, the mean value of thrust (represented with the red dashed line)

decreases as a consequence of taking into account the ceiling effect in the nonlinear

controller.

It is important to remark that one of the most important benefits of this nonlinear

control appears in the z-velocity controller. The result of Figure 4.26 shows that the

nonlinear controller is faster and the un-stick command is followed in a more efficient

way. For instance, this result clearly shows that the nonlinear controller easily follows

the reference without a remarkable delay (< 1s) while a standard PID controller needs

to integrate and accumulate too much error for following the reference (4s) because

this one does not take into account the aerodynamic ceiling effect.
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Figure 4.25: Altitude nonlinear controller results. Altitude vs altitude reference control,
thrust and mean value during the flight and contact (red dashed), and estimation of
the ceiling effect factor (Kc) during the flight.

Autonomous Inspection

Last experiments consisted of accomplishing a full inspection by contact in autonomous

mode. These results, which are presented in Figure 4.27 clearly show that the system

is able to navigate between different contact points in safety conditions.

Figure 4.27: (Left)Position controller results during an autonomous mis-
sion.(Right)Attitude controller results during an autonomous mission.



120 Applications (II). Aerial manipulators for structure inspection

Figure 4.26: PID vs Nonlinear altitude controller comparison. Green backgrounds
represent the contact condition.

In Figure 4.28 a sequence of pictures of an experiment can be seen. This figure

shows which are the steps followed by the aerial platform to carry out a contact an

achieve a deflection measurement in a goal point of the beam.

Future work related to this research will be focused on the end-user of this

technology and the inspection application. The aims of these works will be: increase

the applicability of this technology, increase its the Technology Readiness Level (TRL),

and, turn it in a competitive option in commercial exploitation.
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Figure 4.28: Sequence of picture of an experiment.
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Chapter 5

Conclusions and future works

5.1 Conclusions

An aerial manipulator system is an aerial platform equipped with one or multiple

robotic arm. The main objective in the development of this technology is to achieve

the realization of operations or manipulation tasks in high altitude or in areas which

the access could be difficult or dangerous for humans. Thanks to the development of

functional aerial manipulators, the cost in time and resources typically dedicated in

civil or industrial structure inspections could be reduced. Applications of these aerial

robots for chemical plants, wind turbines or power lines could be a reality in few years

and this can be seen in the continuous growth of the community research interest

and the number of European projects allocated to the development of this technology.

However, the aerial platforms typically used, multirotors or helicopters, still present

limitations in payload and time flight, moreover the interaction with the environment

and the arm movement generate coupled disturbances which affect to the accuracy in

operation tasks and presenting a big challenge in the robotic research field.

This thesis has presented the theoretical study, design, development and experimen-

tal tests of several prototypes of aerial manipulators, demonstrating their validation in

real outdoor scenarios for the most cases. The theoretical study presented has involved

since the typical methods used to obtain the dynamic equations of mechanical systems

from the study of the aerodynamic forces, designing an effective control strategy
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suitable for the different kinds of aerial manipulators studied in this thesis. In each

prototype designed we have taken into account the equipment needed to achieve the

best result for it application case, keeping in mind the weight, payload, sensors needed,

flight time and arm reach to carry out each goal task of each prototype.

Addressing the issues of the aerial manipulation in outdoor scenarios is a challenge

due to the integration of the hardware needed to achieve it. Thanks to the design

and implementation of AMUSE prototype, we have learned to choose the correct

motorization for each platform, the integration of a commercial robotic arm in a

multirotor and the best location of each hardware included in the platform without

generating any electromagnetic interference between them and centering the center

of mass of the system. One example of the problems which we have addressed could

be the typical electromagnetic interference between the magnetometers and ESCs or

how the hard disk and communication buses of a PC can affect to the GPS-RTK

radio links. these and other problems have been solved and the results like grasping of

objects in autonomous flight mode for outdoor scenarios have been shown in chapter

3. In this chapter, an adaptation for the control strategy presented in AMUSE was

implemented for a helicopter equipped with the same commercial arm, deriving the

dynamic model of the system through Kane’s method and validating the controller

using a high-fidelity Modelica simulator.

To carry out the task of structure inspections using aerial robots, three aerial

manipulator systems have been presented in this thesis. The first two have been

octorotors equipped with two different custom robotic arms. The third is a quadrotor

specifically designed to carry out the bridge inspection by contact. The first aerial

manipulator system presented was equipped with a robust and heavy arm specially

designed to withstand contact forces. Its end effector can be endowed with an

ultrasonic sensor to measure structural crash. The dynamic model of the system and

a control scheme have been shown and several experimental tests in a real bridge

have been done. This first prototypes served us to lead the way in the use of aerial

manipulators in the structure inspections. For the purpose of improving the time flight

and the system behavior in operations which require a direct interaction with the

environment, we decide to design a lightweight custom robotic arm to achieve more
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time flight reducing the system total weight. Furthermore, a compliant mechanism

was implemented and added for each joint to be able the capability of measuring

torques and contact forces, and therefore to increase the safety and system behavior

during the contact operations. This compliant arm has been integrated into a novel

configuration multirotor and experiments in a real bridge have been presented to

validate the robotic arm designed and the position-force controller proposed. In this

second prototype, the idea was located a topographic prism in the end effector to

measure the deflection of girder and at the same time using the position of this prism

as a positioning system for the platform. Although this prototype was designed to

carry out not only deflection measurements of ceiling girders, but also horizontal

girders, to accomplish the task of measuring the deflection of ceiling girders the aerial

system can be simplified resulting in the third prototype presented in chapter 4. This

aerial system consists in a quadrotor specially designed to draw on of the ceiling effect.

A controller has been proposed to take into account the ceiling effect, optimizing the

time flight of the platform and the stability when the ceiling effect is acting. The

topographic prism is also used as a positioning system and to measure the deflection

of the ceiling girders of a bridge. Experiments in a real bridge are shown to test the

controller proposed. To implement the whole control of the platform, a new autopilot

system has been developed using a Raspberry pi 3 with a Navio 2. The details in the

hardware and software architecture of this new autopilot have been also presented in

the appendix section.

In conclusion, this thesis has presented the design, development and implementation

of several aerial manipulators prototypes, which have been tested in real outdoor

scenariosto grasp objects and perform structural inspection. Solving the hardware and

software architecture problems of these systems. The dynamics model of the whole

systems have been also obtained and controllers have been proposed and validated.

This thesis has been completed in the framework European Projects as ARCAS,

AEROBI and AEROARMS. Helping and advancing in the development of the aerial

manipulator technology.
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5.2 Future works

In the future, the main goal of the aerial manipulator systems should be achieving

that these aerial robots become in fully autonomous systems. To accomplish this

task becomes necessary to lighten the hardware, and moreover the use of accuracy

and speed sensors. For example, the autopilot used in AMUSE had a weight of 750

gr. while the GRVC autopilot described in Appendix has a weight of about 150 gr

or comparing the Novatel GPS-RTK weight used in AMUSE (about 500 gr.) with

the new Emlid Reach plus (about 50 gr.). With these changes we could improve

significantly the time flight of the platform. The data frequency of the sensors is also

needed to obtain a good state estimation and thus improving the loop control. For

example, the Novatel GPS-RTK has 10 Hz while the Emlid Reach plus has 14 Hz.

The use of these new hardware should improve the results obtained with AMUSE.

Other pending work is the more integration of visual servoing for the AMUSE case

to improve the repeatability of the experiments and increase the dexterity of the full

system. The use of a platform like the presented in the chapter 4 section 2 should

also improve the behavior of the system, moreover including a force sensor to increase

the safety in contact operations and furthermore decreasing the crashes or collisions.

In the compliant aerial manipulator case, the use of variable stiffness actuators

will improve the accuracy, robustness and reliability of the manipulator system.

Furthermore the implementation of an aerial platform with the same configuration

but with smaller size could improve the capabilities in bridge inspection due to the

increment of the system manoeuvrability. Another improvement will consist of the

development of a positioning system based not just in the Total Station but also in

vision, including a stereo camera system.

In the case of the ARBI system, the next step is the use of the Leica Total Station

to obtain a 3D map of the structure or bridge and the development of a software

which the inspectors could choose the points in the bridge where take measurements.

Then, these points should be communicated to the aerial platform for the generation

of the trajectory for the inspection. Adding a vision system, the inspectors could have

more information about structural health.



Appendix A

A.1 Rigid Body Motions

The kinematics of a robot gives the relationship between each degrees of freedom

(DOF) of the system and the motion of rigid bodies which form the system. In this

thesis, the Special Euclidean group SE(3), or the group of rigid-body motions

have been considered to represent the orientation and position of a rigid body in a

combined form. The SE(3) is defined as the set of all 4× 4 real matrices, g defined as,

g =

[
R p

0 1

]
(A.1)

where R ∈ SO(3) and p ∈ R3 represent the rotation and position respectively. A

matrix g ∈ SE(3) is also called a homogeneous transformation matrix and it can also

denoted by (p,R). The homogeneous transformation matrices are commonly used to

represent the configuration of a rigid body, to change the reference frame in which a

vector or frame is represented and to displace a vector or a frame.

A.1.1 Twists

Now, it is needed to calculate the twist, ξi, for each joint which corresponds to screw

motion for the ith joint with all other joint held fixed at zero. For a revolute joint,
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the twist ,ξi has the form

ξi =

[
−ωi × qi

ωi

]
(A.2)

where ωi ∈ R3 is a unit vector in the direction of the twist axis and qi ∈ R3 is any

point on the axis. For a prismatic joint,

ξi =

[
vi

0

]
(A.3)

where vi ∈ R3 is a unit vector pointing in the direction of translation.

A.1.2 The product of exponentials formula

The product of exponentials formula (Murray, 2017) has been a method used to

describe the kinematics of several aerial manipulators studied during this thesis. The

product of exponentials formula provides a geometric description of the kinematics

leveraging that the motion of a joint is generated by a twist associated with the

joint axis. Let define ξ as a twist, then the rigid motion related with rotating and

translating along the axis of the twist is given by

gab(θ) = eξ̂θgab(0) (A.4)

where θ ∈ R represents the amount of translation if ξ is a prismatic joint and

however θ ∈ S1 is the angle of rotation about the axis if ξ is a rotation joint.

A.2 Kinematics of an aerial manipulator

First of all, it is necessary to define the frames of the system. In the case of an

open-chain robot manipulator, we must define at least a reference frame fixed to the

base of the robot (first link) and a frame in the tool or end-effector of the manipulator

(last link). An aerial manipulator is defined as an aerial vehicle equipped with one or

multiple robots manipulators. In the case of multiple arms, the forward kinematics
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must be calculated for each arms. Therefore, we must define at least an inertial

reference frame, S, an aerial vehicle body frame, B0, attached to its center of mass

or to the geometric center of the vehicle and, finally, both the frames in each arm’s

base, Bi(i = 1, ..., k), and the frames, Ei(i = 1, ..., k), attached to each end-effector

of the k robots manipulators composing the system (see Figure A.1). Furthermore,

the aerial vehicle will be considered as a six DOF joint (three for translation and

three for rotation) and each arms as an open-chain manipulator. Then, analyzing

the system’s joint coordinates, an aerial manipulator will have three translation

joints, p = (x, y, z)T ∈ R3, and three revolute joints, η = (φ, θ, ψ)T ∈ R3, which

represent the six DoF of the aerial vehicle plus the joints of each robot manipulator,

γi = (γi1, ..., γ
i
ri

) ∈ Rri(i = 1, ..., k). Thus, the system’s joint coordinates is given by

ϕ = (p, η, γ1, ..., γk) ∈ RN with N = 6 +
k∑
i=1

ri (A.5)

To simplify the notation in the following equations, we will use ϕn (n = 1, ..., N) to

refer us a specific joint of ϕ where the index i represents the position of the joint in

the coordinates’ vector, for example, ϕ3 = z or ϕ6 = ψ and ϕ9 = γ13 . Now, we can

define ṗ as the absolute linear velocity of the aerial platform w.r.t. the inertial frame

S, and it is given by,

ṗ = R(η)ṗB0 (A.6)

where R(η) ∈ SO(3) is a rotation matrix and ṗB0 describes the linear velocity of the

aerial platform w.r.t to the frame B0. On the other hand, the absolute rotational

velocity, ω, can be calculated as

ω = T (η)η̇ (A.7)

where T (η) ∈ R3×3 is a transformation matrix between the time derivative of η and

ω. Following the proceeding shown in (Lippiello and Ruggiero, 2012) and (Siciliano

et al., 2010), The direct kinematics for an aerial vehicle is defined by the Homogeneous

Transformation matrix presented in A.1,
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gsb0 ==

[
R(η) p

0 1

]
(A.8)

And transformation matrix for each arm of the aerial manipulator system w.r.t to B0

can be obtained in the form,

gb0ek ==

[
nek(γ) sek(γ) aek(γ) pek(γ)

0 0 0 1

]
(A.9)

with nek , sek , aek and pek are the unit vectors of the frame attached to the k-th

end-effector. Then, the pose of the k-th manipulator w.r.t the inertial frame S is given

by

gsek(ϕ) = gsb0gb0ek (A.10)

Now, if we define the position and orientation of the k-th end effector as xek , then

xek can be calculated through a function f(ϕ) and the kinematic can be also written

as

xek = f(ϕ) (A.11)

and the Jacobian, J , can be calculated via differentiation of f(ϕ) and the linear

mapping between time derivative of xek and ϕ̇ is given by

ẋek = Jϕ̇ (A.12)

A.2.1 Kinematics using POE

To derive the kinematics of a robot, other method widely used is the Product of

Exponentials (POE). This method was introduced in (Brockett, 1984) and presents

several advantages such as, for instances, to allow an uniform treatment of rotation and

prismatic joints (Lynch and Park, 2017) and to process by computer easier,(Murray,

2017).
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Figure A.1: Definition frames

A first step in POE method is to determinate the kinematic configuration,gse ∈
SE(3), of the end-effector when the joint coordinates are in a zero position relative

to the inertial frame, S. Note that, in the multiple arm’s case, we must establish

it for each arm, gsei(0) ∈ SE(3) (i = 1, ..., k). Then, we must construct each twist,

ξn (n = 1, ..., N) for the joints of each manipulator (see A.1). Finally, the forward

kinematics map for each manipulator is given by the combination of each robot arm’s

joint motions plus the aerial platform’s joint motions and they can be expressed as

gsei(ϕ) = eξ̂xxeξ̂yyeξ̂zzeξ̂φφeξ̂θθeξ̂ψψe
ξ̂
γi1
γi1 ...e

ξ̂
γiri

γirigsei(0) ∈ SE(3) (i = 1, ..., k)

gsei(ϕ) = (
6∏

n=1

eξ̂nϕn)(
N∏
n=7

αi,n)gsei(0) ∈ SE(3) (i = 1, ..., ri)
(A.13)
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where the function αi,n ∈ SE(3) is defined as

αi,n =

{
eξ̂nϕn if ϕn ∈ γi

I4×4 if ϕn /∈ γi
(A.14)

Herein I4×4 ∈ R4×4 represents an identity matrix. Note that, these equations are

true if and only if B0 = Bi (i = 1, ..., k). Otherwise, the transformation matrices for

the relationship between B0 and the manipulators’ bases frame Bi must be included

for each forward kinematics. Each equation represents in A.13 is called the product

of exponentials formula for each arm forward kinematics of the aerial manipulator

(see A.1). Using, this method is also possible to obtain the kinematics relationship

between the end-effector of two manipulators. One advantage in the use of the POE

is the possibility of obtain both the spatial and body manipulator Jacobian in a more

explicit and elegant formulas.Then, the spatial body Jacobian for the ith end-effector

of the aerial manipulator is given by:

Jssei(ϕ) = [ξ1 ... ξ6 ξ
′
i,n ... ξ

′
i,ri

] (A.15)

with

ξ′i,j = Ad
(eξ̂1ϕ1 ...eξ̂6ϕ6eξ̂nϕn ...eξ̂j−1ϕj−1eξ̂jϕj )

ξj (A.16)

where Ad ∈ R6×6 is the adjoint transformation and is given by

Adg =

[
R p̂R

0 R

]
(A.17)

Then, the inverse of Ad can be calculated as

Ad−1g =

[
RT −RT p̂

0 RT

]
(A.18)
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Using A.17 it is also possible to calculate the body manipulator Jacobian for the ith

end-effector of the aerial manipulator as,

J bsei(ϕ) = [ξ†1 ... ξ
†
6 ξ
†
i,n ... ξ

†
i,ri

] (A.19)

with

ξ†i,j = Ad−1
(e
ξ̂ϕ(j)ϕ(j)e

ξ̂ϕ(j+1)ϕ(j+1)
...e

ξ̂ϕ(ri)
ϕ(ri))

ξϕj (A.20)

The columns of J correspond to the joint twist written with respect to the tool

frame at the current configuration. The spatial and the body Jacobian are related by

an adjoint transformation:

Jssei(ϕ) = Adgsei (ϕ)J
b
sei

(ϕ) (A.21)

A.2.2 Example: kinematics of a 2 DOF arm aerial manipu-

lator using POE

Now, consider the aerial manipulator shown in Figure A.2. It consists of an aerial

vehicle equipped with a robotic arm. In this case, the manipulator is composed by

two revolute joints. The aerial vehicle frame and the manipulator’s base frame are

coincident.

Then, the coordinate joints vector is given by ϕ = (x, y, z, φ, θ, ψ, γ1, γ2)
T ∈ R8

and when the system is in a zero position, ϕ = 0, the homogeneous transformation

matrix between the inertial frame and the end-effector frame is given by

gse(ϕ) =

[
I p(0)

0 1

]
, p(0) =


0

0

−l1 − l2

 (A.22)
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Figure A.2: Aerial manipulator with 2 DOF arm

wherein I ∈ R3×3 is an identity matrix. Now, we construct the twist for the aerial

vehicle, for instance, note that

ωφ =


1

0

0

 , ωθ =


0

1

0

 , ωψ =


0

0

1

 , qφ = qθ = qψ =


0

0

0

 , vx =


1

0

0

 , vy =


0

1

0

 , vz =


0

0

1


(A.23)

We assume the origin (0, 0, 0) as axis point for the three orientation joints. That way,

we define the aerial vehicle as a one rigid body with six DOF. Then, the twists for the
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aerial vehicle are given by

ξx =



0

0

0

1

0

0


, ξy =



0

0

0

0

1

0


, ξz =



0

0

0

0

0

1


ξφ =



1

0

0

0

0

0


ξθ =



0

1

0

0

0

0


ξψ =



0

0

1

0

0

0


(A.24)

Next step is obtain the twists of each manpulator’s joint as following

ξγ1 =



0

0

0

0

−1

0


, ξγ2 =



l1

0

0

0

1

0


(A.25)

Now, it is possible to apply POE method to obtain the forward kinematics for the

end-effector. Note that, to define the orientation of the aerial vehicle, we choose a

XYZ configuration,

gse(ϕ) = eξ̂xxeξ̂yyeξ̂zzeξ̂φφeξ̂θθeξ̂ψψeξ̂γ1γ1eξ̂γ2γ2gse(0) (A.26)

Analyzing the homogeneous transformation matrix resulted, we have obtained,

gse(ϕ) =

[
R(φ, θ, φ)R(γ1, γ2) p(x, y, z) +R(φ, θ, φ)p(γ1, γ2)

0 1

]
(A.27)
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with

p(x, y, z) =


x

y

z

 , p(γ1, γ2) =


l1sin(γ1) + l2sin(γ1 − γ2)

0

−l1cos(γ1)− l2cos(γ1 − γ2)

 (A.28)

where R(φ, θ, φ) ∈ SO(3) is the rotation matrix of the aerial vehicle in XYZ configu-

ration and has the form

R(φ, θ, φ) =


cos(ψ)cos(θ) −sin(ψ)cos(θ) sin(θ)

cos(φ)sin(ψ) + cos(ψ)sin(φ)sin(θ) cos(φ)cos(ψ)− sin(ψ)sin(φ)sin(θ) −sin(φ)cos(θ)

sin(φ)cos(ψ)− cos(ψ)cos(φ)sin(θ) cos(φ)sin(ψ) + sin(ψ)cos(φ)sin(θ) cos(φ)cos(θ)

 (A.29)

The term R(γ1, γ2) ∈ SO(3) is the rotation matrix of the manipulator and is given by

R(γ1, γ2) =


cos(γ1 − γ2) 0 −sin(γ1 − γ2)

0 1 0

sin(γ1 − γ2) 0 cos(γ1 − γ2)

 (A.30)

A.2.3 Kinematics using Denavit-Hartenberg

The Denavit-Hartenberg (DH) convention is commonly used in robotics applications for

selecting frames references. In this convection, the homogeneous transformation matrix

A.1 for each frame is obtained by four transformation parameters (DH parameters),

which quantities are represented by θi, ai, di and αi. The names generally associated

to these parameters are link length, link twist, link offset, and joint angle, respectively

(Spong et al., 2006). An algorithm to define these parameters for each frame of a

robot is presented in (Baturone, 2005). Using these parameter, the transformation

matrix relating the frame i w.r.t. the frame i− 1 is given by:

gi−1,i =


cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) aicos(θi)

sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) aisin(θi)

0 sin(αi) sin(αi) di

0 0 1

 (A.31)
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Then, in the same way of POE method, the kinematics for an end-effector of

the aerial manipulator system can be calculated as the product each transformation

matrix:

gse(ϕ) = gsb0(ϕ)gb0b1(ϕ)...gbrke(ϕ) (A.32)

The DH parameters can be related with the twist corresponding of each joint of a

robotic system. A discussion about this relationship can be found in (Murray, 2017).
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Appendix B

B.1 GRVC Autopilot

In robotic research field, the design of a theoretical control strategies can be as

important as the implementation in a real system. To validate these theoretical

control strategies, MATLAB/Simulink is widely used by the researchers due to the

powerful of this software and their facilities to generate simulation environments.

After testing the CATEC autopilot (see chapter 3 section 1), we decide to create

our own autopilot system based on MATLAB/Simulink for the implementation of

control strategies in real aerial robotic systems. It was named GRVC Autopilot. To

facility its use inside the researcher community, we determinate to implement the

system inside a commercial and cheaper devices like a Raspberry Pi 3B with a Navio

2 sensor cape. Raspberry Pi 3B is a powerful single-board computer developed in

the United Kingdom by the Raspberry Pi Foundation. The main goal of this device

is to promote the teaching of computer science the academic environment and it is

widely used inside the researcher community. In the other hand, Navio 2 is a hat for

Raspberry Pi, which providing the sensors and hardware needed to create an autopilot

system. In fact, Ardupilot and PX4 have been adapted to run in this hardware. An

example of the hardware architecture that could be implemented with the GRVC

Autopilot can be seen in Figure B.1. This Figure shows as the GRVC autopilot can

be connected with several sensors (PX4Flow, GPS, imu, lidars, etc), thanks to the

ports enabled by the Navio (I2C, UART, ADC, etc.); with others computer boards,

i.e. to implemented positioning systems based on cameras. Moreover, in an aerial

139
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manipulation system case, the full control system can be executed inside the raspberry

pi, avoiding communication delays or problems arising from the implementation of

both controller systems (aerial platform and robotic arm) in detached devices.

Figure B.1: Hardware scheme

B.1.1 A brief Software Description

The main idea inside the GRVC autopilot is to help the aerial robotic researchers to

implement and test novel control strategies in real aerial platforms. In the GRVC

autopilot, the developer can design the full control system in MATLAB/Simulink

model. This Simulink model is compiled and charged inside the Raspberry Pi, and

thanks to external mode, the model is can be used like a ground station with the

advantages of modification gain parameters and visualization of data sensors and

signals online when the system is running. To catch and communicate the sensors
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data with the Simulink model, a Shared Memory Communication System (SHCS)

has been designed. This is communication system based on POSIX shared memory.

Thanks to SHCS the interface between the Simulink model and the other process

can be carry out. A process called bridge navio have been created to manage the

communication between the different sensors used and the Simulink model. Moreover,

bridge navio is charged of the safety system. The PX4 estimator (EKF2) can be also

used in the GRVC autopilot. A custom PX4 version can parallel run in the system to

benefit the advantages of the EKF2. This custom PX4 version is communicated with

the whole system thanks to the SHCS. A brief scheme of how the software works can

be seen in Figure B.2.

Figure B.2: Scheme of how the GRVC autopilot has been implemented.

An app using MATLAB GUI has been also developed facilitating users the control

of the system. The Figure B.3 shows an example of a ground station developed with

the GRVC autopilot system. In the left part of the figure, we can see the Simulink

model implemented. This model has been used in the experiments shown in the

chapter 4 section 3. The input and output interfaces remarked are communicated

through SHCS with the bridge navio process to catch the sensor data. And in the

output case, to send the PWM signals to each rotor of the aerial platform. Moreover,

the state of the system is also submitted to log the data inside the aerial platform and

to visualize flight mode through the app. In the right part, we can see the appAEROBI
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designed to control the process of this model. Each appAEROBI button launch a

function of the system like: compile and charge, connect, start, etc.

Figure B.3: Example of the GRVC autopilot ground station developed for AEROBI
project.
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