11 research outputs found

    A genetic programming based fuzzy regression approach to modelling manufacturing processes

    Get PDF
    Fuzzy regression has demonstrated its ability to model manufacturing processes in which the processes have fuzziness and the number of experimental data sets for modelling them is limited. However, previous studies only yield fuzzy linear regression based process models in which variables or higher order terms are not addressed. In fact, it is widely recognised that behaviours of manufacturing processes do often carry interactions among variables or higher order terms. In this paper, a genetic programming based fuzzy regression GP-FR, is proposed for modelling manufacturing processes. The proposed method uses the general outcome of GP to construct models the structure of which is based on a tree representation, which could carry interaction and higher order terms. Then, a fuzzy linear regression algorithm is used to estimate the contributions and the fuzziness of each branch of the tree, so as to determine the fuzzy parameters of the genetic programming based fuzzy regression model.To evaluate the effectiveness of the proposed method for process modelling, it was applied to the modelling of a solder paste dispensing process. Results were compared with those based on statistical regression and fuzzy linear regression. It was found that the proposed method can achieve better goodness-of-fitness than the other two methods. Also the prediction accuracy of the model developed based on GP-FR is better than those based on the other two methods

    Modeling of epoxy dispensing process using a hybrid fuzzy regression approach

    Get PDF
    In the semiconductor manufacturing industry, epoxy dispensing is a popular process commonly used in die bonding as well as in microchip encapsulation for electronic packaging. Modeling the epoxy dispensing process is important because it enables us to understand the process behavior, as well as determine the optimum operating conditions of the process for a high yield, low cost, and robust operation. Previous studies of epoxy dispensing have mainly focused on the development of analytical models. However, an analytical model for epoxy dispensing is difficult to develop because of its complex behavior and high degree of uncertainty associated with the process in a real-world environment. Previous studies of modeling the epoxy dispensing process have not addressed the development of explicit models involving high-order and interaction terms, as well as fuzziness between process parameters. In this paper, a hybrid fuzzy regression (HFR) method integrating fuzzy regression with genetic programming is proposed to make up the deficiency. Two process models are generated for the two quality characteristics of the process, encapsulation weight and encapsulation thickness based on the HFR, respectively. Validation tests are performed. The performance of the models developed based on the HFR outperforms the performance of those based on statistical regression and fuzzy regression

    Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers

    Get PDF
    Fuzzy regression (FR) been demonstrated as a promising technique for modeling manufacturing processes where availability of data is limited. FR can only yield linear type FR models which have a higher degree of fuzziness, but FR ignores higher order or interaction terms and the influence of outliers, all of which usually exist in the manufacturing process data. Genetic programming (GP), on the other hand, can be used to generate models with higher order and interaction terms but it cannot address the fuzziness of the manufacturing process data. In this paper, genetic programming-based fuzzy regression (GP-FR), which combines the advantages of the two approaches to overcome the deficiencies of the commonly used existing modeling methods, is proposed in order to model manufacturing processes. GP-FR uses GP to generate model structures based on tree representation which can represent interaction and higher order terms of models, and it uses an FR generator based on fuzzy regression to determine outliers in experimental data sets. It determines the contribution and fuzziness of each term in the model by using experimental data excluding the outliers. To evaluate the effectiveness of GP-FR in modeling manufacturing processes, it was used to model a non-linear system and an epoxy dispensing process. The results were compared with those based on two commonly used FR methods, Tanka's FR and Peters' FR. The prediction accuracy of the models developed based on GP-FR was shown to be better than that of models based on the other two FR methods

    An intelligent fuzzy regression approach for affective product design that captures nonlinearity and fuzziness

    Get PDF
    Affective product design aims at incorporating customers’ affective needs into design variables of a new product so as to optimise customers’ affective satisfaction. Faced with fierce competition in marketplaces, companies try to determine the settings in order to maximise customers’ affective satisfaction with products. To achieve this, a set of customer survey data is required in order to develop a model which relates customers’ affective responses to the design variables of a new product. Customer survey data are usually fuzzy since human feeling is usually fuzzy, and the relationship between customers’ affective responses and design variables is usually nonlinear. However, previous research on modelling the relationship between affective response and design variables has not addressed the development of explicit models involving either nonlinearity or fuzziness. In this paper, an intelligent fuzzy regression approach is proposed to generate models which represent this nonlinear and fuzzy relationship between affective responses and design variables. In order to do this, we extend the existing work on fuzzy regression by first utilising an evolutionary algorithm to construct branches of a tree representing structures of a model where the nonlinearity of the model can be addressed. The fuzzy regression algorithm is then used to determine the fuzzy coefficients of the model. The models thus developed are explicit, and consist of fuzzy, nonlinear terms which relate affective responses to design variables. A case study of affective product design of mobile phones is used to illustrate the proposed method

    Computing air demand using the Takagi–Sugeno model for dam outlets

    Get PDF
    An adaptive neuro-fuzzy inference system (ANFIS) was developed using the subtractive clustering technique to study the air demand in low-level outlet works. The ANFIS model was employed to calculate vent air discharge in different gate openings for an embankment dam. A hybrid learning algorithm obtained from combining back-propagation and least square estimate was adopted to identify linear and non-linear parameters in the ANFIS model. Empirical relationships based on the experimental information obtained from physical models were applied to 108 experimental data points to obtain more reliable evaluations. The feed-forward Levenberg-Marquardt neural network (LMNN) and multiple linear regression (MLR) models were also built using the same data to compare model performances with each other. The results indicated that the fuzzy rule-based model performed better than the LMNN and MLR models, in terms of the simulation performance criteria established, as the root mean square error, the Nash–Sutcliffe efficiency, the correlation coefficient and the Bias

    Advanced Process Control with Applications in the Food Industry

    Get PDF
    Due to the requirements for enhanced food safety and different nutrient demand for customers, food process control is becoming an increasingly important issue in the food industry. Many advanced control methods, like adaptive control, predictive control, robust control and fuzzy logic control, have attracted increasing attention and there are many successful applications in the manufacture of dairy products in the last two decades. Applying a multi-effect falling film evaporator to remove the water from the liquid is widely used in the dairy industry. This thesis addresses some key issues concerning dairy evaporation process control which include system modelling, controller development and optimization as well as the results comparison. Fundamentally, this thesis presents a study of three effects of falling film evaporator for the milk concentration process in the dairy industry as an example. The main aim, however, is to research, develop and demonstrate different advanced control strategies, such as model predictive control (MPC) and fuzzy logic control (FLC), applied to the evaporator system for the process control purposes. They both can deal with the complex non-linear processes. But MPC can maintain the system consistency, FLC has a simple control structure and more flexiable control rules. A dynamic mathematical model of a three-effect falling film evaporator is developed by using MATLAB based on the mass and energy balance principles in this thesis for analysing the optimization and controllability of the plant. Both conventional and advanced controllers, such as conventional PID, auto-tuning PID, Model predictive control (MPC), Fuzzy logic, are described to maintain and improve the mathematical model performances. The product output concentration controlled by different strategies are obtained and compared. The results indicate that all controllers can achieve the desired targets (30%, 38% and 52% for the 1st, 2nd, and 3rd effect) within limits of acceptability, however, MPC is the most competitive advanced control strategy in this milk evaporation process

    Decision Support Systems

    Get PDF
    Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Sustainable supply chains in the world of industry 4.0

    Get PDF

    The International Conference on Industrial Engineeering and Business Management (ICIEBM)

    Get PDF
    corecore