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Abstract 

In the semiconductor manufacturing industry, epoxy dispensing is a popular process 

commonly used in die-bonding as well as in microchip encapsulation for electronic 

packaging. Modelling the epoxy dispensing process is important because it enables us to 

understand the process behaviour, as well as determine the optimum operating conditions of 

the process for a high yield, low cost and robust operation. Previous studies of epoxy 

dispensing have mainly focused on the development of analytical models. However, an 

analytical model for epoxy dispensing is difficult to develop, because of its complex 

behaviour and high degree of uncertainty associated with the process in a real world 

environment. Previous studies of modelling the epoxy dispensing process have not addressed 

the development of explicit models involving high order and interaction terms, as well as 

fuzziness between process parameters. In this paper, a hybrid fuzzy regression (HFR) method 

integrating fuzzy regression with genetic programming is proposed to make up the deficiency. 

Two process models are generated for the two quality characteristics of the process, 

encapsulation weight and encapsulation thickness based on the HFR, respectively. Validation 
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tests are performed. The performance of the models developed based on the HFR 

outperforms the performance of those based on statistical regression and fuzzy regression. 

Keywords: evolutionary computation, fuzzy regression, genetic programming, epoxy 

dispensing, microchip encapsulation, electronic packaging, process modelling, semiconductor 

manufacturing 

 

1. Introduction 

Epoxy dispensing is a manufacturing process by which fluid materials are delivered to 

substrates, boards or work-pieces in a controlled manner. This process has been widely used 

in various packaging processes in the electronics and semiconductor manufacturing industry 

such as integrated circuit (IC) encapsulation, die-bonding and surface mount technology [1]. 

In today’s competitive market, the variables of this manufacturing process need to be 

controlled at each of the many processing steps in the manufacturing line. The process 

directly affects the overall quality of the finished product, as well as the throughput of the 

production line. All the variables controlling the desired outputs in a given process need to be 

understood and optimized for tight control. However, epoxy dispensing is a highly non-linear 

process and creates a highly coupled multi-variable system involving extremely complex 

inter-relationships among the epoxy properties, process conditions, needle design parameters 

and overall encapsulation quality [2]. In semiconductor manufacturing, trial-and-error 

remains a very common method used to identify proper process parameters setting. However, 

this method involves long process development time and optimum encapsulation quality may 

not be obtained. Therefore, it is necessary to develop an accurate model for the process. 

 Analytical models are attractive, as they provide a fundamental understanding of the 

relationships between the various input and output parameters. Various analytical models for 

modelling the epoxy dispensing process for electronic packaging have been developed by 

Chen [1], Li et al. [3], and Chen and Ke [2]. Relationships between process variables and 
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process responses are represented by a set of governing partial differential equations, in 

which behaviors of the epoxy dispensing process can be analyzed. A comparative study of 

modelling epoxy dispensing process using computational epoxy dynamics has also been 

carried out Hong and Li [4]. Theoretical investigations of epoxy dispensing processes have 

been studied by Li and Deng [5] and Chen [6]. However, an analytical model for epoxy 

dispensing, which can provide accurate results, is very difficult to develop, as the behaviours 

of epoxy dispensing are complex and the degree of uncertainty associated with the process in 

a real world environment is high. 

 Various modelling approaches have been introduced to develop epoxy dispensing 

models based on experimental data. Statistical regression, neural networks [7] and fuzzy 

neural networks [8] have been employed for modelling epoxy dispensing processes. 

Statistical regression models are accurate over the range in which they are developed. As a 

result, statistical regression models can be applied only if the given data are distributed 

according to a statistical model, and the relationship between dependent and independent 

variables is crisp. Neural networks and fuzzy neural networks have been adopted to develop 

process models for epoxy dispensing, where genetic algorithms have been employed for 

network training. Both approaches have the capability of modelling nonlinear, complex and 

noisy processes. However, a large number of experimental datasets is normally required to 

develop process models using these two approaches, neural networks and fuzzy neural 

networks. It is usually not available in epoxy dispensing processes, as the time taken in 

conducting experiments in real-world manufacturing industries is limited. On the other hand, 

the epoxy dispensing models are developed within a black box structure based on these two 

approaches, which lacks transparency. Therefore, these two approaches are not appreciated 

by manufacturing engineers in developing epoxy dispensing processes. 

Fuzzy linear regression [9] has the distinct advantage that a manufacturing process, 

which has a high degree of fuzziness, can be modeled using few, or even incomplete 
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experimental datasets [10-11]. Ip et al. [12] introduced the fuzzy linear regression to develop 

process models for epoxy dispensing processes. However, all interaction and high order terms 

in epoxy dispensing processes were not considered by the fuzzy linear regression. In fact, 

interaction effect and non-linearity exist in the epoxy dispensing processes [2]. Genetic 

programming (GP) is an evolutionary method which can be used to generate models having 

interaction and high order terms [13, 14]. For example, Lakshminarayanan et al [15] has 

applied GP in modeling a nonlinear chemical system with a small amount of data sets, which 

is usually the case in the real-world industry of process design. Brezocnik and L. Gusel  [16] 

has proposed a GP approach to model radial stress distribution in cold-formed material and 

the resulting model can be used widely in metal-forming industry. Kok et al. [17] has applied 

GP for modeling surface roughness in adrasive waterjet machining particle in which 

satisfactory results can be obtained. Madar et al. [18] have demonstrated using GP to generate 

a structure of nonlinear models and have employed the nonlinear least square algorithm to 

perform the associated parameter estimation in the nonlinear models. However, in epoxy 

dispensing processes, uncertainty due to fuzziness often exists. Therefore, the above GP 

based methods may not yield the best modeling results in the epoxy dispensing process as 

those methods neglect the fuzziness. 

Therefore, the above existing methods cannot address the whole issues in 

development of epoxy dispensing models: i) explicit epoxy dispensing models are required 

by manufacturing engineers; ii) epoxy dispensing processes are highly nonlinear; iii) the 

collected experimental data is fuzzy nature. In this paper, a hybrid modeling approach 

integrating genetic programming with fuzzy regression is proposed in order to address the 

whole issues of development of epoxy dispensing models. We call the approach the hybrid 

fuzzy regression (HFR). In the proposed approach, the general outcomes of GP are used to 

construct the structures of nonlinear models based on a tree representation.  Based on the tree 

representation, the structure of the model in polynomial form, which includes interaction and 
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high order terms, can be identified. Then, the fuzzy regression method is used to determine 

the contributions of the branches of the tree. In other words, fuzzy coefficients for all 

interaction and high order terms of the epoxy dispensing model can be determined. 

Therefore, the resulting epoxy dispensing models generated by the HFR are explicit, as they 

are in fuzzy polynomial form. Also, nonlinearity of epoxy dispensing processes can be 

addressed. Fuzziness of the epoxy dispensing process due to inexact knowledge, which 

includes human errors in conducting experiments and uncontrollable environment factors 

involved in the epoxy dispensing process, can be addressed. To study the effectiveness of the 

proposed HFR in modeling the epoxy dispensing processes, results of the modeling are 

compared with those based on the commonly used approaches, fuzzy linear regression and 

statistical regression. 

 

2. Epoxy dispensing and its modeling  

In a typical epoxy dispensing process for microchip encapsulation, silicon chips are covered 

using an X-Y numerically controlled dispensing system that delivers the epoxy encapsulant 

through a needle. The material is commonly dispensed in a pattern, working from the center 

outward. A fluid dam around the die site and second wire bond points can be made to contain 

the flow of the material and to produce a more uniform part, as shown in Figure 1.  

 With the assistance from the company supporting this research [19], a number of 

experiments to examine the significance of individual parameters for the epoxy dispensing 

process have been performed. The three individual parameters, compressed air pressure (1 

bar to 4 bar) 1x , pump motor speed (400 rpm to 1000 rpm) 2x , and the height between the 

substrate and the needle (250 to 2,000 steps of the stepping motor) 3x , are identified as the 

significant process parameters regarding the epoxy dispensing process by the supporting 

company. The two main quality characteristics have been identified as encapsulation weight 

(mg) y and encapsulation thickness (mm) z. The process parameters are considered as the 
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significant ones for epoxy dispensing machines, which can be adjusted by engineers to 

control the qualities of the epoxy encapsulation. Therefore, the three process parameters were 

recommended to be studied by the supporting company. 

 Other environmental factors such as environment temperature and fluid viscosity of 

epoxy are also significant on affecting the qualities of the epoxy encapsulation. Environment 

temperature normally is set as a constant value in a production shop floor for epoxy 

dispensing but the temperature may have some fluctuation due to various reasons. In this 

research, the temperature fluctuation is treated as a source of fuzziness of the process. Fluid 

viscosity of epoxy resin changes with time during the process of epoxy dispensing. It is also 

affected by other various factors such as properties of epoxy resin, standby time of epoxy 

resin, air pressure and volume of epoxy left in the syringes of epoxy dispensing machines at a 

particular time. Studies of the relationships between fluid viscosity and/or flow rate of epoxy 

resin and those factors as well as their effects on qualities of epoxy encapsulation involves 

substantial efforts of experiments and lengthy studies. As the supporting company aimed at 

developing process models that help engineers to determine proper process parameter settings 

of epoxy dispensing machines effectively, fluid viscosity of epoxy resin was not considered 

in this research.  

 In this research, those uncontrollable factors such as fluctuation of environmental 

temperature and inconsistent of properties of epoxy resin are considered as fuzziness of the 

epoxy dispensing process. To deal with the fuzziness, a hybrid fuzzy regression approach is 

proposed to generate the process models in a form of fuzzy polynomials in which fuzzy 

coefficients of the process models can be generated to address the fuzziness. 
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Figure 1 Encapsulation of a chip on board package [12] 

Ip et al. [12] have applied fuzzy linear regression [9] to develop process models for 

the epoxy dispensing as shown in (1).  
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 (2) can be rewritten as: 
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the center of the fuzzy regression model, the two dash lines represent the fuzziness of the 

fuzzy regression model and the black dots represent experimental data collected for the epoxy 

dispensing process. 

 

Figure 2 The fuzzy regression model for the epoxy dispensing process 

 

3 Hybrid fuzzy regression  

With reference to (3), since certain terms of (3) could be insignificant / redundant, they could 
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be obtained. The proposed hybrid fuzzy regression (HFR), which integrates genetic 
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programming with the fuzzy regression, is proposed to determine the structure of the epoxy 

dispensing model and identify the significant fuzzy parameters of the model. The pseudocode 

of the HFR is shown in Figure 3, and the flowchart for each step described in the pseudocode 

is shown in Figure 4 in the appendix. 

 

Figure 3 Pseudo code of the hybrid fuzzy regression 

 The HFR first starts with the creation of a random initial population (t) with POP 

individuals i(t), while t=0. Each individual i(t) is in a form of a tree structure, that can be 

used to represent the structure of a fuzzy regression model as defined in (3). Then, the fuzzy 

parameters are assigned to each individual i(t) by applying Tanaka and Watada’s [21] fuzzy 

regression. All individuals are evaluated according to a defined fitness function which is 

aimed at evaluating the goodness-of-fitness of the fuzzy regression model. The parent 

selection process uses the goodness-of-fitness of each individual to determine the selection of 

potential individuals for performing crossover or mutation. Finally, the new individuals with 

the determined fuzzy parameters are evaluated using the fitness function to create a new 

population (t+1). The process continues until the pre-defined termination condition is 

t=0 

Initialize (t)=[1(t), 2(t),… POP(t)] 

Assign fuzzy parameters in all i(t) 

// (t) is the population of the t-th generation. 

// i(t) is the i-th individual of (t). 

Evaluate all i(t) according to a fitness function 
while (Terminational condition not fulfilled) do { 

             Parent Selection (t+1) 

             Crossover (t+1) 

             Mutation (t+1) 

             Determine fuzzy parameters in all i(t+1) 

by    
                 Tanaka and Watada’s [1988] fuzzy 

regression 

             Evaluate all i(t+1) 

             (t)= (t+1) 
             t=t+1 

} 
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fulfilled. The major aspects of applying the HFR on modeling the epoxy dispensing process 

are described below: 

3.1 Model Representation 

HFR generates the potential solutions, which are represented as an epoxy dispensing model 

as shown in (3). One of the most popular methods to represent structures is the use of 

hierarchical trees composed of functions F and terminals T [11]. The fuzzy regression model 

(3) only contains the three arithmetic operations, +, - and ×; thus, F is represented as F = {+, -

, ×}. The set of terminals T = {x, p~ } contains the variable set x={x1, x2, x3, x4 } of the fuzzy 

regression model and the fuzzy parameter set p~  =  
NSN

pppp ~,...,~,~,~
210

 of the fuzzy regression 

model, where NNS is the number of terms of the fuzzy regression model. For example, Figure 

5 shows an example of a hierarchical tree for the epoxy dispensing model which expresses 

the following formulation: 

(x1×x1) - (x2×x2) + (x1×x2×x3) 

which is equivalent to: 

 x1
2 
– x2

2
 + x1 ·x2 ·x3 

 The fuzzy parameters set p~  =  3210
~,~,~,~ pppp  is determined after identifying its 

structure from the hierarchical tree. In Figure 5, the number of fuzzy parameters of the epoxy 

dispensing model is 4. Therefore, the completed fuzzy regression model can be represented 

as follows: 

 0
~p ·x0 + 1

~p  ·x1
2 
– 2

~p ·x2
2
 + 3

~p ·x1 ·x2 ·x3, 
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Figure 5 An example of a hierarchical tree for the epoxy dispensing model 

 It can also be represented by: 

 0
~p ·x0 + 1

~p  ·x’1
 
– 2

~p ·x’2 + 3
~p ·x’3, 

where x0=1, x’1 = x1
2
, x’2 = x2

2
 and x’3 = x1·x2·x3.  

 In this research, the fuzzy parameters are determined by Tanaka and Watada’s [21] 

fuzzy regression, which is detailed in the appendix. 

 

3.2 Fitness function 

HFR evaluates the goodness-of-fitness of each individual by the fitness function, which is 

based on the mean absolute error (MAE), and can reflect the differences between the 

predicted values of the epoxy dispensing model and the actual values of the data sets. The 

MAE of the j-th individual can be calculated based on (4). 
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used for developing the epoxy dispensing model. 

(4) is commonly known as an indicator of modeling error of an epoxy dispensing 

model, reflecting how well the model can fit the training data sets. However, an epoxy 
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dispensing model may contain many unnecessary and complex terms. A complex over-

parameterized epoxy dispensing model with a large number of parametrical terms reduces the 

transparency and interpretation of the epoxy dispensing model. To avoid the HFR from 

generating epoxy dispensing models that are too complex, a fitness function is designed to 

balance the tradeoff between the reduction of complexity and model accuracy. In this 

research, penalty terms are introduced into the fitness function of the HFR [22], and the 

fitness of the j-th individual is denoted as: 

 
   21exp1

1

cLc

MAE
fitness

j

j

j



       (5) 

where fitnessj is the fitness value, Lj is the number of nodes of the j-th individual, and c1 and 

c2 are both the penalty terms. 

 

3.3 GP operations 

Like other evolutionary algorithms, the two main evolutionary operators in the HFR are 

crossover and mutation. For the crossover operation, one-point crossover with two parents is 

used. The crossover operation produces a pair of offspring that inherits the components of the 

epoxy dispensing models represented by two parents, and then the offspring is produced by 

exchanging the selected components of the two models. For example, two individuals, i  and 

j  represent the following models, and are shown in Figure 6(a): 

 3 1 2 3* *i x x x x    and  3 2 2*j x x x    

After the crossover operation, the individuals are represented by the following two 

models and are shown in Figure 6b. 

 3 1 2*i x x x    and    3 2 2 3* *j x x x x    

 For mutation operation, point mutation is used. Mutation operation is performed by 

randomly selecting a node in the individual that is an internal or terminal node. Then, the 
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associated sub-expression of the selected node is replaced with a randomly generated sub-

expression in the individual. For example, an individual i  (as shown in Figure 7) 

representing the following model is selected to be mutated:  

  2 1 1i x x x     

The individual is mutated by replacing a plus in the node with a multiplier. After 

performing the mutation, the mutated individual became the following and is represented by 

Figure 7: 

   2 1 1*i x x x    

 

Figure 6(a) The individuals θi and θj before performing crossover 

 

Figure 6(b) The individuals θi’ and θj’ after performing crossover 

 

 x3        x1           x2  
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 x3       x2  x2       x3  
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+ 

* * 

 x3        x1   x2      x3  
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 x3         x2       x2  
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+ 

* 
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Figure 7 Individual produced by the mutation 

 After the crossover and mutation operations, individuals from the current population 

with relatively better fitness, that can produce better epoxy dispensing model, are selected to 

serve as parents for the next generation. The roulette-wheel approach, which is among the 

most common selection methods used for selecting individuals to perform reproduction 

operations in evolutionary algorithms [23], is used for selection of individuals. After the 

selection, the population is evolved and improved iteratively until the pre-defined number of 

generations is reached. Otherwise, the HFR goes to the next evolutionary iteration. 

 

4 Model development 

In this research, 12 experiments were carried out based on a full factorial design with two 

levels of compressed air pressure ( 1x ), two levels of pump motor speed ( 2x ), and three levels 

of height between the substrate and the needle ( 3x ). In the experiments, the substrate 

temperature and the needle temperature were set to 60 
o
C and 40 

o
C, respectively. The 

experimental plan and results are shown in Table 1. The values as shown within the brackets 

in the table are the normalized ones, which range from 0 to 1. As suggested by the company 

supporting this research, it is practical that this small amount of experimental data is only 

available. Usually, it is impossible to collect a large amount of experimental results to 

develop the process models. Even though the process models with better accuracies are more 

likely to be generated, when larger amount of experimental data is used, larger amount of 

     x2           x1           x1      

The individual θk before the mutation  

+ 

+ 

   x2             x1             x1      

The individual θk’ before the mutation  
 

* 

+ 
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time is required to conduct the experiments. Therefore, this small amount of experimental 

data is used to develop the process models for the epoxy dispensing process, in order to 

evaluate whether appropriate process models with reasonable accuracies can be generated by 

the proposed HFR. 

Table 1 Experimental data sets of the epoxy dispensing process 

 

Run no. 

K 

Pressure 

(psi) 

x1k 

Speed (rpm) 

x2k 

Height (step) 

x3k 

Encap. 

weight (mg) 

yk 

Encap. 

thickness 

(mm) 

zk 

1 1 (0) 400 (0) 500 (0) 75.6 0.64 

2 1 (0) 400 (0) 1000 (0.5) 74.6 0.59 

3 1 (0) 400 (0) 1500 (1) 72.3 0.58 

4 1 (0) 1000 (1) 500 (0) 31 0.44 

5 1 (0) 1000 (1) 1000 (0.5) 31.1 0.42 

6 1 (0) 1000 (1) 1500 (1) 31.8 0.44 

7 4 (1) 400 (0) 500 (0) 114.3 0.74 

8 4 (1) 400 (0) 1000 (0.5) 111.9 0.72 

9 4 (1) 400 (0) 1500 (1) 113.8 0.72 

10 4 (1) 1000 (1) 500 (0) 51.4 0.50 

11 4 (1) 1000 (1) 1000 (0.5) 53.1 0.53 

12 4 (1) 1000 (1) 1500 (1) 55.3 0.53 

 

 Using the 12 normalized experimental data sets and the experimental results as shown 

in Figure 1, the following statistical regression models, (6) and (7) respectively, for 

encapsulation weight and encapsulation thickness were generated by the statistical regression 

(SR) based on the Matlab statistical toolbox: 

 y = 78.3541 + 30.5667 · x1 -51.4667 · x2 + 0.2250 · x3   (6) 

 The R
2
 value of model (6) is 97.8% and its training error with respect to the data sets 

in Table 1 is 7.8793%.  

 z = 0.6188 + 0.1050 · x1 - 0.1883 · x2 + 0.0125 · x3    (7) 

 The R
2
 value of model (7) is 97.3% and its modeling error is 2.6820%. 

 Using the same data sets, the fuzzy linear regression models for encapsulation weight 

and encapsulation thickness were generated based on the approach of fuzzy linear regression 

(FR) [12] as shown in (8) and (9), respectively.  
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 y = (100.4256, 2.4537) + (10.3556, 0.7097) x1    (8) 

 + (-0.0833, 0.0014) x2 + (-0.0005, 0.0004) x3 

 z = (0.7222, 0.0196) + (0.0309, 0.0016) x1      (9) 

 + (-0.0003, 0.0000) x2 + (-0.0000, 0.0000) x3 

Their training errors are 7.8474% and 3.2624%, respectively. 

 It can be found that the training errors obtained by statistical regression models given 

in equations (6) and (7) are similar to the those obtained by the fuzzy linear regression 

models given in (8) and (9). The training error obtained by the fuzzy linear regression for 

encapsulation weight is only slightly better than those obtained by the statistical regression. 

Also, the training error obtained by the statistical regression for encapsulation thickness is 

almost the same as those obtained by the fuzzy linear regression. However, more information 

can be provided by the models which are generated based on the fuzzy linear regression. The 

fuzziness of each parameter can be indicated by the fuzzy linear regression models, which are 

represented by equations (8) and (9). Both equations (8) and (9) show that the fuzziness 

produced by the process parameter namely Pressure (x1) is the higher than those of the 

process parameters namely Speed (x2) and Height (x3). However, this fuzzy information 

cannot be indicated by the statistical regression models, which is one of the limitations of 

using statistical regression. 

 Then, the same experimental data sets as shown in Table 1 were used to develop the 

HFR models for the epoxy dispensing process using Matlab. Madar et al. [18] found that the 

GP parameters given in Table 2 are able to find good solutions for various problems. As this 

paper focus on the development of the mechanisms of the HFR, these GP parameters are used 

in the HFR. 
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Table 2 GP parameters setting of the HFR 

Population size 50 

Maximum number of evaluated individuals 5000 

Generation gap 0.9 

Probability of crossover 0.5 

Probability of mutation 0.5 

  

Since the HFR is a stochastic method, different results could be obtained from 

different runs. To evaluate its overall performance, 30 runs were carried out. The best HFR 

models for encapsulation weight and encapsulation thickness with the smallest modeling 

errors among the 30 runs are shown in (10) and (11), respectively. 

 y = (73.8000, 18.0000) + (39.2634, 0.0000) · x1 + (-42.6526, 0.0000) · x2  

 + (0.3000, 0.0001) · x3  + (-17.2108, 0.0001) · x1 · x2    (10) 

 z = (0.6288, 0.1125) + (0.1019, 0.0000) · x1 + (-0.1950, 0.0002) · x2   

 + (-0.0055, 0.0000) · x3 + (-0.0394, 0.0000) · x1 · x2  

 + (0.0500, 0.0007) · x1 ·  x3 + (0.0500, 0.0007) · x1 ·  x2   (11) 

 The training errors for encapsulation weight and encapsulation thickness are 1.4857% 

and 1.8074%, respectively.  

 It can be seen that interaction and high order terms exist in the models (10) and (11), 

which are generated based on the HFR, but do not exist in models (6), (7), (8) and (9), which 

are developed based on the other two methods. Also, equation (10) shows that the parameter 

x1, and the interaction between parameters x1 and x2, induce most significant fuzziness to the 

encapsulation weight. Equation (11) shows that the interaction between parameter x1 and x3, 

and the interaction between parameters x1 and x2, induce most significant fuzziness to the 

encapsulation thickness. 
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 To present the testing results more clearly, Table 3 summarizes all the training errors 

of the process models developed based on statistical regression (SR), fuzzy linear regression 

(FLR) and the proposed HFR. In Table 3, it can be found that the training errors for both 

encapsulation weight and encapsulation thickness obtained by the proposed HFR are the 

smallest, comparing with those obtained by the statistical regression and the fuzzy linear 

regression. It can be explained by the fact that interaction terms or high order terms can be 

generated by the HFR, while both statistical regression and fuzzy linear regression can only 

generate linear terms. Therefore, both high order terms and nonlinear relationships of process 

parameters are more likely to be addressed, based on the process models generated by the 

HFR. Hence, the capability of the HFR for fitting the experimental data is better than those 

for the statistical regression and fuzzy linear regression, and the training errors obtained by 

the HFR is smaller than those obtained by both fuzzy linear regression and statistical 

regression. 

Table 3 Comparisons of the training results 

 SR FR HFR 

Training error of 

encapsulation weight (%) 

7.8793 8.2177 1.4857 

Training error of 

encapsulation thickness (%) 

2.6820 3.1832 1.8074 

 

 Cross-validation [24] is used to evaluate the effectiveness of the HFR as compared to 

the statistical regression and fuzzy linear regression in modeling the epoxy dispensing 

process. One round of cross-validation involves partitioning the 12 data sets into 2 subsets. It 

performs the analysis on one subset namely the cross-training set, and validates the analysis 

on the other subset namely the cross-validation set. Here 10 of the 12 data sets are randomly 

selected as the cross-training set to develop the model, while the remaining 2 data sets are 
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used as the cross-validation set to test the models. The two measures, training error regarding 

the cross-training set and testing error regarding cross-validation set, are used to evaluate the 

effectiveness of the HFR. The training error is used to reflect how well a developed model 

can fit the cross-training sets for developing models. The testing error is used to reflect how 

well the developed model can predict a response, based on the cross-validation set. As 

multiple rounds of cross-validation are performed using different partitions, and the 

validation results are averaged over the rounds, the variability in term of both modeling and 

testing errors can be reduced.  

 For the encapsulation weight and encapsulation thickness, the 12 modeling errors 

based on the three methods, statistical regression, fuzzy linear regression and HFR, are shown 

in Figure 8 and Figure 9, respectively. The x-axis of the figures indicates the cross-validation 

sets used for testing. For example, (2,9) means that the 2
nd

 and 9
th
 data sets were used for 

testing, and the rest of the data sets were used for model building. It can be seen from the 

figures that the line indicating the training errors for the HFR is lower than those for the 

statistical regression and fuzzy linear regression. Therefore, HFR can yield the smallest 

training errors in modeling for both the encapsulation weight y and encapsulation thickness z, 

compared with those obtained by both statistical regression (SR) and fuzzy linear regression 

(FR). Figure 10 and Figure 11 show the testing errors based on the methods for the 

encapsulation weight y and the encapsulation thickness z, respectively. From the figures, it 

can be found that the line indicating the testing errors for the HFR is the lowest, compared 

with those of the statistical regression and fuzzy linear regression. Therefore, the models 

based on the HFR can yield the smallest testing errors in both the quality characteristics, 

compared with those obtained by both statistical regression and fuzzy linear regression. 

Therefore, these results suggest that HFR not only has better capability for fitting the training 

data, but also has higher generalization capability in estimating both the encapsulation weight 

y and encapsulation thickness z than the other five algorithms in general. 



 20 

Training errors (encapsulation weight)

0

0.5

1

1.5

2

2.5

3

3.5

2 9 4 9 3 4 1 10 2 8 10 11 6 7 4 7 9 11 1 4 5 11 8 12

testing data sets

tr
a
in

in
g

 e
rr

o
r 

(p
e
rc

e
n

ta
g

e
)

SR FR HFR

Figure 8 Training errors for encapsulation weight 

 

Training errors (encapsulation thickness)

0

0.5

1

1.5

2

2.5

3

3.5

4

2 9 4 9 3 4 1 10 2 8 10 11 6 7 4 7 9 11 1 4 5 11 8 12

training data sets

tr
a
in

in
g

 e
rr

o
r 

(p
e
rc

e
n

ta
g

e
)

SR FR HFR

Figure 9 Training errors for encapsulation thickness 

 



 21 

 

Figure 10 Testing errors for encapsulation weight 
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Figure 11 Testing errors for encapsulation thickness 

 

 The means of the 12 testing errors of the three methods for the encapsulation weight y 

and encapsulation thickness z are shown in Table 4, from which it can be found that the HFR 



 22 

based models can yield the smallest testing errors. Also table 4 shows that the mean testing 

error obtained for the encapsulation weight is smaller than those obtained for the 

encapsulation thickness. It can be explained by two reasons: 1) encapsulation thickness is 

more difficult to be measured or calibrated than the encapsulation weight. Measurement 

errors for the encapsulation thickness are generally higher than those for the encapsulation 

weight. 2) Also, it is more difficult to control the shape and the volume of the epoxy by 

adjusting the process parameters than to control the encapsulation weight, so encapsulation 

thickness is more difficult to be controlled. Therefore, the models developed for the 

encapsulation thickness are more likely to produce higher errors than those for the 

encapsulation weight. 

Table 4 Means of testing errors for encapsulation weight and encapsulation thickness 

 Encapsulation weight 

(mean of testing errors %) 

Encapsulation thickness 

(mean of testing errors %) 

SR 2.5441 4.0987 

FR 3.0161 4.2219 

HFR 1.7406 2.9252 

 

 

5 Conclusion  

In this paper, a hybrid fuzzy regression (HFR) approach integrating fuzzy regression with 

genetic programming has been proposed to model the epoxy dispensing process for 

microchip encapsulation. Experiments based on full factorial design were conducted in which 

the process parameters of compressed air pressure, pump motor speed, distance between 

substrate and needle, and two quality characteristic, encapsulation weight and encapsulation 

thickness, were involved. In the HFR, the general outcomes of genetic programming were 

used to construct the structures of the epoxy dispensing models based on a tree 
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representation, and where the fuzzy regression algorithm was then employed to estimate the 

contributions and the fuzziness of the branches of the tree, so as to identify the fuzzy 

parameter of each term of the epoxy dispensing model. Since interaction and high order terms 

can be introduced in the branches of the tree using the genetic programming, a non-linear 

fuzzy regression model with interaction terms was developed based on the HFR approach.  

 To evaluate the performance of the proposed HFR approach, it has been applied to 

modeling the epoxy dispensing process, which is highly nonlinear process, due to the 

complex epoxy characteristics. Also, the results obtained by the HFR have also been 

compared with the other commonly used explicit modeling methods, including statistical 

regression and fuzzy linear regression. The result shows that the smallest training errors can 

be achieved by the HFR. This results indicate that the HFR is more capable to fit the data sets 

than the other two tested methods (i.e. statistical regression and fuzzy linear regression). In 

addition, a comparison of the validation results shows that smallest training errors and testing 

errors can be obtained by the HFR, compared with those obtained by statistical regression 

and fuzzy linear regression. The achievement of better results can be explained by the reason 

that interaction terms or high-order terms can be generated by HFR, but the other two tested 

methods ignore them. The results of the comparisons indicate that the HFR outperformed 

statistical regression and fuzzy regression in modeling the epoxy dispensing process in terms 

of training errors and testing errors. 

 Further research will involve the investigation of using different fuzzy membership 

functions on the HFR, in order to optimize the performance of the HFR. Also, physical 

experiments will be conducted, in order to further validate the effectiveness of the models 

developed by the HFR. 

  

 

 



 24 

Acknowledgement 

The work described in this paper was supported substantially by a grant from the Department 

of Industrial and Systems Engineering, The Hong Kong Polytechnic University. 

 

References 

[1] Chen D.X. (2002) Modeling and off-line control of fluid dispensing for electronics 

packaging. PhD thesis, The University of Saskatchewan 

[2] Chen X.B., Ke H. (2006) Effect of fluid properties on dispensing processes for electronic 

packaging. IEEE Transactions on Electronic Packaging Manufacturing 29(2): 75-82 

[3] Li H.X., Tso S.K., Deng H. (2001) A concept approach to integrate design and control for 

the epoxy dispensing process. International Journal of Advanced Manufacturing 

Technology 17: 677-682 

[4] Hong Y.P., Li H.X. (2003) Comparative study of fluid dispensing modeling. IEEE 

Transactions on Electronic Packaging Manufacturing 26(4): 273-280 

[5] Li J., Deng G. (2004) Technology development and basic theory study of fluid dispensing 

– a review. Proceedings of the sixth IEEE Components, Packaging and Manufacturing 

Technology Conference 198–205 

[6] Chen X.B. (2009) Modeling and control of fluid dispensing processes: a state-of-the-art 

review. International Journal of Advanced Manufacturing Technology 43: 276-286 

[7] Kwong C.K., Chan K.Y., Wong H. (2007) An empirical approach to modeling fluid 

dispensing for electronic packaging. International Journal of Advanced Manufacturing 

Technology 34(1-2): 111-121 

[8] Kwong C.K., Chan K.Y., Wong H. (2008) Takagi-Sugeno neural fuzzy modeling 

approach to fluid dispensing for electronic packaging. Expert Systems with Applications 

34(3): 2111-2119 



 25 

[9] Takagi T., Sugeno M. (1985) Fuzzy identification of systems and its application to 

modeling and control. IEEE Transactions on Systems, Man and Cybernetics 15(1): 116-

132 

 [10] Azadeh A., Seraj O., Saberi M. (2011) An integrated fuzzy regression – analysis of 

variance algorithm for improvement of electricity consumption estimation in uncertain 

environments. International Journal of Advanced Manufacturing Technology 53: 645-

660 

[11] Sener Z., Karsak E.E. (2010) A decision model for setting target levels in quality 

function development using nonlinear programming-based fuzzy regression and 

optimization. International Journal of Advanced Manufacturing Technology 48: 1173-

1184 

[12] ] Ip K. W., Kwong C. K., Bai H., Tsim Y. C. (2003) Process modelling of epoxy 

dispensing for microchip encapsulation using fuzzy linear regression with fuzzy 

intervals. International Journal of Advanced Manufacturing Technology 22: 417–423 

[13] Koza J. (1992) Genetic Programming: On the Programming of Computers by Means of 

Natural Evolution. MIT Press: Cambridge 

[14] Koza J. (1994) Genetic Programming II: automatic discovery of reusable programs. MIT 

Press 

[15] Lakshminarayanan S., Fujii H., Grosman B., Dassau E., Lewin D.R. (2000) New product 

design via analysis of historical databases. Computers and Chemical Engineering 24: 

671-676 

[16] Brezocnik M., Gusel L. (2004) Predicting stress distribution in cold formed material 

with genetic programming. International Journal of Advanced Manufacturing 

Technology 23: 467–474 



 26 

[17] Kok M., Kanca E., Eyercioglu O. (2010) Prediction of surface roughness in abrasive 

waterjet machining of particle reinforced MMCs using genetic expression programming. 

International Journal of Advanced Manufacturing Technology 

[18] Madar J., Abonyi J., Szeifert F. (2005) Genetic programming for the identification of 

nonlinear input – output models. Industrial and Engineering Chemistry Research 44: 

3178 – 3186 

[19] Kwong C.K., Chan K.Y. (2005) Process modeling and optimization of epoxy dispensing 

using volumetric pump. A Progress Report to ASM Assembly Automation Ltd. 

[20] Gabor D., Wildes W., Woodcock R. (1961) A Universal non-linear filter, predictor and 

simulator which optimizes itself by a learning process. Proceedings of IEE 108B: 422-

438 

[21] Tanaka H., Watada J. (1988) Possibilistic linear systems and their application to the 

linear regression model. Fuzzy Sets and Systems 272: 275-289 

[22] Willis M.J., Hiden H., Hinchliffe M., McKay B., Barton G.W. (1997) Systems modeling 

using genetic programming. Computers and Chemical Engineering 21: 1161-1166. 

[23] Goldberg D.E. (1989) Genetic Algorithms in Search, Optimization and Machine 

Learning. Addison Wesley. 

[24] Stone M. (1974) Cross validation choice and assessment of statistical predictions, 

Journal of the Royal Statistical Society 36: 111-147. 

[25] Tanaka H., Uejima S., Asai K. (1982) Linear regression analysis with fuzzy model. 

IEEE Transactions on Systems, Man, and Cybernetics 12: 903-907 

 

 

 

 

 



 27 

Appendix 

Tanaka et al. [25] formulated the fuzzy regression problem as the following linear 

programming problem: 
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where M is the number data sets used for training the epoxy dispensing model, and  ix j'  is 

the i-th data set with respect to the j-th transformed variable of the epoxy dispensing model, 

subject to: 
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 J in (18) is the total fuzziness of the epoxy dispensing model. The value of h in (19) 

and (20) is between 0 and 1. It is referred to as a fitting degree of the epoxy dispensing model 

to the given data sets, and is subjectively chosen by decision makers. Constraints (19) and 

(20) restrict that the observation of the i-th data set  iy  has at least h degree of belonging to 

 iy~  as      ),,2,1(~ Mihiy
iy

 . Therefore, the objective of solving the linear 

programming problem (18-22) was to determine the fuzzy nonlinear parameters 

 jjj cA ',''
~

  such that the total vagueness J is minimized subject to 

     ),,2,1(~ Mihiy
iy

 . Therefore, the intervals of the epoxy dispensing process 

derived from Tanaka et al [25]’s approach were determined by all the collected data sets and 

the value h. With the advice from the company supporting this research [18], h = 0.1 was 

used.  
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Figure 4 The flowchart of the hybrid fuzzy regression (HFR) 
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