1,352 research outputs found

    Specializing Interpreters using Offline Partial Deduction

    No full text
    We present the latest version of the Logen partial evaluation system for logic programs. In particular we present new binding-types, and show how they can be used to effectively specialise a wide variety of interpreters.We show how to achieve Jones-optimality in a systematic way for several interpreters. Finally, we present and specialise a non-trivial interpreter for a small functional programming language. Experimental results are also presented, highlighting that the Logen system can be a good basis for generating compilers for high-level languages

    Loanword adaptation as first-language phonological perception

    Get PDF
    We show that loanword adaptation can be understood entirely in terms of phonological and phonetic comprehension and production mechanisms in the first language. We provide explicit accounts of several loanword adaptation phenomena (in Korean) in terms of an Optimality-Theoretic grammar model with the same three levels of representation that are needed to describe L1 phonology: the underlying form, the phonological surface form, and the auditory-phonetic form. The model is bidirectional, i.e., the same constraints and rankings are used by the listener and by the speaker. These constraints and rankings are the same for L1 processing and loanword adaptation

    Analyzing genome-wide association studies with an FDR controlling modification of the Bayesian information criterion

    Full text link
    The prevailing method of analyzing GWAS data is still to test each marker individually, although from a statistical point of view it is quite obvious that in case of complex traits such single marker tests are not ideal. Recently several model selection approaches for GWAS have been suggested, most of them based on LASSO-type procedures. Here we will discuss an alternative model selection approach which is based on a modification of the Bayesian Information Criterion (mBIC2) which was previously shown to have certain asymptotic optimality properties in terms of minimizing the misclassification error. Heuristic search strategies are introduced which attempt to find the model which minimizes mBIC2, and which are efficient enough to allow the analysis of GWAS data. Our approach is implemented in a software package called MOSGWA. Its performance in case control GWAS is compared with the two algorithms HLASSO and GWASelect, as well as with single marker tests, where we performed a simulation study based on real SNP data from the POPRES sample. Our results show that MOSGWA performs slightly better than HLASSO, whereas according to our simulations GWASelect does not control the type I error when used to automatically determine the number of important SNPs. We also reanalyze the GWAS data from the Wellcome Trust Case-Control Consortium (WTCCC) and compare the findings of the different procedures

    Tagging, encoding, and jones optimality

    Get PDF
    A partial evaluator is said to be Jones-optimal if the result of specializing a self-interpreter with respect to a source program is textually identical to the source program, modulo renaming. Jones optimality has already been obtained if the self-interpreter is untyped. If the selfinterpreter is typed, however, residual programs are cluttered with type tags. To obtain the original source program, these tags must be removed.; ; A number of sophisticated solutions have already been proposed. We observe, however, that with a simple representation shift, ordinary partial evaluation is already Jones-optimal, modulo an encoding. The representation shift amounts to reading the type tags as constructors for higherorder abstract syntax. We substantiate our observation by considering a typed self-interpreter whose input syntax is higher-order. Specializing this interpreter with respect to a source program yields a residual program that is textually identical to the source program, modulo renaming.Publicado en Basic Research in Computer Science, April, 2003.Laboratorio de Investigación y Formación en Informática Avanzad

    General decapping activators target different subsets of inefficiently translated mRNAs

    Get PDF
    The Dcp1-Dcp2 decapping enzyme and the decapping activators Pat1, Dhh1, and Lsm1 regulate mRNA decapping, but their mechanistic integration is unknown. We analyzed the gene expression consequences of deleting PAT1, LSM1, or DHH1, or the DCP2 C-terminal domain, and found that: i) the Dcp2 C-terminal domain is an effector of both negative and positive regulation; ii) rather than being global activators of decapping, Pat1, Lsm1, and Dhh1 directly target specific subsets of yeast mRNAs and loss of the functions of each of these factors has substantial indirect consequences for genome-wide mRNA expression; and iii) transcripts targeted by Pat1, Lsm1, and Dhh1 exhibit only partial overlap, are generally translated inefficiently, and, as expected, are targeted to decapping-dependent decay. Our results define the roles of Pat1, Lsm1, and Dhh1 in decapping of general mRNAs and suggest that these factors may monitor mRNA translation and target unique features of individual mRNAs

    Optimal Compilation of HPF Remappings

    No full text
    International audienceApplications with varying array access patterns require to dynamically change array mappings on distributed-memory parallel machines. HPF (High Performance Fortran) provides such remappings, on data that can be replicated, explicitly through therealign andredistribute directives and implicitly at procedure calls and returns. However such features are left out of the HPF subset or of the currently discussed hpf kernel for effeciency reasons. This paper presents a new compilation technique to handle hpf remappings for message-passing parallel architectures. The first phase is global and removes all useless remappings that appear naturally in procedures. The code generated by the second phase takes advantage of replications to shorten the remapping time. It is proved optimal: A minimal number of messages, containing only the required data, is sent over the network. The technique is fully implemented in HPFC, our prototype HPF compiler. Experiments were performed on a Dec Alpha farm

    Intellectual Property and the Prisoner’s Dilemma: A Game Theory Justification of Copyrights, Patents, and Trade Secrets

    Get PDF
    In this article, I will offer an argument for the protection of intellectual property based on individual self-interest and prudence. In large part, this argument will parallel considerations that arise in a prisoner’s dilemma game. In brief, allowing content to be unprotected in terms of free access leads to a sub-optimal outcome where creation and innovation are suppressed. Adopting the institutions of copyright, patent, and trade secret is one way to avoid these sub-optimal results

    A Novel Approach To Intelligent Navigation Of A Mobile Robot In A Dynamic And Cluttered Indoor Environment

    Get PDF
    The need and rationale for improved solutions to indoor robot navigation is increasingly driven by the influx of domestic and industrial mobile robots into the market. This research has developed and implemented a novel navigation technique for a mobile robot operating in a cluttered and dynamic indoor environment. It divides the indoor navigation problem into three distinct but interrelated parts, namely, localization, mapping and path planning. The localization part has been addressed using dead-reckoning (odometry). A least squares numerical approach has been used to calibrate the odometer parameters to minimize the effect of systematic errors on the performance, and an intermittent resetting technique, which employs RFID tags placed at known locations in the indoor environment in conjunction with door-markers, has been developed and implemented to mitigate the errors remaining after the calibration. A mapping technique that employs a laser measurement sensor as the main exteroceptive sensor has been developed and implemented for building a binary occupancy grid map of the environment. A-r-Star pathfinder, a new path planning algorithm that is capable of high performance both in cluttered and sparse environments, has been developed and implemented. Its properties, challenges, and solutions to those challenges have also been highlighted in this research. An incremental version of the A-r-Star has been developed to handle dynamic environments. Simulation experiments highlighting properties and performance of the individual components have been developed and executed using MATLAB. A prototype world has been built using the WebotsTM robotic prototyping and 3-D simulation software. An integrated version of the system comprising the localization, mapping and path planning techniques has been executed in this prototype workspace to produce validation results
    corecore