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Abstract 

The need and rationale for improved solutions to indoor robot navigation is increasingly driven 

by the influx of domestic and industrial mobile robots into the market. This research has 

developed and implemented a novel navigation technique for a mobile robot operating in a 

cluttered and dynamic indoor environment. It divides the indoor navigation problem into three 

distinct but interrelated parts, namely, localization, mapping and path planning. The localization 

part has been addressed using dead-reckoning (odometry). A least squares numerical approach 

has been used to calibrate the odometer parameters to minimize the effect of systematic errors on 

the performance, and an intermittent resetting technique, which employs RFID tags placed at 

known locations in the indoor environment in conjunction with door-markers, has been 

developed and implemented to mitigate the errors remaining after the calibration. 

A mapping technique that employs a laser measurement sensor as the main exteroceptive sensor 

has been developed and implemented for building a binary occupancy grid map of the 

environment. A-r-Star pathfinder, a new path planning algorithm that is capable of high 

performance both in cluttered and sparse environments, has been developed and implemented. Its 

properties, challenges, and solutions to those challenges have also been highlighted in this 

research. An incremental version of the A-r-Star has been developed to handle dynamic 

environments. Simulation experiments highlighting properties and performance of the individual 

components have been developed and executed using MATLAB. A prototype world has been 

built using the Webots™ robotic prototyping and 3-D simulation software. An integrated version 

of the system comprising the localization, mapping and path planning techniques has been 

executed in this prototype workspace to produce validation results.  
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CHAPTER 1  

Introduction 

1.1 Research Scope 

Robotic navigation is the act of moving a robot from one place in an environment to 

another on a collision-free path which may be either a predefined path (e.g., using offline path 

planning methods such as   ) or a path defined by maximizing a cost function (such as in 

artificial potential fields (Guldner et al., 1995; Sfeir et al., 2011)). The process of examining the 

available information about the environment and computing a path that satisfies one or more 

conditions and/or constraints (e.g., shortest, collision free, safest path, etc.) is referred to as path 

planning. At least three main questions need to be answered in a navigation task, namely, 

localization (Where am I?), mapping (How does my environment look?) and path planning 

(How do I get to my destination from here without crashing into an obstacle?) (Leonard and 

Durrant-Whyte, 1991).  

Researchers have investigated many ways of solving the navigation problem. Satellite-

based and satellite related navigation is well-researched, and the payoff has invariably resulted in 

different navigation solutions for both commercial and domestic consumption. The most 

common examples include the Global Positioning System (GPS), which has become a common 

commodity found in modern communities. This has greatly improved navigation in areas where 

sufficient satellite coverage is available (commonly called outdoor navigation). However, there 

exist some environments devoid of sufficient satellite signals and hence satellite applications are 

either unreliable or inapplicable. Such satellite-signal deficient areas are commonly referred to as 

indoor environments, and navigating in such environments is called indoor navigation (Lukianto 
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et al., 2010). Examples include large public office buildings, shopping malls, hospital corridors 

and wards, residential homes, etc.  

Indoor navigation is functionally similar to outdoor navigation in the sense that both 

involve positioning/localization, mapping and some sort of obstacle avoidance. However, they 

differ in the technologies they use, the requirement for routing and directions and the physical 

space within which they operate (Karimi, 2011). This implies that some implementation 

modifications are needed, and in some cases a total redesign is necessary, when transferring an 

outdoor navigation system into an indoor environment to ensure effective and efficient 

performance of the system. However, it is worth mentioning that some technologies which are 

applicable to both indoor and outdoor navigation have been designed even though these often 

have limited applications.  

As pointed out in Wang (2012), justifying the need for outdoor navigation was much 

easier as situations necessitating their use were more glaring than situations requiring indoor 

navigation. However, the proliferation of domestic robots such as vacuum robots, robots for 

assistive care, intelligent wheelchairs (Matsumoto, Ino andOgasawara, 2001), etc. for various 

applications has whetted researchers’ appetite for addressing indoor navigation problems. The 

sections below introduce the three aspects of indoor navigation highlighted above, outline the 

main problem that this research seeks to tackle and summarize the contributions of this research.  

1.2 Motivation 

The past few decades have seen a great interest in research to enhance mobile robot 

navigation in an indoor environment. However, the vast majority of indoor navigation algorithms 

presented in the literature focuses more on guiding the mobile robot relative to the surrounding 
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environment, in the absence of coordinate information. Such systems are handicapped when it 

comes to certain applications that require point-to-point navigation. The popularity of 

autonomous indoor navigation rests on the increasing demand for industrial and domestic mobile 

robots (e.g., robot vacuum cleaners, etc.). Wang (2012), has emphasized that defending 

development of indoor navigation systems has been made much more reasonable and convenient 

by the influx of indoor and industrial robots.  

For example, in the health care industry, it is a well-known fact that the worldwide 

population has seen a tremendous growth within the past decade and research has confirmed the 

possibility of continuous growth of population in the next decade (see Figure 1.1). The 

population of elderly in this demographic is gaining much attention since the rate of growth of 

the elderly population significantly exceeds that of the general population (Division, 2009) . The 

population of older persons is growing at a rate of 2.6 percent per year faster than the whole 

population (see Figure 1.2). The projection is that by 2025-2030, the population growth rate for 

individuals of age 60 and over will be 4 times as rapid as the total population growth rate (i.e., 

2.8 : 0.7). These considerations point to the need for robotic assistive care for several reasons 

including that: (a) the existing supply of domestic and health-care services does not seem to be 

commensurate with the demand; (b) the high cost of elderly care; and (c) the increasing desire 

for aging-in-place (making changes in the home to allow seniors to live at home for as long as 

possible).  

Many indoor operating robots are confined to predefined trajectories or fixed locations 

due to the lack of more prestigious navigating techniques to handle autonomous navigation of 

these robots. Our motivation therefore is to develop an easy to implement, inexpensive and 
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adaptable navigating system for a mobile robot operating in an indoor environment. This will 

facilitate the use of domestic and industrial mobile robots. 

 

Figure 1.1. Projected population growth from 1950 to 2050 by Department of Economic and 

Social Affairs report (Division, 2009). 

 

Figure 1.2. Average annual growth rate of the world's population for the total population and 

population aged 60 or over, 1950-2050 (from United Nations Report: World Population Aging 

2009) (Division, 2009). 
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1.3 Indoor Localization 

One of the fundamental requirements for achieving autonomy in mobile robot navigation 

is localization. Indoor localization of a mobile robot involves estimating the current position and 

orientation of the robotic system in a given indoor environment, usually by using measured data 

and a priori knowledge of the environment in the form of a map (Sgouros et al., 1996). Without 

accurate knowledge of the mobile robot’s position relative to a given environment, autonomous 

task execution becomes a very difficult problem. Indoor mapping involves the gathering and 

representation of the layout of the indoor environment so that the robot can interpret the 

environment and exploit the layout for context awareness and subsequent maneuvering within 

the environment (Sgouros et al., 1996).  

The past decade has seen tremendous progress in research into localization and mapping 

in an indoor environment (Nieuwenhuisen et al., 2010). Localization and mapping have been 

handled separately as well as simultaneously in what is commonly referred to as Simultaneous 

Localization And Mapping (SLAM) (Tuna et al., 2012). Localization and Mapping in a well-

structured environment is a solved problem. However, issues such as getting a system to work in 

real time, error handling, loop closure, reducing the computation and storage requirement, etc. 

make this field still very viable for research. Another challenge is how to handle dynamisms in 

the environment, which are common in a typical indoor environment (e.g. moving objects, 

opening and closing of doors, displacement of objects). Most of the current work presents 

solutions requiring robots to be equipped with a comprehensive sensor suite, such as ultrasonic 

rangers, LIDAR, and cameras as well as computers with substantial capabilities, which can be 
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excessively cumbersome for practical robotic applications. For example, Ying et al. (2010) 

presented one such system for navigating in a cluttered environment.  

There are also several techniques highlighted in literature for indoor localization. 

Wireless Local Area Network (WLAN)-based localization is very popular (Bahl and 

Padmanabhan, 2000; Castro and Munz, 2000). Most of the WLAN localization systems use 

Received Signal Strength Indicator (RSSI) for localization. These systems use two main phases, 

namely, an offline training phase (Nguyen et al., 2005; Youssef and Agrawala, 2005) and an 

online localization phase (Addesso et al., 2010; Kushki et al., 2010). Research into these phases 

forms the two main branches of the WLAN-based Localization. Junjun et al. (2011) presented 

some methodologies for WLAN-based indoor localization using RSSI. The authors used grids, in 

conjunction with a transfer matrix, which are sampled prior to the training phase to estimate 

probabilities of neighboring nodes to calculate Access Points (APs) for each grid. Some APs 

from the neighbors of the last estimated location and these new APs from current iteration are 

selected and used to compute the likelihood of the nodes for the localization. A statistical 

threshold is calculated and used to avoid the condition of the system being trapped in a local 

minimum.  

Landmark-based localization is another solution to the indoor localization problem. Two 

broad categories of landmarks can be highlighted, namely, artificial landmarks and natural 

landmarks. Artificial landmarks are prevalent in structured environments, and they usually 

involve less environmental engineering to achieve a flexible, robust and highly accurate 

localization system compared to systems that use natural landmarks (Sooyong and Jae-Bok, 

2007). The artificial landmark systems can be grouped into active landmarks, which usually 
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require an electrical power source for their activation (e.g., Active Radio Frequency 

Identification (RFID)), and passive landmarks, which require no power source for their operation 

(e.g., barcodes, QR coded tags, passive RFID, etc.). Passive landmark-based localization is 

relatively low-cost and consumes less power. This makes passive systems easily scalable (where 

the technological requirement is not a limitation) and easily maintained. However, most passive 

landmark-based navigation systems need higher ‘landmark density’ to match the accuracy of 

active landmark-based navigation, a condition that makes unique coding and subsequent 

identification of individual landmarks a burden for large environments (Lee, 2009; Zhou and Shi, 

2009). In (Ul-Haque and Prassler, 2010), the authors evaluated passive artificial landmark-based 

localization system using landmarks made of a retro-reflective coated film able to strongly 

reflect the infrared light coming from the CMOS infrared camera. The authors argue that the 

system is easy to scale and maintain after installation and that the ease of assigning unique 

landmark IDs to thousands of landmarks enables large area coverage.  

1.4 Mapping  

Mobile robot mapping is another important and challenging aspect of robotic navigation 

that has been investigated more increasingly in the past few decades. Mapping involves the 

building of a consistent representation of the robot’s unknown environment based on the 

information obtained through the robot’s sensors, such as laser, sonar, visual and infrared 

sensors. The Sound-based (sonar) sensors such as ultrasonic sensors are among the most prolific 

because they are relatively easy to use and inexpensive to acquire. However, their major 

drawback lies in their being highly prone to interference from environmental noise.  
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Despite the many efforts of researchers, mapping remains a difficult challenge because 

the robot has to deal with unexpected circumstances, such as moving objects, and also must 

handle complex and rough environments with little or no prior knowledge. In the case of mobile 

robots, these challenges are compounded by the non-existence of a perfect strategy for estimating 

the exact instantaneous location of the robot at a given time since this is at the core of the 

mapping process.  

Mapping can be categorized under two broad headings, namely, (a) grid/graph-based 

environment maps and; (b) object-specification based maps. Research into the grid/graph-based 

environmental maps such as the occupancy grids (Noykov and Roumenin, 2007) is well advance 

due to the intuitive nature of these maps and their ease of implementation. Yenilmez and 

Temeltas (2007) presented a new map building method for a mobile robot operating in an 

obstacle populated environment by fusing sensor data using the sequential principal component 

(SPC) method. An approximate but highly efficient approach to mobile robot mapping with 

Rao–Blackwellized particle filters has been presented in (Grisetti et al., 2007). A novel method 

for the integration of fuzzy logic and genetic algorithms for solving the mobile robot mapping 

problem has been presented in Begum et al. (2008).  

The inception of Simultaneous Localization And Mapping (SLAM) (Smith et al., 1990) 

has led many researchers to consider object-specification based maps, especially feature-based 

maps, and landmark-based maps. The author, Milton Roberto (2010), presented a new algorithm 

for feature-based environment mapping where the environment is represented using multivariate 

Gaussian mixture models using data from either sonar sensors or laser range finders. Similar 
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work includes that reported in literature (de la Puente et al., 2009; Vázquez-Martín et al., 2009; 

Zen et al., 2011). 

1.5 Path-planning 

Given a map of an environment, one common task is for the mobile robot to determine a 

collision-free path from its current position (state) to a specified position (state) called the goal. 

The process of determining this path is called path planning. The solution to the path planning 

problem usually falls under one of three categories: search-based, sampling-based and 

combinatorial-based solutions. The combinatorial methods are the oldest and possibly most 

studied branch of planning, with application in many areas ranging from computer graphics to 

very large scale integrated circuit design. The search-based techniques dominate the other two 

categories of techniques because they are relatively easy to implement and also due to the fact 

that they received an early establishment of dynamic search-based algorithms. Research, 

however, seems to be shifting towards the sampling-based techniques due to their powerful 

potential for planning in high dimensional space such as that of the serial robot manipulators 

(Wooden, 2006). 

Search-based planning. Search-based planning techniques usually operate on 1.5.1 

occupancy grids. The configuration space is represented as a tessellation of regularly sized grid 

cells with the start location of the robot and the goal location within the grid. A search is then 

performed on the grid to solve the point-to-point problem by finding a chain of free cells (grid 

cells that are free of obstacles) linking them. Usually these cells form the shortest possible path. 

 Limitations. The grid on which search-based techniques are performed is usually 1.5.1.1

a graph with a fixed topology. One requirement of such graphs is that their resolution needs to be 
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specified prior to the search. This gives rise to what is usually referred to as resolution 

completeness (i.e., the path found by the search is only optimal at the specified resolution of the 

grid). The ramification is that the shortest possible path found by the search might not be the 

shortest possible continuous path in the workspace. The higher the resolution of the grid, the 

closer the searched path is to the shortest continuous path possible on the workspace. However, 

using high resolution is not without a price tag. High resolution means high computational cost 

in terms of memory for storage and processor time for computation. Using coarse resolution can 

result in the computation of non-intuitive paths (see Figure 1.3), or render some regions 

inaccessible from other regions (see Figure 1.4). Note that for both Figure 1.3 and Figure 1.4, 

subfigure (a) is the continuous world, subfigure (b) is the course gridded world and subfigure (c) 

is the fine gridded world. There is therefore always a tradeoff between grid resolution and 

computational cost. A search-based method is complete when it always returns a path through 

the configuration space of free cells,      , whenever such a path exists.  

   

Figure 1.3. How increasing resolution can help graph search algorithms 

 

(a) (b) (c) 
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Figure 1.4. How increasing resolution can help graph search algorithms. 

On the other hand, a regular resolution grid can be decimated to a multi-resolution grid or 

hierarchical tree structures (e.g., a quad-tree (Noborio et al., 1990) and framed quad-tree (Yahja 

et al., 1998)). This is usually accomplished as preprocess before the search technique is applied. 

It is worth mentioning that, this can be a non-trivial process. 

Sampling-based path planning. The idea of the sampling-based path planning is 1.5.2 

to run a search that probes the configuration space with a sampling scheme. The system employs 

a collision detecting module for the probing of the configuration space (LaValle, 2006). That is, 

the system generates a vertex and checks whether the generated vertex is interior to an obstacle 

using the collision detecting module. If so, the vertex is discarded, and otherwise the vertex is 

considered good and edges are added to it and its mutually visible immediate neighbors 

(Wooden, 2006). The neighbors are usually nearest neighbors or k-nearest neighbors. The vertex 

generation can either be stochastic, such as in a probabilistic roadmap (PRM) method (Kavraki et 

al., 1996; Zhong and Su, 2011), or deterministic. The sampling based path-planning approach 

has proven powerful in solving robotics, biological and manufacturing applications, especially 

those involving thousands and even millions of geometric primitives. Such problems are difficult 

if not impossible to be handled with techniques that rely on explicit representation of the 

(a) (b) (c) 
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environment (Choset et al., 2005). The idea here is to eliminate the need for explicit 

representation of the environment and only generate information about the environment based on 

sampling. After identifying sufficient vertices and edges, a graph search technique (such as   ) 

can be employed to find the path linking the start and goal positions. A recent trend in this 

branch of path planning has been to investigate methods of making the sampling-based approach 

dynamic (Yershova et al., 2005; Ferguson et al., 2006). 

 Limitation. The main drawback of the sampling-based path planning approach is 1.5.2.1

its weak guarantee of completeness (usually termed probabilistic completeness). The 

completeness property guarantees that the problem will be solved if a solution exists. Thus, for 

any given start and goal locations, the approach correctly reports a solution if at least one exists 

and no solution if none exists. Since only sample vertices are generated, a false conclusion can 

result when the samples are not a true representation of the environment. The solution to this 

problem lies in the quality of the sampling technique used. 

Combinatorial-based approach. As the name suggests, the combinatorial-based 1.5.3 

approach to path planning takes a polyhedral representation of the environment and connects the 

vertices with edges and/or connects the edges with vertices to form what is usually referred to as 

roadmap. A search method can then be employed to determine the shortest path between the start 

and the goal positions. The three main categories in literature are shortest-path (visibility 

graphs), maximum clearance, and cell decomposition. Combinatorial approaches find paths 

through the continuous configuration space without employing any approximation technique 

such as discretization or sampling and hence are usually referred to as exact techniques. 
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Combinatorial approaches are complete (i.e., for a given input, they are able to return whether a 

solution exists or does not exist).  

 Limitations. The main challenge with combinatorial algorithms is that they can 1.5.3.1

become impractical for workspaces filled with numerous geometric primitives. This is because 

the number of vertices and edges will grow exponentially; making excessive demand on storage 

and making search too time consuming. The other limitations are approach dependent; for 

example, visibility graphs suffer from obstacle edge hugging which is undesirable in practical 

implementations.  

1.6 Statement of Research Problem 

Localization. The challenges affecting the implementation of absolute positioning 1.6.1 

systems such as the use of navigating beacons and GPS have led to the proliferation of relative 

positioning systems. Relative positioning systems usually use dead-reckoning for position 

estimation. Dead-reckoning integrates all pose (position and orientation) changes made by the 

robot from its initial to current pose. Dead-reckoning is very simple and inexpensive in its 

modeling and implementation but suffers from substantial sources of error (Cox, 1991). The 

greatest weakness of dead-reckoning is the accumulation of errors and thus, the uncertainty in 

the robot’s position estimation increases without bound over time. The origin of errors in dead-

reckoning can be classified under two broad headings, systematic and non-systematic errors. 

Systematic errors originate from incorrect parameterization/ measurements inherent in the 

system due to imprecise manufacturing and modeling.  

Many researchers have considered some of the causes of the observable systematic errors 

and have developed calibration and tuning methods for mitigating them (Borenstein and Liqiang, 
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1996). However, to the best of our knowledge, none of these researchers claim to perfectly 

eliminate all of the causes. This means there will still be some unaccounted for causes 

introducing errors into the estimation in the long run. Besides, non-systematic errors are 

unpredictable and mostly considered unobservable and so their effects cannot be adequately 

modeled. Many dead-reckoning systems employed in mobile robots use odometers, leading to 

the conventional name odometry. An intuitive way to improve the position estimation is to fuse 

odometry information with additional data/information from sensor sources such as global 

positioning systems (Thrapp et al., 2001), inertial navigation systems (Borenstein and Feng, 

1996) or cameras (Abuhadrous et al., 2003).  

Path planning. Map building using fixed node decomposition (i.e., the continuous 1.6.2 

world is tessellated into a discrete approximation of the continuous map) is inexact resulting in 

the loss of narrow passages in this transformation. The higher the resolution of the grid, the 

closer the approximation is to the continuous world. But increasing the resolution introduces 

more free nodes and increases the search space leading to a sparse grid (see Figure 1.3 and 

Figure 1.4). The map of most indoor environments can be considered sparse if decomposed into 

nodes of high resolution. Most of the path planning algorithms in literature are great in solving 

the path planning problem on cluttered grids but not so much on sparse grids whiles others are 

good on sparse grids but not on cluttered grids. However, many real world environments 

comprise of both cluttered and sparse sections. A common way to solve this is the use of multi-

resolution gridding (Cowlagi and Tsiotras, 2010; Shih-Ying et al., 2012), that means regions 

close to obstacles are represented with high resolution gridding and regions far from obstacles 

are represented by much courser gridding. But building multi-resolution/adaptive grids requires 
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more work in the decomposition than building uniform/fixed node grids. Besides, determining 

which node a given position belongs to and finding the neighbors of a given node in a multi-

resolution grid is a non-trivial task (Aizawa and Tanaka, 2009). The motivation is therefore to 

develop a complete and correct search algorithm that can plan paths in high-dimension, high-

resolution grid maps faster across the spectrum from highly sparse grids to heavily cluttered 

grids. This will enable us to handle large grid sizes and thus encourage increasing the resolution 

of the grid without the need for multi-resolution. 

Problem definition. The indoor navigation problem has been formulated thus: 1.6.3 

Given an unknown and unstructured indoor environment with a navigating mobile robot and a 

model of how the robot interacts with the environment (a) design a system for lifelong estimation 

of the position of the robot in such an environment; (b) using this information about the robot’s 

instantaneous locations in the environment, build a consistent map for the environment; and (c) 

given a current state of the robot and expected destination state, search for the minimum cost 

path between these two states maneuverable by the robot. Chapter 3 presents a solution to parts 

(a) and (b) while Chapter 4 presents a solution to part (c). 

General assumptions. This section presents some of the general terminologies for 1.6.4 

describing robots and their environment vis-à-vis some generally accepted assumption for 

robotic navigation. The robot is a rigid body equipped with mobility capability, in this case a 

wheeled robot with differential drive motion system. The world in which the robot operates is 

termed the workspace which is assumed to comprise two distinct regions: Obstacle region – 

denotes places in the workspace where the robot certainly should not go or cannot go either 

because it is preoccupied with another object or because it is too close to another object; Free 
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Space – denotes places in the workspace where the robot can safely go or is free to move. To 

simplify especially the planning problem, the concept called configuration space introduced in 

the influential work of Lozano-P and Wesley (1979) has been adopted. Thus the robot is 

modeled as a point mass capable of omnidirectional translation in    Euclidean space. This 

alleviates the difficulty, such as geometrical and mobility constraints, associated with directly 

planning over the workspace with the true physical model of the robot. The workspace is then 

transformed into the configuration space by “bloating” the obstacles by the maximum radius 

from the center of the robot. This is achieved by applying the Minkowski sum or mathematical 

morphology dilation operator to each obstacle in the workspace forming a convolution of the 

robot’s geometry and the obstacle’s geometry in the configuration space. In common notations, 

regions in configuration space occupied by obstacles are termed obstacle regions denoted by 

     and remaining regions available for the robot to maneuver are termed free space denoted by 

      (Latombe, 1991). The third dimension of a planner robot is then factored into the low level 

controls of the robot or by using heuristics stemming from the knowledge of the robot’s 

kinematics constraints. 

1.7 Summary of Contributions 

The contributions that this research has made to the field of indoor navigation can be 

classified under the two major areas namely localization and path planning. Under localization, a 

system for mitigating the long term error accumulation of odometry errors has been designed and 

implemented. Under path planning, a new pathfinder called   
  (pronounced “A-r-Star”) has been 

developed for path planning on occupancy grid maps. Finally, the components are integrated in a 

simulation using an indoor world prototype developed using the Webots™ software – a 
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development environment used to model, program, and simulate mobile robots and their 

behavior in physically realistic virtual environments (Michel, 2004). 

Localization. 1.7.1 

 Odometry error mitigation using Radio Frequency Identification (RFID) and door-

markers. 

 Header angle estimation improvement for a navigation robot by fusing the data from 

three fiber-optic gyroscopes using fuzzy integrals. 

Path planning. 1.7.2 

 Development of Basic A-r-Star and A-r-Star – A modified, more general and fast version 

of    

o Simulation experimental study of the properties of A-r-Star and presentation of 

some informal proofs of its theorems 

o Study of the challenges of A-r-Star and development of some solutions to handle 

these challenges and improve optimality 

 A-r-Star with post smoothing algorithm 

 A-r-Star with interleave smoothing algorithm 

 A-r-Star with interleave smoothing and post dissociative smoothing 

 A-r-Star with interleave smoothing and iterative post dissociative 

smoothing 

 Study of the DAG formed by various graph search techniques and the subsequent 

development of the incremental version of A-r-Star algorithm that allows for previous 
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path information reusability to speed up re-planning when a change in the environment 

invalidates a previously planned path. 

Integration. 1.7.3 

 Development of a Webots prototype for an indoor simulation world and subsequent 

application of an integrated version of the navigation system developed in this research to 

operate in this prototype indoor environment. 

1.8 Summary of the Introduction 

This chapter has introduced the indoor navigation problem. Also, a brief introduction to 

the aspects of the indoor navigation algorithm has been presented with their drawbacks. The 

motivation for this research stemming from the quest to develop a system robust for navigating 

diverse indoor environments has also been introduced. The chapter ends with the research 

contributions to solving the indoor navigation problem. The next chapter will give a more 

detailed state-of-the-art exposition on some of these topics.  
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CHAPTER 2  

Literature Review 

This chapter first presents a general overview of some indoor navigation systems and 

their implementations. This is followed by a brief description of some of the more common 

indoor navigation algorithms. Also presented is a literature review of related research areas such 

as indoor localization using RFID and odometry, occupancy grid based mapping and search-

based path planning techniques. 

2.1 Indoor Navigation Systems 

The proliferation of domestic robots for various applications, such as vacuum cleaning, 

assistive care, intelligent wheelchairs (Matsumoto, Ino andOgsawara, 2001), has whetted 

researchers’ appetite for addressing indoor navigation problems. Researchers have proposed 

various solutions to the indoor navigation problem. Among the most important solutions 

presented are inertial navigation systems, Radio Frequency Identification (RFID) based systems 

and Wifi-based/Bluetooth-based systems. Some highlights of current major trends of indoor 

navigation techniques are given below with their pros and cons where relevant. For more 

information, the reader is advised to read (Retscher, 2006; Mautz, 2009; Wendel, 2011). 

Satellite-based techniques. Satellite-based navigation systems are still widely used 2.1.1 

in indoor navigation despite the fact that conditions present during indoor navigation almost 

imply the absence of viable satellite signals (Dovis et al., 2008). The most common satellite-

based navigation systems make use of the American Global Positioning System (GPS), which 

uses a constellation of 24 satellites orbiting the Earth at altitudes of approximately 11,000 miles 

(Manapure et al., 2004). Also, there are alternative counterparts, such as Russia’s Global 
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Orbiting Navigation Satellite System (GLONASS) and the Global Navigation Satellite System 

(GNSS) under development by the European Union (EU) and European Space Agency (ESA) 

called GALILEO (Manapure et al., 2004).  

 Working Principles. In Global Navigation Satellite Systems (GNSS), the 2.1.1.1

satellites act as a signal transmitters and the device used acts as the signal receiver. The precise 

instantaneous positions of these satellites are known, and this makes them suitable as reference 

points for GPS navigating devices on Earth to estimate their positions. The satellites (24 

satellites for the current US GPS and a projected 30 satellites for the GALILEO system) 

continuously transmit their position and a highly accurate time-signal from their corresponding 

orbits to the surface of the Earth. The GPS navigating devices measure signals from the satellites 

and make use of the time-of-flight to estimate their distances from these satellites. The satellite 

signals (microwaves) travel at the speed of light, and thus using the velocity of light and time 

allows the receiver to calculate its distance to the satellite. Using the principle of trilateration, the 

intersection of the spheres centered at three satellites is used to estimate the position of the GPS 

device on the Earth’s surface. Because the GPS devices are not usually equipped with the ability 

to measure the precise time of flight of the signal, a fourth satellite is used to enhance the 

precision and measurement of elevation or altitude. 

 Limitations/Challenges (Wendel, 2011). The following are some limitations or 2.1.1.2

challenges with satellite-based techniques. 

 The initial setup requirement for the GNSS system is both expensive and cumbersome, 

and this limits its installation to only a few well-to-do countries or multi-national 

organizations (e.g., US, Russia, and joint EU and ESA).  
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 The operation and maintenance of the satellites needed for the GNSS is also expensive 

and demands much effort. 

 Satellite-based navigation systems require a direct line-of-sight (DLOS) between the 

satellite acting as transmitter and the GPS device acting as the receiver for proper 

operation. Where this DLOS does not exist, the signal may be greatly attenuated, and this 

reduces the reliability for navigation. 

 The accuracy of satellite navigation is still in the meters range. 

 Inertial navigation systems (INS). Inertial navigation systems exploit the 2.1.2 

principles of inertia to measure the acceleration and angular velocity of a body and estimate its 

position. They rely on inertia sensors such as accelerometers and gyroscopes. At its inception in 

the early 1990’s, INS was mainly used for guiding missiles. Researchers later lost interest in this 

approach since satellite-based navigation proved superior to INS. However, the inherent 

limitations of the satellite-based navigation systems such as those mentioned in section 2.1.1 

have prompted researchers to consider INS as a viable alternative or supplement to satellite 

based navigation, especially for indoor applications and small areas of navigation. 

 Working principle. Inertial navigation systems are usually implemented using an 2.1.2.1

Inertial Measurement Unit (IMU), which consists of several inertia sensors (both linear 

accelerometers and angular velocity sensors) assembled together. This IMU forms the core of the 

INS and is used to observe the acceleration and the angular velocity of the navigation system 

(Savage, 2007; Liu and Li, 2010). The IMU integrates the acceleration forces acting on it to 

generate the velocity vector and another integration produces the position vector of the 

navigation system. To ensure accurate operation, the IMU should be free from external 
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perturbations and the update rate should be high. These requirements generally dictates the use 

of large laser-gyroscopes and pendulum accelerometers in high accuracy INS to make the 

gravimetric measurements. The birth of semiconductor-based micro-electro-mechanical system 

(MEMS) sensors has made the integration of IMUs into mobile devices possible (Smailagic and 

Kogan, 2002).  

 Limitations/Challenges. The following are some limitations or challenges with 2.1.2.2

INS. 

 INS needs an initial reference position and heading, which must be fixed and accurate 

vis-a-vis altitude stabilization. These requirements make INS implementation 

cumbersome.  

 IMUs are very sensitive to external perturbations forces, which can greatly degrade their 

performance. 

 Drifting of numerical consistency in IMU measurements occurs if the system is not 

augmented with external, independent position updates. This makes its long term 

application impractical given certain levels of sensor quality. 

Sound-based navigation. Sound-based navigation systems use the principles of 2.1.3 

sound wave propagation to estimate the position of a navigating system. Such a system usually 

consists of a transmitter and receiver placed at the ends of the distance to be measured or 

collocated together and used to measure the distance of an object (e.g., a wall or cliff) in the 

direct line of sight from the transmitter/receiver source (Castro et al., 2001).  
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 Working principle. There are different implementations of sound-based 2.1.3.1

navigation systems. The most popular is the sonar system. The sonar device houses both the 

ultrasound transmitter and receiver. It emits either unidirectional or omnidirectional sound 

(depending on application). When this sound reflects off a surface, the receiver measures the 

reflected signal. The device then uses its knowledge of the sound velocity and the time-of-flight 

to estimate its distance from the reflecting surface (Langer and Thorpe, 1992). This 

implementation is usually employed for mapping applications.  

A second implementation is the Active Bat system. Active Bat is based on the principle 

of trilateration. It consists of a single ultrasonic source/transmitter (often whose position is to be 

estimated) and multiple receivers embedded in the environment. These sensors measure the time-

of-flight, and the system uses trilateration techniques to estimate the position of the transmitter 

(Ward et al., 1997).  

A third implementation uses a transmitter installed on the navigator and a receiver on the 

point of reference. The properties of sound are then used to estimate the distance between the 

transmitter and the receiver, and this is used to estimate the position of the navigation system. 

These are but a few of the existing implementations. 

 Limitations/disadvantages. The following are some limitations or disadvantages 2.1.3.2

of sound-based navigation systems. 

 Sound-based navigation systems are very sensitive to environmental noise (e.g., similar 

sounds from other objects or multiple reflections from the same surface or multiple 

surfaces) and this can drastically degrade their performance. 

http://en.wikipedia.org/wiki/Trilateration
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 Sound-based navigation systems, especially the Active Bat system, require pre-

installation of the multiple receivers in the environment, which can be cumbersome and 

relatively expensive. 

 Sound-based navigation systems require direct line of sight for their proper operation and 

so their usage in cluttered environments is limited. 

 Sound has low frequency and so attenuates fast, limiting sound-based navigation systems 

to short distance applications. 

Electromagnetic wave-based navigation. Electromagnetic waves (EMW) are high 2.1.4 

frequency waves such as visible or invisible light and radio waves. The properties of 

electromagnetic waves can be exploited for the design of a navigation system in ways similar to 

some of those mentioned above (sound-based and satellite-based). In recent applications, the 

common examples of EMW based navigation include: laser range finders/laser measurement 

systems, Radio Frequency Identification (RFID) systems, wireless LAN systems (Castro et al., 

2001; Ladd et al., 2002; Smailagic et al., 2002), bluetooth positioning and ultra-wide band 

systems.  

 Working principles. The principle of operation is usually dependent on the type 2.1.4.1

of electromagnetic wave being used in the application. The light based systems, such as infrared-

based (e.g., Active Badge system), laser-based systems (e.g., laser range finders/laser measuring 

instruments) employ the measurement of time-of-flight to estimate distance. The operating 

principle of the Active Badge system is similar to that of the Active Bat system described above 

(Section 2.1.3). The radio wave-based methods, commonly implemented in the form of RFID, 

work by proximity detection or reading of transmitted codes, such as is the case of RFID tags. 
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Other implementations include measuring and calculating of distances based on the received 

signal strength (RSSI) of a signal transmitted by installed infrastructure nodes such as WLAN, 

ultra-wide band (UWB) or Bluetooth access points (Grimson and Lozano-Perez, 1987; Latombe, 

1991). 

 Disadvantages/Limitations. The following are some limitations or disadvantages 2.1.4.2

of electromagnetic-wave-based navigation. 

 Some of the EMW based techniques (e.g., the Active Badge system) require the pre-

installation of uniquely encoded transmitters, and the setup requires a sufficient number 

of receivers to achieve room-level precision. This makes their implementation expensive 

(Boontrai et al., 2009).  

 The necessary fingerprinting process (the recording of RSSI at each grid point of the 

environment) can be very time consuming. 

Image-based or optical techniques. Image-based or optical techniques use image 2.1.5 

analysis and image processing techniques for estimation of the position of a navigating system. 

They usually involve the processing of visual information in the form of still or continuous 

images provided by a camera. The image source can be a single camera usually for 2D mapping 

or stereo camera for 3D mapping.  

 Working Principles. These approaches employ some kind of camera device for 2.1.5.1

taking the image of the environment and image processing techniques for localization and path 

planning. Many researchers have employed different imaging devices, such as monocular 

cameras, or the stereo cameras which add the depth dimension. Some of the popular optical 
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navigation techniques are the optical flow navigation methods (McCarthy and Bames, 2004), 

image annotation (Kawaji et al., 2010) and feature based mapping (Se et al., 2001). 

 Disadvantages/Limitations. The following are some limitations or disadvantages 2.1.5.2

of image-based and optical techniques. 

 The performance of these techniques highly depends on the state of the environment 

(lighting, occlusions, etc.); 

 Lack of depth information and reliance on complex image processing algorithms create 

high computational burden and other difficulties. 

2.2 Indoor Navigation Algorithms 

The previous section gives a general overview of the sensor hardware solutions to the 

indoor navigation problem. These sensor hardware techniques are usually implemented with 

various algorithms that operate on the data acquisition or collection and processing and 

subsequent estimation of position (localization), building of a representation of the environment 

(mapping), and direction and routing from one position to another (path planning and obstacle 

avoidance). Some of these pairings of sensor hardware and algorithms have been highlighted 

below. 

Kalman filter/extended Kalman filter. The Kalman filter uses a series of 2.2.1 

measurements observed over time, an observation model, and a system model containing noise 

(random variations) and other inaccuracies to estimate unknown parameters, which usually have 

higher accuracy than estimates that rely on a single measurement. A Kalman filter models the 

system using a random variable with a Gaussian distribution and uses the first and second 

moments (mean and covariance) to represent this probability distribution. It uses the system 
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model and observation models to predict and uses the observations made by its sensors to 

correct/reduce the estimation error. The Kalman filter works with linear system models but it can 

be extended to work with non-linear system models (extended Kalman filter). The most common 

navigation application of Kalman filters is in the implementation of Simultaneous Localization 

And Mapping (SLAM). Common hardware for implementation dead reckoning includes image-

based or optical techniques, INS and electromagnetic-based navigation (e.g., RFID beacons). 

Dead reckoning. Dead reckoning is a position/pose estimation technique that uses 2.2.2 

the integration of all the displacements made since the navigating object first left/passed a 

reference point. These displacement estimates can be in the form of changes in the heading and 

distance or Cartesian coordinates. Example applications include pedestrian dead reckoning 

(Retscher, 2006), odometry (SungHwan et al., 2012), Strapdown (Savage, 2007), etc. Common 

hardware for implementation dead reckoning includes INS, odometers and optical navigation 

system. 

Particle filter. Particle filters are used when the system state cannot be modeled as 2.2.3 

a (linear) Gaussian distribution random variable. Here a sum of weighted samples called particles 

is used to approximate the density function of the random variable. The number of the particles 

can be chosen to meet the desired performance requirement. A higher number of particles 

achieves a good approximation, but their processing is computationally expensive. Too few 

particles, however, can cause system divergence. Like the Kalman filter, the particle filter is 

mainly used in the implementation of SLAM (the so called FastSLAM) (Montemerlo and Thrun, 

2007). Common hardware implementation using particle filters includes image-based/Optical 

techniques. 
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2.3 Robot Localization 

Determination of the exact position of a navigating mobile robot remains fundamental to 

mobile robot automation. Although researchers have proposed and investigated many systems, 

sensor combinations, techniques and algorithms, it remains a viable challenge since no elegant 

and broadly robust solution has been developed yet. Localization can be classified under two 

broad categories, namely, absolute position estimation (e.g., magnetic compasses, active 

beacons, Global Positioning System (GPS), landmark navigation, and model matching) and 

relative position estimation (e.g., dead reckoning (odometry) and inertial navigation) (Casals, 

1989). 

RFID-based indoor localization. Radio frequency identification (RFID) is a form 2.3.1 

of automatic identification technology that utilizes remote storing and retrieving of data using 

readers or scanners and tags. The principles of RFID localization are similar to those of WLAN. 

Most existing RFID localization methods employ the RF signal strength, instead of time-of-

arrival of signal, as an indicator of distance. Researchers have explored many different methods 

for localization based on RFID tagging and identification, meeting different application demands 

and available hardware. The application requirement and the available hardware usually dictate 

which parameters can be chosen to achieve good localization estimates. Also, existing 

localization techniques have been enhanced by employing the object identification potential of 

RFID, artificial landmarks or global reference points as an accuracy enhancing tool. Several 

reviews in literature (Bouet and dos Santos, 2008; Sanpechuda and Kovavisaruch, 2008; Zhou et 
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al., 2009; Nikitin et al., 2010) give good overviews of many of these systems and approaches and 

highlight some of their pros and cons.  

An RFID based localization technique is presented in Nick et al. (2012) that applies the 

Constrained Unscented Kalman Filter (CUKF) to the RSSI measured from an unknown tag to 

localize an RFID. A camera-based localization technique is implemented to supplement the 

noisy RSSI estimation and to increase the accuracy of the localization. The accuracy 

performance of this camera-assisted localization technique proves superior to that of the CUKF 

without camera assistance by a factor of two and to Unscented Kalman Filter (UKF) by a factor 

of about four. RFID localization techniques find their application in healthcare (Mautz, 2009), 

construction material management (Song et al., 2007), local positioning for road safety (Hui and 

Zekavat, 2007), production process control (Thiesse et al., 2006), automated guided vehicle 

routing (Langer et al., 1992), mining safety (Ruff and Hession-Kunz, 1998) and other areas. 

Dead reckoning (odometry). Dead reckoning (odometry) denotes the integration 2.3.2 

of incremental motion information of a given navigation system over a given run time. It is 

usually implemented by using odometers (e.g., optical encoders) to measure the wheels’ angular 

velocity and using this data to compute the navigating system’s offset from a known reference 

point. Odometry is most widely used in mobile robot navigation due to its ability to provide good 

short-term accuracy, its ability to allow very high sampling rates, and its lower implementation 

cost and complexity. The integration of this information inevitably leads to the accumulation of 

errors, however. Table 2.1 outlines some of the known causes of systematic and non-systematic 

errors. Accumulation of errors in the position estimates is an issue but of greater concern is the 

accumulation of the orientation errors, which translates into large position errors (Borenstein, 
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Everett, et al., 1996), and increase proportionally with the distance traveled by the robot thereby 

causing the estimation error to diverge. However, because odometry forms an integral part of 

many navigating systems, research into odometry accuracy improvement and error mitigation 

has advanced. Some of the earliest includes the test method for detecting and correction of 

mainly systematic errors called “UMBmark” and “extended UMBmark” (Borenstein, 1998). This 

method, also called internal position error correction (IPEC), was implemented on the OmniMate 

robot, which was specifically designed for the implementation of the IPEC method. 

Table 2.1 

Sources of Systematic and Non-Systematic Errors in Mobile Robot Odometry 

Systematic Errors Non Systematic Errors 

a) Limited encoder sampling rate 

b) Limited encoder resolution 

c) Unequal wheel diameters 

d) Average of both wheel diameters differing 

from nominal diameter 

e) Wheel misalignment 

f) Uncertainty about the effective wheelbase 

(due to nonpoint wheel contact with the 

floor) 

a) Unexpected external forces (interaction 

with external bodies) 

b) Unexpected internal forces (e.g., from 

castor wheels) 

c) Non-point wheel contact with the floor 

d) Uneven operating floors 

e) Unexpected objects on the operating floor 

f) Wheel-slippage resulting from slippery 

floors, skidding in fast stops or turns, etc. 

 

Results show that OmniMate can improve odometry accuracy by one order of magnitude over 

conventional mobile robots. However, the UMBmark test (Borenstein and Evans, 1997) is 
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relatively difficult to perform and very sensitive to non-systematic errors. Besides, its accuracy 

depends on a large number of tests with precise measurements of the final position and 

orientation of the robot, which is difficult if not impossible in real-life application (Bostani et al., 

2008).  

A low cost navigation system is developed by fusing inertial sensor information provided 

by gyroscopes and odometry using Kalman Filters and rule set-based fusion strategies (Tarin 

Sauer et al., 2001). The gyroscope information helps to improve orientation estimation. The 

autonomous mobile robot B21 was used as the testing platform. This system reduces both the 

systematic and non-systematic errors in the navigation system and improves the accuracy of their 

system (Bostani et al., 2008).  

Abbas et al. (2006) identifies the main limitation of UMBmark as its inability to 

incorporate the non-systematic stochastic wheelbase error that arises from less turning in the test 

path execution and wheel slippage at corners due to stops and wheel direction reversals. The 

authors then present a technique for measurement and correction of systematic odometry error 

caused by kinematics imperfections in the differential drive mobile robots; the technique uses 

occasional systematic calibration. The paper proposes a Bi-Directional Circular Path Test 

(BCPT) for modeling the systematic odometry errors and claims that this approach significantly 

reduces the amount of effort required to model parameters involved in the systematic. This 

approach is also claimed to be very simple to perform, robust, and relatively free from random 

errors, especially from measurement noise. It is also said to yield good results at the end of a 

single test, thereby eliminating the need to repeat the test over and over again.  
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Other researchers have focused on visual odometry; see, for example, (Corke et al., 2004; 

Johnson et al., 2005; Milella and Siegwart, 2006; Zhiwei et al., 2007). However, the closest work 

in literature to the research in this dissertation is presented in Kubitz et al. (1997) where Radio 

Frequency Identification (RFID) tags were used as artificial landmarks in the robot’s 

environment. However, as the authors rightly pointed out, the accuracy of the measurement of 

the relative position between the tag and the robot depends on the abilities of their RFID system. 

In most cases, it is relatively inaccurate and is strongly influenced by the reading range and the 

ability to detect whether the robot is approaching or moving away from a tag. This challenge is 

resolved in the current research by employing door-markers (as detailed in section 3.2.3). 

2.4 Mapping 

Map building is considered an important component of mobile robotic applications in 

partially-known or unknown environments since knowledge of the environment plays an 

important role in developing robots and robotic software capable of exhibiting fully autonomous 

behavior.  

Occupancy grids mapping. An occupancy grid is an approach for representing an 2.4.1 

environment using regular tessellation of the space into a number of cells (usually rectangular 

cells). It is the most common low-level environment modeling approach for fusion of noisy data 

in robotics. Each cell stores the probability that a given area in the environment corresponding to 

that cell is occupied by an obstacle. This approach assumes that neighboring cells of the grids are 

independent from each other and thus avoids a combinatorial explosion of possible grid 

configurations. Occupancy grids find their direct application in robotic navigation, path planning, 

and collision avoidance. 
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There are two main types of occupancy grid approaches in the literature, namely, the 

static and the dynamic occupancy grid. As the names suggest, static occupancy grids rest on the 

assumption that the environment is static while dynamic occupancy grids incorporate the 

dynamism of the environment (Fulgenzi et al., 2007). Most researchers assume a static 

environment and therefore static occupancy grids are common in the literature.  

Moravec and Elfes (1985) proposed occupancy grids for constructing an internal model 

of static environments based on ultrasonic range data (Moravec, 1988; Schiele and Crowley, 

1994). Their approach utilizes probability or certainty values to handle the uncertainty in the 

sensory data. The authors in (Stepan et al., 2005) presented a novel approach for building an 

occupancy grid from a monocular color camera. They have also developed a method of fusing 

the monocular camera data with data from laser range finders. This leads to a more accurate 

result.  

The two drawbacks to the application of occupancy grids in robotics have been the 

modeling of dynamic obstacles and localization of the robot building the map. Multi-resolution 

matching has been proposed in Schiele et al. (1994) and Moravec et al. (1985) as a solution to 

these challenges by matching global and local occupancy grids.  

For the past few decades, dynamic occupancy grids have been attracting more interest. 

Coué et al presented a 4D occupancy grid in (Coué et al., 2006) in which each cell is defined in 

terms of its position and two speed components along each axis. This 4D model permits the 

computation of the speed of the classical cells in the 2D grid using the estimation of the 

occupancy of each cell in the 4D. Chen et al. (2006) presented another solution that does not use 

4D but uses a distribution of speed for each cell in the form of a histogram.  
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Recently, Vatavu et al. (2011) have developed a real-time flexible method for occupancy 

grid modeling and representation using particles that move from cell to cell. A border scanner 

algorithm extracts polylines from occupied cells by performing radial scanning using the position 

of the ego vehicle as the scan rotation center. An average speed is then computed for each 

resulting polyline as an average speed of the grid occupied cells neighboring the polyline. This 

method uses the measurements derived from stereovision to determine when to create or destroy 

particles. The occupancy grid approach presented in (Vatavu et al., 2011) relies on a hidden 

Markov model (HMM) to explicitly represent both the belief about the occupancy state and state 

transition probabilities of each grid cell, and thus enables the modeling of how the occupancy 

changes over time.  

Hao and Nashashibi (2012) presented a new approach for merging occupancy grid maps 

built by different observers (robots). They achieve this by measuring the consistency degree of 

map alignment using occupancy likelihood. The optimization of the objective function is 

achieved through genetic algorithms implemented in a dynamic scheme. Their approach has 

been implemented on a scheme of multi-vehicle cooperative local mapping and moving object 

detection as well as demonstration of the effectiveness of the algorithm using real-data tests. 

2.5 Search-Based Path Planning 

Search-based path planning received its popularity from the early development of graph 

search algorithms with direct application in discovering paths on grids. One such algorithm is 

Dijkstra’s algorithm, a breadth-first search technique (Dijkstra, 1959). It was first conceived by 

Dutch computer scientist Edsger Dijkstra. It finds the single source shortest path from a single 

vertex to all the vertices of a given graph with positive edge costs. The    (pronounced “A-
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Star”) algorithm, which is similar to Dijkstra’s algorithm was independently introduced by Nils 

Nilsson (1968) (Hart et al., 1968), and uses admissible heuristics to speed up the search 

algorithm by narrowing the search space. The    algorithm has been proven to be optimal, which 

means that it will search at least as fast (in terms of computational speed) as all other solution 

methods provided the other method is not using a better-heuristic (Hart et al., 1968). Also, if the 

heuristic function used for the cost modeling never overestimates the actual minimal cost of 

reaching the goal (i.e., it is admissible), then the solution returned by the    algorithm is optimal 

(i.e. the best possible path available given the graph/tree constraints) (Dechter and Pearl, 1985). 

Use of the    algorithm for path planning in both robotics and video games has increasingly 

gained popularity.  

However, the    algorithm uses a fixed heuristic which can negatively affect the 

performance where the system changes frequently. The       (Korf, 1990) solves this problem 

by learning a perfect heuristic function. Near optimal hierarchical path-finding (    ) 

introduced in (Botea et al., 2004), is essentially a hierarchical approach that abstracts the map 

into linked local clusters before applying the    algorithm thereby reducing the complexity of 

the search process.  

One drawback of the    algorithm is its offline nature, which makes its application 

suitable for only static environments. This implies that, whenever there is an environmental 

change that invalidates the searched path, the    algorithm has to do search-from-scratch 

(commonly referred to as re-planning). It has no built-in capability to reuse the information 

accumulated from the previous search (Hart et al., 1968). This limits the    algorithm’s 
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applicability to static environments and the algorithm is less useful in dynamic, partially known 

or unknown environments.  

The need for algorithms that will solve this problem gave rise in the mid-1990 to the    

algorithm developed by Stentz (1994).    (Stentz, 1994, 1995b), which is possibly the first of 

the category of algorithms called incremental search algorithms. These are incremental in the 

sense that the information from the previous search is used whenever a change in the 

environment invalidates the previously searched path. The reusability of information from the 

previous search speeds up the re-planning process, and makes their application to real world 

scenarios involving dynamic environment or partially-known or unknown environments more 

attractive.  

However, the    algorithm at its initial stage operates as a breadth-first search and thus 

its initial search is time consuming (Stentz, 1995a). To handle this limitation, the          

   algorithm (Stentz, 1995a) was developed. It utilizes heuristics to focus the search to 

significantly reduce the total time required for both the initial path calculation and subsequent re-

planning operations thereby making the   algorithm a full generalization of    for dynamic 

environments. The          algorithm is a variant of    that uses interpolation to improve the 

smoothness of the path returned both in the planning and the re-planning phase (Ferguson and 

Stentz, 2007) (Carsten et al., 2006). Another variant of the    algorithm is the Anytime    

(a.k.a. Anytime Dynamic   ) algorithm, which combines the benefits of anytime and 

incremental planners to provide efficient solutions to complex, dynamic search problems 

(Likhachev et al., 2005).    and its variants are algorithmically complex and so their 

implementation is not very attractive to many pathfinder developers.  
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Another incremental search, developed by Ramalingam and Reps (1996) and called the 

DynamicSWSF-FP  shifts the re-planning computational burden to the initial stage by computing 

and storing all the distances from the free nodes to the goal. When the robot detects a change in 

the environment while navigating, the system only needs to update the nodes whose distances 

have changed to obtain consistent paths from multiple nodes to the goal. This makes it a 

powerful tool in problems where there is the need to determine the distances from multiple nodes 

to the goal after a change in the environment.  

Koenig et al. (2004) developed the incremental    which combines the powers of    and 

DynamicSWSF-FP. The incremental    is also referred to as Lifelong Planning    (    ), in 

analogy to “lifelong learning” (Eaton and Ruvolo, 2013), due to its ability to reuse the 

information from previous searches. The initial search of      is the same as that of   , but the 

subsequent re-plannings are much faster than that of   .      forms the foundation for the 

development of the         algorithm (Koenig and Likhachev, 2002), which differs 

algorithmically from and is easier to understand and analyze than   , but implements the same 

behavior as           . Koenig and Sun (2009) presented a comparison of         and 

     .  

Most of the grid-based path planning algorithms that operate on a 2D world use discrete 

state transitions that are artificially constrained to a small set of possible headings angles (e.g., 

  
 

 
 
 

 
  etc.). The ramification is that the path returned by even the optimal grid planner will not 

be the shortest possible continuous path. The        algorithm (Daniel et al., 2010) reduces this 

discrete angular constraint by exploring connectivity between a node and its parents as well as its 
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grandparent. Where the grandparent has a line-of-sight between it and the child, the grandparent 

is made the parent of the current node and the parent is discarded.  

The new trend in this branch of path planning includes the works of Sven Koenig et al in 

the development of the Adaptive     algorithm (Koenig and Likhachev, 2006) and their variants 

such as the Generalized Adaptive     (GAA*) (Sun et al., 2008a) and Real-Time Adaptive    

(     ) (Koenig et al., 2007; Sun et al., 2008b). These algorithms have been shown to be 

effective in moving target tracking and multiple goal search problems.  

Most of the graph search algorithms highlighted so far perform well in cluttered 

environments but suffer substantial performance degradation when operating in sparse grids. The 

natural solution to this is to preprocess the world into some kind of multi-resolution grid or tree 

structures such as demonstrated in (Noborio et al., 1990; Yahja et al., 1998; Hern et al., 2011). 

However, the decomposition problem is not trivial. It can result in time consuming pre-

processing as well as huge memory requirements, especially where the given image map has 

some ‘salt and pepper noise’(random spots present in the image which are not present in the 

original object that was imaged). The   
   algorithm presented Opoku et al. (2013) and reviewed 

in Chapter 4 of this dissertation has the power of working across the spectrum from cluttered to 

sparse grids without great changes in its performance. Therefore, for the environments that are 

mixtures of both sparse and cluttered sectors,   
   becomes the planner’s choice. 

2.6 Summary of Literature Review 

This chapter has looked into both the general indoor navigation problem and some 

hardware and software approaches to solving the problems presented in literature. An overview 

of research closely related to the indoor navigation problem (state-of-the-art) in the areas of 
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localization, mapping and path planning has been presented, highlighting the weaknesses that 

necessitate the research presented in this dissertation. Chapter 3 presents the localization and 

mapping approaches developed and used in this work. 
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CHAPTER 3  

Localization and Mapping 

3.1 Introduction 

This chapter presents the first part of the methodology for solving the indoor navigation 

problem developed by this research. This is outlined under the two main broad headings 

localization and mapping. The localization employs an odometry technique using a least square 

error calibration approach for alleviating the effect caused by systematic errors. Besides, an 

RFID and door-markers based resetting system has been developed for intermittent resetting of 

the positions relative to the global reference point to mitigate both systematic errors that escape 

the calibration and the non-systematic errors. The mapping used in this system is the occupancy 

grid mapping using a laser range finder. The efficiency of this mapping is enhanced by the 

improved accuracy of the localization system. The modeling used in this chapter assumes a 

differential wheel driven mobile robot even though an extension can be made to other drivers 

such as the car drive (Ackerman steering). The wheels are equipped with encoders (odometers) 

that can measure the angular velocity of the wheels.  

3.2 Localization 

Differentially driven mobile robot odometry equations. Differential drive is 3.2.1 

considered to be one of the simplest drive mechanisms employed on many mobile robots 

platforms (especially robots designed for indoor navigation) such as the iRobot Roomba, Pioneer 

2, Khepera, Labmate, Robuter, etc. platforms. In its simplest design, a differential wheel drive 

robot is driven by two wheels on a common base/axis with each wheel controlled by a reversible 

motor. The robot is able to execute various trajectories by independently varying the speed and 
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direction of the two wheels. The two wheels then exhibit rolling motion with the center of 

rotation of the robot lying on the axis linking the two wheels, and the position on this axis 

depends on the speed of the two wheels (Dudek and Jenkin, 2000).  

 

Figure 3.1. Derivation of the kinematics for a differential drive mobile robot.  

Using the idea that the instantaneous tangential linear velocity at a given point is the 

product of the angular velocity and the radius of that point from the ICR (see Figure 3.1), 

Equation (3.1) can be derived.  
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) 

    (  
 

 
) 

(3.1) 

The two equations can be solved simultaneously for   and   to produce Equation (3.2). 

   
 

 
(
     

     
)  (3.2) 
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It can be inferred from these equations that if      , then the radius R if infinite which implies 

that the robot will move on a straight line. This can also be deduced from the fact that   is zero. 

If        then the radius is zero and the robot rotates about the midpoint of the two wheels. 

This can also be seen from the fact that   
  

    
 

  

    
. When        , then the radius     

and     implies the robot remains stationary. Aside from these special cases, any other values 

of    and    will cause the robot to execute a curved trajectory with the center of rotation R away 

from the midpoint between the two wheels. It is also apparent that the differential drive is highly 

sensitive to any error introduced to either or both wheel velocities, since that can result in a 

totally different trajectory. 

Let   be the 1D distance travelled by the robot and   the velocity from time    to   , then the 

distance can be determined from Equation (3.3). 

   ∫    
  

  

 (3.3) 

This distance can be resolved into its corresponding distances travelled in the 2D coordinate 

plane as shown in Equation (3.4). 

 

  ∫    
  

  

     

  ∫        
  

  

 

(3.4) 

This defines the principle of dead reckoning which is simply the integration of all the distances 

moved by the robot and can be generalized for higher dimensions. In practice, the effective 
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rectilinear and angular velocities (   ( ) and    ( )) of the robot are much difficult if not 

impossible to observe. Thus, angular velocity measurement instruments (e.g., tachometer 

(continuous), encoders/counters (discrete)) are employed to measure the angular velocities of the 

individual wheels; the effective rectilinear and angular velocities are deduced from it as shown 

below and also in (Kelly, 2004; Corke, 2011) ): Assuming that the two driver wheels are 

equipped with odometers to measure the angular velocities of the wheels gives signal Equation 

(3.5). 

  ( )  [  ( )    ( )]
   (3.5) 

Where    denotes   transpose. Define the state vector  ( ) as the instantaneous position and 

orientation/heading angle of the robot, then (Papadopoulos and Misailidis, 2007) 

  ( )  [ ( )  ( )   ( )]       (3.6) 

Thus the dead reckoning equation can be derived as shown in Equation (3.7) 

 (

 (   )
 (   )
 (   )

)  [

 ( )   ( )        
 ( )   ( )       

 ( )   ( )  
] (3.7) 

Where    is assumed to be very small. 

The right and the left wheel angular velocities can be represented by Equations (3.8) and (3.9). 
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 ( )]      (3.8) 
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 ( )]     (3.9) 

Solving the two equations simultaneously for  ( ) and  ( ) yields Equations (3.10) and (3.11) 

  ( )  
(    ( )      ( ))

 
    (3.10) 
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    (3.11) 

These can be rewritten in the form shown in Equation (3.12). 

 [
 
 
]   [

  

  
]   (3.12) 

Where        is the matrix of the parameters to be determined by a calibration technique 

(described below) and is defined as Equation (3.13) 

   [

  
 

  
 

  
 

 
  
 

]    (3.13) 

If   could be accurately obtained, then the systematic errors in the system due to imprecision in 

the wheel axis length,   and wheel radii    and    can be totally eliminated. For a 2D Cartesian 

coordinate system, the dynamic equation for the robot’s motion can be written as Equation 

(3.14). 
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 ̇
 ̇

 ̇

]  [
     
     

 
] (3.14) 

Discretizing Equation (3.7) and assuming data acquisition frequency of 
 

 
 Hz for obtaining the 

velocities, Equation (3.7) can be written as Equation (3.15). 
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) (3.15) 
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Systematic error calibration using least square error approach. The least 3.2.2 

squares odometry calibration technique described in (Antonelli et al., 2005) for the calibration of 

mobile robot for its simplicity and implementation flexibility has been adopted for this research. 

From Equation (3.15), an iterative model can be formulated as Equation (3.16). 

            ∑     

   

   

      ∑     

   

   

     (3.16) 

where      is the (   )   entry in the   matrix in Equation (3.13). Equation (3.16)can be 

rewritten in the form of Equation (3.17). 

        [
    

    
]    (3.17) 

Where   is the (   ) regressor given by Equation (3.18). 

    [∑     

   

   

             ∑     

   

   

] (3.18) 

Here,   is the number of paths executed by the robot for the calibration procedure. By executing 

  suitable paths, the least squares model can be written as Equation (3.19). 
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] (3.19) 

Where  ̅  is the vector of regressors shown in Equation (3.20). 

  ̅  [

  

  

 
  

] (3.20) 

A similar expression can be derived using the position variables in Equation (3.15) as shown in 

Equation (3.21). 
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Where,   ̅̅̅  , the vector of the position regressors, is given by Equation (3.22). 
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Also, the position regressor,     is given by Equation (3.23). 
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Note, however, that if we know the absolute value of  , and obtain      and       from (3.21), 

then we can obtain the values of      and       from Equation (3.13) and (3.18) by simple 

algebra. 

 [
     
    

]  [
     
     

]  
 

 
     (3.24) 

Intermittent resetting. The indoor environment has some features that can easily 3.2.3 

be exploited in the system design to enhance the accuracy during navigation. Such features 

include the orthogonal arrangement of walls and presence of doorposts. This research has 

exploited the latter in the design of the intermittent pose resetting system. The heading angle 

contributes immensely to the odometry drift. The information from the RFID has therefore been 

used in conjunction with the fixed locations of door-markers to reset the position and heading 
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angle of the robot intermittently. Figure 3.2 is the flowchart illustrating how the system operates. 

This serves to eliminate non-systematic errors that have accumulated during its navigation in a 

particular room so that this error will not propagate into the pose estimation within other rooms. 

Start

RFID Antennae Ready

RFID signal 
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Receive and store 
Packet
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Conduct Pose 
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RFID

Yes

Yes

Yes

No
No
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Figure 3.2. This is the flow chart of the intermittent resetting technique.  

Such exploitation of indoor environment structure is a reasonable and effective approach 

to facilitate the navigation task for mobile robots. And once installed, the use of RFID door-

markers impose minimal burden (in terms of service or maintenance) on elderly users of the 
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mobile robot system. Each doorpost is equipped with an RFID-tag and door-markers and the 

robot carries with it a tag identification antenna. The tag is coded with information including its 

associated door-marker global position in the indoor environment, the doorpost orientation 

(along the global   axis or   axis), name of the door, etc. Whenever the robot comes into the 

communication range of the doorpost tag, the antenna reads and stores the tag’s data. These data 

are used for the resetting of the true position and the heading angle of the robot when it crosses 

the door-markers. 

The door-markers are mounted on the doorposts and arranged in a pattern as shown in 

Figure 3.3. In Figure 3.3,   is defined as the angle between the robot direction of motion and the 

doorpost global orientation. Using trigonometric equations and taking into account the geometric 

arrangements of the door-markers, we arrive at Equation (3.25) and Equation (3.26)  

      
    
  

 
    

    
  (3.25) 

      
  

    
 (3.26) 

Combining the two equations gives Equation (3.27). 

      
    
  

 
  

    
     (3.27) 

Here,    and    are the fixed, known distances separating the door-marker sensors on the robot 

and the door-markers on the doorpost, respectively.    is the time interval between the instances 

when the door-marker sensor 1 and door-marker sensor 2 respectively detects the same door-

marker (e.g., door-marker 1). 
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Figure 3.3. The arrangement of the door-markers showing the geometric relationship between 

the door-markers and the door-marker sensors on the robot. 

Also,    is the time interval between the instances when the same door-marker sensor (e.g., door-

marker sensor 1) detects door-marker 1 and door-marker 2 respectively. Since we do not have a 

system for measuring the accurate instantaneous velocity in the system, we assume the velocity 

of the vehicle remains constant from the time it crosses the first door-marker till it crosses the 

second door-marker, i.e., acceleration is negligible and      . This is a reasonable assumption 

since the distance between the two markers is reasonably small. Factoring this assumption into 

the derivation results in Equation (3.28)  

        (
    

    
) (3.28) 

Let   be the global orientation of the door; then the new true heading      of the robot is 

defined as Equation (3.29).(3.29) 

           (3.29) 
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Here, a performance measure for comparing the quality of the estimation per the introduction of 

the intermittent resetting technique called Estimation Improvement Ratio (EIR) has been defined 

as expressed in Equation (3.30). 

     
                                  

                               
 (3.30) 

This is a “unitless” quantity that expresses the improvement in estimation error as the 

proportional number of times the estimation error is reduced due to application of the error 

mitigation technique. 

3.3 Mapping 

Having achieved an improved accuracy for the localization, we continue to use the 

information from the robot’s position to project the position of obstacles in the environment 

observed by the robot whiles navigating the environment. From above, the state vector is defined 

as the position and orientation of the robot given by Equation (3.6). This research used the SICK 

Laser Measurement Sensor (LMS) (see Figure 3.4 and Figure 3.5) for measuring distance. Such 

laser-based sensors are available commercially from a number of manufacturers with eye-safe 

characteristics making them suitable for use on a navigating robot in the home. The observation 

model can be represented as Equation (3.31). 

  ( )    ( )   (   ) (3.31) 

Where the   is the observation matrix and the  ( ) is the observation at time t and the  (   ) 

is a Gaussian noise vector with zero mean and covariance  .  

Less emphasis will be placed on the noise when assuming a small indoor environment 

which means short measurement distances and the error is therefore negligible. The map building 

is done by first referencing the points into the local coordinate frame of the robot and then using 
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coordinate transformation to determine the global position of the observed obstacle. Referencing 

the point (         ) to the coordinate frame of the robot can be done by resolving the point 

directly into   and   components using the measuring angle of the LMS’s laser ray. 

 

Figure 3.4. A picture of the SICK Laser Measurement Sensor (LMS). 

 

 

Figure 3.5. The field of view of the LMS. 

 

 (
    

 

    
 )  (

  
 

  
 )    (

   (     )

   (     )
) (3.32) 

Here,    is the angular resolution of the LMS and   denotes the     ray counting 

counterclockwise as shown in Figure 3.5. The (  
    

 ) is the current position of the robot in the 

robot’s coordinate frame and (    
      

 ) denotes the true position of a point on the observed 

obstacle with respect to the robot’s coordinate frame. The next step will be to transform the point 
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from the robot’s coordinate frame into the global coordinate frame to form a point in the global 

map. This can be done using the compounding equation in Equation (3.33); assuming the current 

position of the origin of the robot’s coordinate frame   is located at (  
    

 ), that is, position 

(     ) relative to the global coordinate frame.  

 (
    

 

    
 )  (

  
 

  
 )  (

         
        

) (
    

 

    
 ) (3.33) 

Equation (3.32) can be used to build the local map of the current environment as seen by the 

navigating robot and then the entire local map can be transformed to the global map 

intermittently using Equation (3.33). This research employs this technique to build the 

occupancy grid by discretizing the entire environment into a regular grid. The observed points 

are projected onto this grid world, and where an obstacle is observed is denoted by binary ones 

and the free spaces are left as binary zeros. 

3.4 Summary of Localization and Mapping Methodology 

This chapter has outlined the methodologies employed in the estimation of the location 

and orientation (localization) of a navigating wheeled robot. An odometry error mitigation 

approach using RFID and door-markers has been designed to improve the position estimation. 

This is followed by how the system’s observations and location are combined to build a 

consistent global map of the environment. The modeling assumes a laser measuring instrument 

such as the one shown in Figure 3.4. Chapter 4 presents a pathfinder that works on the 

occupancy grid map built using the methods covered in this chapter.  
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CHAPTER 4  

Path Planning (The A-r-Star) 

4.1 Introduction 

This chapter presents the graph search algorithm developed by this research for the path 

finding in a given binary grid. The algorithm will enable a mobile robot to navigate intelligently 

in both dynamic and cluttered indoor environment. This novel algorithm is called   
  (pronounce 

“A-r-Star”), and is a modified version of the well known    pathfinder for path planning in a 

uniform grid world. This new algorithm outperforms    pathfinder in a sparse uniformly gridded 

world and matches    in a cluttered world. It does this by interweaving the building of a non-

uniform grid out of a uniform gridded world with path-finding. When given a uniform grid 

world,    
  decimates the nodes within a given radius/range ( ) and forms bigger nodes out of 

them. Because the    
   builds upon the    algorithm, it is expedient to introduce briefly the    

algorithm, however for detailed understanding of     algorithm; its properties and limitations, 

the reader is directed to (Hart et al., 1968; Dechter et al., 1985). This chapter first introduces the 

   
  pathfinder with its properties, challenges and some developed solutions to these challenges. 

Additionally, an incremental version of    
  has been developed along with a means to exploit the 

information stored in a previously explored/searched graph for subsequent planning (given that 

the world remains static). 

4.2 A-star Algorithm Description 

   is a best-first search algorithm that finds the least costly path from an initial 

configuration to a final configuration in a given finite and static grid world. It uses an estimate of 

the start distance  (        ) and heuristic estimation of the goal distance  (       ) to define a 
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cost/sorting function,  ( ) as shown in Equation (4.1). Where  ( ) is a heuristic estimate of the 

cost of going from       to       passing through node  . For the purpose of simplicity of 

notation, the goal node and start nodes will be dropped when they appear as part of the argument 

of a function giving  (        )   ( ) and  (       )   ( ). The heuristic cost function is 

therefore defined by (4.1) 

  ( )   ( )   ( ) (4.1) 

Generally, the    algorithm maintains two lists, namely the      list and        list. 

The      list is a priority queue of all the states (nodes), which have at least one of their 

predecessors already explored, and as such are potential candidates for next exploration. The 

       list holds the candidates that have been explored at least once (and often the blocked 

nodes). The algorithm starts with an empty      list and populates it with the starting node. At 

the beginning of every iteration, the node with the minimum     ( ) is popped from the      

list. If that is the goal node, the algorithm terminates and follows back-pointers to extract the 

shortest path (i.e., the path with minimum cost). Else, that node is placed on the        list and 

then expanded (i.e., the neighbors are generated and conditionally placed on the OPEN list). It 

proceeds with the iteration until the goal node is expanded or the      list becomes empty in 

which case it returns ‘no path found’. The pseudo code is shown in Algorithm 1.. 

{1}     () 

{2}   (      )     

{3}        (      )          

{4}          
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{5}             (        (      )   (      ))  

{6}             

{7}                   

{8}              ()  

{9}                   

{10}                                  

{11}                      

{12}                   (        ) 

{13}                             

{14}                  

{15}                 

{16}      (  )     

{17}           (  )        

{18}             (    )  

{19}                                  

{20}      

{21}       (        ) 

{22}        

{23}         ( )              ( ) 

{24}                        ( ) 

{25}                   
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{26}                             

{27}                   

{28}     

{29}           (    ) 

{30}      ( )   (    )     (  )      

{31}    (  )     ( )   (    )  

{32}         (  )     

{33}    (  )    (  )   (        ) 

{34}                     

{35}               (  )  

{36}              (    (  )  (  ))  

{37}     

 

Algorithm 1. This is the pseudo code for the    algorithm. 

4.3 A-r-Star Algorithm 

Definitions. Node Distance of     from   is defined as the fewest number of nodes 4.3.1 

that will be touched by a straight line connecting s and     as shown in Figure 4.1. This is 

equivalent to the distance from   to     using the ‘chessboard’ distance metric. This implies that 

two nodes with different Euclidian distances can have the same node distances. Level-R-

Neighbors of a node   comprise of all nodes with node distances equal to   from  . In Figure 

4.1, all the nodes at a given level bear their node distance,    is the Euclidean distance and   is 

the node distance (R). This implies that, the Level-1-Neighbors of   are its 8 contiguous 
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neighbors (see Figure 4.1). Here   refers to the radius of the ‘ball’ (a box in the case of square 

grid) formed by connecting the centers of all Level-R-Neighbors.  

 

 

Figure 4.1. Showing the Level-R-Neighbors for a given node start node. 

Algorithm description and implementation. The   
  algorithm is a modified 4.3.2 

version of the    algorithm that interweaves node decimation with path-finding in a uniform 

grid/mesh. For a given node,    counts only immediate nodes (4- or 8- connected nodes) as its 

neighbors. This implies that even when all the nodes in a particular area are similar, it will still 

do some computation for all of them. The effect is that, if an obstacle blocks the direct line of 

sight close to the goal, the number of nodes needed to be explored more than doubles which 

translates into increasing the search time. Figure 4.2 illustrates this phenomenon and how this 

contributes to ‘kinks’ in the path returned by   . The circles indicate the nodes that were 

explored before the path was found.  

Using the idea from non-uniform mesh building (Schroeder et al., 1992), a cluster of 

nodes with similar characteristics can be represented with a bigger node with minimal loss of 

information (see Figure 4.3). The   
  algorithm therefore allows collapsing of such nodes into a 
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single node with properties that commensurate with the union of those nodes. For instance, in 

Figure 4.3, the nodes at Level-1 to Level-3 have been decimated to form one big node with the 

original Level-4-Neighbors of        now forming the neighbors of this new node. For multi-

level terrain, one will use a distance transform (Huang and Mitchell, 1994; Matsumoto, Ino and 

Ogasawara, 2001) to identify changes in the nodes; but for the binary occupancy grid such as the 

one used in this paper, the task reduces to identifying the nearest obstacle to the current node. 

 

Figure 4.2. This figure shows how A-Star responds to an obstacle.  

 

Figure 4.3. This figure shows decimated Level-1 through Level-3 nodes to form a single node. 
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The overall effect is a reduction in the number of nodes needed to be explored, computation cost 

and increased search speed in a sparse uniform gridded world. The ‘star’ in the name does not 

suggest that it always finds an optimal path, it is just intended to retain its resemblance to its 

namesake,   . The r stands for radius (range) defined as the maximum allowable radius (in node 

distance) of a ‘ball’ of nodes that can be counted as the neighbors of a given node (see Figure 

4.1). Thus, only Level-R-Neighbors are considered during the search where       .  

Let the node distance from the closest obstacle node to a given node   be    ( ), then at 

the end of the search     ( )             . Implementation-wise, this is achieved by searching 

for the minimum R, such that, at least one of the Level-R-Neighbors of a node being expanded 

belongs to the set of blocked nodes. Then all nodes in the neighborhood of   such that     ( ) 

are tagged as skip nodes (           ) and nodes such that     ( ) are returned as the 

Level-R-neighbors. The pseudo code for the algorithm is similar to that of    with two 

modifications. The first modification is done to the Expand subroutine and the resulting 

algorithm is referred to as          
  . This is achieved by replacing the lines {21} to {28} in 

Algorithm 1. by the lines in Algorithm 2.  

Note that nodes that are tagged skip will never make it to the      list (Algorithm 2 line 

{30}) but a node might make it to the      list before being tagged as skip. Thus, in the 

        
   algorithm, tag open dominates/overwrites tag skip. The second modification is to 

switch the tag dominance to skip dominating open. Thus, nodes that made it to the      list 

from one node before being tagged as skip from another node will not be expanded (i.e., they 

will stay on the      list till the algorithm terminates).  

 



62 

 

 

 

{21}       (                     ) 

{22}        

{23}                 

{24}            

{25}                 ( )      (   ) 

{26}                              ( ) 

{27}               

{28}                     

{29}              

{30}                         and             

{31}                                   

{32}         (        ) 

{33}                       

{34}                           

{35}                 

{36}        

{37}                     

{38}     

Algorithm 2. First modification resulting in the Basic A-r-Star 

The resulting algorithm after the last modification is called the     
    algorithm. The   

  pseudo 

code can be derived from the         
  by inserting the lines in Algorithm 3 after line {10} in 

Algorithm 1.. 



63 

 

 

 

{11}                      

{12}             

Algorithm 3. Second modification resulting in the A-r-Star 

Finite radius (r) verses infinite radius (∞). The choice of   can be fixed from the 4.3.3 

start of the algorithm to a finite value. For example, choosing     reduces the algorithm to   
  

which is essentially   . But choosing an appropriate finite value for   requires absolute 

knowledge of the environment since the choice of   affects the performance of the algorithm. 

The simplest solution is to allow the algorithm to evolve and discover the value of r during the 

search. This is achieved by pegging the value of r at infinity (i.e., choosing    ). This leads to 

what is referred to as the   
  (A-Infinity-Star). Here, infinity (∞) is defined as      where    is 

the radius of the biggest ‘ball’ of continuous free nodes available in the search space. It is trivial 

to derive that for an       grid world,        always holds (strictly less because the node 

under consideration cannot be counted as part of the radius and   is undefined for    ).  

Choice of Level-R-Neighbors Generator (LRNG). The LRNG function is 4.3.4 

responsible for generating Level-R-Neighbors of a given node  . A good choice of the LRNG 

function should return at every Level-R, all and only the nodes at radius R from   as the Level-R-

Neighbors of   . This is a necessary condition for   
  to be complete and correct. On square grids, 

choosing the LRNG is a trivial task but this is not trivial when other geometric shapes are used 

for the gridding. 

Theorem 1: If the Level-R-Neighborhood generation function of   
  at every Level-R 

returns all and only the nodes at radius   from s for         then the   
  algorithm is 

complete and correct. 
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Proof: Let us assume the contrary that the path,                returned by the algorithm 

is incorrect, thus there exists at least one    between    and    ,      , such that      . 

This will imply that a blocked node    got expanded by the algorithm which contradicts the line 

     of Algorithm 2 and therefore cannot be true. Similarly, let us assume that a path actually 

exists but   
  did not find a path. This will imply at a certain Level-R, the algorithm failed to 

return a node       and hence assumed there was not a path available. This is the necessary 

condition for a function to qualify as an LRNG and hence poses a contradiction that cannot 

surface. 

4.4 Properties of the A-r-Star Algorithm 

Completeness. Like   , the   
  algorithm is complete meaning it will find a path if 4.4.1 

one exists between the start and the goal node. The condition for completeness solely depends on 

the      as stated in Theorem 1. 

Correctness. The correctness property holds for the   
  algorithm. This implies that 4.4.2 

if   
  does return a path for a given starting and ending node, then that path is a truly unblocked 

path (that is, the path exists and is correct). 

Termination in finite time. The use of the CLOSED list and the tagging ensure 4.4.3 

that     
    expands (or tags) every node once. Since the world is an       grid, where   is finite, 

it is implicit that the algorithm will terminate in finite time.  

Convergence to A-Star. The performance of the   
  (and for that 4.4.4 

matter         
  ) approaches that of    for worlds with increasing clutter. Let us define a 

perfectly cluttered 2D world as a grid configuration such that every Level-1-Neighbor of 
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          contains at least one        . Given a perfectly cluttered world, the   
  will be 

forced not to tag any node as skip. Thus,   
  will implicitly operate as   

  which is essentially   . 

Theorem 2: In a perfectly cluttered world,   
  and         

  converge to    for all 

positive integer values of   .  

Proof: Assume the set   is a perfectly cluttered 2D environment. Then every Level-R-

Neighborhood of a free cell      will contain at least one          and thus   ( )        

  ; from subsection 4.3.2 ,       ( )      for all nodes. But the   
  runs at Level-R = 1 

throughout the search and so it is intuitive that after the search,   ( )              and hence 

the proof. 

Any angle path planning. Most of the grid-based path planning algorithms that 4.4.5 

operate on a 2D world use discrete state transitions that are artificially constrained to a small set 

of possible headings angles (e.g.,   
 

 
 
 

 
  etc.). The ramification is that the path returned by even 

the optimal grid planner will not be the shortest possible continuous path (see Figure 4.2). The 

  
  algorithm is not constrained to a finite set of angles. This means that it sometimes returns a 

more natural and smooth path than   . The   
  algorithm under sparse conditions can therefore 

be considered as an ‘any angle path planner’.  

Reaction to obstacle. The   
  algorithm reacts to an obstacle by planning in small 4.4.6 

steps till it avoids the obstacle. This mimics intuitive navigating behavior. Much caution is taken 

when navigating close to an obstacle than when navigating far from an obstacle.  

Definitions. Given two nodes,        and      , a node path is defined as any chain 4.4.7 

of nodes   ,             such that every      belongs to the Level-1-Neighbors of    and 
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       iff      and               [   ]. A continuous path is an unbroken curve drawn from 

the center of   to the center of     without passing through a blocked node. Let  (     ) be the set 

of all continuous paths linking the centers of   and     , and let   (   
  ) be a specific continuous 

path linking the centers of   and     . Define    (     )         (     )  (   
  ) . Thus, for a 

given grid map, if                   (     )       (i.e., there is an unobstructed straight line 

path from   to    ) then   (     ) = a straight line. 

4.5 Challenges of the A-r-Star Algorithm 

Bulges.   
  usually returns a path with        in it (see Figure 4.4). This is a major 4.5.1 

challenge to the performance of   
 . Given two nodes,   and   , if     (     )        and 

  (   
  )     (     )   straight line, then   (   

  ) is called a        path and, in general, any 

  (   
  )   (     )   (   

  )    (     ) is said to be a bulged path. This definition implies 

that a ‘kink’ is a type of bulge (see Figure 4.2). There are two main causes of bulges in   
 ; 

namely, angular constraint (kinks) and premature tagging. Angular constraint occurs around 

obstacles where the algorithm navigates in small steps; the navigation angles are thus artificially 

constrained to a small set of angles. Premature tagging occurs due to local minima. The greedy 

heuristic of   
  is initially drawn into a local minimum. This is accompanied by the tagging of 

nodes as skip. When the algorithm bounces back from the local minimum, these nodes which 

were prematurely tagged as skip are not considered for expansion and this creates a bulge.  

Non-optimality. Due to bulges, the path returned by   
  is not always optimal. 4.5.2 

Bulges introduce extra cost into the sorting function by increasing the estimated goal distance 

thereby placing some nodes at a disadvantage. The goal distance becomes dependent on the 

configuration of the obstacles in the environment.  
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Figure 4.4. An example of a path planned by A-r-Star highlighting the challenges posed by 

bulges and bulge elimination using post smoothing. 

Consequently,  (  )   (  ) does not always imply   (  )     (  ) during the search (where 

  (  ) is the actual optimal path between        and   ). Thus, unlike the    algorithm,    
  does 

not always guarantee an optimal path. 

4.6 Proposed Solutions to the Challenges 

Bulge removal using smoothing. A Post Dissociation Smoothing (PDS) algorithm 4.6.1 

similar to that outlined in (Daniel et al., 2010) has been developed and implemented to eliminate 

the bulges in the path returned by   
 . This shortens the path and gets it closer to the shortest 

possible path. Algorithm 4 shows the pseudo code for the PDS. Both     and 

               are derived from the Bresenham line drawing algorithm. 

Non-optimality: Interleave Smoothing with Post Dissociative Smoothing (IS-4.6.2 

PDS). Some path configurations cannot be smoothed into the shortest possible/optimal path. To 

increase the chances of returning a path that can be smoothed to optimal, the search has been 

interleaved with the smoothing algorithm. This is similar to the idea in (Daniel et al., 2010). The 

post dissociative smoothing is then applied to the path as a post process. Note that PDS can be 

Bulge 
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applied iteratively from goal to start and vice versa until subsequent application does not shorten 

the path by a distance greater than   (where   is a user defined threshold).  

{1}       (    ) 

{2}                         (    ) 

{3}                ();                 (); 

{4}                 (  ) 

{5}               

{6}         (       )      

{7}              

{8}                      

{9}            

{10}                 (  ) 

{11}          

{12}                 (    )  

{13}                   

{14}     

Algorithm 4. Post Dissociative Smoothing Algorithm. 

This results in Interleave Smoothing with Iterative Post Dissociative Smoothing (IS-IPDS). To 

implement the interleave smoothing; replace the            function of the   
  algorithm 

with Algorithm 5. 
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{1}           (    ) 

{2}        (      ( )   )  

{3}             (      ( ))   (      ( )   )     (  )       

{4}                  (  )     (      ( ))   (      ( )   )  

{5}                (  )        ( )  

{6}           (  )    (  )   (        ) 

{7}                             

{8}                         (  )  

{9}                      (    (  )  (  ))  

{10}        

{11}                   ( )   (    )     (  )      

{12}             (  )     ( )   (    )  

{13}                  (  )     

{14}              (  )    (  )   (        ) 

{15}                              

{16}                       (  )  

{17}                       (    (  )  (  ))  

Algorithm 5. Post Dissociative Smoothing Algorithm 

4.7 The Incremental A-r-Star Pathfinder 

The direct acyclic graph. Incremental search algorithms are more powerful in 4.7.1 

handling path planning in dynamic environments. This section highlights the incremental version 

of   
  pathfinder. The development is similar to that of        . The planning algorithms 
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produce a plan that essentially takes the regular grid and builds a directed acyclic graph (DAG) 

rooted at the node from which the search starts (NB: this node may be different from the start 

node). Table 4.1 lists some of the planning algorithms and their root nodes. This means after the 

search pauses, all the nodes on the CLOSED list (explored nodes) are roots of sub-graphs in the 

DAG and the nodes on the OPEN list are the leaves of DAG. The blocking of a single node on 

the CLOSED list means that node has been discontinued from the main DAG and so the system 

has to find a systematic way of reconnecting all the sub-graphs (and leaves) rooted at that 

blocked node to the graph where possible.  

Table 4.1 

Root Nodes for the DAG Built by the Various Pathfinders 

Path Finder Root Node 

    Start Node 

  /           ,  Goal Node 

Incremental    (    ) Start Node 

          Goal Node 

 

This principle has been harnessed in the various incremental planning algorithms in different 

ways. In some circumstance, the blocked node will put all the leaf nodes beyond a lower bound 

of the path cost to the goal, and that means that all the leaves on a sub-graph cannot become part 

of the main graph anymore. Under such circumstances, the system will take the goal and place it 

as part of another sub-graph. This idea has been exploited in the developing of incremental 

search algorithms such as     ,   ,            and        , and etc. D* uses the 
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concept of RAISED (Nodes whose cost has increased due to the change in edge cost) and 

LOWERED (nodes whose cost has decreased by the change in edge cost) to propagate the cost 

changes to all the sequences that contain the edge whose cost has changed.      exploits this 

knowledge by using consistency evaluation (over-consistent and under-consistent nodes) to 

propagate the edge cost changes to the affected sequences of back-pointers (sub-graphs). 

        operates in a way similar to      except that it start searching from the goal and so 

implements a routine to remove prevent cycles in the graph when propagating the cost changes. 

Incremental A-r-Star. The incremental   
  algorithm consists of essentially two 4.7.2 

main procedures namely PROCESS-STATE and PRUNE-BRANCH. The PROCESS-STATE 

procedure handles the computation of the DAG and the PRUNE-BRANCH procedure effects 

edge cost changes and prunes the sub-graphs and/or leaves from the main DAG by dissolving all 

the sub-graphs centered at the parent of the blocked node. Note: the dissolution starts from the 

parent and not the current node because the current node is blocked and need to be removed from 

the tree along with all its siblings. The PROCESS-STATE procedure is the same as the   
  

pathfinder presented earlier except that it starts its search from the goal node. This implies the 

DAG that will be built will be rooted at the goal node. Secondly, we introduce an array that 

keeps track of the parent-child relationships. The pseudo code for the algorithm for the PRUNE-

BRANCH procedure is as shown in Algorithm 6. The algorithm first looks forward for the parent 

of the node affected, and saves that in   . This node is then placed on the        array. The 

system then enters into the looping mode where the system continues until        becomes 

empty. At every loop, the system pops a node from         and stores it in    which is the 

current node under consideration.  
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{18}             ( ) 

{19}            ( ) 

{20}           

{21}               (  ) 

{22}                 

{23}                () 

{24}         (  )         

{25}                         (  ) 

{26}                 (        ) 

{27}                 (  ) 

{28}             (  )       

{29}               (  ) 

{30}      (  )      

{31}    (  )    

{32}              (  ) 

{33}     

Algorithm 6 The pseudo code for PRUNE-BRANCH 

The system then accrues all its children using              and puts them on       . Set 

   (  )      to free the node for subsequent re-planning. NB: If    belongs to the CLOSED 

or OPEN list, it must be removed from it. For example in Figure 4.5, if the robot start navigating 

from the starts node (3,10) towards the goal node (1,1) and it discovers that node (1,5) is 

blocked, iterations 1 to 10 are summarized in Table 4.2.  
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Figure 4.5. A Sample DAG built by the A-r-Star for a        grid world without obstacle, 

when searching from node (1,1) to (3,10). 

Iterations 11 to the end only involve the freeing of the leaf nodes. In effect, the other sub-graphs 

rooted at (1,3) and those which are not rooted at (1,3) are left. The information stored in these 

sub-graphs can therefore be used for the planning.  

Blocked path 
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Table 4.2  

First Ten Iterations of PRUNE-BRANCH Acting on the Sample DAG in Figure 4.5 When 

Blocked at the Node (1,5) 

Iteration                        

1 (1,4) (1,4) (1,5) 

2 (1,5) (1,5) (1,6),(2,6) 

3 (1,6), (2,6) (1,6)  

4 (2,6) (2,6) (4,7), (1,8), (2,8), (3,8), (4,8) 

5 (4,7), (1,8), (2,8), (3,8), (4,8) (4,7)  

6 (1,8), (2,8), (3,8), (4,8) (1,8)  

7 (2,8) (2,8)  

8 (3,8), (4,8) (3,8) (1,9), (1,10), (2,10),(3,10), 

(4,10), (5,6), (5,7), (5,8), (5,9), 

(5,10) 

9 (1,9), (1,10), (2,10),(3,10), (4,10), (5,6), 

(5,7), (5,8), (5,9), (5,10) 

(1,9)  

10 (1,10), (2,10),(3,10), (4,10), (5,6), (5,7), 

(5,8), (5,9), (5,10) 

(1,10)  

 

 Challenge for the incremental A-r-Star. As can be inferred from the PRUNE-4.7.2.1

BRANCH algorithm, when the blocked node is very close to the goal; it means there will be a lot 

of branches to dissolve and this will take a longer time to complete. To handle this for a real 
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navigating robot, the nodes will be dissolved as soon as they are navigated through with all their 

branches and thus the dissolution time will spread over the run time. 

4.8 Multiple Goal Path Planning 

The structure of searched nodes developed by   
  can be harnessed in subsequent path 

searches; this is the case if all subsequent path search tasks starting from the same node but have 

different destination or they all have the same destination but different starting nodes. The node 

they share in common is called the root node. Multiple-destination problems can apply in 

multiple agent based applications wherein a single planner plans paths to send agents from a 

single point (base station) to multiple destinations.  The reverse can apply to scenarios wherein a 

planner dispatches agents from multiple destinations to a single point to accomplish a single goal 

that may be beyond the capability of a single agent. Here, the assumption is that the environment 

remains unchanged. Consider the cost function  

  ( )   ( )   ( ) (4.2) 

If the environment remains unchanged, it is expected that after the search, the cost function will 

become (4.3) for all the nodes which are on the CLOSED list.  

  ( )    ( )   ( ) (4.3) 

This implies that, the same structure can be used to plan the path to any point in the environment 

from the same root node.  

Expanding Equation (4.2) for the fixed environment gives  

  ( )   (      ( ))   (        ( ))   ( ) (4.4) 

Since  (        ( )) remains constant for a static environment; for every node on the OPEN 

list, there exists a parent on the CLOSED list and thus  (      ( ))    (      ( ))). This 
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implies that, the task of planning from the root node to another node with parent on the CLOSED 

list is trivial because  (      ( ))     (      ( )). Thus, it reduces to path planning from 

the parent to the child (NB: there is a direct line of sight between every child and the parent) and 

the path planning between the root node and the parent of that node which exists already in the 

previous structure. This approach is similar to the ROADMAP (SungHwan et al., 2012) 

approach to path planning. The task of planning from the root node to another node beyond the 

reach of the previous search can be done by changing the heuristic for all the nodes in the OPEN 

list to conform to the current goal node. That is,  (       ) becomes  (          ), where 

         is the new destination. This will naturally extend the previous graph towards that new 

goal.  

4.9 Conclusion  

This chapter has presented the methodology for path planning developed by through this 

research. The   
  algorithm is detailed with its properties, limitations and the extension to 

incremental search as well as for handling the multiple destination problems. The next chapter 

presents some simulation experimental results of the application of both the methodologies 

developed in Chapter 3 and Chapter 4.   
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CHAPTER 5 

Simulation and Results 

5.1 Localization  

The prototyping and simulation testbed. The setup for simulation experimental 5.1.1 

verification of the methodologies outlined in this section was developed on the WebotsTM 

robotic prototyping and simulation platform from Cyberbotics (see Figure 5.1). The environment 

is a 3-D interior representation of a five compartment home comprised of a kitchen, living room, 

bedroom, bathroom and a fitness room. 

  

Figure 5.1. A screenshot of the prototype indoor environment, from the Webots graphics 

window 

This environment is intended to represent a model domestic operating domain for an 

assistive robot. A model of the Pioneer 2 robot from ActivMedia robotics equipped with SICK 

LMS 200 has been adopted as the robotic platform in this scenario (see Figure 5.2). A feature of 

the Webots supervisor node (a software object that can access the state of all objects in a Webots 

Kitchen 

Living room 

Bed Room 

Fitness  

Room 

Wash Room 

Robot 
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simulation) was programmed to read at each time instance the actual position of the robot. This 

serves as our ground truth data.  

 

Figure 5.2. This is a screenshot for the pioneer 2DX prototype in Webots. 

Calibration results. This simulation assumes direct access to the odometer 5.1.2 

readings. A modification was made to Equation (3.18) to enable the incorporation of this 

information for the calibration as follows.  

   [∑
     
 

   

   

             ∑
     
 

   

   

]       (5.1) 

Here,   is the number of encoder readings per one complete rotation of the wheel and the wheels 

are assumed to be identical, therefore   is the same for both wheels. Four types of trajectories 

were executed in order to identify the calibration parameter matrix,   in Equation (3.14). From 

(Borenstein and Liqiang, 1996), the set of trajectories must include at least a straight line 

SICK LMS 200 

Pioneer 2Dx 
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movement, a clockwise rotation and a counterclockwise rotation. Therefore, three types of each 

of these trajectories have been captured in our calibration: forward-straight-line, forward-left-

turn, forward-right-turn, left-revolution, right-revolution, counterclockwise-rotation and 

clockwise-rotation. These trajectories/movements are defined as  

       {

                     
                     

                 

                   

 (5.2) 

After executing these trajectories/movements on the simulated Pioneer 2 robot in Webots, the 

calibration method identifies the following matrix 

   [
                
             

] (5.3) 

This is consistent with this simulated robot’s wheel diameter of               and axis 

length of         , thus validating the accuracy of the least squares calibration technique. The 

same approach is applicable to a physical robot based on trajectories/movements executed in the 

real world and the associated odometer readings from real sensors. 

Intermittent resetting results. The graphs in Figure 5.3 and Figure 5.4 illustrate 5.1.3 

the run-time errors in the estimated heading angle and position of the robot after the calibration is 

applied to mitigate systematic errors. The vertical lines in Figure 5.3 and Figure 5.4 indicate the 

time instances at which pose resets were made by the robot to update its true position and 

orientation and thus correct for non-systematic errors that accumulate during navigation. These 

graphs show how the pose errors vary with and without the intermittent resetting.  
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Figure 5.3. The absolute errors in the heading angle estimate by the robot. 

 

 

Figure 5.4. The absolute errors in the position estimate by the robot. 
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It is seen that the maximum absolute error for the heading angle and the position without the 

intermittent resetting during the    -second run is about          and            while that 

with the resetting is about          and            respectively, see Table 5.1. 

Table 5.1  

The Maximum Absolute Errors and the Root Mean Square Errors for            Runs with 

Corresponding       

Estimation Position Estimation  Heading Estimation  

Max. Error RMS Error Max. Error RMS Error 

Without Resetting                                

With Resetting                                

EIR                     

 

Using the resetting achieves an     of about   for the position and about 3 for the heading angle, 

when using the     error, thus, the long term quality of the pose estimation improves and, 

therefore, the pose accuracy increases with the intermittent resetting. 

5.2 Mapping 

A binary occupancy grid of the prototyped world in Figure 5.1 has been built using the 

SICK LMS 200 as described in the methodology of Chapter 4. Note that the map is flipped 

vertically so that the living room is up instead of down. The red dots indicate the preset 

exploration path followed by the robot in building the map, the blue cells indicate obstacle 

regions and the white cells indicate free spaces.  
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Figure 5.5. A binary occupancy grid map of the model environment prototype in Figure 5.1. 

5.3 Path Planning 

Path planning simulation experimental setup. In this section, simulation 5.3.1 

experiments have been used to highlight the properties of the          
 /  

  pathfinder and show 

its performance as compared to    on different world scenarios using both uniform and non-

uniform gridding. The simulations were developed using MATLAB (2011b, The MathWorks) 

running on PC with the Windows 8 OS. The simulation world comprises a grid of size         

(which amounts to 65536 nodes). The performance parameters include: (a) Search Time: the 

time it takes to plan a path; (b) Number of cells on OPEN list: the total number of cells that ever 

made it to the OPEN list throughout the search; (c) Number of cells explored: the number of 

cells that were actually explored before the goal was reached. In addition, example pathfinder 

applications to maze solving and indoor navigation are presented.  

Effect of congestion/clutter on performance of A-Star, Basic A-r-Star and A-r-5.3.2 

Star. In the experiment shown in this subsection, the simulation environment was populated with 

obstacle nodes having congestion/clutter probability varied from 0 to 0.75, and with        
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[    ] and       [       ]. Results are shown in Figure 5.7. It was observed that no path 

existed beyond congestion probability of 0.6. Since over half of the nodes are occupied, it makes 

sense that searching from one extreme corner of the world to another will not have an unblocked 

path. Secondly, as the clutter increases, the number of free nodes decreases and this explains the 

sudden reduction in the graphs of performance parameter values after congestion probability of 

0.55.  

The simulation results in Figure 5.7 demonstrate that         
  and   

  converge to    

beyond some degree of congestion, an assertion of Theorem 2. Figure 5.6 is an instance of the 

environment at clutter probability of 0.5 showing the path returned by the three algorithms. 

Figure 5.7 compares the performance for the three algorithms at different congestion 

probabilities in terms of their (a) search time; (b) size of OPEN list and (c) number of nodes 

explored. 

 

Figure 5.6. An instance of the environment at clutter/congestion probability of 0.5. 

 



84 

 

 

 

 

 

 

Figure 5.7. The effect of congestion/clutter on A-Star, Basic A-Star and A-r-Star operating on a 

uniform grid world. 
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Effect of changing obstacle configuration on performance of A-Star, Basic A-r-5.3.3 

Star and A-r-Star (sliding obstacle). This simulation experiment shown in this subsection 

demonstrates that changing the obstacle configuration has little effect on   
  performance 

whereas it can drastically degrade the performance of    operating in a sparse world such as the 

one shown in Figure 5.8. The obstacle is assumed to be a long rigid wall in the environment 

separating the        [    ] and       [       ]. The horizontal position of this obstacle 

was varied from 11 to 231 and the performances of the pathfinders were recorded after each run. 

Figure 5.8 is an instance of the environment at obstacle position 131on the horizontal axis 

showing the path returned by the three algorithms. NB: these paths can all be post smoothened to 

the same path (overlap). Figure 5.9 compares the performance for the three algorithms at 

different obstacle positions in terms of their (a) search time; (b) size of OPEN list and (c) number 

of nodes explored.  

 

Figure 5.8. An instance of the environment at obstacle position 131on the horizontal axis.  
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Figure 5.9. The effect of changing obstacle configuration on A-Star, Basic A-Star and A-r-Star 

operating on a uniform grid world. 
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Effect of changing start and goal node configuration on performance of A-5.3.4 

Star, Basic A-r-Star and A-r-Star in the presence of a concave obstacle. The simulation 

experiment shown in this subsection indicates that,   
  can better handle a large concave obstacle 

such as the one shown in Figure 5.10 than   . Here, the obstacle is assumed to be a large rigid 

concave wall in the environment separating        and      . Table 5.2 shows the nine different 

combinations of        and       used to generate the performance results shown in Figure 5.11. 

Table 5.2  

The Nine Different Start and Goal Combinations for the Simulation in this Subsection 

Simulation Start Goal 

 X Y X Y 

1 5 5 251 5 

2 5 5 251 128 

3 5 5 251 251 

4 5 128 251 5 

5 5 128 251 128 

6 5 128 251 251 

7 5 251 251 5 

8 5 251 251 128 

9 5 251 251 195 
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Figure 5.10. An instance of the environment with concave obstacle. 
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Figure 5.11. The effect of changing start and goal node position with respect to a large concave 

obstacle on A-Star, Basic A-Star and A-r-Star operating on a uniform grid. 
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Effect of increasing the resolution of the same environment on performance of 5.3.5 

A-Star, Basic A-r-Star and A-r-Star. This simulation shows that increasing the resolution of 

the same environment degrades the performance of    exponentially but that of   
  only degrades 

linearly. The obstacle is assumed to be a long rigid wall in the environment separating         and 

     . The resolution of the grid was varied from         to      . At each resolution, the 

performances of the pathfinders were recorded. This confirms the earlier assertion that    search 

time increases exponentially with increasing the grid size. Figure 5.12 is an instance of the 

environment at resolution of         (i.e. at scale 0.5) showing the path returned by the three 

algorithms. NB: these paths can all be post smoothened to the same path (overlap). Figure 5.13 

compares the performance for the three algorithms for different grid resolutions in terms of their 

(a) search time; (b) size of OPEN list and (c) number of nodes explored. 

 

Figure 5.12. This is an instance of the environment at resolution of 123x123 (i.e. at scale 0.5). 
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Figure 5.13. The effect of changing the gridding resolution of a given continuous world on A-

Star, Basic A-Star and A-r-Star operating on a uniform grid world. 
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Comparing the performance of the A-r-Star with that of the A-Star running on 5.3.6 

quadtree. For this simulation experiment, an obstacle of size (        )       is placed 

between the start position        [   ] and the goal position       [       ]. An instance 

of the world after quadtree decomposition is shown in Figure 5.14 and the world after   
  search 

in Figure 5.16. The comparison in Figure 5.15 (a) and Figure 5.15 (c) shows that at certain 

obstacle configurations    running on an environment preprocessed into a quadtree almost 

always outperforms   
 ; however, it must be noted that the preprocessing takes a longer time in 

the quadtree case. Besides, as highlighted above in Section 2 and in (Kambhampati and Davis, 

1986), the performance of the quadtree approach degrades drastically with increasing congestion.  

 

Figure 5.14. The world after quadtree decomposition (preprocessing). White represents free 

nodes, gray represents node borders and black represents obstacle. 
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Figure 5.15. The performance comparison for A-Star operating on a quadtree and A-r-Star 

operating on a uniform grid of the same continuous environment. 

 

(b) 

(a) 
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Figure 5.16. The multi-resolution grid built by A-r-Star during the search. White represents free 

nodes, gray represents node borders and black represents obstacle. 

Solving a maze problem with the A-Star, Basic A-r-Star and A-r-Star 5.3.7 

algorithms. Artificial intelligence search algorithms are often used to solve maze problems that 

are common in tortuous games such as the Pacman Maze Game. Such maze problems are 

similar, and equivalent in some cases, to path finding problems faced by robots operating in 

maze-like environments such as building floor plans and underground mines, for example. The 

first application is to use the three pathfinder algorithms to solve a simple 256 x 256 maze 

problem.  Figure 5.17 shows the maze and respective paths found between the indicated start and 

goal nodes. The performances of the algorithms are summarized in Table 5.3. Here, the path 

length is measured using the Euclidean distance of all path segments. Note that the paths 

returned by         
  and   

  have bulges that make the path suboptimal. These bulges can be 

eliminated using the path smoothing techniques in Algorithm 1., as shown in Figure 4.2. 
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Figure 5.17. How A-Star, Basic A-Star and A-r-Star operating on a uniform grid world solves a 

maze problem. 

Table 5.3  

The Performance Comparison of the Three Algorithms for the Maze Problem Solving  

Algorithm 

Time Used 

(sec) 

Path Length 

(units) 

Number of cells on 

Open List (cells) 

Number of cells 

Explored (cells) 

   122.45 779.39 37378 37142 

        
  102.62 795.77 33011 31581 

  
     17.47 789.56 14980 14675 
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 Integration of the methodologies in a simulated home using A-r-Star 5.3.8 

Pathfinder. The next simulation involves running the integrated system in a simulated 3D home 

environment which was developed using Webots as shown in Figure 5.1. Webots (Leonard et al., 

1991) is commercial software for robotic systems prototyping and simulation. A prototype of the 

Pioneer 2DX robot was run in this environment to build a binary occupancy grid map using a 

simulated SICK Laser Measurement Sensor (LMS) 200. Note that, the simulation prototypes for 

the robot and sensor come with Webots. A 2D map representing the floor plan of the home 

environment is then fed to   
  to plan a path from a point in the fitness room to a destination in 

the living room.  

 

Figure 5.18. Path planning in a prototype home environment (see Figure 5.1) using the A-r-Star 

pathfinder. 

The result is shown in Figure 5.18 where the obstacle regions are represente by black 

nodes; the obstacle-free zone are represented by white nodes and the gray nodes represent those 

cells that the   
  skipped while searching for the path. Furthermore, the dark center line indicates 

Start 

Goal 
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the path that was returned by the   
  search planning from a point in the fitness room to a point in 

the living room. 

Results for the incremental A-r-Star search compared to D*-lite. Figure 5.20 5.3.9 

illustrates the re-plan time comparison between the incremental   
  and        . The cells that 

were blocked have been indicated on the horizontal axis. Also note that the node blocking was 

accumulative, meaning when a node is blocked, it remains blocked in the next iteration. The 

Incremental   
  Algorithm outperforms         because this is a sparse world and    

    ’s initial search is similar to   
 . Also take note that, in instances where the change does not 

demand searching of many new cells,         does perform very well and even in some 

instances better than   
 . 

 

Figure 5.19. The grid map used for the simulation. 
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Figure 5.20. The comparison between the re-planning time of Incremental-A-r-Star and D*-

Lite.  

Results of the multiple destination planning. Figure 5.21 shows a time 5.3.10 

comparison for the multiple-goal search on the maze shown in Figure 5.17. Different 

destinations were searched in turn as shown in the horizontal axis from left to right. The 

environment is kept constant throughout the search. Also,        was kept constant at (       ). 

The first scenario plans from scratch anytime it is queried with a new goal but the second one 

reuses the information from the DAG from the previous searches. It can be seen that reusing the 

information from previous search amounts to a substantial increase in speed depending on how 

close the new goal is to a leaf in the previous graph. 
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Figure 5.21. The run time comparison for the A-r-Star algorithm searching multiple number of 

times in a static environment when it reuses the previous information and when it plans from 

scratch. 

 

4.97 4.85 

2.73 

5.70 

4.84 

5.40 

4.13 

2.16 

2.88 

3.67 

1.26 

4.96 

0.07 0.05 

1.04 

0.02 0.15 0.02 0.01 0.01 0.02 0.01 
0.00

1.00

2.00

3.00

4.00

5.00

6.00

(8
0

, 2
6

0
)

(2
0

, 2
0

0
)

(2
0

, 3
4

0
)

(5
0

, 3
6

0
)

(1
4

0
, 2

8
0

)

1
4

0
, 3

8
0

)

(1
8

0
, 3

0
0

)

(2
4

0
, 4

2
0

)

(2
2

0
, 2

6
0

)

(1
6

0
, 1

2
0

)

Se
ar

ch
 T

im
e

 /
se

c 

Goal Position 

A-r-Star Replan

A-r-Star Reuse



100 

 

 

 

CHAPTER 6  

Conclusion and Possible Research Extensions 

6.1 Research Overview 

This research has addressed the indoor navigation problem using a novel approach. This 

approach divides the problem of indoor navigation into three distinctive parts, namely 

localization, mapping and path planning. These parts can be solved independently and yet are 

interrelated. In other words, the performance of the localization technique directly or indirectly 

affects efficiency of the mapping, and the accuracy of the mapping influences the effectiveness 

of the path planning. These three components have therefore been solved individually and then 

integrated to form a single navigation system. To solve the localization problem, dead-reckoning 

(odometry) was adopted. The greatest problem with dead reckoning – the accumulation of errors 

from both systematic and non-systematic error sources– has been effectively handled both 

theoretically and experimentally. A least squares numerical approach to odometry error 

calibration was utilized to reduce the effect of the systematic odometry errors on the navigation 

system. An intermittent resetting technique that employs RFID tags placed at known fixed 

locations in the environment in conjunction with door-markers has been developed and 

implemented to mitigate the errors remaining after the calibration (mainly non-systematic 

errors).  

This research has developed and implemented a technique for building a binary 

occupancy grid map of the environment using a laser range finder, SICK LMS 200, as the main 

exteroceptive sensor. Path planning using various graph search techniques such as   ,   ,    

    ,      and Adaptive    have been investigated and implemented.   
  Pathfinder, a new path 
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planning algorithm that is capable of high performance both in cluttered and sparse environment 

has been developed and implemented. Its properties, challenges and solutions to the challenges 

have also been highlighted in the research. Simulation experiments highlighting properties and 

performance of the individual components have been developed and executed using MATLAB. 

A prototype world (five compartments home) has been built using the Webots robotic 

prototyping and simulation software, incorporating use of the Webots models for the Pioneer 2 

robot and LMS. These respectively served as a representation of an indoor domestic operating 

environment and an assistive robot model. An integrated version of the developed navigation 

system comprising the localization, mapping and path planning techniques has been executed on 

the simulated assistive robot system in this prototype workspace.  

6.2 Theoretical and Experimental claims 

Intermittent resetting technique. The intermittent resetting technique for 6.2.1 

odometry error mitigation is novel. There are systems developed in literature which are similar 

but not exactly the same in principle. Its application to the localization of the robot results in 

improvement in the position and orientation estimation over the long run. Also, since the system 

doesn’t rely on the RSSI of the RFID tags, as many applications do, the issue with signal 

strength degradation has less influence on the system. This system is effective as long as the 

coded ID can be read. The door-marker system can be implemented with inexpensive proximity 

sensors and timers. Thus, the system is less expensive to setup because it requires low cost off-

the-shelf sensors.  

A-r-Star pathfinder. The development of the   
  algorithm is a major contribution 6.2.2 

of this research to the field of robotic path planning. Both formal and informal proofs have 
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asserted its superiority over existing techniques in terms of its simplicity, flexibility and search 

speed. The linear scalability with increasing grid resolution makes its application to large sparse 

grid worlds more attractive than most existing algorithms. Furthermore, the performance 

degradation in cluttered environment is less and so it possesses the ability to plan across the 

congestion spectrum from much cluttered environments to very sparse environments. To the best 

of the author’s knowledge, this research is the first to study the DAG built by the graph search 

algorithms and the subsequent understanding of their extension to incremental algorithms. 

Compared with other multi-resolution gridding path planning techniques such as the quadtree 

approach, this approach is desirable for various reasons some of which are highlighted below:  

   
  combines the multi-resolution gridding with the search and so requires no pre-

processing time 

   
  builds the grid for only the part of map which is of interest without spending 

time building the entire map 

 Unlike other multi-resolution gridding path planning techniques, the effect of 

pepper noise on the   
  algorithm is negligible 

   
  is simple algorithmically and implementation-wise and yet has powerful 

application advantages 

 The exploitation of information from previous searches enhances subsequent 

searches in the same environment for a given root node. This holds potential for 

solving the moving target problem. 
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6.3 Industrial Application 

The three different components of this research have separate as well as combined 

industrial applications. While a focal application for this research is assistive robotics, indoor 

navigation also has applications to healthcare institution robots; robotic vacuum cleaners; robotic 

nursing; museum tour guide robots; warehouse and factory robotics; etc. The   
  pathfinder in 

particular also has applications in path planning in underground bunkers, complex buildings such 

as shopping malls, video games; and more.  

6.4 Possible Research Extensions 

The intermittent resetting technique developed in this research can be extended to include 

more general scenarios, where the robot is assumed to perform motions such as turning and 

acceleration or deceleration from the time it crosses the first door-marker to the second door-

marker. Besides, the resetting of just one coordinate dimension at each door can be generalized 

to include the resetting of all the state variables involved at each door. Also, one can look into 

the inclusion of probabilistic modeling of the non-systematic errors to reduce the error 

accumulation between intermittent resetting stations.  

The mapping technique assumes perfect LMS readings since the system has high 

accuracy for short distance measurements. However, incorporation of error modeling of the 

observation to cater for uncertainty in the sensor measurement can be a great extension of this 

research. Also, various feature extraction techniques such as Split and Merge, Random Sample 

Consensus (RANSAC), Hough Transform; etc. can be used in conjunction with data association 

techniques such as Individual Compatibility or Joint Compatibility Branch and Bound to enhance 
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the accuracy of the mapping. Ultimately, SLAM methodologies can be employed to automate the 

localization and mapping process.  

Possible improvements to the   
  algorithm include research into better path smooth 

algorithms. If the optimality of   
  algorithm can be guaranteed, that will be a ground breaking 

accomplishment in the field of artificial intelligence and video gaming. Also, the incremental 

  
  algorithm can be generalized to include the scenarios where the cost can decrease. Finally, 

there can be an extension of this system to operate on higher dimensional configuration space.  
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Appendix A 

This is a sample unoptimized matlab code for the A-Star algorithm 

1 %The A* algorithm programmed in the algorithmic way 

2 function Res=AStarPathfinder (MAP,inStart,inGoal) 

3 %This function finds the shortest path of a given grid system using the 

4 %AStar algorithm. 

5 tic 

6 MAP(MAP==0)=inf; 

7 global OPEN g goal start cmap open closed new xMax yMax TAG 

8 goal=inGoal; start=inStart; cmap=MAP; new=0; open=1; closed=2;  

9 [xMax,yMax]=size(cmap);g=inf*ones(size(cmap)); 

10 g(start(1),start(2))=0; TAG=zeros(size(cmap));TAG(start(1),start(2))=open; 

11 OPEN=[]; 

12 Insert(start,start,h(start)); 

13 while (1) 

14     if isempty(OPEN) 

15         path=-1; 

16         pathflag=0; 

17         break; 

18     else 

19         s=pop(); 
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20         if isequal(s,goal) 

21             pathflag=1; 

22             break; 

23         end 

24         TAG(s(1),s(2))=closed;    

25         neighbors=Expand(s); 

26         for n=1:size(neighbors,1) 

27             UpdaNode(s,neighbors(n,:)); 

28         end 

29     end 

30 end 

31 if pathflag 

32 Res.OPEN=OPEN; Res.g=g; Res.path=ExtrPath(); %Output Variables 

33 plotPath(cmap,Res.path); 

34 time=toc 

35 end 

36 end 

37 function path=ExtrPath() 

38 %This is a greedy approach to extracting the path after it has been built 

39 %by get shortest pat 

40 global start goal g 

41 s=goal; %Start from the goal 
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42 path=goal; 

43 while ~isequal(start,s) %Check whether we are at the goal 

44     ming=inf; %Set to the highest 

45     neighbors=Expand(s); %Get all the neighbors 

46     %Check for the minimum g among the candidates 

47     for n=1:size(neighbors,1)  

48         ss=neighbors(n,:); 

49         if g(ss(1),ss(2))<ming 

50             ming=g(ss(1),ss(2)); %If less, winner 

51             minss=ss; 

52         end 

53     end 

54     s=minss; 

55     path=[path;s]; %Append the current winner to the path 

56 end 

57 end 

58 function UpdaNode(s,u) 

59 %This is for updating the current vertex/node 

60 % disp('In Update Vertex'); 

61 global g TAG open %new 

62     if (g(s(1),s(2))+CalcCost(s,u))<g(u(1),u(2)) %Calculate the rhs 

63         g(u(1),u(2))=(g(s(1),s(2))+CalcCost(s,u)); 
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64         parent=s; 

65         f=g(u(1),u(2))+h(u); 

66         if TAG(u(1),u(2))==open  %if u is on the U Queue  

67             Remove(u); %Remove it 

68         end 

69         Insert(u,parent,f); 

70     end 

71 end      

72 function neighbors=Expand(s) 

73 %use to generate the neighbors of a node s in an 2D 8-connected grid 

74 r=s(1); %Extract the row 

75 c=s(2); %Extract the column 

76 global xMax yMax cmap  

77 neighbors=[]; 

78 temp=[r-1, r-1, r-1, r,r,r+1,r+1,r+1; 

79            c-1, c, c+1, c-1,c+1, c-1,c,c+1]'; %Find the neigbors 

80        for i=1:size(temp,1) 

81            if (temp(i,1)>0 && temp(i,1)<=xMax)&&(temp(i,2)>0 && temp(i,2)<=yMax) 

82 

               if cmap(temp(i,1),temp(i,2))==inf %||TAG(temp(i,1),temp(i,2))==closed %If it 

is a wall,  

83 

                   %drop it. NB: This is for excluding the blocked nodes and so if any node is 

not blocked  
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84                    % then it becomes ineffective 

85                    continue 

86                end 

87                neighbors=[neighbors;temp(i,:)]; 

88            end 

89        end 

90 end 

91 function neighbors=GeneNeighbors(s) 

92 %use to generate the neighbors of a node s in an 2D 8-connected grid 

93 r=s(1); %Extract the row 

94 c=s(2); %Extract the column 

95 global xMax yMax  TAG closed 

96 neighbors=[]; 

97 temp=[r-1, r-1, r-1, r,r,r+1,r+1,r+1; 

98            c-1, c, c+1, c-1,c+1, c-1,c,c+1]'; %Find the neigbors 

99        for i=1:size(temp,1) 

100            if (temp(i,1)>0 && temp(i,1)<=xMax)&&(temp(i,2)>0 && temp(i,2)<=yMax) 

101 

               if TAG(temp(i,1),temp(i,2))~=closed %If it is a wall, drop it. NB: This is for 

excluding  

102 

                    % the blocked nodes and so if any node is not blocked then it becomes 

ineffective 

103                    continue 
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104                end 

105                neighbors=[neighbors;temp(i,:)]; 

106            end 

107        end 

108 end 

109 function [u,parent,f]=pop() 

110 %pop the top node from the U queue 

111 global OPEN closed  TAG 

112 u=OPEN(1,1:2); %pop the top node 

113 parent=OPEN(1,3:4); %pop the top node parents 

114 f=OPEN(1,5); %pop the top node 

115 OPEN(1,:)=[]; %Remove it 

116 TAG(u(1),u(2))=closed; 

117 end 

118 function Insert(s,parent,f) 

119 %For inserting a given node onto the UQUEUE node 

120 global OPEN TAG open 

121 if isempty(OPEN) %If the U queue is empty then just insert onto it 

122    OPEN=[s,parent,f]; 

123     TAG(s(1),s(2))=open; 

124 else 

125       downNodes=(OPEN(:,5)<f); 
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126      OPEN=[OPEN(downNodes,:);[s,parent,f];OPEN(~downNodes,:)]; 

127       TAG(s(1),s(2))=open; 

128 end 

129 end 

130 function Remove(s) 

131 %For removing a node from the  

132 global OPEN TAG closed  

133 % ind=find(); 

134 OPEN(OPEN(:,1)==s(1)& OPEN(:,2)==s(2),:)=[]; 

135 TAG(s(1),s(2))=closed;  

136 end 

137 function h=h(s) 

138 %Calculates the heuristic cost estimate from s to the goal 

139 global goal   %NB goal is a global variable 

140 h=norm(s-goal,2); %The norm in this case 

141 end 

142 function cost=CalcCost(s,ss) 

143 %This calculates the cost of a given node s and its predecessor ss given 

144 %the cost map cmap 

145 global cmap 

146 eucdist=norm(s-ss,2); %First calculate the euclidean distance 

147 cost=0.5*eucdist*(cmap(s(1),s(2))+cmap(ss(1),ss(2))); %then multiply  
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148 % the average cost with the euclidean distance 

149 end 
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Appendix B 

This is a sample non-optimized code of the A-r-Star Pathfinder 

1 %The A* algorithm programmed in the algorithmic way 

2 function Res=ArStarPathfinder (MAP,inStart,inGoal) 

3 %This function finds the shortest path of a given grid system using the 

4 %AStar algorithm. 

5 tic 

6 MAP(MAP==0)=inf; 

7 global OPEN CLOSED g goal start cmap open closed new xMax yMax TAG skip r 

8 goal=[inGoal(1) inGoal(2)]; start=[inStart(1) inStart(2)]; cmap=MAP; new=0;  

9 

g(start(1),start(2))=0; TAG=zeros(size(cmap));TAG(start(1),start(2))=open; r=inf; 

CLOSED=[]; 

10 OPEN=[]; 

11 Insert(start,start,h(start)); 

12 while (1) 

13     %Check whether the OPEN is empty=>there is no path linking them 

14     if isempty(OPEN) 

15         path=-1; 

16         pathflag=0; 

17         break;  

18         %The Next three lines change the algorith from the Basic A-r-Star to the A-r-Star 

19     elseif TAG(OPEN(1,1),OPEN(1,2))==skip; 
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20         OPEN(1,:)=[]; 

21          continue; 

22     else %Get the next best node and expand 

23         s=pop(); 

24         if isequal(s,goal) %Check whether we are at goal 

25             pathflag=1; 

26             break; 

27         end 

28 %         TAG(s(1),s(2))=closed; 

29         neighbors=RExpand(s); 

30         for n=1:size(neighbors,1) 

31             UpdaNode(s,neighbors(n,:)); 

32         end 

33 %         g 

34     end 

35 end 

36 if pathflag 

37 % path=ExtrPath(); 

38 imagesc(TAG); 

39 % CLOSED 

40 path=ExtrPathR(); 

41 % plotPath(cmap,path); 
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42 time=toc 

43 end 

44 

Res.OPEN=OPEN; Res.g=g; Res.path=path; Res.CLOSED=CLOSED; 

Res.TAG=TAG;%Output Variables 

45 figure, imagesc(Res.g); 

46 figure, imagesc(Res.TAG); 

47 end 

48   

49 function path=ExtrPath() 

50 %This is a greedy approach to extracting the path after it has been built 

51 %by get shortest pat 

52 global start goal g  

53 s=goal; %Start from the goal 

54 path=goal; 

55 while ~isequal(start,s) %Check whether we are at the goal 

56     ming=inf; %Set to the highest 

57     neighbors=RExpand(s); %Get all the neighbors 

58     %Check for the minimum g among the candidates 

59     for n=1:size(neighbors,1)  

60         ss=neighbors(n,:); 

61         if g(ss(1),ss(2))<ming 

62             ming=g(ss(1),ss(2)); %If less, winner 
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63             minss=ss; 

64         end 

65     end 

66     s=minss; 

67     path=[path;s]; %Append the current winner to the path 

68 end 

69 end 

70   

71 function UpdaNode(s,u) 

72 %This is for updating the current vertex/node 

73 % disp('In Update Vertex'); 

74 global g TAG open %new 

75     if (g(s(1),s(2))+CalcCost(s,u))<g(u(1),u(2)) %Calculate the rhs 

76         g(u(1),u(2))=(g(s(1),s(2))+CalcCost(s,u)); 

77         parent=s; 

78         f=g(u(1),u(2))+h(u); 

79         if TAG(u(1),u(2))==open  %if u is on the U Queue  

80             Remove(u); %Remove it 

81         end 

82         Insert(u,parent,f); 

83     end 

84 end 
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85   

86 function leveRNeighbors=RExpand(s) 

87 %use to generate the neighbors of a node s in an 2D 8-connected grid 

88 x=s(1); %Extract the row 

89 y=s(2); %Extract the column 

90 R=1; 

91 skipflag=true; 

92 global xMax yMax cmap  TAG closed skip r goal 

93   

94 while(1) %Iterate forever unless interrupted 

95 leveRNeighbors=[]; 

96 temp= GeneLRNeighbors(x,y,R)'; %Get the level R neighbors 

97 for i=1:size(temp,1) 

98 

           if (temp(i,1)<=0 || temp(i,1)>xMax)||(temp(i,2)<=0 || temp(i,2)>yMax) %IF any is 

out of bounds 

99                skipflag=false; %we cannot skip 

100                continue 

101            elseif cmap(temp(i,1),temp(i,2))==inf %It is a wall, we cannot skip 

102                skipflag=false; 

103                continue 

104            elseif isequal(temp(i,:),goal)  

105                leveRNeighbors=[leveRNeighbors;temp(i,:)]; 
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106                skipflag=false; 

107                continue 

108 

           elseif  TAG(temp(i,1),temp(i,2))==closed || TAG(temp(i,1),temp(i,2))==skip%If 

we have already mark this as a skip or closed, leave it 

109                continue 

110            end 

111                leveRNeighbors=[leveRNeighbors;temp(i,:)]; 

112 end  

113        if ~skipflag ||R>=r %If permissible radius or don't skip 

114            leveRNeighbors; 

115            break; 

116        else %Else tag all of them as skip 

117            leveRNeighbors; 

118            for n=1:size(leveRNeighbors,1) 

119                TAG(leveRNeighbors(n,1),leveRNeighbors(n,2))=skip; 

120            end 

121            R=R+1; %increase the R and continue 

122        end 

123 end  

124 end 

125   

126 function path=ExtrPathR() 
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127 % This function extracts the path using the back pointers after the ArStart search. 

128 global goal start CLOSED %Declare the global variables needed in this function 

129 child=goal; %Start from the goal and work your way backwards. 

130 % parent=[]; %Parent is null 

131 path=child; 

132 while ~isequal(child,start) %loop until you are at the start  

133 

    parent=CLOSED(CLOSED(:,1)==child(1)&CLOSED(:,2)==child(2),3:4); %Get the 

parent 

134     child=parent; %Make the parent the next child 

135     path=[path;child]; %Place the child on the path array 

136 end 

137 end 

138   

139 function [u,parent,f]=pop() 

140 %pop the top node from the U queue 

141 global OPEN closed  TAG CLOSED 

142 u=OPEN(1,1:2); %pop the top node 

143 parent=OPEN(1,3:4); %pop the top node parents 

144 f=OPEN(1,5); %pop the top node 

145 CLOSED=[CLOSED;OPEN(1,:)]; 

146 OPEN(1,:)=[]; %Remove it 

147 TAG(u(1),u(2))=closed; 
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148 end 

149   

150   

151 function Insert(s,parent,f) 

152 %For inserting a given node onto the UQUEUE node 

153 % disp('In Insert') 

154 global OPEN TAG open 

155 % s 

156 if isempty(OPEN) %If the U queue is empty then just insert onto it 

157    OPEN=[s,parent,f]; 

158     TAG(s(1),s(2))=open; 

159 else 

160       downNodes=(OPEN(:,5)<f); 

161      OPEN=[OPEN(downNodes,:);[s,parent,f];OPEN(~downNodes,:)]; 

162       TAG(s(1),s(2))=open; 

163 end 

164 end 

165   

166 function Remove(s) 

167 %For removing a node from the  

168 global OPEN TAG closed  

169   
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170 % UQUEUE(UQUEUE(:,1)==s(1)&&UQUEUE(:,1)==s(2))=[]; 

171 % ind=find(); 

172 OPEN(OPEN(:,1)==s(1)& OPEN(:,2)==s(2),:)=[]; 

173 TAG(s(1),s(2))=closed;  

174 end 

175   

176 function h=h(s) 

177 %Calculates the heuristic cost estimate from s to the goal 

178   

179 global goal   %NB goal is a global variable 

180 h=norm(s-goal,2); %The norm in this case 

181 end 

182   

183 function cost=CalcCost(s,ss) 

184 %This calculates the cost of a given node s and its predecessor ss given 

185 %the cost map cmap 

186 global cmap 

187 eucdist=norm(s-ss,2); %First calculate the euclidean distance 

188 

cost=0.5*eucdist*(cmap(s(1),s(2))+cmap(ss(1),ss(2))); %then multiply the average cost 

with the euclidean distance 

189 end 

190   
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191   

192 function Neighbors = GeneLRNeighbors( x,y,R) 

193 

%Neighbors FXNRNEIGHBORS( R, x,y ) Finds the R box neighborhood of (x,y) in a 2D 

space. 

194   

195 % (x,y) is the center and R is the radius from the center in terms of tiles 

196   

197 % tic 

198 dx=1; 

199 dy=1; 

200 fx=x-R; 

201 fy=y-R; 

202 % coord=[fx,y-1;fx,y+1;x-1,fy;x+1,fy]; 

203 coord=[]; 

204     coord=[coord;[[fx:x+R]',repmat(y-R,[2*R+1,1])]]; 

205     coord=[coord;[[fx:x+R]',repmat(y+R,[2*R+1,1])]]; 

206     coord=[coord;[repmat(x-R,[2*R-1,1]),[fy+dy:y+R-1]']]; 

207     coord=[coord;[repmat(x+R,[2*R-1,1]),[fy+dy:y+R-1]']]; 

208 Neighbors=coord'; 

209 end 
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Appendix C 

The Post Dissociative Smoothing Algorithm’s MATLAB implementation using the Bresenham’s 

Line Plotting Algorithm. The inputs are the binary image of the map and the Path to be 

smoothened. It returns New Path (NP) which is a smooth version of the given path. 

 

Path Smoothing 

1 function NP=fxnSmoothPath(Path,MAP) 

2 %% To find the points that have line of sight on a path on a map 

3 ps=size(Path,1) 

4 NP=Path(ps,:); 

5 j=ps; 

6 for i=ps-2:-1:1 

7     if ~BresenhamLOS(Path(j,:),Path(i,:),MAP) 

8         NP=[NP;Path(i+1,:)]; 

9         j=i+1; 

10     end 

11 end 

12 NP=[NP;Path(i,:)]; 

13   

14 end  

15   

16 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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17 function [bol,map]=BresenhamLOS(A,B,map) 

18 %This function is for check the validity ofa line of sight from tile in a 

19 %grid to then other. 

20   

21 %The Bresenham for 2nd 3rd 6th and 7th octants 

22 x0=A(1); 

23 y0=A(2); 

24 x1=B(1); 

25 y1=B(2); 

26 if x0<1 || y0<1 || x1<1 || y1<1 

27     disp('sorry, Im yet to learn how to handle these type of problem'); 

28     return 

29 end    

30 % tic     

31 dy=y1-y0; 

32 dx=x1-x0; 

33 f=0; 

34 bol=true; 

35 if dx<0 sx=-1; else sx=1; end 

36 if dy<0 sy=-1; else sy=1; end 

37 gx=abs(dx); 

38 gy=abs(dy); 
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39 f=gx/2; 

40 if gx>=gy 

41 %     display('loop 1'); 

42     for i=0:gx 

43         coord=[x0,y0]; 

44         if ~map(x0,y0) 

45             bol=false; 

46 %             timeused=toc; 

47             return 

48 %         else 

49 %             map(x0,y0)=3; 

50         end    

51         f=f+gy; 

52         if (f>gx) 

53             f=f-gx; 

54             y0=y0+sy; 

55         end 

56         x0=x0+sx; 

57     end 

58 else 

59     f=gy/2; 

60 %     display('loop 2'); 
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61     for i=0:gy 

62         coord=[x0,y0]; 

63         if ~map(x0,y0) 

64             bol=false; 

65 %             timeused=toc; 

66             return 

67 %         else 

68 %             map(x0,y0)=3; 

69         end    

70         f=f+gx; 

71         if (f>gy) 

72             f=f-gy; 

73             x0=x0+sx; 

74         end 

75         y0=y0+sy; 

76     end 

77 end 

78 % timeused=toc 

79 % imshow(map,[0,10]); 

80 % truesize([128,128]); 

81 end 
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Journal 

Opoku, D., Homaifar, A., and Tunstel, E. (2013). The A-r-Star (Ar*) Pathfinder. International 

Journal of Computer Applications; vol. (67), pp. 0975-8887 .  

Refereed Conference 

Opoku, D. and Abdollah Homaifar, Non-Classical Multi-Sensor Data Fusion Techniques, 

Conference proceedings, IEEE Aerospace Conference, 2010, ISBN 978-1-4244-3888-4. 

Submitted/In preparation  

Daniel Opoku, Abdollah Homaifar, and Edward W. Tunstel, RFID-Augmentation for Improving 

Long-term Pose Accuracy of an Indoor Navigating Robot, Conference paper, (About to be 

submitted). 

Poster 

1. Opoku, D. and A. Homaifar, “Intelligent Navigation of a Robot in a Dynamic Home 

Environment using Laser Range Finder,” Poster, 1
st
 Annual COE Graduate Student 

Research Poster Competition, NC A&T SU, April 2012. 

2. Opoku, D.,  A Workineh and A. Homaifar, “Design and Implementation of Assistive 
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