
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Dissertations Electronic Theses and Dissertations

2013

A Novel Approach To Intelligent Navigation Of A Mobile Robot In A Novel Approach To Intelligent Navigation Of A Mobile Robot In

A Dynamic And Cluttered Indoor Environment A Dynamic And Cluttered Indoor Environment

Daniel Opoku
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/dissertations

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Opoku, Daniel, "A Novel Approach To Intelligent Navigation Of A Mobile Robot In A Dynamic And Cluttered
Indoor Environment" (2013). Dissertations. 113.
https://digital.library.ncat.edu/dissertations/113

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie
Digital Collections and Scholarship. It has been accepted for inclusion in Dissertations by an authorized
administrator of Aggie Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/dissertations
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/dissertations?utm_source=digital.library.ncat.edu%2Fdissertations%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digital.library.ncat.edu%2Fdissertations%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/dissertations/113?utm_source=digital.library.ncat.edu%2Fdissertations%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

A Novel Approach to Intelligent Navigation of a Mobile Robot in a Dynamic and Cluttered

Indoor Environment

Daniel Opoku

North Carolina A&T State University

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department: Electrical and Computer Engineering

Major: Electrical Engineering

Major Professor: Dr. Abdollah Homaifar

Greensboro, North Carolina

2013

i

School of Graduate Studies

North Carolina Agricultural and Technical State University

This is to certify that the Doctoral Dissertation of

Daniel Opoku

has met the dissertation requirements of

North Carolina Agricultural and Technical State University

Greensboro, North Carolina

2013

Approved by:

Dr. Abdollah Homaifar

Major Professor

Dr. Edward W. Tunstel, Jr

Co-Advisor

Dr. Albert Esterline

Committee Member

Dr. Sanjiv Sarin

Dean, The Graduate School

Dr. Numan Dogan

Committee Member

Dr. Marwan Bikdash

Committee Member

Dr. John C. Kelly

Department Chairperson

ii

© Copyright by

Daniel Opoku

(2013)

iii

Biographical Sketch

Daniel Opoku was born on September 24, 1982 in Tafo-Kwahu, Ghana. He attended St.

Peters’ Senior High School, Nkwatia-Kwahu, Ghana. He then attended Kwame Nkrumah

University of Science and Technology (KNUST) where he received a Bachelor of Science

degree in Electrical and Electronic Engineering with First Class Honors in 2007. Following his

graduation, he served as a Teaching Assistant to Mr. E. K. Anto in the Electrical and Computer

Engineering department at KNUST. In 2008, he enrolled as a direct PhD student at North

Carolina Agricultural and Technical State University (NC A&T SU), USA, where he pursued a

doctorate in Electrical Engineering under the supervision of Dr. Abdollah Homaifar.

His achievements at NC A&T SU include publication of two research papers (one journal

paper, one refereed conference paper) and being a four-time recipient of Wadaran L. Kennedy

4.0 Scholars Award.

iv

Dedication

I would like to dedicate this to my dear mother Ms. Gladys Oforiwaa. Mum, I would like

you to know that I have successfully completed this journey only because you succeeded in your

duty as a God-fearing mother. I will always love and cherish you.

v

Acknowledgements

My utmost gratitude goes to our Omnipotent God for His strength that saw me through. I

am grateful to my advisor, Dr. Abdollah Homaifar and co-advisor, Dr. E. W. Tunstel for their

enormous support and guidance. I am so thankful to the Ph.D. committee members, Dr. Albert

Esterline, Dr. M. Bikdash and Dr. N. Dogan; and the Chairperson Dr, John Kelly for their

presence in times of need and direction. Without them, this would not have been possible. I

would like to thank Dr. Owusu-Ofori and his family for providing help from the get-go of this

journey in 2008 and for their hospitality, love and support. I am grateful to Mr. E. K. Anto and

Dr. Francis Momade for initiating and encouraging me to take on this journey. I am thankful to

my dearest wife, Anna Opoku and my mother, Gladys Oforiwaa, for all their love and care till

this day.

My thanks go to Pastor and Mrs. Joseph Gyamfi for their prayers, advice and support

throughoutthis research. My thanks also go to my friends Dr. Ruben Buaba, Mr. Ruben Kotoka

and Dr. Kwadjo Mensah-Darkwa for their supports. I also acknowledge and appreciate all the

love and help from all my colleagues in the Autonomous Control and Information (ACIT) center,

Dr. Abrham Workineh, Chaunte Lacewell, Dr. Mohammed Gebril and Dr. Gholamreza Fetanat,

and to all the other names I could not include. May all your efforts get rewarded a thousand

fold!

vi

Table of Contents

List of Figures ... xii

List of Tables ... xv

List of Symbols .. xvi

Abstract ... 2

CHAPTER 1 Introduction... 3

1.1 Research Scope ... 3

1.2 Motivation ... 4

1.3 Indoor Localization ... 7

1.4 Mapping .. 9

1.5 Path-planning .. 11

 Search-based planning. .. 11 1.5.1

 Limitations. ... 11 1.5.1.1

 Sampling-based path planning. .. 13 1.5.2

 Limitation. ... 14 1.5.2.1

 Combinatorial-based approach. ... 14 1.5.3

 Limitations. ... 15 1.5.3.1

1.6 Statement of Research Problem .. 15

 Localization.. 15 1.6.1

 Path planning. .. 16 1.6.2

 Problem definition. .. 17 1.6.3

 General assumptions. ... 17 1.6.4

vii

1.7 Summary of Contributions .. 18

 Localization.. 19 1.7.1

 Path planning. .. 19 1.7.2

 Integration. ... 20 1.7.3

1.8 Summary of the Introduction .. 20

CHAPTER 2 Literature Review ... 21

2.1 Indoor Navigation Systems ... 21

 Satellite-based techniques. ... 21 2.1.1

 Working Principles. ... 22 2.1.1.1

 Limitations/Challenges (Wendel, 2011). .. 22 2.1.1.2

 Inertial navigation systems (INS). ... 23 2.1.2

 Working principle. .. 23 2.1.2.1

 Limitations/Challenges. ... 24 2.1.2.2

 Sound-based navigation. .. 24 2.1.3

 Working principle. .. 25 2.1.3.1

 Limitations/disadvantages. .. 25 2.1.3.2

 Electromagnetic wave-based navigation.. 26 2.1.4

 Working principles. ... 26 2.1.4.1

 Disadvantages/Limitations. ... 27 2.1.4.2

 Image-based or optical techniques. .. 27 2.1.5

 Working Principles. ... 27 2.1.5.1

 Disadvantages/Limitations. ... 28 2.1.5.2

viii

2.2 Indoor Navigation Algorithms .. 28

 Kalman filter/extended Kalman filter. ... 28 2.2.1

 Dead reckoning. ... 29 2.2.2

 Particle filter... 29 2.2.3

2.3 Robot Localization .. 30

 RFID-based indoor localization. .. 30 2.3.1

 Dead reckoning (odometry). .. 31 2.3.2

2.4 Mapping .. 34

 Occupancy grids mapping.. 34 2.4.1

2.5 Search-Based Path Planning .. 36

2.6 Summary of Literature Review ... 40

CHAPTER 3 Localization and Mapping .. 42

3.1 Introduction ... 42

3.2 Localization ... 42

 Differentially driven mobile robot odometry equations. ... 42 3.2.1

 Systematic error calibration using least square error approach. 47 3.2.2

 Intermittent resetting. ... 48 3.2.3

3.3 Mapping .. 52

3.4 Summary of Localization and Mapping Methodology ... 54

CHAPTER 4 Path Planning (The A-r-Star) .. 55

4.1 Introduction ... 55

4.2 A-star Algorithm Description .. 55

ix

4.3 A-r-Star Algorithm .. 58

 Definitions.. 58 4.3.1

 Algorithm description and implementation. .. 59 4.3.2

 Finite radius (r) verses infinite radius (∞). ... 63 4.3.3

 Choice of Level-R-Neighbors Generator (LRNG). ... 63 4.3.4

4.4 Properties of the A-r-Star Algorithm .. 64

 Completeness. .. 64 4.4.1

 Correctness. .. 64 4.4.2

 Termination in finite time. ... 64 4.4.3

 Convergence to A-Star. .. 64 4.4.4

 Any angle path planning. ... 65 4.4.5

 Reaction to obstacle. .. 65 4.4.6

 Definitions.. 65 4.4.7

4.5 Challenges of the A-r-Star Algorithm ... 66

 Bulges. ... 66 4.5.1

 Non-optimality. .. 66 4.5.2

4.6 Proposed Solutions to the Challenges ... 67

 Bulge removal using smoothing. ... 67 4.6.1

 Non-optimality: Interleave Smoothing with Post Dissociative Smoothing (IS-PDS).4.6.2

... 67

4.7 The Incremental A-r-Star Pathfinder ... 69

 The direct acyclic graph. .. 69 4.7.1

x

 Incremental A-r-Star. ... 71 4.7.2

 Challenge for the incremental A-r-Star. .. 74 4.7.2.1

4.8 Multiple Goal Path Planning ... 75

4.9 Conclusion ... 76

CHAPTER 5 Simulation and Results ... 77

5.1 Localization ... 77

 The prototyping and simulation testbed. .. 77 5.1.1

 Calibration results. ... 78 5.1.2

 Intermittent resetting results. ... 79 5.1.3

5.2 Mapping .. 81

5.3 Path Planning ... 82

 Path planning simulation experimental setup. ... 82 5.3.1

 Effect of congestion/clutter on performance of A-Star, Basic A-r-Star and A-r-Star.5.3.2

... 82

 Effect of changing obstacle configuration on performance of A-Star, Basic A-r-Star 5.3.3

and A-r-Star (sliding obstacle). ... 85

 Effect of changing start and goal node configuration on performance of A-Star, 5.3.4

Basic A-r-Star and A-r-Star in the presence of a concave obstacle. 87

 Effect of increasing the resolution of the same environment on performance of A-5.3.5

Star, Basic A-r-Star and A-r-Star. ... 90

 Comparing the performance of the A-r-Star with that of the A-Star running on 5.3.6

quadtree. .. 92

xi

 Solving a maze problem with the A-Star, Basic A-r-Star and A-r-Star algorithms. 94 5.3.7

 Integration of the methodologies in a simulated home using A-r-Star Pathfinder. . 96 5.3.8

 Results for the incremental A-r-Star search compared to D*-lite. 97 5.3.9

 Results of the multiple destination planning. ... 98 5.3.10

CHAPTER 6 Conclusion and Possible Research Extensions ... 100

6.1 Research Overview ... 100

6.2 Theoretical and Experimental claims .. 101

 Intermittent resetting technique. .. 101 6.2.1

 A-r-Star pathfinder. .. 101 6.2.2

6.3 Industrial Application .. 103

6.4 Possible Research Extensions ... 103

References ... 105

Appendix A .. 122

Appendix B .. 130

Appendix C .. 140

Appendix D.. 144

xii

List of Figures

Figure 1.1. Projected population growth from 1950 to 2050 by Department of Economic and

Social Affairs report (Division, 2009). ... 6

Figure 1.2. Average annual growth rate of the world's population for the total population and

population aged 60 or over, 1950-2050 (from United Nations Report: World Population Aging

2009) (Division, 2009). ... 6

Figure 1.3. How increasing resolution can help graph search algorithms 12

Figure 1.4. How increasing resolution can help graph search algorithms. 13

Figure 3.1. Derivation of the kinematics for a differential drive mobile robot. 43

Figure 3.2. This is the flow chart of the intermittent resetting technique. 49

Figure 3.3. The arrangement of the door-markers showing the geometric relationship between the

door-markers and the door-marker sensors on the robot. ... 51

Figure 3.4. A picture of the SICK Laser Measurement Sensor (LMS). 53

Figure 3.5. The field of view of the LMS. .. 53

Figure 4.1. Showing the Level-R-Neighbors for a given node start node. 59

Figure 4.2. This figure shows how A-Star responds to an obstacle. ... 60

Figure 4.3. This figure shows decimated Level-1 through Level-3 nodes to form a single node. 60

Figure 4.4. An example of a path planned by A-r-Star highlighting the challenges posed by

bulges and bulge elimination using post smoothing. .. 67

Figure 4.5. A Sample DAG built by the A-r-Star for a grid world without obstacle, when

searching from node (1,1) to (3,10). ... 73

xiii

Figure 5.1. A screenshot of the prototype indoor environment, from the Webots graphics window

... 77

Figure 5.2. This is a screenshot for the pioneer 2DX prototype in Webots. 78

Figure 5.3. The absolute errors in the heading angle estimate by the robot. 80

Figure 5.4. The absolute errors in the position estimate by the robot. .. 80

Figure 5.5. A binary occupancy grid map of the model environment prototype in Figure 5.1. ... 82

Figure 5.6. An instance of the environment at clutter/congestion probability of 0.5. 83

Figure 5.7. The effect of congestion/clutter on A-Star, Basic A-Star and A-r-Star operating on a

uniform grid world. ... 84

Figure 5.8. An instance of the environment at obstacle position 131on the horizontal axis. 85

Figure 5.9. The effect of changing obstacle configuration on A-Star, Basic A-Star and A-r-Star

operating on a uniform grid world. ... 86

Figure 5.10. An instance of the environment with concave obstacle. .. 88

Figure 5.11. The effect of changing start and goal node position with respect to a large concave

obstacle on A-Star, Basic A-Star and A-r-Star operating on a uniform grid. 89

Figure 5.12. This is an instance of the environment at resolution of 123x123 (i.e. at scale 0.5). 90

Figure 5.13. The effect of changing the gridding resolution of a given continuous world on A-

Star, Basic A-Star and A-r-Star operating on a uniform grid world. .. 91

Figure 5.14. The world after quadtree decomposition (preprocessing). White represents free

nodes, gray represents node borders and black represents obstacle. .. 92

Figure 5.15. The performance comparison for A-Star operating on a quadtree and A-r-Star

operating on a uniform grid of the same continuous environment. .. 93

xiv

Figure 5.16. The multi-resolution grid built by A-r-Star during the search. White represents free

nodes, gray represents node borders and black represents obstacle. .. 94

Figure 5.17. How A-Star, Basic A-Star and A-r-Star operating on a uniform grid world solves a

maze problem. ... 95

Figure 5.18. Path planning in a prototype home environment (see Figure 5.1) using the A-r-Star

pathfinder. ... 96

Figure 5.19. The grid map used for the simulation. .. 97

Figure 5.20. The comparison between the re-planning time of Incremental-A-r-Star and D*-Lite.

... 98

Figure 5.21. The run time comparison for the A-r-Star algorithm searching multiple number of

times in a static environment when it reuses the previous information and when it plans from

scratch. .. 99

xv

List of Tables

Table 2.1 Sources of Systematic and Non-Systematic Errors in Mobile Robot Odometry 32

Table 4.1 Root Nodes for the DAG Built by the Various Pathfinders ... 70

Table 4.2 First Ten Iterations of PRUNE-BRANCH Acting on the Sample DAG in Figure 4.5

When Blocked at the Node (1,5)... 74

Table 5.1 The Maximum Absolute Errors and the Root Mean Square Errors for

Runs with Corresponding ... 81

Table 5.2 The Nine Different Start and Goal Combinations for the Simulation in this Subsection

... 87

Table 5.3 The Performance Comparison of the Three Algorithms for the Maze Problem Solving

... 95

xvi

List of Symbols

 Finite set of all nodes to be searched

 Set of all unoccupied/unblocked nodes

 Set of all blocked nodes

 Set of all the nodes that ever make it to the list, thus

 Set of all the nodes on the list, thus

 () Cardinality of set

 An individual node,

 () Cost of traversing from node to its neighbor

 Goal node

 Starting node

 () Cost of moving from to

 () User defined heuristic cost of moving from node to

 () The estimated cost of a path from to passing through

 () Set of all the successors of

 () Set of all the predecessors of

 () Parent of , () ()

 Free Region on the configuration space

v Linear Velocity

 Angular velocity

 Instantaneous Center of Rotation

xvii

 Distance from the to the midpoint between two differential wheels

 Base distance between the two differential drive wheels on a robot

 The abscissa of a world frame

 The ordinate a of a world frame

 Distance

 Period of a cycle

 The fixed, known distances separating the door-marker sensors on the

robot

 The fixed, known distances separating the door-markers on the doorpost

 The time interval between the instances when the door-marker sensor 1

and door-marker sensor 2 respectively detects the same door-marker

 The time interval between the instances when the same door-marker

sensor detects door-marker 1 and door-marker 2 respectively

 The angle in radian that the moving robot makes with a door-marker

 Represents a state vector

 An observation model

 Gaussian noise vector

 An observation

 Noise Covariance

 Estimation Improvement Ratio

 Root Mean Square

2

Abstract

The need and rationale for improved solutions to indoor robot navigation is increasingly driven

by the influx of domestic and industrial mobile robots into the market. This research has

developed and implemented a novel navigation technique for a mobile robot operating in a

cluttered and dynamic indoor environment. It divides the indoor navigation problem into three

distinct but interrelated parts, namely, localization, mapping and path planning. The localization

part has been addressed using dead-reckoning (odometry). A least squares numerical approach

has been used to calibrate the odometer parameters to minimize the effect of systematic errors on

the performance, and an intermittent resetting technique, which employs RFID tags placed at

known locations in the indoor environment in conjunction with door-markers, has been

developed and implemented to mitigate the errors remaining after the calibration.

A mapping technique that employs a laser measurement sensor as the main exteroceptive sensor

has been developed and implemented for building a binary occupancy grid map of the

environment. A-r-Star pathfinder, a new path planning algorithm that is capable of high

performance both in cluttered and sparse environments, has been developed and implemented. Its

properties, challenges, and solutions to those challenges have also been highlighted in this

research. An incremental version of the A-r-Star has been developed to handle dynamic

environments. Simulation experiments highlighting properties and performance of the individual

components have been developed and executed using MATLAB. A prototype world has been

built using the Webots™ robotic prototyping and 3-D simulation software. An integrated version

of the system comprising the localization, mapping and path planning techniques has been

executed in this prototype workspace to produce validation results.

3

CHAPTER 1

Introduction

1.1 Research Scope

Robotic navigation is the act of moving a robot from one place in an environment to

another on a collision-free path which may be either a predefined path (e.g., using offline path

planning methods such as) or a path defined by maximizing a cost function (such as in

artificial potential fields (Guldner et al., 1995; Sfeir et al., 2011)). The process of examining the

available information about the environment and computing a path that satisfies one or more

conditions and/or constraints (e.g., shortest, collision free, safest path, etc.) is referred to as path

planning. At least three main questions need to be answered in a navigation task, namely,

localization (Where am I?), mapping (How does my environment look?) and path planning

(How do I get to my destination from here without crashing into an obstacle?) (Leonard and

Durrant-Whyte, 1991).

Researchers have investigated many ways of solving the navigation problem. Satellite-

based and satellite related navigation is well-researched, and the payoff has invariably resulted in

different navigation solutions for both commercial and domestic consumption. The most

common examples include the Global Positioning System (GPS), which has become a common

commodity found in modern communities. This has greatly improved navigation in areas where

sufficient satellite coverage is available (commonly called outdoor navigation). However, there

exist some environments devoid of sufficient satellite signals and hence satellite applications are

either unreliable or inapplicable. Such satellite-signal deficient areas are commonly referred to as

indoor environments, and navigating in such environments is called indoor navigation (Lukianto

4

et al., 2010). Examples include large public office buildings, shopping malls, hospital corridors

and wards, residential homes, etc.

Indoor navigation is functionally similar to outdoor navigation in the sense that both

involve positioning/localization, mapping and some sort of obstacle avoidance. However, they

differ in the technologies they use, the requirement for routing and directions and the physical

space within which they operate (Karimi, 2011). This implies that some implementation

modifications are needed, and in some cases a total redesign is necessary, when transferring an

outdoor navigation system into an indoor environment to ensure effective and efficient

performance of the system. However, it is worth mentioning that some technologies which are

applicable to both indoor and outdoor navigation have been designed even though these often

have limited applications.

As pointed out in Wang (2012), justifying the need for outdoor navigation was much

easier as situations necessitating their use were more glaring than situations requiring indoor

navigation. However, the proliferation of domestic robots such as vacuum robots, robots for

assistive care, intelligent wheelchairs (Matsumoto, Ino andOgasawara, 2001), etc. for various

applications has whetted researchers’ appetite for addressing indoor navigation problems. The

sections below introduce the three aspects of indoor navigation highlighted above, outline the

main problem that this research seeks to tackle and summarize the contributions of this research.

1.2 Motivation

The past few decades have seen a great interest in research to enhance mobile robot

navigation in an indoor environment. However, the vast majority of indoor navigation algorithms

presented in the literature focuses more on guiding the mobile robot relative to the surrounding

5

environment, in the absence of coordinate information. Such systems are handicapped when it

comes to certain applications that require point-to-point navigation. The popularity of

autonomous indoor navigation rests on the increasing demand for industrial and domestic mobile

robots (e.g., robot vacuum cleaners, etc.). Wang (2012), has emphasized that defending

development of indoor navigation systems has been made much more reasonable and convenient

by the influx of indoor and industrial robots.

For example, in the health care industry, it is a well-known fact that the worldwide

population has seen a tremendous growth within the past decade and research has confirmed the

possibility of continuous growth of population in the next decade (see Figure 1.1). The

population of elderly in this demographic is gaining much attention since the rate of growth of

the elderly population significantly exceeds that of the general population (Division, 2009) . The

population of older persons is growing at a rate of 2.6 percent per year faster than the whole

population (see Figure 1.2). The projection is that by 2025-2030, the population growth rate for

individuals of age 60 and over will be 4 times as rapid as the total population growth rate (i.e.,

2.8 : 0.7). These considerations point to the need for robotic assistive care for several reasons

including that: (a) the existing supply of domestic and health-care services does not seem to be

commensurate with the demand; (b) the high cost of elderly care; and (c) the increasing desire

for aging-in-place (making changes in the home to allow seniors to live at home for as long as

possible).

Many indoor operating robots are confined to predefined trajectories or fixed locations

due to the lack of more prestigious navigating techniques to handle autonomous navigation of

these robots. Our motivation therefore is to develop an easy to implement, inexpensive and

6

adaptable navigating system for a mobile robot operating in an indoor environment. This will

facilitate the use of domestic and industrial mobile robots.

Figure 1.1. Projected population growth from 1950 to 2050 by Department of Economic and

Social Affairs report (Division, 2009).

Figure 1.2. Average annual growth rate of the world's population for the total population and

population aged 60 or over, 1950-2050 (from United Nations Report: World Population Aging

2009) (Division, 2009).

7

1.3 Indoor Localization

One of the fundamental requirements for achieving autonomy in mobile robot navigation

is localization. Indoor localization of a mobile robot involves estimating the current position and

orientation of the robotic system in a given indoor environment, usually by using measured data

and a priori knowledge of the environment in the form of a map (Sgouros et al., 1996). Without

accurate knowledge of the mobile robot’s position relative to a given environment, autonomous

task execution becomes a very difficult problem. Indoor mapping involves the gathering and

representation of the layout of the indoor environment so that the robot can interpret the

environment and exploit the layout for context awareness and subsequent maneuvering within

the environment (Sgouros et al., 1996).

The past decade has seen tremendous progress in research into localization and mapping

in an indoor environment (Nieuwenhuisen et al., 2010). Localization and mapping have been

handled separately as well as simultaneously in what is commonly referred to as Simultaneous

Localization And Mapping (SLAM) (Tuna et al., 2012). Localization and Mapping in a well-

structured environment is a solved problem. However, issues such as getting a system to work in

real time, error handling, loop closure, reducing the computation and storage requirement, etc.

make this field still very viable for research. Another challenge is how to handle dynamisms in

the environment, which are common in a typical indoor environment (e.g. moving objects,

opening and closing of doors, displacement of objects). Most of the current work presents

solutions requiring robots to be equipped with a comprehensive sensor suite, such as ultrasonic

rangers, LIDAR, and cameras as well as computers with substantial capabilities, which can be

8

excessively cumbersome for practical robotic applications. For example, Ying et al. (2010)

presented one such system for navigating in a cluttered environment.

There are also several techniques highlighted in literature for indoor localization.

Wireless Local Area Network (WLAN)-based localization is very popular (Bahl and

Padmanabhan, 2000; Castro and Munz, 2000). Most of the WLAN localization systems use

Received Signal Strength Indicator (RSSI) for localization. These systems use two main phases,

namely, an offline training phase (Nguyen et al., 2005; Youssef and Agrawala, 2005) and an

online localization phase (Addesso et al., 2010; Kushki et al., 2010). Research into these phases

forms the two main branches of the WLAN-based Localization. Junjun et al. (2011) presented

some methodologies for WLAN-based indoor localization using RSSI. The authors used grids, in

conjunction with a transfer matrix, which are sampled prior to the training phase to estimate

probabilities of neighboring nodes to calculate Access Points (APs) for each grid. Some APs

from the neighbors of the last estimated location and these new APs from current iteration are

selected and used to compute the likelihood of the nodes for the localization. A statistical

threshold is calculated and used to avoid the condition of the system being trapped in a local

minimum.

Landmark-based localization is another solution to the indoor localization problem. Two

broad categories of landmarks can be highlighted, namely, artificial landmarks and natural

landmarks. Artificial landmarks are prevalent in structured environments, and they usually

involve less environmental engineering to achieve a flexible, robust and highly accurate

localization system compared to systems that use natural landmarks (Sooyong and Jae-Bok,

2007). The artificial landmark systems can be grouped into active landmarks, which usually

9

require an electrical power source for their activation (e.g., Active Radio Frequency

Identification (RFID)), and passive landmarks, which require no power source for their operation

(e.g., barcodes, QR coded tags, passive RFID, etc.). Passive landmark-based localization is

relatively low-cost and consumes less power. This makes passive systems easily scalable (where

the technological requirement is not a limitation) and easily maintained. However, most passive

landmark-based navigation systems need higher ‘landmark density’ to match the accuracy of

active landmark-based navigation, a condition that makes unique coding and subsequent

identification of individual landmarks a burden for large environments (Lee, 2009; Zhou and Shi,

2009). In (Ul-Haque and Prassler, 2010), the authors evaluated passive artificial landmark-based

localization system using landmarks made of a retro-reflective coated film able to strongly

reflect the infrared light coming from the CMOS infrared camera. The authors argue that the

system is easy to scale and maintain after installation and that the ease of assigning unique

landmark IDs to thousands of landmarks enables large area coverage.

1.4 Mapping

Mobile robot mapping is another important and challenging aspect of robotic navigation

that has been investigated more increasingly in the past few decades. Mapping involves the

building of a consistent representation of the robot’s unknown environment based on the

information obtained through the robot’s sensors, such as laser, sonar, visual and infrared

sensors. The Sound-based (sonar) sensors such as ultrasonic sensors are among the most prolific

because they are relatively easy to use and inexpensive to acquire. However, their major

drawback lies in their being highly prone to interference from environmental noise.

10

Despite the many efforts of researchers, mapping remains a difficult challenge because

the robot has to deal with unexpected circumstances, such as moving objects, and also must

handle complex and rough environments with little or no prior knowledge. In the case of mobile

robots, these challenges are compounded by the non-existence of a perfect strategy for estimating

the exact instantaneous location of the robot at a given time since this is at the core of the

mapping process.

Mapping can be categorized under two broad headings, namely, (a) grid/graph-based

environment maps and; (b) object-specification based maps. Research into the grid/graph-based

environmental maps such as the occupancy grids (Noykov and Roumenin, 2007) is well advance

due to the intuitive nature of these maps and their ease of implementation. Yenilmez and

Temeltas (2007) presented a new map building method for a mobile robot operating in an

obstacle populated environment by fusing sensor data using the sequential principal component

(SPC) method. An approximate but highly efficient approach to mobile robot mapping with

Rao–Blackwellized particle filters has been presented in (Grisetti et al., 2007). A novel method

for the integration of fuzzy logic and genetic algorithms for solving the mobile robot mapping

problem has been presented in Begum et al. (2008).

The inception of Simultaneous Localization And Mapping (SLAM) (Smith et al., 1990)

has led many researchers to consider object-specification based maps, especially feature-based

maps, and landmark-based maps. The author, Milton Roberto (2010), presented a new algorithm

for feature-based environment mapping where the environment is represented using multivariate

Gaussian mixture models using data from either sonar sensors or laser range finders. Similar

11

work includes that reported in literature (de la Puente et al., 2009; Vázquez-Martín et al., 2009;

Zen et al., 2011).

1.5 Path-planning

Given a map of an environment, one common task is for the mobile robot to determine a

collision-free path from its current position (state) to a specified position (state) called the goal.

The process of determining this path is called path planning. The solution to the path planning

problem usually falls under one of three categories: search-based, sampling-based and

combinatorial-based solutions. The combinatorial methods are the oldest and possibly most

studied branch of planning, with application in many areas ranging from computer graphics to

very large scale integrated circuit design. The search-based techniques dominate the other two

categories of techniques because they are relatively easy to implement and also due to the fact

that they received an early establishment of dynamic search-based algorithms. Research,

however, seems to be shifting towards the sampling-based techniques due to their powerful

potential for planning in high dimensional space such as that of the serial robot manipulators

(Wooden, 2006).

Search-based planning. Search-based planning techniques usually operate on 1.5.1

occupancy grids. The configuration space is represented as a tessellation of regularly sized grid

cells with the start location of the robot and the goal location within the grid. A search is then

performed on the grid to solve the point-to-point problem by finding a chain of free cells (grid

cells that are free of obstacles) linking them. Usually these cells form the shortest possible path.

 Limitations. The grid on which search-based techniques are performed is usually 1.5.1.1

a graph with a fixed topology. One requirement of such graphs is that their resolution needs to be

12

specified prior to the search. This gives rise to what is usually referred to as resolution

completeness (i.e., the path found by the search is only optimal at the specified resolution of the

grid). The ramification is that the shortest possible path found by the search might not be the

shortest possible continuous path in the workspace. The higher the resolution of the grid, the

closer the searched path is to the shortest continuous path possible on the workspace. However,

using high resolution is not without a price tag. High resolution means high computational cost

in terms of memory for storage and processor time for computation. Using coarse resolution can

result in the computation of non-intuitive paths (see Figure 1.3), or render some regions

inaccessible from other regions (see Figure 1.4). Note that for both Figure 1.3 and Figure 1.4,

subfigure (a) is the continuous world, subfigure (b) is the course gridded world and subfigure (c)

is the fine gridded world. There is therefore always a tradeoff between grid resolution and

computational cost. A search-based method is complete when it always returns a path through

the configuration space of free cells, , whenever such a path exists.

Figure 1.3. How increasing resolution can help graph search algorithms

(a) (b) (c)

13

Figure 1.4. How increasing resolution can help graph search algorithms.

On the other hand, a regular resolution grid can be decimated to a multi-resolution grid or

hierarchical tree structures (e.g., a quad-tree (Noborio et al., 1990) and framed quad-tree (Yahja

et al., 1998)). This is usually accomplished as preprocess before the search technique is applied.

It is worth mentioning that, this can be a non-trivial process.

Sampling-based path planning. The idea of the sampling-based path planning is 1.5.2

to run a search that probes the configuration space with a sampling scheme. The system employs

a collision detecting module for the probing of the configuration space (LaValle, 2006). That is,

the system generates a vertex and checks whether the generated vertex is interior to an obstacle

using the collision detecting module. If so, the vertex is discarded, and otherwise the vertex is

considered good and edges are added to it and its mutually visible immediate neighbors

(Wooden, 2006). The neighbors are usually nearest neighbors or k-nearest neighbors. The vertex

generation can either be stochastic, such as in a probabilistic roadmap (PRM) method (Kavraki et

al., 1996; Zhong and Su, 2011), or deterministic. The sampling based path-planning approach

has proven powerful in solving robotics, biological and manufacturing applications, especially

those involving thousands and even millions of geometric primitives. Such problems are difficult

if not impossible to be handled with techniques that rely on explicit representation of the

(a) (b) (c)

14

environment (Choset et al., 2005). The idea here is to eliminate the need for explicit

representation of the environment and only generate information about the environment based on

sampling. After identifying sufficient vertices and edges, a graph search technique (such as)

can be employed to find the path linking the start and goal positions. A recent trend in this

branch of path planning has been to investigate methods of making the sampling-based approach

dynamic (Yershova et al., 2005; Ferguson et al., 2006).

 Limitation. The main drawback of the sampling-based path planning approach is 1.5.2.1

its weak guarantee of completeness (usually termed probabilistic completeness). The

completeness property guarantees that the problem will be solved if a solution exists. Thus, for

any given start and goal locations, the approach correctly reports a solution if at least one exists

and no solution if none exists. Since only sample vertices are generated, a false conclusion can

result when the samples are not a true representation of the environment. The solution to this

problem lies in the quality of the sampling technique used.

Combinatorial-based approach. As the name suggests, the combinatorial-based 1.5.3

approach to path planning takes a polyhedral representation of the environment and connects the

vertices with edges and/or connects the edges with vertices to form what is usually referred to as

roadmap. A search method can then be employed to determine the shortest path between the start

and the goal positions. The three main categories in literature are shortest-path (visibility

graphs), maximum clearance, and cell decomposition. Combinatorial approaches find paths

through the continuous configuration space without employing any approximation technique

such as discretization or sampling and hence are usually referred to as exact techniques.

15

Combinatorial approaches are complete (i.e., for a given input, they are able to return whether a

solution exists or does not exist).

 Limitations. The main challenge with combinatorial algorithms is that they can 1.5.3.1

become impractical for workspaces filled with numerous geometric primitives. This is because

the number of vertices and edges will grow exponentially; making excessive demand on storage

and making search too time consuming. The other limitations are approach dependent; for

example, visibility graphs suffer from obstacle edge hugging which is undesirable in practical

implementations.

1.6 Statement of Research Problem

Localization. The challenges affecting the implementation of absolute positioning 1.6.1

systems such as the use of navigating beacons and GPS have led to the proliferation of relative

positioning systems. Relative positioning systems usually use dead-reckoning for position

estimation. Dead-reckoning integrates all pose (position and orientation) changes made by the

robot from its initial to current pose. Dead-reckoning is very simple and inexpensive in its

modeling and implementation but suffers from substantial sources of error (Cox, 1991). The

greatest weakness of dead-reckoning is the accumulation of errors and thus, the uncertainty in

the robot’s position estimation increases without bound over time. The origin of errors in dead-

reckoning can be classified under two broad headings, systematic and non-systematic errors.

Systematic errors originate from incorrect parameterization/ measurements inherent in the

system due to imprecise manufacturing and modeling.

Many researchers have considered some of the causes of the observable systematic errors

and have developed calibration and tuning methods for mitigating them (Borenstein and Liqiang,

16

1996). However, to the best of our knowledge, none of these researchers claim to perfectly

eliminate all of the causes. This means there will still be some unaccounted for causes

introducing errors into the estimation in the long run. Besides, non-systematic errors are

unpredictable and mostly considered unobservable and so their effects cannot be adequately

modeled. Many dead-reckoning systems employed in mobile robots use odometers, leading to

the conventional name odometry. An intuitive way to improve the position estimation is to fuse

odometry information with additional data/information from sensor sources such as global

positioning systems (Thrapp et al., 2001), inertial navigation systems (Borenstein and Feng,

1996) or cameras (Abuhadrous et al., 2003).

Path planning. Map building using fixed node decomposition (i.e., the continuous 1.6.2

world is tessellated into a discrete approximation of the continuous map) is inexact resulting in

the loss of narrow passages in this transformation. The higher the resolution of the grid, the

closer the approximation is to the continuous world. But increasing the resolution introduces

more free nodes and increases the search space leading to a sparse grid (see Figure 1.3 and

Figure 1.4). The map of most indoor environments can be considered sparse if decomposed into

nodes of high resolution. Most of the path planning algorithms in literature are great in solving

the path planning problem on cluttered grids but not so much on sparse grids whiles others are

good on sparse grids but not on cluttered grids. However, many real world environments

comprise of both cluttered and sparse sections. A common way to solve this is the use of multi-

resolution gridding (Cowlagi and Tsiotras, 2010; Shih-Ying et al., 2012), that means regions

close to obstacles are represented with high resolution gridding and regions far from obstacles

are represented by much courser gridding. But building multi-resolution/adaptive grids requires

17

more work in the decomposition than building uniform/fixed node grids. Besides, determining

which node a given position belongs to and finding the neighbors of a given node in a multi-

resolution grid is a non-trivial task (Aizawa and Tanaka, 2009). The motivation is therefore to

develop a complete and correct search algorithm that can plan paths in high-dimension, high-

resolution grid maps faster across the spectrum from highly sparse grids to heavily cluttered

grids. This will enable us to handle large grid sizes and thus encourage increasing the resolution

of the grid without the need for multi-resolution.

Problem definition. The indoor navigation problem has been formulated thus: 1.6.3

Given an unknown and unstructured indoor environment with a navigating mobile robot and a

model of how the robot interacts with the environment (a) design a system for lifelong estimation

of the position of the robot in such an environment; (b) using this information about the robot’s

instantaneous locations in the environment, build a consistent map for the environment; and (c)

given a current state of the robot and expected destination state, search for the minimum cost

path between these two states maneuverable by the robot. Chapter 3 presents a solution to parts

(a) and (b) while Chapter 4 presents a solution to part (c).

General assumptions. This section presents some of the general terminologies for 1.6.4

describing robots and their environment vis-à-vis some generally accepted assumption for

robotic navigation. The robot is a rigid body equipped with mobility capability, in this case a

wheeled robot with differential drive motion system. The world in which the robot operates is

termed the workspace which is assumed to comprise two distinct regions: Obstacle region –

denotes places in the workspace where the robot certainly should not go or cannot go either

because it is preoccupied with another object or because it is too close to another object; Free

18

Space – denotes places in the workspace where the robot can safely go or is free to move. To

simplify especially the planning problem, the concept called configuration space introduced in

the influential work of Lozano-P and Wesley (1979) has been adopted. Thus the robot is

modeled as a point mass capable of omnidirectional translation in Euclidean space. This

alleviates the difficulty, such as geometrical and mobility constraints, associated with directly

planning over the workspace with the true physical model of the robot. The workspace is then

transformed into the configuration space by “bloating” the obstacles by the maximum radius

from the center of the robot. This is achieved by applying the Minkowski sum or mathematical

morphology dilation operator to each obstacle in the workspace forming a convolution of the

robot’s geometry and the obstacle’s geometry in the configuration space. In common notations,

regions in configuration space occupied by obstacles are termed obstacle regions denoted by

 and remaining regions available for the robot to maneuver are termed free space denoted by

 (Latombe, 1991). The third dimension of a planner robot is then factored into the low level

controls of the robot or by using heuristics stemming from the knowledge of the robot’s

kinematics constraints.

1.7 Summary of Contributions

The contributions that this research has made to the field of indoor navigation can be

classified under the two major areas namely localization and path planning. Under localization, a

system for mitigating the long term error accumulation of odometry errors has been designed and

implemented. Under path planning, a new pathfinder called
 (pronounced “A-r-Star”) has been

developed for path planning on occupancy grid maps. Finally, the components are integrated in a

simulation using an indoor world prototype developed using the Webots™ software – a

19

development environment used to model, program, and simulate mobile robots and their

behavior in physically realistic virtual environments (Michel, 2004).

Localization. 1.7.1

 Odometry error mitigation using Radio Frequency Identification (RFID) and door-

markers.

 Header angle estimation improvement for a navigation robot by fusing the data from

three fiber-optic gyroscopes using fuzzy integrals.

Path planning. 1.7.2

 Development of Basic A-r-Star and A-r-Star – A modified, more general and fast version

of

o Simulation experimental study of the properties of A-r-Star and presentation of

some informal proofs of its theorems

o Study of the challenges of A-r-Star and development of some solutions to handle

these challenges and improve optimality

 A-r-Star with post smoothing algorithm

 A-r-Star with interleave smoothing algorithm

 A-r-Star with interleave smoothing and post dissociative smoothing

 A-r-Star with interleave smoothing and iterative post dissociative

smoothing

 Study of the DAG formed by various graph search techniques and the subsequent

development of the incremental version of A-r-Star algorithm that allows for previous

20

path information reusability to speed up re-planning when a change in the environment

invalidates a previously planned path.

Integration. 1.7.3

 Development of a Webots prototype for an indoor simulation world and subsequent

application of an integrated version of the navigation system developed in this research to

operate in this prototype indoor environment.

1.8 Summary of the Introduction

This chapter has introduced the indoor navigation problem. Also, a brief introduction to

the aspects of the indoor navigation algorithm has been presented with their drawbacks. The

motivation for this research stemming from the quest to develop a system robust for navigating

diverse indoor environments has also been introduced. The chapter ends with the research

contributions to solving the indoor navigation problem. The next chapter will give a more

detailed state-of-the-art exposition on some of these topics.

21

CHAPTER 2

Literature Review

This chapter first presents a general overview of some indoor navigation systems and

their implementations. This is followed by a brief description of some of the more common

indoor navigation algorithms. Also presented is a literature review of related research areas such

as indoor localization using RFID and odometry, occupancy grid based mapping and search-

based path planning techniques.

2.1 Indoor Navigation Systems

The proliferation of domestic robots for various applications, such as vacuum cleaning,

assistive care, intelligent wheelchairs (Matsumoto, Ino andOgsawara, 2001), has whetted

researchers’ appetite for addressing indoor navigation problems. Researchers have proposed

various solutions to the indoor navigation problem. Among the most important solutions

presented are inertial navigation systems, Radio Frequency Identification (RFID) based systems

and Wifi-based/Bluetooth-based systems. Some highlights of current major trends of indoor

navigation techniques are given below with their pros and cons where relevant. For more

information, the reader is advised to read (Retscher, 2006; Mautz, 2009; Wendel, 2011).

Satellite-based techniques. Satellite-based navigation systems are still widely used 2.1.1

in indoor navigation despite the fact that conditions present during indoor navigation almost

imply the absence of viable satellite signals (Dovis et al., 2008). The most common satellite-

based navigation systems make use of the American Global Positioning System (GPS), which

uses a constellation of 24 satellites orbiting the Earth at altitudes of approximately 11,000 miles

(Manapure et al., 2004). Also, there are alternative counterparts, such as Russia’s Global

22

Orbiting Navigation Satellite System (GLONASS) and the Global Navigation Satellite System

(GNSS) under development by the European Union (EU) and European Space Agency (ESA)

called GALILEO (Manapure et al., 2004).

 Working Principles. In Global Navigation Satellite Systems (GNSS), the 2.1.1.1

satellites act as a signal transmitters and the device used acts as the signal receiver. The precise

instantaneous positions of these satellites are known, and this makes them suitable as reference

points for GPS navigating devices on Earth to estimate their positions. The satellites (24

satellites for the current US GPS and a projected 30 satellites for the GALILEO system)

continuously transmit their position and a highly accurate time-signal from their corresponding

orbits to the surface of the Earth. The GPS navigating devices measure signals from the satellites

and make use of the time-of-flight to estimate their distances from these satellites. The satellite

signals (microwaves) travel at the speed of light, and thus using the velocity of light and time

allows the receiver to calculate its distance to the satellite. Using the principle of trilateration, the

intersection of the spheres centered at three satellites is used to estimate the position of the GPS

device on the Earth’s surface. Because the GPS devices are not usually equipped with the ability

to measure the precise time of flight of the signal, a fourth satellite is used to enhance the

precision and measurement of elevation or altitude.

 Limitations/Challenges (Wendel, 2011). The following are some limitations or 2.1.1.2

challenges with satellite-based techniques.

 The initial setup requirement for the GNSS system is both expensive and cumbersome,

and this limits its installation to only a few well-to-do countries or multi-national

organizations (e.g., US, Russia, and joint EU and ESA).

23

 The operation and maintenance of the satellites needed for the GNSS is also expensive

and demands much effort.

 Satellite-based navigation systems require a direct line-of-sight (DLOS) between the

satellite acting as transmitter and the GPS device acting as the receiver for proper

operation. Where this DLOS does not exist, the signal may be greatly attenuated, and this

reduces the reliability for navigation.

 The accuracy of satellite navigation is still in the meters range.

 Inertial navigation systems (INS). Inertial navigation systems exploit the 2.1.2

principles of inertia to measure the acceleration and angular velocity of a body and estimate its

position. They rely on inertia sensors such as accelerometers and gyroscopes. At its inception in

the early 1990’s, INS was mainly used for guiding missiles. Researchers later lost interest in this

approach since satellite-based navigation proved superior to INS. However, the inherent

limitations of the satellite-based navigation systems such as those mentioned in section 2.1.1

have prompted researchers to consider INS as a viable alternative or supplement to satellite

based navigation, especially for indoor applications and small areas of navigation.

 Working principle. Inertial navigation systems are usually implemented using an 2.1.2.1

Inertial Measurement Unit (IMU), which consists of several inertia sensors (both linear

accelerometers and angular velocity sensors) assembled together. This IMU forms the core of the

INS and is used to observe the acceleration and the angular velocity of the navigation system

(Savage, 2007; Liu and Li, 2010). The IMU integrates the acceleration forces acting on it to

generate the velocity vector and another integration produces the position vector of the

navigation system. To ensure accurate operation, the IMU should be free from external

24

perturbations and the update rate should be high. These requirements generally dictates the use

of large laser-gyroscopes and pendulum accelerometers in high accuracy INS to make the

gravimetric measurements. The birth of semiconductor-based micro-electro-mechanical system

(MEMS) sensors has made the integration of IMUs into mobile devices possible (Smailagic and

Kogan, 2002).

 Limitations/Challenges. The following are some limitations or challenges with 2.1.2.2

INS.

 INS needs an initial reference position and heading, which must be fixed and accurate

vis-a-vis altitude stabilization. These requirements make INS implementation

cumbersome.

 IMUs are very sensitive to external perturbations forces, which can greatly degrade their

performance.

 Drifting of numerical consistency in IMU measurements occurs if the system is not

augmented with external, independent position updates. This makes its long term

application impractical given certain levels of sensor quality.

Sound-based navigation. Sound-based navigation systems use the principles of 2.1.3

sound wave propagation to estimate the position of a navigating system. Such a system usually

consists of a transmitter and receiver placed at the ends of the distance to be measured or

collocated together and used to measure the distance of an object (e.g., a wall or cliff) in the

direct line of sight from the transmitter/receiver source (Castro et al., 2001).

25

 Working principle. There are different implementations of sound-based 2.1.3.1

navigation systems. The most popular is the sonar system. The sonar device houses both the

ultrasound transmitter and receiver. It emits either unidirectional or omnidirectional sound

(depending on application). When this sound reflects off a surface, the receiver measures the

reflected signal. The device then uses its knowledge of the sound velocity and the time-of-flight

to estimate its distance from the reflecting surface (Langer and Thorpe, 1992). This

implementation is usually employed for mapping applications.

A second implementation is the Active Bat system. Active Bat is based on the principle

of trilateration. It consists of a single ultrasonic source/transmitter (often whose position is to be

estimated) and multiple receivers embedded in the environment. These sensors measure the time-

of-flight, and the system uses trilateration techniques to estimate the position of the transmitter

(Ward et al., 1997).

A third implementation uses a transmitter installed on the navigator and a receiver on the

point of reference. The properties of sound are then used to estimate the distance between the

transmitter and the receiver, and this is used to estimate the position of the navigation system.

These are but a few of the existing implementations.

 Limitations/disadvantages. The following are some limitations or disadvantages 2.1.3.2

of sound-based navigation systems.

 Sound-based navigation systems are very sensitive to environmental noise (e.g., similar

sounds from other objects or multiple reflections from the same surface or multiple

surfaces) and this can drastically degrade their performance.

http://en.wikipedia.org/wiki/Trilateration

26

 Sound-based navigation systems, especially the Active Bat system, require pre-

installation of the multiple receivers in the environment, which can be cumbersome and

relatively expensive.

 Sound-based navigation systems require direct line of sight for their proper operation and

so their usage in cluttered environments is limited.

 Sound has low frequency and so attenuates fast, limiting sound-based navigation systems

to short distance applications.

Electromagnetic wave-based navigation. Electromagnetic waves (EMW) are high 2.1.4

frequency waves such as visible or invisible light and radio waves. The properties of

electromagnetic waves can be exploited for the design of a navigation system in ways similar to

some of those mentioned above (sound-based and satellite-based). In recent applications, the

common examples of EMW based navigation include: laser range finders/laser measurement

systems, Radio Frequency Identification (RFID) systems, wireless LAN systems (Castro et al.,

2001; Ladd et al., 2002; Smailagic et al., 2002), bluetooth positioning and ultra-wide band

systems.

 Working principles. The principle of operation is usually dependent on the type 2.1.4.1

of electromagnetic wave being used in the application. The light based systems, such as infrared-

based (e.g., Active Badge system), laser-based systems (e.g., laser range finders/laser measuring

instruments) employ the measurement of time-of-flight to estimate distance. The operating

principle of the Active Badge system is similar to that of the Active Bat system described above

(Section 2.1.3). The radio wave-based methods, commonly implemented in the form of RFID,

work by proximity detection or reading of transmitted codes, such as is the case of RFID tags.

27

Other implementations include measuring and calculating of distances based on the received

signal strength (RSSI) of a signal transmitted by installed infrastructure nodes such as WLAN,

ultra-wide band (UWB) or Bluetooth access points (Grimson and Lozano-Perez, 1987; Latombe,

1991).

 Disadvantages/Limitations. The following are some limitations or disadvantages 2.1.4.2

of electromagnetic-wave-based navigation.

 Some of the EMW based techniques (e.g., the Active Badge system) require the pre-

installation of uniquely encoded transmitters, and the setup requires a sufficient number

of receivers to achieve room-level precision. This makes their implementation expensive

(Boontrai et al., 2009).

 The necessary fingerprinting process (the recording of RSSI at each grid point of the

environment) can be very time consuming.

Image-based or optical techniques. Image-based or optical techniques use image 2.1.5

analysis and image processing techniques for estimation of the position of a navigating system.

They usually involve the processing of visual information in the form of still or continuous

images provided by a camera. The image source can be a single camera usually for 2D mapping

or stereo camera for 3D mapping.

 Working Principles. These approaches employ some kind of camera device for 2.1.5.1

taking the image of the environment and image processing techniques for localization and path

planning. Many researchers have employed different imaging devices, such as monocular

cameras, or the stereo cameras which add the depth dimension. Some of the popular optical

28

navigation techniques are the optical flow navigation methods (McCarthy and Bames, 2004),

image annotation (Kawaji et al., 2010) and feature based mapping (Se et al., 2001).

 Disadvantages/Limitations. The following are some limitations or disadvantages 2.1.5.2

of image-based and optical techniques.

 The performance of these techniques highly depends on the state of the environment

(lighting, occlusions, etc.);

 Lack of depth information and reliance on complex image processing algorithms create

high computational burden and other difficulties.

2.2 Indoor Navigation Algorithms

The previous section gives a general overview of the sensor hardware solutions to the

indoor navigation problem. These sensor hardware techniques are usually implemented with

various algorithms that operate on the data acquisition or collection and processing and

subsequent estimation of position (localization), building of a representation of the environment

(mapping), and direction and routing from one position to another (path planning and obstacle

avoidance). Some of these pairings of sensor hardware and algorithms have been highlighted

below.

Kalman filter/extended Kalman filter. The Kalman filter uses a series of 2.2.1

measurements observed over time, an observation model, and a system model containing noise

(random variations) and other inaccuracies to estimate unknown parameters, which usually have

higher accuracy than estimates that rely on a single measurement. A Kalman filter models the

system using a random variable with a Gaussian distribution and uses the first and second

moments (mean and covariance) to represent this probability distribution. It uses the system

29

model and observation models to predict and uses the observations made by its sensors to

correct/reduce the estimation error. The Kalman filter works with linear system models but it can

be extended to work with non-linear system models (extended Kalman filter). The most common

navigation application of Kalman filters is in the implementation of Simultaneous Localization

And Mapping (SLAM). Common hardware for implementation dead reckoning includes image-

based or optical techniques, INS and electromagnetic-based navigation (e.g., RFID beacons).

Dead reckoning. Dead reckoning is a position/pose estimation technique that uses 2.2.2

the integration of all the displacements made since the navigating object first left/passed a

reference point. These displacement estimates can be in the form of changes in the heading and

distance or Cartesian coordinates. Example applications include pedestrian dead reckoning

(Retscher, 2006), odometry (SungHwan et al., 2012), Strapdown (Savage, 2007), etc. Common

hardware for implementation dead reckoning includes INS, odometers and optical navigation

system.

Particle filter. Particle filters are used when the system state cannot be modeled as 2.2.3

a (linear) Gaussian distribution random variable. Here a sum of weighted samples called particles

is used to approximate the density function of the random variable. The number of the particles

can be chosen to meet the desired performance requirement. A higher number of particles

achieves a good approximation, but their processing is computationally expensive. Too few

particles, however, can cause system divergence. Like the Kalman filter, the particle filter is

mainly used in the implementation of SLAM (the so called FastSLAM) (Montemerlo and Thrun,

2007). Common hardware implementation using particle filters includes image-based/Optical

techniques.

30

2.3 Robot Localization

Determination of the exact position of a navigating mobile robot remains fundamental to

mobile robot automation. Although researchers have proposed and investigated many systems,

sensor combinations, techniques and algorithms, it remains a viable challenge since no elegant

and broadly robust solution has been developed yet. Localization can be classified under two

broad categories, namely, absolute position estimation (e.g., magnetic compasses, active

beacons, Global Positioning System (GPS), landmark navigation, and model matching) and

relative position estimation (e.g., dead reckoning (odometry) and inertial navigation) (Casals,

1989).

RFID-based indoor localization. Radio frequency identification (RFID) is a form 2.3.1

of automatic identification technology that utilizes remote storing and retrieving of data using

readers or scanners and tags. The principles of RFID localization are similar to those of WLAN.

Most existing RFID localization methods employ the RF signal strength, instead of time-of-

arrival of signal, as an indicator of distance. Researchers have explored many different methods

for localization based on RFID tagging and identification, meeting different application demands

and available hardware. The application requirement and the available hardware usually dictate

which parameters can be chosen to achieve good localization estimates. Also, existing

localization techniques have been enhanced by employing the object identification potential of

RFID, artificial landmarks or global reference points as an accuracy enhancing tool. Several

reviews in literature (Bouet and dos Santos, 2008; Sanpechuda and Kovavisaruch, 2008; Zhou et

31

al., 2009; Nikitin et al., 2010) give good overviews of many of these systems and approaches and

highlight some of their pros and cons.

An RFID based localization technique is presented in Nick et al. (2012) that applies the

Constrained Unscented Kalman Filter (CUKF) to the RSSI measured from an unknown tag to

localize an RFID. A camera-based localization technique is implemented to supplement the

noisy RSSI estimation and to increase the accuracy of the localization. The accuracy

performance of this camera-assisted localization technique proves superior to that of the CUKF

without camera assistance by a factor of two and to Unscented Kalman Filter (UKF) by a factor

of about four. RFID localization techniques find their application in healthcare (Mautz, 2009),

construction material management (Song et al., 2007), local positioning for road safety (Hui and

Zekavat, 2007), production process control (Thiesse et al., 2006), automated guided vehicle

routing (Langer et al., 1992), mining safety (Ruff and Hession-Kunz, 1998) and other areas.

Dead reckoning (odometry). Dead reckoning (odometry) denotes the integration 2.3.2

of incremental motion information of a given navigation system over a given run time. It is

usually implemented by using odometers (e.g., optical encoders) to measure the wheels’ angular

velocity and using this data to compute the navigating system’s offset from a known reference

point. Odometry is most widely used in mobile robot navigation due to its ability to provide good

short-term accuracy, its ability to allow very high sampling rates, and its lower implementation

cost and complexity. The integration of this information inevitably leads to the accumulation of

errors, however. Table 2.1 outlines some of the known causes of systematic and non-systematic

errors. Accumulation of errors in the position estimates is an issue but of greater concern is the

accumulation of the orientation errors, which translates into large position errors (Borenstein,

32

Everett, et al., 1996), and increase proportionally with the distance traveled by the robot thereby

causing the estimation error to diverge. However, because odometry forms an integral part of

many navigating systems, research into odometry accuracy improvement and error mitigation

has advanced. Some of the earliest includes the test method for detecting and correction of

mainly systematic errors called “UMBmark” and “extended UMBmark” (Borenstein, 1998). This

method, also called internal position error correction (IPEC), was implemented on the OmniMate

robot, which was specifically designed for the implementation of the IPEC method.

Table 2.1

Sources of Systematic and Non-Systematic Errors in Mobile Robot Odometry

Systematic Errors Non Systematic Errors

a) Limited encoder sampling rate

b) Limited encoder resolution

c) Unequal wheel diameters

d) Average of both wheel diameters differing

from nominal diameter

e) Wheel misalignment

f) Uncertainty about the effective wheelbase

(due to nonpoint wheel contact with the

floor)

a) Unexpected external forces (interaction

with external bodies)

b) Unexpected internal forces (e.g., from

castor wheels)

c) Non-point wheel contact with the floor

d) Uneven operating floors

e) Unexpected objects on the operating floor

f) Wheel-slippage resulting from slippery

floors, skidding in fast stops or turns, etc.

Results show that OmniMate can improve odometry accuracy by one order of magnitude over

conventional mobile robots. However, the UMBmark test (Borenstein and Evans, 1997) is

33

relatively difficult to perform and very sensitive to non-systematic errors. Besides, its accuracy

depends on a large number of tests with precise measurements of the final position and

orientation of the robot, which is difficult if not impossible in real-life application (Bostani et al.,

2008).

A low cost navigation system is developed by fusing inertial sensor information provided

by gyroscopes and odometry using Kalman Filters and rule set-based fusion strategies (Tarin

Sauer et al., 2001). The gyroscope information helps to improve orientation estimation. The

autonomous mobile robot B21 was used as the testing platform. This system reduces both the

systematic and non-systematic errors in the navigation system and improves the accuracy of their

system (Bostani et al., 2008).

Abbas et al. (2006) identifies the main limitation of UMBmark as its inability to

incorporate the non-systematic stochastic wheelbase error that arises from less turning in the test

path execution and wheel slippage at corners due to stops and wheel direction reversals. The

authors then present a technique for measurement and correction of systematic odometry error

caused by kinematics imperfections in the differential drive mobile robots; the technique uses

occasional systematic calibration. The paper proposes a Bi-Directional Circular Path Test

(BCPT) for modeling the systematic odometry errors and claims that this approach significantly

reduces the amount of effort required to model parameters involved in the systematic. This

approach is also claimed to be very simple to perform, robust, and relatively free from random

errors, especially from measurement noise. It is also said to yield good results at the end of a

single test, thereby eliminating the need to repeat the test over and over again.

34

Other researchers have focused on visual odometry; see, for example, (Corke et al., 2004;

Johnson et al., 2005; Milella and Siegwart, 2006; Zhiwei et al., 2007). However, the closest work

in literature to the research in this dissertation is presented in Kubitz et al. (1997) where Radio

Frequency Identification (RFID) tags were used as artificial landmarks in the robot’s

environment. However, as the authors rightly pointed out, the accuracy of the measurement of

the relative position between the tag and the robot depends on the abilities of their RFID system.

In most cases, it is relatively inaccurate and is strongly influenced by the reading range and the

ability to detect whether the robot is approaching or moving away from a tag. This challenge is

resolved in the current research by employing door-markers (as detailed in section 3.2.3).

2.4 Mapping

Map building is considered an important component of mobile robotic applications in

partially-known or unknown environments since knowledge of the environment plays an

important role in developing robots and robotic software capable of exhibiting fully autonomous

behavior.

Occupancy grids mapping. An occupancy grid is an approach for representing an 2.4.1

environment using regular tessellation of the space into a number of cells (usually rectangular

cells). It is the most common low-level environment modeling approach for fusion of noisy data

in robotics. Each cell stores the probability that a given area in the environment corresponding to

that cell is occupied by an obstacle. This approach assumes that neighboring cells of the grids are

independent from each other and thus avoids a combinatorial explosion of possible grid

configurations. Occupancy grids find their direct application in robotic navigation, path planning,

and collision avoidance.

35

There are two main types of occupancy grid approaches in the literature, namely, the

static and the dynamic occupancy grid. As the names suggest, static occupancy grids rest on the

assumption that the environment is static while dynamic occupancy grids incorporate the

dynamism of the environment (Fulgenzi et al., 2007). Most researchers assume a static

environment and therefore static occupancy grids are common in the literature.

Moravec and Elfes (1985) proposed occupancy grids for constructing an internal model

of static environments based on ultrasonic range data (Moravec, 1988; Schiele and Crowley,

1994). Their approach utilizes probability or certainty values to handle the uncertainty in the

sensory data. The authors in (Stepan et al., 2005) presented a novel approach for building an

occupancy grid from a monocular color camera. They have also developed a method of fusing

the monocular camera data with data from laser range finders. This leads to a more accurate

result.

The two drawbacks to the application of occupancy grids in robotics have been the

modeling of dynamic obstacles and localization of the robot building the map. Multi-resolution

matching has been proposed in Schiele et al. (1994) and Moravec et al. (1985) as a solution to

these challenges by matching global and local occupancy grids.

For the past few decades, dynamic occupancy grids have been attracting more interest.

Coué et al presented a 4D occupancy grid in (Coué et al., 2006) in which each cell is defined in

terms of its position and two speed components along each axis. This 4D model permits the

computation of the speed of the classical cells in the 2D grid using the estimation of the

occupancy of each cell in the 4D. Chen et al. (2006) presented another solution that does not use

4D but uses a distribution of speed for each cell in the form of a histogram.

36

Recently, Vatavu et al. (2011) have developed a real-time flexible method for occupancy

grid modeling and representation using particles that move from cell to cell. A border scanner

algorithm extracts polylines from occupied cells by performing radial scanning using the position

of the ego vehicle as the scan rotation center. An average speed is then computed for each

resulting polyline as an average speed of the grid occupied cells neighboring the polyline. This

method uses the measurements derived from stereovision to determine when to create or destroy

particles. The occupancy grid approach presented in (Vatavu et al., 2011) relies on a hidden

Markov model (HMM) to explicitly represent both the belief about the occupancy state and state

transition probabilities of each grid cell, and thus enables the modeling of how the occupancy

changes over time.

Hao and Nashashibi (2012) presented a new approach for merging occupancy grid maps

built by different observers (robots). They achieve this by measuring the consistency degree of

map alignment using occupancy likelihood. The optimization of the objective function is

achieved through genetic algorithms implemented in a dynamic scheme. Their approach has

been implemented on a scheme of multi-vehicle cooperative local mapping and moving object

detection as well as demonstration of the effectiveness of the algorithm using real-data tests.

2.5 Search-Based Path Planning

Search-based path planning received its popularity from the early development of graph

search algorithms with direct application in discovering paths on grids. One such algorithm is

Dijkstra’s algorithm, a breadth-first search technique (Dijkstra, 1959). It was first conceived by

Dutch computer scientist Edsger Dijkstra. It finds the single source shortest path from a single

vertex to all the vertices of a given graph with positive edge costs. The (pronounced “A-

37

Star”) algorithm, which is similar to Dijkstra’s algorithm was independently introduced by Nils

Nilsson (1968) (Hart et al., 1968), and uses admissible heuristics to speed up the search

algorithm by narrowing the search space. The algorithm has been proven to be optimal, which

means that it will search at least as fast (in terms of computational speed) as all other solution

methods provided the other method is not using a better-heuristic (Hart et al., 1968). Also, if the

heuristic function used for the cost modeling never overestimates the actual minimal cost of

reaching the goal (i.e., it is admissible), then the solution returned by the algorithm is optimal

(i.e. the best possible path available given the graph/tree constraints) (Dechter and Pearl, 1985).

Use of the algorithm for path planning in both robotics and video games has increasingly

gained popularity.

However, the algorithm uses a fixed heuristic which can negatively affect the

performance where the system changes frequently. The (Korf, 1990) solves this problem

by learning a perfect heuristic function. Near optimal hierarchical path-finding ()

introduced in (Botea et al., 2004), is essentially a hierarchical approach that abstracts the map

into linked local clusters before applying the algorithm thereby reducing the complexity of

the search process.

One drawback of the algorithm is its offline nature, which makes its application

suitable for only static environments. This implies that, whenever there is an environmental

change that invalidates the searched path, the algorithm has to do search-from-scratch

(commonly referred to as re-planning). It has no built-in capability to reuse the information

accumulated from the previous search (Hart et al., 1968). This limits the algorithm’s

38

applicability to static environments and the algorithm is less useful in dynamic, partially known

or unknown environments.

The need for algorithms that will solve this problem gave rise in the mid-1990 to the

algorithm developed by Stentz (1994). (Stentz, 1994, 1995b), which is possibly the first of

the category of algorithms called incremental search algorithms. These are incremental in the

sense that the information from the previous search is used whenever a change in the

environment invalidates the previously searched path. The reusability of information from the

previous search speeds up the re-planning process, and makes their application to real world

scenarios involving dynamic environment or partially-known or unknown environments more

attractive.

However, the algorithm at its initial stage operates as a breadth-first search and thus

its initial search is time consuming (Stentz, 1995a). To handle this limitation, the

 algorithm (Stentz, 1995a) was developed. It utilizes heuristics to focus the search to

significantly reduce the total time required for both the initial path calculation and subsequent re-

planning operations thereby making the algorithm a full generalization of for dynamic

environments. The algorithm is a variant of that uses interpolation to improve the

smoothness of the path returned both in the planning and the re-planning phase (Ferguson and

Stentz, 2007) (Carsten et al., 2006). Another variant of the algorithm is the Anytime

(a.k.a. Anytime Dynamic) algorithm, which combines the benefits of anytime and

incremental planners to provide efficient solutions to complex, dynamic search problems

(Likhachev et al., 2005). and its variants are algorithmically complex and so their

implementation is not very attractive to many pathfinder developers.

39

Another incremental search, developed by Ramalingam and Reps (1996) and called the

DynamicSWSF-FP shifts the re-planning computational burden to the initial stage by computing

and storing all the distances from the free nodes to the goal. When the robot detects a change in

the environment while navigating, the system only needs to update the nodes whose distances

have changed to obtain consistent paths from multiple nodes to the goal. This makes it a

powerful tool in problems where there is the need to determine the distances from multiple nodes

to the goal after a change in the environment.

Koenig et al. (2004) developed the incremental which combines the powers of and

DynamicSWSF-FP. The incremental is also referred to as Lifelong Planning (), in

analogy to “lifelong learning” (Eaton and Ruvolo, 2013), due to its ability to reuse the

information from previous searches. The initial search of is the same as that of , but the

subsequent re-plannings are much faster than that of . forms the foundation for the

development of the algorithm (Koenig and Likhachev, 2002), which differs

algorithmically from and is easier to understand and analyze than , but implements the same

behavior as . Koenig and Sun (2009) presented a comparison of and

 .

Most of the grid-based path planning algorithms that operate on a 2D world use discrete

state transitions that are artificially constrained to a small set of possible headings angles (e.g.,

 etc.). The ramification is that the path returned by even the optimal grid planner will not

be the shortest possible continuous path. The algorithm (Daniel et al., 2010) reduces this

discrete angular constraint by exploring connectivity between a node and its parents as well as its

40

grandparent. Where the grandparent has a line-of-sight between it and the child, the grandparent

is made the parent of the current node and the parent is discarded.

The new trend in this branch of path planning includes the works of Sven Koenig et al in

the development of the Adaptive algorithm (Koenig and Likhachev, 2006) and their variants

such as the Generalized Adaptive (GAA*) (Sun et al., 2008a) and Real-Time Adaptive

() (Koenig et al., 2007; Sun et al., 2008b). These algorithms have been shown to be

effective in moving target tracking and multiple goal search problems.

Most of the graph search algorithms highlighted so far perform well in cluttered

environments but suffer substantial performance degradation when operating in sparse grids. The

natural solution to this is to preprocess the world into some kind of multi-resolution grid or tree

structures such as demonstrated in (Noborio et al., 1990; Yahja et al., 1998; Hern et al., 2011).

However, the decomposition problem is not trivial. It can result in time consuming pre-

processing as well as huge memory requirements, especially where the given image map has

some ‘salt and pepper noise’(random spots present in the image which are not present in the

original object that was imaged). The
 algorithm presented Opoku et al. (2013) and reviewed

in Chapter 4 of this dissertation has the power of working across the spectrum from cluttered to

sparse grids without great changes in its performance. Therefore, for the environments that are

mixtures of both sparse and cluttered sectors,
 becomes the planner’s choice.

2.6 Summary of Literature Review

This chapter has looked into both the general indoor navigation problem and some

hardware and software approaches to solving the problems presented in literature. An overview

of research closely related to the indoor navigation problem (state-of-the-art) in the areas of

41

localization, mapping and path planning has been presented, highlighting the weaknesses that

necessitate the research presented in this dissertation. Chapter 3 presents the localization and

mapping approaches developed and used in this work.

42

CHAPTER 3

Localization and Mapping

3.1 Introduction

This chapter presents the first part of the methodology for solving the indoor navigation

problem developed by this research. This is outlined under the two main broad headings

localization and mapping. The localization employs an odometry technique using a least square

error calibration approach for alleviating the effect caused by systematic errors. Besides, an

RFID and door-markers based resetting system has been developed for intermittent resetting of

the positions relative to the global reference point to mitigate both systematic errors that escape

the calibration and the non-systematic errors. The mapping used in this system is the occupancy

grid mapping using a laser range finder. The efficiency of this mapping is enhanced by the

improved accuracy of the localization system. The modeling used in this chapter assumes a

differential wheel driven mobile robot even though an extension can be made to other drivers

such as the car drive (Ackerman steering). The wheels are equipped with encoders (odometers)

that can measure the angular velocity of the wheels.

3.2 Localization

Differentially driven mobile robot odometry equations. Differential drive is 3.2.1

considered to be one of the simplest drive mechanisms employed on many mobile robots

platforms (especially robots designed for indoor navigation) such as the iRobot Roomba, Pioneer

2, Khepera, Labmate, Robuter, etc. platforms. In its simplest design, a differential wheel drive

robot is driven by two wheels on a common base/axis with each wheel controlled by a reversible

motor. The robot is able to execute various trajectories by independently varying the speed and

43

direction of the two wheels. The two wheels then exhibit rolling motion with the center of

rotation of the robot lying on the axis linking the two wheels, and the position on this axis

depends on the speed of the two wheels (Dudek and Jenkin, 2000).

Figure 3.1. Derivation of the kinematics for a differential drive mobile robot.

Using the idea that the instantaneous tangential linear velocity at a given point is the

product of the angular velocity and the radius of that point from the ICR (see Figure 3.1),

Equation (3.1) can be derived.

 ()(

)

 (

)

(3.1)

The two equations can be solved simultaneously for and to produce Equation (3.2).

(

) (3.2)

44

It can be inferred from these equations that if , then the radius R if infinite which implies

that the robot will move on a straight line. This can also be deduced from the fact that is zero.

If then the radius is zero and the robot rotates about the midpoint of the two wheels.

This can also be seen from the fact that

. When , then the radius

and implies the robot remains stationary. Aside from these special cases, any other values

of and will cause the robot to execute a curved trajectory with the center of rotation R away

from the midpoint between the two wheels. It is also apparent that the differential drive is highly

sensitive to any error introduced to either or both wheel velocities, since that can result in a

totally different trajectory.

Let be the 1D distance travelled by the robot and the velocity from time to , then the

distance can be determined from Equation (3.3).

 ∫

 (3.3)

This distance can be resolved into its corresponding distances travelled in the 2D coordinate

plane as shown in Equation (3.4).

 ∫

 ∫

(3.4)

This defines the principle of dead reckoning which is simply the integration of all the distances

moved by the robot and can be generalized for higher dimensions. In practice, the effective

45

rectilinear and angular velocities (() and ()) of the robot are much difficult if not

impossible to observe. Thus, angular velocity measurement instruments (e.g., tachometer

(continuous), encoders/counters (discrete)) are employed to measure the angular velocities of the

individual wheels; the effective rectilinear and angular velocities are deduced from it as shown

below and also in (Kelly, 2004; Corke, 2011)): Assuming that the two driver wheels are

equipped with odometers to measure the angular velocities of the wheels gives signal Equation

(3.5).

 () [() ()]
 (3.5)

Where denotes transpose. Define the state vector () as the instantaneous position and

orientation/heading angle of the robot, then (Papadopoulos and Misailidis, 2007)

 () [() () ()] (3.6)

Thus the dead reckoning equation can be derived as shown in Equation (3.7)

 (

 ()
 ()
 ()

) [

 () ()
 () ()

 () ()
] (3.7)

Where is assumed to be very small.

The right and the left wheel angular velocities can be represented by Equations (3.8) and (3.9).

 ()

[()

 ()] (3.8)

 ()

[()

 ()] (3.9)

Solving the two equations simultaneously for () and () yields Equations (3.10) and (3.11)

 ()
(() ())

 (3.10)

46

 ()
(() ())

 (3.11)

These can be rewritten in the form shown in Equation (3.12).

 [

] [

] (3.12)

Where is the matrix of the parameters to be determined by a calibration technique

(described below) and is defined as Equation (3.13)

 [

] (3.13)

If could be accurately obtained, then the systematic errors in the system due to imprecision in

the wheel axis length, and wheel radii and can be totally eliminated. For a 2D Cartesian

coordinate system, the dynamic equation for the robot’s motion can be written as Equation

(3.14).

 [
 ̇
 ̇

 ̇

] [

] (3.14)

Discretizing Equation (3.7) and assuming data acquisition frequency of

 Hz for obtaining the

velocities, Equation (3.7) can be written as Equation (3.15).

 (

)

 (

) (3.15)

47

Systematic error calibration using least square error approach. The least 3.2.2

squares odometry calibration technique described in (Antonelli et al., 2005) for the calibration of

mobile robot for its simplicity and implementation flexibility has been adopted for this research.

From Equation (3.15), an iterative model can be formulated as Equation (3.16).

 ∑

 ∑

 (3.16)

where is the () entry in the matrix in Equation (3.13). Equation (3.16)can be

rewritten in the form of Equation (3.17).

 [

] (3.17)

Where is the () regressor given by Equation (3.18).

 [∑

 ∑

] (3.18)

Here, is the number of paths executed by the robot for the calibration procedure. By executing

 suitable paths, the least squares model can be written as Equation (3.19).

 [

] (̅

 ̅)

 ̅
 [

] (3.19)

Where ̅ is the vector of regressors shown in Equation (3.20).

 ̅ [

] (3.20)

A similar expression can be derived using the position variables in Equation (3.15) as shown in

Equation (3.21).

48

 [

] (̅

 ̅)

 ̅

[

]

 (3.21)

Where, ̅̅̅ , the vector of the position regressors, is given by Equation (3.22).

 ̅

[

]

 (3.22)

Also, the position regressor, is given by Equation (3.23).

[

∑

 (

) ∑

 (

)

∑

 (

) ∑ (

)

]

 (3.23)

Note, however, that if we know the absolute value of , and obtain and from (3.21),

then we can obtain the values of and from Equation (3.13) and (3.18) by simple

algebra.

 [

] [

]

 (3.24)

Intermittent resetting. The indoor environment has some features that can easily 3.2.3

be exploited in the system design to enhance the accuracy during navigation. Such features

include the orthogonal arrangement of walls and presence of doorposts. This research has

exploited the latter in the design of the intermittent pose resetting system. The heading angle

contributes immensely to the odometry drift. The information from the RFID has therefore been

used in conjunction with the fixed locations of door-markers to reset the position and heading

49

angle of the robot intermittently. Figure 3.2 is the flowchart illustrating how the system operates.

This serves to eliminate non-systematic errors that have accumulated during its navigation in a

particular room so that this error will not propagate into the pose estimation within other rooms.

Start

RFID Antennae Ready

RFID signal
Range?

Receive and store
Packet

Door Markers?

Conduct Pose
correction

Outside
RFID

Yes

Yes

Yes

No
No

No

Figure 3.2. This is the flow chart of the intermittent resetting technique.

Such exploitation of indoor environment structure is a reasonable and effective approach

to facilitate the navigation task for mobile robots. And once installed, the use of RFID door-

markers impose minimal burden (in terms of service or maintenance) on elderly users of the

50

mobile robot system. Each doorpost is equipped with an RFID-tag and door-markers and the

robot carries with it a tag identification antenna. The tag is coded with information including its

associated door-marker global position in the indoor environment, the doorpost orientation

(along the global axis or axis), name of the door, etc. Whenever the robot comes into the

communication range of the doorpost tag, the antenna reads and stores the tag’s data. These data

are used for the resetting of the true position and the heading angle of the robot when it crosses

the door-markers.

The door-markers are mounted on the doorposts and arranged in a pattern as shown in

Figure 3.3. In Figure 3.3, is defined as the angle between the robot direction of motion and the

doorpost global orientation. Using trigonometric equations and taking into account the geometric

arrangements of the door-markers, we arrive at Equation (3.25) and Equation (3.26)

 (3.25)

 (3.26)

Combining the two equations gives Equation (3.27).

 (3.27)

Here, and are the fixed, known distances separating the door-marker sensors on the robot

and the door-markers on the doorpost, respectively. is the time interval between the instances

when the door-marker sensor 1 and door-marker sensor 2 respectively detects the same door-

marker (e.g., door-marker 1).

51

Figure 3.3. The arrangement of the door-markers showing the geometric relationship between

the door-markers and the door-marker sensors on the robot.

Also, is the time interval between the instances when the same door-marker sensor (e.g., door-

marker sensor 1) detects door-marker 1 and door-marker 2 respectively. Since we do not have a

system for measuring the accurate instantaneous velocity in the system, we assume the velocity

of the vehicle remains constant from the time it crosses the first door-marker till it crosses the

second door-marker, i.e., acceleration is negligible and . This is a reasonable assumption

since the distance between the two markers is reasonably small. Factoring this assumption into

the derivation results in Equation (3.28)

 (

) (3.28)

Let be the global orientation of the door; then the new true heading of the robot is

defined as Equation (3.29).(3.29)

 (3.29)

52

Here, a performance measure for comparing the quality of the estimation per the introduction of

the intermittent resetting technique called Estimation Improvement Ratio (EIR) has been defined

as expressed in Equation (3.30).

 (3.30)

This is a “unitless” quantity that expresses the improvement in estimation error as the

proportional number of times the estimation error is reduced due to application of the error

mitigation technique.

3.3 Mapping

Having achieved an improved accuracy for the localization, we continue to use the

information from the robot’s position to project the position of obstacles in the environment

observed by the robot whiles navigating the environment. From above, the state vector is defined

as the position and orientation of the robot given by Equation (3.6). This research used the SICK

Laser Measurement Sensor (LMS) (see Figure 3.4 and Figure 3.5) for measuring distance. Such

laser-based sensors are available commercially from a number of manufacturers with eye-safe

characteristics making them suitable for use on a navigating robot in the home. The observation

model can be represented as Equation (3.31).

 () () () (3.31)

Where the is the observation matrix and the () is the observation at time t and the ()

is a Gaussian noise vector with zero mean and covariance .

Less emphasis will be placed on the noise when assuming a small indoor environment

which means short measurement distances and the error is therefore negligible. The map building

is done by first referencing the points into the local coordinate frame of the robot and then using

53

coordinate transformation to determine the global position of the observed obstacle. Referencing

the point () to the coordinate frame of the robot can be done by resolving the point

directly into and components using the measuring angle of the LMS’s laser ray.

Figure 3.4. A picture of the SICK Laser Measurement Sensor (LMS).

Figure 3.5. The field of view of the LMS.

 (

) (

) (

 ()

 ()
) (3.32)

Here, is the angular resolution of the LMS and denotes the ray counting

counterclockwise as shown in Figure 3.5. The (

) is the current position of the robot in the

robot’s coordinate frame and (

) denotes the true position of a point on the observed

obstacle with respect to the robot’s coordinate frame. The next step will be to transform the point

54

from the robot’s coordinate frame into the global coordinate frame to form a point in the global

map. This can be done using the compounding equation in Equation (3.33); assuming the current

position of the origin of the robot’s coordinate frame is located at (

), that is, position

() relative to the global coordinate frame.

 (

) (

) (

) (

) (3.33)

Equation (3.32) can be used to build the local map of the current environment as seen by the

navigating robot and then the entire local map can be transformed to the global map

intermittently using Equation (3.33). This research employs this technique to build the

occupancy grid by discretizing the entire environment into a regular grid. The observed points

are projected onto this grid world, and where an obstacle is observed is denoted by binary ones

and the free spaces are left as binary zeros.

3.4 Summary of Localization and Mapping Methodology

This chapter has outlined the methodologies employed in the estimation of the location

and orientation (localization) of a navigating wheeled robot. An odometry error mitigation

approach using RFID and door-markers has been designed to improve the position estimation.

This is followed by how the system’s observations and location are combined to build a

consistent global map of the environment. The modeling assumes a laser measuring instrument

such as the one shown in Figure 3.4. Chapter 4 presents a pathfinder that works on the

occupancy grid map built using the methods covered in this chapter.

55

CHAPTER 4

Path Planning (The A-r-Star)

4.1 Introduction

This chapter presents the graph search algorithm developed by this research for the path

finding in a given binary grid. The algorithm will enable a mobile robot to navigate intelligently

in both dynamic and cluttered indoor environment. This novel algorithm is called
 (pronounce

“A-r-Star”), and is a modified version of the well known pathfinder for path planning in a

uniform grid world. This new algorithm outperforms pathfinder in a sparse uniformly gridded

world and matches in a cluttered world. It does this by interweaving the building of a non-

uniform grid out of a uniform gridded world with path-finding. When given a uniform grid

world,
 decimates the nodes within a given radius/range () and forms bigger nodes out of

them. Because the
 builds upon the algorithm, it is expedient to introduce briefly the

algorithm, however for detailed understanding of algorithm; its properties and limitations,

the reader is directed to (Hart et al., 1968; Dechter et al., 1985). This chapter first introduces the

 pathfinder with its properties, challenges and some developed solutions to these challenges.

Additionally, an incremental version of
 has been developed along with a means to exploit the

information stored in a previously explored/searched graph for subsequent planning (given that

the world remains static).

4.2 A-star Algorithm Description

 is a best-first search algorithm that finds the least costly path from an initial

configuration to a final configuration in a given finite and static grid world. It uses an estimate of

the start distance () and heuristic estimation of the goal distance () to define a

56

cost/sorting function, () as shown in Equation (4.1). Where () is a heuristic estimate of the

cost of going from to passing through node . For the purpose of simplicity of

notation, the goal node and start nodes will be dropped when they appear as part of the argument

of a function giving () () and () (). The heuristic cost function is

therefore defined by (4.1)

 () () () (4.1)

Generally, the algorithm maintains two lists, namely the list and list.

The list is a priority queue of all the states (nodes), which have at least one of their

predecessors already explored, and as such are potential candidates for next exploration. The

 list holds the candidates that have been explored at least once (and often the blocked

nodes). The algorithm starts with an empty list and populates it with the starting node. At

the beginning of every iteration, the node with the minimum () is popped from the

list. If that is the goal node, the algorithm terminates and follows back-pointers to extract the

shortest path (i.e., the path with minimum cost). Else, that node is placed on the list and

then expanded (i.e., the neighbors are generated and conditionally placed on the OPEN list). It

proceeds with the iteration until the goal node is expanded or the list becomes empty in

which case it returns ‘no path found’. The pseudo code is shown in Algorithm 1..

{1} ()

{2} ()

{3} ()

{4}

57

{5} (() ())

{6}

{7}

{8} ()

{9}

{10}

{11}

{12} ()

{13}

{14}

{15}

{16} ()

{17} ()

{18} ()

{19}

{20}

{21} ()

{22}

{23} () ()

{24} ()

{25}

58

{26}

{27}

{28}

{29} ()

{30} () () ()

{31} () () ()

{32} ()

{33} () () ()

{34}

{35} ()

{36} (() ())

{37}

Algorithm 1. This is the pseudo code for the algorithm.

4.3 A-r-Star Algorithm

Definitions. Node Distance of from is defined as the fewest number of nodes 4.3.1

that will be touched by a straight line connecting s and as shown in Figure 4.1. This is

equivalent to the distance from to using the ‘chessboard’ distance metric. This implies that

two nodes with different Euclidian distances can have the same node distances. Level-R-

Neighbors of a node comprise of all nodes with node distances equal to from . In Figure

4.1, all the nodes at a given level bear their node distance, is the Euclidean distance and is

the node distance (R). This implies that, the Level-1-Neighbors of are its 8 contiguous

59

neighbors (see Figure 4.1). Here refers to the radius of the ‘ball’ (a box in the case of square

grid) formed by connecting the centers of all Level-R-Neighbors.

Figure 4.1. Showing the Level-R-Neighbors for a given node start node.

Algorithm description and implementation. The
 algorithm is a modified 4.3.2

version of the algorithm that interweaves node decimation with path-finding in a uniform

grid/mesh. For a given node, counts only immediate nodes (4- or 8- connected nodes) as its

neighbors. This implies that even when all the nodes in a particular area are similar, it will still

do some computation for all of them. The effect is that, if an obstacle blocks the direct line of

sight close to the goal, the number of nodes needed to be explored more than doubles which

translates into increasing the search time. Figure 4.2 illustrates this phenomenon and how this

contributes to ‘kinks’ in the path returned by . The circles indicate the nodes that were

explored before the path was found.

Using the idea from non-uniform mesh building (Schroeder et al., 1992), a cluster of

nodes with similar characteristics can be represented with a bigger node with minimal loss of

information (see Figure 4.3). The
 algorithm therefore allows collapsing of such nodes into a

60

single node with properties that commensurate with the union of those nodes. For instance, in

Figure 4.3, the nodes at Level-1 to Level-3 have been decimated to form one big node with the

original Level-4-Neighbors of now forming the neighbors of this new node. For multi-

level terrain, one will use a distance transform (Huang and Mitchell, 1994; Matsumoto, Ino and

Ogasawara, 2001) to identify changes in the nodes; but for the binary occupancy grid such as the

one used in this paper, the task reduces to identifying the nearest obstacle to the current node.

Figure 4.2. This figure shows how A-Star responds to an obstacle.

Figure 4.3. This figure shows decimated Level-1 through Level-3 nodes to form a single node.

61

The overall effect is a reduction in the number of nodes needed to be explored, computation cost

and increased search speed in a sparse uniform gridded world. The ‘star’ in the name does not

suggest that it always finds an optimal path, it is just intended to retain its resemblance to its

namesake, . The r stands for radius (range) defined as the maximum allowable radius (in node

distance) of a ‘ball’ of nodes that can be counted as the neighbors of a given node (see Figure

4.1). Thus, only Level-R-Neighbors are considered during the search where .

Let the node distance from the closest obstacle node to a given node be (), then at

the end of the search () . Implementation-wise, this is achieved by searching

for the minimum R, such that, at least one of the Level-R-Neighbors of a node being expanded

belongs to the set of blocked nodes. Then all nodes in the neighborhood of such that ()

are tagged as skip nodes () and nodes such that () are returned as the

Level-R-neighbors. The pseudo code for the algorithm is similar to that of with two

modifications. The first modification is done to the Expand subroutine and the resulting

algorithm is referred to as
 . This is achieved by replacing the lines {21} to {28} in

Algorithm 1. by the lines in Algorithm 2.

Note that nodes that are tagged skip will never make it to the list (Algorithm 2 line

{30}) but a node might make it to the list before being tagged as skip. Thus, in the

 algorithm, tag open dominates/overwrites tag skip. The second modification is to

switch the tag dominance to skip dominating open. Thus, nodes that made it to the list

from one node before being tagged as skip from another node will not be expanded (i.e., they

will stay on the list till the algorithm terminates).

62

{21} ()

{22}

{23}

{24}

{25} () ()

{26} ()

{27}

{28}

{29}

{30} and

{31}

{32} ()

{33}

{34}

{35}

{36}

{37}

{38}

Algorithm 2. First modification resulting in the Basic A-r-Star

The resulting algorithm after the last modification is called the
 algorithm. The

 pseudo

code can be derived from the
 by inserting the lines in Algorithm 3 after line {10} in

Algorithm 1..

63

{11}

{12}

Algorithm 3. Second modification resulting in the A-r-Star

Finite radius (r) verses infinite radius (∞). The choice of can be fixed from the 4.3.3

start of the algorithm to a finite value. For example, choosing reduces the algorithm to

which is essentially . But choosing an appropriate finite value for requires absolute

knowledge of the environment since the choice of affects the performance of the algorithm.

The simplest solution is to allow the algorithm to evolve and discover the value of r during the

search. This is achieved by pegging the value of r at infinity (i.e., choosing). This leads to

what is referred to as the
 (A-Infinity-Star). Here, infinity (∞) is defined as where is

the radius of the biggest ‘ball’ of continuous free nodes available in the search space. It is trivial

to derive that for an grid world, always holds (strictly less because the node

under consideration cannot be counted as part of the radius and is undefined for).

Choice of Level-R-Neighbors Generator (LRNG). The LRNG function is 4.3.4

responsible for generating Level-R-Neighbors of a given node . A good choice of the LRNG

function should return at every Level-R, all and only the nodes at radius R from as the Level-R-

Neighbors of . This is a necessary condition for
 to be complete and correct. On square grids,

choosing the LRNG is a trivial task but this is not trivial when other geometric shapes are used

for the gridding.

Theorem 1: If the Level-R-Neighborhood generation function of
 at every Level-R

returns all and only the nodes at radius from s for then the
 algorithm is

complete and correct.

64

Proof: Let us assume the contrary that the path, returned by the algorithm

is incorrect, thus there exists at least one between and , , such that .

This will imply that a blocked node got expanded by the algorithm which contradicts the line

 of Algorithm 2 and therefore cannot be true. Similarly, let us assume that a path actually

exists but
 did not find a path. This will imply at a certain Level-R, the algorithm failed to

return a node and hence assumed there was not a path available. This is the necessary

condition for a function to qualify as an LRNG and hence poses a contradiction that cannot

surface.

4.4 Properties of the A-r-Star Algorithm

Completeness. Like , the
 algorithm is complete meaning it will find a path if 4.4.1

one exists between the start and the goal node. The condition for completeness solely depends on

the as stated in Theorem 1.

Correctness. The correctness property holds for the
 algorithm. This implies that 4.4.2

if
 does return a path for a given starting and ending node, then that path is a truly unblocked

path (that is, the path exists and is correct).

Termination in finite time. The use of the CLOSED list and the tagging ensure 4.4.3

that
 expands (or tags) every node once. Since the world is an grid, where is finite,

it is implicit that the algorithm will terminate in finite time.

Convergence to A-Star. The performance of the
 (and for that 4.4.4

matter
) approaches that of for worlds with increasing clutter. Let us define a

perfectly cluttered 2D world as a grid configuration such that every Level-1-Neighbor of

65

 contains at least one . Given a perfectly cluttered world, the
 will be

forced not to tag any node as skip. Thus,
 will implicitly operate as

 which is essentially .

Theorem 2: In a perfectly cluttered world,
 and

 converge to for all

positive integer values of .

Proof: Assume the set is a perfectly cluttered 2D environment. Then every Level-R-

Neighborhood of a free cell will contain at least one and thus ()

 ; from subsection 4.3.2 , () for all nodes. But the
 runs at Level-R = 1

throughout the search and so it is intuitive that after the search, () and hence

the proof.

Any angle path planning. Most of the grid-based path planning algorithms that 4.4.5

operate on a 2D world use discrete state transitions that are artificially constrained to a small set

of possible headings angles (e.g.,

 etc.). The ramification is that the path returned by even

the optimal grid planner will not be the shortest possible continuous path (see Figure 4.2). The

 algorithm is not constrained to a finite set of angles. This means that it sometimes returns a

more natural and smooth path than . The
 algorithm under sparse conditions can therefore

be considered as an ‘any angle path planner’.

Reaction to obstacle. The
 algorithm reacts to an obstacle by planning in small 4.4.6

steps till it avoids the obstacle. This mimics intuitive navigating behavior. Much caution is taken

when navigating close to an obstacle than when navigating far from an obstacle.

Definitions. Given two nodes, and , a node path is defined as any chain 4.4.7

of nodes , such that every belongs to the Level-1-Neighbors of and

66

 iff and []. A continuous path is an unbroken curve drawn from

the center of to the center of without passing through a blocked node. Let () be the set

of all continuous paths linking the centers of and , and let (
) be a specific continuous

path linking the centers of and . Define () () (
) . Thus, for a

given grid map, if () (i.e., there is an unobstructed straight line

path from to) then () = a straight line.

4.5 Challenges of the A-r-Star Algorithm

Bulges.
 usually returns a path with in it (see Figure 4.4). This is a major 4.5.1

challenge to the performance of
 . Given two nodes, and , if () and

 (
) () straight line, then (

) is called a path and, in general, any

 (
) () (

) () is said to be a bulged path. This definition implies

that a ‘kink’ is a type of bulge (see Figure 4.2). There are two main causes of bulges in
 ;

namely, angular constraint (kinks) and premature tagging. Angular constraint occurs around

obstacles where the algorithm navigates in small steps; the navigation angles are thus artificially

constrained to a small set of angles. Premature tagging occurs due to local minima. The greedy

heuristic of
 is initially drawn into a local minimum. This is accompanied by the tagging of

nodes as skip. When the algorithm bounces back from the local minimum, these nodes which

were prematurely tagged as skip are not considered for expansion and this creates a bulge.

Non-optimality. Due to bulges, the path returned by
 is not always optimal. 4.5.2

Bulges introduce extra cost into the sorting function by increasing the estimated goal distance

thereby placing some nodes at a disadvantage. The goal distance becomes dependent on the

configuration of the obstacles in the environment.

67

Figure 4.4. An example of a path planned by A-r-Star highlighting the challenges posed by

bulges and bulge elimination using post smoothing.

Consequently, () () does not always imply () () during the search (where

 () is the actual optimal path between and). Thus, unlike the algorithm,
 does

not always guarantee an optimal path.

4.6 Proposed Solutions to the Challenges

Bulge removal using smoothing. A Post Dissociation Smoothing (PDS) algorithm 4.6.1

similar to that outlined in (Daniel et al., 2010) has been developed and implemented to eliminate

the bulges in the path returned by
 . This shortens the path and gets it closer to the shortest

possible path. Algorithm 4 shows the pseudo code for the PDS. Both and

 are derived from the Bresenham line drawing algorithm.

Non-optimality: Interleave Smoothing with Post Dissociative Smoothing (IS-4.6.2

PDS). Some path configurations cannot be smoothed into the shortest possible/optimal path. To

increase the chances of returning a path that can be smoothed to optimal, the search has been

interleaved with the smoothing algorithm. This is similar to the idea in (Daniel et al., 2010). The

post dissociative smoothing is then applied to the path as a post process. Note that PDS can be

Bulge

68

applied iteratively from goal to start and vice versa until subsequent application does not shorten

the path by a distance greater than (where is a user defined threshold).

{1} ()

{2} ()

{3} (); ();

{4} ()

{5}

{6} ()

{7}

{8}

{9}

{10} ()

{11}

{12} ()

{13}

{14}

Algorithm 4. Post Dissociative Smoothing Algorithm.

This results in Interleave Smoothing with Iterative Post Dissociative Smoothing (IS-IPDS). To

implement the interleave smoothing; replace the function of the
 algorithm

with Algorithm 5.

69

{1} ()

{2} (())

{3} (()) (()) ()

{4} () (()) (())

{5} () ()

{6} () () ()

{7}

{8} ()

{9} (() ())

{10}

{11} () () ()

{12} () () ()

{13} ()

{14} () () ()

{15}

{16} ()

{17} (() ())

Algorithm 5. Post Dissociative Smoothing Algorithm

4.7 The Incremental A-r-Star Pathfinder

The direct acyclic graph. Incremental search algorithms are more powerful in 4.7.1

handling path planning in dynamic environments. This section highlights the incremental version

of
 pathfinder. The development is similar to that of . The planning algorithms

70

produce a plan that essentially takes the regular grid and builds a directed acyclic graph (DAG)

rooted at the node from which the search starts (NB: this node may be different from the start

node). Table 4.1 lists some of the planning algorithms and their root nodes. This means after the

search pauses, all the nodes on the CLOSED list (explored nodes) are roots of sub-graphs in the

DAG and the nodes on the OPEN list are the leaves of DAG. The blocking of a single node on

the CLOSED list means that node has been discontinued from the main DAG and so the system

has to find a systematic way of reconnecting all the sub-graphs (and leaves) rooted at that

blocked node to the graph where possible.

Table 4.1

Root Nodes for the DAG Built by the Various Pathfinders

Path Finder Root Node

 Start Node

 / , Goal Node

Incremental () Start Node

 Goal Node

This principle has been harnessed in the various incremental planning algorithms in different

ways. In some circumstance, the blocked node will put all the leaf nodes beyond a lower bound

of the path cost to the goal, and that means that all the leaves on a sub-graph cannot become part

of the main graph anymore. Under such circumstances, the system will take the goal and place it

as part of another sub-graph. This idea has been exploited in the developing of incremental

search algorithms such as , , and , and etc. D* uses the

71

concept of RAISED (Nodes whose cost has increased due to the change in edge cost) and

LOWERED (nodes whose cost has decreased by the change in edge cost) to propagate the cost

changes to all the sequences that contain the edge whose cost has changed. exploits this

knowledge by using consistency evaluation (over-consistent and under-consistent nodes) to

propagate the edge cost changes to the affected sequences of back-pointers (sub-graphs).

 operates in a way similar to except that it start searching from the goal and so

implements a routine to remove prevent cycles in the graph when propagating the cost changes.

Incremental A-r-Star. The incremental
 algorithm consists of essentially two 4.7.2

main procedures namely PROCESS-STATE and PRUNE-BRANCH. The PROCESS-STATE

procedure handles the computation of the DAG and the PRUNE-BRANCH procedure effects

edge cost changes and prunes the sub-graphs and/or leaves from the main DAG by dissolving all

the sub-graphs centered at the parent of the blocked node. Note: the dissolution starts from the

parent and not the current node because the current node is blocked and need to be removed from

the tree along with all its siblings. The PROCESS-STATE procedure is the same as the

pathfinder presented earlier except that it starts its search from the goal node. This implies the

DAG that will be built will be rooted at the goal node. Secondly, we introduce an array that

keeps track of the parent-child relationships. The pseudo code for the algorithm for the PRUNE-

BRANCH procedure is as shown in Algorithm 6. The algorithm first looks forward for the parent

of the node affected, and saves that in . This node is then placed on the array. The

system then enters into the looping mode where the system continues until becomes

empty. At every loop, the system pops a node from and stores it in which is the

current node under consideration.

72

{18} ()

{19} ()

{20}

{21} ()

{22}

{23} ()

{24} ()

{25} ()

{26} ()

{27} ()

{28} ()

{29} ()

{30} ()

{31} ()

{32} ()

{33}

Algorithm 6 The pseudo code for PRUNE-BRANCH

The system then accrues all its children using and puts them on . Set

 () to free the node for subsequent re-planning. NB: If belongs to the CLOSED

or OPEN list, it must be removed from it. For example in Figure 4.5, if the robot start navigating

from the starts node (3,10) towards the goal node (1,1) and it discovers that node (1,5) is

blocked, iterations 1 to 10 are summarized in Table 4.2.

73

Figure 4.5. A Sample DAG built by the A-r-Star for a grid world without obstacle,

when searching from node (1,1) to (3,10).

Iterations 11 to the end only involve the freeing of the leaf nodes. In effect, the other sub-graphs

rooted at (1,3) and those which are not rooted at (1,3) are left. The information stored in these

sub-graphs can therefore be used for the planning.

Blocked path

74

Table 4.2

First Ten Iterations of PRUNE-BRANCH Acting on the Sample DAG in Figure 4.5 When

Blocked at the Node (1,5)

Iteration

1 (1,4) (1,4) (1,5)

2 (1,5) (1,5) (1,6),(2,6)

3 (1,6), (2,6) (1,6)

4 (2,6) (2,6) (4,7), (1,8), (2,8), (3,8), (4,8)

5 (4,7), (1,8), (2,8), (3,8), (4,8) (4,7)

6 (1,8), (2,8), (3,8), (4,8) (1,8)

7 (2,8) (2,8)

8 (3,8), (4,8) (3,8) (1,9), (1,10), (2,10),(3,10),

(4,10), (5,6), (5,7), (5,8), (5,9),

(5,10)

9 (1,9), (1,10), (2,10),(3,10), (4,10), (5,6),

(5,7), (5,8), (5,9), (5,10)

(1,9)

10 (1,10), (2,10),(3,10), (4,10), (5,6), (5,7),

(5,8), (5,9), (5,10)

(1,10)

 Challenge for the incremental A-r-Star. As can be inferred from the PRUNE-4.7.2.1

BRANCH algorithm, when the blocked node is very close to the goal; it means there will be a lot

of branches to dissolve and this will take a longer time to complete. To handle this for a real

75

navigating robot, the nodes will be dissolved as soon as they are navigated through with all their

branches and thus the dissolution time will spread over the run time.

4.8 Multiple Goal Path Planning

The structure of searched nodes developed by
 can be harnessed in subsequent path

searches; this is the case if all subsequent path search tasks starting from the same node but have

different destination or they all have the same destination but different starting nodes. The node

they share in common is called the root node. Multiple-destination problems can apply in

multiple agent based applications wherein a single planner plans paths to send agents from a

single point (base station) to multiple destinations. The reverse can apply to scenarios wherein a

planner dispatches agents from multiple destinations to a single point to accomplish a single goal

that may be beyond the capability of a single agent. Here, the assumption is that the environment

remains unchanged. Consider the cost function

 () () () (4.2)

If the environment remains unchanged, it is expected that after the search, the cost function will

become (4.3) for all the nodes which are on the CLOSED list.

 () () () (4.3)

This implies that, the same structure can be used to plan the path to any point in the environment

from the same root node.

Expanding Equation (4.2) for the fixed environment gives

 () (()) (()) () (4.4)

Since (()) remains constant for a static environment; for every node on the OPEN

list, there exists a parent on the CLOSED list and thus (()) (())). This

76

implies that, the task of planning from the root node to another node with parent on the CLOSED

list is trivial because (()) (()). Thus, it reduces to path planning from

the parent to the child (NB: there is a direct line of sight between every child and the parent) and

the path planning between the root node and the parent of that node which exists already in the

previous structure. This approach is similar to the ROADMAP (SungHwan et al., 2012)

approach to path planning. The task of planning from the root node to another node beyond the

reach of the previous search can be done by changing the heuristic for all the nodes in the OPEN

list to conform to the current goal node. That is, () becomes (), where

 is the new destination. This will naturally extend the previous graph towards that new

goal.

4.9 Conclusion

This chapter has presented the methodology for path planning developed by through this

research. The
 algorithm is detailed with its properties, limitations and the extension to

incremental search as well as for handling the multiple destination problems. The next chapter

presents some simulation experimental results of the application of both the methodologies

developed in Chapter 3 and Chapter 4.

77

CHAPTER 5

Simulation and Results

5.1 Localization

The prototyping and simulation testbed. The setup for simulation experimental 5.1.1

verification of the methodologies outlined in this section was developed on the WebotsTM

robotic prototyping and simulation platform from Cyberbotics (see Figure 5.1). The environment

is a 3-D interior representation of a five compartment home comprised of a kitchen, living room,

bedroom, bathroom and a fitness room.

Figure 5.1. A screenshot of the prototype indoor environment, from the Webots graphics

window

This environment is intended to represent a model domestic operating domain for an

assistive robot. A model of the Pioneer 2 robot from ActivMedia robotics equipped with SICK

LMS 200 has been adopted as the robotic platform in this scenario (see Figure 5.2). A feature of

the Webots supervisor node (a software object that can access the state of all objects in a Webots

Kitchen

Living room

Bed Room

Fitness

Room

Wash Room

Robot

78

simulation) was programmed to read at each time instance the actual position of the robot. This

serves as our ground truth data.

Figure 5.2. This is a screenshot for the pioneer 2DX prototype in Webots.

Calibration results. This simulation assumes direct access to the odometer 5.1.2

readings. A modification was made to Equation (3.18) to enable the incorporation of this

information for the calibration as follows.

 [∑

 ∑

] (5.1)

Here, is the number of encoder readings per one complete rotation of the wheel and the wheels

are assumed to be identical, therefore is the same for both wheels. Four types of trajectories

were executed in order to identify the calibration parameter matrix, in Equation (3.14). From

(Borenstein and Liqiang, 1996), the set of trajectories must include at least a straight line

SICK LMS 200

Pioneer 2Dx

79

movement, a clockwise rotation and a counterclockwise rotation. Therefore, three types of each

of these trajectories have been captured in our calibration: forward-straight-line, forward-left-

turn, forward-right-turn, left-revolution, right-revolution, counterclockwise-rotation and

clockwise-rotation. These trajectories/movements are defined as

 {

 (5.2)

After executing these trajectories/movements on the simulated Pioneer 2 robot in Webots, the

calibration method identifies the following matrix

 [

] (5.3)

This is consistent with this simulated robot’s wheel diameter of and axis

length of , thus validating the accuracy of the least squares calibration technique. The

same approach is applicable to a physical robot based on trajectories/movements executed in the

real world and the associated odometer readings from real sensors.

Intermittent resetting results. The graphs in Figure 5.3 and Figure 5.4 illustrate 5.1.3

the run-time errors in the estimated heading angle and position of the robot after the calibration is

applied to mitigate systematic errors. The vertical lines in Figure 5.3 and Figure 5.4 indicate the

time instances at which pose resets were made by the robot to update its true position and

orientation and thus correct for non-systematic errors that accumulate during navigation. These

graphs show how the pose errors vary with and without the intermittent resetting.

80

Figure 5.3. The absolute errors in the heading angle estimate by the robot.

Figure 5.4. The absolute errors in the position estimate by the robot.

81

It is seen that the maximum absolute error for the heading angle and the position without the

intermittent resetting during the -second run is about and while that

with the resetting is about and respectively, see Table 5.1.

Table 5.1

The Maximum Absolute Errors and the Root Mean Square Errors for Runs with

Corresponding

Estimation Position Estimation Heading Estimation

Max. Error RMS Error Max. Error RMS Error

Without Resetting

With Resetting

EIR

Using the resetting achieves an of about for the position and about 3 for the heading angle,

when using the error, thus, the long term quality of the pose estimation improves and,

therefore, the pose accuracy increases with the intermittent resetting.

5.2 Mapping

A binary occupancy grid of the prototyped world in Figure 5.1 has been built using the

SICK LMS 200 as described in the methodology of Chapter 4. Note that the map is flipped

vertically so that the living room is up instead of down. The red dots indicate the preset

exploration path followed by the robot in building the map, the blue cells indicate obstacle

regions and the white cells indicate free spaces.

82

Figure 5.5. A binary occupancy grid map of the model environment prototype in Figure 5.1.

5.3 Path Planning

Path planning simulation experimental setup. In this section, simulation 5.3.1

experiments have been used to highlight the properties of the
 /

 pathfinder and show

its performance as compared to on different world scenarios using both uniform and non-

uniform gridding. The simulations were developed using MATLAB (2011b, The MathWorks)

running on PC with the Windows 8 OS. The simulation world comprises a grid of size

(which amounts to 65536 nodes). The performance parameters include: (a) Search Time: the

time it takes to plan a path; (b) Number of cells on OPEN list: the total number of cells that ever

made it to the OPEN list throughout the search; (c) Number of cells explored: the number of

cells that were actually explored before the goal was reached. In addition, example pathfinder

applications to maze solving and indoor navigation are presented.

Effect of congestion/clutter on performance of A-Star, Basic A-r-Star and A-r-5.3.2

Star. In the experiment shown in this subsection, the simulation environment was populated with

obstacle nodes having congestion/clutter probability varied from 0 to 0.75, and with

83

[] and []. Results are shown in Figure 5.7. It was observed that no path

existed beyond congestion probability of 0.6. Since over half of the nodes are occupied, it makes

sense that searching from one extreme corner of the world to another will not have an unblocked

path. Secondly, as the clutter increases, the number of free nodes decreases and this explains the

sudden reduction in the graphs of performance parameter values after congestion probability of

0.55.

The simulation results in Figure 5.7 demonstrate that
 and

 converge to

beyond some degree of congestion, an assertion of Theorem 2. Figure 5.6 is an instance of the

environment at clutter probability of 0.5 showing the path returned by the three algorithms.

Figure 5.7 compares the performance for the three algorithms at different congestion

probabilities in terms of their (a) search time; (b) size of OPEN list and (c) number of nodes

explored.

Figure 5.6. An instance of the environment at clutter/congestion probability of 0.5.

84

Figure 5.7. The effect of congestion/clutter on A-Star, Basic A-Star and A-r-Star operating on a

uniform grid world.

0
5

10
15
20
25
30
35

Se
ar

ch
 T

im
e/

se
c

Congestion Probability/clutter

A-Star Basic-A-r-Star A-r-Star-IS

0

5000

10000

15000

20000

25000

N
u

m
b

er
 O

f
C

e
lls

 o
n

O

P
EN

 L
is

t/
C

el
ls

Congestion Probability/clutter

A-Star Basic-A-r-Star A-r-Star-IS

0

5000

10000

15000

20000

25000

N
u

m
b

er
 O

f
C

e
lls

Ex

p
lo

re
d

/C
e

lls

Congestion Probability/clutter

A-Star Basic-A-r-Star A-r-Star-IS

(a)

(b)

(c)

85

Effect of changing obstacle configuration on performance of A-Star, Basic A-r-5.3.3

Star and A-r-Star (sliding obstacle). This simulation experiment shown in this subsection

demonstrates that changing the obstacle configuration has little effect on
 performance

whereas it can drastically degrade the performance of operating in a sparse world such as the

one shown in Figure 5.8. The obstacle is assumed to be a long rigid wall in the environment

separating the [] and []. The horizontal position of this obstacle

was varied from 11 to 231 and the performances of the pathfinders were recorded after each run.

Figure 5.8 is an instance of the environment at obstacle position 131on the horizontal axis

showing the path returned by the three algorithms. NB: these paths can all be post smoothened to

the same path (overlap). Figure 5.9 compares the performance for the three algorithms at

different obstacle positions in terms of their (a) search time; (b) size of OPEN list and (c) number

of nodes explored.

Figure 5.8. An instance of the environment at obstacle position 131on the horizontal axis.

86

Figure 5.9. The effect of changing obstacle configuration on A-Star, Basic A-Star and A-r-Star

operating on a uniform grid world.

0

50

100

150

200

11 31 51 71 91 111 131 151 171 191 211 231

Se
ar

ch
 T

im
e/

se
c

Obstacle Position

A-Star Basic-A-r-Star A-r-Star-IS

0

10000

20000

30000

40000

50000

11 31 51 71 91 111 131 151 171 191 211 231

N
u

m
b

er
 o

f
ce

lls
 o

n

O
P

EN
 L

is
t/

ce
lls

Obstacle Position

A-Star

Basic-A-r-Star

A-r-Star-IS

0

10000

20000

30000

40000

50000

11 31 51 71 91 111 131 151 171 191 211 231

N
u

m
b

e
r

o
f

ce
lls

Ex

p
lo

re
d

/c
e

lls

Obstacle Position

A-Star Basic-A-r-Star A-r-Star-IS

(a)

(c)

(b)

87

Effect of changing start and goal node configuration on performance of A-5.3.4

Star, Basic A-r-Star and A-r-Star in the presence of a concave obstacle. The simulation

experiment shown in this subsection indicates that,
 can better handle a large concave obstacle

such as the one shown in Figure 5.10 than . Here, the obstacle is assumed to be a large rigid

concave wall in the environment separating and . Table 5.2 shows the nine different

combinations of and used to generate the performance results shown in Figure 5.11.

Table 5.2

The Nine Different Start and Goal Combinations for the Simulation in this Subsection

Simulation Start Goal

 X Y X Y

1 5 5 251 5

2 5 5 251 128

3 5 5 251 251

4 5 128 251 5

5 5 128 251 128

6 5 128 251 251

7 5 251 251 5

8 5 251 251 128

9 5 251 251 195

88

Figure 5.10. An instance of the environment with concave obstacle.

89

Figure 5.11. The effect of changing start and goal node position with respect to a large concave

obstacle on A-Star, Basic A-Star and A-r-Star operating on a uniform grid.

0

100

200

300

400

1 2 3 4 5 6 7 8 9

Ti
m

e
U

se
d

/s
e

c

Simulation

A-Star Basic-A-r-Star A-r-Star-IS

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9

N
u

m
b

er
 o

f
ce

ll
s

o
n

O
P

E
N

 L
is

t/
ce

ll
s

Simulation

A-Star Basic-A-r-Star A-r-Star-IS

0

20000

40000

60000

1 2 3 4 5 6 7 8 9

N
u

m
b

er
 o

f
ce

lls

Ex
p

lo
re

d
/c

e
lls

Simulation

A-Star Basic-A-r-Star A-r-Star

(a)

(b)

(c)

90

Effect of increasing the resolution of the same environment on performance of 5.3.5

A-Star, Basic A-r-Star and A-r-Star. This simulation shows that increasing the resolution of

the same environment degrades the performance of exponentially but that of
 only degrades

linearly. The obstacle is assumed to be a long rigid wall in the environment separating and

 . The resolution of the grid was varied from to . At each resolution, the

performances of the pathfinders were recorded. This confirms the earlier assertion that search

time increases exponentially with increasing the grid size. Figure 5.12 is an instance of the

environment at resolution of (i.e. at scale 0.5) showing the path returned by the three

algorithms. NB: these paths can all be post smoothened to the same path (overlap). Figure 5.13

compares the performance for the three algorithms for different grid resolutions in terms of their

(a) search time; (b) size of OPEN list and (c) number of nodes explored.

Figure 5.12. This is an instance of the environment at resolution of 123x123 (i.e. at scale 0.5).

91

Figure 5.13. The effect of changing the gridding resolution of a given continuous world on A-

Star, Basic A-Star and A-r-Star operating on a uniform grid world.

0

20

40

60

80

100

120

1

0
.9

5

0
.9

0
.8

5

0
.8

0
.7

5

0
.7

0.
65 0
.6

0
.5

5

0
.5

0
.4

5

0.
4

0
.3

5

0
.3

0
.2

5

0
.2

0.
15 0
.1

0
.0

5

Se
ar

ch
 T

im
e

/s
ec

Scale

A-Star Basic-A-r-Star A-r-Star-IS

0

10000

20000

30000

40000

1

0.
95 0
.9

0
.8

5

0
.8

0
.7

5

0
.7

0
.6

5

0
.6

0
.5

5

0
.5

0
.4

5

0
.4

0
.3

5

0
.3

0
.2

5

0
.2

0
.1

5

0
.1

0
.0

5

N
u

m
b

er
 o

f
ce

lls
 o

n
 O

P
EN

Li

st
/c

e
lls

Scale

A-Star Basic-A-r-Star A-r-Star-IS

0
5000

10000
15000
20000
25000
30000
35000
40000

1

0.
95 0.

9

0.
85 0.

8

0.
75 0.

7

0.
65 0.

6

0.
55 0.

5

0.
45 0.

4

0.
35 0.

3

0.
25 0.

2

0.
15 0.

1

0.
05

N
u

m
b

er
 o

f
ce

lls

Ex
p

lo
re

d
/c

el
ls

Scale

A-Star Basic-A-r-Star A-r-Star-IS

(a)

(b)

(c)

92

Comparing the performance of the A-r-Star with that of the A-Star running on 5.3.6

quadtree. For this simulation experiment, an obstacle of size () is placed

between the start position [] and the goal position []. An instance

of the world after quadtree decomposition is shown in Figure 5.14 and the world after
 search

in Figure 5.16. The comparison in Figure 5.15 (a) and Figure 5.15 (c) shows that at certain

obstacle configurations running on an environment preprocessed into a quadtree almost

always outperforms
 ; however, it must be noted that the preprocessing takes a longer time in

the quadtree case. Besides, as highlighted above in Section 2 and in (Kambhampati and Davis,

1986), the performance of the quadtree approach degrades drastically with increasing congestion.

Figure 5.14. The world after quadtree decomposition (preprocessing). White represents free

nodes, gray represents node borders and black represents obstacle.

93

Figure 5.15. The performance comparison for A-Star operating on a quadtree and A-r-Star

operating on a uniform grid of the same continuous environment.

(b)

(a)

94

Figure 5.16. The multi-resolution grid built by A-r-Star during the search. White represents free

nodes, gray represents node borders and black represents obstacle.

Solving a maze problem with the A-Star, Basic A-r-Star and A-r-Star 5.3.7

algorithms. Artificial intelligence search algorithms are often used to solve maze problems that

are common in tortuous games such as the Pacman Maze Game. Such maze problems are

similar, and equivalent in some cases, to path finding problems faced by robots operating in

maze-like environments such as building floor plans and underground mines, for example. The

first application is to use the three pathfinder algorithms to solve a simple 256 x 256 maze

problem. Figure 5.17 shows the maze and respective paths found between the indicated start and

goal nodes. The performances of the algorithms are summarized in Table 5.3. Here, the path

length is measured using the Euclidean distance of all path segments. Note that the paths

returned by
 and

 have bulges that make the path suboptimal. These bulges can be

eliminated using the path smoothing techniques in Algorithm 1., as shown in Figure 4.2.

95

Figure 5.17. How A-Star, Basic A-Star and A-r-Star operating on a uniform grid world solves a

maze problem.

Table 5.3

The Performance Comparison of the Three Algorithms for the Maze Problem Solving

Algorithm

Time Used

(sec)

Path Length

(units)

Number of cells on

Open List (cells)

Number of cells

Explored (cells)

 122.45 779.39 37378 37142

 102.62 795.77 33011 31581

 17.47 789.56 14980 14675

96

 Integration of the methodologies in a simulated home using A-r-Star 5.3.8

Pathfinder. The next simulation involves running the integrated system in a simulated 3D home

environment which was developed using Webots as shown in Figure 5.1. Webots (Leonard et al.,

1991) is commercial software for robotic systems prototyping and simulation. A prototype of the

Pioneer 2DX robot was run in this environment to build a binary occupancy grid map using a

simulated SICK Laser Measurement Sensor (LMS) 200. Note that, the simulation prototypes for

the robot and sensor come with Webots. A 2D map representing the floor plan of the home

environment is then fed to
 to plan a path from a point in the fitness room to a destination in

the living room.

Figure 5.18. Path planning in a prototype home environment (see Figure 5.1) using the A-r-Star

pathfinder.

The result is shown in Figure 5.18 where the obstacle regions are represente by black

nodes; the obstacle-free zone are represented by white nodes and the gray nodes represent those

cells that the
 skipped while searching for the path. Furthermore, the dark center line indicates

Start

Goal

97

the path that was returned by the
 search planning from a point in the fitness room to a point in

the living room.

Results for the incremental A-r-Star search compared to D*-lite. Figure 5.20 5.3.9

illustrates the re-plan time comparison between the incremental
 and . The cells that

were blocked have been indicated on the horizontal axis. Also note that the node blocking was

accumulative, meaning when a node is blocked, it remains blocked in the next iteration. The

Incremental
 Algorithm outperforms because this is a sparse world and

 ’s initial search is similar to
 . Also take note that, in instances where the change does not

demand searching of many new cells, does perform very well and even in some

instances better than
 .

Figure 5.19. The grid map used for the simulation.

98

Figure 5.20. The comparison between the re-planning time of Incremental-A-r-Star and D*-

Lite.

Results of the multiple destination planning. Figure 5.21 shows a time 5.3.10

comparison for the multiple-goal search on the maze shown in Figure 5.17. Different

destinations were searched in turn as shown in the horizontal axis from left to right. The

environment is kept constant throughout the search. Also, was kept constant at ().

The first scenario plans from scratch anytime it is queried with a new goal but the second one

reuses the information from the DAG from the previous searches. It can be seen that reusing the

information from previous search amounts to a substantial increase in speed depending on how

close the new goal is to a leaf in the previous graph.

0.12 0.05 0.05 0.05 0.05 0.07 0.04 0.04 0.04 0.08

2.30

0.01

2.12
2.42 2.48

4.36

0.16

3.11 3.27 3.25

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

(7
5

, 3
0

)

(7
6

, 3
0

)

(7
7

, 3
0

)

(3
0

, 7
8

)

(7
9

, 3
0

)

(4
9

, 3
1

)

(4
8

, 3
1

)

(4
7

, 3
1

)

(4
6

, 3
1

)

(4
5

, 3
1

)

R
ep

la
n

 T
im

e
/s

ec

Changed Node

Incremental A-r-Star D-Star-Lite

99

Figure 5.21. The run time comparison for the A-r-Star algorithm searching multiple number of

times in a static environment when it reuses the previous information and when it plans from

scratch.

4.97 4.85

2.73

5.70

4.84

5.40

4.13

2.16

2.88

3.67

1.26

4.96

0.07 0.05

1.04

0.02 0.15 0.02 0.01 0.01 0.02 0.01
0.00

1.00

2.00

3.00

4.00

5.00

6.00

(8
0

, 2
6

0
)

(2
0

, 2
0

0
)

(2
0

, 3
4

0
)

(5
0

, 3
6

0
)

(1
4

0
, 2

8
0

)

1
4

0
, 3

8
0

)

(1
8

0
, 3

0
0

)

(2
4

0
, 4

2
0

)

(2
2

0
, 2

6
0

)

(1
6

0
, 1

2
0

)

Se
ar

ch
 T

im
e

 /
se

c

Goal Position

A-r-Star Replan

A-r-Star Reuse

100

CHAPTER 6

Conclusion and Possible Research Extensions

6.1 Research Overview

This research has addressed the indoor navigation problem using a novel approach. This

approach divides the problem of indoor navigation into three distinctive parts, namely

localization, mapping and path planning. These parts can be solved independently and yet are

interrelated. In other words, the performance of the localization technique directly or indirectly

affects efficiency of the mapping, and the accuracy of the mapping influences the effectiveness

of the path planning. These three components have therefore been solved individually and then

integrated to form a single navigation system. To solve the localization problem, dead-reckoning

(odometry) was adopted. The greatest problem with dead reckoning – the accumulation of errors

from both systematic and non-systematic error sources– has been effectively handled both

theoretically and experimentally. A least squares numerical approach to odometry error

calibration was utilized to reduce the effect of the systematic odometry errors on the navigation

system. An intermittent resetting technique that employs RFID tags placed at known fixed

locations in the environment in conjunction with door-markers has been developed and

implemented to mitigate the errors remaining after the calibration (mainly non-systematic

errors).

This research has developed and implemented a technique for building a binary

occupancy grid map of the environment using a laser range finder, SICK LMS 200, as the main

exteroceptive sensor. Path planning using various graph search techniques such as , ,

 , and Adaptive have been investigated and implemented.
 Pathfinder, a new path

101

planning algorithm that is capable of high performance both in cluttered and sparse environment

has been developed and implemented. Its properties, challenges and solutions to the challenges

have also been highlighted in the research. Simulation experiments highlighting properties and

performance of the individual components have been developed and executed using MATLAB.

A prototype world (five compartments home) has been built using the Webots robotic

prototyping and simulation software, incorporating use of the Webots models for the Pioneer 2

robot and LMS. These respectively served as a representation of an indoor domestic operating

environment and an assistive robot model. An integrated version of the developed navigation

system comprising the localization, mapping and path planning techniques has been executed on

the simulated assistive robot system in this prototype workspace.

6.2 Theoretical and Experimental claims

Intermittent resetting technique. The intermittent resetting technique for 6.2.1

odometry error mitigation is novel. There are systems developed in literature which are similar

but not exactly the same in principle. Its application to the localization of the robot results in

improvement in the position and orientation estimation over the long run. Also, since the system

doesn’t rely on the RSSI of the RFID tags, as many applications do, the issue with signal

strength degradation has less influence on the system. This system is effective as long as the

coded ID can be read. The door-marker system can be implemented with inexpensive proximity

sensors and timers. Thus, the system is less expensive to setup because it requires low cost off-

the-shelf sensors.

A-r-Star pathfinder. The development of the
 algorithm is a major contribution 6.2.2

of this research to the field of robotic path planning. Both formal and informal proofs have

102

asserted its superiority over existing techniques in terms of its simplicity, flexibility and search

speed. The linear scalability with increasing grid resolution makes its application to large sparse

grid worlds more attractive than most existing algorithms. Furthermore, the performance

degradation in cluttered environment is less and so it possesses the ability to plan across the

congestion spectrum from much cluttered environments to very sparse environments. To the best

of the author’s knowledge, this research is the first to study the DAG built by the graph search

algorithms and the subsequent understanding of their extension to incremental algorithms.

Compared with other multi-resolution gridding path planning techniques such as the quadtree

approach, this approach is desirable for various reasons some of which are highlighted below:

 combines the multi-resolution gridding with the search and so requires no pre-

processing time

 builds the grid for only the part of map which is of interest without spending

time building the entire map

 Unlike other multi-resolution gridding path planning techniques, the effect of

pepper noise on the
 algorithm is negligible

 is simple algorithmically and implementation-wise and yet has powerful

application advantages

 The exploitation of information from previous searches enhances subsequent

searches in the same environment for a given root node. This holds potential for

solving the moving target problem.

103

6.3 Industrial Application

The three different components of this research have separate as well as combined

industrial applications. While a focal application for this research is assistive robotics, indoor

navigation also has applications to healthcare institution robots; robotic vacuum cleaners; robotic

nursing; museum tour guide robots; warehouse and factory robotics; etc. The
 pathfinder in

particular also has applications in path planning in underground bunkers, complex buildings such

as shopping malls, video games; and more.

6.4 Possible Research Extensions

The intermittent resetting technique developed in this research can be extended to include

more general scenarios, where the robot is assumed to perform motions such as turning and

acceleration or deceleration from the time it crosses the first door-marker to the second door-

marker. Besides, the resetting of just one coordinate dimension at each door can be generalized

to include the resetting of all the state variables involved at each door. Also, one can look into

the inclusion of probabilistic modeling of the non-systematic errors to reduce the error

accumulation between intermittent resetting stations.

The mapping technique assumes perfect LMS readings since the system has high

accuracy for short distance measurements. However, incorporation of error modeling of the

observation to cater for uncertainty in the sensor measurement can be a great extension of this

research. Also, various feature extraction techniques such as Split and Merge, Random Sample

Consensus (RANSAC), Hough Transform; etc. can be used in conjunction with data association

techniques such as Individual Compatibility or Joint Compatibility Branch and Bound to enhance

104

the accuracy of the mapping. Ultimately, SLAM methodologies can be employed to automate the

localization and mapping process.

Possible improvements to the
 algorithm include research into better path smooth

algorithms. If the optimality of
 algorithm can be guaranteed, that will be a ground breaking

accomplishment in the field of artificial intelligence and video gaming. Also, the incremental

 algorithm can be generalized to include the scenarios where the cost can decrease. Finally,

there can be an extension of this system to operate on higher dimensional configuration space.

105

References

Abbas, T., Arif, M., and Ahmed, W. (2006, 18-21 Oct. 2006). Measurement and Correction of

Systematic Odometry Errors Caused by Kinematics Imperfections in Mobile Robots.

Paper presented at the SICE-ICASE, 2006. International Joint Conference.

Abuhadrous, I., Nashashibi, F., and Laurgeau, C. (2003). 3-D land vehicle localization: a real-

time multi-sensor data fusion approach using (RT)MAPS. Proceedings of the 11th

International Conference on Advanced Robotics 2003, Vol 1-3, 71-76.

Addesso, P., Bruno, L., and Restaino, R. (2010, 5-7 May 2010). Adaptive localization techniques

in WiFi environments. Paper presented at the 5th IEEE International Symposium on

Wireless Pervasive Computing (ISWPC), 2010

Aizawa, K., and Tanaka, S. (2009). A Constant-Time Algorithm for Finding Neighbors in

Quadtrees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(7),

1178-1183.

Antonelli, G., Chiaverini, S., and Fusco, G. (2005). A calibration method for odometry of mobile

robots based on the least-squares technique: theory and experimental validation. IEEE

Transactions on Robotics, 21(5), 994-1004.

Bahl, P., and Padmanabhan, V. N. (2000). RADAR: an in-building RF-based user location and

tracking system. Paper presented at the Nineteenth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE INFOCOM 2000.

106

Begum, M., Mann, G. K. I., and Gosine, R. G. (2008). Integrated fuzzy logic and genetic

algorithmic approach for simultaneous localization and mapping of mobile robots. Appl.

Soft Comput., 8(1), 150-165.

Boontrai, D., Jingwangsa, T., and Cherntanomwong, P. (2009). Indoor localization technique

using passive RFID tags. Paper presented at the Proceedings of the 9th international

conference on Communications and information technologies, Incheon, Korea.

Borenstein, J. (1998). Experimental results from internal odometry error correction with the

OmniMate mobile robot. IEEE Transactions on Robotics and Automation, 14(6), 963-

969.

Borenstein, J., and Evans, J. (1997, 20-25 Apr 1997). The OmniMate mobile robot-design,

implementation, and experimental results. Paper presented at the Proceedings., 1997

IEEE International Conference on Robotics and Automation, 1997. .

Borenstein, J., Everett, H. R., and Feng, L. (1996). Navigating mobile robots : systems and

techniques. Wellesley, Mass.: A K Peters.

Borenstein, J., and Feng, L. (1996, 22-28 Apr 1996). Gyrodometry: a new method for combining

data from gyros and odometry in mobile robots. Paper presented at the Proceedings.,

1996 IEEE International Conference on Robotics and Automation, 1996. .

Borenstein, J., and Liqiang, F. (1996). Measurement and correction of systematic odometry

errors in mobile robots. IEEE Transactions on Robotics and Automation, 12(6), 869-880.

Bostani, A., Vakili, A., and Denidni, T. A. (2008, 4-7 May 2008). A novel method to measure

and correct the odometry errors in mobile robots. Paper presented at the CCECE 2008.

Canadian Conference on Electrical and Computer Engineering, 2008. .

107

Botea, A., Müller, M., and Schaeffer, J. (2004). Near optimal hierarchical path-finding. Journal

of Game Development, 1, 7--28.

Bouet, M., and dos Santos, A. L. (2008, 24-27 Nov. 2008). RFID tags: Positioning principles

and localization techniques. Paper presented at the WD '08. 1st IFIP Wireless Days,

2008. .

Carsten, J., Ferguson, D., and Stentz, A. (2006, 9-15 Oct. 2006). 3D Field D: Improved Path

Planning and Replanning in Three Dimensions. Paper presented at the 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems.

Casals, A. (1989). Sensor devices and systems for robotics: Springer-Verlag New York, Inc.

Castro, P., Chiu, P., Kremenek, T., and Muntz, R. R. (2001). A Probabilistic Room Location

Service for Wireless Networked Environments. Paper presented at the Proceedings of the

3rd international conference on Ubiquitous Computing, Atlanta, Georgia, USA.

Castro, P., and Munz, R. (2000). Managing context data for smart spaces. Personal

Communications, IEEE, 7(5), 44-46.

Chen, C., Tay, C., Laugier, C., and Mekhnacha, K. (2006, 5-8 Dec. 2006). Dynamic Environment

Modeling with Gridmap: A Multiple-Object Tracking Application. Paper presented at the

9th International Conference on Control, Automation, Robotics and Vision, 2006.

ICARCV '06. .

Choset, H., Burgard, W., Hutchinson, S., Kantor, G., Kavraki, L. E., Lynch, K., and Thrun, S.

(2005). Principles of Robot Motion: Theory, Algorithms, and Implementation: MIT Press.

Corke, P. (2011). Robotics, Vision and Control : Fundamental algorithms in MATLAB (Vol. 73).

Germany: Springer.

108

Corke, P., Strelow, D., and Singh, S. (2004, 28 Sept.-2 Oct. 2004). Omnidirectional visual

odometry for a planetary rover. Paper presented at the Proceedings. 2004 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2004. (IROS 2004). .

Coué, C., Pradalier, C., Laugier, C., Fraichard, T., and Bessiere, P. (2006). Bayesian Occupancy

Filtering for Multitarget Tracking: an Automotive Application. International Journal of

Robotics Research, 25(1), 19--30.

Cowlagi, R. V., and Tsiotras, P. (2010, 15-17 Dec. 2010). Multi-resolution path planning:

Theoretical analysis, efficient implementation, and extensions to dynamic environments.

Paper presented at the 49th IEEE Conference on Decision and Control (CDC), 2010

Cox, I. J. (1991). Blanche-an experiment in guidance and navigation of an autonomous robot

vehicle. IEEE Transactions on Robotics and Automation, 7(2), 193-204.

Daniel, K., Nash, A., Koenig, S., and Felner, A. (2010). Theta*: Any-Angle Path Planning on

Grids. Journal of Artificial Intelligence Research, 39, 533-579.

de la Puente, P., Rodriguez-Losada, D., Valero, A., and Matia, F. (2009, 10-15 Oct. 2009). 3D

feature based mapping towards mobile robots' enhanced performance in rescue missions.

Paper presented at the IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2009. IROS 2009.

Dechter, R., and Pearl, J. (1985). Generalized best-first search strategies and the optimality of

A*. J. ACM, 32(3), 505-536.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematic, 1(1), 269-271.

109

Division, P. (2009). World Population Ageing 2009 (ESA/P/WP/212). Department of Economic

and Social Affairs, 19 December 2009.

Dovis, F., Lesca, R., Margaria, D., Boiero, G., and Ghinamo, G. (2008, 5-8 May 2008). An

assisted high-sensitivity acquisition technique for GPS indoor positioning. Paper

presented at the IEEE/ION Position, Location and Navigation Symposium, 2008

Dudek, G., and Jenkin, M. (2000). Computational principles of mobile robotics: Cambridge

University Press.

Eaton, E., and Ruvolo, P. L. (2013). An Efficient Lifelong Learning Algorithm.

Ferguson, D., Kalra, N., and Stentz, A. (2006, 15-19 May 2006). Replanning with RRTs. Paper

presented at the Proceedings 2006 IEEE International Conference on Robotics and

Automation, 2006. ICRA 2006. .

Ferguson, D., and Stentz, A. (2007). Field D*: An Interpolation-Based Path Planner and

Replanner. In S. Thrun, R. Brooks & H. Durrant-Whyte (Eds.), Robotics Research (Vol.

28, pp. 239-253): Springer Berlin Heidelberg.

Fulgenzi, C., Spalanzani, A., and Laugier, C. (2007, 10-14 April 2007). Dynamic Obstacle

Avoidance in uncertain environment combining PVOs and Occupancy Grid. Paper

presented at the IEEE International Conference on Robotics and Automation, 2007.

Grimson, W. E., and Lozano-Perez, T. (1987). Localizing overlapping parts by searching the

interpretation tree. IEEE Trans Pattern Anal Mach Intell, 9(4), 469-482.

Grisetti, G., Tipaldi, G. D., Stachniss, C., Burgard, W., and Nardi, D. (2007). Fast and accurate

SLAM with Rao-Blackwellized particle filters. Robotics and Autonomous Systems, 55(1),

30-38.

110

Guldner, J., Utkin, V. I., Hashimoto, H., and Harashima, F. (1995, 21-23 Jun 1995). Tracking

gradients of artificial potential fields with non-holonomic mobile robots. Paper presented

at the Proceedings of the 1995 American Control Conference.

Hao, L., and Nashashibi, F. (2012, 5-7 Dec. 2012). A new method for occupancy grid maps

merging: Application to multi-vehicle cooperative local mapping and moving object

detection in outdoor environment. Paper presented at the 12th International Conference

on Control Automation Robotics & Vision (ICARCV), 2012

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2), 100-107.

Hern, C., Sun, X., Koenig, S., and Meseguer, P. (2011). Tree Adaptive A*. Paper presented at the

The 10th International Conference on Autonomous Agents and Multiagent Systems -

Volume 1, Taipei, Taiwan.

Huang, C. T., and Mitchell, O. R. (1994). A Euclidean distance transform using grayscale

morphology decomposition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 16(4), 443-448.

Hui, T., and Zekavat, S. A. (2007). A Novel Wireless Local Positioning System via a Merger of

DS-CDMA and Beamforming: Probability-of-Detection Performance Analysis Under

Array Perturbations. IEEE Transactions on Vehicular Technology, 56(3), 1307-1320.

Johnson, A., Montgomery, J., and Matthies, L. (2005, 18-22 April 2005). Vision Guided Landing

of an Autonomous Helicopter in Hazardous Terrain. Paper presented at the Proceedings

of the 2005 IEEE International Conference on Robotics and Automation, 2005. .

111

Junjun, X., Haiyong, L., Fang, Z., Rui, T., and Yiming, L. (2011, 26-28 Oct. 2011). Dynamic

indoor localization techniques based on Rssi in WLAN environment. Paper presented at

the 6th International Conference on Pervasive Computing and Applications (ICPCA),

2011.

Kambhampati, S., and Davis, L. S. (1986). Multiresolution Path Planning for Mobile Robots.

Ieee Journal of Robotics and Automation, 2(3), 135-145.

Karimi, H. A. (2011). Indoor Navigation. Universal Navigation on Smartphones, 59-73.

Kavraki, L. E., Svestka, P., Latombe, J. C., and Overmars, M. H. (1996). Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE Journal of Robotics

and Automation, 12(4), 566-580.

Kawaji, H., Hatada, K., Yamasaki, T., and Aizawa, K. (2010). Image-based indoor positioning

system: fast image matching using omnidirectional panoramic images. Paper presented at

the Proceedings of the 1st ACM international workshop on Multimodal pervasive video

analysis, Firenze, Italy.

Kelly, A. (2004). Linearized Error Propagation in Odometry. The International Journal of

Robotics Research, 23(2), 179-218.

Koenig, S., and Likhachev, M. (2002). D*lite. Paper presented at the Eighteenth national

conference on Artificial intelligence, Edmonton, Alberta, Canada.

Koenig, S., and Likhachev, M. (2006). A new principle for incremental heuristic search:

Theoretical results. Proceedings of the International Conference on Automated Planning

and Scheduling, 410-413.

112

Koenig, S., Likhachev, M., and Furcy, D. (2004). Lifelong planning A*. Artif. Intell., 155(1-2),

93-146.

Koenig, S., Likhachev, M., and Sun, X. (2007). Speeding up moving-target search. Paper

presented at the Proceedings of the 6th international joint conference on Autonomous

agents and multiagent systems, Honolulu, Hawaii.

Koenig, S., and Sun, X. (2009). Comparing real-time and incremental heuristic search for real-

time situated agents. Autonomous Agents and Multi-Agent Systems, 18(3), 313-341.

Korf, R. E. (1990). Real-time heuristic search. Artif. Intell., 42(2-3), 189-211.

Kubitz, O., Berger, M. O., Perlick, M., and Dumoulin, R. (1997, 4-7 May 1997). Application of

radio frequency identification devices to support navigation of autonomous mobile

robots. Paper presented at the IEEE 47th Vehicular Technology Conference, 1997, .

Kushki, A., Plataniotis, K. N., and Venetsanopoulos, A. N. (2010). Intelligent Dynamic Radio

Tracking in Indoor Wireless Local Area Networks. IEEE Transactions on Mobile

Computing, , 9(3), 405-419.

Ladd, A. M., Bekris, K. E., Marceau, G., Rudys, A., Wallach, D. S., and Kavraki, E. E. (2002,

2002). Using wireless Ethernet for localization. Paper presented at the IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2002.

Langer, D., and Thorpe, C. (1992, 7-10 Jul 1992). Sonar Based Outdoor Vehicle Navigation And

Collision Avoidance. Paper presented at the Intelligent Robots and Systems, 1992.,

Proceedings of the 1992 lEEE/RSJ International Conference on.

Latombe, J.-C. (1991). Robot Motion Planning: Kluwer Academic Publishers.

LaValle, S. M. (2006). Planning Algorithms: Cambridge University Press.

113

Lee, S. (2009). Use of infrared light reflecting landmarks for localization. Industrial Robot-an

International Journal, 36(2), 138-145.

Leonard, J. J., and Durrant-Whyte, H. F. (1991). Mobile robot localization by tracking geometric

beacons. Robotics and Automation, IEEE Transactions on, 7(3), 376-382.

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., and Thrun, S. (2005, June, 2005.). Anytime

Dynamic A*: An Anytime, Replanning Algorithm. Paper presented at the International

Conference on Automated Planning and Scheduling (ICAPS).

Liu, Y., and Li, X. R. (2010). Aided strapdown inertial navigation for autonomous underwater

vehicles. 76981H-76981H.

Lozano-P, T., and Wesley, M. A. (1979). An algorithm for planning collision-free paths among

polyhedral obstacles. Commun. ACM, 22(10), 560-570.

Lukianto, C., Ho, x, nniger, C., and Sternberg, H. (2010, 15-17 Sept. 2010). Pedestrian

smartphone-based indoor navigation using ultra portable sensory equipment. Paper

presented at the International Conference on Indoor Positioning and Indoor Navigation

(IPIN), 2010

Manapure, S. S., Darabi, H., Patel, V., and Banerjee, P. (2004, 2004). A comparative study of

radio frequency-based indoor location sensing systems. Paper presented at the IEEE

International Conference on Networking, Sensing and Control, 2004.

Matsumoto, Y., Ino, T., and Ogasawara, T. (2001). Development of intelligent wheelchair

system with face and gaze based interface. Robot and Human Communication,

Proceedings 262-267.

114

Matsumoto, Y., Ino, T., and Ogsawara, T. (2001, 2001). Development of intelligent wheelchair

system with face and gaze based interface. Paper presented at the Proceedings. 10th IEEE

International Workshop on Robot and Human Interactive Communication, 2001. .

Mautz, R. (2009, 19-19 March 2009). The challenges of indoor environments and specification

on some alternative positioning systems. Paper presented at the Positioning, Navigation

and Communication, 2009. WPNC 2009. 6th Workshop on.

McCarthy, C., and Bames, N. (2004, 26 April-1 May 2004). Performance of optical flow

techniques for indoor navigation with a mobile robot. Paper presented at the Proceedings

2004 IEEE International Conference on Robotics and Automation, 2004. .

Michel, O. (2004). Webots: Professional Mobile Robot Simulation. Journal of Advanced

Robotics Systems, 1(1), 39-42.

Milella, A., and Siegwart, R. (2006, 04-07 Jan. 2006). Stereo-Based Ego-Motion Estimation

Using Pixel Tracking and Iterative Closest Point. Paper presented at the Computer

Vision Systems, 2006 ICVS '06. IEEE International Conference on.

Milton Roberto, H. (2010). Feature-Based Mapping Using Incremental Gaussian Mixture

Models.

Moravec, H. (1988). Sensor fusion in certainty grids for mobile robots. AI Mag., 9(2), 61-74.

Moravec, H. P., and Elfes, A. (1985, Mar 1985). High resolution maps from wide angle sonar.

Paper presented at the 1985 IEEE International Conference on Robotics and Automation..

Nguyen, X., Jordan, M. I., and Sinopoli, B. (2005). A kernel-based learning approach to ad hoc

sensor network localization. ACM Trans. Sen. Netw., 1(1), 134-152.

115

Nick, T., Cordes, S., Gotze, J., and John, W. (2012, 13-15 Nov. 2012). Camera-assisted

localization of passive RFID labels. Paper presented at the 2012 International Conference

on Indoor Positioning and Indoor Navigation (IPIN),.

Nieuwenhuisen, M., Stuckler, J., and Behnke, S. (2010, 3-7 May 2010). Improving indoor

navigation of autonomous robots by an explicit representation of doors. Paper presented

at the IEEE International Conference on Robotics and Automation (ICRA), 2010.

Nikitin, P. V., Martinez, R., Ramamurthy, S., Leland, H., Spiess, G., and Rao, K. V. S. (2010,

14-16 April 2010). Phase based spatial identification of UHF RFID tags. Paper presented

at the RFID, 2010 IEEE International Conference on.

Noborio, H., Naniwa, T., and Arimoto, S. (1990). A quadtree-based path-planning algorithm for

a mobile robot. Journal of Robotic Systems, 7(4), 555-574.

Noykov, S., and Roumenin, C. (2007). Occupancy grids building by sonar and mobile robot.

Robot. Auton. Syst., 55(2), 162-175.

Opoku, D., Homaifar, A., and Tunstel, E. (2013). The A-r-Star (Ar*) Pathfinder. International

Journal of Computer Applications.

Papadopoulos, E., and Misailidis, a. M. (2007, July 2-5, 2007). On Differential Drive Robot

Odometry with Application to Path Planning Paper presented at the European Control

Conference, Kos, Greece.

Ramalingam, G., and Reps, T. (1996). An incremental algorithm for a generalization of the

shortest-path problem. Journal of Algorithms, 21(2), 267-305.

116

Retscher, G. (2006, April 25-27, 2006). Location Determination in Indoor Environments for

Pedestrian Navigation. Paper presented at the Position, Location, And Navigation

Symposium, 2006 IEEE/ION.

Ruff, T., and Hession-Kunz, D. (1998, 12-15 Oct. 1998). Application of radio frequency

identification systems to collision avoidance in metal/nonmetal mines. Paper presented at

the Industry Applications Conference, 1998. Thirty-Third IAS Annual Meeting. The

1998 IEEE.

Sanpechuda, T., and Kovavisaruch, L. (2008, 14-17 May 2008). A review of RFID localization:

Applications and techniques. Paper presented at the ECTI-CON 2008. 5th International

Conference on Electrical Engineering/Electronics, Computer, Telecommunications and

Information Technology, 2008..

Savage, P. G. (2007). Strapdown Analytics: Strapdown Associates.

Schiele, B., and Crowley, J. L. (1994, 8-13 May 1994). A comparison of position estimation

techniques using occupancy grids. Paper presented at the 1994 IEEE International

Conference on Robotics and Automation, 1994..

Schroeder, W. J., Zarge, J. A., and Lorensen, W. E. (1992). Decimation of triangle meshes.

SIGGRAPH Comput. Graph., 26(2), 65-70.

Se, S., Lowe, D., and Little, J. (2001, 2001). Vision-based mobile robot localization and

mapping using scale-invariant features. Paper presented at the Proceedings 2001 ICRA.

IEEE International Conference on Robotics and Automation, 2001. .

Sfeir, J., Saad, M., and Saliah-Hassane, H. (2011, 17-18 Sept. 2011). An improved Artificial

Potential Field approach to real-time mobile robot path planning in an unknown

117

environment. Paper presented at the IEEE International Symposium on Robotic and

Sensors Environments (ROSE), 2011

Sgouros, N. M., PapaKonstantinou, G., and Tsanakas, P. (1996, 22-28 Apr 1996). Localized

qualitative navigation for indoor environments. Paper presented at the Proceedings., 1996

IEEE International Conference on Robotics and Automation, 1996. .

Shih-Ying, C., Tsui-Ping, C., and Zhi-Hong, C. (2012, 4-6 June 2012). An Efficient Theta-Join

Query Processing Algorithm on MapReduce Framework. Paper presented at the

Computer, Consumer and Control (IS3C), 2012 International Symposium on.

Smailagic, A., and Kogan, D. (2002). Location sensing and privacy in a context-aware

computing environment. Wireless Communications, IEEE, 9(5), 10-17.

Smith, R., Self, M., and Cheeseman, P. (1990). Estimating uncertain spatial relationships in

robotics. In J. C. Ingemar & T. W. Gordon (Eds.), Autonomous robot vehicles (pp. 167-

193): Springer-Verlag New York, Inc.

Song, J., Haas, C. T., and Caldas, C. H. (2007). A proximity-based method for locating RFID

tagged objects. Adv. Eng. Inform., 21(4), 367-376.

Sooyong, L., and Jae-Bok, S. (2007, 17-20 Oct. 2007). Mobile robot localization using infrared

light reflecting landmarks. Paper presented at the ICCAS '07. International Conference

on Control, Automation and Systems, 2007. .

Stentz, A. (1994, 8-13 May 1994). Optimal and efficient path planning for partially-known

environments. Paper presented at 1994 IEEE International Conference on.the Robotics

and Automation, 1994.

118

Stentz, A. (1995a). The Focussed D* Algorithm for Real-Time Replanning. Paper presented at

the International Joint Conference on Artificial Intelligence.

Stentz, A. (1995b). Optimal and Efficient Path Planning for Unknown and Dynamic

Environments. International Journal of Robotics & Automation, 10(3), 89-100.

Stepan, P., Kulich, M., and Preucil, L. (2005). Robust data fusion with occupancy grid. Systems,

Man, and Cybernetics, Part C: IEEE Transactions on Applications and Reviews, 35(1),

106-115.

Sun, X., Koenig, S., and Yeoh, W. (2008a). Generalized Adaptive A*. Paper presented at the

International Joint Conference On Autonomous Agents And Multiagent Systems

(Aamas).

Sun, X., Koenig, S., and Yeoh, W. (2008b). Real-Time Adaptive A*. Paper presented at the

International Joint Conference On Autonomous Agents And Multiagent Systems.

SungHwan, A., Sukjune, Y., Seungyong, H., Nosan, K., and Kyung Shik, R. (2012, 7-12 Oct.

2012). On-board odometry estimation for 3D vision-based SLAM of humanoid robot.

Paper presented at the Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ

International Conference on.

Tarin Sauer, C., Brugger, H., Hofer, E. P., and Tibken, B. (2001, 2001). Odometry error

correction by sensor fusion for autonomous mobile robot navigation. Paper presented at

the Instrumentation and Measurement Technology Conference, 2001. IMTC 2001.

Proceedings of the 18th IEEE.

Thiesse, F., Fleisch, E., and Dierkes, M. (2006). LotTrack: RFID-based process control in the

semiconductor industry. Pervasive Computing, IEEE, 5(1), 47-53.

119

Thrapp, R., Westbrook, C., and Subramanian, D. (2001, 2001). Robust localization algorithms

for an autonomous campus tour guide. Paper presented at the Proceedings 2001 ICRA.

IEEE International Conference on Robotics and Automation, 2001. .

Tuna, G., Gulez, K., Gungor, V. C., and Veli Mumcu, T. (2012, 25-28 Oct. 2012). Evaluations of

different Simultaneous Localization and Mapping (SLAM) algorithms. Paper presented at

the IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.

Ul-Haque, I., and Prassler, E. (2010, 7-9 June 2010). Experimental Evaluation of a Low-cost

Mobile Robot Localization Technique for Large Indoor Public Environments. Paper

presented at the Robotics (ISR), 2010 41st International Symposium on and 2010 6th

German Conference on Robotics (ROBOTIK).

Vatavu, A., Danescu, R., and Nedevschi, S. (2011, 25-27 Aug. 2011). Environment perception

using dynamic polylines and particle based occupancy grids. Paper presented at the

Intelligent Computer Communication and Processing (ICCP), 2011 IEEE International

Conference on.

Vázquez-Martín, R., Núñez, P., Bandera, A., and Sandoval, F. (2009). Spectral clustering for

feature-based metric maps partitioning in a hybrid mapping framework. Paper presented

at the Proceedings of the 2009 IEEE international conference on Robotics and

Automation, Kobe, Japan.

Wang, L. E. (2012). iNavigation: An Image Based Indoor Navigation System. Master of

Computer and Information Sciences, Auckland University of Technology. Retrieved

from http://hdl.handle.net/10292/4743

http://hdl.handle.net/10292/4743

120

Ward, A., Jones, A., and Hopper, A. (1997). A new location technique for the active office.

Personal Communications, IEEE, 4(5), 42-47.

Wendel, J. (2011). Integrierte Navigationssysteme: Sensordatenfusion, GPS und Inertiale

Navigation: Oldenbourg Wissensch.Vlg.

Wooden, D. T. (2006). Graph-based Path Planning for Mobile Robots. Doctor of Philosophy,

Georgia Institute of Technology. Retrieved from

https://smartech.gatech.edu/bitstream/handle/1853/14055/wooden_david_t_200611_phd.

pdf?sequence=1

Yahja, A., Stentz, A., Singh, S., and Brumitt, B. L. (1998, 16-20 May 1998). Framed-quadtree

path planning for mobile robots operating in sparse environments. Paper presented at the

IEEE International Conference on Robotics and Automation, 1998. Proceedings. 1998

Yenilmez, L., and Temeltas, H. (2007). A new approach to map building by sensor data fusion:

sequential principal component-SPC method. The International Journal of Advanced

Manufacturing Technology, 34(1-2), 168-178.

Yershova, A., Jaillet, L., Simeon, T., and LaValle, S. M. (2005, 18-22 April 2005). Dynamic-

Domain RRTs: Efficient Exploration by Controlling the Sampling Domain. Paper

presented at the Proceedings of the 2005 IEEE International Conference on Robotics and

Automation, 2005. ICRA 2005. .

Ying, Z., Juan, L., Hoffmann, G., Quilling, M., Payne, K., Bose, P., and Zimdars, A. (2010, 8-12

Nov. 2010). Real-time indoor mapping for mobile robots with limited sensing. Paper

presented at the IEEE 7th International Conference on Mobile Adhoc and Sensor Systems

(MASS), 2010

121

Youssef, M., and Agrawala, A. (2005). The Horus WLAN location determination system. Paper

presented at the Proceedings of the 3rd international conference on Mobile systems,

applications, and services, Seattle, Washington.

Zen, H., Nankaku, Y., and Tokuda, K. (2011). Continuous Stochastic Feature Mapping Based on

Trajectory HMMs. IEEE Transactions on Audio, Speech, and Language Processing,

19(2), 417-430.

Zhiwei, Z., Oskiper, T., Samarasekera, S., Kumar, R., and Sawhney, H. S. (2007, 14-21 Oct.

2007). Ten-fold Improvement in Visual Odometry Using Landmark Matching. Paper

presented at the IEEE 11th International Conference on Computer Vision, 2007. ICCV

2007.

Zhong, J., and Su, J. (2011, 22-24 July 2011). Narrow passages identification for Probabilistic

Roadmap Method. Paper presented at the 30th Chinese Control Conference (CCC), 2011

Zhou, J., and Shi, J. (2009). RFID localization algorithms and applications—a review. Journal of

Intelligent Manufacturing, 20(6), 695-707.

122

Appendix A

This is a sample unoptimized matlab code for the A-Star algorithm

1 %The A* algorithm programmed in the algorithmic way

2 function Res=AStarPathfinder (MAP,inStart,inGoal)

3 %This function finds the shortest path of a given grid system using the

4 %AStar algorithm.

5 tic

6 MAP(MAP==0)=inf;

7 global OPEN g goal start cmap open closed new xMax yMax TAG

8 goal=inGoal; start=inStart; cmap=MAP; new=0; open=1; closed=2;

9 [xMax,yMax]=size(cmap);g=inf*ones(size(cmap));

10 g(start(1),start(2))=0; TAG=zeros(size(cmap));TAG(start(1),start(2))=open;

11 OPEN=[];

12 Insert(start,start,h(start));

13 while (1)

14 if isempty(OPEN)

15 path=-1;

16 pathflag=0;

17 break;

18 else

19 s=pop();

123

20 if isequal(s,goal)

21 pathflag=1;

22 break;

23 end

24 TAG(s(1),s(2))=closed;

25 neighbors=Expand(s);

26 for n=1:size(neighbors,1)

27 UpdaNode(s,neighbors(n,:));

28 end

29 end

30 end

31 if pathflag

32 Res.OPEN=OPEN; Res.g=g; Res.path=ExtrPath(); %Output Variables

33 plotPath(cmap,Res.path);

34 time=toc

35 end

36 end

37 function path=ExtrPath()

38 %This is a greedy approach to extracting the path after it has been built

39 %by get shortest pat

40 global start goal g

41 s=goal; %Start from the goal

124

42 path=goal;

43 while ~isequal(start,s) %Check whether we are at the goal

44 ming=inf; %Set to the highest

45 neighbors=Expand(s); %Get all the neighbors

46 %Check for the minimum g among the candidates

47 for n=1:size(neighbors,1)

48 ss=neighbors(n,:);

49 if g(ss(1),ss(2))<ming

50 ming=g(ss(1),ss(2)); %If less, winner

51 minss=ss;

52 end

53 end

54 s=minss;

55 path=[path;s]; %Append the current winner to the path

56 end

57 end

58 function UpdaNode(s,u)

59 %This is for updating the current vertex/node

60 % disp('In Update Vertex');

61 global g TAG open %new

62 if (g(s(1),s(2))+CalcCost(s,u))<g(u(1),u(2)) %Calculate the rhs

63 g(u(1),u(2))=(g(s(1),s(2))+CalcCost(s,u));

125

64 parent=s;

65 f=g(u(1),u(2))+h(u);

66 if TAG(u(1),u(2))==open %if u is on the U Queue

67 Remove(u); %Remove it

68 end

69 Insert(u,parent,f);

70 end

71 end

72 function neighbors=Expand(s)

73 %use to generate the neighbors of a node s in an 2D 8-connected grid

74 r=s(1); %Extract the row

75 c=s(2); %Extract the column

76 global xMax yMax cmap

77 neighbors=[];

78 temp=[r-1, r-1, r-1, r,r,r+1,r+1,r+1;

79 c-1, c, c+1, c-1,c+1, c-1,c,c+1]'; %Find the neigbors

80 for i=1:size(temp,1)

81 if (temp(i,1)>0 && temp(i,1)<=xMax)&&(temp(i,2)>0 && temp(i,2)<=yMax)

82

 if cmap(temp(i,1),temp(i,2))==inf %||TAG(temp(i,1),temp(i,2))==closed %If it

is a wall,

83

 %drop it. NB: This is for excluding the blocked nodes and so if any node is

not blocked

126

84 % then it becomes ineffective

85 continue

86 end

87 neighbors=[neighbors;temp(i,:)];

88 end

89 end

90 end

91 function neighbors=GeneNeighbors(s)

92 %use to generate the neighbors of a node s in an 2D 8-connected grid

93 r=s(1); %Extract the row

94 c=s(2); %Extract the column

95 global xMax yMax TAG closed

96 neighbors=[];

97 temp=[r-1, r-1, r-1, r,r,r+1,r+1,r+1;

98 c-1, c, c+1, c-1,c+1, c-1,c,c+1]'; %Find the neigbors

99 for i=1:size(temp,1)

100 if (temp(i,1)>0 && temp(i,1)<=xMax)&&(temp(i,2)>0 && temp(i,2)<=yMax)

101

 if TAG(temp(i,1),temp(i,2))~=closed %If it is a wall, drop it. NB: This is for

excluding

102

 % the blocked nodes and so if any node is not blocked then it becomes

ineffective

103 continue

127

104 end

105 neighbors=[neighbors;temp(i,:)];

106 end

107 end

108 end

109 function [u,parent,f]=pop()

110 %pop the top node from the U queue

111 global OPEN closed TAG

112 u=OPEN(1,1:2); %pop the top node

113 parent=OPEN(1,3:4); %pop the top node parents

114 f=OPEN(1,5); %pop the top node

115 OPEN(1,:)=[]; %Remove it

116 TAG(u(1),u(2))=closed;

117 end

118 function Insert(s,parent,f)

119 %For inserting a given node onto the UQUEUE node

120 global OPEN TAG open

121 if isempty(OPEN) %If the U queue is empty then just insert onto it

122 OPEN=[s,parent,f];

123 TAG(s(1),s(2))=open;

124 else

125 downNodes=(OPEN(:,5)<f);

128

126 OPEN=[OPEN(downNodes,:);[s,parent,f];OPEN(~downNodes,:)];

127 TAG(s(1),s(2))=open;

128 end

129 end

130 function Remove(s)

131 %For removing a node from the

132 global OPEN TAG closed

133 % ind=find();

134 OPEN(OPEN(:,1)==s(1)& OPEN(:,2)==s(2),:)=[];

135 TAG(s(1),s(2))=closed;

136 end

137 function h=h(s)

138 %Calculates the heuristic cost estimate from s to the goal

139 global goal %NB goal is a global variable

140 h=norm(s-goal,2); %The norm in this case

141 end

142 function cost=CalcCost(s,ss)

143 %This calculates the cost of a given node s and its predecessor ss given

144 %the cost map cmap

145 global cmap

146 eucdist=norm(s-ss,2); %First calculate the euclidean distance

147 cost=0.5*eucdist*(cmap(s(1),s(2))+cmap(ss(1),ss(2))); %then multiply

129

148 % the average cost with the euclidean distance

149 end

130

Appendix B

This is a sample non-optimized code of the A-r-Star Pathfinder

1 %The A* algorithm programmed in the algorithmic way

2 function Res=ArStarPathfinder (MAP,inStart,inGoal)

3 %This function finds the shortest path of a given grid system using the

4 %AStar algorithm.

5 tic

6 MAP(MAP==0)=inf;

7 global OPEN CLOSED g goal start cmap open closed new xMax yMax TAG skip r

8 goal=[inGoal(1) inGoal(2)]; start=[inStart(1) inStart(2)]; cmap=MAP; new=0;

9

g(start(1),start(2))=0; TAG=zeros(size(cmap));TAG(start(1),start(2))=open; r=inf;

CLOSED=[];

10 OPEN=[];

11 Insert(start,start,h(start));

12 while (1)

13 %Check whether the OPEN is empty=>there is no path linking them

14 if isempty(OPEN)

15 path=-1;

16 pathflag=0;

17 break;

18 %The Next three lines change the algorith from the Basic A-r-Star to the A-r-Star

19 elseif TAG(OPEN(1,1),OPEN(1,2))==skip;

131

20 OPEN(1,:)=[];

21 continue;

22 else %Get the next best node and expand

23 s=pop();

24 if isequal(s,goal) %Check whether we are at goal

25 pathflag=1;

26 break;

27 end

28 % TAG(s(1),s(2))=closed;

29 neighbors=RExpand(s);

30 for n=1:size(neighbors,1)

31 UpdaNode(s,neighbors(n,:));

32 end

33 % g

34 end

35 end

36 if pathflag

37 % path=ExtrPath();

38 imagesc(TAG);

39 % CLOSED

40 path=ExtrPathR();

41 % plotPath(cmap,path);

132

42 time=toc

43 end

44

Res.OPEN=OPEN; Res.g=g; Res.path=path; Res.CLOSED=CLOSED;

Res.TAG=TAG;%Output Variables

45 figure, imagesc(Res.g);

46 figure, imagesc(Res.TAG);

47 end

48

49 function path=ExtrPath()

50 %This is a greedy approach to extracting the path after it has been built

51 %by get shortest pat

52 global start goal g

53 s=goal; %Start from the goal

54 path=goal;

55 while ~isequal(start,s) %Check whether we are at the goal

56 ming=inf; %Set to the highest

57 neighbors=RExpand(s); %Get all the neighbors

58 %Check for the minimum g among the candidates

59 for n=1:size(neighbors,1)

60 ss=neighbors(n,:);

61 if g(ss(1),ss(2))<ming

62 ming=g(ss(1),ss(2)); %If less, winner

133

63 minss=ss;

64 end

65 end

66 s=minss;

67 path=[path;s]; %Append the current winner to the path

68 end

69 end

70

71 function UpdaNode(s,u)

72 %This is for updating the current vertex/node

73 % disp('In Update Vertex');

74 global g TAG open %new

75 if (g(s(1),s(2))+CalcCost(s,u))<g(u(1),u(2)) %Calculate the rhs

76 g(u(1),u(2))=(g(s(1),s(2))+CalcCost(s,u));

77 parent=s;

78 f=g(u(1),u(2))+h(u);

79 if TAG(u(1),u(2))==open %if u is on the U Queue

80 Remove(u); %Remove it

81 end

82 Insert(u,parent,f);

83 end

84 end

134

85

86 function leveRNeighbors=RExpand(s)

87 %use to generate the neighbors of a node s in an 2D 8-connected grid

88 x=s(1); %Extract the row

89 y=s(2); %Extract the column

90 R=1;

91 skipflag=true;

92 global xMax yMax cmap TAG closed skip r goal

93

94 while(1) %Iterate forever unless interrupted

95 leveRNeighbors=[];

96 temp= GeneLRNeighbors(x,y,R)'; %Get the level R neighbors

97 for i=1:size(temp,1)

98

 if (temp(i,1)<=0 || temp(i,1)>xMax)||(temp(i,2)<=0 || temp(i,2)>yMax) %IF any is

out of bounds

99 skipflag=false; %we cannot skip

100 continue

101 elseif cmap(temp(i,1),temp(i,2))==inf %It is a wall, we cannot skip

102 skipflag=false;

103 continue

104 elseif isequal(temp(i,:),goal)

105 leveRNeighbors=[leveRNeighbors;temp(i,:)];

135

106 skipflag=false;

107 continue

108

 elseif TAG(temp(i,1),temp(i,2))==closed || TAG(temp(i,1),temp(i,2))==skip%If

we have already mark this as a skip or closed, leave it

109 continue

110 end

111 leveRNeighbors=[leveRNeighbors;temp(i,:)];

112 end

113 if ~skipflag ||R>=r %If permissible radius or don't skip

114 leveRNeighbors;

115 break;

116 else %Else tag all of them as skip

117 leveRNeighbors;

118 for n=1:size(leveRNeighbors,1)

119 TAG(leveRNeighbors(n,1),leveRNeighbors(n,2))=skip;

120 end

121 R=R+1; %increase the R and continue

122 end

123 end

124 end

125

126 function path=ExtrPathR()

136

127 % This function extracts the path using the back pointers after the ArStart search.

128 global goal start CLOSED %Declare the global variables needed in this function

129 child=goal; %Start from the goal and work your way backwards.

130 % parent=[]; %Parent is null

131 path=child;

132 while ~isequal(child,start) %loop until you are at the start

133

 parent=CLOSED(CLOSED(:,1)==child(1)&CLOSED(:,2)==child(2),3:4); %Get the

parent

134 child=parent; %Make the parent the next child

135 path=[path;child]; %Place the child on the path array

136 end

137 end

138

139 function [u,parent,f]=pop()

140 %pop the top node from the U queue

141 global OPEN closed TAG CLOSED

142 u=OPEN(1,1:2); %pop the top node

143 parent=OPEN(1,3:4); %pop the top node parents

144 f=OPEN(1,5); %pop the top node

145 CLOSED=[CLOSED;OPEN(1,:)];

146 OPEN(1,:)=[]; %Remove it

147 TAG(u(1),u(2))=closed;

137

148 end

149

150

151 function Insert(s,parent,f)

152 %For inserting a given node onto the UQUEUE node

153 % disp('In Insert')

154 global OPEN TAG open

155 % s

156 if isempty(OPEN) %If the U queue is empty then just insert onto it

157 OPEN=[s,parent,f];

158 TAG(s(1),s(2))=open;

159 else

160 downNodes=(OPEN(:,5)<f);

161 OPEN=[OPEN(downNodes,:);[s,parent,f];OPEN(~downNodes,:)];

162 TAG(s(1),s(2))=open;

163 end

164 end

165

166 function Remove(s)

167 %For removing a node from the

168 global OPEN TAG closed

169

138

170 % UQUEUE(UQUEUE(:,1)==s(1)&&UQUEUE(:,1)==s(2))=[];

171 % ind=find();

172 OPEN(OPEN(:,1)==s(1)& OPEN(:,2)==s(2),:)=[];

173 TAG(s(1),s(2))=closed;

174 end

175

176 function h=h(s)

177 %Calculates the heuristic cost estimate from s to the goal

178

179 global goal %NB goal is a global variable

180 h=norm(s-goal,2); %The norm in this case

181 end

182

183 function cost=CalcCost(s,ss)

184 %This calculates the cost of a given node s and its predecessor ss given

185 %the cost map cmap

186 global cmap

187 eucdist=norm(s-ss,2); %First calculate the euclidean distance

188

cost=0.5*eucdist*(cmap(s(1),s(2))+cmap(ss(1),ss(2))); %then multiply the average cost

with the euclidean distance

189 end

190

139

191

192 function Neighbors = GeneLRNeighbors(x,y,R)

193

%Neighbors FXNRNEIGHBORS(R, x,y) Finds the R box neighborhood of (x,y) in a 2D

space.

194

195 % (x,y) is the center and R is the radius from the center in terms of tiles

196

197 % tic

198 dx=1;

199 dy=1;

200 fx=x-R;

201 fy=y-R;

202 % coord=[fx,y-1;fx,y+1;x-1,fy;x+1,fy];

203 coord=[];

204 coord=[coord;[[fx:x+R]',repmat(y-R,[2*R+1,1])]];

205 coord=[coord;[[fx:x+R]',repmat(y+R,[2*R+1,1])]];

206 coord=[coord;[repmat(x-R,[2*R-1,1]),[fy+dy:y+R-1]']];

207 coord=[coord;[repmat(x+R,[2*R-1,1]),[fy+dy:y+R-1]']];

208 Neighbors=coord';

209 end

140

Appendix C

The Post Dissociative Smoothing Algorithm’s MATLAB implementation using the Bresenham’s

Line Plotting Algorithm. The inputs are the binary image of the map and the Path to be

smoothened. It returns New Path (NP) which is a smooth version of the given path.

Path Smoothing

1 function NP=fxnSmoothPath(Path,MAP)

2 %% To find the points that have line of sight on a path on a map

3 ps=size(Path,1)

4 NP=Path(ps,:);

5 j=ps;

6 for i=ps-2:-1:1

7 if ~BresenhamLOS(Path(j,:),Path(i,:),MAP)

8 NP=[NP;Path(i+1,:)];

9 j=i+1;

10 end

11 end

12 NP=[NP;Path(i,:)];

13

14 end

15

16

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

141

17 function [bol,map]=BresenhamLOS(A,B,map)

18 %This function is for check the validity ofa line of sight from tile in a

19 %grid to then other.

20

21 %The Bresenham for 2nd 3rd 6th and 7th octants

22 x0=A(1);

23 y0=A(2);

24 x1=B(1);

25 y1=B(2);

26 if x0<1 || y0<1 || x1<1 || y1<1

27 disp('sorry, Im yet to learn how to handle these type of problem');

28 return

29 end

30 % tic

31 dy=y1-y0;

32 dx=x1-x0;

33 f=0;

34 bol=true;

35 if dx<0 sx=-1; else sx=1; end

36 if dy<0 sy=-1; else sy=1; end

37 gx=abs(dx);

38 gy=abs(dy);

142

39 f=gx/2;

40 if gx>=gy

41 % display('loop 1');

42 for i=0:gx

43 coord=[x0,y0];

44 if ~map(x0,y0)

45 bol=false;

46 % timeused=toc;

47 return

48 % else

49 % map(x0,y0)=3;

50 end

51 f=f+gy;

52 if (f>gx)

53 f=f-gx;

54 y0=y0+sy;

55 end

56 x0=x0+sx;

57 end

58 else

59 f=gy/2;

60 % display('loop 2');

143

61 for i=0:gy

62 coord=[x0,y0];

63 if ~map(x0,y0)

64 bol=false;

65 % timeused=toc;

66 return

67 % else

68 % map(x0,y0)=3;

69 end

70 f=f+gx;

71 if (f>gy)

72 f=f-gy;

73 x0=x0+sx;

74 end

75 y0=y0+sy;

76 end

77 end

78 % timeused=toc

79 % imshow(map,[0,10]);

80 % truesize([128,128]);

81 end

144

Appendix D

Below are the publications resulting from this research work.

Journal

Opoku, D., Homaifar, A., and Tunstel, E. (2013). The A-r-Star (Ar*) Pathfinder. International

Journal of Computer Applications; vol. (67), pp. 0975-8887 .

Refereed Conference

Opoku, D. and Abdollah Homaifar, Non-Classical Multi-Sensor Data Fusion Techniques,

Conference proceedings, IEEE Aerospace Conference, 2010, ISBN 978-1-4244-3888-4.

Submitted/In preparation

Daniel Opoku, Abdollah Homaifar, and Edward W. Tunstel, RFID-Augmentation for Improving

Long-term Pose Accuracy of an Indoor Navigating Robot, Conference paper, (About to be

submitted).

Poster

1. Opoku, D. and A. Homaifar, “Intelligent Navigation of a Robot in a Dynamic Home

Environment using Laser Range Finder,” Poster, 1
st
 Annual COE Graduate Student

Research Poster Competition, NC A&T SU, April 2012.

2. Opoku, D., A Workineh and A. Homaifar, “Design and Implementation of Assistive

Robotic Residence Home (DIARRH),” Poster, COE Healthcare Day, NC A&T SU,

February 2012.

145

3. Opoku, D. and A. Homaifar, “Intelligent Navigation of a Robot in a Dynamic Home

Environment using Laser Range Finder,” Poster, 13th Annual Science & Engineering

Technology Conference / Defense Tech Exposition, Charleston SC, April 2012.

4. Workineh, A., D. Opoku, A Homaifar, “Evolutionary Learning, Navigation and Target

Identification for Assistive Robotic Application”, Poster, 3
rd

 BEACON Annual Congress,

MSU, MI, August 2011.

5. Opoku, D. and A. Homaifar, “The A-r-Star and its applications, Poster, 2
st
 Annual COE

Graduate Student Research Poster Competition, NC A&T SU, April 2012.

	A Novel Approach To Intelligent Navigation Of A Mobile Robot In A Dynamic And Cluttered Indoor Environment
	Recommended Citation

	tmp.1588277897.pdf.KT6jM

