21 research outputs found

    Flexible jobshop scheduling problem with resource recovery constraints.

    Get PDF
    Objectives and methods of study: The general objective of this research is to study a scheduling problem found in a local brewery. The main problem can be seen as a parallel machine batch scheduling problem with sequence-dependent setup times, resource constraints, precedence relationships, and capacity constraints. In the first part of this research, the problem is characterized as a Flexible Job-shop Scheduling Problem with Resource Recovery Constraints. A mixed integer linear formulation is proposed and a large set of instances adapted from the literatura of the Flexible Job-shop Scheduling Problem is used to validate the model. A solution procedure based on a General Variable Neighborhood Search metaheuristic is proposed, the performance of the procedure is evaluated by using a set of instances adapted from the literature. In the second part, the real problem is addressed. All the assumptions and constraints faced by the decision maker in the brewery are taken into account. Due to the complexity of the problem, no mathematical formulation is presented, instead, a solution method based on a Greedy Randomize Adaptive Search Procedure is proposed. Several real instances are solved by this algorithm and a comparison is carried out between the solutions reported by our GRASP and the ones found through the procedure followed by the decision maker. The computational results reveal the efficiency of our method, considering both the processing time and the completion time of the scheduling. Our algorithm requires less time to generate the production scheduling (few seconds) while the decision maker takes a full day to do it. Moreover, the completion time of the production scheduling generated by our algorithm is shorter than the one generated through the process followed by the decision maker. This time saving leads to an increase of the production capacity of the company. Contributions: The main contributions of this thesis can be summarized as follows: i) the introduction of a variant of the Flexible Job-shop Scheduling Problem, named as the Flexible Job-shop Scheduling Problem with Resource Recovery Constraints (FRRC); ii) a mixed integer linear formulation and a General Variable Neighborhood Search for the FRRC; and iii) a case study for which a Greedy Randomize Adaptive Search Procedure has been proposed and tested on real and artificial instances. The main scientific products generated by this research are: i) an article already published: Sáenz-Alanís, César A., V. D. Jobish, M. Angélica Salazar-Aguilar, and Vincent Boyer. “A parallel machine batch scheduling problem in a brewing company”. The International Journal of Advanced Manufacturing Technology 87, no. 1-4 (2016): 65-75. ii) another article submitted to the International Journal of Production Research for its possible publication; and iii) Scientific presentations and seminars

    Méthodes exactes et approchées pour le problème de gestion de projet à contraintes de ressources

    Get PDF
    Le problème de gestion de projet à contraintes de ressources est un des problèmesles plus étudiés dans la littérature. Il consiste à planifier des activités soumises à desrelations de précédence, et nécessitant des ressources renouvelables. L objectif est deminimiser la durée du projet, soit le makespan. Nous étudions le problème de gestion deprojet à contraintes de ressources. Nous nous sommes intéressées à la résolution exactedu problème. Dans la première partie de la thèse, nous élaborons une série de bornesinférieures basées sur le raisonnement énergétique et des formulations mathématiques.Les résultats montrent que les bornes proposées surpassent ceux de la littérature. Dansla deuxième partie, nous proposons des procédures par séparation et évaluation utilisantles bornes inférieures dévelopées dans la première partie.Resource Constrained Project Scheduling Problem is one of the most studied schedulingproblems in the literature. It consists in scheduling activities, submitted to precedencerelationship, and requiring renewable resources to be processed. The objective isto minimize the project duration, i.e., the makespan. We study the Resource ConstrainedProject Scheduling Problem. We are interested on the exact resolution of the problem.In the first part of the thesis, we develop a series of lower bounds based on energeticreasoning and mathematical formulations. The computational results show that theproposed lower bounds outperform the ones of the literature. In the second part, wepropose Branch-and-Bound procedures using the lower bounds developed on the firstpart.TOURS-Bibl.électronique (372610011) / SudocSudocFranceF

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Scheduling Models with Additional Features: Synchronization, Pliability and Resiliency

    Get PDF
    In this thesis we study three new extensions of scheduling models with both practical and theoretical relevance, namely synchronization, pliability and resiliency. Synchronization has previously been studied for flow shop scheduling and we now apply the concept to open shop models for the first time. Here, as opposed to the traditional models, operations that are processed together all have to be started at the same time. Operations that are completed are not removed from the machines until the longest operation in their group is finished. Pliability is a new approach to model flexibility in flow shops and open shops. In scheduling with pliability, parts of the processing load of the jobs can be re-distributed between the machines in order to achieve better schedules. This is applicable, for example, if the machines represent cross-trained workers. Resiliency is a new measure for the quality of a given solution if the input data are uncertain. A resilient solution remains better than some given bound, even if the original input data are changed. The more we can perturb the input data without the solution losing too much quality, the more resilient the solution is. We also consider the assignment problem, as it is the traditional combinatorial optimization problem underlying many scheduling problems. Particularly, we study a version of the assignment problem with a special cost structure derived from the synchronous open shop model and obtain new structural and complexity results. Furthermore we study resiliency for the assignment problem. The main focus of this thesis is the study of structural properties, algorithm development and complexity. For synchronous open shop we show that for a fixed number of machines the makespan can be minimized in polynomial time. All other traditional scheduling objectives are at least as hard to optimize as in the traditional open shop model. Starting out research in pliability we focus on the most general case of the model as well as two relevant special cases. We deliver a fairly complete complexity study for all three versions of the model. Finally, for resiliency, we investigate two different questions: `how to compute the resiliency of a given solution?' and `how to find a most resilient solution?'. We focus on the assignment problem and single machine scheduling to minimize the total sum of completion times and present a number of positive results for both questions. The main goal is to make a case that the concept deserves further study

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    Scheduling of single-stage noncontinous processes

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Numerical and Evolutionary Optimization 2020

    Get PDF
    This book was established after the 8th International Workshop on Numerical and Evolutionary Optimization (NEO), representing a collection of papers on the intersection of the two research areas covered at this workshop: numerical optimization and evolutionary search techniques. While focusing on the design of fast and reliable methods lying across these two paradigms, the resulting techniques are strongly applicable to a broad class of real-world problems, such as pattern recognition, routing, energy, lines of production, prediction, and modeling, among others. This volume is intended to serve as a useful reference for mathematicians, engineers, and computer scientists to explore current issues and solutions emerging from these mathematical and computational methods and their applications
    corecore