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SUMMARY 
________________________________________________________________________ 
 

This work focuses on scheduling single stage multiproduct noncontinuous plants with 

non-identical parallel units/lines. In this, the scheduling of both semicontinuous and batch 

plants with non-identical parallel units/lines and with multiple orders per product was 

addressed first. The problem structure requires several constraints concerning the 

release/ready times of units, the due dates of orders and the sequence-dependent setup 

times. MILP models were developed for both the scenarios with no due date and with 

multiple due dates using slot-based and event-based time representations. Then, the 

performance of all models was evaluated and the slot-based models were compared with 

the event-based models. The results showed that the slot-based models were better than 

the event-based models. Especially, Relaxed MIP (RMIP) values were more attractive in 

the case of the slot-based models. Another interesting result was that the decoupling of 

tasks from units in a mathematical formulation could not reduce the number of binary 

assignment variables. 

Next, two MILP formulations were developed for scheduling single-stage batch 

plants with demands at multiple due dates. General practice of batch process scheduling 

has been scheduling batches individually. So the past work could not solve large size 

problems, where there was a need to schedule multiple batches in one go to meet the 

demands of different products. In the proposed models, multiple batches of a product 

were accommodated in one slot to reduce the number of binary values and hence we 

could solve large size problems with less computational effort. Both the models differ in 

the way we assign the number of batches to each time slot. The models showed 

  v  



        Summary 

tremendous improvement over existing work in the literature both in terms of model 

statistics (variables, constraints and non-zeros) and solution statistics (nodes, iterations 

and solution times). And our work is very robust with respect to the large positive 

number M (big-M) that we use in the model formulation. 

Finally, the uncertainties in the photolithography station, one of the important 

processing stages in semiconductor manufacturing processes, were addressed. Different 

scenarios were considered in which processing times vary with respect to each scenario. 

Then the stochastic model was compared with the deterministic model. The results 

showed that the deterministic model not only under predicted the expected value of 

objective but also could yield a suboptimal solution in the face of uncertainty. 
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Chapter 1 

INTRODUCTION 

1.1 Noncontinuous Chemical Processes 

Chemical manufacturing processes can be classified into two types based on their 

mode of operation. One is continuous and the other one is noncontinuous. A 

continuous process or unit is the one that produces product in the form of a 

continuously flowing stream. There is simultaneous input to and output from a 

continuous unit. Pumping a mixture of liquids into a distillation column at a constant 

rate and steadily withdrawing product streams from the top and bottom of the column 

is an example of a continuous process. Continuous processes prefer one unit for each 

processing step unless equipment is very large and/or redundancy is required. They 

are usually run as close to steady state as possible and unsteady state conditions exist 

during the start up of a process. Continuous units are single-purpose units and 

generally designed for one product/task. They generally produce high-volume, low-

margin commodity products. They use dedicated resources and hence allocation, 

planning and scheduling are not critical.  

The continuous processing has been the most prevalent and sought-after mode 

in the Chemical Process Industry (CPI). Continuous processes, in most cases, are 

dedicated to produce a fixed product with little or no flexibility to produce other 

products. They are of large scale and hence require high inventory costs. So in recent 

years, the noncontinuous processing has received increased attention to manufacture 

low-volume products. Noncontinuous chemical processes are divided into 

semicontinuous and batch processes. A semicontinuous unit is a continuous unit that 
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runs intermittently with starts and stops to produce different products. Transition 

times/costs are needed between the productions of two different products. 

Batch process is a production process in which products are produced in 

batches. In batch process operation, the feed is charged (fed) into a vessel at the 

beginning of the process and the product/output is collected sometime later. Batch 

processing plants are attractive due to their suitability for the production of low-

volume, high-value products that are becoming increasingly important with rapid 

market changes. Most batch processes possess the flexibility to produce multiple 

products. Batch plants are well suited for producing products requiring similar 

processing paths and/or complex synthesis procedures as in the case of specialty 

chemicals such as pharmaceutical, cosmetics, wafer fabrication, food, paints, etc. In 

addition, they are forgiving in the face of seasonal or uncertain demands and lack of 

process or product knowledge and offer flexibility in terms of operation.  

A1S 

BF CS A1F 

A2S 

BS CF 

A2F 
 

Figure 1.1: Schematic diagram of multipurpose batch plants 

Generally, batch plants have been classified into two types based on the 

structure of the plants. They are multiproduct and multipurpose. Multipurpose plants 

are more like a pool of processing units that can be configured into different 

production lines to produce non-similar products. There are no stages, no fixed 

configuration. Figure 1.1 illustrates a typical multipurpose plant. Multiple products 

can be produced at the same time and a product can have multiple routes. In Figure 
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1.1, product A can be produced in two different ways, shown as A1 and A2. S and F 

denote the start and the finish states of the product respectively. 

On the other hand, a multiproduct plant is more structured and consists of a 

series of processing stages, each stage comprising of one or more units. Products 

produced by multiproduct plants are similar and hence follow the same processing 

path. Multiproduct plants are classified as serial plants, parallel plants and network 

plants.  

Stage 2 Stage 3Stage 1  Stage M

(a) Serial - many stages but only one unit in each stage 

 

Products 
Raw 

Materials 

(b) Parallel – single stage but more than one unit in parallel 

 

Stage M Stage 1 Stage 2

(c) Network – multiple stages and multiple units in parallel in each stage 

Figure 1.2: Schematic diagram of multiproduct batch plants 

Serial multiproduct plants (Figure 1.2a) consist of more than one processing 

stage, each stage comprising of only one unit while single stage parallel-unit plants 
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(Figure 1.2b) consist only one stage with one or more units in parallel. Network 

multiproduct plants (Figure 1.2c) are hybrid of the above two i.e. consist of more than 

one processing stage, each stage comprising one or more units in parallel.  

The main attraction of noncontinuous plants is their inherent flexibility in 

utilizing the various resources available for the manufacture of relatively small 

amounts of different products of more batches within the same production facility. 

Since sharing of resources (time, equipment, manpower, utilities, raw materials, etc.) 

to manufacture multiple products is the principal feature of noncontinuous plants, the 

need for optimization invariably arises both in the design and the operation of such 

plants. Sophisticated planning and scheduling tools are needed to allow the utilization 

of resources in a way that takes full advantage of the flexibility of these plants. But 

what is planning? What is scheduling? 

1.2 Planning and Scheduling 

Planning and scheduling are methodologies that enable us to run the chemical plants 

smoothly. Planning and scheduling occur in a wide range of economic activities. They 

always involve in accomplishing a number of things that tie up various resources for 

periods of time. Planning horizon typically spans a period until which the complete 

demand information is available. Generally, it consists of long horizon ranging from 

months to years. It decides how much amount of products the plant should produce 

and how long units should run the operation to get desired products. Simply, planning 

is an economic criterion. 

 Scheduling, a short-term planning, ranges from weeks to months. It is a 

methodology that determines the order in which products are to be processed in each 

of the units so as to optimize some suitable performance criterion. Simply, a 

scheduling system is a system that makes decisions dynamically about matching 
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activities and resources in order to finish products and projects that require these 

activities in a timely and high-quality fashion while simultaneously meeting the 

desired economic criterion. The basic scheduling decisions that are to be made 

include sequencing of products on units, timing and releasing of units and orders, and 

exact timings of activities. In addition, decisions regarding resources, forecasting, 

aggregating and disaggregating also play an important role. 

  Scheduling is very much important in the entire supply chain network that can 

be defined as a network of facilities and distribution options. Supply chain 

management performs the functions of procurement of materials, transformation of 

these materials into intermediate and finished products, and the distribution of these 

finished products to customers. Effective coordination of supply chain elements such 

as ordering, production management that encompasses scheduling, inventory 

management, distribution management, makes an organization, a profitable one. 

1.3 Need for Scheduling 

The need for scheduling arises neither from the nature of the processing operations 

i.e. continuous, semi-continuous, or batch nor is determined by the properties of the 

processed materials. But the need arises from methods that are used by CPI to allocate 

resources to products. Current scheduling practices involve the usage of manual, 

tedious and error-prone spreadsheet tools that result in adhoc procedures. Moreover, 

the scheduling is done by dedicated staff whose decisions may be limited only to 

human imagination with the possibility of eluding the optimum. This results in lower 

utilization of resources available and the productivity suffers even further.  

Some plants may use dozens of equipment to produce different types or grades 

of products. This leads to a myriad of ways in which a plant can be operated, and 

finding the best operating plan and schedule becomes a challenge. Adding the 
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dimension of time to the above, one has complex combinatorial problems that are 

impossible to solve optimally using a manual spreadsheet that is widely used by the 

industry personnel. Clearly, an enormous potential exists for improving the 

productivity and profitability of chemical plants by means of systematic, computer-

aided, decision support tools that use advanced optimization methods. The large 

variety of such plants with diverse requirements, features and uncertainties has fueled 

extensive optimization research during the past two decades.  

1.4 Scheduling in Noncontinuous Plants 

Scheduling noncontinuous plants is very difficult and challenging given the flexibility 

of such plants. Certain salient characteristics of these plants need to be carefully 

observed and incorporated in scheduling decisions: 

1. A variety of products are produced in batches and several batches are 

produced simultaneously. 

2. Orders arrive at different times and their due dates are usually tight. 

3. Highly capital intensive processing and material handling equipment are 

employed. 

4. Processing equipment is functionally versatile. 

5. Real-time control of scheduling decisions is required to respond to the 

dynamic behavior of the system and to attain an effective utilization of 

resources. 

6. Decisions about various manufacturing resources are required to be 

coordinated in order to exploit the flexible nature of the noncontinuous plants. 

7. The release times and due dates of orders, as well as the sequence-dependent 

setup times and forbidden sequences of production orders and the ready times 

of units play an important role in scheduling these plants. 
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Scheduling, in general, involves (a) deciding about the scheduling horizon, (b) 

establishing suitable objective(s), (c) modeling the characteristics of the plant 

structure, and (d) employing a suitable solution methodology for the resulting 

formulation.  

The scheduling horizon, in general, is in the range of 4 to 8 weeks and the 

information on demands of various products decides the horizon. The various 

scheduling objectives can be classified into two broad categories: (i) product related 

objectives – tardiness, makespan, flowtime, earliness, productivity and costs; and (ii) 

resource related objectives – utilization, idle time and costs. Quite often, scheduling 

decisions are made with more than one objective. But we should select the 

objective(s) in such a way that it truly reflects the performance of the system or plant. 

Accurate constraints regarding assigning products to units, sequencing products on 

units, resource allocations and objective make a mathematical model a complete and 

useful one.  

The solution methodology for scheduling encompasses mainly two 

approaches: one is mathematical programming and the other one is heuristic 

approach. Both approaches have advantages and disadvantages. These two methods 

have been used extensively to solve scheduling problems arising in non-continuous 

chemical plants. The mathematical programming approach results in either Nonlinear 

Programming (NLP) or Mixed Integer Linear Programming (MILP) or Mixed Integer 

Nonlinear Programming (MINLP) formulations. MILP approach is a popular 

approach for solving scheduling problems as it guarantees global optimal solutions. 

But mathematical models are computationally expensive and also as the problem size 

and complexity increase, most mathematical formulations fail to give optimal 

solutions in reasonable amount of time. On the other hand, heuristic algorithms such 
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as genetic algorithm, tabu search, simulated annealing (SA) etc. are computationally 

less expensive than mathematical programming but most of the time they give 

suboptimal solutions. There is little advantage or carry-over from one problem to 

another. Furthermore, the ability of most heuristic algorithms to give good suboptimal 

solutions deteriorates rapidly with increasing problem size. 

1.5 Research Objective 

The main focus of this work is to develop methods for determining optimal 

production schedules for a fixed set of units that form a stage. A significant body of 

research work exists in this area with focus on the development of exact and 

approximate methods to solve scheduling problems. In this work, the focus is on 

multiproduct single-stage noncontinuous plants. Semicontinuous and batch processes 

with no due date and multiple due dates are considered. Models are developed using 

slot-based and event-based formulations and also a comparison is drawn between the 

two approaches. 

Past scheduling work on scheduling batch units addressed the problem in 

terms of individual batches. With this methodology, it becomes impossible to 

schedule large number of batches that are waiting before the units for processing. 

Thus, there is a need to develop a mathematical model that addresses the problem in 

terms of multiple batches suitable for a unit. So, the objective of this research work is 

to develop models that are more effective than the previous models existing in the 

literature in terms of objective value and computational time.  

1.6 Outline of the Thesis 

In the next chapter, a detailed literature review is presented. In chapter 3, the 

scheduling problem is discussed. In chapter 4, the short-term scheduling problem with 

no due date and with multiple due dates is considered. Four different slot-based 
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models are presented separately for semicontinuous and batch processes. In addition, 

corresponding event-based models are formulated and a comparative analysis is 

carried out between slot and event based approaches with the help of some illustrative 

examples. 

 In chapter 5, scheduling of single stage batch plants with intermediate due 

dates for the general case of multiple orders per product is presented using a novel 

approach. Two different MILP formulations are developed. They are compared with 

the existing models in the literature via some literature examples. 

 In chapter 6, the application of the above work in semiconductor 

manufacturing with uncertainties is addressed. Various parameters are considered 

which are dynamic in nature and the performance of the system is evaluated. Some 

conclusions are drawn about this work in chapter 7 with some recommendations for 

future work in the area of scheduling of noncontinuous plants. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Time Representation 

Time representation is very important while developing mathematical models for 

scheduling plants. This is because the overall profile of resource utilization is 

discontinuous. The model has to track such discontinuities within the scheduling 

horizon i.e. the profile is compared with the resource availabilities to ensure 

feasibilities. There are two existing approaches for representing time in mathematical 

formulations to deal with such complexities. One is discrete-time representation and 

the continuous-time representation is being the other one. 

Discrete-time representation was used by researchers (Kondili et al., 1993; 

Shah et al., 1993) vastly. In discrete-time representation, the scheduling horizon is 

divided into a number of intervals of equal duration. Events of any type such as the 

start or end of processing individual batches of individual tasks, changes in the 

availability of processing equipment and other resources, etc. are only allowed at the 

interval boundaries. Simply, all the tasks must begin and end at the boundary of an 

interval. The main advantage of this type of representation is that it facilitates the 

formulation by providing a reference grid against which all operations competing for 

shared resources are positioned. Figure 2.1 shows the schematic diagram of discrete-

time representation. 

The discrete-time representation is used only when the processing times of 

products on units are constant and, furthermore, the duration of intervals must be 

equal to the highest common factor of the processing times involved. The assumption 

of constant processing times is not always realistic, and the length of the intervals 
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might be so small that it either leads to a prohibitive number of intervals, rendering 

the resulting model unsolvable, or else requires approximations that might 

compromise the feasibility and optimality of the solution. 

 

units

J1

J2
. 

JN

1 2 3 ……… H-1 H 
time

 

Figure 2.1: Schematic diagram of discrete-time representation 

In discrete-time representation, there is a binary variable associated with each 

interval which indicates whether or not that task is started at the beginning of that 

interval. Thus time is considered as a discrete variable which can attain the values of 

the beginning of each interval. So the main difficulty with this representation is that in 

order to represent a process accurately, we may need to develop a model with a very 

large number of binary variables. To decrease the number of binary variables, 

rounding of event times and duration is commonly used. The drawback of rounding is 

that it is difficult to use such a schedule for process control without ad hoc 

adjustments because the process control logic requires precise execution times. 

Furthermore, rounding up can produce infeasible or loose schedules while rounding 

down can produce infeasible schedules. Another inherent difficulty of discrete-time 

representation arises in representing continuous processes. A continuous process may 

start and end somewhere within an equal size interval, not on the interval boundaries. 

These two limitations are removed by the continuous-time representation. The 
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continuous-time representation accounts for variable processing times and is more 

realistic than the discrete-time representation. It also requires significantly fewer time 

intervals and hence leads to smaller problems. 

Most of the researchers, generally, have developed continuous-time 

formulations using any one of the following three approaches. They are sequence-

based method, slot-based method and event-based method. As the name suggests, 

sequence-based method is based on the sequence of products that are processed on 

units. In this, researchers (Cerda et al., 1997; Mendez et al., 2000; Gupta and Karimi, 

2003) assign binary variables for sequencing one product after another and processing 

those products on units. Mathematical formulations based on sequence-based are, so 

far, not free of Big-M that affects the solution times drastically. 

 

J1

J2

. 
JN

K-1 K  1  2  3 ……
time

units 

 

Figure 2.2: Schematic diagram of synchronous time representation-I 

The second one, slot-based method is quite effective in developing models 

based on variable-length time slots (Lim and Karimi, 2003a; Lamba and Karimi, 

2002a; Sundaramoorthy and Karimi, 2004). Binary variables are necessary to decide 

which product should occupy which unit in which slot. There are two ways to 

represent time in slot-based models. They are synchronous and asynchronous. In both, 

the time slots need not be identical but each time slot is equal in length for all units in 
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synchronous time representation where as in asynchronous, the length of a slot on a 

unit need not be the same as on other units. Figure 2.2 and Figure 2.3 represent 

synchronous time representation. 

In Figure 2.2 and Figure 2.3, the time horizon is divided into intervals of 

unequal and unknown duration, common for all units. In Figure 2.2, each task must 

start and finish exactly at a time point. But in Figure 2.3, each task must start at a time 

point but need not finish at a time point. These are few examples for synchronous 

representation. 

units 

 

Figure 2.3: Schematic diagram of synchronous time representation-II 

 

 

Figure 2.4: Slot design in model M1 

In asynchronous representation, time slots are not common for all units. 

Karimi and McDonald (1997) proposed two asynchronous slot-based models (model 

M1 and model M2) that differ in defining time slots. Figure 2.4 and Figure 2.5 

represent model M1 and model M2 respectively. 

0 

1 
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2 

2 

3 
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4
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Model M1 and Model M2 differ in the design of time slots and how they are 

assigned to periods. In M1, slots are of arbitrary lengths and are independent of 

periods

uires the initial guess of the number of slots a priori. 

Though we can define so ber of slots, those rules 

or form

s purely asynchronous. The basic idea of their work 

is that i

. A slot is not confined to be within one or more periods. It may cover one or 

more periods and can even extend beyond the scheduling horizon. In M2, each time 

period is divided into a fixed number of slots a priori. Thus, a slot is confined to be 

within a single period and its length cannot exceed the length of its period. Note that 

asynchronous time representation almost always needs fewer time slots than 

synchronous time representation. 
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Figure 2.5: Slot design in model M2 

The slot-based model req

me rules or formulae to estimate num

ulae may overestimate the number of slots required and hence may increase 

the number of binary variables.  

Ierapetritou and Floudas (1998) introduced event-based formulations. The 

event-based time representation i

t decouples task events from unit events. This is achieved by the consideration 

of different binary variables to represent the task events and unit events. Maravelias 

and Grossmann (2003) also implemented the concept of decoupling for short term 

scheduling of multipurpose batch plants. But the concept of decoupling was 
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questioned by Sundaramoorthy and Karimi (2004). In the event-based formulations 

too, we have to guess the number of event points a priori.  

With this detailed description about time representation, the past work in the 

area of noncontinuous plant scheduling will be discussed in the next section.  

2.2 Pa

 process 

duction efficiency due to changing market demands and various 

ditions associated with 

each p

satisfying the production demands of a variety of 

products at specific dates and/or at the end of a given production horizon. The short-

st Work 

In CPI, especially in noncontinuous process plants, it is essential to enhance

flexibility and pro

customer requirements. A wide range of products in the CPI are produced using 

noncontinuous (batch and semicontinuous) mode of production. This mode of 

production has long been the accepted procedure for the manufacture of many types 

of chemicals (specialty chemicals, pharmaceuticals, polymers, bio-chemicals, foods, 

etc.), particularly those which are produced in small quantities and for which the 

production processes or demand patterns are likely to change.  

The most important feature of batch processes is their flexibility in processing 

multiple products by accommodating the diverse operating con

roduct. Therefore, in spite of the traditional drive towards continuous 

production, the batch mode continues to be the only alternative for a number of 

sectors of the processing industry. As a result, the importance of effective tools for 

scheduling and planning activities within the CPI has grown with the increasing 

emphasis on customer satisfaction, reduced inventory, lower manufacturing costs and 

global operations. To increase process flexibility and profitability, efficient 

scheduling techniques are needed.  

The problem of short-term scheduling of noncontinuous plants seeks to 

determine the optimal strategy for 
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term sc

ed. Scheduling 

of batc

cessor-unit information to 

assign 

used by Cerda et al. (1997), their formulation was based 

on two bi-index binary variables, one indicating the predecessor-successor 

heduling is challenging especially for multiproduct single-stage batch plants, 

where the production of individual batches, even for the same product, does not 

follow the same pattern but must be specified according to an overall performance 

index and is subject to capacity and time constraints. It involves the allocation of 

equipment and resources to orders and the sequencing of these orders. 

Short-term scheduling of multiproduct single-stage batch plants has received 

considerable attention over the past two decades. Many diverse approaches, 

mathematical formulations and solution algorithms have been propos

h processes was widely discussed in the literature and extensive reviews were 

given by Reklaitis (1991), Pinto and Grossmann (1998). Many of these problems can 

be posed as mixed integer optimization problems, since the corresponding 

mathematical optimization models involve both discrete and continuous variables and 

a set of equality and inequality constraints to be satisfied. 

Cerda et al. (1997) proposed a continuous-time formulation for short term 

scheduling of a single-stage multiproduct batch plant with parallel units. They used a 

tri-index binary variable that governs predecessor-suc

the orders to the non-identical production units while taking into account 

sequence-dependent changeover constraints. To deal with large-size problems, they 

proposed heuristics, such as pre-ordering of the orders to reduce the number of 

feasible predecessors for each order. But they considered single order per product 

which is not general in CPI.  

Mendez et al. (2000) used the same modeling approach but employed a 

different set of binary variables and considered multiple orders per product. Instead of 

the tri-index binary variables 
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relation

 and also their methodology 

could n

 accounts for multiple orders per 

produc

ship and the other governing the allocation of a product to a unit.  In the first 

phase of their approach, the product batching process is accomplished to minimize the 

work-in-process inventory while meeting the orders’ due dates. In the second phase, 

the set of batches obtained in the first phase is optimally scheduled with the objective 

being minimizing tardiness to meet the product orders as close to their due dates as 

possible. But later, the work by Lim and Karimi (2003a) proved that the formulation 

of Mendez et al. (2000) resulted in suboptimal solutions. 

Hui and Gupta (2001) presented a sequence-based MILP that deals with single 

order per product. Similar to Mendez et al. (2000), they used three sets of binary 

variables. For large problems, a pre-ordering heuristic was used to reduce the number 

of binary variables. But this could not guarantee optimum

ot be applied to multiple orders per product. 

Lim and Karimi (2003a) proposed a slot-based MILP formulation that deals 

explicitly with multiple orders per product. Unlike Mendez et al. (2000), their 

formulation decides both product batches and their schedule in one step. They, in fact, 

proposed two models. One is a general model that

t and the second one is for the special case of a single order per product. They 

showed that the former is more effective of the two models as the later resulted in 

suboptimal solutions. They also addressed the effect of big-M on MILP models. 

According to their work, big-M plays a very important role in the model performance 

and should be avoided if possible while developing mathematical models. 

Chen et al. (2002) developed a slot-based MILP model. In their work, the 

allocation of orders and units to time slots is represented by two sets of binary 

variables (order-slot and unit-slot). To reduce the size of the model, two heuristic 
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rules w

ents. But the major limitation of this 

formula

ds to be discussed. Short-term scheduling 

of sem

Karimi and McDonald (1997) developed two slot-based continuous-time 

models based on different time scale representation. The two models differ in pre-

assignment of slots to time periods/due dates. They implemented several realistic 

situatio

ere developed. But the time representation considered in their work cannot be 

applied to multi-stage scheduling problem. 

Ierapetritou et al. (1999) presented a continuous formulation for short-term 

scheduling of batch plants using the event-based method. Their idea was based on the 

decoupling of task events from unit ev

tion was that it required pre-ordering of all of the orders in advance that 

restricted its application to specific problems. It did not consider the sequence-based 

setup times that are more common in CPI. 

Having discussed the works related to the scheduling of single-stage parallel 

units operating in the batch mode in detail, the literature concerning the 

semicontinuous operations of the same nee

icontinuous processes has received less attention compared to batch process 

scheduling in the chemical engineering literature. Sahinidis and Grossmann (1991) 

addressed the problem of cyclic multiproduct scheduling on continuous parallel 

production lines. They developed a MINLP model and applied an exact reformulation 

technique to linearize it in the space of the integer variables. Pinto and Grossmann 

(1994) followed the above work and extended it to multistage case. They allowed 

intermediate storage between stages and the resulting complexities in the mass 

balance equations were taken care by some algorithms presented in their work. 

ns such as transitions, inventory costs, safety stocks and due dates. Their 

formulation addresses to solve the problem of a single-stage multiproduct facility with 

parallel semicontinuous processors. But they did not consider resource constraints. 
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Lamba and Karimi (2002a) addressed the resource constraints using 

synchronized time slots that are identical on every unit. Their designation of slots is 

such that for any change on any production line, a slot change will be triggered on all 

lines. They considered sequence dependent setup times for each unit with makespan 

as objective. The same authors proposed a decomposition algorithm in their next 

publication (Lamba and Karimi, 2002b). The main idea behind this algorithm was to 

first generate several good, feasible item combinations by repeatedly solving the 

model with a minimum number of slots and then to compose a schedule using these 

item combinations.  

nd constraints using asynchronous slots. They use “check points” 

to ensure that resource constraints are always satisfied. By using asynchronous slots, 

they reduced the number of binary variables and hence computational effort. 

rimi and 

McDonald (1997) using the concept of decoupling. Sundaramoorthy and Karimi 

(2004) have discussed the concept of decoupling in detail. They showed that 

decoupling of tasks from units in a scheduling formulation cannot reduce the number 

of binary assignment variables. In the next section, a brief introduction about our 

work is presented.   

Recently, Lim and Karimi (2003b) considered resource constraints and other 

necessary features of a semicontinuous process and developed models that differ in 

the use of variables a

As was the case for the batch mode of operation, Ierapetritou et al. (1999) had 

developed an event-based MILP formulation for the semicontinuous processes. They 

claimed that their model resulted in less number of binary variables than Ka

2.3 Research Focus 
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With the primary objective of short-term scheduling being the determination of the 

start and end time of operation(s), the representation of time has been a subject of 

debate among the researchers in this field. The formulations based on discrete-time 

representation results in large number of binary variables due to the discretization of 

time and have fallen out of favor. The focus is now on the continuous-time 

formulations for it results in compact models allowing one to capture the operations 

accurately. The three most prominent approaches in the continuous-time domain 

models of short term scheduling are the slot-based approach, the sequence-based 

approach and the event-based approach. As there have been several reservations 

among the researchers with regard to the three approaches, there is a long-standing 

need to compare and analyze the nuances of each of them. In the first part of this 

work, an effort is made to compare the slot-based and event-based approaches for 

single-stage multiproduct noncontinuous plants with non-identical parallel units.  

 So, 

in the second part of this work, the main focus is on developing such a model using 

slot-based approach for scheduling single-stage batch plants with parallel units and 

products having multiple orders at multiple due dates. The effect of Big-M on 

mathematical models is considered which has received less attention in the literature. 

Big-M constraints are a sort of penalty constraints that bind for the desirable condition 

and relax for the undesirable condition with the help of a huge penalty (a big positive 

number). There is no estimate for M-value in the mathematical models and hence it 

results either in suboptimal solutions or poor solution times. In this research, this issue 

is addressed and it is shown that the models are very robust to M-value. 

Though the scheduling problem involving several identical orders and batches 

has received considerable attention, still a model that uses less binary variables and 

accommodates/schedules multiple batches in one slot is missing in the literature.
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The third part of this work deals with the uncertainties in chemical batch 

plants which are very common in general. Most of the works in the literature assume 

the data as deterministic while developing mathematical models. However, in real 

plants, parameters such as raw material availability, processing times, and market 

requirements vary with respect to time and are often subject to unexpected deviations. 

These uncertainties are common and can have undesirable short-term and long-term 

economic and feasibility implications. Therefore, the consideration of uncertainty in 

scheduling problems is of great importance in preserving plant feasibility and viability 

during operations. So an effort is made to develop a MILP formulation to account for 

these uncertainties in single-stage multiproduct batch plants with reentrancy. 

 21



Chapter 3 

PROBLEM DESCRIPTION 

The problem addressed by Lim & Karimi (2003a) is generalized here. Figure 3.1 shows a 

schematic diagram of a multiproduct noncontinuous process with a single processing 

stage that has J non-identical, parallel, batch/semicontinuous units (j = 1, 2, …, J). The 

plant produces I distinct products (i = 1, 2, ..., I). The term “batch” is used to refer to both 

batch and semicontinuous units. For the latter, it is essentially a single campaign of one 

product. Other features of this process are: 

1. A unit may process one or more products. Let Ji denote the set of units that may 

process product i, and let Ij denote the set of products that a unit j may process. 

2. The batch size of a product may vary from batch to batch between some lower and 

upper limits that are product- and unit-dependent. Multiple units may process separate 

batches of the same product simultaneously. Two batches of a product, even if 

assigned to the same unit, need not follow each other. 

3. The processing time of a batch varies linearly with batch size and its relationship 

depends on product-unit combination. 

4. Switching from one batch to another may require transition time that is unit- and 

sequence-dependent. Because of quality or other incompatibilities, some job 

sequences may be forbidden on a unit. 

5. Some units may not be available at the start of scheduling horizon, as they may need 

some time to process current batches. Similarly, it may not be possible to start 

processing some products at the start of horizon because of the lack of raw materials. 
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To accommodate these situations, unit-release times and job-release times are used as 

the earliest times at which a unit or product may start processing.  

6. The operation is non-preemptive and there are no resource constraints. 

 

Figure 3.1: Schematic diagram of single stage multiproduct noncontinuous plant 

While fulfilling the customer demands, two criteria are implemented. The first 

criterion is no due date in which there is no deadline on finished products and it is desired 

to finish the products as early as possible. In this case, makespan (the time at which the 

last product comes out of the processing stage) is the suitable objective. The second 

criterion is multiple due dates in which customers demand the products at different time 

points. If there is any failure in meeting the demands within the due dates, there will be 

some penalty on the delayed products and hence minimizing delay time is the appropriate 

objective in this case. Minimizing delayed amount is considered as another objective.  

The plant has a total of O orders with D (d = 1, 2, …, D) due dates in the 

scheduling horizon. The due dates are sorted as DD1 < DD2 < ... < DDd, where DDd 

denotes the dth due date, and let Qid denote the total quantity of product i demanded at 

DDd. An order may ask for multiple products at different due dates. A batch may fulfill 

Unit 1 

Unit 2 

Raw  Products Customers Materials 

Unit J 
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multiple orders of a product. However, batches always fulfill orders in the order of their 

due dates. Similarly, multiple batches produced by different units may also fill a given 

order. 

The scheduling problem involves (1) assignment of batches and their sequence on 

each unit, (2) determination of the start and end times of each batch and its size, and (3) 

allocation of batches to orders. Three objectives are chosen to test the models: (a) 

minimizing makespan (b) minimizing delay time (tardiness) (c) minimizing delayed 

amount.  

In the next chapter, first, scheduling problem with no due date is addressed. Then, 

problem with multiple due dates (D > 1) is considered. For each of these problems, we 

consider processes with batch units and those with semicontinuous units. In other words, 

four MILP formulations are developed using slot-based and event-based approaches. 

Note that transition times are not considered while developing event-based models. And 

also in event-based approach, same product is treated as different tasks in different units. 

This means, product i that can take place in units 1 and 2, will be represented as task 1 

and task 2 on unit 1 and unit 2 respectively. Otherwise, task is analogous to product in all 

other contexts. For further details about event-based representation, please refer to 

Ierapetritou et al. (1999). 
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Chapter 4 

MODELS WITH SINGLE BATCH PER SLOT 
 
4.1 Motivation 

While developing short-term scheduling models using MILP, most researchers generally 

focus on the number of binary variables that are used in the model formulation. In most 

cases, the number of binary variables affects the computational effort of a MILP problem 

directly. To get a significant savings in binary variables, the following two approaches 

are used frequently: (1) representing binary variables more effectively (2) decomposing 

the existing binary variables. The first approach was widely used in scheduling 

formulations and the second one is being used in the past few years. For instance, Cerda 

et al. (1997) handled assignment and sequencing decisions through a tri-index binary 

variable (product-product-unit), while Mendez et al. (2000) decoupled the same binary 

variable into two different bi-index binary variables (product-product, product-unit) so 

that the number of binary variables was greatly reduced, though both the works use same 

approach (sequence-based method). But the same cannot be said for the work by 

Ierapetritou and Floudas (1998) and as well as the work by Maravelias and Grossmann 

(2003). They try to decouple task events from unit events in order to reduce the number 

of binary variables. Recently, Sundaramoorthy and Karimi (2004) have shown that such 

decoupling does not reduce the number of binary variables in a formulation. So in this 

chapter, the effect of decoupling on model formulation is also studied. 

Besides decoupling, there is another issue that needs to be resolved. Among all 

continuous time representations, it is not very clear which approach is better than the 

others. Previously there were very few attempts to compare the existing continuous-time 
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representations. Lim and Karimi (2003a) proved that slot-based formulations are better 

than sequence-based models. In this chapter, a comparison is drawn between the slot-

based and the event-based models. Next, four simple slot-based mathematical 

formulations are developed. Then corresponding event-based models are formulated. 

Later, the slot-based models are compared with the event-based models. 

4.2 MILP Formulations 

A primary scheduling decision is to assign the production of various products to slots. 

Because production necessarily involves a unit, the decision naturally involves the 

assignment of unit as well. Two types of binary variables have been used in the literature 

for modeling these assignments. While most slot-based formulations (Lim and Karimi, 

2003a; Lamba and Karimi, 2002a; Sundaramoorthy and Karimi, 2004) have directly used 

3-index binary variables (product i on unit j during slot k), event-based formulations 

(Ierapetritou and Floudas, 1998) have decoupled these into two sets of 2-index binary 

variables (unit j at event n and product i at event n). Tri-index binary variables (Yijk) for 

slot-based formulations and two bi-index variables (wv(t,n) and yv(j,n)) for event-based 

formulations are used in this chapter. 

4.2.1 Semicontinuous Units & No Due Date 

Slot-based Formulation: 

To assign products to slots, the following binary assignment variable is defined: 

{1 if unit/line  processes product  during slot 
0 otherwiseijk

j iY = k  

Exactly one product is assigned to each slot on each unit by using, 

1
j

ijk
i

Y
∈

=∑
I

 (4.1) 
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For modeling transitions (setups) between products in successive slots, a 0-1 continuous 

variable Xii′jk is used as follows. 

{1 if product  in slot and product  in slot ( 1) on unit/line 
0 otherwiseii jk

i k i kX ′
′ −= j  

There do exist other ways of modeling transitions, but Lim & Karimi (2004b) have 

shown that using the above transition variables results in tighter formulation. Clearly Xii′jk 

= Yij(k–1)Yi′jk and this could be linearized exactly as, 

( 1)ij k ii jk
i

Y X ′−
′

= ∑  k > 0 (4.2) 

ijk i ijk
i

Y X ′
′

= ∑  k > 0 (4.3) 

Equations 4.2 and 4.3 ensure that only one product follows the other. Equation 4.2 

ensures that if a product i is in slot (k–1) on unit j, then only one product follows i in slot 

k on that unit. Equation 4.3 ensures exactly the reverse. Note that no idle, zero or null 

products (unit is idle) are used in the slot-based model, so there are no transitions to/from 

the idle state. 

Some assumptions are made while developing MILP formulation for scheduling 

semicontinuous processes. They are: (a) multiple products cannot be produced on a 

production line at the same time (b) all the units run at maximum production rates and 

known a priori (c) during transitions, no useful product is produced on any unit. With 

these assumptions, we explain the constraints involved in this model. 

For product assignments and product transitions, equations 4.1 to 4.3 are used. It 

is assumed that products will be dispatched to customers only after finishing the 

processing of all the products as there are no intermediate due dates. This means that it 

does not matter how the campaign (the process of producing products for a certain 
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amount of time) is run as long as the demands are met. Moreover, by running a campaign 

more than once, there will be an increase in the number of transitions and hence an 

increase in transition times/costs. So a product/campaign is not allowed to run more than 

once in a period. 

Transition times are significant in practice because they disrupt the operation and 

hence reduce the profits of a plant. So to reduce the number of transitions and also to 

achieve desired yield or quality, units must run the campaigns for a certain minimum 

amount of time. This is called minimum production length of a campaign, and it is 

assumed that for every operation it is known a priori. And also the run length of a 

campaign, the time needed to finish that campaign, should exceed the minimum 

production length. When no campaign exists (Yijk = 0), the run length should be zero. The 

following constraints ensure the required. 

( )ijk ij ijk iijsRL MPL Y X≥ −  0, , 1k s k s∀ > = >  (4.4) 

( )ijk ijk iijsRL H Y X≤ −  0, , 1k s k s∀ > = >  (4.5) 

In the end, the total production of each product should meet the customer orders i.e. 

should meet or exceed the demand. Therefore,  

i

U
i ij ijk

k j J
D R RL

∈

≤∑∑  (4.6) 

If a product spans multiple slots, only the first slot is allowed to have the useful 

production and the remaining slots remain as null slots. So if a product i wants to 

continue in the next slot, then all the remaining slots are forced to have product i. The 

following constraint ensures the above. It also makes sure that all the null slots occur at 

the end of the horizon. 
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( 1)iij k iijkX X+ ≥  1k∀ >  (4.7) 

For no due date case, operation efficiency is the main criterion and hence minimizing 

makespan (MS) is considered as scheduling objective and it is defined as, 

j

ii j ii jk ijk
k i i i I

MS Xτ ′ ′
′ ∈

⎡ ⎤
≥ +⎢

⎢ ⎥⎣ ⎦
∑ ∑∑ ∑RL ⎥  (4.8) 

Event-based Formulation: 

Binary variables in this representation are, 

{1   if task  is processed in event point  ( , ) 0  otherwise
t nwv t n =  

{1   if unit/line  is utilized in event point  ( , ) 0  otherwise
j nyv j n =  

For assigning the products on each unit, 

( , ) ( , )
jt T
wv t n yv j n

∈

=∑  (4.9) 

These constraints express that at each unit j and at an event point n only one of the tasks 

that can be performed on this unit should take place.  

Sequence constraints are necessary because these equations provide the 

connections between starting and final times. 

Same task in the same unit: 

( 1) (2 ( , ) ( , ))tj n tjnTS TF M wv t n yv j n+ ≥ − − −  (4.10) 

( 1)tj n tjnTS TS+ ≥  (4.11) 

( 1)tj n tjnTF TF+ ≥  (4.12) 

  29 



                                                                       Chapter 4: Models with Single Batch per Slot 

Equations 4.10 to 4.12 state that task t starting at event point (n+1) should start 

after the end of the same task performed in the same unit j which has already started at 

event point n. 

Different tasks in the same unit: 

( 1) (2 ( , ) ( , ))tj n t jnTS TF M wv t n yv j n′+ ′≥ − − −  (4.13) 

Eq. 4.13 states that task t if assigned to unit j in event point (n+1) starts only after 

the previous task t  finishes in event point n on unit j.′

The limits on the duration of each event are given by, 

( , )tjn tjnTF TS Mwv t n− ≤  (4.14) 

( , )tjn tjn tjTF TS MPL wv t n− ≥  (4.15) 

Eq. 4.14 states that the duration of an event must be zero if it does not exist. If an 

event occurs, then Eq. 4.15 ensures that the duration of the event exceeds the minimum 

production length. 

The total production of all the tasks related to the same product must meet the demand of 

that product. Therefore, 

( )
P

U
tjn tjn tj p

t T j n
TF TS R D

∈

− ≥∑∑∑  (4.16) 

The objective is minimizing makespan and is given by, 

tjnMS TF≥  n N=  (4.17) 

Having discussed the models for semicontinuous process using slot and event-

based methods, we move on to the next scenario, batch units with no due date. First, 

MILP formulation is developed using the slot-based method and then the event-based 

formulation is discussed for batch units. 
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4.2.2 Batch Units & No Due Date 

Slot-based Formulation: 

For product assignments and transitions, eqs. 4.1 to 4.3 are used. 

Because of the operational constraints and unit capacities, batch size of each product in 

each slot on each unit must be between some minimum and maximum limits and hence 

the following constraints are forced. Eq. 4.18 ensures that the amount produced of 

product i on unit j in slot k is not less than a certain amount ( ). If a product is assigned 

to multiple slots, then the production takes place in the first slot and the remaining slots 

will remain as null or idle slots. Eq. 4.19 ensures that the batch size does not exceed the 

maximum limit ( ). 

L
ijB

U
ijB

( )L
ijk ij ijk iijsB B Y X≥ −  0, , 1k s k s∀ > = >  (4.18) 

( )U
ijk ij ijk iijsB B Y X≤ −  0, , 1k s k s∀ > = >  (4.19) 

To ensure that the total product produced on all units in all slots must meet the demand of 

that product,  

i

i ijk
k j J

D
∈

≤∑∑ B  (4.20) 

The null slots are pushed to the end of the horizon using, 

( 1)iij k iijkX X+ ≥  1k∀ >  (4.21) 

The total length of a slot, if processing any useful product, consists of two parts. One is 

transition time and another is processing time. Processing time consists of FPTij that 

depends on the number of batches and VPTij that depends on the batch size. So the length 

of a useful slot k consists of FPTij, VPTij and transition time, if any. The scheduling 

  31 



                                                                       Chapter 4: Models with Single Batch per Slot 

objective is minimizing the makespan (MS) that is defined as the finishing time of final 

product and is given by, 

(
j

ii j ii jk ij ijk ij ijk
k i i i I

MS X FPT Y VPT Bτ ′ ′
′ ∈

⎡ ⎤
≥ + +⎢

⎢ ⎥⎣ ⎦
∑ ∑∑ ∑ )⎥  (4.22) 

Event-based Formulation: 

For assigning and sequencing, equations 4.9 to 4.13 are used. Besides these constraints, 

the following are needed. 

Batch sizing decisions are taken by, 

( , )U
tjn tjB BS wv t n≤  (4.23) 

( , )L
tjn tjB BS wv t n≥  (4.24) 

Equations 4.23 and 4.24 are analogous to eqs. 4.18 and 4.19 in slot-based 

formulation. 

Starting time and ending time of each event point is given by, 

( , )tjn tjn tj tj tjnTF TS FPT wv t n VPT B= + +  (4.25) 

The total production of all the tasks related to the same product must meet the demand of 

that product. 

P

tjn p
t T j n

B D
∈

≥∑∑∑  (4.26) 

The scheduling objective is minimizing the makespan and is given by, 

tjnMS TF≥  n N=  (4.27) 

With this the formulations are completed for short-term scheduling of both 

semicontinuous and batch processes with no due date using slot-based and event-based 
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methods. Next, the necessary constraints that are to be added to the models presented are 

discussed to make them suitable for the case of multiple due dates. 

4.2.3 Semicontinuous Units & Multiple Due Dates 

The short-term scheduling of semicontinuous units with demands at multiple due dates is 

considered in this section. The time horizon for each unit comprises K slots, but the slots 

may not be identical on all units. These slots are designated to different due dates as 

follows. The first K1 slots fill orders due at DD1, but they need not finish before DD1. 

Similarly, the first K2 slots fill orders due on or before DD2 but need not finish before 

DD2, and likewise. So K1≤K2≤K3≤…≤Kd. The same will be applied to event-based 

formulations. 

Slot-based Formulation: 

The run length of each campaign should exceed minimum campaign length and hence the 

following constraint is forced. Note that slots, though assigned to a due date, can extend 

beyond that due date. So unlike past works (Lamba and Karimi, 2002a; Lim & Karimi, 

2003b) in which the run length of a campaign spans multiple slots if necessary, it needs a 

single slot for production in our model. 

( )ijk ij ijk iijsRL MPL Y X≥ −  0, ,k s k s FS∀ > = ∉  (4.28) 

With this, it is ensured that the production takes place only in the first slot if the product 

is assigned to multiple consecutive slots. And if there is no production in a slot, then it is 

made sure that the run length of that campaign is equal to zero in that slot. The following 

constraints ensure that. 

ijk ijkRL MY≤  (4.29) 

( )ijk ijk iijsRL M Y X≤ −  0, ,k s k s FS∀ > = ∉  (4.30) 
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Note that unlike previous works (Karimi & McDonald, 1997; Lim & Karimi, 

2003b), run length of a campaign is equal to slot length as a slot is allowed to go beyond 

a due date, if necessary. 

The length of each useful slot is the sum of campaign run length and transition time, if 

any. TEjk is the end time of slot k on line j and is given by, 

( 1) ' '
' j

jk j k i ijk i ij ijk
i i i I

TE TE X CT RL−
∈

≥ + +∑∑ ∑  (4.31) 

The total production on all lines should satisfy the demands that are due at the due date. 

Therefore, 

1 1

d

i

Kd
U

id ij ijk
d k j J

Q R′
′= = ∈

≤∑ ∑∑ RL

, d

 (4.32) 

Occasionally, demands cannot be satisfied on or before due date either because of high 

demand or short time. Then there will be delay in meeting the demands on or before the 

due date. Let Did be the delay in filling the orders of product i due at demand window 

DDd. If the last batch of product i in the first Kd slots finishes before DDd, then Did =0 

(meeting the demands on time). If it does not, then Did is the time by which the last batch 

is delayed beyond DDd. Mathematically, this is expressed as, 

(1 )id jk d ijkD TE DD M Y≥ − − −  ij J k K∈ ≤  (4.33)  

In traditional parallel machine scheduling, researchers have mainly studied scheduling 

objectives such as makespan, flow time, tardiness/earliness, number of tardy jobs, etc. 

Two objectives are selected for this problem. The first one is minimizing the sum of 

weighted tardiness that is given by, 

id id
d i

SWT Dα=∑∑  (4.34)     
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where idα is the penalty for the delay in meeting the demand of product i at DDd. This 

penalty may depend on Qid and the importance of product i. 

The second objective is minimizing the delayed amount. Delayed amount is the amount 

of products that could not be produced within the due date. The delayed amount is 

minimized after penalizing the delayed amount with a cost factor. Therefore, 

i id
d i

SPCDA C DA=∑∑  (4.35)           

SPCDA is the sum of product of cost factor (Ci) and delayed amount (DAid). The second 

objective has chosen mainly to avoid big-M constraint that affects solution times. 

Analogous to eq. 4.7, the following constraint is used to improve the tightness of the 

model. 

( 1)iij k iijkX X+ ≥  ( 1) 1d dK k K− + ≤ <  (4.36) 

To calculate the second objective, we need to obtain the delayed amount of each product i. 

To calculate the delayed amount, first of all we have to ensure that every slot that belongs 

to a due date must end on or before the due date. Therefore, 

jk dTE DD≤  dk K≤  (4.37) 

Now, the delayed amount of a product i at DDd is defined as, 

'
' 1 1

d

i

Kd
U

id id ij ijk
d k j J

DA Q R RL
= = ∈

≥ −∑ ∑∑  ,i dj J k K∈ ≤  (4.38)      

Event-based Formulation: 

For developing event-based model for the case of semicontinuous process with multiple 

due dates, the following are needed besides eqs. 4.9 to 4.15. 

Eq. 4.16 is replaced with, 
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1 1

( )
d

P

N d
U

tjn tjn tj pd
t T j n d

TF TS R Q ′
′∈ = =

− ≥∑∑∑ ∑  (4.40) 

The delay if any, is given by, 

(1 ( , ))td tjn dD TF DD M wv t n≥ − − −  ,tj J n Nd∈ ≤  (4.41) 

And the delayed amount is defined as, 

1 1

(
d

P

Nd
U

pd pd tjn tjn tj
d t T j n

DA Q TF TS R′
′= ∈ =

≥ − −∑ ∑∑∑ )

S

 (4.42) 

And the scheduling objectives are given by eq. 4.34 and eq. 4.35. 

4.2.4 Batch Units & Multiple Due Dates 

Note that the models that are discussed in the section 4.2.2 can be modified from no due 

date case to multiple due dates case with the use of following constraints. 

Slot-based Formulation: 

In place of eqs. 4.18 and 4.19, 

( )L
ijk ij ijk iijsB B Y X≥ −  0, ,k s k s F∀ > = ∉  (4.43) 

( )U
ijk ij ijk iijsB B Y X≤ −  0, ,k s k s FS∀ > = ∉  (4.44) 

Eqs. 4.18 and 4.19 ensure that the production takes place only in the first slot if a 

product is assigned to multiple consecutive slots in a period.  

In place of eq. 4.20,  

1 1

d

i

K d

ijk id
j J k d

B Q ′
′∈ = =

≥∑∑ ∑  (4.45) 

And also eq. 4.7 is replaced with eq. 4.36. 

The delayed amount is given by, 
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'
' 1 1

d

i

Kd

id id ijk
d k j J

DA Q B
= = ∈

≥ −∑ ∑∑  , dij J k K∈ ≤  (4.46) 

Event-based Formulation: 

Eq. 4.26 is replaced with the following. 

1

d

P t

N

tjn pd
t T j J n

B Q
∈ ∈ =

≥∑∑∑  (4.47) 

And the scheduling objectives are given by eq. 4.34 and eq. 4.35. 

Table 4.1 gives us the necessary constraints while developing the models for all scenarios. 

Table 4.1: Model equations for scheduling noncontinuous chemical plants 
 

Method Case Semicontinuous Batch 
N.D.D. (4.1)-(4.8) (4.1)-(4.3),(4.18)-(4.22) Slot 
M.D.D. (4.1)-(4.3),(4.28)-(4.38) (4.1)-(4.3),(4.34)-(4.36),(4.43)-(4.46)
N.D.D. (4.9)-(4.17) (4.9)-(4.13),(4.23)-(4.27) 

Event 
M.D.D. (4.9)-(4.15),(4.34),(4.35), 

(4.40)-(4.42) 
(4.9)-(4.13),(4.23)-(4.25), 

(4.34),(4.35),(4.47) 
N.D.D = No Due Date, M.D.D. = Multiple Due Dates 
 
4.2.5 Distribution of Slots to Due Dates 

Past works generally allotted slots to due dates in two different ways. Some researchers 

(Lim & Karimi, 2003a) pre-assigned slots to due dates using some methodology/formula. 

But some others (Ierapetritou et al., 1999) considered iteration method for assigning slots 

to due dates. Both methods have advantages and disadvantages. By using iteration 

method, we can eliminate the unnecessary slots but at the same time need to run the 

model many times to fix the number of slots. If we use a fixed formula to find the number 

of slots, then there is always a chance of over estimating the number of slots. By 

increasing the number of slots, there will be an increase in number of binary variables 

and hence increase in CPU time.  
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 In this work, the iterative procedure is used to find the number of slots. First, the 

number of slots is fixed with an initial guess and then the solution is found. Then the 

number of slots is increased by one and again the solution is obtained. The number of 

slots is increased until there is no change in the solution.  

4.3 Slot-based vs. Event-based Models  

Now, we solve several examples for each case (semicontinuous-no due date, multiple due 

dates; batch-no due date and multiple due dates) to evaluate the slot-based models and 

event-based models. We use GAMS 20.7/CPLEX 7.5.0 to solve all the models using 

Pentium 4 processor in this work. In all the examples, we assume that there is no 

transition times involved. 

4.3.1 Example 1 

One single stage semicontinuous plant processes 8 products with 3 parallel units. The 

data for minimum production length, maximum rate of production of each product on 

each unit are given in Table 4.2.  

Table 4.2: Minimum production length and maximum production rate in Example 1 
 

 Unit 
Product J1 J2 J3 

I1 10/20   
I2 12/20 15/25  
I3 12/25 10/20  
I4  15/20 10/20
I5   12/25
I6   15/20
I7  10/15 10/15
I8 10/15   

 

The demand for each product at the end of horizon is same (400). All units are 

empty and ready to process at the start of the horizon. We do not consider any setup times 
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to keep the comparison simple. The scheduling problem involves finding the optimal 

sequence of products on each unit while minimizing the makespan. 

Now, we solve this scheduling problem using both methodologies (Slot and 

Event). We use equal number of event points and slots (3). Table 4.3 shows the 

difference between slot-based model and event-based model.  

Table 4.3: Model statistics for Example 1 
 

Statistics Event-based Slot-based 
Constraints 365 164 
Continuous 73 145 
Discrete 45 36 
Optimum 58.6667 58.6667 
Relaxation 26.67 54.4615 
Nodes 6627 6 
Iterations 210199 184 
Non-zeros 1077 519 
CPU time (s) 10.28 0.06 

 

The number of binary variables is greater in event-based model and RMIP values 

are much better in slot-based model than in event-based model. In addition to RMIP 

values and binary variables, the other parameters such as CPU time, nodes, iterations, 

non-zeros and constraints also put slot-based model above event-based model. 

4.3.2 Example 2 

In this example, we consider one single stage batch plant that produces 8 products with 3 

parallel units. The limits on batch sizes, processing times and demands for each product 

are given in Table 4.4 and Table 4.5 respectively. Unlike in Example 1, all units are pre-

occupied with some product and the information is given in Table 4.5. Like in Example 1, 

there are no setup times. 
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Table 4.4: Batch size limits in Example 2  
 

 Unit 
Product J1 J2 J3 

I1 50/100   
I2 100/140 100/150  
I3 100/150 100/150  
I4  80/120 100/150
I5   50/100 
I6   100/200
I7  100/150 50/100 
I8 100/200   

 

Table 4.5: Demands and Processing Times in Example 2 
 

  Unit 
Product Demand J1 J2 J3 

I1 400 0.15/3*   
I2 250 0.16/2 0.17/2  
I3 400 0.16/3 0.16/3*  
I4 500  0.15/2 0.14/3 
I5 300   0.16/3 
I6 250   0.17/2 
I7 200  0.17/1 0.18/2* 
I8 300 0.15/2   

 

Table 4.6: Model statistics for Example 2 
  

 Statistics Event-based Slot-based
Constraints 992 590 
Continuous 328 577 
Discrete 120 96 
Optimum - 158 
Relaxation 72 151.59 
Nodes - 16984 
Iterations - 287382 
Non-zeros 3096 2233 
CPU time (s) >10000 23.26 
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We have taken equal number of slots and event points (8) while solving the above 

scheduling problem using both models. The results are shown in Table 4.6 which again 

favors the slot-based models. Interestingly, the event-based model could not solve the 

problem in reasonable amount of time. Like in Example 1, RMIP value is much better in 

the slot-based model than the event-based model. 

4.3.3 Example 3 

This example is considered to address semicontinuous processes with demands at 

multiple due dates. Consider the semicontinuous plant in Example 1. In this example, the 

plant has to meet demands of various customers at different due dates (D1 =24 hr, D2 = 

48 hr, D3 = 72 hr) as shown in Table 4.7. We consider that all products are equally 

important (αid = 1). 

We distribute the number of slots/event points among due dates in the following 

way to solve this scheduling problem using slot-based and event-based methods: K1 = 3, 

K2 = 6, K3 = 9.  

Table 4.7: Demands of various products in Example 3 
 

  Demand 
Product D1 D2 D3 

I1 100 100 100 
I2 100 100 100 
I3 100 200 100 
I4 200 100 200 
I5 200 300 100 
I6 150 200 200 
I7 100 100 100 
I8 200 200 100 

 
As in the previous example, the event-based model could not solve this 

scheduling problem but the slot-based model could solve the above problem in about 
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637s CPU time. RMIP value is zero for both models. As was the case with previous 

examples, the slot-based model has fewer binary variables than the event-based model. 

The results are shown in Table 4.8. 

Table 4.8: Model statistics for Example 3 
 

Statistics Event-based Slot-based
Constraints 1603 961 
Continuous 325 703 
Discrete 135 108 
Optimum - 32.6667 
Relaxation 0 0 
Nodes - 221315 
Iterations - 3959274 
Non-zeros 4975 3286 
CPU time (s) >10000 632.7 

 

4.3.4 Example 4 

In this example, we consider batch processes with products having demands at multiple 

due dates. A single stage batch plant processes 8 products with 3 units in parallel. Three 

due dates are considered (D1 =50 hr, D2 = 100 hr, D3 = 200 hr). All products have 

different demands at all due dates and the details are shown in Table 4.9. The same data 

is used that was used in Example 2 for processing times and batch size limits. We have 

distributed 9 slots/event points to due dates in the following manner: K1 = 3, K2 = 6 and 

K3 = 9. 

Table 4.10 compares the performance of both models. The slot-based model able 

to solve the model but the event-based model again failed to finish. The objective value 

achieved by slot-based model is 23 units. RMIP value is same for both models and it is 
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zero. Again slot-based model has fewer binary variables than event-based model. Overall 

we observed that slot-based model performs better than event-based model. 

Table 4.9:  Demands of various products in Example 4 
 

 Demand 
Product D1 D2 D3 

I1 100 100 100 
I2 100 100 100 
I3 100 200 100 
I4 50 100 100 
I5 100 100 100 
I6 100 200 100 
I7 100 100 100 
I8 50 100 100 

 
Table 4.10: Model statistics for Example 4 

 
Statistics Event-based Slot-based

Constraints 1279 853 
Continuous 424 703 
Discrete 135 108 
Optimum - 23 
Relaxation 0 0 
Nodes - 271845 
Iterations - 7977923 
Non-zeros 4111 3178 
CPU time (s) >10000 1351.11 

 

4.4 Discussion 

In event-based method, which uses the concept of decoupling, the same product on two 

machines is considered as two different tasks. So the binary variables result from wv(i,n) 

are IJN and hence in reality the total number of binary variables that result from wv(i,n) 

and yv(j,n) are (IJN+JN) though it looks like (IN+JN) variables. In slot-based method the 

total binary variables result from Y(i,j,k) are IJK. If we consider the same number of 
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event points (N) and slots (K), then slot-based model results in fewer binary variables 

than event-based model. The difference between decoupling and not decoupling is that 

the later displays the unit information explicitly in terms of j, while the former hides the 

same behind i. By employing the concept of decoupling, there is an increase of JN 

number of binary variables in event-based models. 

 Some past works such as Ierapetritou et al. (1999), while comparing different 

models, did not consider computational issues such as software version and the 

performance of hardware. They compared two different models on two different 

hardware and software versions – this makes the comparison unfair. It is obvious that 

new hardware works better than the old one and it is very clear that we should not 

compare different models on different hardware. Keeping this in view, we have compared 

both models using same version of GAMS/CPLEX and using same PC to avoid the 

ambiguities regarding computational issues.  

4.5 Conclusions 

In this chapter, four simple slot-based mathematical models are presented for short-term 

scheduling of batch and semicontinuous processes with no due date and with multiple 

due dates. We have developed corresponding event-based models using the concept of 

decoupling. Later, slot-based models are compared with event-based models and we 

observed that the results put slot-based models far ahead of event-based models. 

Especially RMIP values are very much in favor of slot-based models. So we conclude 

that slot-based models are better than their correspondent event-based models. And also 

we observed that decoupling of tasks from units in a mathematical formulation cannot 

reduce the number of binary assignment variables. 
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But so far, in the literature and in this chapter, batches are treated individually 

while scheduling the batch processes. This approach results in large number of binary 

variables for scheduling large number of batches waiting before the units. So in the next 

chapter, we address a novel way of scheduling single-stage multiproduct batch plants 

with demands at multiple due dates to solve larger size problems. 
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CHAPTER 5 
 
BATCH UNITS - MODELS WITH MULTIPLE BATCHES 
IN A SLOT 
 
5.1 Motivation 

The semiconductor manufacturing industry is one of the biggest as well as one of the 

most complex industries. It is one of the major industries in Singapore. Semiconductor 

manufacturing in general, and wafer fab operations in particular, present challenging 

scheduling and control problems. The characteristics that make the semiconductor 

manufacturing difficult to schedule are as follows: reentrant flows, unpredictable yield 

and rework time at critical operations, batching, shared resources, high mix of products 

and rapidly changing technologies that may change the path of the product.  

 The entire semiconductor manufacturing process consists of five major steps. The 

first step is wafer manufacturing in which high purity silicon wafer slices are made. First, 

a highly pure silicon crystal is grown in a crystal growth chamber. Then it is sliced into 

thin wafers. After this step, they enter into wafer fabrication unit. 

 The wafer fabrication process, wafer fab in short, dominates the economics of IC 

production and it is the most technologically-complex and capital-intensive stage in 

semiconductor manufacturing. Polished wafers are fed into this section. Electronic 

circuits are developed on a polished and clean wafer in a clean room. This is done in 

multiple passes. In each pass, a new layer with a pattern is formed on the wafer. Each 

pass in a wafer fabrication process involves some or all of the following operations: (a) 

Deposition (b) Lithography (c) Etching (d) Resist strip (e) Ion implant.  
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In deposition step, SiO2 layer is deposited by means of chemical vapor deposition 

in a batch furnace. Lithography is a process used to create multiple layers of circuit 

patterns on a chip. First the wafer is coated with a light sensitive chemical called 

photoresist in a spinner coater assembly. The wafer is exposed to the UV light through 

the reticle that contains the pattern for a few chips. The photoresist changes its 

composition where it is exposed to the beam. This entire process is carried out in a 

stepper. 

 In order to define the circuits, the exposed material is etched away in a solvent 

filled developer bath. After the etching step, selected impurities are introduced in a 

controlled fashion to change the electrical properties of the exposed portion of the layer. 

This is called ion implantation. The remaining photoresist on the wafer is removed by a 

process similar to etching. The individual circuits are tested electrically by means of thin 

probes. Circuits that fail to meet specifications are marked with an ink dot. Wafers are 

then cut into individual circuits, which are also called dies. Dies are wide bounded by 

golden strings and moulded with land frame in plastic or ceramic packages that protect 

them from environment. Chips must be defect-free. So they undergo extensive testing in 

a testing unit to ensure that they are defect-free before coming to the market.  

In the wafer fab, the wafers are processed in terms of lots (a lot contains a fixed 

number of wafers) in order to build up layers of patterns to produce the required circuitry. 

As discussed, this involves a complex sequence of processing steps with a number of 

operations that require different kinds of equipment (Lamba and Karimi, 2000; Kim et 

al., 2002). One such step is the photolithography.  
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Photolithography is the most complex operation in wafer fabrication, and it 

requires the greatest precision. In this process, the wafer is exposed to a light source that 

passes through the reticle (or mask) that holds the pattern of the circuitry for a particular 

layer. The main steps that a wafer has to undergo during a photolithography step are 

coating of the photo resist, exposure of the resist and the development of the resist. In the 

first step, the wafer is spun while the resist is deposited onto the wafer. The wafer is then 

baked to firm the photoresist and improve its adhesion to the wafer. The wafer is exposed 

to the UV light through the reticle that contains the pattern for a few chips. This 

alignment and exposure step is repeated until the whole wafer surface is exposed. Simply 

in this process, the wafer is exposed to a light source that passes through the reticle (or 

mask) that holds the pattern of the circuitry for a particular layer. 

The steppers used in the photolithography process are very expensive machines 

and are usually the bottleneck in the manufacturing process. One-third of the total work-

in-process (WIP) competes to get processed at the steppers and hence it is very critical to 

allocate the wafer lots to the steppers in an efficient manner. To fabricate an integrated 

chip (IC) from a silicon wafer, one needs to build several layers of circuitry. For each 

layer of a wafer, one photo operation is required which is carried out in a stepper 

machine. For each stepper machine there may be several types of lots waiting in the 

buffer for different layers to be processed. Often steppers are shared among different 

types of wafer lots for various layers. Large number of lots belonging to similar device 

types waits in the buffer for hours to be processed on the stepper machines, which poses 

serious scheduling problems. Since the stepper machines regulate the total throughput of 
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the fab, it is very crucial to schedule the large number of lots waiting in the 

photolithography process with an efficient and powerful mathematical model. 

Past scheduling work on such a process addressed the problem in terms of 

individual batches. The problem with such an approach is that it becomes impossible to 

schedule large number of lots waiting before the steppers. For example consider a wafer 

fab that manufactures two devices/products consisting of 4 layers each. For each layer, 

there are a number of lots (batches in thousands) waiting before the steppers which are 

needed to be scheduled for maximum throughput. Previous works (Lim & Karimi, 2003a; 

Mendez et al., 2000) could not solve the above problem in reasonable amount of time. 

Thus, there is a need to develop a mathematical model that addresses the problem in 

terms of batches of integral lots suitable for similar machines. 

5.2 Model Formulation 

The main features of the two proposed models described below are (a) the use of 

continuous variable to allow transitions on production units (b) handling of multiple 

batches in a single slot. The way in which the batches are accommodated which belong to 

the same product, makes both models different from each other. As will be shown, both 

models can easily account for changeovers and can handle many batches of different 

products. 

 For both formulations, the time horizon for each unit comprises K slots, but the 

slots may not be identical on all units. These slots are designated to different due dates as 

follows. The first K1 slots fill orders due at DD1, but they need not finish before DD1. 

Similarly, the first K2 slots fill orders due on or before DD2 but need not finish before 

DD2, and likewise. So K1≤K2≤K3≤…≤Kd. Using an iterative procedure, the number of 
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slots to each due date are fixed. Now, various constraints are discussed in both models, 

where, unless otherwise stated, all constraints are to be written for all values of their 

indices. 

5.2.1 Model M1 

Assignments: To assign products to slots on each unit, one binary variable Yijk is defined 

in the following way. 

{1 if unit  processes product  during slot
0 otherwiseijk

j iY = k

j

 

To allow only one product in each slot on each unit, 

1ijk
i

Y =∑  (5.1)  

Eq. 5.1 assigns exactly one product on each unit in each slot. By doing this, every slot 

will have one useful product on each unit. Note that there is no idle/dummy product in 

our model formulation. Even though there is a product in each slot on all the units, there 

is no useful production in some slots. These slots are called null slots. This means that the 

products are allowed to span multiple slots but the null slots are ensured to have no useful 

production. We will discuss about which slots are null and which slots are useful i.e. slots 

that produce products to meet the demands and also how we force the products to span 

multiple slots, if necessary. 

Transitions: To allow one product to follow another, we use one continuous variable that 

always takes binary values in the following way. 

{1 if product  follows product  in slot on unit 
0 otherwiseii jk

i i kX ′
′=  

As shown earlier, this can be linearized exactly as, 
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( 1)ij k ii jk
i

Y X ′−
′

= ∑  0k∀ >  (5.2) 

ijk i ijk
i

Y X ′
′

= ∑  0k∀ >  (5.3)       

Slot length: Let Nijk and Bijk be the number of batches and the amount of product i on unit 

j in slot k respectively. The length of each useful slot is defined as the sum of processing 

time (fixed and variable) and transition time, if any. Let TEjk denote the time at which slot 

k ends on unit j. Then TEjk is defined as, 

( 1) ' '
'

(jk j k i ijk i ij ijk ij ijk ij
i i i

TE TE X CT N FPT B VPT−≥ + + +∑∑ ∑ )

J

 (5.4) 

(NijkFPTij + BijkVPTij) is the total processing time of Bijk, where FPTij and VPTij are 

parameters. FPTij depend on the number of batches and VPTij depend on the batch size. 

So the length of a useful slot k consists of fixed processing time, variable processing time 

and transition time if any.  

Boundaries on Nijk and Bijk: Often, because of operational constraints we may not 

process more than a fixed number of batches and hence we impose the following 

boundary constraints. 

U
ijk ij ijkN N Y≤  0, ik j∀ > ∈  (5.5) 

( )U
ijk ij ijk iijsN N Y X≤ −  0, ,k s k s FS∀ > = ∉  (5.6) 

Eq. 5.6 ensures that the first slot among the allotted slots will have useful production if 

assigned to a product and remaining slots will be null slots. 

We force the following limits on the amount to be produced in each slot. 

U
ijk ij ijkB B N≤  0k∀ >  (5.7)  

L
ijk ij ijkB B N≥  0k∀ >  (5.8) 
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Note that Bijk is zero in null slots as the number of batches is forced to be zero according 

to eq. 5.6. 

Demand: The amount produced should satisfy the orders due at DDd and earlier. So we 

should force the following constraint to satisfy the demands at the end of each period 

respectively. 

1 1

d

i

K d

ijk id
k j J d

B Q ′
′= ∈ =

≥∑∑ ∑  , dij J k K∈ ≤  (5.9) 

We calculate the total amount of each product produced before a due date DDd by 

summing the amount of i produced over all the slots and all the units before that due date. 

Eq. 5.9 ensures that the amount produced will meet the demand Qid but not necessarily on 

or before due date d. 

Delay time: Let Did be the delay in filling the orders of product i due at demand window 

DDd. Mathematically, we express this as, 

(1 )id jk d ijkD TE DD M Y≥ − − −  ,i dj J k K∈ ≤  (5.10)        

Initial Plant State: At the start of the scheduling horizon, units may be processing some 

batches. New products assigned to a unit cannot start until the current batch, if any, on 

that unit finishes (non-preemptive operation). To ensure this, we set 

0j jTE RT=  (5.11)     

where RTj, called the unit release time, is the time at which the current batch of product i 

finishes on unit j or the time at which the unit is ready to process the required product. 

Scheduling Objectives: We select two objectives for this scheduling problem. The first 

one is minimizing the sum of weighted tardiness and the second one is minimizing 
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delayed amount that are discussed in chapter 4 and are given by eq. 4.34 and eq. 4.35 

respectively. 

So we need equations 5.1 to 5.11, 4.34 and 4.36 to calculate the first objective i.e. 

minimizing the weighted sum of tardiness and equations 5.1 to 5.8, 5.11, 4.35 to 4.37 and 

4.46 for minimizing the delayed amount in Model M1. 

5.2.2 Model M2 

Model M2 differs from Model M1 in representing the number of batches and batch size. 

So we discuss the constraints regarding the number of batches, batch size and also timing 

constraints which need to be redefined. All other constraints are same as in Model M1. 

Number of Batches and Batch Size: We allow only first slot among the slots that are 

present in a production period to have useful production and make all the remaining slots 

null. We allow the useful slot to take more than one batch of the same product. But in 

model M1, all slots may have zero number of batches. 

The number of batches of product i on unit j in slot k is defined as, 

( )L
ijk ij ijk iijs ijkN N Y X N= − + ∆  0, ,k s k s FS∀ > = ∉  (5.12) 

( )(U L
ijk ij ij ijk iijsN N N Y X∆ ≤ − − ) S 0, ,k s k s F∀ > = ∉   (5.13) 

L
ijN and are the lower and upper bounds on the number of batches respectively and 

they are both unit- and product-dependent. By defining the number of batches in the 

above way, we ensure that only the first slot among the slots assigned to a product has 

useful production if that product spans multiple slots in a period. For doing so, X

U
ijN

iijs = 1 if 

the slot is not the first one. So,  for slots that are first in their 

production schedule because X

L
ijk ij ijk ijkN N Y N= +∆

iijs = 0 for s = 1 and for all remaining slots in that product 
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campaign, Xiijs = 1 and hence the number of batches in those slots for that product i is 

zero. 

In the same way we define the amount to be produced in the useful slots. Let Bijk be the 

total amount of product i on machine j in slot k. We define Bijk as, 

[ ( ) ]L L
ijk i ijk iijs ijk ij ijkB N Y X N B B= − + ∆ +∆  0, ,k s k s FS∀ > = ∉  (5.14) 

[ ( ) ](L U
ijk i ijk iijs ijk ij ijB N Y X N B B∆ ≤ − + ∆ − )L S 0, ,k s k s F∀ > = ∉  (5.15)    

U
ijB and are the lower and upper bounds on batch size respectively and both are unit- 

and product-dependent. So the amount of a batch that belongs to product i produced on a 

unit j in a slot k is equal to (

L
ijB

L
ij ijkB B+ ∆ ). Like the number of batches, the amount of 

product is also zero in those slots that are not the first in their production campaign. 

Slot length: As there is a change in the way we represent the number of batches in this 

formulation, we modify timing constraints accordingly. Having defined the number of 

batches and the amount to be produced in each slot, we define the length of each slot in 

model M2. Let TEjk denotes the time at which slot k ends on unit j. Then, TEjk is defined 

as, 

( 1) ' '
'

( ( ) )

(( ( ) ) )

L
jk j k i ijk i ij i ijk iijs ijk ij

i i i
L L
i ijk iijs ijk ij ijk ij

i

TE TE X CT N Y X N FPT

N Y X N B B VPT

−≥ + + − + ∆

+ − + ∆ + ∆

∑∑ ∑

∑
 

 0, ,k s k s FS∀ > = ∉  (5.16) 

Note that we defined Bijk and Nijk variables for better understanding of our model M2. 

While building the model M2, we do not use these variables and we replaced these two 

variables using equations 5.18 and 5.20.  
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Demand: Demand constraint also differs from model M1 as there is a change in 

representing the amount of product to be produced. 

1 1

(( ( ) ) )
d

i

K d
L L
i ijk iijs ijk ij ijk id

k j J d

N Y X N B B Q ′
′= ∈ =

− + ∆ + ∆ ≥∑∑ ∑  , ,dk K s FS s k≤ ∉ =  (5.17) 

Miscellaneous: The delayed amount is defined as, 

'
' 1 1

(( ( ) ) )
d

i

Kd
L L

id id ij ijk iijs ijk ij ijk
d k j J

DA Q N Y X N B B
= = ∈

≥ − − + ∆ + ∆∑ ∑∑  

 , ,dk K s FS s k≤ ∉ =  (5.18) 

So we need equations 5.1 to 5.3, 5.10, 5.11, 5.13, 5.15 to 5.17, 4.34 and 4.36 for tardiness 

as objective and equations 5.1 to 5.3, 5.11, 5.13, 5.15, 5.16, 5.18 and 4.35 to 4.37 for 

delayed amount as objective while building the model M2. 

5.3 Model Evaluation 

We illustrate the effectiveness of models M1 and M2 with four working examples. These 

examples with different problem sizes and complexities will demonstrate the capabilities 

and efficacy of our methodology. We have taken two examples directly from the 

literature and added two more examples to show the vast application of our approach. We 

compare all our examples with Lim and Karimi (2003a) and did not compare with other 

major works such as Mendez et al. (2000) and Cerda et al. (1997) because Lim and 

Karimi (2003a) proved that their model performs better than Mendez et al. (2000) and 

Cerda et al. (1997). And also Lim and Karimi (2003a) concluded that their general model 

i.e. multiple orders per product model (we address this model as L&K model from now 

on) is better than the special case of single order per product as the former gives a better 

optimal solution than the latter. So we compare our models with their general model in all 
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our examples. The models are formulated in GAMS 20.7 and solved by CPLEX 7.5.0 on 

a 2.40 GHz Pentium 4 PC. 

5.3.1 Example 1 

We have taken this example from Mendez et al. (2000). A multiproduct plant has seven 

units (J=7) and produces eight products (I=8). In this problem, the plant has to deliver 

products at seven due dates (D=7). For full details of this example, please refer to the 

work by Mendez et al. (2000). The scheduling objective is to minimize tardiness. 

Mendez et al. (2000) use a two-step procedure to solve this problem. The first step 

makes the batching decisions to minimize the inventory. However, in this step, they 

require all orders to complete before their due dates. Their second step schedules the 

batches obtained from the first step to minimize the tardiness. L&K model solved this 

example in a single step using their general model. They also solved this example using 

their special case of one order per product model using the batches obtained by Mendez 

et al. Now, we solve this example using model M1 and model M2.  

In this example, the batch size is constant and the batch size is more than demands 

for some products at some due dates. So in this case, we really do not need to assign slots 

for every due date for each unit. We have taken the number of slots equal to 3 and 

assigned to each due date as K1=1, K2=2, K3=3, K4=3, K5=3, K6=3, K7=3.  

In L&K model, they discussed about big-M constraints and the effect of Big-M on 

the model. We solve our both models with big-M and the results obtained shows that our 

model is very robust with respect to big-M value. We compared our model with L&K 

model and the results presented in Table 5.1 show the effectiveness of our both models. 

Both models solved the problem at hand easily as did L&K model. But M2 appeared to 
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solve the problem in very efficient manner than M1 and L&K models. Model statistics 

that are shown in Table 5.2 reflects the performance of each model. 

Both M1&M2 have the same number of binary and continuous variables. M2 has 

fewer constraints than M1 and L&K. Even though discrete variables are more in models 

we proposed compared to L&K model, binary variables are fewer than L&K model. It 

seems that integer variables that are part of discrete variables in our models do not have 

much effect on the performance of a model. However our model has more non-zeros and 

continuous variables that do not have much effect on model performance compared to 

binary variables. 

Table 5.1: Big-M effect on models M1, M2 and L&K in Example 1 
 

M Nodes  Iterations  CPU time(s) 
 M1 M2 L&K  M1 M2 L&K  M1 M2 L&K

200 16 16 60  495 566 2131  0.56 0.53 2.28 
500 78 10 34  1597 496 1371  1.39 0.64 1.78 
1000 20 48 29  606 1019 1071  0.67 0.98 1.62 
2000 116 44 34  2032 1094 1369  1.77 1.11 1.84 
5000 61 57 55  1302 1205 2158  1.16 1.19 2.2 
10000 72 32 47  1407 956 1815  1.37 0.99 2.18 
100000 98 49 47  2180 984 1815  1.72 1.05 2 

 

Table 5.2: Model statistics for Example 1 
 

Model Discrete variables Continuous variables Constraints Non-zeros
M1 282 1284 1640 7662 
M2 282 1284 1358 7743 

L&K 223 327 1769 8619 
 

Table 5.3 summarizes the optimal schedules obtained from all three models. 

Tardiness value, which is the scheduling objective, is zero for all three models in both 

RMIP and MILP solutions. However, they differ in the allocation of batches to units. 
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Overall, we place M2 ahead of M1 and M1 ahead of L&K with respect to model statistics 

and M-value. 

Table 5.3: Optimal schedules for Example 1 

batch sizestart-finishdue date batch sizestart-finishdue date batch sizestart-finishdue date
(kg) (h) (h) (kg) (h) (h) product (kg) (h) (h)

1 7/1 6000 0.0-13.1 24 2/1 6000 0.0-14.8 72 3 6000 0-13.4 48
1/1 6000 14.8-24.3 72 4 6000 20.9-36 72
4/2 6000 24.3-49.3 72 1 6000 36-46.1 72

2 5/1 6000 0-11.1 24 2/1 6000 0-10 48 2 6000 0-10 48
1/1 6000 18.0-27.5 72 6 6000 10-30.1 48
1/1 6000 27.5-35.5 72 6 6000 30.1-46.1 120

1 6000 46.1-58.1 72
3 8/1 6000 0.0-21.6 24 7/1 6000 0.0-15.2 24 5 6000 7.3-19.5 24

4/3 6000 21.6-60.4 72 6/1 6000 15.2-35.3 48 7 6000 19.5-33.6 120
8/1 6000 64.6-86.4 144 3 6000 33.6-47 48

4 3/2 12000 0.0-25.6 48 3/2 12000 8.0-33.6 48 1 6000 0-8 72
7/1 6000 25.6-41.0 72 7/1 6000 45.6-61 168 7 6000 16-31.2 96

6 6000 31.2-51.3 168
5 6/2 5000 56.6-90.0 96 5/1 5000 0-8 24 4 5000 8-25.9 48

7/2 4500 8.0-34.1 72 4 5000 25.9-37.9 48
6/1 5000 44.4-64.5 168

6 6/1 5000 0.0-20.1 48 4/1 5000 0.0-13.7 48 7 4500 0-12 24
4/1 5000 20.1-33.5 48 6/1 5000 13.7-30.7 120 7 4500 12-24 120
7/2 9000 33.5-58.6 120 5/1 5000 55.8-65.5 72 4 5000 24-37.7 120

4 5000 37.7-49.7 168
7 8/1 6000 0.0-21.5 48 8/1 6000 0.0-21.5 48 8 6000 0-21.5 24

2/2 6000 21.5-42.7 48,72 4/1 6000 50.5-64.1 120 2 6000 38.1-49.3 72
1/3 6000 42.7-68.2 72 8 6000 49.3-70.9 96

M2 L&K

unit
product/ 
batches

M1
product/ 
batches

 

5.3.2 Example 2 

In Example 1, it is relatively easy to meet all due dates and hence it is difficult to identify 

a better model that needs less computation effort. So we consider another example where 

it is not possible to meet all the demands within the due dates. This example is taken from 

Lim and Karimi (2003a). It involves four products, three units and four due dates. We 

consider initial plant state in this example and hence the solution differs from their work. 

Both tardiness and delayed amount are considered as scheduling objectives in this 

example. 
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The batch size is not constant and varies between minimum and maximum limits. 

We have taken the minimum and maximum limit on number of batches as 1 and 5 

respectively in this example for model M2 and maximum limit on number of batches is 5 

in model M1. For further details such as processing times, transition times and demands 

at various due dates for different products, please refer to the work by Lim and Karimi 

(2003a). We have taken K1=1, K2=2, K3=3, K4=5 to solve this problem.  

We solve this example for a wide range of M-values (Table 5.4) and the schedules 

obtained are shown in Table 5.6. L&K model is very much erratic computationally and 

largely dependent on M-value where as our models M1 and M2 have shown tremendous 

robustness with respect to M-value and it is evident from the results. But still there is no 

evidence how one model’s performance depends on M-value. Table 5.5 draws a 

comparison among all models (M1, M2 and L&K) for both objectives. Computationally 

both objectives put M1 above all even though there is not much difference between M1 

and M2 but L&K model clearly stands far behind in both cases. 

Table 5.4: Big-M effect on model performance in Example 2 
 

M Nodes Iterations CPU time (s) 
 M1 M2 L&K M1 M2 L&K M1 M2 L&K 

100 630 1064 28864 15680 17315 581677 1.60 1.73 65.51
500 900 988 34176 13381 16690 852883 1.61 1.53 76.48
1000 658 950 32727 13960 15983 645370 1.40 1.64 92.76
2000 1003 2309 157749 20452 38123 4089090 2.01 3.13 440.9
5000 1575 784 159943 35048 14194 4761510 3.10 1.48 499.9
10000 865 2782 426651 16910 53560 15144934 1.90 4.15 1610 

 
 

For solving this example with tardiness as scheduling objective, both of our 

models have taken less computational time than L&K model. Our models, in spite of 

having integer variables proved to be computationally more effective mainly due to the 
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reduction of binary variables. We can attribute the reduction in binary variables mainly to 

two factors. One factor is using fewer time slots and the other one is accommodating 

multiple batches in single slot. The objective value as well as the optimal schedule (Table 

5.6) is same for all three models. 

Table 5.5: Model statistics for Example 2 
 

  tardiness (for M=100)  delayed amount 
Statistics  M1 M2 L&K  M1 M2 L&K 
Constraints  528 360 531  680 328 513 
Continuous  209 209 100  209 209 100 
Binary  40 40 77  40 40 77 
Integer  40 40 0  40 40 0 
Optimum  33.87 33.87 33.87  17517 17517 17517 
Relaxation  0 0 0  0 0 0 
Non-zeros  1842 1432 1766  1596 1186 1474 
Nodes  630 1064 28864  1135 2208 50192 
Iterations  15680 17315 581645  20283 24678 1682287 
CPU time (s)  1.60 1.73 65.51  1.68 2.14 96.12 

  

Table 5.6: Optimal schedules for Example 2 

batch size start-finish due date batch size start-finish due date batch size start-finish due date
(kg) (h) (h) (kg) (h) (h) product (kg) (h) (h)

1 3/1 150 0.0-28.9 24,48 3/1 150 0.0-28.9 24,48 3 150 0.0-28.9 24,48
2/1 102.25 28.9-48.53 48 2/1 102.25 28.9-48.53 48 2 102.25 28.9-48.53 48
3/1 100 48.53-69.83 72 3/1 100 48.53-69.83 72 3 100 48.53-69.83 72
2/2 100 69.83-107.13 96 2/2 100 69.83-107.13 96 2 100 69.83-89.13 96

2 100 89.13-107.13 96
2 1/1 100 0-20 24 1/1 100 0.0-20 24 1 100 0.0-20 24

4/2 100 20-58 48 4/2 100 20-58 48 4 100 20-39.5 48
4/1 100 58-76.5 72 4/1 100 58-76.5 72 4 100 39.5-58 48
4/1 100 76.5-95 96 4/1 100 76.5-95 96 4 100 58-76.5 72

4 100 76.5-95 96
3 2/1 101.62 0-19.75 24 2/1 101.62 0.0-19.75 24 2 101.62 0-19.75 24

1/1 150 19.75-48 48 1/1 150 19.75-48 48 1 150 19.75-48 48
2/1 96.13 48-72 72 2/1 96.13 48-72 72 2 96.13 48-72 72
1/1 140 72-98.8 96 1/1 140 72-98.8 96 1 140 72-98.8 96

L&K
product/
batchesunit

M2M1
product/ 
batches
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With minimizing delayed amount as objective, the gap between computational 

time of our models and L&K model further increased even though the objective value is 

again same for all three models. Note that the formulation is free of big-M and hence we 

did not solve the problem for different values of M. As the models are free of big-M, this 

objective may be the accurate criterion to compare all three models. We can solve this 

example with minimizing delayed amount as objective with 4 slots. But to keep the 

comparison fair using both the objectives we compared our models with five slots and for 

L&K model, we used their own formula and kept the number of slots at 7. From Table 

5.4 and Table 5.5, we observed that model M1 has an edge over model M2 and both of 

our models have performed very well than L&K model in this example.  

5.3.3 Example 3 

This example is the motivating example behind this work and has taken mainly to show 

the efficacy of our models in solving bigger size problems where a large number of 

batches need to be processed on parallel machines. We assumed the following so that we 

apply our formulation to apply our methodology to schedule the lots in photolithography 

area in Semiconductor industry. 

1. Lots that belong to different layers are available in sufficient quantity to process 

using stepper machines for a given time. 

2. We consider lots belonging to the same layer as batches belong to same product. 

So each product represents each layer. If any lot that has processed for a layer 

returns to stepper machines then we consider it as a lot that belongs to the next 

product. Implicitly, we did not consider precedence relationships between 

adjacent layers. 
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3. We did not consider resource constraints. So we assume that masks are always 

available to units to process lots in sufficient quantity. 

4. We consider all lots that belong to different layers of devices as the batches 

belong to different products. For example, two different devices that have four 

layers each are considered as eight different products having different demands at 

different due dates in our work. 

With these assumptions, we now proceed to demonstrate the effectiveness of our 

models in solving large problems. For this example, we consider a photolithography 

station that processes two different devices with four stepper machines. Each device 

consists of four layers. So we consider the lots that belong to the four layers of first 

device as first four products and the lots that belong to the four layers of second device as 

the next four products. So totally we have 8 products and 4 machines with 4 due dates. 

We consider each lot as a batch and the size of each batch depends on the product. 

General practice of wafer fab is to keep the lot size constant through out the fab and 

hence we assume that the batch size of each product is constant (25). The details of 

processing times, setup times and demands for each product are given in Tables 5.7 and 

5.8 respectively.  

Table 5.7: Processing times and setup times in Example 3 
 

  Product 
Unit I1 I2 I3 I4 I5 I6 I7 I8 
J1 0.7/0.5    0.8/0.7*  0.7/0.6  
J2 0.85/0.5     0.95/0.6  1.0/0.65*
J3 0.85/0.55 0.9/0.6* 0.95/0.65    1.0/0.65  
J4     1.1/0.6 0.75/0.55   0.85/0.6*     
*unit is preoccupied with that particular product 
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We penalized the delay on each product in such a way that we get the finished lots 

as early as possible. The penalties on each product are also shown in Table 5.8. Instead of 

sequence-dependent setup times, we have unit-based setup times for this example. So we 

changed our model by modifying some constraints to remove the sequence-dependent 

setup times and to accommodate unit-based setup times. All units are available at the start 

of the time horizon and are set to process some products. We have taken K1=3, K2=6, 

K3=9, K4=12 to solve this problem. 

Table 5.8: Demands and penalties at each due date for each product in Example 3 

 Demands/penalties at each due date 
Product D1 D2 D3 D4 

I1 650/1 600/1 600/1 600/1 
I2 600/1.25 600/1.25 600/1.25 600/1.25 
I3 600/1.75 650/1.75 600/1.75 700/1.75 
I4 600/2 600/2 600/2 700/2 
I5 600/1 650/1 700/1 650/1 
I6 600/1.25 650/1.25 600/1.25 700/1.25 
I7 600/1.75 600/1.75 650/1.75 650/1.75 
I8 700/2 600/2 650/2 700/2 

 

Table 5.9: Model statistics for Example 3 

Statistics M1 M2 
Constraints 1483 1219 
Continuous 823 823 
Binary 156 156 
Integer 156 156 
Nodes 6396 1017 
Non-zeros 5734 5188 
Iterations 129634 32823 
CPU time (s) 39.5 12.3 

 

  63 



                                         Chapter 5: Batch Units - Models with Multiple Batches in a Slot 

Both our models able to solve this problem in short CPU time and the results are 

shown in Table 5.9. L&K model failed to solve this problem within reasonable amount of 

time (~10000 s) and hence we did not compare our work with L&K model in this 

example. RMIP and MILP values are zero in both models because we can meet all the 

demands with in the due dates. Surprisingly, M2 has performed better than M1 in this 

example and is evident from the results shown in Table 5.9. Because of the increase in 

the problem size, we think that the number of equations and non-zeros played an 

important role in model evaluation and gave M2 an edge over M1 in this example. 

5.3.4 Example 4 

Though Example 3 demonstrates that our formulation can solve large scale problems, it 

does not include sequence-based setup times. So, we illustrate the effectiveness of our 

work with this example that includes all the features of a general chemical batch plant.  

Table 5.10: Batch size limits in Example 4 
 

 Unit 
Product 1 2 3 4 5 6 7 

1  100-200 100-200 100-200    
2  50-100      
3 100-200       
4   100-200     
5     100-200 100-200  
6 100-200       
7  100-200      
8       100-200
9       100-150
10    50-100    
11 50-100       
12     50-100 100-200  
13       100-200
14  100-200      
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Table 5.11: Processing times of products on each unit in Example 4 
 

Product Unit 
I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14

J1   0.1   0.1     0.15    
J2 0.05 0.1     0.05       0.1 
J3 0.1   0.1           
J4 0.1         0.05     
J5     0.1       0.05   
J6     0.1       0.1   
J7        0.15 0.1    0.1  

 
 

Table 5.12: Transition times between products in Example 4 
 

Product 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1  1.00  0.50   0.50   0.50    0.50
2 0.50      0.40       0.30
3      0.20     0.15    
4 0.25              
5            0.30   
6   0.50        1.00    
7 0.60 1.00            0.50
8         0.50    1.00  
9        0.60     1.00  
10 1.00              
11   0.50   0.50         
12     1.00          
13        0.50 0.25      
14 1.00 .50         0.50               

 
 

A plant produces 14 products (I =14) with 7 units (J=7) in operating mode. As all 

the products cannot be processed on all the machines, the plant has problems in 

producing the products for customers within time. It is desired to schedule the products 

for the next 3 months. For the first four weeks, the schedule must be a detailed one. So 
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the first four periods contain 7 days each and we fix 5th and 6th due dates as the end of 2nd 

and 3rd month respectively. The scheduling period comprises 6 due dates (d=6). 

Table 5.13: Demands for each product at each due date in Example 4 
 
Due Date Product 

D1 D2 D3 D4 D5 D6 
I1 1000 1200 1200 1200 1000 800 
I2 500 600 500 900 500 300 
I3 500 500 900 500 400 800 
I4 500 400 400 900 600 500 
I5 800 700 800 900 1000 1000 
I6 400 400 300 500 400 500 
I7 500 500 600 400 500 400 
I8 300 300 200 500 500 500 
I9 200 400 300 400 300 500 
I10 1000 800 800 800 1000 1000 
I11 400 200 400 500 400 500 
I12 600 600 500 800 500 500 
I13 500 800 500 800 600 800 
I14 500 500 500 800 600 500 

 

There is no FPTij of the batches to be processed and hence the processing time of 

a batch consists of only VPTij that depends both on product and unit. The penalties on 

delay of each product are same and equal to one. All the units are available at the start of 

the horizon. The limits on batch size are shown in Table 5.10. The processing times of 

each product on each machine are listed in Table 5.11 and the transition times between 

different products are given in Table 5.12. Demands for each product at each due date are 

shown in Table 5.13. The minimum and maximum limits on number of batches on each 

unit are 1 and 100 respectively. We use K1=3, K2=6, K3=9, K4=12, K5=15, K6=18 to solve 

this problem.  
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The results for this example are shown in Table 5.14. Both our models needed 

less computational effort to solve this problem. As in Example 3, L&K model needs very 

large number of slots to solve the problem and hence could not solve the problem in 

reasonable amount of time (~10000 s). Hence, we do not compare our work with L&K in 

this example too. Demands are met within due dates in this example and hence both 

RMIP and MILP values are zero. Again both M1 and M2 competed well against each 

other even though model M2 slightly has an edge over model M1 in this example too. 

Again, this could be attributed to fewer equations and non-zeros in model M2. 

 
Table 5.14: Model statistics for Example 4 

 
Statistics M1 M2 
Constraints 4507 3859 
Continuous 2820 2820 
Binary 324 324 
Integer 324 324 
Nodes 1297 799 
Iterations 25804 14044 
Non-zeros 13426 16846 
CPU time (s) 21.88 19.32 

 

5.4 Remarks 

(a) L&K used binary variables for transitions between batches that belong to different 

products. By doing this, binary variables in their model increase tremendously 

with the problem size and hence they could not solve bigger size problems. By 

using continuous variables for transitions between products on units in our model, 

we are able to reduce the number of binary variables. 

(b) If we use a criterion to estimate the number of slots, we may overestimate the 

number of slots and there might be more number of binary variables. So in that 
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sense it is better to use an iterative procedure to estimate the number of slots 

required. But then, we need to run the model many times to finalize the number of 

slots!  

(c) To reduce the number of slots to schedule large number of batches, we introduced 

integer variables. By using integer variables, we not only reduced the binary 

variables but also could able to solve the scheduling problems with less 

computational effort. We also observed that the effect of integer variables on the 

performance of a model is relatively insignificant. 

(d) Past scheduling work on such a process addressed the problem in terms of 

individual batches. The problem with such an approach is that it becomes 

impossible to schedule large number of batches waiting before the processing 

units. So in our work, by scheduling multiple batches in one slot, we require 

fewer slots and hence binary variables. Even though it introduces the integer 

variables, as shown in the results, integer variables have very less effect on CPU 

time. 

(e) Both our models differ mainly in expressing the number of batches and hence 

amount produced in each slot. Model M2 tries to produce at least one batch in 

each useful slot where as model M1 takes whatever number of batches it requires. 

With this little change, it seems that there is not much difference between the 

performance of M1 and M2. But we cannot rule out the possibility of the 

dominance of one model against another as it is evident from Example 2 and 

Example 3. In Example 2, M1 performed better than M2 where as in Example 3 

& Example 4, M2 showed better results than M1. 
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(f) Generally Big-M affects solution times very much irrespective of models. By 

introducing an objective free of big-M, we are able to compare our work with 

other models without big-M effect and hence could ensure a fair comparison. But 

even with tardiness as objective that has big-M constraint, our models have shown 

tremendous performance over other work and also they are more robust with 

respect to M-value. 

5.5 Conclusions 

We proposed two different MILP formulations for the short term scheduling of a 

multiproduct single stage batch plants with parallel units. The models can handle multiple 

orders per product and large number of batches without much computational effort. The 

concept of using more number of batches in a single slot is very novel and very effective. 

Two scheduling objectives were selected to compare our work with existing models. One 

objective is minimizing tardiness that involves big-M constraint and the other objective is 

minimizing delayed amount, which does not have any big-M constraint. With this, we 

could compare the models with and without the effect of big-M. In both cases, our 

models outperform the previous work with respect to the statistics (variables, constraints, 

non-zeros, nodes, iterations and CPU times). From the results, we conclude that our 

models are very robust with respect to big-M than the previous work. 
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Chapter 6 
 
APPLICATION IN SEMICONDUCTOR 
MANUFACTURING  
 
6.1 Scheduling in Semiconductor Manufacturing 

Various processes involved in semiconductor manufacturing were discussed in detail in 

the previous chapter. Having conferred about the process, we now focus on the 

scheduling in semiconductor manufacturing. With considerable existing work in the 

modeling, simulation and optimization of actual physicochemical operations, it has been 

estimated that major improvements in the productivity of semiconductor industry lay in 

the higher-level systems engineering research involving the planning, scheduling, and 

optimization of semiconductor manufacturing. However, the semiconductor industry is 

quite different from the more traditional manufacturing operations such as assembly lines 

or job shops. Features such as re-entrancy, resource constraints and uncertainties make 

this industry a highly complex process system that is difficult to schedule. Modeling the 

entire suite of operations is still a daunted task, and we have been trying to focus on some 

specific, most critical, and bottleneck steps. One such step is the photolithography. 

 Photolithography is the most complex operation in wafer fabrication, and it 

requires the greatest precision. Photolithography is used to create multiple layers of 

circuit patterns on a chip. This area, where wafers are exposed using scanners or steppers, 

typically, comprises the bottleneck workstations. Also, the number of reticles (masks) 

available for a given layer of product type is limited. It is very important to develop 

schedules that ensure the maximum utilization of the equipment in this processing area. 

The main steps that a wafer has to undergo during a photolithography step are coating of 
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the photo resist, exposure of the resist and the development of the resist. In the first step, 

the wafer is spun while the resist is deposited onto the wafer. The wafer is then baked to 

firm the photoresist and improve its adhesion to the wafer. The wafer is exposed to the 

UV light through the reticle that contains the pattern for a few chips. 

This alignment and exposure step is repeated until the whole wafer surface is 

exposed. The wafer is then sent to the developing step, where the exposed photoresist is 

removed with a chemical solvent, and then it goes through final bake to ensure that the 

unexposed photo resist adheres to the wafer.  

The tool sets used in photolithography are characterized by the function they 

perform and by their limits on critical dimensions. The tool sets used in the process are 

the scanners and steppers. Scanners are used for processing critical layers while steppers 

are used for processing non-critical layers. So all the units/machines are not identical in 

the photolithography station and we can process a particular layer only on a particular 

type of machine. This scheduling problem is similar to the one described in chapter 3 and 

there is some work in the literature on this type of problem.  

But, in existing studies, the problem data are assumed to be deterministic. 

However, in real plants, parameters such as raw material availability, processing times, 

and market requirements vary with respect to time and are often subject to unexpected 

deviations. These uncertainties are common and can have undesirable short-term and 

long-term economic and feasibility implications. Therefore, the consideration of 

uncertainty in scheduling problems is of great importance in preserving plant feasibility 

and viability during operations. Although a large number of papers have addressed 

uncertainty in process design, much less attention has been devoted to the issue of 
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uncertainty in process planning and scheduling, mainly because of the increased 

complexity of the deterministic problem. 

Among the works on this subject appearing in the literature is that of Shah and 

Pantelides (1992) which addresses the problem of design of multipurpose batch plants. 

They considered different schedules for different sets of production requirements using a 

scenario-based approach and an approximate solution strategy. Pistikopoulos and 

Ierapetritou (1995) presented a two-stage stochastic programming formulation for the 

problem of batch plant design and operations under uncertainty. Straub and Grossmann 

(1993) proposed the idea of the stochastic flexibility index to evaluate the effect of 

uncertainty quantitatively. Bansal et al. (2002) proposed a parametric programming 

framework for the flexibility analysis design of linear systems, and in their subsequent 

work, they generalized and unified this approach to handle nonlinear systems.  

The multiperiod planning and scheduling of multiproduct plants under demand 

uncertainty was addressed by Petkov and Maranas (1997). The stochastic elements in 

their proposed model are expressed with equivalent deterministic forms, resulting in a 

convex MINLP problem. Schmidt and Grossmann (1996) considered the optimal 

scheduling of new product testing tasks and reformulated the initial nonlinear, nonconvex 

disjunctive model as an MILP using different sets of simplifying assumptions that give 

rise to different models.  

The uncertainties in planning and scheduling problems are generally described 

through probabilistic models. During the past decade, fuzzy set theory has been applied 

to scheduling optimization using heuristic search techniques. Balasubramanian and 

Grossmann (2002) developed MILP models for flowshop scheduling with uncertain 
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processing times using discrete probability distribution. Later, the same authors (2003) 

proposed an alternative approach based on a fuzzy representation of uncertainty.  

Vin and Ierapetritou (2001) proposed a multiperiod programming model to 

improve the schedule performance of batch plants under demand uncertainty. Recently, 

Jia and Ierapatritou (2004) proposed an integrated framework to address the issue of 

uncertainty in short-term scheduling. In their work, the idea of inference-based sensitivity 

analysis for MILP problems is utilized within a branch-and-bound solution framework to 

determine the importance of different parameters and constraints and to provide a set of 

alternative schedules for the range of uncertain parameters under consideration.  

However, most of the existing works handle only a certain type of uncertain 

parameters. But in semiconductor manufacturing processes, uncertainty exists in 

processing times, demands and even in reentrant lots i.e. the number of lots that enter the 

stage for re-processing. So, we try to develop a MILP formulation that accounts for these 

uncertainties. In the next section, we describe the scheduling problem. 

6.2 Problem Description 

In a photolithography station, there are N lots to process on J machines. The problem that 

we address in this chapter can be defined as follows: Given a number of lots in a queue at 

a particular workstation and probabilistic scenarios, determine the expected total 

production of lots. The main features of the scheduling problem are: 

a. There are different types of wafers in the system and each has to undergo many 

operations for different layers. 

b. There are different types of machines available, which can be used for a particular 

operation. A machine may process one or more wafers. Let Ji denote the set of 
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units that may process product i, and Let Ij denote the set of products that a unit j 

may process. 

c. The type of flow is reentrant i.e. a lot can visit the photolithography station many 

times during its production. 

d. The processing time of a lot on a machine is not constant and varies with respect 

to a given scenario. A scenario is a set of possible data of a process which may 

occur. Simply, it is a possible set of future events. 

e. Transition from one device to another on any machine requires unit-based setup 

times. 

f. Some units may not be available at the start of scheduling horizon, as they may 

need some time to process current batches. Similarly, it may not be possible to 

start processing some products at the start of horizon because of the lack of raw 

materials. To accommodate these situations, we use unit release times and job 

release times as the earliest times at which a machine or product may start 

processing. 

Following assumptions are made while developing the MILP formulation: 

1. We consider lots that belong to the same layer as batches belong to the same 

product. So each product represents one layer. If any lot that has processed for a 

layer returns to stepper machines then we consider it as a lot that belongs to 

another product. Implicitly we do not consider precedence relationships between 

adjacent layers. 

2. We do not consider resource constraints. So we assume that masks are always 

available to units to process lots in sufficient quantity. 
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3. We consider all lots that belong to different layers of devices as the batches for 

different products. For example, two different devices that have four layers each 

are considered as eight different products. 

4. The reentrant lots will join the system only at the end of a period and this is pre-

determined.  

5. The operation is non-preemptive and there are no resource constraints. 

In this case, the lots at different stages of production are queued up in front of the stage. 

The issue then is which of these lots to process next. Another issue is the dynamic 

environment in which the lots enter and exit the system periodically. 

Thus, the objectives are: 

(i) determine how to allocate the scanners and steppers to different product types during 

their visit to photolithography station in a stochastic environment, and (ii) decide when to 

make changeovers for setting up the machines for different product types and different 

layers during their visits, in order to utilize the machines efficiently in the 

photolithography area as well as to increase the production of the facility. Thus, the 

above problem can be viewed as a sequencing problem with special characteristics and 

stochastic specifications. 

6.3 Model Formulation 

We develop the stochastic model using slot-based time representation. We use tri-index 

binary variables in this work. 

{1 if machine  processes product  during slot 
0 otherwiseijk

j iY = k  

We allow exactly one product in each slot on each machine. Therefore, 
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1
j

ijk
i

Y
∈

=∑
I

 (6.1) 

For modeling transitions (setups) between products in successive slots, we use a 0-1 

continuous variable Xii′jk as follows. 

{1 if product  in slot and product  in slot ( 1) on unit 
0 otherwiseii jk

i k i kX ′
′ −= j

)

  

And we linearize this exactly as, 

( 1)ij k ii jk
i

Y X ′−
′

= ∑  k > 0 (6.2) 

ijk i ijk
i

Y X ′
′

= ∑  k > 0 (6.3) 

The length of a slot consists of processing time of the lots that are assigned to the slot and 

unit-based setup time, if any. The length of each slot varies with each scenario. Let TEjkl 

is the end time of the slot k on machine j in scenario l and it is defined as, 

( 1) ( )jkl j k l ijk iijk ijl ijkl ijl
i i

TE TE Y X ST N PT−≥ + − +∑ ∑  (6.4) 

The limits on the number of lots that can be processed are given by, 

U
ijkl ij ijkN N Y≤  (6.5) 

(U
ijkl ij ijk iijsN N Y X≤ −  (6.6) 

Eq. 6.5 ensures that the number of lots of product i on machine j in slot k in 

scenario l will never be more than the limit on maximum number of lots, if the product i 

is assigned to machine j in slot k. Eq. 6.6 ensures that there is no production in null slots.  

General practice of a fab is to keep the lot size constant. If Bijkl is the number of 

wafers of product i processed on machine j in slot k in scenario l, then Bijkl is defined as, 

ijkl i ijklB BS N=  (6.7) 
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To push the slots to the end of the period, we use, 

( 1)iij k iijkX X+ ≥  ( 1) 1d dK k K− + ≤ <  (6.8) 

There is storage for each product at the end of each period. There are wafers that join the 

system (P(i)) at the end of each period (supply) and also that got processed during the 

period (demand). So the number of lots that is available in a storage at the end of a period 

is given by, 

( 1)
1

dK

idl i d l i ijkl
j k

SI SI P B−
=

= + −∑∑  (6.9) 

 The number of wafers that can be processed in the next period cannot be more than the 

available in the storage. Therefore, 

1

( 1)

d

d

K

i d l ijkl
j k K

SI B
−

−
>

≥ ∑ ∑  (6.10) 

Because of the storage policy at the end of each period for each product, slots that belong 

to a period must end on or before that due date. So we force the following constraint. 

( , , ) dTE j k l DD≤  dk K∀ ≤  (6.11) 

The objective is to maximize the production of the facility, i.e. to maximize the number 

of lots or wafers from photolithography station. 

( ) ( )ijkl
i j k l

PRO B w l wc i=∑∑∑∑  (6.12) 

w(l) and wc(i) are probability of each scenario l and weight coefficient of each product i 

respectively. 

Note that we can obtain the deterministic model by removing the index l over all 

the parameters and variables. In the next section, we evaluate the model performance and 

the effect of uncertainty on the fab performance. 
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6.4 Model Evaluation    

We consider a photolithography station that processes 2 devices. Each device consists of 

4 layers and hence the total number of products is 8 (I = 8). So the lots waiting before the 

stepper machines in the photolithography station belong to one of the 8 products. There 

are 4 machines (J = 4) to process the lots in the station. There are product-machine 

combinations because all machines cannot process a given lot/product.  

Table 6.1: Processing times and unit-based setup times of each product on each machine 
in each scenario 

 
 Scenario 1 Scenario 2 
 Machines Machines 

Product J1 J2 J3 J4 J1 J2 J3 J4 
I1 0.7/0.5 0.85/0.50 0.85/0.55  0.9/1.1 1.1/1.0 1.2/0.9  
I2   0.90/0.60*    1.0/1.0*  
I3   0.95/0.65 1.10/0.60   1.1/1.1 1.00/0.95
I4    0.75/0.65    0.90/1.00
I5 0.8/0.7*    1.2/1.0*    
I6  0.95/0.60  0.85/0.60*  1.0/1.0  1.10/1.00*
I7 0.7/0.6  1.00/0.65  1.0/0.9  0.8/1.0  
I8  1.00/0.65*    1.0/1.1*   

* Machine is setup initially for that particular product. 

We consider two scenarios (L = 2) in which processing time and setup time varies 

with respect to scenario. In scenario 1, the processing times and setup times are at a lower 

limit where as in scenario 2, they are at a higher limit. The processing times and setup 

times are given in Table 6.1 for each scenario. There is equal probability for each 

scenario to occur (W(l) = 0.5). Initially there are 400 wafers of each product (SI(I,D0) = 

400) and at the end of each period there are 300 wafers of each product (P(i) = 300) to 

join the system as reentrant material. There are four due dates (D = 4) and are given as 

D1 = 24 hr, D2 = 48 hr, D3 = 72 hr, D4 = 96 hr. 

  78 



                                                   Chapter 6: Applications in Semiconductor Manufacturing 

We have taken 12 slots (K = 12) to solve this problem and they are evenly 

distributed among the due dates as follows: K1=3, K2=6, K3=9, K4=12. We solved 

deterministic model for both the scenarios and the objective values are 15,600 and 14750 

for scenario 1 and scenario 2 respectively. Then we solved the stochastic model that 

accounts for both the scenarios. As the processing times are different for each scenario, 

the schedules are different though the allotments of products to units are same for both 

the scenarios. The objective value (15079), as expected, is between the two values given 

by deterministic models.  

As shown above, the objective value in stochastic model deviates considerably 

from deterministic values. Therefore, the deterministic model not only predicts the 

expected value of objective value wrongly but also can yield a sub-optimal solution in the 

face of uncertainty. The outcome depends on several factors such as the number of 

reentrant lots at the end of each period (P(i)), probability of each scenario (w(l)), 

importance of each product (wc(i)). One more interesting thing is the CPU time for the 

evaluation of the performance of all models. For the deterministic model with lower 

processing times (scenario 1), CPU time to solve the model is 1 s where as for scenario 2, 

it is about 1000 s. But for the stochastic model, CPU time required to solve the MILP 

model is about 650 s.  

6.5 Conclusions 

This work has addressed the problem of scheduling single stage batch plants with 

reentrant flows in stochastic environment. We developed one MILP formulation in which 

we implemented the uncertainties in the variables and parameters for photolithography 

station by modeling it as single stage batch plant. We solved the problem for two 
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different scenarios in which the processing times and unit-based setup times vary with 

each scenario. Then we compared the objective value achieved by the stochastic model 

with the deterministic model. It clearly shows that the deterministic model predicts the 

expected value of objective wrongly in the face of uncertainty. But, further work is 

recommended to analyze the model with more scenarios and with more variables. We 

expect that the model size increases rapidly with the number of scenarios and hence a 

powerful algorithm is needed to aid the model in analyzing the system with uncertainties. 
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Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS 

Scheduling of single-stage noncontinuous multiproduct chemical processes with non-

identical units/lines was addressed in this work. Four different slot-based Mixed Integer 

Linear Programming (MILP) formulations (semicontinuous units-no due date, multiple 

due dates; batch units-no due date, multiple due dates) were presented. We were able to 

develop the models without idle/null product and hence could reduce the number of 

binary variables involved. We also developed corresponding event-based formulations 

for all the cases. Later, slot-based models were compared with event-based models and 

the results put slot-based models ahead of event-based models. Especially RMIP values 

were in favor of slot-based models. Furthermore, event-based models could not solve 

some scheduling problems where as slot-based models solved those problems without 

taking much computational effort. Also, we observed that decoupling of tasks from units 

in a mathematical formulation cannot reduce the number of binary assignment variables. 

Next, a novel way of scheduling multiproduct single stage batch plants with non-

identical units was addressed. In this work, we developed a mathematical model to 

schedule multiple batches using slot-based continuous-time representation. Our model 

allows the scheduling of multiple batches of the same type of product in a single slot and 

hence is able to handle larger size problems. Although our model introduced integer 

variables, it reduced the binary variables considerably, and hence solved the scheduling 

problems faster. Numerical tests have shown that the integer variables as opposed to 

binary variables have much less effect on the model performance. Also, we showed that 

our models are very robust with respect to Big-M value. 
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Finally, we addressed the application of above work in the scheduling of 

photolithography station in semiconductor industry with stochastic data. One MILP 

formulation was developed in which we implemented the uncertainties in the variables 

and parameters for photolithography station by modeling it as a single stage batch plant. 

We solved the problem for two different scenarios in which the processing times and 

unit-based setup times vary with each scenario. Then we compared the objective value 

achieved by the stochastic model with the objective value obtained with the deterministic 

model. We showed that the deterministic model predicts the expected value of objective 

wrongly in the face of uncertainty. 

7.1 Recommendations 

Even though the comparison between slot-based and event-based models has 

considered reasonable size examples, bigger size examples are recommended to draw 

comparison. Also, in the present comparison, to keep the comparison simple we did not 

consider the transition times. Comparison may be done after incorporating transition 

times in the event-based. And, a comparison is recommended between the slot-based and 

the predecessor-successor based models for semicontinuous processes. 

In chapter 5, our methodology was able to solve larger size problems where one 

can satisfy the demands on or before the due dates. Though our models can solve smaller 

size problems where one cannot satisfy the demands within the due dates, it failed to 

solve larger size problems for such scenarios. Further work is needed to solve the larger 

size, industrial scale problems in which we cannot meet the demands on or before the due 

dates. Some of the constraints may be rewritten in a slightly different manner or new 

constraints may be added, which may actually improve the effectiveness of these models. 
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Furthermore, we addressed only single-stage processes in this work. Ideas of this work 

can be applied to multi stage processes. 

As mentioned in chapter 6, deterministic models are not useful when some 

uncertainty exists in model variables and parameters. Though we have studied this issue, 

further work is recommended to analyze the model with more scenarios and more 

variable parameters. We expect that the model size increases rapidly with the number of 

scenarios and hence a powerful algorithm is needed to aid the model in analyzing the 

system with uncertainties. 
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APPENDIX A: Chapter 4 
 
A.1: GAMS file for Example 1 
 
SETS 
I  products /I1*I8/ 
I1(I)  products /I1*I8/ 
I2(I1)  products /I1*I8/ 
I3(I1)  products /I1*I8/ 
I4(I1)  products /I1*I8/ 
J  units /J1*J3/ 
J1(J)  units /J1*J3/ 
D  duedates/D1*D4/ 
D1  duedates/D1*D4/ 
K  slots /K1*K3/ 
KA(K) slots /K1*K3/ 
 
IJ(I,J)   products that can be produced on line J 
/(I1*I3,I8).J1,(I2*I4,I7).J2,(I4*I7).J3/ 
I1J(I1,J)  products that can be produced on line J 
/(I1*I3,I8).J1,(I2*I4,I7).J2,(I4*I7).J3/ 
JI(J,I)   lines that can produce product I 
/(J1).I1,(J1*J2).I2,(J1*J2).I3,(J2*J3).I4,J3.I5,J3.I6,(J2*J3).I7,J1.I8/ 
JI1(J,I1)  lines that can produce product I 
/(J1).I1,(J1*J2).I2,(J1*J2).I3,(J2*J3).I4,J3.I5,J3.I6,(J2*J3).I7,J1.I8/ 
 
TABLE MPL(I,J) MIN PROD LENGTH OF I ON J 
      J1    J2   J3 
I1    10 
I2    12    15 
I3    12    10 
I4          15   10 
I5               12 
I6               15 
I7          10   10 
I8    10 
 
TABLE RU(I,J) MAX RATE OF PRODUCTION OF I ON J 
      J1    J2   J3 
I1    20 
I2    20    25 
I3    25    20 
I4          20   20 
I5               25 
I6               20 
I7          15   15 
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I8    15 
 
SCALAR 
H /50/; 
 
PARAMETERS 
DE(I) DEMAND/I1*I8 400/; 
 
VARIABLES 
MS; 
BINARY VARIABLES Y; 
POSITIVE VARIABLES RL,XX; 
 
EQUATIONS 
ASSIGN1(J,K)   Assignment 
EXX1(I,J,K)     Transition1 
EXX2(I,J,K)     Transition2 
MAKESPAN(J)    Makespan 
LIMRL1(I,J,K)  Limit on run length1 
LIMRL2(I,J,K)  Limit on run length2 
EX4(I,J,K)      Extra slots 
DEMAND(I)      Demand; 
 
ASSIGN1(J,K).. SUM(I$IJ(I,J),Y(I,J,K))=E=1; 
 
EXX1(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K-1)=E=sum(I1$I1J(I1,J),XX(I,I1,J,K)); 
 
EXX2(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K)=E=sum(I1$I1J(I1,J),XX(I1,I,J,K)); 
 
EX4(I,J,K)$(ord(k) gt 2).. XX(I,I,J,K+1)=G=XX(I,I,J,K); 
 
MAKESPAN(J).. SUM(K,SUM(I$IJ(I,J),RL(I,J,K)))=L=MS; 
 
LIMRL1(I,J,K)$IJ(I,J).. RL(I,J,K)=G=MPL(I,J)*(Y(I,J,K)-XX(I,I,J,K)$(ORD(K) GT 
2)); 
 
LIMRL2(I,J,K)$IJ(I,J).. RL(I,J,K)=L=H*(Y(I,J,K)-XX(I,I,J,K)$(ORD(K) GT 2)); 
 
DEMAND(I).. SUM(J$JI(J,I),SUM(K,RU(I,J)*RL(I,J,K)))=G=DE(I); 
 
MODEL SC/ALL/; 
Y.UP(I,J,K)=1; 
XX.UP(I,I1,J,K)=1; 
 
OPTION SOLPRINT=OFF; 
OPTION OPTCR=0.0001; 
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SOLVE SC USING MIP MINIMIZING MS; 
 
DISPLAY Y.L,RL.L,MS.L; 
 
A.2: GAMS file for Example 2 
 
SETS 
I  products /I1*I8/ 
I1(I)  products /I1*I8/ 
I2(I1)  products /I1*I8/ 
I3(I1)  products /I1*I8/ 
I4(I1)  products/I1*I8/ 
J  units /J1*J3/ 
J1(J)  units /J1*J3/ 
D  duedates/D1*D4/ 
D1  duedates/D1*D4/ 
K  slots /K0*K8/ 
KA(K) slots /K0*K8/ 
 
IJ(I,J)   products that can be produced on line J 
/(I1*I3,I8).J1,(I2*I4,I7).J2,(I4*I7).J3/ 
I1J(I1,J)  products that can be produced on line J 
/(I1*I3,I8).J1,(I2*I4,I7).J2,(I4*I7).J3/ 
JI(J,I)   lines that can produce product I 
/(J1).I1,(J1*J2).I2,(J1*J2).I3,(J2*J3).I4,J3.I5,J3.I6,(J2*J3).I7,J1.I8/ 
JI1(J,I1)  lines that can produce product I 
/(J1).I1,(J1*J2).I2,(J1*J2).I3,(J2*J3).I4,J3.I5,J3.I6,(J2*J3).I7,J1.I8/ 
 
 
TABLE BSMIN(J,I) Batch size of I on J 
     I1  I2    I3    I4   I5   I6   I7   I8 
J1  50 100 100                          100 
J2       100 100  80               100 
J3              100  50  100 50 
 
TABLE BSMAX(J,I) Batch size of I on J 
      I1   I2    I3   I4    I5    I6    I7   I8 
J1  100 140 150                             200 
J2         150 150 120               150 
J3                  150  100 200 100 
 
TABLE FPT(J,I) PROCESSING TIME OF I ON J 
     I1  I2  I3   I4   I5   I6   I7   I8 
J1  3   2   3                             2 
J2       2   3    2                 1 

  91 



  Appendix A 

J3                  3     3    2    2 
 
TABLE PT(J,I) PROCESSING TIME OF I ON J 
      I1   I2    I3    I4   I5    I6    I7   I8 
J1  .15  .16  .16                              .15 
J2         .17  .16  .15                .17 
J3                       .14  .16  .17  .18 
 
PARAMETER 
RTU(J) RELEASE TIME OF UNIT J 
/J1 0,J2 0,J3 0/ 
DE(I)  demand 
/I1 400,I2 250,I3 400,I4 500,I5 300,I6 250,I7 200,I8 300/ 
 
SCALAR 
M large positive number/1000/ 
H HORIZON /96/ 
 
VARIABLES 
Y(I,J,K)   assignment of order I to slot K 
MS         makespan 
OBJ        objective; 
POSITIVE VARIABLES XX,B; 
BINARY VARIABLE Y; 
EQUATIONS 
EX1(J,K)         Assignments 
EXX1(I,J,K)   Transition1 
EXX2(I,J,K)   Transition2 
DEMAND(I)  Demand 
EX4(I,J,K)  Extra slots 
BATCH1(I,J,K) Batch limit 1 
BATCH2(I,J,K) Batch limit 2 
MAKESPAN(J) Objective;  
 
 
EX1(J,K).. SUM(I$IJ(I,J),Y(I,J,K))=E=1; 
 
EXX1(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K-1)=E=sum(I1$I1J(I1,J),XX(I,I1,J,K)); 
 
EXX2(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K)=E=sum(I1$I1J(I1,J),XX(I1,I,J,K)); 
 
EX4(I,J,K)$(ord(k) gt 2).. XX(I,I,J,K+1)=G=XX(I,I,J,K); 
 
BATCH1(I,J,K)$(IJ(I,J) AND (ORD(K) GT 1)).. BSMIN(J,I)*(Y(I,J,K)-
XX(I,I,J,K)$(ORD(K) GT 2))=L=B(I,J,K); 
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BATCH2(I,J,K)$(IJ(I,J) AND (ORD(K) GT 1)).. BSMAX(J,I)*(Y(I,J,K)-
XX(I,I,J,K)$(ORD(K) GT 2))=G=B(I,J,K); 
 
DEMAND(I).. DE(I)=L=SUM(J$JI(J,I),SUM(K$(ORD(K) GT 1),B(I,J,K))); 
 
MAKESPAN(J)..MS=G=SUM(K$(ORD(K)GT 
1),SUM(I$IJ(I,J),(FPT(J,I)*Y(I,J,K)+PT(J,I)*B(I,J,K)))); 
 
 
MODEL BATCH /all/; 
BATCH.iterlim=100000000; 
BATCH.reslim=100000000; 
Y.UP(I,J,K)=1; 
XX.UP(I,I1,J,K)=1; 
Y.FX("I3","J2","K0")=1; 
Y.FX("I1","J1","K0")=1; 
Y.FX("I7","J3","K0")=1; 
Y.FX("I1","J2","K0")=0; 
Y.FX("I2","J1","K0")=0; 
Y.FX("I2","J2","K0")=0; 
Y.FX("I3","J1","K0")=0; 
Y.FX("I4","J2","K0")=0; 
Y.FX("I4","J3","K0")=0; 
Y.FX("I5","J3","K0")=0; 
Y.FX("I6","J3","K0")=0; 
Y.FX("I7","J2","K0")=0; 
Y.FX("I8","J1","K0")=0; 
 
*option optca = .01; 
option optcr = 0.0001; 
OPTION SOLPRINT=OFF; 
SOLVE BATCH USING MIP MINIMIZING MS; 
 
DISPLAY Y.L,XX.L,MS.L,B.L; 
 
A.3: GAMS file for Example 3 
 
SETS 
I  products /I1*I8/ 
I1(I)  products /I1*I8/ 
I2(I1)  products /I1*I8/ 
I3(I1)  products /I1*I8/ 
I4(I1)  products /I1*I8/ 
J  units /J1*J3/ 
J1(J)  units /J1*J3/ 
D  duedates/D1*D3/ 
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D1  duedates/D1*D3/ 
K  slots /K0*K9/ 
KA(K) slots /K0*K9/ 
 
IJ(I,J)   products that can be produced on line J 
/(I1*I3,I8).J1,(I2*I4,I7).J2,(I4*I7).J3/ 
I1J(I1,J)  products that can be produced on line J 
/(I1*I3,I8).J1,(I2*I4,I7).J2,(I4*I7).J3/ 
JI(J,I)   lines that can produce product I 
/(J1).I1,(J1*J2).I2,(J1*J2).I3,(J2*J3).I4,J3.I5,J3.I6,(J2*J3).I7,J1.I8/ 
JI1(J,I1)  lines that can produce product I 
/(J1).I1,(J1*J2).I2,(J1*J2).I3,(J2*J3).I4,J3.I5,J3.I6,(J2*J3).I7,J1.I8/ 
KD(K,D) 
/(K1*K3).D1,(K1*K6).D2,(K1*K9).D3/ 
FIRSTK(K) 
/K1,K4,K7/ 
LKD(K,D) 
/(K1*K2).D1,(K4*K5).D2,(K7*K8).D3/; 
 
TABLE MPL(I,J) MIN PROD LENGTH OF I ON J 
      J1    J2   J3 
I1    10 
I2    12    15 
I3    12    10 
I4          15   10 
I5               12 
I6               15 
I7          10   10 
I8    10 
 
TABLE RU(I,J) MAX RATE OF PRODUCTION OF I ON J 
      J1    J2   J3 
I1    20 
I2    20    25 
I3    25    20 
I4          20   20 
I5               25 
I6               20 
I7          15   15 
I8    15 
 
TABLE Q(I,D1) Amount of product I required at duedate D 
    D1   D2   D3 
I1  100  100  100 
I2  100  100  100 
I3  100  200  100 
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I4  200  100  200 
I5  200  300  100 
I6  150  200  200 
I7  100  100  100 
I8  200  200  100 
 
TABLE CT(I1,I) Transition time bet I1&I on J 
    I1   I2   I3 
I1  0.0  1.5  1.6 
I2  5.1  0.0  1.3 
I3  1.6  2.3  0.0 
 
 
TABLE ALPHA(I,D) Weight coefficient for delay of product I at due date D 
    D1   D2   D3 
I1  1    1    1 
I2  1    1    1 
I3  1    1    1 
I4  1    1    1 
I5  1    1    1 
I6  1    1    1 
I7  1    1    1 
I8  1    1    1 
 
 
PARAMETER 
RTU(J) RELEASE TIME OF UNIT J 
/J1 0,J2 0,J3 0/ 
DD(D) due date D(hr) 
/D1 24,D2 48,D3 72/ 
 
SCALAR 
M /100/; 
 
VARIABLES 
OBJ; 
BINARY VARIABLES Y; 
POSITIVE VARIABLES RL,XX,DE,TE; 
 
EQUATIONS 
ASSIGN1(J,K) 
EXX1(I,J,K) 
EXX2(I,J,K) 
LIMRL1(I,J,K) 
LIMRL2(I,J,K) 
LIMRL3(I,J,K) 
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EX4(I,J,K,D) 
RT(J) 
PROD4b(J,K) 
DELAY(I,J,K,D) 
DEMAND(I,D) 
OBJECTIVE; 
 
ASSIGN1(J,K).. SUM(I$IJ(I,J),Y(I,J,K))=E=1; 
 
EXX1(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K-1)=E=sum(I1$I1J(I1,J),XX(I,I1,J,K)); 
 
EXX2(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K)=E=sum(I1$I1J(I1,J),XX(I1,I,J,K)); 
 
LIMRL1(I,J,K)$(IJ(I,J) AND (ORD(K) GT 1)).. RL(I,J,K)=G=MPL(I,J)*(Y(I,J,K)-
XX(I,I,J,K)$(NOT FIRSTK(K))); 
 
LIMRL2(I,J,K)$(IJ(I,J) AND (ORD(K) GT 1)).. RL(I,J,K)=L=M*Y(I,J,K); 
 
LIMRL3(I,J,K)$(IJ(I,J) AND (ORD(K) GT 1)).. RL(I,J,K)=L=M*(Y(I,J,K)-
XX(I,I,J,K)$(NOT FIRSTK(K))); 
 
EX4(I,J,K,D)$(LKD(K,D) and ord(k) gt 2).. XX(I,I,J,K+1)=G=XX(I,I,J,K); 
 
RT(J).. TE(J,"K0")=E=RTU(J); 
 
PROD4b(J,K)$(ord(K) GT 1).. TE(J,K)=G=TE(J,K-1)+SUM(I$IJ(I,J),RL(I,J,K)); 
 
DEMAND(I,D).. 
SUM(J$JI(J,I),SUM(K$KD(K,D),RU(I,J)*RL(I,J,K)))=G=SUM(D1$(ORD(D1) LE 
ORD(D)),Q(I,D1)); 
 
DELAY(I,J,K,D)$(JI(J,I) AND KD(K,D)).. DE(I,D)=G=TE(J,K)-DD(D)-M*(1-
Y(I,J,K)); 
 
OBJECTIVE.. OBJ=E=SUM(D,SUM(I,ALPHA(I,D)*DE(I,D))); 
 
MODEL SC/ALL/; 
Y.UP(I,J,K)=1; 
*X.UP(I,I1,J,K)=1; 
Y.FX("I3","J2","K0")=1; 
Y.FX("I1","J1","K0")=1; 
Y.FX("I7","J3","K0")=1; 
Y.FX("I1","J2","K0")=0; 
Y.FX("I2","J1","K0")=0; 
Y.FX("I2","J2","K0")=0; 
Y.FX("I3","J1","K0")=0; 
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Y.FX("I4","J2","K0")=0; 
Y.FX("I4","J3","K0")=0; 
Y.FX("I5","J3","K0")=0; 
Y.FX("I6","J3","K0")=0; 
Y.FX("I7","J2","K0")=0; 
Y.FX("I8","J1","K0")=0; 
OPTION SOLPRINT=OFF; 
OPTION OPTCR=0.0001; 
 
SOLVE SC USING MIP MINIMIZING OBJ; 
 
DISPLAY TE.L,Y.L,RL.L,DE.L,OBJ.L; 
 
A.4: GAMS file for Example 4 
 
SETS 
I  products /I1*I8/ 
I1(I) products /I1*I8/ 
I2(I1)  products /I1*I8/ 
I3(I1)  products /I1*I8/ 
I4(I1)  products /I1*I8/ 
J  units /J1*J3/ 
J1(J)  units /J1*J3/ 
D  duedates/D1*D3/ 
D1  duedates/D1*D3/ 
K  slots /K0*K9/ 
KA(K) slots /K0*K9/ 
 
 
IJ(I,J)   products that can be produced on line J 
/(I1*I3,I8).J1,(I2*I4,I7).J2,(I4*I7).J3/ 
I1J(I1,J)  products that can be produced on line J 
/(I1*I3,I8).J1,(I2*I4,I7).J2,(I4*I7).J3/ 
JI(J,I)   lines that can produce product I 
/(J1).I1,(J1*J2).I2,(J1*J2).I3,(J2*J3).I4,J3.I5,J3.I6,(J2*J3).I7,J1.I8/ 
JI1(J,I1)  lines that can produce product I 
/(J1).I1,(J1*J2).I2,(J1*J2).I3,(J2*J3).I4,J3.I5,J3.I6,(J2*J3).I7,J1.I8/ 
KD(K,D) 
/(K1*K3).D1,(K1*K6).D2,(K1*K9).D3/ 
LKD(K,D) 
/(K1*K2).D1,(K4*K5).D2,(K7*K8).D3/ 
FIRSTK(K) 
/K1,K4,K7/ 
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TABLE BSMIN(J,I) Batch size of I on J 
    I1  I2  I3   I4   I5   I6   I7   I8 
J1  50  100 100                      100 
J2      100 100  80             100 
J3               100  50   100  50 
 
TABLE BSMAX(J,I) batch size of I on J 
    I1  I2  I3   I4   I5   I6   I7   I8 
J1  100 140 150                      200 
J2      150 150  120            150 
J3               150  100  200  100 
 
TABLE FPT(J,I) PROCESSING TIME OF I ON J 
    I1  I2  I3   I4   I5   I6   I7   I8 
J1  3   2   3                        2 
J2      2   3    2              1 
J3               3    3    2    2 
 
TABLE PT(J,I) PROCESSING TIME OF I ON J 
    I1   I2   I3   I4   I5   I6   I7   I8 
J1  .15  .16  .16                      .15 
J2       .17  .16  .15            .17 
J3                 .14  .16  .17  .18 
 
 
TABLE Q(I,D1) Amount of product I required at duedate D 
    D1   D2   D3 
I1  100  100  100 
I2  100  100  100 
I3  100  200  100 
I4  50   100  100 
I5  100  100  100 
I6  100  200  100 
I7  100  100  100 
I8  50   100  100 
 
TABLE ALPHA(I,D) Weight coefficient for delay of product I at due date D 
    D1   D2   D3 
I1  1    1    1 
I2  1    1    1 
I3  1    1    1 
I4  1    1    1 
I5  1    1    1 
I6  1    1    1 
I7  1    1    1 
I8  1    1    1 
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PARAMETER 
RTU(J) RELEASE TIME OF UNIT J 
/J1 0,J2 0,J3 0/ 
DD(D) 
/D1 50,D2 100,D3 200/ 
 
SCALAR 
M large positive number/500/ 
 
 
VARIABLES 
Y(I,J,K)  assignment of order I to slot K 
MS        makespan 
OBJ       objective; 
POSITIVE VARIABLES XX,B,DE,TE; 
BINARY VARIABLE Y; 
EQUATIONS 
PROD4b(J,K)   Timing constraint 
DELAY(I,J,K,D)  Delay order constraint 
EX1(J,K)         Assignments 
EXX1(I,J,K)   Transition1 
EXX2(I,J,K)   Transition2 
EX4(I,J,K,D)  Extra slots 
RT(J)   Release times 
BATCH1(I,J,K) Batch limit 1 
BATCH2(I,J,K) Batch limit 2 
PROD2(I,D)     DEMAND 
OBJECTIVE       Minimize tardiness or makespan or tardy orders; 
 
 
 
DELAY(I,J,K,D)$(JI(J,I) and KD(K,D)).. DE(I,D)=G=TE(J,K)-DD(D)-M*(1-Y(I,J,K)); 
 
RT(J).. TE(J,"K0")=E=RTU(J); 
 
EX1(J,K).. SUM(I$IJ(I,J),Y(I,J,K))=E=1; 
 
EXX1(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K-1)=E=sum(I1$I1J(I1,J),XX(I,I1,J,K)); 
 
EXX2(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K)=E=sum(I1$I1J(I1,J),XX(I1,I,J,K)); 
 
EX4(I,J,K,D)$(LKD(K,D) and ord(k) gt 2).. XX(I,I,J,K+1)=G=XX(I,I,J,K); 
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PROD4b(J,K)$((ord(K) GT 1)).. TE(J,K)=G=TE(J,K-
1)+SUM(I$IJ(I,J),(FPT(J,I)*Y(I,J,K)+PT(J,I)*B(I,J,K))); 
 
PROD2(I,D).. 
SUM(J$JI(J,I),SUM(K$(KD(K,D) AND ORD(K) GT 1),B(I,J,K))) 
=G=SUM(D1$(ord(D1) LE ord(D)),Q(I,D1)); 
 
BATCH1(I,J,K)$(IJ(I,J) AND (ORD(K) GT 1)).. BSMIN(J,I)*(Y(I,J,K)-
XX(I,I,J,K)$(NOT FIRSTK(K)))=L=B(I,J,K); 
 
BATCH2(I,J,K)$(IJ(I,J) AND (ORD(K) GT 1)).. BSMAX(J,I)*(Y(I,J,K)-
XX(I,I,J,K)$(NOT FIRSTK(K)))=G=B(I,J,K); 
 
OBJECTIVE.. OBJ=E=SUM(D,SUM(I,ALPHA(I,D)*DE(I,D))); 
 
 
 
MODEL BATCH /all/; 
BATCH.iterlim=100000000; 
BATCH.reslim=100000000; 
Y.UP(I,J,K)=1; 
XX.UP(I,I1,J,K)=1; 
Y.FX("I3","J2","K0")=1; 
Y.FX("I1","J1","K0")=1; 
Y.FX("I7","J3","K0")=1; 
Y.FX("I1","J2","K0")=0; 
Y.FX("I2","J1","K0")=0; 
Y.FX("I2","J2","K0")=0; 
Y.FX("I3","J1","K0")=0; 
Y.FX("I4","J2","K0")=0; 
Y.FX("I4","J3","K0")=0; 
Y.FX("I5","J3","K0")=0; 
Y.FX("I6","J3","K0")=0; 
Y.FX("I7","J2","K0")=0; 
Y.FX("I8","J1","K0")=0; 
 
*option optca = .01; 
option optcr = 0.0001; 
OPTION SOLPRINT=OFF; 
SOLVE BATCH USING MIP MINIMIZING OBJ; 
 
DISPLAY Y.L,XX.L,OBJ.L,TE.L,DE.L,B.L; 
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APPENDIX B: Chapter 5 
 
B.1: GAMS file for Example 2 for Model M1 
 
SETS 
I  products /I1*I4/ 
I1(I)  products /I1*I4/ 
I2(I1)  products /I1*I4/ 
I3(I1)  products /I1*I4/ 
D  duedates /D1*D4/ 
D1(D)  duedates /D1*D4/ 
J  units /J1*J3/ 
J1(J)  units /J1*J3/ 
K  slots /K0*K5/ 
KA(K) slots /K0*K5/ 
 
IJ(I,J)   products that can be produced on line J 
/(I2*I4).J1,(I1,I3*I4).J2,(I1*I2).J3/ 
I1J(I1,J)  products that can be produced on line J 
/(I2*I4).J1,(I1,I3*I4).J2,(I1*I2).J3/ 
I2J(I2,J)  products that can be produced on line J 
/(I2*I4).J1,(I1,I3*I4).J2,(I1*I2).J3/ 
ID(I,D)  products due on D 
/(i1*i3).D1,(I1*I4).D2,(I1*I4).D3,(I1*I2,I4).D4/ 
ID1(I,D1)  products due on D 
/(i1*i3).D1,(I1*I4).D2,(I1*I4).D3,(I1*I2,I4).D4/ 
JI(J,I)   lines that can produce product I 
/(J2*J3).I1,(J1,J3).I2,(J1*J2).I3,(J1*J2).I4/ 
JI1(J,I1)  lines that can produce product I 
/(J2*J3).I1,(J1,J3).I2,(J1*J2).I3,(J1*J2).I4/ 
KD(K,D)  slots to take place before duedate D 
/(K1).D1,(K1*K2).D2,(K1*K3).D3,(K1*K5).D4/ 
NKD(K,D)  slots to take place except first slot before duedate D 
/(K5).D4/ 
LKD(K,D)  slots to take place except last slot before duedate D 
/(K1).D1,(K2).D2,(K3).D3,(K4).D4/ 
FIRSTK(K) 
/K1*K4/ 
 
TABLE BSMIN(J,I) Min. Batch size of I on J 
      I1    I2    I3    I4 
J1         100  100 150 
J2  100         100 100 
J3  140 80 
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TABLE BSMAX(J,I) Max. Batch size of I on J 
      I1    I2    I3    I4 
J1         140  150  200 
J2  120         120  150 
J3  160 120 
 
TABLE FPT(J,I) Fixed Processing Time of I on J 
    I1  I2  I3  I4 
J1      3   2   2.5 
J2  5       2   3 
J3  5   4 
 
TABLE PT(J,I) Variables Processing Time of I on J 
      I1   I2     I3    I4 
J1         0.15 .17   0.15 
J2  .15          .17 0.155 
J3  .145 .155 
 
TABLE CT(I1,I) Transition time bet I1&I on J 
      I1   I2    I3    I4 
I1  0.0  1.5  1.6  2.7 
I2  5.1  0.0  1.3  4.8 
I3  1.6  2.3  0.0  1.4 
I4  1.0  2.5  2.1  0.0 
 
TABLE Q(I,D) Amount of product I required at duedate D 
     D1   D2   D3   D4 
I1  50   100   100  100 
I2  100  100  100  200 
I3  50   100   100 
I4         200   100  100 
 
TABLE ALPHA(I,D) Weight coefficient for delay of product I at due date D 
    D1   D2   D3   D4 
I1  1     1      1       1 
I2  1     1      1       1 
I3  1     1      1       1 
I4  1     1      1       1 
 
PARAMETER 
DD(D) due date D(hr) 
/D1 24,D2 48,D3 72,D4 96/ 
RTU(J) RELEASE TIME OF UNIT J 
/J1 0,J2 0,J3 0/ 
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SCALAR 
M large positive number/100/ 
NU Max no. of batches/5/ 
NL Min no. of batches/1/ 
 
VARIABLES 
Y(I,J,K) assignment of order I to slot K 
TE(J,K) start time of order I(day) 
DE(I,D) delay in delivery of order I(days) 
H  makespan 
OBJ  objective 
B(I,J,K)  batch size 
N(I,J,K)   number of batches; 
POSITIVE VARIABLES B,TE,DE,XX; 
BINARY VARIABLE Y; 
INTEGER VARIABLE N; 
EQUATIONS 
PROD4b(I1,J,K)  Timing constraint 
DELAY(I,J,K,D)  Delay constraint 
EX1(J,K)         Assignment 
EX4(I,J,K,D)    Extra slots 
EXX1(I,J,K)     Transition1 
EXX2(I,J,K)     Transition2 
RT(J)            Release times 
BATCH1(I,J,K,D) Batch limit 1 
BATCH2(I,J,K)   Batch limit 2 
BATCH3(I,J,K,D) Batch limit 3 
BATCH4(I,J,K)   Batch limit 4 
PROD2(I,D)      Production 
OBJECTIVE       Minimize tardiness or makespan or tardy orders; 
 
PROD4b(I1,J,K)$(JI1(J,I1) and (ord(K) GT 1)).. TE(J,K)=G=TE(J,K-1)+ 
SUM(I$IJ(I,J),XX(I,I1,J,K)*CT(I1,I))+N(I1,J,K)*FPT(J,I1)+B(I1,J,K)*PT(J,I1); 
 
DELAY(I,J,K,D)$(JI(J,I) and KD(K,D)).. DE(I,D)=G=TE(J,K)-DD(D)-M*(1-Y(I,J,K)); 
 
RT(J).. TE(J,"K0")=E=RTU(J); 
 
EX1(J,K).. SUM(I$IJ(I,J),Y(I,J,K))=E=1; 
 
EXX1(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K-1)=E=sum(I1$I1J(I1,J),XX(I,I1,J,K)); 
 
EXX2(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K)=E=sum(I1$I1J(I1,J),XX(I1,I,J,K)); 
 
EX4(I,J,K,D)$((ORD(K) GT 2) AND LKD(K,D)).. XX(I,I,J,K+1)=G=XX(I,I,J,K); 
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PROD2(I,D)$ID(I,D).. 
SUM(J$JI(J,I),SUM(K$KD(K,D),B(I,J,K)))=G= 
SUM(D1$(ID1(I,D1) AND (ord(D1) LE ord(D))),Q(I,D1)); 
 
BATCH1(I,J,K,D)$(IJ(I,J) AND ORD(K) GT 1).. N(I,J,K)=L=NU*(Y(I,J,K)-
XX(I,I,J,K)$(NOT FIRSTK(K))); 
 
BATCH2(I,J,K)$(IJ(I,J) AND ORD(K) GT 1).. B(I,J,K)=G=BSMIN(J,I)*N(I,J,K); 
 
BATCH3(I,J,K,D)$(IJ(I,J) and ORD(K) GT 1).. N(I,J,K)=L=NU*Y(I,J,K); 
 
BATCH4(I,J,K)$(IJ(I,J) and ORD(K) GT 1).. B(I,J,K)=L=BSMAX(J,I)*N(I,J,K); 
 
OBJECTIVE.. OBJ=E=SUM(D,SUM(I,ALPHA(I,D)*DE(I,D))); 
 
MODEL BATCH /all/; 
BATCH.iterlim=100000000; 
BATCH.reslim=100000000; 
Y.UP(I,J,K)=1; 
XX.UP(I,I1,J,K)=1; 
Y.FX("I4","J1","K0")=1; 
Y.FX("I1","J2","K0")=1; 
Y.FX("I2","J3","K0")=1; 
Y.FX("I2","J1","K0")=0; 
Y.FX("I3","J1","K0")=0; 
Y.FX("I3","J2","K0")=0; 
Y.FX("I4","J2","K0")=0; 
Y.FX("I1","J3","K0")=0; 
N.UP(I,J,K)=5; 
N.LO(I,J,K)=0; 
B.LO(I,J,K)=0; 
*option optca = .01; 
option optcr = 0.0001; 
OPTION SOLPRINT=OFF; 
SOLVE BATCH USING MIP MINIMIZING OBJ; 
 
DISPLAY TE.L,Y.L,XX.L,DE.L,OBJ.L,N.L,B.L; 
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B.2: GAMS file for Example 2 for Model M2 
 
SETS 
I  products /I1*I4/ 
I1(I)  products /I1*I4/ 
I2(I1)  products /I1*I4/ 
I3(I1)  products /I1*I4/ 
D  duedates /D1*D4/ 
D1(D)  duedates /D1*D4/ 
J  units     /J1*J3/ 
J1(J)  units    /J1*J3/ 
K  slots      /K0*K5/ 
KA(K) slots     /K0*K5/ 
FIRSTK(K) first slots /K1,K2,K3,K4/ 
 
IJ(I,J)   products that can be produced on line J 
/(I2*I4).J1,(I1,I3*I4).J2,(I1*I2).J3/ 
I1J(I1,J)  products that can be produced on line J 
/(I2*I4).J1,(I1,I3*I4).J2,(I1*I2).J3/ 
I2J(I2,J)  products that can be produced on line J 
/(I2*I4).J1,(I1,I3*I4).J2,(I1*I2).J3/ 
ID(I,D)  products due on D 
/(I1*I3).D1,(I1*I4).D2,(I1*I4).D3,(I1*I2,I4).D4/ 
ID1(I,D1)  products due on D 
/(I1*I3).D1,(I1*I4).D2,(I1*I4).D3,(I1*I2,I4).D4/ 
JI(J,I)   lines that can produce product I 
/(J2*J3).I1,(J1,J3).I2,(J1*J2).I3,(J1*J2).I4/ 
JI1(J,I1)  lines that can produce product I 
/(J2*J3).I1,(J1,J3).I2,(J1*J2).I3,(J1*J2).I4/ 
KD(K,D)  slots to take place before duedate D 
/(K1).D1,(K1*K2).D2,(K1*K3).D3,(K1*K5).D4/ 
LKD(K,D)  slots to take place except last slot before duedate D 
/(K1).D1,(K2).D2,(K3).D3,(K4).D4/ 
 
TABLE BSMIN(J,I) Min. Batch size of I on J 
      I1    I2    I3    I4 
J1         100  100 150 
J2  100         100 100 
J3  140 80 
 
TABLE BSMAX(J,I) Max. Batch size of I on J 
      I1    I2    I3    I4 
J1         140  150  200 
J2  120         120  150 
J3  160 120 
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TABLE FPT(J,I) Fixed Processing Time of I on J 
    I1  I2  I3  I4 
J1      3   2   2.5 
J2  5       2   3 
J3  5   4 
 
TABLE PT(J,I) Variables Processing Time of I on J 
      I1   I2     I3    I4 
J1         0.15 .17   0.15 
J2  .15          .17 0.155 
J3  .145 .155 
 
TABLE CT(I1,I) Transition time bet I1&I on J 
      I1   I2    I3    I4 
I1  0.0  1.5  1.6  2.7 
I2  5.1  0.0  1.3  4.8 
I3  1.6  2.3  0.0  1.4 
I4  1.0  2.5  2.1  0.0 
 
TABLE Q(I,D) Amount of product I required at duedate D 
     D1   D2   D3   D4 
I1  50   100   100  100 
I2  100  100  100  200 
I3  50   100   100 
I4         200   100  100 
 
TABLE ALPHA(I,D) Weight coefficient for delay of product I at due date D 
    D1   D2   D3   D4 
I1  1     1      1       1 
I2  1     1      1       1 
I3  1     1      1       1 
I4  1     1      1       1 
 
PARAMETER 
DD(D) due date D(hr) 
/D1 24,D2 48,D3 72,D4 96/ 
RTU(J) RELEASE TIME OF UNIT J 
/J1 0,J2 0,J3 0/ 
 
SCALAR 
M large positive number/100/ 
NU Max no. of batches/5/ 
NL Min no. of batches/1/ 
 
VARIABLES 
Y(I,J,K)   assignment of order I to slot K 
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TE(J,K)    start time of order I(day) 
DE(I,D)    delay in delivery of order I(days) 
H           makespan 
OBJ        objective 
DB(I,J,K)  batch size 
DN(I,J,K)  number of batches; 
POSITIVE VARIABLES TE,DE,XX,DB; 
BINARY VARIABLE Y; 
INTEGER VARIABLE DN; 
EQUATIONS 
PROD4b(I1,J,K)  Timing constraint 
DELAY(I,J,K,D)  Delay order constraint 
EX1(J,K)         Assignment 
EX4(I,J,K,D)    Extra slots 
EXX1(I,J,K)     Transition 
EXX2(I,J,K)     Transition 
RT(J)            Release time 
BATCH1(I,J,K)   No. of batches limit 
BATCH2(I,J,K)   Batch amount 
PROD2(I,D)      Production 
OBJECTIVE       Minimize tardiness or makespan or tardy orders; 
 
PROD4b(I1,J,K)$(JI1(J,I1) and (ord(K) GT 1)).. TE(J,K)=G=TE(J,K-1)+ 
SUM(I$IJ(I,J),(XX(I,I1,J,K))*CT(I1,I))+(NL*(Y(I1,J,K)-XX(I1,I1,J,K)$(NOT 
FIRSTK(K)))+DN(I1,J,K))*FPT(J,I1) 
+((NL*(Y(I1,J,K)-XX(I1,I1,J,K)$(NOT 
FIRSTK(K)))+DN(I1,J,K))*BSMIN(J,I1)+DB(I1,J,K))*PT(J,I1); 
 
DELAY(I,J,K,D)$(JI(J,I) and KD(K,D)).. DE(I,D)=G=TE(J,K)-DD(D)-M*(1-Y(I,J,K)); 
 
RT(J).. TE(J,"K0")=E=RTU(J); 
 
EX1(J,K).. SUM(I$IJ(I,J),Y(I,J,K))=E=1; 
 
EXX1(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K-1)=E=sum(I1$I1J(I1,J),XX(I,I1,J,K)); 
 
EXX2(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K)=E=sum(I1$I1J(I1,J),XX(I1,I,J,K)); 
 
EX4(I,J,K,D)$(LKD(K,D) and ord(k) gt 2).. XX(I,I,J,K+1)=G=XX(I,I,J,K); 
 
PROD2(I,D)$(ID(I,D)).. 
SUM(J$JI(J,I),SUM(K$KD(K,D),((NL*(Y(I,J,K)-XX(I,I,J,K)$(NOT 
FIRSTK(K)))+DN(I,J,K))*BSMIN(J,I)+DB(I,J,K)))) 
=G=SUM(D1$(ID1(I,D1) AND (ord(D1) LE ord(D))),Q(I,D1)); 
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BATCH1(I,J,K)$(IJ(I,J) and (ORD(K) GT 1)).. DN(I,J,K)=L=(NU-NL)*(Y(I,J,K)-
XX(I,I,J,K)$(NOT FIRSTK(K))); 
 
BATCH2(I,J,K)$(IJ(I,J) AND (ORD(K) GT 1)).. DB(I,J,K)=L=(NL*(Y(I,J,K)-
XX(I,I,J,K)$(NOT FIRSTK(K)))+DN(I,J,K))*(BSMAX(J,I)-BSMIN(J,I)); 
 
OBJECTIVE.. OBJ=E=SUM(D,SUM(I,ALPHA(I,D)*DE(I,D))); 
 
 
MODEL BATCH /all/; 
BATCH.iterlim=100000000; 
BATCH.reslim=100000000; 
Y.UP(I,J,K)=1; 
XX.UP(I,I1,J,K)=1; 
DN.LO(I,J,K)=0; 
DB.LO(I,J,K)=0; 
Y.FX("I4","J1","K0")=1; 
Y.FX("I1","J2","K0")=1; 
Y.FX("I2","J3","K0")=1; 
Y.FX("I2","J1","K0")=0; 
Y.FX("I3","J1","K0")=0; 
Y.FX("I3","J2","K0")=0; 
Y.FX("I4","J2","K0")=0; 
Y.FX("I1","J3","K0")=0; 
*option optca = .01; 
option solprint=off; 
option optcr = 0.0001; 
SOLVE BATCH USING MIP MINIMIZING OBJ; 
PARAMETER AMT(I,J,K); 
AMT(I,J,K)$(IJ(I,J) AND ORD(K) GT 1)= 
(NL*(Y.L(I,J,K)-XX.L(I,I,J,K)$(NOT 
FIRSTK(K)))+DN.L(I,J,K))*BSMIN(J,I)+DB.L(I,J,K); 
 
DISPLAY TE.L,Y.L,XX.L,DE.L,OBJ.L,DN.L,DB.L,AMT; 
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C.1: GAMS file  
 
option solprint=off; 
 
SETS 
I Layers/I1*I8/ 
I1      /I1*I8/ 
I2      /I1*I8/ 
I3      /I1*I8/ 
I4      /I1*I8/ 
J  Steppers/J1*J4/ 
K  Slots/K0*K12/ 
L  Scenarios /1*2/ 
D  Shifts or Duedates/D0*D4/ 
D1(D) /D0*D4/ 
KA(K) slots /K0*K12/ 
FIRSTK(K) first slots/K1,K4,K7,K10/ 
 
 
IJ(I,J)   products that can be produced on line J 
/(I1,I5,I7).J1,(I1,I6,I8).J2,(I1*I3,I7).J3,(I3*I4,I6).J4/ 
I1J(I1,J) products that can be produced on line J 
/(I1,I5,I7).J1,(I1,I6,I8).J2,(I1*I3,I7).J3,(I3*I4,I6).J4/ 
I2J(I2,J)  products that can be produced on line J 
/(I1,I5,I7).J1,(I1,I6,I8).J2,(I1*I3,I7).J3,(I3*I4,I6).J4/ 
I3J(I3,J)  products that can be produced on line J 
/(I1,I5,I7).J1,(I1,I6,I8).J2,(I1*I3,I7).J3,(I3*I4,I6).J4/ 
I4J(I4,J)  products that can be produced on line J 
/(I1,I5,I7).J1,(I1,I6,I8).J2,(I1*I3,I7).J3,(I3*I4,I6).J4/ 
JI(J,I)   lines that can produce product I 
/(J1*J3).I1,(J3).I2,(J3*J4).I3,(J4).I4,(J1).I5,(J2,J4).I6,(J1,J3).I7,(J2).I8/ 
JI1(J,I1)  lines that can produce product I 
/(J1*J3).I1,(J3).I2,(J3*J4).I3,(J4).I4,(J1).I5,(J2,J4).I6,(J1,J3).I7,(J2).I8/ 
KD(K,D)  slots to take place before duedate D 
/(K1*K3).D1,(K1*K6).D2,(K1*K9).D3,(K1*K12).D4/ 
LKD(K,D)  slots to take place except last slot before duedate D 
/(K1*K2).D1,(K4*K5).D2,(K7*K8).D3,(K10*K11).D4/ 
SKD(K,D) slots that are in between d and (d-1) 
/(K1*K3).D1,(K4*K6).D2,(K7*K9).D3,(K10*K12).D4/ 
 
 
TABLE ST(J,L,I) SETUP TIME OF I ON J 
      I1  I2  I3  I4  I5  I6  I7  I8 
J1.1  .5              .7      .6 
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J2.1  .5                  .6      .65 
J3.1  .55 .6  .65             .65 
J4.1          .6  .55     .6 
J1.2  1.1             1       .9 
J2.2  1                   1       1.1 
J3.2  .9  1   1.1             1 
J4.2          .95 1       1 
 
 
TABLE PT(J,L,I) PROCESSING TIME OF I ON J 
         I1     I2      I3      I4    I5       I6      I7      I8 
J1.1  .7                          .8               .7 
J2.1  .85                                   .95             1 
J3.1  .85    .9      .95                            1 
J4.1                   1.1     .75            .85 
J1.2  .9                           1.2              1 
J2.2  1.1                                   1               1 
J3.2  1.2    1       1.1                            .8 
J4.2                 1       .9             1.1 
 
PARAMETER 
DD(D) due date D(hr) 
/D1 24,D2 48,D3 72,D4 96/ 
RTU(J) RELEASE TIME OF UNIT J 
/J1 0,J2 0,J3 0/ 
BS(I) 
/I1 25,I2 25,I3 25,I4 25,I5 25,I6 25,I7 25,I8 25/ 
P(I) 
/I1*I8 300/ 
W(L) 
/1 0.5,2 0.5/ 
WT(I) 
/I1 1,I2 1.25,I3 1.75,I4 2,I5 1,I6 1.25,I7 1.75,I8 2/ 
SCALAR 
M large positive number/1000/ 
NU Max no. of batches/200/ 
NL Min no. of batches/1/ 
H  HORIZON /96/ 
 
VARIABLES 
Y(I,J,K)   assignment of order I to slot K 
TE(J,K,L)    start time of order I(day) 
*DE(I,D)    delay in delivery of order I(days) 
*ST(I,D)    storage of layer I at due date D 
PRO  production 
B(I,J,K,L)  batch size 
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N(I,J,K,L)  number of batches; 
POSITIVE VARIABLES SI,TE,XX,B; 
BINARY VARIABLE Y; 
INTEGER VARIABLE N; 
EQUATIONS 
PROD4b(J,K,L)  Timing constraint 
EX1(J,K)         Assignment constraints 
EX4(I,J,K,D)   Extra slots 
EXX1(I,J,K)   Transition1 
EXX2(I,J,K)   Transition2 
RT(J,L)  Release time 
BATCH1(I,J,K,L) Batch limit 1 
BATCH2(I,J,K,L) Batch limit 2 
BATCH3(I,J,K,L) Batch limit 3 
STORAGE1(I,D,L) Storage 1 
STORAGE2(I,D,L) Storage 2 
TIMELIMIT(J,K,L,D) 
OBJECTIVE2     MAXIMIZING PRODUCTION; 
 
 
RT(J,L).. TE(J,"K0",L)=E=RTU(J); 
 
EX1(J,K).. SUM(I$IJ(I,J),Y(I,J,K))=E=1; 
 
EXX1(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K-1)=E=sum(I1$I1J(I1,J),XX(I,I1,J,K)); 
 
EXX2(I,J,K)$(IJ(I,J) and ord(k) gt 1).. Y(I,J,K)=E=sum(I1$I1J(I1,J),XX(I1,I,J,K)); 
 
EX4(I,J,K,D)$(LKD(K,D) and ord(k) gt 2).. XX(I,I,J,K+1)=G=XX(I,I,J,K); 
 
PROD4b(J,K,L)$((ord(K) GT 1)).. TE(J,K,L)=G=TE(J,K-1,L) 
+SUM(I$IJ(I,J),(Y(I,J,K)-
XX(I,I,J,K))*ST(J,L,I))+SUM(I$IJ(I,J),(N(I,J,K,L)*PT(J,L,I))); 
 
BATCH1(I,J,K,L)$(IJ(I,J) AND ORD(K) GT 1).. N(I,J,K,L)=L=NU*(Y(I,J,K)-
XX(I,I,J,K)$(NOT FIRSTK(K))); 
 
BATCH2(I,J,K,L)$(IJ(I,J) AND ORD(K) GT 1).. B(I,J,K,L)=E=BS(I)*N(I,J,K,L); 
 
BATCH3(I,J,K,L)$(IJ(I,J) and ORD(K) GT 1).. N(I,J,K,L)=L=NU*Y(I,J,K); 
 
STORAGE1(I,D,L)$(ORD(D) GT 1).. SI(I,D,L)=E=SI(I,D-1,L)+P(I)-
SUM(J,SUM(K$SKD(K,D),B(I,J,K,L))); 
 
STORAGE2(I,D,L)$(ORD(D) GT 1).. SI(I,D-
1,L)=G=SUM(J,SUM(K$SKD(K,D),B(I,J,K,L))); 
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TIMELIMIT(J,K,L,D)$(KD(K,D)).. TE(J,K,L)=L=DD(D); 
 
OBJECTIVE2.. PRO=E=SUM((I,J,K,L)$(IJ(I,J) AND ORD(K) GT 
1),B(I,J,K,L)*W(L)*WT(I)); 
 
MODEL BATCH /all/; 
BATCH.iterlim=100000000; 
BATCH.reslim=100000000; 
Y.UP(I,J,K)=1; 
XX.UP(I,I1,J,K)=1; 
N.LO(I,J,K,L)=0; 
B.LO(I,J,K,L)=0; 
Y.FX("I5","J1","K0")=1; 
Y.FX("I8","J2","K0")=1; 
Y.FX("I2","J3","K0")=1; 
Y.FX("I6","J4","K0")=1; 
Y.FX("I1","J1","K0")=0; 
Y.FX("I7","J1","K0")=0; 
Y.FX("I1","J2","K0")=0; 
Y.FX("I6","J2","K0")=0; 
Y.FX("I1","J3","K0")=0; 
Y.FX("I3","J3","K0")=0; 
Y.FX("I7","J3","K0")=0; 
Y.FX("I3","J4","K0")=0; 
Y.FX("I4","J4","K0")=0; 
SI.FX("I1","D0",L)=400; 
SI.FX("I2","D0",L)=400; 
SI.FX("I3","D0",L)=400; 
SI.FX("I4","D0",L)=400; 
SI.FX("I5","D0",L)=400; 
SI.FX("I6","D0",L)=400; 
SI.FX("I7","D0",L)=400; 
SI.FX("I8","D0",L)=400; 
*option optca = .01; 
option optcr = 0.01; 
OPTION SOLPRINT=OFF; 
SOLVE BATCH USING MIP MAXIMIZING PRO; 
PARAMETER AMT(L); 
AMT(L)=SUM((I,J,K)$(IJ(I,J) AND ORD(K) GT 1),B.L(I,J,K,L)); 
 
DISPLAY TE.L,Y.L,PRO.L,N.L,B.L,SI.L,XX.L,AMT; 
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