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Résumé

Le problème de gestion de projets à contraintes de ressources communément appelé
Resource Constrained Project Scheduling Problem (RCPSP) est un problème central dans
le domaine de la Recherche Opérationnelle et plus particulièrement dans la théorie de
l’ordonnancement. Le problème consiste à ordonnancer plusieurs activités soumises
entre elles à des contraintes de précédences et dont l’exécution requiert une ou plusieurs
ressources. Chaque ressource à une capacité limitée et est disponible en permanence à
partir du temps zéro. Le but est de trouver le temps de début de chaque activité qui
permette de minimiser la date de fin du projet tout en respectant les contraintes de
ressources et les contraintes de précédence.

Le RCPSP est un problème d’ordonnancement fondamental qui a fait l’objet d’études
approfondies. De très nombreux travaux de la littérature ont proposé des méthodes de
résolution pour ce problème : bornes inférieures, méthodes exactes, heuristiques et méta
heuristiques.

Dans la première partie de la thèse, plusieurs types de bornes inférieures ont été pro-
posés. Les premières bornes inférieures développées reposent sur la notion d’instance
réduite. A partir d’une valeur triviale (calculée à partir de bornes usuelles comme la
borne capacité, chemin critique, chemin critique amélioré . . .), on calcule des temps de
début au plus tôt et des temps de fin au plus tard pour les activités. De plus, l’horizon
est subdivisé en plusieurs intervalles calculés à partir de ces instants. Une instance ré-
duite est construite alors sur chaque intervalle en prenant comme temps d’exécution la
partie obligatoire de chaque activité sur cet intervalle. Les relations de précédence et
les consommations en ressources sont gardées telle quelles. A partir de cette instance
réduite, les bornes usuelles peuvent être appliquées. Si la valeur de la borne calculée est
supérieure à la largeur de l’intervalle alors une infaisabilité est détectée et la valeur de la
borne peut être incrémentée (ou bien une recherche dichotomique peut être appliquée).
Le second type de bornes inférieures est basé sur des améliorations du raisonnement
énergétique classique. Ces améliorations sont réalisées par le biais d’extensions du
raisonnement énergétique revisité initialement proposé pour le problème à machines
parallèles. Ces améliorations essayent d’augmenter la valeur du travail sur chaque in-
tervalle à travers des formulations mathématiques en nombres entiers. Une relaxation
du raisonnement énergétique revisité a également été proposée donnant lieu à des mod-
èles de problèmes de type sac-à-dos multidimensionnel.
Enfin, toutes ces bornes ont été améliorées en utilisant la notion de fonction duale réal-
isable qui permet de rajouter des ressources au problème initiale. Ceci a pour effet de
détecter plus d’infaisabilités.
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RÉSUMÉ

Ces différentes évaluations par défaut se sont avérées tout à fait compétitives avec les
meilleures bornes inférieures de la littérature, et présentent un compromis temps de
calcul/efficacité réellement intéressant. Des résultats expérimentaux ont été menés sur
les instances du benchmark PSPLIB a permis d’identifier les bornes inférieures les plus
pertinentes.
Ce travail a donné lieu à la publication d’un article dans la revue internationale Comput-
ers and Operations Research, une des revues les plus reconnues du domaine.

La deuxième partie du travail concernant l’évaluation par défaut de la durée opti-
male d’un projet, est basée sur une formulation linéaire déjà proposée dans la littérature.
Cette formulation, peu efficace dans sa forme initiale, a été enrichie de nombreuses iné-
galités valides permettant par exemple de restreindre la préemption, de respecter autant
que possible les contrainte de précédence entre les activités, d’introduire des incompat-
ibilités dans l’exécution de plusieurs tâches simultanément par l’utilisation de cliques
de disjonction etc. Là encore un travail expérimental minutieux a été entrepris en vue
de d’identifier la configuration d’inégalités valides aboutissant au meilleur compromis
efficacité/temps de calcul. Les bornes proposées permettent d’améliorer les meilleures
bornes de la littérature dans un temps très compétitif : 48 bornes inférieures ont été
améliorées dans les instances du Benchmark PSPLIB. De plus, ces bornes étant basées
sur un découpage de l’horizon en intervalles successifs, elles peuvent être adaptées selon
la taille du problème et permettent de calculer des bornes inférieures efficaces sur des
grandes instances (jusqu’à 120 activités).

La dernière partie du travail concerne la proposition de nouvelles méthodes exactes
de type Séparation/Evaluation pour le problème de gestion de projet à contraintes de
ressources. Dans un premier temps, la meilleure borne inférieure développée dans la
première partie de la thèse a été adaptée pour un schéma de branchement classique
existant dans la littérature. Dans un second temps, un schéma de branchement origi-
nal a été proposé basé sur le découpage de l’ordonnancement en plusieurs blocs. Les
résultats expérimentaux montrent que seulement les projets à 30 activités peuvent être
résolus. Malheureusement, comme pour les meilleures méthodes exactes de la littéra-
ture, la procédure ne permet pas de résoudre les problèmes à 60 activités. Si l’efficacité
des méthodes proposées doit être améliorée, il est évident qu’il s’agit là d’un travail
particulièrement difficile et constitue de ce fait un axe de recherche très intéressant.

Mots clés : Gestion de projets à contraintes de ressources, Raisonnement énergétique,
Formulation mathématique, Borne inférieure, Procédure par séparation et évaluation,
Règle de dominance.

iii



Abstract

The Resource Constrained Project Scheduling Problem (RCPSP) is a central problem
in the operations research field and particularly in the scheduling theory.

The problem is to schedule several activities subject to precedence constraints and
whose execution requires one or more resources. Each resource is continuously available
from time zero onwards and has a limited capacity. The objective is to find the start time
of each activity that allows to minimize the end of the project (also called makespan)
while respecting the resource and precedence constraints.

The RCPSP is a fundamental scheduling problem that has been widely studied in the
literature. Numerous published works have proposed methods for solving this problem:
lower bounds, exact methods, heuristics and meta heuristics.

In the first part of the thesis, several types of lower bounds have been proposed. The
first lower bounds developed are based on the notion of reduced instance. From a trivial
value (computed from simple lower bounds as the capacity bound, the critical path, the
critical sequence . . .), we calculate the release dates and the due dates of each activity.
Moreover, the time horizon is divided into several intervals calculated from these latter
instants. Then, a reduced instance is constructed on each interval by taking the manda-
tory part of each activity on this interval instead of its processing time. The precedence
relations and resource demands are kept as is. From this reduced instance, simple lower
bounds can be applied. If the calculated value of the lower bound is greater than the
width of the time-interval then an infeasibility is detected and the value of the lower
bound can be incremented (or a binary search can be applied).
The second type of lower bounds is based on improvements of the classical energetic
reasoning. These improvements are realized through extensions of the revisited ener-
getic reasoning initially proposed for the parallel machines problem with heads and
tails. These improvements try to increase the value of the work on each interval through
integer programming formulations. A relaxation of the revisited energetic reasoning has
also been proposed resulting to multi-dimensional knapsack problems.
Finally, all these bounds were improved by using the concept of dual feasible functions
that allows to add fictious resources to the initial problem. This results of detecting more
infeasibilities.
The developed lower bounds proved to be quite competitive with the best lower bounds
of the literature and present a compromise between efficiency and computation time
which is really interesting. Experimental results were conducted on the PSPLIB bench-
mark instances in order to identify the most relevant lower bounds.
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ABSTRACT

This work resulted in the publication of an article in the international journal Computers
and Operations Research, one of the most recognized journals of the field.

The second part of the work concerning the evaluation of the optimal value of the
makespan, is based on a linear formulation already proposed in the literature. This
formulation, inefficient in its original form, was enriched with many valid inequalities
in order to restrict preemption as much as possible, to respect the precedence constraints
between activities, to introduce incompatibilities between activities by the use of cliques
of disjunction etc. Again a careful experimental work was undertaken to identify the
best configuration of valid inequalities leading to good trade off between efficiency and
computational time. The proposed lower bounds improve the best lower bounds of
the literature in a very competitive time: 48 lower bounds have been improved in the
instances of the PSPLIB Benchmark. Moreover, these lower bounds are based on a
subdivision of the horizon into successive intervals, can be adapted depending on the
size of the problem and allow the calculation of effective lower bounds on large instances
(up to 120 activities).

In the last part of the work, new Branch-and-Bounds procedures were proposed for
the RCPSP. Initially, the best lower bound developed in the first part of the thesis has
been adapted for an existing branching scheme. In a second step, an original branching
scheme has been proposed based on the subdivision of the schedule into several blocs.
The experimental results show that only 30-activity projects can be solved. Unfortu-
nately, as the best exact methods proposed on the literature, the procedure can not solve
the problems up to 60 activities. If the effectiveness of the proposed methods must be
improved, it is clear that this is an extraordinarily difficult task and therefore constitutes
a very interesting perspective of research.

Keywords : Resource Constrained Project Scheduling Problem, Energetic Reasoning,
Mathematical formulation, Lower bound, Branch-and-Bound, Dominance rule.
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Introduction

In real life situations, decisions to be made are often constrained by specific re-
quirements which are typically conflicting in nature. The decision making process gets
increasingly more complicated with increment in the number of constraints. Modeling
and development of solution methodologies for these scenarios have been the challenge
for operations researchers from the outset.

In such a rough economic environment, the key functions of the success for the
industrial companies lie in their abilities to produce the required items at the right time
and with the lowest possible cost. One of the main key functions to satisfy this harsh
constraints are the production planning and scheduling.

The problem of project scheduling subject to resource constraints is one of the prob-
lems particularly studied in recent years by many researchers dealing with problems
of Operations Research and specifically, scheduling [5]. Because of its theoretical and
practical interest, project scheduling problems received a great attention since the early
80s.

A project consists of a number of tasks subject to precedence constraints and whose
execution requires one or more resources. These resources can be of different types
(Human, physical, monetary, etc.) and are available in limited quantities. The goal
is to find for each task a start date that minimizes the test considered, e.g., the date
of completion of the project, the largest delay, etc. while respecting the resources and
precedence constraints. Besides some theoretical interest, industrial applications based
on project scheduling models are numerous. We refer to surveys, e.g., [5, 42, 60, 56] for
a presentation of several of these applications, for which resolution methods are based
largely on traditional methods of literature.

In this thesis, we focus on the classical version of the Resource Constrained Project
Scheduling Problem (RCPSP). In the standard RCPSP, the problem consists in scheduling
activities submitted to both precedence relationship and resource constraints, in order to
minimize the project duration. Optimizing the project duration becomes a crucial point
in most of the organizations, such as engineering, manufacturing systems and Research
and Development projects.

Lot of lower bounds have been proposed for the RCPSP. Lower bounds are extremely
useful both from practical and theoretical point of view, especially for evaluating the

1



INTRODUCTION

quality of feasible solutions. In addition the most efficient exact procedures [41, 72]
proposed in the literature can only handle small sized instances of 30 activities. This is
why researchers turned to heuristic methods to tackle the problem. In [65], the authors
compare more than 250 heuristic procedures.

This thesis work consists in developing lower bounds and exact methods for the
RCPSP. The thesis is composed of five chapters. In the following, we give a brief
overview of the content of each chapter.

• Chapter 1, presents the RCPSP. We give a description of the problem and some of
its properties. Possible variants of the standard problem are presented.

• Chapter 2, presents a survey of the RCPSP. First, we present two mathematical
formulations of the problem. Then, we describe, the different approaches to solve
the problem. We begin by presenting some lower bounds. Then, we describe exact
procedures. The chapter is concluded by presenting heuristic methods used to
solve approximately the problem.

• Chapter 3, provides new lower bounds for the RCPSP based on the concept of
energetic reasoning. We propose new efficient approaches that improves the classical
energetic reasoning procedure. We also use the notion of Dual Feasible Functions
in order to tighten the feasibility conditions and adjustments. Further numerical
experiments analysis are proposed.

• Chapter 4, is dedicated to a preemptive relaxation based LP formulation. In the
first part of the chapter, we present a basic preemptive formulation. Then we
present all the improvements that we propose to strengthen this relaxation. Finally,
computational experiments on classical benchmark are presented.

• Chapter 5, presents exact procedures for the RCPSP. We begin by adapting the
developed lower bounds to a classical branching scheme. Then, we propose a
new branching scheme which consists in placing, alternatively, the activities at the
beginning and the end of the schedule. Numerical experiments are conducted to
test the efficiency of the procedures.
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Chapter 1

The Resource Constrained Project
Scheduling Problem

1.1 Introduction

The resource constrained project scheduling problem (RCPSP) is a very general
scheduling problem which may be used to model many applications in practice (e.g.
a production process, a software project, a school timetable, the construction of a house
or the renovation of an airport). The objective is to schedule some activities over time
such that scarce resource capacities are respected and a certain objective function is op-
timized. Examples for resources may be machines, people, rooms, money or energy,
which are only available with limited capacities. As objective functions e.g. the project
duration, the deviation from deadlines or costs concerning resources may be minimized.
In this chapter, we introduce the basic version of the problem and some possible exten-
sions. In Section 1.2, we describe the RCPSP and introduce essential notation. Then, we
present in Section 1.3 two applications of the RCPSP. Finally, we dedicate Section 1.4 to
present various extensions and generalizations of the classical problem.

1.2 Description of the RCPSP

1.2.1 Definition

The RCPSP is a central problem in scheduling theory that has great relevance in
project management and more specifically to the crucial issue of allocating scarce re-
sources to activities. Formally, the RCPSP is defined as follows: We consider a project
that consists of a set A of n activities to be scheduled nonpreemptively. A set R of K
renewable resources are required for processing these activities. Each resource k (k ∈ R)
is continuously available from time zero onwards with resource capacity Bk. The pro-
cessing of an activity j (j ∈ A) lasts pj units of time, and requires bjk units of resource
k (k ∈ R). Moreover, the activities are interrelated through precedence constraints.
These time restrictions are often modeled using an appropriate activity-on-node graph
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G = (V, A). In this graph, V = {0, 1, . . . , n + 1} is the set of nodes corresponding to
the n activities, in addition to two dummy zero-duration activities 0 and n + 1 that rep-
resent the start and the end of the project, respectively. Each vertex j ∈ V is weighted
with the corresponding processing time pj. The dummy activities need no resources
and have processing time zero. For all activities j (j ∈ A), we set 0 precedes j for all
activities j without any predecessor and j precedes n + 1 for all activities j without any
successor. The arcset A represents the precedence restrictions (that is, (i, j) ∈ A ⇔ i is
an immediate predecessor of j).

The objective is to determine starting times sj (j ∈ A) for the activities in such a way
that:

• at each time t the total resource demand is less than or equal to the resource
availability of each resource k (k ∈ R),

• the given precedence constraints are fulfilled, i.e., si + pi ≤ sj if i precedes j, and

• the makespan Cmax =
n

max
j=1

Cj is minimized, where Cj = sj + pj is assumed to be

the completion time of activity j.

It is well-known that the RCPSP is strongly NP-hard (Blazewicz et al. [18]). Added
to that and from a computational perspective, the RCPSP turns out to be an extremely
hard nut to crack. Indeed, to give an insight of the notorious intractability of the RCPSP,
we mention that state-of-the-art exact algorithms fail to solve some well-known 60-
activity benchmark instances that are still open about fifteen years after their publication
(see Artigues et al. [5]).

The vector S = (sj) defines a schedule of the project. Vector S is called feasible if all
resource and precedence constraints are fulfilled.

Moreover, for each activity j, we define:
Pred(j) = {i ∈ A : (i, j) ∈ A} and Succ(j) = {i ∈ A : (j, i) ∈ A}

as the sets of predecessors and successors of activity j (j ∈ A), respectively.

Example 1. Consider a project with n = 4 activities, K = 2 resources with capacities B1 = 5,
B2 = 7. In addition, we suppose that activity 2 precedes activity 3 and the following data:

j 1 2 3 4
pj 4 3 5 8
bj1 2 1 2 2
bj2 3 5 2 4

Figure 1.1 illustrates the corresponding activity-on-node network, where the dummy activi-
ties 0 and 5 have been added and the vertices are weighted with the processing times. In Figure
1.2(a) a so-called Gantt chart of a feasible schedule with Cmax = 15 is drawn. This schedule
does not minimize the makespan, since by moving activity 1 to the right, a shorter schedule is
obtained. An optimal schedule with makespan Cmax = 12 is shown in Figure 1.2(b).
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1.3. APPLICATIONS OF THE RCPSP

Figure 1.1: The activity-on-node network for Example 1

1.2.2 RCPSP as a generalization of machine scheduling problems

The RCPSP is a generalization of machine scheduling problems such as single ma-
chine, parallel machine and shop problems. For the single machine scheduling problem,
we are given n jobs j = 1, . . . , n with processing times pj which have to be processed
on a single machine. Such a problem can be modeled by an RCPSP with one renewable
resource with capacity B1 = 1 and resource requirements bj1 = 1, ∀j = 1, . . . , n.
For the parallel machine problem, we have m identical machines (the processing time pj
of a job does not depend on the machine on which the job is processed) which can work
simultaneously. We can model this problem with a special RCPSP with one resource
with capacity B1 = m. The resource demands are the same as for the single machine
case.

1.3 Applications of the RCPSP

In this paragraph, we describe two simple applications of the RCPSP. We refer to the
book of Brucker and Knust [24] for further details on these applications and other ones.

1.3.1 High-school timetabling

In a basic high-school timetabling problem we are given M classes C1, . . . , CM, L
teachers H1, . . . , HL and P teaching periods T1, . . . , TP. Furthermore, we have a set of n
lectures A1, . . . , An. Associated with each lecture is a unique teacher and a unique class.
In order to simplify the presentation, we suppose that all teachers are available in all
teaching periods.

The corresponding timetabling problem is to assign the lectures to the teaching pe-
riods such that:

• each class has at most one lecture in any time period,
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(a) A feasible schedule (b) An optimal schedule

Figure 1.2: Two feasible schedules for Example 1

• each teacher has at most one lecture in any time period.

This problem may be formulated as an RCPSP with n activities, where each activity
corresponds to a lecture given by some teacher for some class. Furthermore, we have
K = M + L resources. The first M resources correspond to the classes C1, . . . , CM and
the last L resources correspond to the teachers H1, . . . , HL. We have Bk = 1, ∀k =
1, . . . , M + L.
If activity Aj is a lecture for class Cm given by teacher Hl , then its resource requirement
for resource k is given by:

bjk =

{
1 if k = m or k = M + l
0 otherwise

In a basic version of the problem one has to find a feasible schedule with Cmax ≤ T.
In practice, many additional constraints may have to be satisfied, e.g.

• for each class or teacher the number of teaching periods per day is bounded,

• certain lectures must be taught in special rooms,

• some pairs of lectures have to be scheduled simultaneously, etc.

1.3.2 Cutting stock problem

Materials such as paper, textiles, cellophane, etc. are manufactured in standard rolls
of a large width W which is the same for all rolls. These rolls have to be cut into smaller
rolls j, j = 1, . . . , n with widths wj such that the number of sliced rolls is minimized. In
Figure 1.3 a solution of a cutting-stock problem with n = 15 smaller rolls is illustrated.
In this solution 7 rolls have to be cut.
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Figure 1.3: Solution of a cutting-stock problem

This problem can be formulated as an RCPSP with only one renewable resource
with capacity B1 = W units. The activities j correspond to the rolls to be cut. Activity
j has processing time pj = 1 and uses bj1 = wj units of this resource. The makespan
corresponds to the number of standard rolls to be cut, i.e., a schedule with a minimal
makespan corresponds to a solution with a minimal number of sliced standard rolls.

1.4 Variants of the RCPSP

In the following, we will discuss different variants of the standard RCPSP. We refer
to the paper of Hartmann and Briskorn [56] for a survey of variants and extensions of
project scheduling problems.

1.4.1 RCPSP with time lags

For this problem (usually denoted by RCPSP/max), in addition to the precedence
relations, some minimal and maximal start-start time-lags (generalized precedence rela-
tions) between the activities are given. If we consider activity i and activity j, a distance
dij has to be satisfied between i and j, i.e., the starting times si and sj have to fulfill
sj − si ≥ dij. If dij ≥ 0, activity j cannot start earlier than dij time units after the start
of activity i (minimal time-lag). On the other hand, if dij < 0, activity j cannot start
earlier than |dij| time units before the starting time of activity i, or, equivalently, activity
i cannot start later than |dij| time units after the start of activity j (maximal time-lag).
Bartusch et al. [13], De Reyck et al. [93], Dorndorf et al. [43] and Fest et al. [48] presented
branch-and-bound algorithms, while Heilmann and Schwindt [57], Möhring et al. [79],
Brucker and Knust [22] and Bianco and Caramia [17] calculated lower bounds. Heuristic
solutions have been presented in Cesta et al. [34] and Neumann and Zimmermann [85].
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1.4. VARIANTS OF THE RCPSP

1.4.2 Multi-Mode project scheduling problem

In the multi-mode case a set M = {M1, . . . , MV} of so-called modes (processing
alternatives) is associated with each activity j (j ∈ A). The processing time of activity j
in mode Mv is given by pjv and the per period usage of a renewable resource k is given
by bjkv. One has to assign a mode to each activity and to schedule the activities in the
assigned modes.
Multiple modes may for example be used in order to model a situation in which an
activity can be rapidly processed by many workers or more slowly with less people.
This problem have been widely studied in the literature. Sprecher and Drexl [99] pre-
sented a branch-and bound algorithm to solve exactly the problem, while Boctor [19],
Hartmann [53, 54], Bouleimen and Lecocq [20], Nonobe and Ibaraki [86], Maniezzo and
Mingozzi [76], Alcaraz et al. [2] and Jarboui et al. [59] calculated heuristic solutions.
Recently, Coelho and Vanhoucke [36] proposed a new algorithm which splits the prob-
lem type into a mode assignment and a single mode project scheduling step. The mode
assignment step is solved by a satisfiability (SAT) problem solver and returns a feasible
mode selection to the project scheduling step. The project scheduling step is then solved
using an efficient metaheuristic procedure. Additionally, in [76, 22] lower bounds are
calculated based on a linear programming formulation.

For more informations, we refer to the paper of Weglarz et al. [110] for a survey of
the Multi-Mode problem and its extensions.

1.4.3 Multi-Skill project scheduling problem

In Multi-Skill project scheduling problem, the resources are staff members. Each
member Hm, m ∈ {1, . . . , M}, masters one or more specific skill(s) among all the skills
Kl , l ∈ {1, . . . , L} existing in the project. Thus, each unit of skill required by an activity
corresponds to a person that has to be assigned to do the required skill for this activity.
For each activity j ∈ A and each skill Kl , ajl is the number of persons that we have to
assign to j to do Kl during the whole processing time of j. A person can be assigned to
a need only if he/she masters the required skill. The objectif is to find a solution that
minimize the makespan of the project.
To the best of our knowledge, contributions proposed for multi-skill project scheduling
problem are very few: there are two different ways to take into account skills of employ-
ees, either the problem is to find a solution where the assignments match the skills of
employees [15, 16] and eventually their level of abilities [14], or the problem is to com-
pute a solution at a minimum cost under different constraints [94]. In the latter case,
every assignment of an employee has a cost that grows up if the employee is not well
skilled for the activity to do, moreover the global project has a due date, and there is a
penalty if the project is delayed after this due date.

There is a link between the Multi-Mode Project Scheduling Problem (MM-RCPSP)
and Multi-Skill Project Scheduling Problem (MS-RCPSP) models because MM-RCPSP
formulation can be used to describe a MS-RCPSP instance. In fact, a mode corresponds
to a given subset of staff members that matches the requirements of the activity. Every
mode has the same processing time, and there exist as many different modes as feasible
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subsets of staff members satisfying needs of the activity. The main difference between
MM-RCPSP and MS-RCPSP lies in the number of modes usually proposed for each
activity: in classical instances of Multi-Mode RCPSP [66], there are at most 10 modes
per activity, but if we want to enumerate the number of possible subsets of staff members
in an instance of MS-RCPSP, it will be very much larger. In some small instances with
3 skills and 10 persons, the number of modes per activity can exceed 1000. Moreover,
most of the exact methods proposed for solving exactly MM-RCPSP have a branching
scheme based on an explicit enumeration of the modes for each activity. Thus, these
methods cannot be used for solving exactly the MS-RCPSP.

1.4.4 Alternative objective functions

1.4.4.1 Time-oriented objective functions

Besides the objective of minimizing the makespan Cmax one may consider other ob-
jective functions f (C1, . . . , Cn) depending on the completion times of the activities. Ex-

amples are the total flow time
n

∑
j=1

Cj or more generally the weighted (total) flow time

n

∑
j=1

wjCj with nonnegative weights wj. Other objective functions depend on due dates dj

which are associated with the activities. With the lateness Lj = Cj − dj and the tardiness
Tj = max{0, Cj − dj}, the following objective functions are common:

the maximum lateness Lmax =
n

max
j=1

Lj

the total tardiness
n

∑
j=1

Tj

the total weighted tardiness
n

∑
j=1

wjTj

Nazareth et al. [82] and Nudtasomboon and Randhawa [88] propose to minimize
the sum of all activity completion times, while Rom et al. [95] minimize the weighted
sum of the completion times. Ballestín et al. [8], Kolisch [64] and Viana and de Sousa
[108] consider the minimization of the weighted tardiness. Neumann et al. [83] describe
the minimization of the maximum lateness.

1.4.4.2 Resource-based objective functions

Besides the time-oriented objective functions, resource-based ones may be consid-
ered. They occur for example in the area of resource investment and resource leveling
problems.

In the resource investment problem (RIP) the resource capacities Bk are not given, but
have to be determined as additional decision variables. Providing one unit of resource
k costs ck ≥ 0. The objective is to find a schedule with Cmax ≤ T for a given deadline
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T where the resource investment costs
K

∑
k=1

ckBk are minimized. The resource investment

problem has recently been tackled by Drexl and Kimms [44], Neumann and Zimmer-
mann [84], Neumann et al. [83], Ranjbar et al. [92] and Yamashita et al. [112].

In resource leveling problems (RLP) the variation of the resource usage over time is
measured. Let ck ≥ 0 be a cost for resource k and denote by bS

k (t) the resource usage of
resource k in period t ∈ {1, . . . , T} for a given schedule S, where bS

k (0) = 0 is assumed.
Besides the resource capacity k a target value Yk ≥ 0 for resource k is given. In so-
called deviation problems the deviations (overloads) of the resource usages from a given
resource profile are minimized. This can be done by minimizing:

the deviation
K

∑
k=1

ck

T

∑
t=1
|bS

k (t)−Yk|,

the overload
K

∑
k=1

ck

T

∑
t=1

max{0, bS
k (t)−Yk},

the squared deviation
K

∑
k=1

ck

T

∑
t=1

(bS
k (t)−Yk)

2.

Recently, Neumann and Zimmermann [84], Neumann et al. [83] and Nudtasomboon
and Randhawa [88] have tackled resource leveling problems.

On the other hand, in so-called variation problems, the resource usages should not
vary much over time. This can be achieved by minimizing one of the objective functions:

K

∑
k=1

ck

T

∑
t=1
|bS

k (t)− bS
k (t− 1)|,

K

∑
k=1

ck

T

∑
t=1

max{0, bS
k (t)− bS

k (t− 1)},

K

∑
k=1

ck

T

∑
t=1

(bS
k (t)− bS

k (t− 1))2.

1.5 Conclusion

In this chapter, we presented the resource constrained project scheduling problem.
We showed the importance of this problem from theoretical and practical points of view.
We also presented some variants and extensions of the standard problem. These exten-
sions are motivated by real life applications. In the next chapter, we review exact and
heuristic methods proposed in the literature to solve the resource constrained project
scheduling problem.
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Chapter 2

Literature Review on the Resource
Constrained Project Scheduling
Problem

2.1 Introduction

The RCPSP is a fundamental scheduling problem that has been extensively investi-
gated in the operations research literature. We refer to the excellent book by Demeule-
meester and Herroelen [42] for a comprehensive review of the impressive research effort
that has been devoted to the study of the RCPSP. In this chapter, we present a brief
state of the art on resolution methods to solve this problem. In Section 2.2, we present
a mathematical formulation modeling the RCPSP, followed by the lower bounding ap-
proaches in Section 2.3. After that, in Sections 2.4 and 2.5, we present the heuristic and
exact methods for solving the problem, respectively, to finish, in Section 2.6, with an
introduction of the benchmark instances that will be used for numerical tests in the next
chapters.

2.2 Mathematical formulation

Lot of mathematical formulations were proposed to model the RCPSP. Roughly, these
formulations can be classified into two families. The first family of formulations looks
to the position of activities compared to other ones (see Alvarez-Valdés and Tamarit [3],
Artigues [6], etc.). In the second family, the time horizon is subdivided into unitary
time points and the starting times of the activities are determined. One of the first
mathematical models falling into this category was proposed by Pritsker et al. [91]. The
formulation uses time indexed variables xjt where xjt is equal to 1 if activity j starts at
time t and 0 otherwise. The model can be presented as the following:
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2.2. MATHEMATICAL FORMULATION

min
T

∑
t=0

t xn+1,t (2.1)

s.t.

∑
t∈[0,T]

xjt = 1, ∀j ∈ A (2.2)

T

∑
t=0

t(xjt − xit) ≥ pi, ∀(i, j) ∈ A (2.3)

∑
j∈A

bjk

T

∑
s=t−pj+1

xjs ≤ Bk, ∀k ∈ R, t ∈ [0, T] (2.4)

xjt ∈ {0, 1}, ∀j ∈ A, t ∈ [0, T] (2.5)

Constraints (2.2) state that each activity is started exactly one time over the planning
horizon T. Inequalities (2.3) impose that the precedence constraints must be satisfied.
Inequalities (2.4) state that there is no resource conflicts at each time instant. Constraints
(2.5) are the integrality constraints.

Later, Christofides et al [35] proposed several cuts in order to strengthen the linear
relaxation of the mathematical model of Pritsker et al. [91]. The first cut is a modified
version of the precedence constraints by presenting them in a disaggregated manner. This
constraint is:

T

∑
s=t

xis +
t+pi−1

∑
s=0

xjs ≤ 1, ∀(i, j) ∈ A, t ∈ [0, T] (2.6)

To check that the previous constraint is valid, assume that i precedes j. Then, if i
starts at time t then the earliest start time of j is t + pi. Therefore, j cannot start at time
t + pi − 1 or earlier. Hence, we have yit = 1⇒ ∑

t+pi−1
s=0 xjs = 0. It follows that:

xit +
t+pi−1

∑
s=0

xjs ≤ 1

is a valid inequality. This inequality can be improved by observing that if the starting
time of i is greater or equal to t, then ∑

t+pi−1
s=0 xjs = 0 as well. Hence, we have the

disaggregated precedence constraint.
Another cut is the clique cut which is written as the following:

∑
j∈Cl

xjt ≤ 1, ∀t ∈ [0, T] (2.7)

where Cl is a set containing activities that cannot be in execution simultaneously at
a time t.
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2.3 Lower bounds

A lower bound is a value known to be less than or equal to the optimal value. A
bound is tight if it is known to be close to the optimal value. The procedure followed
in order to generate a lower bound can be termed a bounding procedure, though is often
simply referred to as a lower bound. There are two primary uses of bounds in scheduling
research. Lower bounds can be used to gauge the performance of a non-optimal algo-
rithm by establishing the approximate ’position’ of the optimal value, in the absence of
a true optimal value. Lower bounds can also be used to guide a solution process, for
example in branch-and-bound algorithms.

Lot of lower bounds have been proposed in the literature for the RCPSP. Roughly,
these bounds can be classified into three families: combinatorial lower bounds, linear
programming based lower bounds and destructive ones. In the following, we describe
each approach.

2.3.1 Combinatorial lower bounds

Constructive lower bounds are mainly based on construction of optimal solution for
relaxed versions of the initial problem. Relaxation can be on the resource constraints
and/or precedence constraints. Generally, these kind of bounds need only few compu-
tational time, but the gap to optimal solution may be large.

In the following and for the sake of brevity, we restrict our attention to the lower
bounds that we shall use in the subsequent chapters. For a comprehensive and thorough
survey of lower bounds for the RCPSP, the reader is referred to [5].

2.3.1.1 The capacity bound

To begin with, we introduce a simple O(Kn) bound that is often referred to as the
capacity bound, and that is based on a relaxation of the precedence constraints while con-
sidering each resource separately. A bound value is computed as the total requirement
of this resource divided by its per period availability and rounded up to the next larger
integer. Formally, this lower bound is computed as follows:

LBC = max
k∈R

⌈
∑
j∈A

bjk pj

Bk

⌉

2.3.1.2 The critical path bound

The critical path bound is a second simple lower bound that is based on a relaxation
of the capacity constraints. The critical path corresponds to the longest path from 0 to
n + 1 in the precedence graph G. We define l∗(j, s) as the longest path in the precedence
graph between activity j and activity s. The release date rj of activity j (j = 0, . . . , n + 1)
is defined as l∗(0, j). According to these definitions, the critical path value LBCP is equal
to rn+1.
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Symmetrically, let C be a trial value, then the deadline dj of activity j (j = 0, . . . , n+ 1)
is defined as dj = C− l∗(j, n + 1) + pj. Hence, a time-window [rj, dj] is associated with
each activity j.

2.3.1.3 The critical sequence bound

Stinson et al. [102] has proposed an improvement of the critical path lower bound.
Activities that cannot be processed simultaneously, due to at least one resource con-
straint, are identified. First, the critical path CP is computed. Next, if an activity j /∈ CP
cannot be processed simultaneously with i ∈ CP, then ei

j the amount of time during
which the two activities cannot be processed simultaneously is computed (according to
both critical path and time-windows of activity). Then, emin

j = min
i∈CP

ei
j is computed which

is the minimal increasing of the LBCP value in order not to violate resource constraints.
A valid lower bound, hereafter referred to as the critical sequence bound, is:

LBCS = LBCP + max
j∈A\CP

emin
j

The complexity of LBCS is O(n2).

2.3.1.4 The m-machine bound

The m-machine lower bound (Carlier and Latapie [27]) is based on a relaxation of
the RCPSP as a parallel machine problem with heads and tails (that is, P|rj, qj|Cmax). A
relaxed instance is derived as follows:

• Let m be the number of machines (m ∈ [1, m̄] is a parameter and m̄ represents the
maximal number of machines. In our experiments, we empirically set m̄ = 5). For

each resource k (k ∈ R), we set um
k =

⌊
Bk

m + 1

⌋
+ 1,

• Let Em
k = {j ∈ A : bjk ≥ um

k } be the set of jobs to be scheduled,

• For each job j ∈ Em
k , ajk =

⌊
bjk

um
k

⌋
is the number of jobs associated with j. All these

ajk jobs have a processing time pj, a head rj and a tail qj = dn+1− dj. Let Sm
k be the

set containing all the jobs associated to jobs j ∈ Em
k .

Thus, a P|rj, qj|Cmax instance is obtained. A valid O(n ln n) bound for this problem
is:

LBP(k, m) =

 1
m

(
r1 + . . . + rm + ∑

j∈Sm
k

pj + q1 + . . . + qm

)
where ri and qi represent the ith smallest heads and tails of the activities of the set

Sm
k , respectively.
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Hence, a RCPSP valid bound is:

LBP = max
k∈R

max
m∈[1,m̄]

{LBP(k, m)}}.

In the sequel, we refer to LBP as the m-machine bound.

2.3.2 Linear programming based lower bounds

The second family of lower bounds includes bounds that use linear relaxations or
Lagrangean ones.

LP relaxation based approaches have been presented by Christofides et al. [35] ,
Mingozzi et al. [78] as well as Brucker et al. [25]. The latter two consider a mathematical
model based on feasible subsets. Its LP relaxation corresponds to allowing preemp-
tion of jobs. Since the number of feasible subsets grows exponentially with the number
of jobs, the computational effort is very high, though the quality of bounds obtained is
good. Determining all feasible subsets in advance can be avoided by using the technique
of column generation for solving the RCPSP with preemption as proposed in Weglarz et
al. [109]. Carlier and Néron [28] also proposed lower bounds based on LP formulations
which take into account how resource requirements can be satisfied simultaneously for
a given resource capacity. Recently, Koné et al. [67] proposed two event based formu-
lations for the RCPSP. They compared the linear relaxations of these new mathematical
models with other formulations already proposed in the literature.

Lagrangean relaxation based approaches can be found in [49, 35, 38]. Christofides et
al. [35] used the formulation of Pritsker et al. [91] with the new proposed precedence
constraint (see paragraph 2.2) to derive their lower bound. This method was improved
by Möhring et al. [80] by solving a minimum cut problem.

2.3.3 Destructive lower bounds

Symmetrically to constructive lower bounds that are generally computed at low com-
putational effort, but may remains far from the optimal solution, destructive lower
bounds based on ILP formulation have been proposed in the last years. Destructive
lower bounds try to detect contradiction for a decision variant of the initial problem.
The feasibility (decision) problem may be formulated as follows: Given a threshold
value C, does a feasible schedule exists with an objective value smaller than or equal to
C? If a contradiction is proved, then C + 1 is a valid lower bound for the optimization
problem. To contradict (destruct) a threshold value C, again relaxations may be used. If
we can state infeasibility for a relaxed problem, obviously the original problem is also
infeasible. To find the best lower bound we search for the largest C, where infeasibility
can be proved. To achieve this goal, a binary search on C can be performed to compute
the lower bound.

This approach have been introduced by Klein and Scholl [63]. The authors propose
several feasibility tests to compute lower bounds. Brucker and Knust [23] have proposed
a LP based lower bound derived from the ILP formulation proposed by Mingozzi et
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al. [78]. The authors proposed an improvement of a lower bound by subdividing the
time horizon into time intervals and using the technique of column generation to deal
with the great number of variables. This formulation has been improved by adding a
preprocessing phase (time-windows reduction) and valid inequalities by Baptiste and
Demassey [10]. Furthermore, an additional approach using column generation was
proposed by van den Akker et al. [107]. This approach requires reformulating the
RCPSP into an equivalent problem of minimizing the maximum lateness on a set of
identical parallel machines. Demassey et al. [39] also proposed several lower bounds
based on linear relaxations of the ILP formulations of Pritsker et al.[91], Christofides et
al. [35] in addition to a formulation proposed by Alvarez-Valdés et al. [3]. Finally, let us
cite the work of Carlier and Néron [29, 30] that used the notion of dual feasible functions,
inspired from bin-packing lower bounds, in order to derive destructive lower bounds.

The main feature of these bounds based on ILP-formulations is that the gap to opti-
mality is often very small, but the computational time remains important, and then they
cannot be used, for instance, in branch-and-bound methods.

2.4 Exact procedures

This section presents various exact methods, such as dynamic programming, and
branch-and bound procedures which have been applied to solve the RCPSP to optimal-
ity.

2.4.1 Dynamic programming approach

Dynamic programming is an approach used to decompose problems into sub-problems
and combine the solutions from each sub-problem into a complete solution for the origi-
nal problem. A dynamic programming approach developed by Carruthers and Battersby
[32] is the first effort to solve the RCPSP. Their objective is to find the expected maximum
path length by reinterpreting the original problem as finding the maximum path length
of the final activity of the network using the symmetry of the problem. Their approach
made an advance in critical path methods, but it cannot handle practical networks.

2.4.2 Constraint programming

Another approach consists in modeling the problem as a set of variables (having
defined domains) and constraints between these variables. Constraint programming
consists then in finding a solution that satisfies all constraints.

We present two methods which fall in this category. The first one is the procedure
proposed by Laborie [72], which uses the minimal forbidden set concept. Starting from
a valid lower bound and applying a binary search, the procedure tries to find the best
solution in the range [Lower Bound, Upper Bound]. The backtrack procedure of this
method detects a minimal forbidden set and then resolves it. The resolution consists in
the addition of a precedence constraint in order to break up the minimal forbidden set.
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If the time limit is reached then the best lower bound is returned. To the best of our
knowledge, this method appears to be the most efficient one for 60-activity instances of
the PSPLIB benchmark (see Artigues et al. [5])
The second method was introduced by Liess and Michelon [75]. The basic idea consists
in substituting the resource constraints by a set of sub-constraints generated as needed.
Each of these sub-constraints corresponds to a set of tasks that cannot be executed to-
gether without violating one of the resource constraints. A filtering algorithm for these
sub-constraints was developed.

2.4.3 Branch-and-Bound procedures

Branch-and-bound procedures build a search tree in order to explore implicitly the
search space. At each node of the search tree (after computing lower bounds, upper
bounds and possibly time-bound adjustments), the search space corresponding to the
current node is partitioned into subsets such that the union of these subsets corresponds
to the set of solutions of the current node. In the following, we present the most impor-
tant branching schemes found in the literature.

A first natural way to review all possible combinations (that is used also in machine
scheduling problems) consists in associating each node of the search tree with a partial
feasible solution. The branching scheme consists of adding one eligible activity (whose
predecessors are scheduled) to a partial schedule [90, 98]. Because of the cumulative
nature of the RCPSP, feasible subsets of activities (instead of one activity) can be added
to the partial solution [12]. This branching scheme will be more explained in Chapter 5.

Carlier and Latapie [27] proposed another branching scheme based on the reduction
of time-windows of activities. The main idea of this branching scheme, is to determine
the time-window of each activity. At each node, an activity is chosen and two nodes
are created. In the first one the starting times of the chosen activity are restricted to the
first half of the set of the feasible starting times, whereas in the second node they are
restricted to the second half of this set. The main drawback of this approach is that the
depth of the search tree depends on the time-windows of activities. Thus, in general,
the search tree is very deep and the procedure falls to find optimal solutions.

Another branch-and-bound proposed by Brucker et al. [25] introduces disjunctive
constraints between pairs of activities or places these activities in parallel. The branching
starts from a graph representing a set of conjunctions, which means the precedence
constraints, and disjunctions induced by the resource constraints. Their computation
results based on the test data of Kolish et al. [66] showed that their algorithm performed
well but needs to be improved.

The most efficient branch-and-bound algorithm was developed by Demeulemeester
and Herroelen [40, 41]. The algorithm is based on a depth-first solution strategy in
which nodes represent feasible partial solutions. At each node, if the eligible activities
can be added then a node is created. Otherwise, if a resource conflict occurs, then the
algorithm enumerates all possible combinations of activities that can be delayed in order
to break up the conflict. The procedure enumerates only minimal (in the sense of union)
combinations, i.e., a subset of a combination cannot be delayed in order to break up the
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conflict. Several dominance rules were also proposed by the authors in order to reduce
the search space. Among all dominance rules, the Cutset dominance rule is undoubtedly
the most efficient one. It consists at storing a list of non dominated partial schedules
in a Hash table. This rule allowed to solve the 30-activity instances of the well-known
PSPLIB benchmark [66] in a very short computation time. The drawback of this rule is
that the list becomes very huge so the search in the table increases drastically and so the
computation time. Its use is then limited to small or medium instances.

2.5 Heuristics

TheNP-hardness of the vast majority of scheduling problems incorporating realistic
models and assumptions often necessitates the use of algorithms which run in reason-
able time but do not guarantee an optimal solution. The term heuristic is commonly
used to describe these algorithms.

2.5.1 Constructive heuristics

Constructive heuristics are simple algorithms allowing to quickly obtain a feasible
solution. For the RCPSP, constructive heuristics consist of two main components: the
priority rule and the scheduling scheme.
The priority rule is a kind of measure used for ordering activities in a priority list. The
first activity in the list is the first activity to be scheduled, the second one is the second
activity to be scheduled and so on. In order to respect the precedence constraints, it
should be noted that each activity must be after its predecessors in the priority list.
The scheduling scheme determines how to choose the starting time for the activity to be
scheduled. We distinguish two main scheduling schemes:

• The serial scheduling scheme [61] schedules the activities in their first possible
starting time by respecting the precedence and resource constraints.

• The parallel scheduling scheme [21] looks at the completion times of the activities
already scheduled. At each instant, this scheme selects the activities that can be
scheduled (i.e. those whose predecessors are already scheduled) and schedules
them at this time point provided that there is no resource conflict.

The survey of Kolisch and Hartmann [65] lists all scheduling schemes as well as
priority rules found in the literature and gives a computational study.

2.5.2 Metaheuristics

Metaheuristics are improvement algorithms that start from one or more feasible so-
lutions built from constructive heuristics or randomly. Several operations are performed
on these solutions to build better ones. Operations in metaheuristics are generally based
on the imitation of natural phenomena (e.g. genetic algorithms) or physical ones (e.g.
simulated annealing) or on the study of the behavior of a group of individuals (ant
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colony, bee colony . . .). The main drawback of metaheuristics consists in the fact that
convergence to the global optimum is not guaranteed: improvements can lead to a local
optimum.

Several metaheuristics have been proposed for the RCPSP. As an example, we cite
the very efficient genetic algorithms proposed by Hartmann [53, 55] and Valls et al.
[105, 106], the simulated annealing procedure proposed by Bouleimen and Lecocq [20]
(which appears to be one of the most efficient simulated annealing approaches) and the
tabu search algorithms of Lee and Kim [74], Baar et al. [7] as well as Artigues et al. [6].

In recent years, the research in the field of metaheuristics for the RCPSP turned to
hybrid approaches. Hybrid approaches combine two or three classical metaheuristic
procedures in one algorithm in order to improve the results. Such algorithms include
the procedures introduced by Kim et al. [62] and Agarwal et al. [1] which combines
genetic algorithms with fuzzy logic approach. Other procedures include the algorithms
of Wu et al. [111], Debels et al. [37] and Tseng and Chen [104]. One of the most recent
articles in this area uses the shuffled frog-leaping algorithm, which combines the benefits
of genetic-based memetic algorithm and the social behavior-based PSO algorithm [46].

2.6 Benchmark instances

One of the first set of instances has been proposed by Patterson [89]. It consists of a
set of 110 instances. The size of these instances varies from 7 to 50 activities (22 activities
on average) for a number of resources ranging from 1 to 3. Very good results were ob-
tained for these instances in particular by the method proposed by Demeulemeester and
Herroelen [40]. The second version of their method [41], improves greatly the results:
all the 110 instances are solved in an average time of 0.025 seconds. At the late 90’s,
these instances became obsolete and does not represent a set of reference instances for
the RCPSP anymore.

An alternative was proposed by Kolish et al. [66], through the provision of a gen-
erator of instances and an establishment of a library of instances. These instances are
mainly characterized by three factors, which reflect the number of precedences, the av-
erage number of resources used by activities, and the average amount of resource used
by each activity depending on the amount of available resource. Once again the method
proposed by Demeulemeester and Herroelen [41] is extremely efficient since it solves all
instances of 30 activities. However, the authors highlighted the limits of their approach
that requires 500MB (essential for the Cut-Set dominance rule) of memory for processing
instances with 60 activities.

Baptiste and Le Pape [11] have defined a new parameter, called ratio of disjunctions,
which expresses the percentage of pairs of activities which can be performed simulta-
neously (two activities can be executed simultaneously if there is no precedence rela-
tionship between them and the sum of their demands on a resource does not exceed the
capacity thereof) relative to the total number of pairs of activities. Using this criterion,
the authors showed that the three main factors for generating instances of Kolisch et al.
do not fully reflect the cumulative nature of the problem. The authors have developed
a set of 39 instances of reasonable size (20 and 25 tasks), known as highly cumulative:
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the disjunction ratio is on average equal to 0.33 for those instances when it is equal
to 0.53 for the most cumulative instances of Kolisch et al. [66]. Baptiste and Le Pape
[11] showed that, on the traditional instances (Patterson [89], Kolisch et al. [66]), the
use of tools such as energetic reasoning show a poor efficiency. Instead, these tools are
indispensable to solve effectively strongly cumulative problems.

Also, we cite PACK instances proposed by Carlier and Néron [28, 29]. The authors
generated a total of 55 instances which include two types of instances. The first type have
a strong disjunctive component. The second type contains activities which consumption
may not exceed half the capacity of the resource in order to obtain highly cumulative
instances. The authors provide also effective lower bounds for this benchmark.

For the numerical tests conducted throughout the thesis, we focus on KSD instances
of Kolisch et al. In the following, we detail a little more the composition of this bench-
mark instances called PSPLIB. The test instances were generated according to the fol-
lowing parameters:

• The execution times pj of the activities are generated between 1 and 10.

• Each activity has three successors at most.

• Each instance has 4 resources.

• The sizes of the instances are equal to 30, 60, 90 and 120 activities.

• The precedence graph is generated according to the parameter Network Complex-
ity (NC) that belongs to the set {1.5; 1.8; 2.1}.

• The resources are generated according to two parameters:

– Resource Factor (RF) which determines the consumption of each activity. RF
belongs to {0.25; 0.5; 0.75; 1}.

– Resource Strength (RS) which determines the capacity of a resource. RS
belongs to {0.2; 0.5; 0.7; 1} for instances of 30, 60 et 90 activities, and belongs
to {0.1; 0.2; 0.3; 0.4; 0.5} for instances of 120 activities.

For each triplet (NC, RF, RS), 10 instances are generated for a total of 480 instances
for sizes 30, 60 and 90 activities, and 600 instances for the size 120 activities which gives
a total of 2040 instances.

2.7 Conclusion

In this chapter, we gave literature review of the methods to solve the resource con-
strained project scheduling problem. We can divide these methods into two categories:
exact and heuristic methods. The first category consists in solving exactly the problem
and includes various techniques such as lower bounding approaches, mathematical for-
mulations, constraint programming, etc. These methods are efficient for small instances
but fall to solve medium sized instances. An alternative to the exact methods, heuristic
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approaches try to find good solutions (not necessary optimal) in reasonable amount of
time. Thus, heuristics methods can handle large sized instances.

In this thesis, we propose new approaches to solve exactly the problem. The first
part (chapter 3 and 4) is dedicated to lower bounding approaches. In the next chapter,
we begin our study by proposing various enhancements of the energetic reasoning in
order to derive new and efficient lower bounds.

21



Chapter 3

Enhanced Energetic
Reasoning-Based Lower Bounds for
the Resource Constrained Project
Scheduling Problem

3.1 Introduction

Actually, it is widely recognized that the effectiveness of exact enumerative algo-
rithms strongly relies on the performance of the embedded lower bounds. Indeed, the
lower bounding procedure that is invoked within the enumerative algorithm should
ideally be both effective and efficient (that is, it should yield a tight lower bound while
requiring a short computing time). However, a review of the lower bounds that have
been proposed for the RCPSP (see Section 2.3) reveals that these bounds includes fast
lower bounds that exhibit an erratic (i.e., nonrobust) behavior and tight lower bounds
that require a substantial computing burden. Clearly, none of these two categories is
fully satisfactory with regard to the effective solution of large-scale RCPSPs. The objec-
tive of this chapter is to propose new lower bounds that would prove both tight and fast.
More precisely, we make the following contributions:

1) We introduce the concept of reduced instance and show how it could be used to
derive a new enhanced lower bound using previously proposed lower bounds.

2) We propose new lower bounds that are derived through enhancing the Energetic
Reasoning (ER) (Lahrichi [73]). These enhancements are achieved through nontrivial
generalizations of the so-called Revisited Energetic Reasoning (RER) that was initially de-
veloped by Hidri et al. [58] in the context of multiprocessor scheduling.

3) We introduce a further improvement of ER using Dual Feasible Functions (DFFs).
4) We present the results of a comprehensive computational study that provides

evidence that the best proposed lower bound exhibits an excellent performance while
requiring a modest computing time.
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The remainder of this chapter is organized as follows. In Section 3.2, we begin by re-
viewing the classical energetic reasoning. In Section 3.3, we show how the definition of
a reduced auxiliary RCPSP instance offers an interesting way for deriving new effective
lower bounds. In Section 3.4, we present several generalizations of the Revisited Ener-
getic Reasoning. In Section 3.5, we explain how these bounds might be subsequently
improved through using DFFs. The results of a comprehensive computational study of
the proposed bounds are presented in Section 3.6.

It is worth noting that most of the material presented in this chapter has been pub-
lished in Kooli et al. [69, 68] and Haouari et al. [51].

3.2 Classical energetic reasoning

In this chapter, the energetic reasoning is a central issue. Lower bounds that we
propose are based on this approach, using for instance the concept of mandatory part
of an activity in a given time-interval. All these bounds belong to the class of destructive
lower bounds. At this point, it is worth recalling that a destructive bound could be derived
using the following general approach. Starting from a trial value C, feasibility tests
are carried out to detect an infeasibility (that is, the makespan cannot be shorter than
C). If an infeasibility is detected, then C + 1 is a valid lower bound (or, alternatively
a dichotomous search might be used). The process is reiterated until no infeasibility
is detected. In this section, we briefly review both feasibility tests and time-bound
adjustments of classical energetic reasoning, initially discussed by Lahrichi [73], Erschler
et al. [45] and Baptiste et al. [12].

Let [t1, t2] be a time-interval. The work of an activity j (j ∈ A) in this time-interval is
given by the minimum between its left work denoted W l

jk(t1, t2), i.e., when the activity
starts at its release date, and its right work denoted as Wr

jk(t1, t2), i.e., when the activity
ends at its deadline.

W l
jk(t1, t2) = bjk min(t2 − t1, pj, max(0, rj + pj − t1))

Wr
jk(t1, t2) = bjk min(t2 − t1, pj, max(0, t2 − dj + pj))

Wjk(t1, t2) = min(W l
jk(t1, t2), Wr

jk(t1, t2))

The total work Wk(t1, t2) over the time-interval [t1, t2] and resource k is defined as
follows:

Wk(t1, t2) = ∑
j∈A

Wjk(t1, t2)

Property 1. If there exists a resource k ∈ R such that Wk(t1, t2) > Bk(t2− t1) then the instance
is infeasible. Consequently, C + 1 is a valid lower bound on the project duration.

If no contradiction (i.e., infeasibility) is detected, then a time-bound adjustment may
be considered (Baptiste et al. [12]) using the concept of slack of one activity j ∈ A for a
given resource k ∈ R on a given time-interval [t1, t2] :
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sjk(t1, t2) = Bk(t2 − t1)− {Wk(t1, t2)−Wjk(t1, t2)} (3.1)

Property 2. (Adjustment procedure)

if sjk(t1, t2) < W l
jk(t1, t2) then rj ← max(rj, t2 −

⌊
sjk(t1, t2)

bjk

⌋
)

if sjk(t1, t2) < Wr
jk(t1, t2) then dj ← min(dj, t1 +

⌊
sjk(t1, t2)

bjk

⌋
)

These time-bound adjustments are propagated on the precedence graph G.

Notice that an important issue is related to the determination of the relevant set of
time-intervals on which it may be useful to both check feasibility conditions and time-
bound adjustments. Baptiste et al. [12] have proved that there is a quadratic number of
such time-intervals.

A pseudo-code for the computation of a lower bound based on the classical energetic
reasoning is described in Algorithm 1.

Algorithm 1 Energetic Reasoning Procedure
1: T1: Table containing the t1 values of the time-intervals [t1, t2]
2: T2: Table containing the t2 values of the time-intervals [t1, t2]
3: C ← Capacity Bound
4: repeat
5: ComputeTimeIntervals(T1,T2)
6: feasible← true
7: j← 0
8: while (feasible=true) and (j ≤ T1.size) do
9: i← T2.size

10: while (feasible=true) and (T1[j] ≤ T2[i]) do
11: feasible=FeasibilityTest(T1[j],T2[i])
12: i← i− 1
13: end while
14: j← j + 1
15: end while
16: if feasible=false then
17: C ← C + 1
18: end if
19: until feasible=true

3.3 Improved energetic reasoning

Given a trial value C and a time-interval [t1, t2], we define:
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pj(t1, t2) = min(t2 − t1, pj, max(0, rj + pj − t1), max(0, t2 − dj + pj))

a lower bound on the total processing time of activity j ∈ A during [t1, t2].
Define A(t1, t2) = {j ∈ A : (rj + pj > t1) ∧ (dj − pj < t2)} the set of activities that

are necessarily processed during [t1, t2].
Given an RCPSP instance, a trial value C, and a time-interval [t1, t2] we construct an
associated reduced instance in the following way:

• the set of activities is A(t1, t2),

• the processing time of activity j ∈ A(t1, t2) is pj(t1, t2),

• the values of the availabilities of the renewable resources, the resources require-
ments as well as the precedence constraints are similar to those of the genuine
instance.

Proposition 1. If the optimal makespan of the reduced instance is strictly larger than the time-
window width (t2− t1) then C + 1 is a valid lower bound on the optimal makespan of the genuine
instance.

Proof. It suffices to observe that if the optimal makespan of the reduced instance is
strictly larger than the time-window width (t2 − t1) then the mandatory parts of the
activities that belong to A(t1, t2) cannot be completed within [t1, t2]. Thus, the genuine
instance is infeasible.

In our implementation, we invoke a general-purpose MIP solver to solve an exact
feasibility problem through using the following time-indexed formulation (Christofides
et al. [35]).

Find δ (3.2)
s.t.

dj−pj

∑
t=max(rj,t1)

δjt = 1, ∀j ∈ A(t1, t2), (3.3)

di−pi

∑
τ=t

δiτ +
t+pi−1

∑
τ=max(rj,t1)

δjτ ≤ 1, ∀(i, j) ∈ A, t ∈ [rj − pi + 1, di − pi] (3.4)

∑
j∈A(t1,t2)

bjk

min(t,dj−pj)

∑
s=max(rj,t−pj+1)

δjs ≤ Bk, ∀k ∈ R, t ∈ [t1, t2], (3.5)

δjt ∈ {0, 1}, ∀j ∈ A(t1, t2), t ∈ [max(rj, t1), dj − pj], (3.6)

where δjt = 1, if activity j starts at time t, and 0 otherwise, ∀j ∈ A(t1, t2), t ∈
[max(rj, t1), dj − pj]. Clearly, Constraint (3.3) requires that each activity has exactly one
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starting time. Constraints (3.4) and (3.5) enforce the precedence and resource constraints,
respectively.

In the sequel, we denote IER∗ the bound based on Proposition 1. In our implemen-
tation, and for the sake of efficiency, only reduced instances whose number of activities
is smaller than 12 and having a time-window width shorter than 25 are considered.

A straightforward (and practically useful) consequence of Proposition 1 is the fol-
lowing:

Corollary 1. If a lower bound on the optimal makespan of the reduced instance is strictly larger
than the time-window width (t2− t1) then C + 1 is a valid lower bound on the optimal makespan
of the genuine instance.

In the sequel, we refer to improved energetic reasoning the variant of the energetic
reasoning that is based on Proposition 1 or Corollary 1. Within this context, it is easy to
realize that if the capacity bound is used then the improved energetic reasoning amounts
to the classical energetic reasoning. In our experiments, we implemented the improved
energetic reasoning together with the critical sequence as well as the m-machine lower
bounds.

Example 2. Consider a project with 5 activities, represented by Figure 3.1 and a single resource
of capacity B1 = 11.
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Figure 3.1: Improved energetic reasoning project example

If we apply Algorithm 1, we obtain a lower bound equal to 14.
Suppose that t1 ∈ {rj, dj − pj; j ∈ A} and t2 ∈ {dj, rj + pj; j ∈ A},which gives (with

C = 14):

• t1 ∈ {0, 7, 10, 12, 13, 14}

• t2 ∈ {0, 3, 10, 11, 12, 14}
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Now, we add to the feasibility tests, the calculation of parallel machines based lower bound.
We take m = 1, as a number of machines. Thus, we build 1|rj, qj|Cmax problems. It is worth
noting that the m-machine lower bound LBP on the original instance is equal to 8. At time-
interval [7, 14], the processing times of the activities are:

j 1 2 3 4 5
pj(7, 14) 0 3 1 4 2

The reduced instance is then constituted by activities: 2, 3, 4 and 5 (see Figure 3.2).
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Figure 3.2: Reduced instance on time-interval [7,14]

The calculation of the release dates and due dates on this reduced instance yields:

• r2 = 7; r3 = r4 = r5 = 10

• d2 = 10; d3 = d4 = d5 = 14

Since m is equal to 1, then um
1 = 6. Only activities 3 and 4 have resource requirements

higher or equal than 6. Thus, we get a 1|rj, qj|Cmax problem constituted by two jobs with the
following data:

j pj rj qj
1 1 10 0
2 4 10 0

The computation of the m-machine lower bound on this reduced instance gives the value
LBP = 15 which is higher than 14. So, we detect an infeasibility. Finally, we find that the
improved energetic reasoning-based lower bound IER is equal to 15.

3.4 Revisited energetic reasoning

In this section, we introduce new bounds for the RCPSP that are based on the so-
called Revisited Energetic Reasoning (RER). The RER was initially introduced by Hidri
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et al. [58] in the context of parallel machine scheduling with heads and tails. It aims
at strengthening the classical ER by improving the computation of the work through
formulating an integer programming (IP) problem. In the following, we present an
example that introduce the basic idea of the RER. Then, some additional notation and
several variants of RER-based lower bounds are presented.

3.4.1 Revisited energetic reasoning principle

We consider a RCPSP instance with the following data : n = 6, K = 1 and B1 = 2.
For each activity j, we have bjk = 1, rj = 1, pj = 3 and dj = 8; j = 1, . . . , 6. The time-
interval [t1, t2] is [2,6].

If we apply the classical energetic reasoning then we get: W l
j1(2, 6) = 2 and Wr

j1(2, 6) =
1, j = 1, . . . , 6. Thus, Wj1(2, 6) = 1; j = 1, . . . , 6. The total work over the time-interval
[2,6] is then W1(2, 6) = 6 and no infeasibility is detected.
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t2t1 W r
j (t1, t2)

Figure 3.3: Classical energetic reasoning principle

Otherwise, we remark that to obtain W1(2, 6) all the activities finish up processing
at dj = 8 (see Figure 3.3). Thus, at t2 = 6, we have 6 activities scheduled on a resource
with capacity B1 = 2. The basic idea behind the RER is that in any feasible schedule at
most 2 activities can be processed on this resource at the same time. As a consequence,
we can have at most 2 activities at t1, 2 activities at t2 and the remaining activities are in
the inside (see Figure 3.4).

Thus, for this example, we have:
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Figure 3.4: Revisited energetic reasoning principle

W11(2, 6) = W21(2, 6) = 1
W31(2, 6) = W41(2, 6) = 2 ⇒W1(2, 6) = 1 · 2 + 2 · 2 + 3 · 2 = 12 > 8 (= 4 · 2)
W51(2, 6) = W61(2, 6) = 3

An infeasibility is then detected.

3.4.2 Notation

Define A0(t1, t2) = {j ∈ A(t1, t2) : (rj + pj ≥ t2) ∧ (dj − pj ≤ t1)}. Each activity
j ∈ A0(t1, t2) must be scheduled over the whole interval [t1, t2]. Thus, we can then
remove activity j from A(t1, t2) and decrease the capacity Bk of resource k by bjk units.
Hence, the actual resource capacity mk(t1, t2) is computed as follows:

mk(t1, t2)← Bk − ∑
j∈A0(t1,t2)

bjk

In the sequel, we shall say that an activity j is:

• placed at the left position if it is scheduled at its release date

• placed at the right position if it finishes processing at its due date

• placed at the inside position if it is entirely processed within the time-interval.

The set A(t1, t2) \ A0(t1, t2) is partitioned into the following seven subsets:

29



3.4. REVISITED ENERGETIC REASONING

• AL = {j ∈ A(t1, t2) \ A0(t1, t2) : (rj + pj < t2) ∧ (dj − pj ≤ t1)}. The activities of
this subset must be scheduled at the left position.

• AR = {j ∈ A(t1, t2) \ A0(t1, t2) : (rj + pj ≥ t2) ∧ (dj − pj > t1)}. The activities of
this subset must be scheduled at the right position.

• AI = {j ∈ A(t1, t2) \ A0(t1, t2) : (t1 < rj) ∧ (dj < t2)}. The activities of this subset
must be scheduled inside the time-interval.

• ALI = {j ∈ A(t1, t2) \ A0(t1, t2) : (rj ≤ t1) ∧ (dj < t2) ∧ (dj − pj > t1)}. The
activities of this subset are either scheduled at the left position or inside the time-
interval.

• ARI = {j ∈ A(t1, t2) \ A0(t1, t2) : (rj > t1) ∧ (dj ≥ t2) ∧ (rj + pj < t2)}. The
activities of this subset are either scheduled at the right position or inside the
time-interval.

• ALR = {j ∈ A(t1, t2) \ A0(t1, t2) : (rj ≤ t1) ∧ (dj ≥ t2) ∧ (rj + pj < t2) ∧ (dj − pj >
t1) ∧ (pj ≥ t2 − t1 − 1)}. The activities of this subset are either scheduled at the
left position or at the right position (since they cannot be inside the time-interval.)

• ALIR = {j ∈ A(t1, t2) \ A0(t1, t2) : (rj ≤ t1) ∧ (dj ≥ t2) ∧ (rj + pj < t2) ∧ (dj − pj >
t1) ∧ (pj < t2 − t1 − 1)}. The activities of this subset can be at any position within
the time-interval.

• A f = {j ∈ A(t1, t2) \ A0(t1, t2) : (rj + pj) > (t2 + t1)/2 ∧ (dj − pj) ≤ (t2 + t1)/2}.
The activities of this subset are necessary in execution at the middle of the time-
interval.

We also denote by:

AL = ALI ∪ALR ∪ALIR; the set of activities that may be placed at the left position.
AR = ARI ∪ALR ∪ALIR; the set of activities that may be placed at the right position.
AI = ALI ∪ARI ∪ALIR; the set of activities that may be placed inside the interval.

A f
L = {j ∈ AL : rj + pj > (t2 + t1)/2}; the set of activities that may be in execution in

the middle of the interval if they are scheduled at the left position.

A f
R = {j ∈ AR : dj − pj ≤ (t2 + t1)/2}; the set of activities that may be in execution in

the middle of the interval if they are scheduled at the right position.

A f
I = {j ∈ AI : max(rj, t1) + pj > (t2 + t1)/2∧min(dj, t2) ≤ (t2 + t1)/2}; the set of ac-

tivities that may be in execution in the middle of the interval if they are scheduled in
the inside.

In the sequel, and for the sake of clarity, we shall
replace A(t1, t2)\A0(t1, t2), mk(t1, t2), W l

jk(t1, t2), Wr
jk(t1, t2) and Wk(t1, t2) by A, mk,

W l
jk, Wr

jk and Wk, respectively.
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3.4.3 Simple feasibility conditions

Hidri et al. [58] derived several simple feasibility conditions that are valid for the iden-
tical parallel machine problem with release dates and delivery times. These conditions
can be easily adapted to the RCPSP. These feasibility conditions are the following:

Condition 1: If there exists a resource k ∈ R and an activity j ∈ A such that bjk > mk
then the instance is infeasible.

Condition 2: If there exists a resource k ∈ R such that mk < 0 then the instance is
infeasible.

Condition 3: If there exists a resource k ∈ R such that mk = 0 and an activity j ∈ A
such that bjk > 0 then the instance is infeasible.

Condition 4: If there exists a resource k ∈ R and an activity j ∈ ALR such that
bjk > mk −min( ∑

j∈AL

bjk, ∑
j∈AR

bjk) then the instance is infeasible.

Condition 5: If there exists a resource k ∈ R such that max( ∑
j∈AL

bjk, ∑
j∈AR

bjk) > mk

then the instance is infeasible.
Condition 6: If there exists a resource k ∈ R such that ∑

j∈AL∪AR∪ALR

bjk > 2mk then

the instance is infeasible.
Condition 7: If there exists a resource k ∈ R such that ∑

j∈A f

bjk > mk then the instance

is infeasible.
Moreover, let:

α = min
j∈AL

(rj + pj)

β = max
j∈AR

(dj − pj)

γ = min
j∈ALR

(rj + pj)

δ = max
j∈ALR

(dj − pj)

With these new definitions, we have the following feasibility tests:
Condition 8: If there exists a resource k ∈ R such that ∑

j∈AL

bjk = mk and min
j∈AI∪ALI

(dj−

pj) < α then the instance is infeasible.

Condition 9: If there exists a resource k ∈ R such that ∑
j∈AR

bjk = mk and min
j∈AI∪JRI

(rj +

pj) < β then the instance is infeasible.

Condition 10: If there exists a resource k ∈ R such that ∑
j∈JL∪JR∪JLR

bjk = 2mk and

min
j∈AI∪ALI∪ARI∪ALIR

pj > max(β, δ)−min(α, γ) then the instance is infeasible.

In addition to that, we have the following adjustments rules:
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Rule 1: If ∑
j∈AL

bjk = mk then rj = max(rj, α); ∀j ∈ A\AL

Rule 2: If ∑
j∈AR

bjk = mk then dj = min(dj, β); ∀j ∈ A\AR

Rule 3: If ∑
j∈AL∪AR∪ALR

bjk = 2mk then rj = max(rj, min(α, γ)); ∀j ∈ A\(AL ∪ ALR)

and dj = min(dj, min(β, δ)); ∀j ∈ A\(AR ∪ALR)

Example 3. We resume Example 2. For the time-interval [0,10], we get the same reduced
instance shown in Figure 3.2. Activity 2 has a processing part equal to the width of the interval.
So, we remove it from the set A and we decrement the capacity of the resource. We, therefore,
obtain a residual capacity equal to m1 = 11 − 4 = 7. According to condition 1, we have
b11 = 9 > 7 implying infeasibility. The classical energetic reasoning-based lower bound in
addition to the simple feasibility conditions is equal to 17.

3.4.4 Exact revisited energetic reasoning

For each resource k (k ∈ R), we compute the residual capacities ml
k, mr

k and m f
k over

the time-interval [t1, t2] available for activities of the set AL, AR and A\A f , respectively,
i.e.,

ml
k = min( ∑

j∈AL
bjk, mk − ∑

j∈AL

bjk)

mr
k = min( ∑

j∈AR
bjk, mk − ∑

j∈AR

bjk)

m f
k = mk − ∑

j∈A f

bjk

Now, we present a 0-1 programming model that computes an enhanced estimate of
the total work over the time-interval [t1, t2] for resource k. Toward this end, we define
for each activity j ∈ A the following binary variables:

• xj = 1 if activity j is scheduled at the left position, and 0 otherwise

• yj = 1 if activity j is scheduled at the right position, and 0 otherwise

• zj = 1 if activity j is scheduled inside the interval, and 0 otherwise

The model is the following:
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(P1)

Ek = min ∑
j∈AL

W l
jkxj + ∑

j∈AR
Wr

jkyj + ∑
j∈AI

W i
jkzj

s.t.
xj + zj = 1, ∀j ∈ ALI

yj + zj = 1, ∀j ∈ ARI

xj + yj = 1, ∀j ∈ ALR

xj + yj + zj = 1, ∀j ∈ ALIR

∑
j∈AL

bjkxj ≤ ml
k

∑
j∈AR

bjkyj ≤ mr
k

∑
j∈J f
L

bjk xj + ∑
j∈J f
R

bjk yj + ∑
j∈J f
I

bjk zj ≤ m f
k

xj, yj, zj ∈ {0, 1}, ∀j ∈ ALI ∪ARI ∪ALR ∪ALIR,

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

where W i
jk ≡ bjk pj.

Constraints (3.8)-(3.11) require that each activity is scheduled in exactly one position
(left, right or inside). Constraints (3.12)-(3.13) enforce the left and right capacities of
resource k, respectively. Constraint (3.14) enforce the resource constraint at the middle
of the time-interval. Constraint (3.15) states that the variables are binary-valued.

The improved work Wk(t1, t2) is given by:

Wk(t1, t2) = Ek + ∑
j∈AL

W l
jk + ∑

j∈AI

W i
jk + ∑

j∈AR

Wr
jk

We have the following result:

Property 3. If there exists a resource k ∈ R such that Wk(t1, t2) > mk(t2 − t1) then the
instance is infeasible.

3.4.5 Relaxed revisited energetic reasoning

Since the solution of Model (3.7)-(3.15) might require an excessive computing time,
it might be useful to consider relaxations of this model that are efficiently solvable.
To that aim, we propose a relaxation that consists in decomposing the problem into
two independent knapsack problems. This relaxation, hereafter called relaxed revisited
energetic reasoning is described as follows.

First, we replace variables zj of formulation (P1) by:
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zj = 1− xj, ∀j ∈ ALI

zj = 1− yj, ∀j ∈ ARI

zj = 1− xj − yj, ∀j ∈ ALIR

Thus, (3.7) becomes:

min ∑
j∈ALI∪ARI∪ALR∪ALIR

W i
jk + ∑

j∈AL
(W l

jk −W i
jk)xj + ∑

j∈AR
(Wr

jk −W i
jk)yj

Let:

W̃ l
jk = W i

jk −W l
jk, ∀j ∈ AL

W̃r
jk = W i

jk −Wr
jk, ∀j ∈ AR

Formulation (P1) is equivalent to:

(P2)

max ∑
j∈AL

W̃ l
jkxj + ∑

j∈AR
W̃r

jkyj

s.t.
xj + yj = 1, ∀j ∈ ALR

xj + yj ≤ 1, ∀j ∈ ALIR

∑
j∈AL

bjkxj ≤ ml
k

∑
j∈AR

bjkyj ≤ mr
k

∑
j∈J f
L

bjk xj + ∑
j∈J f
R

bjk yj + ∑
j∈J f
I

bjk zj ≤ m f
k

xj, yj ∈ {0, 1}, ∀j ∈ ALI ∪ARI ∪ALR ∪ALIR

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

If we relax constraints (3.17), (3.18) and (3.21) then we obtain two independent knap-
sack problems. We solve exactly each one separately using dynamic programming. Let
Ẽk be the sum of the objective functions of the two problems, then:

W̃k(t1, t2) = ∑
j∈ALI∪ARI∪ALR∪ALIR

W i
jk + ∑

j∈AL

W l
jk + ∑

j∈AI

W i
jk + ∑

j∈AR

Wr
jk − Ẽk

is a lower bound of the total work over time-interval [t1, t2].
Hence, we have the following property:

Property 4. If there exists a resource k ∈ R such that W̃k(t1, t2) > mk(t2 − t1) then the
instance is infeasible.
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Remark 1. To derive better estimate of the slacks, we can substitute in (3.1) the quantity
{Wk(t1, t2) −Wjk(t1, t2)} by Tjk(t1, t2) which represents the work calculated by (P1) or (P2)
if we remove activity j from A. Nevertheless, we empirically found that these time-bound adjust-
ments have not improved the quality of the proposed lower bounds.

3.4.6 Global revisited energetic reasoning

3.4.6.1 Mathematical model

Since Formulation (P1) seeks for minimizing the work of activities scheduled in the
left, right, or at the inside of an interval [t1, t2] for a specified resource k, then we might
have cases where an activity is scheduled in the left position for a resource k while it
is scheduled in the right position for a resource k′ 6= k. Hence, a better way to make
feasibility tests consists in taking into account all the resources simultaneously. This
approach is based on a formulation that is described as follows.

Let Ek = mk(t2 − t1)− ( ∑
j∈AL

W l
jk + ∑

j∈AR

Wr
jk + ∑

j∈AI

W i
jk) be the work available on re-

source k for activities of the set ALI ∪ARI ∪ALR ∪ALIR.
The corresponding IP can be stated in the following way.

(P3)

ξ = min ∑
k∈R

εk

s.t.
xj + zj = 1, ∀j ∈ ALI

yj + zj = 1, ∀j ∈ ARI

xj + yj = 1, ∀j ∈ ALR

xj + yj + zj = 1, ∀j ∈ ALIR

∑
j∈AL

bjkxj ≤ ml
k, ∀k ∈ R

∑
j∈AR

bjkyj ≤ mr
k, ∀k ∈ R

∑
j∈J f
L

bjk xj + ∑
j∈J f
R

bjk yj + ∑
j∈J f
I

bjk zj ≤ m f
k , ∀k ∈ R

∑
j∈AL

W l
jkxj + ∑

j∈AR
Wr

jkyj + ∑
j∈AI

W i
jkzj − εk ≤ Ek, ∀k ∈ R

xj, yj, zj ∈ {0, 1}, ∀j ∈ ALI ∪ARI ∪ALR ∪ALIR

εk ≥ 0, ∀k ∈ R

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

Constraints (3.24)-(3.30) have the same signification as in (P1). Constraint (3.31) is
added to check whether it is possible to schedule the activities such that the sum of their
works do not exceed the total work available on each resource k. The slack variables εk
are used to enforce this latter restriction. Indeed, εk is equal to zero if and only if the
total work available on resource k is enough to schedule all the activities.
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With this new mathematical model, we make only one feasibility test (and not K tests
as in the revisited energetic reasoning). This new feasibility condition may be stated as
follows.

Property 5. If ξ > 0 then the instance is infeasible.

Proof. Obvious.

In the sequel, we refer to this approach as the Global revisited energetic reasoning.

Example 4. Consider a project with 5 activities, represented by Figure 3.5, and two resources
with capacities equal to B1 = 7 and B2 = 11.
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Figure 3.5: Global revisited energetic reasoning project example

The classical energetic reasoning-based lower bound is equal to 16. For this value, the revisited
energetic reasoning-based lower bound does not detect an infeasibility.

The computation of the t1 and t2 values yields:

• t1 ∈ {0, 4, 5, 8, 9, 11, 16}

• t2 ∈ {0, 1, 4, 5, 9, 11, 16}

For the time-interval [4, 16], we have ALR = {3} and ALIR = {4, 5}. Solving the formula-
tion (P3) over this time-interval gives x6 = y4 = z5 = 1 and ε1 = 1, ε2 = 0. As a result, we
detect an infeasibility. Finally, we find that the global revisited energetic reasoning-based lower
bound is equal to 17.

3.4.6.2 Adjustments based on reduced costs

We can make adjustments by solving the linear relaxation of the previous formula-
tion. For this, we consider the reduced costs of the non-bases variables. We distinguish
two cases:
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1. The variable is equal to 1 and its reduced cost is strictly negative: if the variable is
forced to be 0, then the objective function increases and consequently the solution
becomes infeasible. Then, we have:

(a) If xj = 1 then activity j must be at the left position, so dj ← min(dj, t1 + pj).
(b) If yj = 1 then activity j must be at the right position, so rj ← max(rj, t2 − pj).
(c) If zj = 1 then activity j must be in the inside, so rj ← max(rj, t1 + 1) and

dj ← min(dj, t2 − 1).

2. The variable is equal to 0 and its reduced cost is strictly positive: if the variable is
forced to be 1, then the objective function increases and consequently the solution
becomes infeasible. Then, we have:

(a) If xj = 0 then activity j can not be at the left position, so rj ← max(rj, t1 + 1).
(b) If yj = 0 then activity j can not be at the right position, so dj ← min(dj, t2− 1).
(c) If zj = 0 then activity j can not be in the inside, so:

• If j ∈ ALI then dj ← min(dj, t1 + pj − 1).
• If j ∈ ARI then rj ← max(rj, t2 − pj + 1).

Remark 2. We found empirically that these time-bound adjustments have not improved the
quality of the proposed lower bounds.

3.5 Energetic reasoning and Dual Feasible Functions

Definition 1. A function f is said to be discrete dual feasible if for any discrete finite set S of
nonnegative integers, we have:

∑
x∈S

x ≤ B⇒ ∑
x∈S

f (x) ≤ f (B)

where B is a nonnegative integer.
Dual feasible functions (DFFs) have been extensively used for deriving lower bounds

both for one- and two-dimensional bin packing problems (see Fekete and Schepers [47],
Haouari and Gharbi [50], and Carlier et al. [26]). The main idea is based on using a
DFF to transform the item height and width and then to compute a lower bound on the
transformed instance. Fekete and Schepers [47] show that this latter bound is indeed
valid for the genuine instance. Interestingly, it is possible to use a very similar idea
within the framework of energetic reasoning for the RCPSP. To that aim, after deriving a
reduced instance, we use an appropriate discrete DFF to generate a modified instance by
transforming the resource requirements and the resource availabilities as well. Next, the
capacity bound, the critical sequence bound, and the m-machine bound are computed
in turn. Eventually, the largest bound is retained. We denote the resulting bound by
DFF. Moreover, we implemented a second, and much simpler, DFF-based lower bound
in the following way: we simply use the simple feasibility conditions (see Section 3.4.3)
to detect an infeasibility of the transformed instance. We refer the derived lower bound
by DFF∗.
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Remark 3. It is easy to see that the lower bound that is based on Property 1 reduces to a trivial
case of DFF.

Remark 4. Following the idea of Tercinet and Néron [103], we can use the modified instance for
time-bound adjustments.

After performing extensive experiments to assess the computational performance of
the DFFs proposed in Fekete and Schepers [47] and Carlier et al. [26], we found that the
best performance is obtained through the combination of the two following DFFs.

The first one, f s
1 (1 ≤ s ≤ B/2), was proposed in Carlier et al. [26]. It is defined as

follows:

f s
1 : [0, B]→ [0, MB(B, I)]

x 7→


MB(B, I)−MB(B− x, I) if x > B/2
1 if s ≤ x ≤ B/2
0 otherwise

where MB(B, I) is the solution of the knapsack problem defined by items of the set
I = {i ∈ [1, n] : s ≤ ci ≤ B/2} (s = 1, . . . , B/2), capacity B, and where the objective is to
maximize the number of selected items.

Remark 5. In a strict sense, f s
1 is a Data Dependent Feasible Function (see Carlier et al [26]).

The second DFF that we used has been proposed in Fekete and Schepers [47] and is
defined (in a slightly different way) as follows:

f s
2 : [0, B]→ [0, B]

x 7→
{

x if x(s+1)
B ∈ Z⌊

x(s+1)
B

⌋
B
s otherwise

with s = 1, 2.

3.6 Experimental results

To assess the performance of the proposed lower bounds, we considered PSPLIP the
well-known set of benchmark instances proposed by Kolisch et al. [66] (see Section 2.6).

All the experiments were conducted on a personal computer Pentium IV 3 Ghz with
1 GB of RAM and running under Windows XP. All the bounds were coded in C language
and all the LPs and IPs were solved using CPLEX 11. Moreover, for computing the
energetic reasoning-based lower bounds, we considered the set Σ of intervals that is
defined as follows: Σ = {(t1, t2); t1 ∈ Ω1, t2 ∈ Ω2} where:
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• Ω1 = {rj, j = 1, . . . , n} ∪ {dj − pj, j = 1, . . . , n}

• Ω2 = {dj, j = 1, . . . , n} ∪ {rj + pj, j = 1, . . . , n}

It is worth mentioning that, for the sake of efficiency, Σ includes fewer time-intervals
than those previously considered in Baptiste et al. [12].

A preprocessing phase can be made in order to adjust (reduce) the resource capaci-
ties. This step is based on the following mathematical formulation:

B̃k = max
n

∑
j=1

bjkXj (3.34)

s.t.
n

∑
i=1

bikXi ≤ Bk (3.35)

Xi + Xj ≤ 2−Mij, ∀i ∈ A, j ∈ A (3.36)

Xj ∈ {0, 1}, ∀j ∈ A (3.37)

where Mij =

{
0 if there is intersection between the intervals[ri, di] and [rj, dj]

1 otherwise

Constraint (3.36) imposes that assigned activities i (which the value of their variables
Xi is equal to 1) can all be placed in parallel.

The new resource capacities are B̃k.

Remark 6. The tests showed that the adjustment of the capacities is useful to improve the results
but when the DFFs are used then this preprocessing phase is useless.

3.6.1 First set of experiments: computational performance of the proposed
lower bounds

We conducted a first set of experiments to assess the performance of the following
seven lower bounds:

• CER: the classical energetic reasoning-based bound (see Section 3.2)

• EER: the exact revisited energetic reasoning-based bound (see Section 3.4.4)

• RER: the relaxed revisited energetic reasoning-based bound (see Section 3.4.5)

• GER: the global energetic reasoning-based bound (see Section 3.4.6)

• GER_LP: LP relaxed variant of GER.

• IER: the improved energetic reasoning bound that is based on Corollary 1 and
where the feasibility test is based on the simple bound that is equal to max(LBC, LBCS, LBP)
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• IER∗: the improved energetic reasoning bound that is based on Proposition 1.

All these bounds include time-bound adjustments described in Property 2, i.e., the
feasibility tests are reiterated until neither further adjustments are achieved nor infeasi-
bility is detected.

Tables 3.1-3.2 display a summary of the computational results that were obtained on
the 30- and 60-activity sets of instances. For each lower bound, we provide: MGAP: the
mean percentage deviation with respect to the best known upper bound, MTime: the
mean CPU time (in seconds), #(LB = UB): number of times where the lower bound
is equal to the best known upper bound, #(LB = max LB) : number of times where
the lower bound is maximal, #(LB > CER) : number of times where the lower bound
outperforms the classical energetic reasoning-based bound, and TAD : total absolute
deviation from CER.

MGAP(%) MTime(s) #(LB = UB) #(LB = maxLB) #(LB > CER) TAD
CER 7.65 0.01 119 202 0 0
EER 4.99 0.55 275 370 181 692
RER 4.99 0.02 275 369 179 690
GER 4.96 0.13 277 375 190 701
GER_LP 4.99 0.14 275 369 179 690
IER 4.42 0.01 279 418 226 920
IER∗ 4.09 8.99 295 479 277 1014

Table 3.1: Results of the bounds on KSD30

MGAP(%) MTime(s) #(LB = UB) #(LB = maxLB) #(LB > CER) TAD
CER 7.96 0.03 56 160 0 0
EER 3.08 1.50 326 448 290 1713
RER 3.09 0.04 326 446 288 1711
GER 3.07 0.31 327 453 295 1719
GER_LP 3.09 0.35 326 446 288 1711
IER 2.92 0.05 330 461 303 1779
IER∗ 2.87 32.33 332 476 317 1801

Table 3.2: Results of the bounds on KSD60

A first striking observation is that all the proposed enhanced energetic reasoning-
based lower bounds consistently outperform the classical energetic reasoning-based
lower bound. More precisely, we observe that the two variants of the reduced instance-
based lower bounds IER∗ and IER exhibit a very good performance. Indeed, IER∗

yields the tightest average deviation and strictly dominates CER, while IER yields the
second best average deviation but is extremely fast. Moreover, we observe that bounds
EER, RER, GER, and GER_LP have a quite similar overall performance (even though,
GER stands out marginally by its quality and RER is the quickest). Surprisingly, we ob-
serve that the 0-1 formulation-based global energetic reasoning bound GER is slightly
faster than the LP-based variant GER_LP. This paradoxical behavior is due to the fact
that the feasibility test implemented within GER is stronger and therefore fewer itera-
tions are often required to detect infeasibility.
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3.6.2 Second set of experiments: assessment of the impact of DFFs

We analyzed the performance of the two DFFs-based lower bounds DFF and DFF∗.
The results are displayed in Tables 3.3-3.4.

MGAP(%) MTime(s) #(LB = UB) #(LB = maxLB) #(LB > CER) TAD
CER 5.17 0.03 182 338 100 485
DFF 2.89 0.20 324 480 242 1068
DFF∗ 2.89 0.02 324 480 242 1068

Table 3.3: Impact of DFFs on KSD30

MGAP(%) MTime(s) #(LB = UB) #(LB = maxLB) #(LB > CER) TAD
CER 7.01 0.13 90 215 0 0
DFF 2.42 0.63 353 480 311 1760
DFF∗ 2.42 0.07 353 480 311 1760

Table 3.4: Impact of DFFs on KSD60

We see from Tables 3.3-3.4, that the DFFs enable to derive tight bounds that outper-
form all the energetic based bounds. Furthermore, we observe that these bounds are
very fast. In particular, DFF∗ yields excellent bounds while being impressively fast.

Remark 7. We also implemented a variant of GER with DFFs. However, we found that the
performance of this bound is similar to the performance of DFF and DFF∗.

3.6.3 Third set of experiments: performance of a shaving procedure

Shaving also called global operations is a general approach that has been introduced
by Carlier and Pinson [31] and Martin and Shmoys [77] in the context of the job shop
problem. This approach is based on deriving sufficient conditions for proving that no
feasible schedule can exist which involve specific start times. Therefore, it aims at reduc-
ing the time-window widths of the activities. Caseau and Laburthe [33] implemented a
shaving procedure for the RCPSP that requires enumerating all the possible start times
for each activity, but they found that this strategy is very time consuming. We imple-
mented a different version of the shaving procedure that is based on a dichotomous
search procedure: at each step, we split the time-interval of each activity into two time-
intervals. Then, we sequentially invoke the energetic reasoning feasibility tests for each
interval, in turn. A pseudo-code of this procedure is described in Algorithm 2.

We denote the resulting bound SHV.
Tables 3.5-3.8 present the results of a comparative study of the performance of DFF∗,

SHV as well as the column generation-based lower bound CG of Brucker and Knust [23]
that is considered as one of the strongest lower bound for the RCPSP. It is noteworthy
that the reported CPU times of CG were obtained on a Sun Ultra 2 workstation 167
MHz.

We see that:
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Algorithm 2 Shaving procedure
1: repeat
2: Energetic reasoning
3: for all j ∈ A do

4: compute Mj =

⌈
rj + dj − pj

2

⌉
,

5: Make feasibility tests on intervals I1
j = [rj, Mj + pj − 1] and I2

j = [Mj, dj],
6: if infeasibility is detected on I1

j and I2
j then

7: increment the value of the trivial value and go to line 2
8: else if infeasibility is detected only on I1

j then
9: adjust the release date; rj ← Mj

10: else if infeasibility is detected only on I2
j then

11: adjust the due date; dj ← Mj + pj − 1
12: end if
13: end for
14: until there is no infeasibility detected

MGAP(%) MTime(s) #(LB = UB) #(LB = maxLB)
DFF∗ 2.89 0.02 324 343
SHV 1.73 0.50 366 480
CG 1.5 0.4 318 -

Table 3.5: Results of the shaving on KSD30

• for all the sets of instances, SHV yields bounds that are much often equal to an
upper bound than CG does

• for all the sets of instances, SHV yields bounds that are much often maximal than
CG does

• for the 90- and 120-activity sets of instances, SHV exhibits a smaller average per-
centage gap than CG does.

Furthermore, we observe that DFF∗ often dominates CG while being significantly
faster.

We also tested the lower bounds on BL instances (proposed by Baptiste and Le Pape

MGAP(%) MTime(s) #(LB = UB) #(LB = maxLB)
DFF∗ 2.42 0.07 353 372
SHV 1.98 2.16 362 424
CG 1.85 5.00 342 423

Table 3.6: Results of the shaving on KSD60
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MGAP(%) MTime(s) #(LB = UB) #(LB = maxLB)
DFF∗ 1.75 0.32 358 400
SHV 1.60 4.78 370 439
CG 1.62 72.00 353 436

Table 3.7: Results of the shaving on KSD90

MGAP(%) MTime(s) #(LB = UB) #(LB = maxLB)
DFF∗ 3.71 0.93 216 428
SHV 3.46 23.37 235 524
CG 3.62 355.00 (*) 214 478
(*)This average is calculated for the 481 instances of KSD120 which are calculated

within a time limit of 1 hour

Table 3.8: Results of the shaving on KSD120

[9]) and PACK instances (proposed by Néron [87]). The results are reported in Tables
3.9-3.10.

For BL instances, the CER lower bound gives good results because the instances are
highly cumulative. Thus, all other lower bounds have not improved the results. Only the
shaving procedure ameliorated 6 instances among the 18 instances that have not been
proved optimal with the CER lower bound.

MGAP(%) MTime(s) #(LB = UB) #(LB = maxLB)
CER 2.41 0.02 21 33
SHV 1.76 0.04 25 39

Table 3.9: Results of the bounds on BL instances

For PACK instances, the CERlower bound have a mean deviation of 9.35%. This de-
viation is reduced to 4.89% by the DFF lower bound. All other lower bounds (including
the shaving lower bound SHV) show the same performance.

3.7 Conclusion

In this chapter, we presented three classes of lower bounds that are based on the
concept of energetic reasoning. The first class includes bounds that are based on the
concept of reduced instances. We provided evidence that this concept proves useful to
generate high quality lower bounds. The second class includes bounds that are based
on the so-called revisited energetic reasoning that was initially introduced for parallel
machine scheduling problems. We proposed several non trivial generalizations of this
concept. In particular, we introduced a new global feasibility test that considers all
the resources simultaneously. Finally, the last class of bounds are based on discrete dual
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MGAP(%) MTime(s) #(LB = UB) #(LB = maxLB)
CER 9.35 0.01 13 31
DFF 4.89 0.00 19 55

Table 3.10: Results of the bounds on PACK instances

feasible functions. Our computational results provide evidence that a deceptively simple
DFF-based lower bound is competitive with a state-of-the-art lower bound while being
extremely fast. Furthermore, we found that an effective shaving procedure enables to
derive a highly competitive lower bound that often outperforms the best bound from
the literature while being significantly simpler.
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Chapter 4

A Preemptive Bound for the
Resource Constrained Project
Scheduling Problem

4.1 Introduction

Numerous lower bounds have been proposed for the RCPSP. Depending on how the
checking procedure (for proving infeasibility) is carried out, numerous destructive lower
bounds have been proposed so far for the RCPSP. In particular, we quote the paper by
Klein and Scholl [63], where the idea of destructive bound was originally introduced,
and those by Brucker and Knust [23] and Baptiste and Demassey [10] where destruc-
tive lower bounds, that are the best lower bounds which are currently available for the
RCPSP, are described. These latter bounds are derived through the resolution of sev-
eral large-scale linear programs by column generation. Actually, these bounds require
intensive constraint propagation techniques-based preprocessing as well as an involved
implementation of column generation. We note also the recent work of Schutt et al. [96]
who presented several procedures based on constraint programming. Experimental re-
sults demonstrate the very good performance of the proposed approach which delivered
proven optimal solutions for several open instances.

In this chapter, we propose a destructive lower bound where the checking procedure
is based on solving an enhanced LP relaxation of the RCPSP. Even though the basic fea-
tures of our approach are classic, they are enriched with some novel ideas which make
it attractive. Indeed, starting from a relaxation from the literature, that is shown to per-
form poorly, we enhanced it with a variety of valid inequalities that enforce precedence
relationships, resource constraints, and nonpreemption. With few exceptions, all these
valid inequalities are original or dominate previously proposed cuts. Furthermore, a
distinctive feature of the proposed lower bound is that it requires the solution of a com-
pact LP (that is, having a polynomial number of variables and constraints) and therefore
does not require the implementation of a sophisticated column generation algorithm.
A nice consequence of this compactness feature is that our approach is scalable and
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therefore can be used for large scaled instances.
The remainder of the chapter is organized as follows. In Section 4.2, we introduce a

basic LP relaxation that was previously proposed in the literature and that will be used
as a starting model for building an enhanced LP relaxation through appending several
new valid constraints. To that aim, we begin with by presenting in Section 4.3 a new
precedence constraint. Incompatible activity sets-based cuts are presented in Sections
4.4. Nonpreemptive and Energetic reasoning-based cuts are presented in Sections 4.5
and 4.6, respectively. Finally, the results of our extensive computational experiments are
presented in Section 4.7.

It is worth noting that most of the material presented in this chapter has been the
subject of two conferences [71, 70] and has been submitted as a journal paper [52].

4.2 A basic preemptive formulation

We introduce a basic relaxation of the RCPSP that was originally proposed by Car-
lier and Néron [29]. This relaxation aims at checking whether there exists a feasible
schedule having a makespan shorter than or equal to the trial value C. It is worth
emphasizing that instead of considering an exact RCPSP feasibility problem (this latter
problem being NP-hard) we focus on a relaxation of the RCPSP, where resource and
precedence constraints are partially considered, that is formulated as a linear program.
Toward this end, we introduce the following notation. Let {t1, . . . , tL+1} be the set con-
taining all release dates and deadlines of all activities ranked in increasing order. A
time interval Il = [tl , tl+1) is defined for each l ∈ L where L = {1, . . . , L}. Hence, the
time-horizon [0, C] (recall that C is a trial value of the makespan) is split into L consecu-
tive time-intervals whose time-bounds correspond either to a release date or a deadline.
Moreover, we define the following sets:

• I j = {l ∈ L : Il ⊆ [rj, dj]} the set of indices of time-intervals during which activity
j can be processed,

• I j
i = {l ∈ L : max(ri, rj) ≤ tl < min(di, dj)} the set of indices of time-intervals

during which both activities i and j can be in progress simultaneously,

• Al = {j ∈ A : Il ⊆ [rj, dj]} the set of activities that can be in progress during
time-interval Il .

Also, we set ∆l = tl+1 − tl for l ∈ L, υ = maxj∈A(dj − pj − rj + 1), and ρ =

maxj∈A
∣∣I j
∣∣ . These latter two parameters represent the maximum number of feasible

starting times of an activity, and the maximum number of time-intervals during which
an activity might be processed, respectively.. Furthermore, we define the continuous
decision variable xjl as the amount of time that is allocated to process activity j ∈ A
during the time-interval Il ∈ I j. Thus, the feasibility problem proposed by Carlier and
Néron [29] reads as follows:

46



4.2. A BASIC PREEMPTIVE FORMULATION

(P4)

Find x
s.t.

∑
l∈I j

xjl = pj, ∀j ∈ A

xjl ≤ ∆l , ∀j ∈ A, ∀l ∈ I j

∑
j∈Al

bjkxjl ≤ Bk∆l , ∀k ∈ R, ∀l ∈ L

∑
s∈I i/s≤l

xis

pi
≥

l

∑
s=τ/tτ=rj

xjs

pj
, ∀(i, j) ∈ A, ∀l ∈ I j

i

xjl ≥ 0, ∀j ∈ A, ∀l ∈ I j

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

Constraints (4.2) state that each activity j must be processed within its specified
time-window [rj, dj]. Constraints (4.3) require that any activity j could not be processed
more than once at any time. Constraints (4.4) enforce that for any resource k and at
any time-interval Il the total resource requirements do not exceed the resource capacity.
Constraints (4.5) can be viewed as "pseudo-precedence" constraints. They enforce that if
i is a predecessor of j then the total fraction of i that is processed from its release date ri
up to the time-bound tl+1 is larger than or equal to the fraction of the successor activity
j that is processed from its release date rj up to the same time-bound tl+1.

It is worth mentioning that, in a strict sense, (P4) does not correspond to the pre-
emptive relaxation of the RCPSP. This is mainly due to the fact that (4.4) can be viewed
as a relaxed version of the cumulative resource constraints.

Property 6. If for a given trial value C of the makespan, (P4) is infeasible then C + 1 is a valid
lower bound on the optimal makespan.

In the sequel, we denote LBCN the destructive bound that is based on Property 6.
Interestingly, even though LBCN has been proposed few years ago, its computational
performance has never been thoroughly assessed. Thus, we conducted a computational
analysis of LBCN and compared it with the state-of-the-art lower bound of Brucker and
Knust [23] (in the sequel, we shall refer to this latter bound by LBBK). In our imple-
mentation, we considered as an initial trial value the so-called critical path bound that
is defined as follows:

LBCP = l(0, n + 1)

We considered a subset of 326 nontrivial 60- and 90- activity instances from the well-
known PSPLIB testbed proposed by Kolisch et al. [66] for which LBCP is strictly smaller
than the best known upper bound. A summary of the results is displayed in Table 4.1. In
this table, each entry represents the percentage of times the equality (or inequality) that
is stated in the first column of the corresponding row holds for the different problem
sets, respectively. Not surprisingly, we observe that LBCN exhibits a poor performance
and is largely dominated by LBBK. Actually, we found that LBCN is strictly outperformed
by LBBK for 81.6% of the instances.
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60-activity 90-activity
LBCN = LBBK 29 31
LBCN < LBBK 154 112
LBCN > LBBK 0 0

Table 4.1: Comparison between LBCN and LBBK on nontrivial instances

In the sequel, we shall gradually append several valid constraints to (P4) and provide
evidence that these additional cuts will have a dramatic effect on the performance of the
resulting destructive bound.

4.3 A precedence-based cut

Let x be a nonpreemptive schedule and pjl be the mandatory part of an activity j ∈ A

over an interval Il . We define αjl = (tl + pjl)xjl −
1
2

pjl(pjl + 1) and β jl = (tl+1 − 1−

pjl)xjl +
1
2

pjl(pjl + 1), for each activity j ∈ A and each time-interval Il , l ∈ I j. Also, we

denote by sj ∈ [rj, dj − pj] the starting time of activity j. Thus, j is processed during the
consecutive time points sj, . . . , (sj + pj− 1). Then, the mean time point during which the

resources are allocated to j is s̃j = sj +
pj − 1

2
for j ∈ A. We have:

Proposition 2.
∑

l∈I j

αjl

pj
≤ s̃j ≤

∑
l∈I j

β jl

pj
for j ∈ A

Proof. First, note that in this case the xjl’s are integers. Assume that xjl > 0 and that
{sj, . . . , sj + pj − 1} ∩ Il = {sl

j, . . . , sl
j + xjl}. Thus, we have the following inequalities:

(S1)



tl ≤ sl
j

tl + 1 ≤ sl
j + 1

. . .

tl + pjl − 1 ≤ sl
j + pjl − 1

tl + pjl ≤ sl
j + pjl

. . .

tl + pjl ≤ sl
j + xjl − 1
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(S2)



sl
j ≤ tl+1 − pjl − 1

. . .

sl
j + xjl − pjl − 1 ≤ tl+1 − pjl − 1

sl
j + xjl − pjl ≤ tl+1 − pjl

sl
j + xjl − pjl + 1 ≤ tl+1 − pjl + 1

. . .

sl
j + xjl − 1 ≤ tl+1 − 1

Summing all inequalities in (S1) and (S2), we get:

αjl ≤
xjl−1

∑
q=0

(sl
j + q) ≤ β jl , ∀j ∈ A, ∀l ∈ I j (4.7)

Summing up all inequalities (4.7) for l ∈ I j, we get:

∑
l∈I j

αjl ≤ sj + . . . + (sj + pj − 1) ≤ ∑
l∈I j

β jl , ∀j ∈ A (4.8)

Finally, this yields

∑l∈I j αjl

pj
≤ s̃j ≤

∑l∈I j β jl

pj
, ∀j ∈ A

Furthermore, for each j ∈ A and sj ∈ [rj, dj − pj], we compute the corresponding

values αj, β j, and s̃j, and we define the slack variables λj(sj) = s̃j−
∑l∈I j αjl

pj
and µj(sj) =

∑l∈I j β jl

pj
− s̃j, respectively.

Lemma 1. The following inequality

∑l∈I j β jl

pj
− ∑l∈I i αil

pi
≥ min

si∈[ri ,di−pi ], sj∈[rj,dj−pj]:si+pi≤sj

(λi(si)+ µj(sj))+
pi

2
+

pj

2
, ∀(i, j) ∈ A

(4.9)
is valid.

Proof. Assume that (i, j) ∈ A. If activity i starts at si and activity j starts at sj then we
have:
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si + pi ≤ sj ⇒ s̃i +
pi

2
≤ s̃j −

pj

2

⇒ λi(si) +
∑l∈I i αil

pi
+

pi

2
≤ ∑l∈I j β jl

pj
−

pj

2
− µj(sj)

Hence, we derive the valid inequality

∑l∈I j β jl

pj
− ∑l∈I i αil

pi
≥ (λi(si) + µj(sj)) +

pi

2
+

pj

2
(4.10)

By considering all possible (compatible) starting times, we derive the valid inequality
(4.9).

Clearly, for each j ∈ A and sj ∈ [rj, dj − pj], the computation of λj(sj) and µj(sj)
requires O(nρ)-time. Also, for each (i, j) ∈ A, the computation of the RHS of the cor-
responding inequality (4.9) requires O(υ2)-time. Thus, the overall effort for generating
(4.9) is O(nρ + |A| υ2).

4.4 Incompatible activity sets-based cuts

Now, we turn our attention to valid cuts that are based on incompatible activity sets.
First, we describe three cuts from the literature. Next, we introduce the so-called clique
cuts together with the associated separation procedure. Finally, we show how to use
the concept of dual feasible function to derive from the capacity constraints (4.4) several
valid inequalities.

4.4.1 Three cuts from the literature

4.4.1.1 Parallel machine cuts

First, we recall (see Section 2.3.1) the definition of the sets Em
k . For each resource

k ∈ R, and each integer m, these sets are defined as Em
k = {j ∈ A : bjk ≥

⌊
Bk

m + 1

⌋
+ 1}.

Following Carlier and Latapie [27], we observe that in any feasible solution there must be
at most m activities from Em

k that can be processed in parallel. Hence, a valid constraint
is:

∑
j∈Al∩Em

k

xjl ≤ m∆l , ∀l ∈ L, ∀k ∈ R (4.11)

In our tests, and for the sake of computational efficiency, we restrict these constraints
to m ∈ {1, 2}.

It is easy to see that for each k ∈ R, and each integer m, (4.11) can be derived in
O(n)-time.
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4.4.1.2 Minimal forbidden cuts

Furthermore, Nabeshima [81] introduced a more general concept of forbidden set of
activities. This concept refers to activity subsets that include activities that cannot be in
progress simultaneously. Only minimal forbidden sets are considered, i.e., all subsets of
a minimal forbidden set are not a forbidden set.

Let φ be a minimal forbidden set, and |φ| its cardinality. Then, a valid constraint is:

∑
j∈Al∩φ

xjl ≤ (|φ| − 1)∆l , ∀l ∈ L, ∀φ ∈ Φ (4.12)

where Φ is the set of all minimal forbidden sets.
Notice that the number of minimal forbidden sets may be large (see Artigues et al.

[5]). Therefore, in the sequel, we shall restrict constraints (4.12) only to the minimal
forbidden sets of cardinality 3. Hence, generating these cuts requires O(n3) time.

Remark 8. Notice that all the sets E2
k of cardinality 3 (see Constraint 4.11) are included in the

minimal forbidden sets of cardinality 3. Thus, some cuts generated by (4.11) are also generated
by (4.12). However, in general, a set E2

k may be of cardinality larger than 3.

4.4.1.3 Job shop cuts

In the following, we present an adaptation of the Two-job cuts introduced by Apple-
gate and Cook [4] for the resolution of the job shop scheduling problem.

Let i and j be two activities in disjunction on a resource, i.e., there exists a resource
k ∈ R such that bik + bjk > Bk then we know that i precedes j or j precedes i. We have
the following constraint:

(ri + pi− rj)si + (rj + pj− ri)sj ≥ pi pj + ri pj + rj pi if ri + pi ≥ rj and rj + pj ≥ ri (4.13)

Proof. If i precedes j, then:

si ≥ ri

and
sj ≥ ri + pi

If we multiply the first inequality by ri + pi − rj and the second one by rj + pj − ri
and do the addition of the two resulting inequalities, we obtain the constraint (4.13). In
the same way, if j precedes i then we prove the result by permuting the indices i and
j.

Let λ̃j = min
sj∈[rj,lj]

(s̃j −
αj

pj
) and µ̃j = min

sj∈[rj,lj]
(

β j

pj
− s̃j). We have the following inequality:
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αj

pj
+ λ̃j ≤ s̃j ≤

β j

pj
− µ̃j

⇒
αj

pj
+ λ̃j −

pj − 1
2
≤ sj ≤

β j

pj
− µ̃j −

pj − 1
2

(4.14)

Moreover, let σij = ri + pi− rj. Using the last inequality, the constraint (4.13) becomes:

σij

pi
βi +

σji

pj
β j ≥ pi pj +

p2
i + p2

j + rj pi + ri pj − pi − pj

2
+ σijµ̃i + σjiµ̃j (4.15)

In the same way, we can prove the following constraint:

ρijci + ρjicj ≤ di pj + dj pi − pi pj si dj ≥ di − pi and di ≥ dj − pj (4.16)

where ρij = dj − di + pi.
We know also that cj is equal to sj + pj. Thus, the last relation becomes:

ρijsi + ρjisj ≤ di pi + dj pj − pi pj − p2
i − p2

j (4.17)

Using the inequality (4.14) and the constraint (4.17), we obtain the following con-
straint:

ρij

pi
αi +

ρji

pj
αj ≤ −pi pj +

di pi + dj pj + di pj + dj pi − p2
i − p2

j − pi − pj

2
− ρijλ̃i − ρjiλ̃j

(4.18)

4.4.2 Maximum number of activities in parallel

Next idea we have investigated consists in determining for each time-interval the
maximum number of activities that can be processed in parallel. For each time-interval
Il , let us define (P5) the following ILP formulation:

(P5)

µ(Al) = max ∑
j∈Al

yj

s.t.

∑
j∈Al

bjkyj ≤ Bk, ∀k ∈ R

yj ∈ {0, 1}, ∀j ∈ Al

(4.19)

(4.20)

(4.21)

µ(Al) represents the maximum number of activities that may be in parallel execution
over the interval [tl , tl+1]. Then a valid constraint is:
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∑
j∈Al

xjl ≤ µ(Al)(tl+1 − tl), ∀l ∈ L (4.22)

Remark 9. As the resolution of the ILP formulation (P5) may be time consuming, constraints
(4.22) will not be experimentally tested.

4.4.3 Clique cuts

In this section, we introduce a valid inequality that is based on subsets of mutually
incompatible activities. To that aim, we define G

′
= (V, E) an undirected incompatibility

graph, presented for the RCPSP by Mingozzi et al. [78], where each node i represents an
activity i ∈ A and where each edge {i, j} ∈ E is associated with a pair {i, j} of activities
that cannot both be processed simultaneously. That is:

{i, j} ∈ E⇐⇒


(1) i is a predecessor of j (or j is a predecessor of i)
or
(2) bik + bjk > Bk for some k ∈ R

It is noteworthy that Condition (1) does not necessarily require an immediate prece-
dence relationship.

Let C denote the set of cliques of G
′
. Clearly, a clique Cl ∈ C includes a set of

mutually exclusive activities. Hence, the following cut

∑
j∈Al∩Cl

xjl ≤ ∆l , ∀l ∈ L, ∀Cl ∈ C (4.23)

is valid.
Clearly, it is sufficient to consider in (4.23) only the (nondominated) inclusionwise

maximal cliques.
Since (4.23) includes a very large (exponential) number of constraints, then the feasi-

bility LP model is solved using a constraint generation approach where violated clique
constraints are iteratively generated on the fly. Hence, this approach requires iteratively
solving |L| separation problems of the form:

(SPl): Given (x̄jl)j=1,...,n the solution of LP0, find Cl ∈ C such that ∑
Aj∈Al∩Cl

x̄jl > ∆l or

verify that no such clique exists.

Thus, (SPl) amounts to finding a clique Cl ∈ C such that ∑
Aj∈Al∩Cl

x̄jl is maximal.

Therefore, we see that (SPl) requires solving a maximum weight clique problem (MWCP)
in the subgraph Gl = (V l , El) of G

′
(where each node j from V l represents an activity

Aj ∈ Al) and where each node is assigned a weight x̄jl . This latter problem is notori-
ously known to be intractable. In our implementation, we used the exact algorithm of
Östergård (2001) to solve the MWCP.
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Alternatively, we tested a much faster (and significantly simpler) heuristic strategy
where a restricted number of clique cuts are only generated in a preprocessing step.
Hence, in so doing, we avoid invoking a time consuming dynamic constraint genera-
tion procedure. It is noteworthy that since the clique cuts are now generated prior to
computing the xjl’s variables, then we cannot emphasize inclusionwise maximal cliques.
Instead, the implemented heuristic is based on generating the cliques that are maximal
w.r.t cardinality. More precisely, we implemented the following strategy:

• Step 1: Invoke an exact algorithm to generate the cliques that are maximal w.r.t
cardinality
(In our implementation, we used the algorithm of Östergård (2002) and we set the
CPU time limit to 300 s).

• Step 2: Sort the generated cliques in decreasing cardinality

• Step 3: Select the largest #CC cliques and append them to the feasibility model (in
our implementation, we empirically set the parameter #CC to 80)

4.4.4 Dual feasible functions-based cuts

Given a feasible schedule x, and a DFF f , we denote by Al
t the subset of activities

that are in progress at time t ∈ Il (l ∈ L). We have:

∑
Aj∈Al

t

bjk ≤ Bk, ∀t ∈ Il , ∀l ∈ L, ∀k ∈ R (4.24)

Since f is a DFF, then we get:

∑
Aj∈Al

t

f (bjk) ≤ f (Bk), ∀t ∈ Il , ∀l ∈ L, ∀k ∈ R (4.25)

After summing up all inequalities for t ∈ Il , we derive:

∑
Aj∈Al

f (bjk)xjl ≤ f (Bk)∆l , ∀l ∈ L, ∀k ∈ R (4.26)

Hence, given a set F ={ fh}h=1,...,ξ of DFFs, we can derive from (4.4) the following
valid inequalities:

∑
Aj∈Al

fh(bjk)xjl ≤ fh(Bk)∆l , ∀l ∈ L, ∀k ∈ R, ∀ fh ∈ F (4.27)

For the sake of computational efficiency, we performed extensive computational ex-
periments to identify an effective set of DFFs. We found that a good performance is
obtained by implementing the same DFFs f s

1 of Fekete and Schepers [47] and f s
2 of Car-

lier et al. [26] described in Section 3.5.
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We note that each cut that is based on f s
1 can be generated in O(n)-time for each

k ∈ R. Also, a cut that is based on f s
2 can be generated in O(n log n)-time for each k ∈ R

(because f s
2 needs the resolution of a knapsack problem which is obtained by trivially

ranking the items in nondecreasing weights).

4.5 Nonpreemptive cuts

In this section, we propose four families of cuts that are based on the requirement
that a feasible RCPSP schedule is nonpreemptive.

4.5.1 First family

Lemma 2. The following constraints

q−1

∑
l=p+1

xjl

q−1

∑
l=p+1

∆l

≥
xjp

∆p
+

xjq

∆q
− 1, ∀j ∈ A, ∀p, q ∈ I j such that p + 1 < q (4.28)

are valid.

Proof. Assume that x represents a nonpreemptive schedule. We consider two cases:

- Case 1:
xjp

∆p
+

xjq

∆q
> 1. Thus, activity j is both processed during the intervals Ip

and Iq (with p + 1 < q). Since x is nonpreemptive, then j is necessarily continuously

processed during all the intermediate intervals Ip+1, . . . , Iq−1 as well. Hence,

q−1

∑
l=p+1

xjl

q−1

∑
l=p+1

∆l

=

1 and therefore the constraint is valid.

- Case 2:
xjp

∆p
+

xjq

∆q
≤ 1. Then, the constraint is trivially valid.

Each constraint (4.28) can be generated in O(ρ)-time.

4.5.2 Second family

Let Rj = {p, p+ 1, . . . , q} be the set of indices of time intervals during which activity
Aj ∈ A must be in progress if it starts at its release date rj. That is,

l ∈ Rj ⇔ [rj, rj + pj] ∩ Il 6= ∅.

For convenience, we assume that
∣∣Rj
∣∣ > 1 (see Figure 4.1).
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Ip Ip+1 ... Iq

rj

tp tp+1 tp+2 tq tq+1

rj + pj

Figure 4.1: Illustration of nonpreemptive cuts (second family)

Lemma 3. We have:

xjp

∆p
≤ . . . ≤

xj,q−1

∆q−1
≤ εj

xjq

∆q
, ∀j ∈ A (4.29)

where εj =
∆q

rj + pj − tq

Proof. We consider two cases:

Case 1: There exists h ∈ [p, q − 1] such that
xjh

∆h
> 0. Hence,

xjl

∆l
= 1 for l =

h + 1, . . . , q− 1. Also, xjq ≥ rj + pj − tq. Thus, the inequalities are valid.

Case 2:
xjl

∆l
= 0, for l = p, . . . , q− 1. In this case, the inequality reduces to εj

xjq

∆q
≥ 0

and is therefore trivially valid.

Furthermore, let D j = {p, p + 1, . . . , q} be the set of indices of time intervals during
which activity j ∈ A must be in progress if it terminates at its deadline dj. That is,

l ∈ D j ⇔ [dj − pj, dj] ∩ Il 6= ∅.

Lemma 4. We have:

ε
′
j
xjp

∆p
≥

xj,p+1

∆p+1
≥ . . . ≥

xjq

∆q
, ∀j ∈ A (4.30)

where ε
′
j =

∆p

tp+1 − dj + pj

Proof. Similar to Lemma 3.

4.5.3 Third family

We define S j(s) = {l ∈ L : [s, s + pj] ∩ Il 6= ∅} as the set that includes all the
indices of those intervals during which j must be in progress if it starts at s ( j ∈ A,
s ∈ [rj, dj − pj]). Also, let:
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4.5. NONPREEMPTIVE CUTS

θjl(s) =
min(tl+1, s + pj)−max(tl , s)

∆l

be the fraction of the interval [tl , tl+1) during which activity j is in progress if it starts
at s.

Thus, we have the following result

Lemma 5. The following inequalities

min
s∈[rj,dj−pj]

∑
l∈S j

θjl(s) ≤ ∑
l∈I j

xjl

∆l
≤ max

s∈[rj,dj−pj]
∑

l∈S j

θjl(s), ∀j ∈ A (4.31)

are valid.

Proof. These inequalities trivially hold for any nonpreemptive schedule.

For each activity j ∈ A, and each s ∈ [rj, dj − pj], the computation of ∑l∈S j θjl(s)
requires O(ρ)-time. Hence, For each j ∈ A, the generation of (4.31) requires O(υρ)-time.

Example 5. Consider an activity j ∈ A with pj = 6, rj = 0, and dj = 9. Also, assume that the
time intervals that overlap with [rj, dj) are the following: I1 = [0, 2), I2 = [2, 5), I3 = [5, 6),
and I4 = [6, 9). The set of feasible start times is {0, 1, 2, 3}. We see from Figure 4.2 that:

t1 t2 t3 t4 t5

0 1 2 3 4 5 6 7 8 9

Figure 4.2: Example of nonpreemptive cuts (third family)

• s = 0⇒
4

∑
l=1

xjl

∆l
= 1 + 1 + 1 = 3

• s = 1⇒
4

∑
l=1

xjl

∆l
=

1
2
+ 1 + 1 +

1
3
=

17
6

• s = 2⇒
4

∑
l=1

xjl

∆l
= 1 + 1 +

2
3
=

8
3
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• s = 3⇒
4

∑
l=1

xjl

∆l
=

2
3
+ 1 + 1 =

8
3

Thus, in any nonpreemptive schedule, we have

8
3
≤

4

∑
l=1

xjl

∆l
≤ 3

4.5.4 Fourth family

Now, consider two intervals Ip and Iq ∈ I j (p < q) that satisfy:

pj < tq − tp+1 + 1

Thus, activity j ∈ A can not be both processed during Ip and Iq. Hence, Ip and Iq are
mutually exclusive for activity j. Define Ψj as the family of maximal sets of intervals (for
inclusion) that are mutually exclusive for activity j.

Lemma 6. A valid constraint is

∑
l∈Ψ

xjl

∆l
≤ 1, ∀j ∈ A, ∀Ψ ∈ Ψj (4.32)

Proof. Let Ψ be a maximal set of intervals that are mutually exclusive for activity j.

Assume that
xjp

∆p
> 0 for p ∈ Ψ. Then, we have ∑

l∈Ψ\{p}

xjl

∆l
= 0.

Remark 10. We can generate constraints (4.32) dynamically. For this, we construct a graph
whose nodes represent intervals Il , l ∈ I j where activity j ∈ A can be in execution. To each

node, we associate a weight equal to
x̄jl

∆l
where x̄jl , ∀j ∈ A, ∀l ∈ I j, represents the values

of the LP solution. Two nodes are connected by an arc if the two corresponding intervals are
mutually exclusive. Then, we solve the MWCP by the exact method of Östergård [101]. A
violated constraint is detected if the value of the clique is strictly greater than 1. We add this
constraint to the LP and we resolve it.

4.6 Energetic reasoning-based cuts

In this section, we provide three simple, though computationally useful, cuts.

4.6.1 The concept of mandatory parts

Now, we turn our attention to valid constraints that use information dealing with
the mandatory part of activities. We recall that the mandatory part of an activity j ∈ A
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4.6. ENERGETIC REASONING-BASED CUTS

during a time interval [t1, t2] ⊆ [0, C], hereafter denoted by p(j, t1, t2), is the part of j that
must be processed within [t1, t2]. Thus, we have:

p(j, t1, t2) = min
(
t2 − t1, pj, max(0, rj + pj − t1), max(0, t2 − dj + pj)

)
Using these definitions, we straightforwardly derive the following valid variable

bounds:

xjl ≥ p(j, tl , tl+1), ∀j ∈ A, ∀l ∈ I j (4.33)

Clearly, (4.33) dominate (4.6) and can therefore replace these restrictions.

4.6.2 A work-based cut

In the following, we briefly recall the notion of work and we show how it could be
used to generate effective cuts.

A simple estimate of the total work Wk(t1, t2) over the time-interval [t1, t2] and re-
source k is given by:

Wk(t1, t2) = ∑
j∈A

bjk p(j, t1, t2)

A key observation is the following:

Proposition 3. Given an interval Il (l ∈ L), a valid constraint is:

∑
j∈Al

bjkxjl ≥Wk(tl , tl+1), ∀k ∈ R. (4.34)

Proof. It suffices to observe that in any feasible schedule, activity j must be processed
within Il during at least Wjk(t1, t2)/bjk units of time. Thus, we have bjkxjl ≥ Wjk(tl , tl+1)

∀j ∈ Al , ∀k ∈ R. Hence, the result follows.

In Section 3.4, we described the so-called Revisited Energetic Reasoning (RER) that
aims at deriving a tighter estimate W̃k(tl , tl+1) of the total work over a time interval
(thus, yielding a stronger cut (4.34)).

Remark 11. We also implemented an extended variant of (4.33) and (4.34) where further time-
intervals [t1, t2] (in addition to intervals Il (l ∈ L)) are explicitly considered. However, we found
that these additional constraints did not impinge on the model performance.

4.6.3 No idle-time

Finally, a trivial (though useful) valid constraint requires that in any optimal solution,
there is at least one activity in progress at each time point:
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∑
j∈Al

xjl ≥ ∆l , ∀l ∈ L (4.35)

4.7 Experimental results

In this section, we report the results of a computational study that aims at assessing
the performance of the proposed cuts. To that aim, we carried out three sets of experi-
ments. In the first set, we investigate the best combination of valid constraints that offers
a good trade-off between tightness and efficacy. In the second set, we analyze the perfor-
mance of our LP-based destructive bound with state-of-the-art lower bounds of Brucker
and Knust [23] and Baptiste and Demassey [10], respectively. Finally, in the third set, we
compare our lower bound to the constraint programming-based lower bound of Schutt
et al. [96].

We used as a testbed the PSPLIB benchmark instances proposed by Kolisch et al.
[66]. All the experiments were carried out on a 3.0 GHz Personal Computer with 1 GB
RAM. We used CPLEX 11 for solving the LPs.

4.7.1 Performance of the proposed cuts

In this first experiment, we restricted our attention to the 30- and 60-activity instances
of PSPLIB. We only considered nontrivial instances for which the best known upper
bound is strictly larger than the lower bound LBRER yielded by the RER procedure
that is described in Section 3.6. We implemented LBRER as an input for initializing the
process (and also for adjusting initial ready times and deadlines).

In this first phase, we analyzed the performance of the following bounds:

• LBRER : the RER-based lower bound

• LB0 : the destructive lower bound based on Formulation LP0 along with the
mandatory part constraint (4.33), the no idle-time constraint (4.35) and the precedence-
based cut (4.9).

• LB1 : the destructive lower bound based on the formulation that is obtained after
appending, in a preprocessing step, 80 clique constraints (4.23) to the formulation
that is used to compute LB0.

• LB2 : the destructive lower bound based on the formulation that is obtained after
appending the forbidden activity sets constraints (4.11, 4.12, 4.13 and the dual fea-
sible functions-based constraints 4.27) to the formulation that is used to compute
LB1.

• LB3 : the destructive lower bound based on the formulation that is obtained after
appending the nonpreemptive constraints (4.28, 4.29, 4.30, 4.31 and 4.32) to the
formulation that is used to compute LB2. For the sake of efficiency, Constraints
(4.32) are restricted to the particular (simple) case of pairwise exclusive intervals.
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• LB4 : the destructive lower bound based on the formulation that is obtained after
appending (on the fly) the fourth family of nonpreemptive cuts as described in
Remark 10 to the formulation that is used to compute LB3.

• LB5 : the destructive lower bound based on the formulation that is obtained after
appending (on the fly) the clique cuts (4.23) to the formulation that is used to
compute LB3.

• LBall : the destructive lower bound based on the formulation that is obtained after
both appending (on the fly) the fourth family of nonpreemptive cuts as well as the
clique cuts to the formulation that is used to compute LB3.

Remark 12. We performed preliminary experiments that demonstrate that incremental search is
faster than dichotomous search. Thus, for the sake of efficacy, all the aforementioned destructive
lower bounds are based on an incremental destructive search strategy.

Tables 4.2-4.3 display a summary of the computational results. For each lower bound,
we provide: GAP : the mean percentage deviation with respect to the best known upper
bound, Time : the mean CPU time (in seconds), #(LB = UB): number of times where
the lower bound is equal to the best known upper bound, #(LB = max LB) : number
of times where the lower bound is maximal, #(LB > LBRER) : number of times where
the lower bound outperforms the RER-based bound, and TAD : total absolute deviation
from LBRER.

GAP(%) Time(s) #(LB = UB) #(LB = maxLB) #(LB > LBRER) TAD
LBRER 7.29 1.26 0 71 0 0
LB0 7.29 1.28 0 71 0 0
LB1 5.58 2.50 4 102 37 188
LB2 5.57 2.98 4 103 37 189
LB3 5.43 3.96 5 113 43 201
LB4 5.43 4.86 5 113 43 201
LB5 5.42 4.13 5 114 43 202
LBall 5.42 5.03 5 114 43 202

Table 4.2: Results of the bounds on 114 non trivial KSD30 instances

GAP(%) Time(s) #(LB = UB) #(LB = maxLB) #(LB > LBRER) TAD
LBRER 8.06 8.41 0 97 0 0
LB0 8.06 8.86 0 97 1 1
LB1 7.95 10.50 1 105 10 14
LB2 7.95 11.31 1 106 11 15
LB3 7.86 20.83 1 116 20 26
LB4 7.86 73.65 1 116 20 26
LB5 7.85 26.36 1 117 21 27
LBall 7.84 83.26 1 118 21 28

Table 4.3: Results of the bounds on 118 non trivial KSD60 instances

We observe that all the new proposed bounds both outperform the initial bound
LBRER and the simple LP-based bound LB0. Moreover, the results reveal that the new
proposed bounds can be roughly classified into two families {LB1, LB2} and {LB3, LB4, LB5, LBall},
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where each family includes bounds that exhibit very similar performances. Clearly,
bounds of the first family are the fastest, while those that belong to the second family
exhibit the best quality.

Interestingly, we observe that the best trade-off between efficiency and effectiveness
is achieved by LB3. Therefore, in the sequel we shall use this bound as our reference
bound and denote it by LBPmtn.

4.7.2 Comparison with lower bounds of Brucker and Knust [23] and Baptiste
and Demassey [10]

In this second experiment, we compare the performance of LBPmtn with respect to
state-of-the-art bounds. To that aim, we consider the full set of benchmark instances of
the PSPLIB.

In Table 4.4, we display the results of LBPmtn as well as those provided by Brucker
and Knust’s bound (LBBK). Moreover, we included for the set of instances KSD60 the
results provided by the bound LBBD that was proposed by Baptiste and Demassey [10]
(these authors tested their bound only on KSD60). The column’s headings have the same
meanings as those of Tables 4.2-4.3. that the reported CPU times of LBBK were obtained
on a Sun Ultra 2 workstation 167 MHz and those of LBBD on a HP Omnibook Pentium
III running at 720 MHz.

KSD30 KSD60
GAP(%) Time(s) #(LB = UB) #(LB = maxLB) GAP(%) Time(s) #(LB = UB) #(LB = maxLB)

LBPmtn 1.29 0.9 371 480 1.93 3.66 363 400
LBBK 1.50 0.4 318 - 1.85 5 342 409
LBBD - - - - 1.35 86.46 366 465

KSD90 KSD120
LBPmtn 1.58 10.97 371 444 3.41 96.57 236 539
LBBK 1.62 72 353 436 3.62 355 (*) 214 474
(*) Average calculated for 481 instances solved within 1 hour

Table 4.4: Comparison of the bounds on KSD instances

Interestingly, we observe that LBPmtn exhibits an excellent performance both in terms
of average gap as well as the number of times it yields a proven optimal value. Indeed, it
consistently exhibits the best performance on all problems sets, but KSD60, where LBBD
is the champion bound. Nevertheless, we observe that for this latter problem class, LBBD
yields proven optimal values for 76.25% of the instances, while LBPmtn is only marginally
outperformed as it provides proven optimal values for 75.62% of the instances.

Pushing our analysis a step further, we performed a pairwise comparison of the
different lower bounds. The results are displayed in Table 4.5.

Table 4.5 provides further evidence of the good performance of LBPmtn. In partic-
ular, we observe that for 120-activity instances LBPmtn strictly dominates LBBK for 126
instances, while LBBK outperformed LBPmtn for only 61 instances.

Overall, the computational experiments attest the efficacy of LBPmtn. This perfor-
mance is further demonstrated by the fact that LBPmtn provides a maximal lower bound
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KSD60 KSD90 KSD120
LBPmtn > LBBK 59 44 126
LBPmtn = LBBK 369 400 413
LBPmtn < LBBK 52 36 61
LBPmtn > LBBD 15 - -
LBPmtn = LBBD 385 - -
LBPmtn < LBBD 80 - -

Table 4.5: Comparison between LBPmtn, LBBK and LBBD on KSD instances

for 1863 instances (91.32%).

4.7.3 Comparison with the approach of Schutt et al. [96]

In this third experiment, we compare the performance of LBPmtn to the procedures
that were proposed by Shutt et al. [96]. In this recently published paper, the authors
implemented several exact methods that are based on constraint programming. For all
these procedures, the authors set the maximum CPU time to 10 minutes. However, if no
proven optimal solution is found within the time limit, then a lower bound is computed
using a destructive search procedure that starts from the best known lower bound found
on the PSPLIB benchmark. Hence, to make a fair comparison with the approach of Shutt
et al. (2011), we used for computing LBPmtn this same start trial value for all unsolved
instances.

Table 4.6 provides a pairwise comparison between LBPmtn and the lower bound of
Shutt et al. [96] (hereafter, denoted by LBCP).

KSD60 KSD90 KSD120
LBPmtn > LBCP 0 6 47
LBPmtn = LBCP 391 429 453
LBPmtn < LBCP 89 45 100

Table 4.6: Comparison between LBPmtn and LBCP on KSD instances

Looking at Table 4.6, we see that for most instances (1273 out of 1560) both bounds
are equal. On the other hand, although LBCP often outperforms LBPmtn, we see that
LBPmtn strictly dominates LBCP for 53 instances amongst which we found 48 new im-
proved lower bounds. These new values and the corresponding instances are provided
in Appendix A.

As an indication, we compare the execution times of our lower bound LBPmtn to the
exact methods of Shutt et al. (2011). For this, we look to the fastest procedures, on all
instance sizes, among those implemented by Schutt et al. [96]. We note however that
the execution times correspond to exact methods. The calculation of the lower bounds
by Schutt et al. [96] is not reported in the following. The authors used a Computer
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with an Intel Xeon CPU 2Ghz. The codes were written in Mercury using G12 constraint
programming platform.

The best procedure of Schutt et al. [96] on KSD60 has an average execution time of
66.01 seconds against 3.66 seconds for our lower bound. On KSD120 instances, our lower
bound shows a processing time of 96.57 seconds against 324.51 seconds on average for
the best procedure of Schutt et al. [96].

4.8 Conclusion

In this chapter, we described a new destructive bound for the RCPSP. This bound is
based on solving a sequence of relaxed feasibility RCPSP models. Starting from a basic
previously suggested LP model, we proposed several original valid inequalities that aim
at tightening the model representation. These new inequalities are based on precedence
constraints, incompatible activity subsets, dual feasible functions and energetic reason-
ing. We presented the results of an extensive computational study that was carried out
on 2040 benchmark instances with up to 120 activities and that provides evidence that
the new proposed lower bound exhibits an excellent performance and often dominates
state-of-the-art lower bounds.
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Chapter 5

Exact Methods for the Resource
Constrained Project Scheduling
Problem

5.1 Introduction

Branch-and-Bound algorithms are probably the most widely used solution technique
for solving exactly the project scheduling problems. A lot of branching schemes were
proposed in the literature. A well known branching scheme is the precedence tree
branching scheme (PTBS) which consists in listing all activities in a sequence such that
no successor of an activity is sequenced before its predecessor. The most efficient algo-
rithm based on this branching scheme was proposed by Sprecher [98]. Unfortunately,
the proposed algorithm as well as the best known branch-and-bound algorithm pro-
posed by Demeulemeester and Herroelen [41] fail to solve 60-activity instances of the
PSPLIB benchmark. The first objective of this chapter is to study the impact of the pre-
viously proposed lower bounds on a branch-and-bound algorithm based on the PTBS.
The second objective consists in proposing new variants of branching schemes derived
from the PTBS.

The remainder of this chapter is organized as follows. In Section 5.2, we begin by
reviewing the precedence tree branching scheme and the dominance rules allowing the
reduction of the search tree. In section 5.3, we present two variants of the PTBS. Finally,
the results of our computational experiments are presented in Section 5.4.

5.2 The precedence tree branching scheme

5.2.1 Description of the scheme

In the precedence tree branching scheme, the root node N0 is given by the dummy
start activity 0 and the leaves correspond to copies of the dummy finish activity n + 1.
The descendants of a node Nj within the precedence tree are built by the activities that
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are eligible after scheduling the activities on the path leading from the root node N0
to node Nj. Thus, an activity is called eligible if all its predecessors are scheduled.
The algorithm can be stated as follows. Only one activity is scheduled per node of the
branch-and-bound. The start time STAj of activity Aj, considered for scheduling at level
j, is the lowest feasible start time which respects the following conditions:

1. The start time STAj is greater than the start time of the activity most recently
scheduled,

2. The start time STAj is lower than the latest start time (equal to dAj − pAj ) of Aj,

3. The scheduling of Aj does not violate the precedence and resource constraints.

Note that employing this strategy reduces substantially the search tree [97].
If scheduling of the current activity is not feasible then backtracking is performed.

The next untested eligible activity is then selected. If there is no untested eligible activity
left then backtracking to the previous level is performed. Thus, the next eligible activity
is chosen.

Clearly, the ordering of the eligible set, i.e., the decision which activity to select when
branching, has an influence on the solution time. However, for the rest of the chapter,
we assume, without loss of generality, that the eligible sets are arranged with respect to
activity numbers. Some of the priority rules allowing to relabel the activities before the
enumeration will be tested in Section 5.4.

In the sequel, the various exact procedures will be illustrated on the example instance
of Figure 5.1.
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Figure 5.1: Exact methods instance example

A sample of the search tree produced by the branch-and-bound algorithm based on
the PTBS is presented in Figure 5.2.

We can see from the figure that in level 1, we have three nodes corresponding to
the three eligible activities 1, 2 and 3 (since these activities have no predecessors). In
level 2, we see that node 1 has 4 children corresponding to the scheduling of eligible
activities 2, 3, 4 and 5. These activities became eligible as their predecessor (activity 1)
was scheduled. All these activities cannot begin before time instant 1 (corresponding to
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*

1 2 3

1,2 1,3 1,4 1,5 2,1 2,3

Level 0

Level 1

Level 2

Figure 5.2: Search tree produced by the PTBS

the completion time of activity 1). Indeed, activities 2 and 3 cannot be scheduled at time
instant 0 due to resource conflicts. In addition, activities 4 and 5 have to be scheduled
after the completion time of activity 1 due to the precedence constraint. For node 2, it
has only two children because the successors of activity 2 (activities 8 and 9) still have
unscheduled predecessors.
Following this strategy, all possible combinations will be explored. Then, it will be
necessary to add dominance rules in order to reduce the search space and speed up the
convergence of the branch-and-bound.

5.2.2 Dominance rules

In the sequel, we use the following definitions:

• CS j: the set of currently scheduled activities on level j,

• NS j: the set of currently unscheduled activities on level j,

• ELj: the set of currently eligible activities on level j,

• Seqj = [A1, A2, . . . , Aj]: the currently considered sequence on level j where A1 is
the 1st scheduled activity and Aj is the jth scheduled activity,

• STAj : Start time of activity Aj,

• CTAj : Completion time of activity Aj.

5.2.2.1 The extended and simplified single enumeration rule

This rule was introduced by Sprecher [98]. It extends the single enumeration rule
presented by Sprecher and Drexl [99]. The rule excludes multiple enumeration of the
same partial schedule induced by different sequences. It is formulated as follows:

Proposition 4. Let Seqj+1 = [A1, . . . , Ai, Aj+1] be the currently considered sequence. If
Aj+1 < Aj and STAj+1 = STAj , then the current sequence is dominated by the previously
evaluated sequence Seq

′
j+1 = [A1, . . . , Aj+1, Aj].
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5.2.2.2 Local and global left-shift rule

The following dominance rules are based on the concept of left-shift of activities
[100]. A left-shift consists in reducing the start time of an activity while preserving the
start times of the remaining activities. A one-period left-shift derives a feasible schedule
through reducing the start time of one activity by one time period. Based on this concept,
we can distinguish two types of left-shifts: local left-shifts and global ones. A local left-
shift is a left-shift which can be obtained by a series of one-period left-shifts. A feasible
schedule for which no further local left-shifts can be performed is called a semi-active
schedule. A global left-shift is a left-shift operation which cannot be obtained by a series
of one-period left-shift. Feasible schedules in which no local or global left-shifts can be
performed are called active schedules. It has been proven by Sprecher et al. [100] that for
every RCPSP instance at least one optimal schedule exists that is active.

Formally, these dominance rules are presented as the following

• Local left-shift: Let Seqj = [A1, . . . , Aj] be the currently considered sequence to be
continued with activity Aj+1. If the start time STAj+1 can be reduced to STAj+1 =
STAj+1 − 1 without violating the precedence and resource constraints, then the
current selection can be skipped.

• Global left-shift: Let Seqj = [A1, . . . , Aj] be the currently considered sequence to be
continued with activity Aj+1. If the start time STAj+1 can be reduced to STAj+1 ≤
STAj − pAj without violating the precedence and resource constraints, then all the
continuations of Seqj can be skipped.

5.2.2.3 Non-optimality rule

The non-optimality rule was also introduced by Sprecher [98]. It is formulated as
follows. Let Seqj = [A1, . . . , Aj] be the currently considered sequence to be continued
with activity Aj+1. If (a) STAj+1 = CTmax(Seqj) where CTmax(Seqj) = maxi=1,...,j CTAi ,
(b) ∆Amax periods of activity Amax inducing CTmax(Seqj) can be feasibly left-shifted, and
(c) the difference ∆max between CTmax(Seqj) and the second largest completion time
CTmax(Seqj) of the activities already scheduled is larger than the non-left-shiftable por-
tion of activity Amax, i.e, ∆max = CTmax(Seqj) − CTmax(Seqj) > pAmax − ∆Amax , then a
continuation of Seqj+1 = [A1, . . . , Aj, Aj+1] cannot be makespan minimal.

Remark 13. The maximal left-shiftable portion ∆Amax can be obtained as a by-product of the
global left-shift rule.

5.2.2.4 Cutset dominance rule

This dominance rule was initially introduced by Demeulemeester and Herroelen [40].
It is based on the notion of Cutset. A cutset Ct at time instant t is defined as the set of
eligible activities (for which all predecessors are in the set of scheduled activities). It is
clear that a cutset does not depend on a time instant but, only, on the set of scheduled
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activities. Thus, there is a correspondence between a cutset and the set of scheduled
activities PS t. The cutset dominance rule is stated as follows.

Proposition 5. Consider a cutset Ct at time t which contains the same activities as a cutset Ct′ ,
which was previously saved during the search tree. If time t

′
was not greater than time t and if

all activities in progress at time t
′

did not finish later than the maximum of t and the finish time
of the corresponding activities in PS t then the partial schedule PS t is dominated.

In our implementation, the time instants t correspond to the start times of the cur-
rently considered activity to be scheduled.

5.3 Forward-Backward branching schemes

It is worth noting that the RCPSP is symmetric, i.e., the original instance and the re-
verted one (obtained by inversing the precedence constraints) have the same makespan.
Thus, an interesting idea to be investigated is the possibility of placing alternatively the
activities at the beginning and the end of the schedule. This can result to the reduc-
tion of the time-windows (by reducing the release dates and due dates) of activities so
infeasibilities may be detected more rapidly. The main idea consists in:

• scheduling the forward activities (i.e, placed at the beginning of the schedule) at
their shortest possible start time,

• scheduling the backward activities (i.e, placed at the end of the schedule) at their
longest possible finish time,

• respecting the precedence and the resource constraints.

In the following, this method will be referred as the Forward-Backward Branching
Scheme (FBBS).

Example 6. Given an upper bound UB equal to 35, a schedule (for the instance example of
Figure 5.1) obtained by the FBBS is presented in Figure 5.3.

B1 = 11

4

3

21
5

Forward Schedule Backward Schedule

6

7 8

9

10

1 11 14 24 25 32 35

Figure 5.3: A schedule obtained by the forward-backward scheme
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Although the idea of FBBS is interesting in theory, the method described previously
has problem. It consists in the fact that it is difficult to re-construct a feasible solution
respecting the chronological order on the start times from the obtained solution (see
Figure 5.3). Indeed, if the backward activities are simply left shifted, in order to fix the
two schedules, then the optimal schedule can be skipped. This is because it is not proven
that for each schedule respecting the chronological order on the finish times there exists
a schedule respecting the chronological order on the start times.

In the following, we propose two variants of the FBBS in order to get around this
problem.

5.3.1 Implicit enumerative search algorithm

The first method consists in a dichotomic procedure. At each iteration, we fix a value
C and we try to find a schedule which fits into C. For this, the Implicit Enumerative Search
Algorithm (IESA) schedules, alternatively, the activities at their shortest possible start
time (greatest possible finish time) such a way to respect the precedence and resource
constraints, i.e., if we schedule , in the order, activities 1, 2, . . . , 2q, then we have:

ST1 ≤ ST3 ≤ . . . ST2q−1

and
C2 ≥ C4 ≥ . . . C2q

where ST1 = 0 and C2 = C.
If the IESA reaches a leaf then C is a valid upper bound. Otherwise, the IESA

explores all the tree without reaching any leaf. In that case, C + 1 is a lower bound.
The procedure is repeated until the optimal value is reached. This procedure is

summarized in Algorithm 3.

Algorithm 3 IESA-based branch-and-bound

1: C ←
⌊

LB + UB
2

⌋
2: Call the IESA procedure with value C
3: if IESA returns Yes then
4: UB← C
5: else
6: LB← C + 1
7: end if
8: if UB = LB then
9: Stop the procedure

10: else
11: Go to line 2
12: end if
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5.3.2 Bloc-based branching scheme

The key observation of this method is that a schedule can be decomposed into a set
of successive blocs. The blocs are constructed such a way that all the activities of a bloc
cannot start earlier than the completion time of its preceding bloc (where the completion
time of a bloc is the maximum of the completion times of the activities of that bloc) due
to resource or precedence constraints. Figure 5.4 presents an optimal schedule and its
decomposition into blocs. We remark from this figure that from time instant 0 to time
instant 1, only activity 1 is scheduled. In this time-interval, the eligible activities are 2
and 3. Due to resource constraints, these activities cannot be scheduled simultaneously
with activity 1. Thus, the first bloc is constituted only by activity 1. This reasoning is
applied over the schedule in order to decompose it into successive blocs.

B1 = 11

4

3

21
5

6

7
8

9

10

1 11 21 24 3230

Bloc 1 Bloc 2 Bloc 3 Bloc 4 Bloc 5 Bloc 6

Figure 5.4: Decomposition of a schedule into blocs

A first interesting remark consists in the fact that for each bloc respecting the chrono-
logical order on the start times corresponds a bloc (constituted by the same activities)
respecting the chronological order on the finish times having the same makespan. This
statement can be used for the FBBS. Indeed, the branching scheme is modified in order
to begin with placing activities, at the beginning of the schedule, until a bloc is detected.
The placement of the activities is then changed to the end of the schedule. We return
at placing the activities at the beginning only when a bloc is detected in the backward
schedule. This procedure is reiterated until all activities are scheduled. Let D denotes
the difference between the start time of the last bloc of the backward schedule and the
completion time of the last bloc placed in the forward schedule (see Figure 5.5). The
new upper bound is then the difference between the value of the old upper bound and
D.
Figure 5.5 presents an optimal schedule obtained by this branching scheme starting with
an upper bound equal to 35.

We see from Figure 5.5 that D is equal to 3. Thus, the new upper bound is equal to
35-3=32 (which corresponds to the optimal value).

In the following, this method will be referred as the Bloc-based Branching Scheme
(BBS).

A set of remarks can be stated concerning the BBS:
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D

Last bloc of the forward schedule Last bloc of the backward schedule

Figure 5.5: Optimal schedule obtained by the bloc-based scheme

1. In the worst case, we cannot detect a bloc. In that case, the BBS corresponds to the
original precedence tree branching scheme.

2. The BBS can be interesting for instances with constrained resources. Indeed, for
this type of instances blocs can be easily detected.

3. If at a level i, we have a forward schedule of makespan C f and a backward schedule
of makespan Cb, then a valid lower bound is C f + Cb + LB(NS i) where LB(NS i)
is a lower bound on the instance made up with activities of NS i.

5.3.3 Adaptation of the dominance rules

In this section, we show how to adapt the dominance rules presented in Section 5.2.2
for the case of the backward schedule.

5.3.3.1 Backward single enumeration rule

Let Seqj+1 = [A1, . . . , Ai, Aj+1] be the currently considered sequence. If Aj+1 > Aj
and CTAj+1 = CTAj , then the current sequence is dominated by the previously evaluated
sequence Seq

′
j+1 = [A1, . . . , Aj+1, Aj].

5.3.3.2 Backward local left-shift rule

Let Seqj = [A1, . . . , Aj] be the currently considered sequence to be continued with
activity Aj+1. If the completion time CTAj+1 can be reduced to CTAj+1 = CTAj+1 + 1
without violating the precedence and resource constraints, then the current selection
can be skipped.

5.3.3.3 Backward global left-shift rule

Let Seqj = [A1, . . . , Aj] be the currently considered sequence to be continued with
activity Aj+1. If the completion time CTAj+1 can be reduced to CTAj+1 ≥ CTAj + pAj
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without violating the precedence and resource constraints, then all the continuations of
Seqj can be skipped.

5.3.3.4 Backward non-optimality rule

If (a) CTAj+1 − pAj+1 = STmin(Seqj) where STmin(Seqj) = mini=1,...,j STAi , (b) ∆Amin

periods of activity Amin inducing STmin(Seqj) can be feasibly left-shifted, and (c) the
difference ∆max between STmin(Seqj) and the second smallest start time STmin(Seqj) of
the activities already scheduled is larger than the non-left-shiftable portion of activity
Amin, i.e, ∆max = STmin(Seqj) − STmin(Seqj) > pAmin − ∆Amin , then a continuation of
Seqj+1 = [A1, . . . , Aj, Aj+1] cannot be makespan minimal.

5.3.3.5 Backward cutset dominance rule

The cutset dominance rule is not changed for the backward schedule. We simply
change the finish times by the start times. However, there is a problem with the ap-
plication of the rule. Indeed, it can result in eliminating some partial schedules which
lead to the optimal solution. To illustrate this point, we suppose that we use the bloc-
based branching scheme and we apply it to the example of Figure 5.1. In a path, we
schedule bloc {1} then bloc {10;9;8} and finally we return to the forward schedule. In
another path, bloc {1} is scheduled then bloc {10;8}. When we return to the forward
schedule and apply the cutset dominance rule, we find the same cutset as in the first
path. Thus, the application of the rule leads to the elimination of the current node. This
results in the elimination of all the schedules with bloc {10;8} at the end of the schedule.
Nevertheless, we know from Figure 5.4 that, in the optimal schedule, activities 10 and
8 must be scheduled simultaneously at the end. To overcome this problem, we must
explore the two branches of the tree, i.e., the cutset dominance rule do not eliminate a
schedule which have a same cutset as a previously stored one. Unfortunately, this leads
to a weaker version of the rule.

5.4 Experimental results

To assess the performance of the proposed branch-and-bound algorithms, we con-
sidered the set of benchmark instances proposed by Kolisch et al. [66] (see Section 2.6).

All the experiments were conducted on a personal computer Core i5 2.67 Ghz with
4 GB of RAM and running under Windows 7. All the algorithms were coded in C
language. We note that all the branch-and-bound algorithms are based on the depth
first strategy. The starting upper bound is a deviation of the optimal by 10%.

A pseudo-code of the branch-and-bound procedure based on the precedence tree
branching scheme is presented in Algorithm 4.
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Algorithm 4 Branch-and-bound procedure based on the PTBS
1: Compute UB
2: Compute LB
3: if LB = UB then
4: UB is the optimal solution
5: else
6: Put in the stack the successors of the dummy start activity
7: while The stack is not empty do
8: Unstack an activity
9: Determine the start time of the current activity

10: if The current node is a leaf then
11: Compute NewUB
12: if NewUB = LB then
13: NewUB is the optimal solution
14: Stop the procedure
15: else
16: if NewUB < UB then
17: UB← NewUB
18: Compute the release dates and due dates of the activities with UB− 1
19: end if
20: end if
21: else
22: Answer← DominanceRules()
23: if Answer=Yes then
24: Kill the current node
25: Go to line 8
26: end if
27: Update the resources profiles
28: Fix the release dates and due dates of the current activity
29: Propagation to the successors of the current activity
30: Compute NewLB
31: if NewLB ≥ UB then
32: Kill the current node
33: Go to line 8
34: end if
35: end if
36: end while
37: end if
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5.4.1 Impact of the priority rules

We conducted a first set of experiments in order to assess the impact of the priority
rules allowing to relabel the activities before the enumeration. The following priority
rules were tested:

• BB1: arrangement with respect to activity numbers.

• BB2: arrangement with respect to release dates. Tie break with due dates.

• BB3: arrangement with respect to release dates. Tie break with latest possible start
time of the activities.

• BB4: arrangement with respect to release dates. Tie break with activity numbers.

Table 5.1 displays a summary of the computational results that were obtained on the
30-activity set of instances. For each branch-and-bound, we provide: NbS: the number
of solved instances within the time limit of 1800 seconds, and MTime: the mean CPU
time (in seconds).

NbS MTime(s)
BB1 480 3.92
BB2 480 3.68
BB3 480 3.86
BB4 480 3.08

Table 5.1: Impact of the priority rules

We see from Table 5.1 that the best priority rule is the arrangement with respect to
release dates and tie break with activity numbers. Thus, we will use this priority rule
for the next set of experiments.

5.4.2 Impact of the energetic-based lower bound

To assess the impact of the energetic-based lower bound on the branch-and-algorithm,
we tested the following procedures:

• BBEner1: Branch-and-bound with enhanced energetic-based lower bound (simple
feasibility tests) and adjustment procedure.

• BBEner2: Branch-and-bound with enhanced energetic-based lower bound without
adjustment procedure.

• BBDFF1: Branch-and-bound with enhanced energetic-based lower bound DFF∗ (see
Section 3.5) and adjustment procedure.

• BBDFF2: Branch-and-bound with enhanced energetic-based lower bound DFF∗

without adjustment procedure.
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NbS MTime(s)
BBEner1 480 5.92
BBEner2 480 5.22
BBDFF1 478 8.83
BBDFF2 479 9.23

Table 5.2: Impact of the energetic-based lower bound

We see from Table 5.2 that the procedures based on the enhanced energetic-based
lower bound can solve all the 480 instances within a time limit of 1800 seconds. More-
over, BBEner2 is the fastest one among the 4 branch-and-bound algorithms. Nevertheless,
this procedure is slower than the BB4 procedure (see Table 5.1). Thus, the enhanced
energetic-based lower bound cannot speed up the branch-and-bound algorithm com-
pared to the critical sequence bound.

5.4.3 Impact of the forward-backward schemes

To assess the effect of the FBBS, we tested the following two procedures.

• BBS1: Branch-and-algorithm with BBS and critical sequence lower bound.

• BBS2: Branch-and-algorithm with BBS and enhanced energetic-based lower bound
without adjustments.

It is worth noting that preliminary results showed that the procedures based on the
IESA are slower than the procedures based on BBS.

Table 5.3 shows the results of the two procedures on the first 160 instances. We see
that the procedures are not able to solve all the instances.

NbS MTime(s)
BBS1 154 54.49
BBS2 149 30.78

Table 5.3: Impact of the FBBS

5.5 Conclusion

In this chapter, we proposed new branch-and-bound algorithms in order to solve
the RCPSP. First, we adapted the energetic reasoning-based lower bounds developed in
Chapter 3 to the well known precedence tree branching scheme. Secondly, we proposed
two new branching schemes which construct the schedule, alternatively, at the begin-
ning and the end. Unfortunately, computational results showed that we were not able
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to improve the results of the literature and to close open instances in the PSPLIB bench-
mark. A more detailed analysis of the dominance rules must be conducted in order to
enhance the efficiency of the proposed branching schemes.
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Conclusion

The main contribution of this thesis is the development of new lower bounds as well
as exact methods for the Resource Constrained Project Scheduling Problem.

First, in Chapter 3, we focused our attention on the development of lower bounds
based on effective improvements of the well-known concept of Energetic Reasoning.
Moreover, the concept of Dual Feasible Functions was used in order to derive tighter
lower bounds and to enable more effective adjustment of release dates and due dates.
Furthermore, we tested a new shaving procedure that enhanced the quality of the lower
bounds. Extensive numerical experiments showed the effectiveness of the new proposed
lower bounds that often outperform the best bounds from the literature.

At a second stage, in Chapter 4, the previous developed lower bounds were used
as an input for a destructive bound that is derived by making feasibility tests in order
to detect an infeasibility. If an infeasibility occurs, then the value of the lower bound is
incremented and the checking procedure is restarted. The lower bounds tested at this
stage are based on LP relaxations of the RCPSP derived from the formulation of Carlier
and Néron [29], by partitioning the time horizon into time-windows. We proposed sev-
eral cuts based on precedence, nonpreemptipn and incompatible activity sets in order
to enhance the mathematical formulation. Computational results showed that this tech-
nique was able to improve the value of the lower bounds for the instances of the PSPLIB
benchmark [66].

Finally, in Chapter 5, we proposed several branch-and-bound procedures to solve
exactly the RCPSP. As a first step, we adapted the aforementioned lower bounds for the
precedence tree branching scheme-based branch-and-bound. Regrettably, we have not
been able to improve the best results of the literature with this method. As a second
step, we proposed two new branching schemes in which the solution is built by adding
activities alternatively at the beginning and the end of the schedule.

Future research effort needs to be focused on the design of dominance rules for
solving exactly the problem. It is clear that the performance of the best branch-and-
bound developed by Demeulemeester and Herroelen [41] is due to the Cutset dominance
rule. A deeper investigation of this rule and its adaptation to the Bloc-based branching
scheme can lead to a stronger version of the rule than the one proposed in Chapter 5
and therefore can strengthen the efficiency of the proposed branch-and-bound. Another
worthy issue for future investigation, is to develop a set of heuristic procedures based
on mathematical formulations of the RCPSP. The main idea consists in constructing a
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feasible solution from the preemptive solution given by the mathematical formulation
developed in Chapter 4. As a first step, priority rules based on the values of the vari-
ables given by the solution can be constructed and the serial and/or parallel scheduling
schemes applied. After that, these solutions can be improved by detecting the blocs of a
schedule and solves exactly each bloc separately. Finally, an extension of the work con-
ducted throughout this thesis consists in adapting the lower bounds and exact methods
for variants and generalizations of the RCPSP such as the multi-mode and multi-skill
project scheduling problems.
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New Lower Bounds

Tables A.1-A.2 list all the improved lower bounds for the KSD instances of the PSPLIB
benchmark.

Instance New LB
5_3 83
5_5 108
9_6 111
9_8 110

9_10 103
41_10 142

Table A.1: New lower bounds for KSD90 instances
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Instance New LB
6_5 116
7_4 104
7_5 124
7_7 113
7_9 85
8_9 88

12_3 131
12_7 116
12_8 113
12_9 101
13_5 90
13_10 87
14_2 90
14_8 109
18_8 102
19_4 102
19_9 88
26_1 155
26_3 156
26_6 168
27_3 140
27_4 104
27_6 131
27_9 120
28_1 105
31_1 179
31_3 157
32_4 126
32_7 118
32_8 131
33_3 101
34_5 101
37_1 138
37_6 154
39_2 105
46_8 164
47_6 128
47_7 112
47_10 127
48_4 121
53_1 137
53_8 134

Table A.2: New lower bounds for KSD120 instances
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Résumé :

Le problème de gestion de projet à contraintes de ressources est un des problèmes
les plus étudiés dans la littérature. Il consiste à planifier des activités soumises à des
relations de précédence, et nécessitant des ressources renouvelables. L’objectif est de
minimiser la durée du projet, soit le makespan. Nous étudions le problème de gestion de
projet à contraintes de ressources. Nous nous sommes intéressées à la résolution exacte
du problème. Dans la première partie de la thèse, nous élaborons une série de bornes
inférieures basées sur le raisonnement énergétique et des formulations mathématiques.
Les résultats montrent que les bornes proposées surpassent ceux de la littérature. Dans
la deuxième partie, nous proposons des procédures par séparation et évaluation utilisant
les bornes inférieures dévelopées dans la première partie.

Mots clés :

Gestion de projets à contraintes de ressources, Raisonnement énergétique, Formula-
tion mathématique, Borne inférieure, Procédure par séparation et évaluation, Règle de
dominance.

Abstract :

Resource Constrained Project Scheduling Problem is one of the most studied schedul-
ing problems in the literature. It consists in scheduling activities, submitted to prece-
dence relationship, and requiring renewable resources to be processed. The objective is
to minimize the project duration, i.e., the makespan. We study the Resource Constrained
Project Scheduling Problem. We are interested on the exact resolution of the problem.
In the first part of the thesis, we develop a series of lower bounds based on energetic
reasoning and mathematical formulations. The computational results show that the
proposed lower bounds outperform the ones of the literature. In the second part, we
propose Branch-and-Bound procedures using the lower bounds developed on the first
part.

Keywords :

Resource Constrained Project Scheduling Problem, Energetic Reasoning, Mathemat-
ical formulation, Lower bound, Branch-and-Bound, Dominance rule.
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