1,452 research outputs found

    Modeling and Solution Methodologies for Mixed-Model Sequencing in Automobile Industry

    Get PDF
    The global competitive environment leads companies to consider how to produce high-quality products at a lower cost. Mixed-model assembly lines are often designed such that average station work satisfies the time allocated to each station, but some models with work-intensive options require more than the allocated time. Sequencing varying models in a mixed-model assembly line, mixed-model sequencing (MMS), is a short-term decision problem that has the objective of preventing line stoppage resulting from a station work overload. Accordingly, a good allocation of models is necessary to avoid work overload. The car sequencing problem (CSP) is a specific version of the MMS that minimizes work overload by controlling the sequence of models. In order to do that, CSP restricts the number of work-intensive options by applying capacity rules. Consequently, the objective is to find the sequence with the minimum number of capacity rule violations. In this dissertation, we provide exact and heuristic solution approaches to solve different variants of MMS and CSP. First, we provide five improved lower bounds for benchmark CSP instances by solving problems optimally with a subset of options. We present four local search metaheuristics adapting efficient transformation operators to solve CSP. The computational experiments show that the Adaptive Local Search provides a significant advantage by not requiring tuning on the operator weights due to its adaptive control mechanism. Additionally, we propose a two-stage stochastic program for the mixed-model sequencing (MMS) problem with stochastic product failures, and provide improvements to the second-stage problem. To tackle the exponential number of scenarios, we employ the sample average approximation approach and two solution methodologies. On one hand, we develop an L-shaped decomposition-based algorithm, where the computational experiments show its superiority over solving the deterministic equivalent formulation with an off-the-shelf solver. We also provide a tabu search algorithm in addition to a greedy heuristic to tackle case study instances inspired by our car manufacturer partner. Numerical experiments show that the proposed solution methodologies generate high-quality solutions by utilizing a sample of scenarios. Particularly, a robust sequence that is generated by considering car failures can decrease the expected work overload by more than 20\% for both small- and large-sized instances. To the best of our knowledge, this is the first study that considers stochastic failures of products in MMS. Moreover, we propose a two-stage stochastic program and formulation improvements for a mixed-model sequencing problem with stochastic product failures and integrated reinsertion process. We present a bi-objective evolutionary optimization algorithm, a two-stage bi-objective local search algorithm, and a hybrid local search integrated evolutionary optimization algorithm to tackle the proposed problem. Numerical experiments over a case study show that while the hybrid algorithm provides a better exploration of the Pareto front representation and more reliable solutions in terms of waiting time of failed vehicles, the local search algorithm provides more reliable solutions in terms of work overload objective. Finally, dynamic reinsertion simulations are executed over industry-inspired instances to assess the quality of the solutions. The results show that integrating the reinsertion process in addition to considering vehicle failures can keep reducing the work overload by around 20\% while significantly decreasing the waiting time of the failed vehicles

    Mixed-model Sequencing with Stochastic Failures: A Case Study for Automobile Industry

    Full text link
    In the automotive industry, the sequence of vehicles to be produced is determined ahead of the production day. However, there are some vehicles, failed vehicles, that cannot be produced due to some reasons such as material shortage or paint failure. These vehicles are pulled out of the sequence, and the vehicles in the succeeding positions are moved forward, potentially resulting in challenges for logistics or other scheduling concerns. This paper proposes a two-stage stochastic program for the mixed-model sequencing (MMS) problem with stochastic product failures, and provides improvements to the second-stage problem. To tackle the exponential number of scenarios, we employ the sample average approximation approach and two solution methodologies. On one hand, we develop an L-shaped decomposition-based algorithm, where the computational experiments show its superiority over solving the deterministic equivalent formulation with an off-the-shelf solver. Moreover, we provide a tabu search algorithm in addition to a greedy heuristic to tackle case study instances inspired by our car manufacturer partner. Numerical experiments show that the proposed solution methodologies generate high quality solutions by utilizing a sample of scenarios. Particularly, a robust sequence that is generated by considering car failures can decrease the expected work overload by more than 20\% for both small- and large-sized instances.Comment: 30 pages, 9 figure

    Task Sequencing for Remote Laser Welding in the Automotive Industry

    Get PDF
    This paper proposes a new model and algorithm for task sequencing in remote laser welding in the automotive industry. It is shown that task sequencing (in which order to weld the seams) is strongly related to path planning (how the welding robot should move), therefore the two problems must be solved together, in an integrated way. The problem is modeled as a direct product of a traveling salesman and a path planning problem, and a tabu search algorithm is proposed for solving it. Computational experiments show that the proposed method leads to a substantial reduction in the cycle time of the welding operation compared to an earlier approach

    Car Sequencing with respect to Regular Expressions and Linear Bounds

    Get PDF
    In this paper we introduce a new model and a computational approach for sequencing assembly lines with two types of constraints: (i) patterns described by regular expressions and (ii) linear bounds on the number of certain products that may occur in pre-specified intervals. If we restrict the problem to the second type of constraints only we obtain a generalization of the familiar car sequencing problem, whereas constraints of type (i) may be useful to add extra structure. Constraints of both types may have priorities and can be violated, and a Pareto optimal solution is sought minimizing the violation of constraints in the given priority order. We describe a computational method based on mathematical programming and genetic algorithms for finding suboptimal solutions

    The Use of Persistent Explorer Artificial Ants to Solve the Car Sequencing Problem

    Get PDF
    Ant Colony Optimisation is a widely researched meta-heuristic which uses the behaviour and pheromone laying activities of foraging ants to find paths through graphs. Since the early 1990’s this approach has been applied to problems such as the Travelling Salesman Problem, Quadratic Assignment Problem and Car Sequencing Problem to name a few. The ACO is not without its problems it tends to find good local optima and not good global optima. To solve this problem modifications have been made to the original ACO such as the Max Min ant system. Other solutions involve combining it with Evolutionary Algorithms to improve results. These improvements focused on the pheromone structures. Inspired by other swarm intelligence algorithms this work attempts to develop a new type of ant to explore different problem paths and thus improve the algorithm. The exploring ant would persist throughout the running time of the algorithm and explore unused paths. The Car Sequencing problem was chosen as a method to test the Exploring Ants. An existing algorithm was modified to implement the explorers. The results show that for the car sequencing problem the exploring ants did not have any positive impact, as the paths they chose were always sub-optimal

    Planning of remote laser welding processes

    Get PDF
    The paper discusses the technical background of the remote laser welding (RLW) technology, its novel opportunities and implications for planning processes. Our ultimate goal is to develop a complete off-line programming toolbox for RLW which can provide an automated method for computing close-to-optimal robot programs. We suggest a workflow for the complete planning process, and propose new models and algorithms for solving the sequencing of welding tasks in conjunction with path planning, as well as for generating the inverse kinematics of the robot. The paper summarizes results of first computational experiments in an automotive case study using an industrial robot. The proposed method leads to a substantial reduction in the cycle time of the welding operation compared to an earlier approach

    Multi-objective genetic algorithm for single machine scheduling problem under fuzziness

    Get PDF

    Mixed-model Sequencing with Reinsertion of Failed Vehicles: A Case Study for Automobile Industry

    Full text link
    In the automotive industry, some vehicles, failed vehicles, cannot be produced according to the planned schedule due to some reasons such as material shortage, paint failure, etc. These vehicles are pulled out of the sequence, potentially resulting in an increased work overload. On the other hand, the reinsertion of failed vehicles is executed dynamically as suitable positions occur. In case such positions do not occur enough, either the vehicles waiting for reinsertion accumulate or reinsertions are made to worse positions by sacrificing production efficiency. This study proposes a bi-objective two-stage stochastic program and formulation improvements for a mixed-model sequencing problem with stochastic product failures and integrated reinsertion process. Moreover, an evolutionary optimization algorithm, a two-stage local search algorithm, and a hybrid approach are developed. Numerical experiments over a case study show that while the hybrid algorithm better explores the Pareto front representation, the local search algorithm provides more reliable solutions regarding work overload objective. Finally, the results of the dynamic reinsertion simulations show that we can decrease the work overload by ~20\% while significantly decreasing the waiting time of the failed vehicles by considering vehicle failures and integrating the reinsertion process into the mixed-model sequencing problem.Comment: 26 pages, 6 figures, 5 table
    • …
    corecore