
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Dissertations School of Computing 

2017-9 

The Use of Persistent Explorer Artificial Ants to Solve the Car The Use of Persistent Explorer Artificial Ants to Solve the Car 

Sequencing Problem Sequencing Problem 

Kieran O'Sullivan 
Technological University Dublin 

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
O'Suillivan, K. (2017) The Use of Persistent Explorer Artificial Ants to Solve the Car Sequencing Problem, 
Masters Dissertation, Technological University Dublin. 

This Dissertation is brought to you for free and open 
access by the School of Computing at ARROW@TU 
Dublin. It has been accepted for inclusion in Dissertations 
by an authorized administrator of ARROW@TU Dublin. 
For more information, please contact 
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, 
brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


The Use of Persistent Explorer Artificial 

Ants to Solve the Car Sequencing Problem 

 

Kieran O’Sullivan 

D14127972 

 

 

 

A dissertation submitted in partial fulfilment of the requirements of Dublin 

Institute of Technology for the degree of  

M.Sc. in Computing (Advanced Software Development) 

 

2017 



i 

 

I certify that this dissertation which I now submit for examination for the award of 

MSc in Computing (Advanced Software Development), is entirely my own work and 

has not been taken from the work of others save and to the extent that such work has 

been cited and acknowledged within the text of my work. 

 

This dissertation was prepared according to the regulations for postgraduate study of 

the Dublin Institute of Technology and has not been submitted in whole or part for an 

award in any other Institute or University. 

 

The work reported on in this dissertation conforms to the principles and requirements 

of the Institute’s guidelines for ethics in research. 

 

 

Signed:    

 

 

Date:     2nd July 2017 

 

  



ii 

 

ABSTRACT 

 

Ant Colony Optimisation is a widely researched meta-heuristic which uses the 

behaviour and pheromone laying activities of foraging ants to find paths through 

graphs.  Since the early 1990’s this approach has been applied to problems such as the 

Travelling Salesman Problem, Quadratic Assignment Problem and Car Sequencing 

Problem to name a few.  The ACO is not without its problems it tends to find good 

local optima and not good global optima.   

To solve this problem modifications have been made to the original ACO such as the 

Max Min ant system.  Other solutions involve combining it with Evolutionary 

Algorithms to improve results.  These improvements focused on the pheromone 

structures.  Inspired by other swarm intelligence algorithms this work attempts to 

develop a new type of ant to explore different problem paths and thus improve the 

algorithm.  The exploring ant would persist throughout the running time of the 

algorithm and explore unused paths. 

The Car Sequencing problem was chosen as a method to test the Exploring Ants.  An 

existing algorithm was modified to implement the explorers.  The results show that for 

the car sequencing problem the exploring ants did not have any positive impact, as the 

paths they chose were always sub-optimal.   

  

Key Words: Ant Colony Algorithms, Max Min Ant Systems, Explorer Ants, 

Metaheuristics, Particle Swarm Optimisation, Evolutionary Algorithms. 

 

ACKNOWLEDGEMENTS 

I would like to express my sincere thanks to Dr Luca Longo for his guidance during 

this project and Dr John Gilligan who gave me advice and suggested the Car 

Sequencing Problem.  

  



iii 

 

CONTENTS 

1 Introduction ........................................................................................................................ 1 

1.1 Background ...................................................................................................... 1 

1.2 Research Problem ............................................................................................ 2 

1.3 Research Objectives ......................................................................................... 3 

1.4 Research Methodologies .................................................................................. 4 

1.5 Scope and Limitations ...................................................................................... 5 

1.6 Document Outline ............................................................................................ 5 

2 Literature Review ............................................................................................................... 7 

2.1 Key Concepts Underpinning this Research ..................................................... 7 

2.1.1 Evolutionary Approaches to Artificial Intelligence .................................. 8 

2.1.2 The Ant Colony Metaheuristic ............................................................... 10 

2.1.3 Types of Ant Colony Optimisation......................................................... 12 

2.1.4 Other Relevant Metaheuristics ............................................................... 14 

2.1.5 Computational Complexity of Combinatorial Problems ........................ 15 

2.1.6 Constraint Satisfaction Problems CSP.................................................... 17 

2.1.7 Graph Theory .......................................................................................... 18 

2.1.8 Representing a Constraint Problem as a Graph – The N Queens Problem

 19 

2.1.9 Greedy Randomised Search Algorithms ................................................ 20 

2.2 Typical Problems ACO are Used to Solve .................................................... 21 

2.2.1 Traveling Salesman Problem .................................................................. 21 

2.2.2 Image Edge Detection............................................................................. 22 

2.2.3 Inventory Routing ................................................................................... 23 

2.2.4 Network Traffic Management ................................................................ 23 

2.2.5 Quadratic Assignment Problem QAP ..................................................... 25 

2.2.6 The n-bit Trap Problem .......................................................................... 25 



iv 

 

2.2.7 The Grid Scheduling Problem ................................................................ 26 

2.2.8 Assembly Line Car Sequencing ............................................................. 26 

2.3 Common Solutions to the Inherent Problem with ACO ................................ 30 

2.3.1 Multiple Pheromone Structures .............................................................. 31 

2.3.2 Exclusivity / Elitist Solutions ................................................................. 33 

2.3.3 Combining ACO and Evolutionary/Genetic Algorithms (EA/GA)........ 35 

2.3.4 Combining ACO with Other Metaheuristics .......................................... 37 

2.3.5 Back-Tracking Ants for Solving Search Bias ......................................... 38 

2.4 The Work of Christine Solnon Explained ...................................................... 39 

2.5 Gaps and Limitation of Literature .................................................................. 41 

2.6 Research Question ......................................................................................... 43 

3 Design of Experiments and Methodology ........................................................................ 45 

3.1 Data Preparation ............................................................................................. 47 

3.1.1 Car Sequencing Data Explained ............................................................. 47 

3.1.2 The Car Sequencing Graph ..................................................................... 49 

3.2 The Ant Car Software Code ........................................................................... 51 

3.2.1 Supporting Software Tools ..................................................................... 51 

3.3 Experiment Setup ........................................................................................... 52 

3.4 Repeat Original Ant Car Experiment ............................................................. 53 

3.5 Implement Changes to Add Explorer Ants .................................................... 53 

3.6 HA Experiment – Reduce the Number of Cycles .......................................... 54 

3.7 HB Experiment – Unsolvable Car Sequencing Problem ............................... 55 

3.8 Evaluation of Experimental Results ............................................................... 55 

3.9 Strengths and Limitations of Solution Design ............................................... 56 

3.10 Triangulation of Findings with State of the Art Techniques ......................... 57 

4 Experimental Results ........................................................................................................ 58 

4.1 Data Preparation ............................................................................................. 59 



v 

 

4.2 The Ant Car Software Code ........................................................................... 60 

4.3 Experiment Execution .................................................................................... 61 

4.4 Repeat Original Ant Car Experiment ............................................................. 61 

4.5 Implement Changes to Add Explorer Ants .................................................... 62 

4.6 HA Experiment – Reduce the Number of Cycles .......................................... 63 

4.7 HB Experiment – Unsolvable Car Sequencing Problem ............................... 67 

4.8 Evaluation of Experimental Results ............................................................... 67 

4.9 Strengths and Solution Findings .................................................................... 69 

5 Discussion and Conclusions ............................................................................................. 70 

5.1 Research Overview and Problem Definition ................................................. 70 

5.2 Experiment Evaluation and Results ............................................................... 71 

5.3 Contribution to the Body of Knowledge ........................................................ 72 

5.4 Future Work ................................................................................................... 73 

Bibliography ............................................................................................................................ 75 

Appendix A: Violation Rates of PEAA on Ubuntu ................................................................. 82 

Appendix B: Car Sequence Data Example .............................................................................. 87 

Appendix C: Shell Script for Executing Algorithm ................................................................ 88 

Appendix D: Makefile for Building Algorithm ....................................................................... 92 

Appendix E: Modified Source Code........................................................................................ 92 

 

  



vi 

 

TABLE OF FIGURES 

Figure 2.1 ACO in the Context of Evolutionary Approaches ........................................ 9 

Figure 2.2 Experimental setup for the double bridge experiment (Dorigo, Birattari, & 

Stutzle, 2006, p. 29) ...................................................................................................... 10 

Figure 2.3 Basic Ant Colony Algorithm (Dorigo, Birattari, & Stutzle, 2006, p. 31) ... 11 

Figure 2.4 Common Components of an ACO(Gupta, Arora, Singh, & Gupta, 2012, p. 

148) ............................................................................................................................... 11 

Figure 2.5 Max Min Algorithm (Kötzing, Neumann, Sudholt, & Wagner, 2011, p. 210)

 ...................................................................................................................................... 13 

Figure 2.6 Max Min Variant (Kötzing, Neumann, Sudholt, & Wagner, 2011, p. 211) 13 

Figure 2.7 Simple Social Network Graph (Robinson, Webber, & Eifrem, 2015, p. 2) 18 

Figure 2.8 Graph of the N-Queens Problem (Solnon, 2010, p. 58) .............................. 20 

Figure 2.9 Comparative ACO vs. Canny vs. Sobel Edge Detection (Agrawal, Kaur, 

Kaur, & Dhiman, 2012) ................................................................................................ 23 

Figure 2.10 n-bit trap fitness function (Chen & Sun, 2008, p. 3) ................................. 25 

Figure 2.11 Comparison of the percentage of trials reaching the optimal (Chen, Bolun, 

Chen, Ling, & Sun, Haiying, 2014, p. 59) .................................................................... 32 

Figure 2.12 Percentage of vehicles which reached destination during simulation 

(Doolan & Muntean, 2014, p. 955)............................................................................... 34 

Figure 2.13 A Comparison of Optimal Process with GAACA & HGAACA (Yao, Pan, 

& Lai, 2009, p. 246)...................................................................................................... 37 

Figure 2.14 The flow of foreword and backword ant system (Hsin, Chang, & Wu, 

2013, p. 48) ................................................................................................................... 39 

Figure 2.15 Greedy Ransomised Car Sequencing Algorithm (Solnon, 2008, p. 1046) 40 
 

Figure 3.1 Overview of the Experiment ....................................................................... 46 

Figure 3.2 Graph of Cars Before Processing ................................................................ 50 

Figure 3.3 Graph After Processing ............................................................................... 51 

Figure 3.4 Example of PEAA Processing the Sequences ............................................. 54 
 

Figure 4.1 Overview of Experiment Execution ............................................................ 58 

Figure 4.2 Time taken by Non-PEAA and PEAA (PEAA shown on right) ................. 63 

Figure 4.3 Ubuntu Single Pheromone Structure Violation Rates for First Non-PEAA 

and First PEAA ............................................................................................................. 64 



vii 

 

Figure 4.4 Ubuntu Dual Pheromone Structure Violation Rates for First Non-PEAA and 

First PEAA ................................................................................................................... 65 

Figure 4.5 Single Pheromone Structure Violation Rate Rises for Every New PEAA . 65 

Figure 4.6 Dual Pheromone Structure Violation Rate Rises for Every New PEAA .... 66 
 

Figure 5.1 Research Process ......................................................................................... 70 

 

  



viii 

 

TABLE OF TABLES 

Table 3.1 Sample CSPLab as it appears in the file ....................................................... 48 

Table 3.2 Sample CSPLib Data in a more user friendly layout.................................... 48 

Table 3.3 Valid solution ............................................................................................... 49 

Table 3.4 Test Environments ........................................................................................ 53 
 

Table 4.1 Test Environments ........................................................................................ 61 

Table 4.2 Time Taken Single & Dual Pheromone Structure ........................................ 62 

Table 4.3 Explorer Ants Time Taken Single & Dual Pheromone Structure ................ 62 

Table 4.4 Ubuntu Single Pheromone PEAA Violation Rates ...................................... 63 

Table 4.5 Ubuntu Dual Pheromone PEAA Violation Rates ......................................... 64 

Table 4.6 Kali Single Pheromone PEAA Violation Rates ........................................... 66 

Table 4.7 Kali Dual Pheromone PEAA Violation Rates .............................................. 66 

Table 4.8 Test of Randomness Sequences Generated .................................................. 69 



1 

 

 

1 INTRODUCTION 

 

1.1 Background 

The idea of using the natural processes of evolution to produce intelligent behaviour in 

artificial systems was proposed as far back as 1975 by J. H. Holland (Holland, 1975).  

He suggested that the incremental improvements over time achieved by natural 

selection could be mimicked by computer systems to achieve an unguided solution. 

 

The key concepts of Evolutionary Systems are that there is re-production with random 

variation and that the most suitable off-spring get to re-produce (Simon, 2013).  Each 

iteration of the evolutionary algorithm solves part of the problem and the best solution 

is propagated to the next stage.  The algorithm continues until the problem is solved or 

until the number of iterations of the algorithm exceeds a determined value which 

causes it to terminate.   

 

A subset of this type of research is “swarm intelligence” or Particle Swarm 

Optimisation PSO (Kennedy & Eberhart, 1995) where the behaviour of swarms is 

studied to produce un-guided results.  In 1992 for a PhD thesis entitled “Optimization, 

learning and natural algorithms” (Marco Dorigo, 1992) applied the behaviour of 

foraging ants to the Travelling Salesman Problem TSP.   

 

As ants forage for food they leave cent trails (pheromone) along the ground so that 

they can find their way back to the nest.  The more a path is used the stronger these 

pheromones become.  If a food supply is exhausted the path is abandon and the 

pheromone evaporates over time.  Ants are more likely to follow paths with stronger 

cent trails however they may also randomly choose to follow non-cent-marked trails.   

This process results in ants having the ability to find the shortest paths to food as a 

shorter path will have more pheromone and it will not have time to evaporate before 

the next ant finds it. 

 



2 

 

Apart from ants the swarming behaviour of other insects have also been used to 

develop un-guided intelligence.  Artificial Bee Colony (ABC) (Karaboga, 2005) and 

Mosquito Fly Optimisation (Alauddin, 2016) are two examples of this.  As this work 

deals with ACO it will not go into depth on other approaches to swarm intelligence.  

 

Ant Colony Optimisation ACO is particularly suited to Constraint Satisfaction 

Problems CSP’s which can be expressed as choices of paths through a graph.  As Dan 

Simon points out in Chapter 10 (Simon, 2013) ACO it remains a growing area of 

research and solutions for real world problems.   

 

1.2 Research Problem  

All ACO suffer from an inherent problem the negative search bias referred to hereafter 

as just search bias.  The problem is inherent to the design of the algorithm itself.  As an 

ant finds a useful path it lays pheromone on that path and this skews the probability 

that more and more ants will follow this path.  This is what gives the algorithm its 

power and leads to its inherent flaw.   

 

The best way to understand this flaw is the hill climbing problem.  The objective of 

hill climbing is to get to the highest point and the best way to do that is to walk up-hill 

however this simplistic strategy may not succeed as the climber could follow a path to 

a lower point and have no way to get to the highest point.  This is known as a local 

optimal point.  ACO are vulnerable to this problem as the pheromone trails will guide 

more and more ants to the incorrect location.  This problem does have a counterpart in 

nature called the “death spiral” where ants can become confused and will walk in 

circles until they die. 

To prevent the search bias a number of solutions have been proposed these include: 

 

1. Multiple Pheromone Structures.  The use of negative pheromone to prevent bad 

paths from being chosen.  The use of dual pheromone structures to identify the 

good paths and critical components. 

2. Elitist Solutions.  The Max Min system allows only the best ants to lay 

pheromone.  The Rank system places more pheromone on shorter paths.   



3 

 

3. Combining ACO and EA.  The use of Evolutionary Algorithms and ACO 

together has allowed for the finding of good global optima and the ACO takes 

over to find good local optima.  

4. Combining ACO with Other Metaheuristics.  Tabu search and Simulated 

Annealing have been used in conjunction with ACO to solve search bias. 

5. Back-Tracking Ants for Solving Search Bias.  This combines ACO with odd 

even turn for adaptive rooting algorithm. 

 

1.3 Research Objectives  

The objective of this research is to contribute to the body of scientific knowledge in the 

area of Ant Colony Optimisation.  More specifically to determine if a new type of Ant 

added to the ACO metaphor known as Permanent Explorer Artificial Ants PEAA can 

improve the performance of ACO by exploring unused paths.   

From a list of problems which included Image Edge Detection, Traveling Salesman, 

Quadratic Assignment and Network Packet routing; the car sequencing problem was 

chosen as it is a benchmark for ACO and the work done by (Solnon, 2008) on which 

this project is based used the car sequencing problem.  

 

The research question and hypothesis are outlined below. 

 

Can the addition of Persistent Explorer Artificial Ants (PEAA) as opposed to 

setting Pheromone values alone reduce the number of cycles and detect 

unsolvable sequences in the Car Sequencing Problem? 

 

Linked to the question the following hypothesis were defined. 

 

Null Hypothesis HA0: PEAA will not statistically Reduce the number of 

cycles when solving the Car Sequencing problem.   

Alternative Hypothesis HA1: PEAA will Reduce the number of cycles when 

solving the Car Sequencing problem.  

 



4 

 

Null Hypothesis HB0: PEAA will not statistically Detect the unsolvable Car 

Sequencing Problems and abandon it before the maximum amount of 

iterations. 

Alternative Hypothesis HB1: PEAA will statistically Detect the unsolvable 

Car Sequencing Problems and abandon it before the maximum amount of 

iterations. 

 

1.4 Research Methodologies  

The work started with secondary research into the underlying concepts necessary to 

understand ACO.  These concepts are: 

 

1. Ant Colony Algorithms & Pheromone Trails 

2. Evolutionary Approaches to Artificial Intelligence 

3. Computational Complexity of Combinatorial Problems 

4. Constraint Satisfaction Problems CSP 

5. Types of Ant Colony Optimisation 

6. Graph Theory 

7. Representing a Problem as a Graph – The N Queens Problem 

8. Greedy Randomised Search Algorithms 

 

The CRISP-DM (CRoss Industry Standard Process for Data Mining) (Wirth & Hipp, 

2000) is also used as a reference standard for the overall project methodology.  These 

methodologies are iterative processes and somewhat evolutionary which is appropriate 

for the subject matter of this research.   

 

The primary research involved building on the work of Christine Solnon (Solnon, 

2008).   New code was added to modify the original algorithm to implement Persistent 

Explorer Artificial Ants (PEAA).  The results of the addition would be compared 

against the original algorithm to perform qualitative and deductive research.  

 



5 

 

1.5 Scope and Limitations  

The strengths of the approach are the use of a comprehensive set of car sequencing 

data.  The 109 datasets are more extensive than that used by (Solnon, 2008) which 

used 82 datasets.  The experiments will also be validated against the best available 

solutions currently recorded in the literature. 

The limitations on this approach are the relatively limited number of platforms on 

which it is run all of which are Unix or Linux.  The hardware was also limited to only 

3 processers two intel processers and one AMD processer. 

 

While the design of this experiment is a good approximation of the Car Sequencing 

problem it is not as extensive as that proposed by the French car manufacturer Renault.  

The ROADEF (Solnon, Cung, Nguyen, & Artigues, 2008) car sequencing problem 

includes additional constraints for paint batching.  Renault needed this constraint to cut 

down on the use of solvents.   

 

Given the time constraints and the different dataset formats used for the ROADEF 

problem it would not be possible to incorporate it here.  This however would be a 

useful next step in this research if the PEAA approach proves useful.  

 

1.6 Document Outline 

The remainder of this document is laid out with the following structure. 

Chapter 2 Literature Review: - This chapter explains the key concepts behind ACO 

as described in the literature.  These concepts include classes of combinatorial 

problems, constraint problems, pheromone trails and the types of ACO.  Once the 

concepts are explained the types of problems that ACO are used to resolve are 

discussed with examples from the literature.  The problems inherent to using the ACO 

method as highlighted from the available literature are then discussed.  The work of 

Christine Solnan is described as it is essential to this project.  Finally, the gaps and 

limitations of the research and the research question that arises from these gaps are 

outlined. 

 



6 

 

Chapter 3 Design of Experiments and Methodology: - This chapter describes the 

collection and structure of the dataset.  The experiment setup and design is then 

explained.  The process of altering the algorithm is explained and the limitations of the 

approach are discussed.  Finally a triangulation of the results against state of the art 

solutions is proposed. 

 

Chapter 4 Experimental Results: - This chapter is very similar in structure to chapter 

3.  The experimental results are discussed here and the methods for measuring them.  

The results are related to the research question and the appropriate hypothesis are 

accepted or rejected.   

Chapter 5 Discussion and Conclusions: - The final chapter discusses the results in 

the context of the current literature and explains the contribution and impact as well as 

possible future research.   

 

  



7 

 

2 LITERATURE REVIEW 

This chapter covers the relevant research into the area of Ant Colony Optimisation.  

The sections are briefly explained here: 

 

1. Key Concepts Underpinning this Research: - This explains the concepts that 

need to be understood when discussing ACO. 

2. Typical Problems ACO are Used to Solve: - This lists the types of problems 

most commonly found in the literature to which ACO are applied.  

3. Common Solutions to the Inherent Problem with ACO: - Common 

solutions to the problem that all ACO can encounter are discussed here. 

4. The Work of Christine Solnon: - This is explained as it is essential to the 

project. 

5. Gaps and Limitation of the Literature: - The limitations of the current 

literature on ACO 

6. Research Question: - The research question inspired by the gaps and the 

hypotheses to answer it. 

 

2.1 Key Concepts Underpinning this Research 

There are some relevant concepts which must be understood to fully understand this 

work these are outlined below.  In brief, these are: 

 

1. Evolutionary Approaches to Artificial Intelligence  

2. The Ant Colony Metaheuristic 

3. Computational Complexity of Combinatorial Problems 

4. Constraint Satisfaction Problems CSP 

5. Types of Ant Colony Optimisation 

6. Graph Theory 

7. Representing a Problem as a Graph – The N Queens Problem 

8. Greedy Randomised Search Algorithms 

 



8 

 

2.1.1 Evolutionary Approaches to Artificial Intelligence 

In 1975 J. H. Holland realised the potential for artificial intelligence to be modelled on 

biological systems.  In a paper on the subject (Holland, 1975) he proposed that the 

unguided mechanism of evolution could be used as a form of Artificial Intelligence.  

An evolutionary algorithm works by generating a number of solutions to a problem the 

best of these solutions is then taken and used to refine the problem. As the algorithm 

progresses the solution progressively improves until the problem is solved.  The key to 

this process is mutation where all the solutions have a random component.  This 

process draws heavily on the Darwinian theory of natural selection.  Evolutionary 

Algorithms EA also known as Genetic Algorithms GA are an ongoing topic of 

research.  Dan Simon (Simon, 2013) describes the four key components to an EA/GA 

as: 

 

1. Natural Selection the solutions which are the best at solving the problem are 

those which will get to propagate to the next stage. 

2. Reproduction the two best solutions are combined to create new solutions 

which should be better than their parents.  Some EA/GA do not use the 

crossover method and re-produce with a form of mitosis (parents sub-divide 

like bacteria). 

3. Mutation the new solution is mutated to ensure that it is different from its 

parent(s).  This ensures that the algorithm can progress and not simply re-

produce the same solutions over and over again. 

4. Termination Case to prevent the algorithm executing forever a termination case 

is built in these can be: 

a. Time Limitations where the algorithm will finish after a set period. 

b. Improvement Limitations where the children are no better than their 

parents for a set number of generations. 

c. Generational Limitations the algorithm will only execute for a set 

number of generations and terminate. 

 

A subset of EA/GA is swarm intelligence or Particle Swarm Optimisation PSO 

(Kennedy & Eberhart, 1995).  A PSO iteratively tries to improve a solution to a given 

problem by re-ordering the population of candidate solutions.  Each solution or 



9 

 

“particle” is moved to its best possible local position based on the position of its 

neighbouring particle.  A subset of PSO is swarm intelligence which is based on the 

behaviour of swarming insects. 

 

The collective behaviour or swarming insects has inspired the development of a 

number of approaches to artificial intelligence.  The behaviour of swarming insects is 

an unguided process however it leads to successful outcomes for the insects.  The 

intelligence is not to be found in the individual intelligence of the insect but in the 

behaviour of the swarm (Simon, 2013).   

 

Ant Colony Optimisation (Marco Dorigo, 1992), Artificial Bee Colony (ABC) 

(Karaboga, 2005) and Mosquito Fly Optimisation (Alauddin, 2016) all use the 

collective foraging behaviour of insects to solve problems with each step progressively 

improving the solution. While ACO pre-dates PSO it is still classified as a subset of 

PSO.  

 

 

Figure 2.1 ACO in the Context of Evolutionary Approaches 

 



10 

 

It is worth mentioning that the development of metaphor or nature inspired algorithms 

is not without its critics.  In an article entitled “Metaheuristics—the metaphor exposed” 

(Sörensen, 2015) argues that the concept is merely a way to hide a lack of innovation 

behind a fancy name.  This research will not discuss whether this is a valid criticism or 

not in any detail other than to acknowledge that the controversy does exist.   

 

2.1.2 The Ant Colony Metaheuristic 

The concept of An Ant Colony Algorithm also referred to as Ant Colony Optimisation 

or Ant Colony Systems was first developed by (Marco Dorigo, 1992) for his PhD 

Thesis.  As ants forage for food they leave cent rails along the ground so that they can 

find their way back to the nest.  The more a path is used the stronger these cent trails 

become.  If a food supply is exhausted the path is abandoned and the pheromone 

evaporates over time.  Ants are more likely to follow paths with stronger cent trails 

however they may also randomly choose to follow non-cent-marked trails.   This 

process results in ants having the ability to find shortest paths to food as a shorter path 

will have more pheromone and it will not have time to evaporate before the next ant 

finds it. 

 

The original inspiration for the ACO metaphor came from experiments on Argentinian 

ants (Deneubourg, Aron, Goss, & Pasteels, 1990).  The experiment set-up two bridges 

over an obstacle one was longer than the other.  It was observed that ants preferred to 

use the short bridge to the food source.  Figure 2.1 Illustrates the experiment.   

 

 

Figure 2.2 Experimental setup for the double bridge experiment (Dorigo, Birattari, & Stutzle, 2006, p. 29) 

 



11 

 

The figures below describe the components common to all ACO   

 

Algorithm 

 

Set parameters 

initialize pheromone trails 

 

while termination condition not 

met do 

 

ConstructAntSolutions() 

ApplyLocalSearch 

(optional) 

UpdatePheromones() 

 

End while 

 

Figure 2.3 Basic Ant Colony Algorithm 

(Dorigo, Birattari, & Stutzle, 2006, p. 31) 

Common Features 

 

• Nodes through which ants move at each 

iteration. 

• Paths connecting the Nodes. 

• Pheromone Trails (τ) τ is a matrix of the 

nodes in the graph. 

• Heuristic function (η ) updates the 

pheromone after each iteration. 

• Probability Function to decide the 

probability of a 

path to be chosen by an ant when 

moving between nodes. 

Evaporation Rate (p) This is a number 

between 0 and 1 and is multiplied the 

value of τij (each point in the matrix is 

multiplied by p)  

• Ants data structures used pass through 

nodes and lay the pheromone. 

 

Figure 2.4 Common Components of an ACO(Gupta, Arora, 

Singh, & Gupta, 2012, p. 148) 

 

 

In ACO pheromone trails are usually represented as a matrix.  The matrix is the 

coordinates of each node in the problem graph.  (Cordon, Viana, Herrera, & Moreno, 

2000).  The pheromone structure is updated throughout the life-time of the algorithm 

as different ants lay pheromone at different coordinates.   

 

When the original ACO was applied to the Travelling Salesman problem (Flood, 1956) 

the algorithm was able to solve it. However it could only solve simpler versions of the 



12 

 

problem 75 cities or less as the problem grew the performance worsened.  This led to 

modifications to the original design and new variants of the ACO were developed. 

 

2.1.3 Types of Ant Colony Optimisation 

To solve harder problems variants of the Ant colony systems were developed those 

listed here are relevant to this work however this is not a comprehensive list.   

 

2.1.3.1 Max Min Ant Systems 

The Max Min system introduced by (Stützle & Hoos, 2000) and known as MMAS 

added four new concepts these were:  

 

(i) After each iteration only one ant laid pheromone, this ant was the best for 

that iteration. 

(ii) Search stagnation was avoided by setting a minimum and maximum value 

for pheromone Tmin and Tmax.  Only pheromone values between these two 

values were allowed.  

(iii) The pheromone values were initialised to the Tmax value which allowed for 

a better exploitation of solutions at the start of the algorithm. 

(iv) To prevent premature convergence, pheromone trails are bounded between 

Tmax and Tmin such that 0 < Tmin < Tmax. 

 

A variant to the Max Min system was introduced by (Neumann, Sudholt, & Witt, 

2009) the only difference is that the MMAS* only chooses a new solution if the 

solution is better as can be seen by comparing line 6 of both algorithms.  The 

algorithms are shown in Figures 2.5 and 2.6 

 

Algorithm 1 MMAS Algorithm 2 MMAS* 

1: Set τ (u,v) = 1/2 for all (u, v) ∈ E 

2: Construct a solution x+ 

3: Update pheromones w. r. t. x+ 

4: Repeat forever 

5:   Construct a solution x. 

1: Set τ (u,v) = 1/2 for all (u, v) ∈ E 

2: Construct a solution x+ 

3: Update pheromones w. r. t. x+ 

4: Repeat forever 

5:   Construct a solution x. 



13 

 

6:   if f (x) ≥ f (x+) then x+ := x. 

7:   Update pheromones w. r. t. x+ 

 

Figure 2.5 Max Min Algorithm (Kötzing, Neumann, 

Sudholt, & Wagner, 2011, p. 210) 

 

6:   if f (x) > f (x+) then x+ := x. 

7:   Update pheromones w. r. t. x+ 

 

Figure 2.6 Max Min Variant (Kötzing, Neumann, 

Sudholt, & Wagner, 2011, p. 211) 

 

These changes showed improvements to the Ant Colony System proposed by (Dorigo 

& Gambardella, 1997) when applied to larger versions of the Traveling Salesman 

Problem.  This project will use the Max Min approach. 

 

2.1.3.2 Rank Based  

Like the Max Min ant system Rank based system AS(rank) (Bullnheimer, Hartl, & 

Strauß, 1997) is an elitist system where the best ants get to lay the most pheromone.   

All solutions are weighted according to the path length of the solution they produce.  

The solutions with the shortest paths get the most pheromone.  This was applied to the 

Traveling Salesman problem and like the Max Min system showed improvements over 

the original system.  The approach has been applied to vehicle routing problems 

(Bullnheimer, Hartl, & Strauss, 1999) published a paper “Applying the ant system to 

the vehicle routing problem” the same authors published a similar paper entitled “An 

improved Ant System algorithm for the Vehicle Routing Problem”  (Bullnheimer, 

Hartl, & Strauss, 1999).  Both of these studies used AS(rank) for this problem.  

According to a comparative study done by (Adubi & Misra, 2014). The literature 

shows that the Rank based systems are seldom used and the Max Min system is more 

popular.  

 

2.1.3.3 Continuous Orthogonal Ant Colony (COAC) 

A COAC (Hu, Zhang, & Li, 2008) is similar to a Max Min system in that it is elitist 

and only the most efficient ants get to lay pheromone.  These algorithms are useful for 

multi-factor problems.  The problem is broken up into Orthogonal arrays and ants lay 

pheromone on these sub paths first.  The best of these is selected to proceed to the next 

stage.   

 



14 

 

COAC defines its orthogonal array OA(N,k,s) where N is the number of combinations 

to be tested, k is the number of factors and s is the number of levels for the factors.  

Othagonal arrays have been used in many other areas of research and they are designed 

to do a “partial experiment” where the number of factors are too large to explore all the 

possible combinations.   

 

2.1.3.4 Recursive Ant Colony Optimisation (RACO) 

The term recursive ACO relates more to the method of implementing the algorithm in 

a recursive manner than modifications to the fundamentals of the ACO algorithm.  In a 

survey of the various ACO algorithms (Adubi & Misra, 2014) date the development of 

RACO to work done in 2012 by (Gupta, Arora, Singh, & Gupta, 2012) who developed 

a new component to ACO “depth” which records the recursion point of the algorithm.  

Results of each recursive execution contribute to the parameter values of the next 

recursive step.  The algorithm was first tested on geophysical data to locate elements 

inside the earth.  

The concept of RACO has been applied to other areas since its inception (Amudhavel 

et al., 2015) applied it to a collision avoidance system for traffic.  This use Vehicle Ad-

Hoc network communication to allow vehicles to avoid congestion.  Ad-Hoc networks 

are not reliable and RACO was used to break the network down into more manageable 

chunks.  This paper did not add any innovation or changes to the original RACO. 

 

2.1.4 Other Relevant Metaheuristics 

While the Ant Colony metaheuristic is the focus of this research there are others which 

are relevant and they are briefly covered here. 

 

2.1.4.1 Tabu Search 

Tabu Search was developed by Fred Glover (Glover, 1986) and formalised three years 

later (Glover, 1989).  It searches local nodes of the search space to attempt to find a 

better solution however to prevent the local optimal problem it allows for inferior 

solutions to be used if the algorithm is stuck and choosing an inferior solution will 

allow the algorithm to explore a greater area of the search space. 

 



15 

 

As a tabu search executes it maintains a fixed list of recent moves, not all the moves 

are remembered.  To prevent the local optimal problem a move is measured against the 

previous move if the move is not superior a move from the list is selected to allow the 

algorithm to proceed. 

 

2.1.4.2 Simulated Annealing  

Simulated Annealing was developed in 1983 by  (Kirkpatrick, Gelatt, Vecchi, 1983) as 

a method of optimisation which avoided the local optimal by retaining some poorer 

results which can be used to allow the algorithm to escape the problem which exists 

with ACO.  SA is based on the process of heating metal and then slowly lowering the 

temperature to remove defects.   

 

2.1.4.3 K-Means Clustering 

This mechanism was used by (Niknam, Firouzi, & Nayeripour, 2008) in combination 

with ACO.  The description here is based on that paper and a second paper (Niknam & 

Amiri, 2010).  K-means clustering is a mechanism for grouping or clustering n discrete 

data points into k clusters.  Each data point is grouped into the cluster with the closest 

mean value.  In the same way as ACO k-means clustering can very quickly arrive at a 

local optimum.  As with ACO methods have been applied to overcome this problem 

such as (Likas, Vlassis, & J. Verbeek, 2003) who added a global search function to 

search the clusters.  Another mechanism to prevent this problem is random re-starts of 

the algorithm.   

 

2.1.5 Computational Complexity of Combinatorial Problems 

Combinatorial problems are those which can be resolved by a review of a finite set of 

combinations. The best example of this is a time-table containing a small number of 

meetings.  If the number of meetings is small then the computational process is 

relatively easy.  However, if only a small few more meetings are added the 

combination becomes much more complex (Solnon, 2010).  

 

Problem classes have been introduced for those which ask a question and return a 

value.  There are many classifications of problem complexity which will not be 

discussed here.   According to the Complexity Zoo there are 533 problem 



16 

 

classifications and counting (Aaronson, n.d.).  This section will only briefly explain the 

P, NP, NP-Hard and NP-Complete classes as these terms are used throughout the 

document.   

 

2.1.5.1 P Class 

These are problems which may be solved in polynomial time by a Tuning machine.   

In practice, this means that the problem can be solved in O(nk) where n is the size of 

the input data and k is the constant independent of that input data.  Some P class 

problems are: 

 

• Searching for a number in an array. 

• Searching for a character in an array. 

• Deciding if an integer is a prime number or not.  

• Searching for the shortest path between two nodes in a weighted graph. 

• Finding a value in a table. 

 

2.1.5.2 Polynomial Time Algorithms 

This refers to the time it takes for an algorithm to execute (be solved).  Polynomial 

time algorithms are said to be “fast” that is they will execute in a reasonable amount of 

time and they have an upper limit to that execution.  For a given input O(nk) where k is 

a non-negative integer and n is the complexity of the input.  ACO are non-polynomial 

as they can potentially execute for ever. (Solnon, 2010) 

 

2.1.5.3 NP Class 

These are problems which may be solved in polynomial time on a non-deterministic 

Tuning machine.  This could be thought of as a machine which runs a set of 

alternatives in parallel.   NP problems usually require a large number of combinations 

and it may be exponential.  Another way of thinking of an NP problem is using 

computer passwords.  If a password can be any combination of letters, symbols and 

numbers it is very difficult to guess but if given a solution the computational machine 

can quickly verify it. 

 



17 

 

2.1.5.4 NP-Hard 

The Car sequencing problem was shown to be NP Hard (Kis, 2004).  In general an NP-

Hard problem is any problem where the algorithm for solving it could be translated 

into solving any NP problem  (Solnon, 2010). 

 

2.1.5.5 NP-Complete 

The most difficult set of NP problems to be solved are referred to as NP-Complete.  

The first problem to be shown to be NP-Complete was the SAT problem (Cook, 1971). 

Graph colouring, travelling salesman problems and clique problems have now also 

been shown to be NP-Complete (Papadimitriou, 1994).  The car sequencing problem 

which will be discussed below was said to be NP-Complete by (Parrello, Kabat, & 

Wos, 1986) however (Kis, 2004) showed that it was only NP-Hard. 

 

2.1.6 Constraint Satisfaction Problems CSP 

Constraint Satisfaction Problems CSP are those where the states of the objects in the 

problems must satisfy a set of constraints.  In most situations problems cannot have 

limitless resources thrown at them so constraints are placed upon them where it 

becomes too costly to solve the problem it can be abandon.  This leads to optimal as 

opposed to perfect solutions.  For simpler constraint satisfaction problems such as the 

n-queens problem a consistent solution can be found however the subject of this work 

the car sequencing problem is an NP-hard problem which cannot be solved as easily.   

 

A formal definition of the general constraint problem given by (Khichane, Albert, & 

Solnon, 2008, p. 85),  

"A Constraint Satisfaction Problem CSP is defined by a triple 

(X,D,C) such that X is a finite set of variables. D is a function that 

maps every variable xi ∈ X to its domain D(xi), that is, the finite set 

of values that can be mapped to xi and C is a set of constraints, that 

is, relations between some variables which restrict the set of values 

that can be assigned simultaneously to these variables. " 

 



18 

 

To solve a CSP values must be assigned to variables so that constraints are satisfied.  If 

all the variables are assigned in such a manner that no constraints are violated then the 

solution is said to be consistent.   

 

To solve CSP the algorithm will start at the beginning and assign values to variables 

until the problem is resolved or until it starts violating constraints.  The algorithm can 

then back-track and try other paths to solve the problem.  

 

In CSP’s with very large problems for example when the number of sites in the 

Quadratic Assignment Problem is greater than 26 the problem cannot be solved to 

consistency (Sahni & Gonzalez, 1976).  The use of an ACO to get an optimal solution 

becomes more appropriate in situations like this.  All the problems described in this 

research are CSP.  

 

2.1.7 Graph Theory 

(Robinson, Webber, & Eifrem, 2015) In graph theory a graph is a structure or 

collection of vertices and edges also called nodes and relationships.  The nodes in a 

graph are related to each other using the edges.  An example of this can be seen in 

Figure 2.7 showing a simplified social network graph. 

 

Figure 2.7 Simple Social Network Graph (Robinson, Webber, & Eifrem, 2015, p. 2) 

 

The Swiss mathematician Leonhard Euler is regarded as the father of graph theory 

when in 1736 he showed that the Seven Bridges of Königsberg problem could not be 

solved.  (Shields, 2012).  The problem was to try and cross each of the bridges of the 

city of Königsberg once and only once.  A variation on this problem is the Hamiltonian 



19 

 

circuit named after William Rowan Hamilton, in which the route taken through the 

graph must pass through each node only once and end where it started.   

 

The problems that ACO solve are based on the concept of finding the best path 

through a graph.  The solution can be seen as the best collection of nodes for the 

shortest possible journey.  In relation to CSP this is the best collection of nodes with 

the least constraint violations. 

 

2.1.8 Representing a Constraint Problem as a Graph – The N Queens Problem 

The simple social network graph shown above is relatively easy to understand 

representing a constraint problem as a graph is a bit more abstract.  To create a true 

graph of the car sequencing problem would create a very confusing graph a better 

example was chosen to illustrate this it is known as the N-Queens problem. 

 

The N-Queens problem involves placing n queens on a n X n chessboard in such a 

configuration that a queen cannot capture another queen in one move.  In chess queens 

can move any number of squares diagonal or on the same row or column until they 

find an occupied square.   

For this example, there will be 4 queens on a four by four chessboard.   The following 

steps describe the graph: 

 

1. The first is the empty state where there are no queens placed on the board. 

2. The first queen is placed at position (1,1).  Because of the constraints this 

excludes the placing of the second queen on a number of positions. 

3. The second queen is placed at position (2,3) this excludes further possibilities 

for the third placement. 

4. The placement of the third queen will ensure that a fourth queen cannot be 

placed.   

5. The algorithm will continue until a solution is found as can be seen. 

 

The importance of the first correct move can be clearly seen in this example. 

 



20 

 

 

Figure 2.8 Graph of the N-Queens Problem (Solnon, 2010, p. 58) 

 

2.1.9 Greedy Randomised Search Algorithms 

Greedy randomised search algorithms also known as Greedy Randomized Adaptive 

Search Procedure (GRASP) first appeared in the late 1980’s (Hart & Shogan, 1987) 

and (Gottlieb, Puchta, & Solnon, 2003).  Starting with an empty list this process adds 

elements to the end of that list using a greedy function.  In the context of the car 

sequencing problem starting with an empty list cars would be added onto the end of 

the list until a list had been constructed.  Greedy functions choose the best options 

from the list which can make them vulnerable to the local optimal problem.   An 

example of a greedy randomised search algorithm for the car sequencing problem can 

be seen in Figure 2.15. 



21 

 

 

2.2 Typical Problems ACO are Used to Solve 

The types of problems that ACO’s are used for are those that can be represented as 

finding paths through graphs.  The problems listed below are a range of the most 

common found in the literature.  These problems are: 

 

1. Travelling Salesman Problem TSP 

2. Image Edge Detection 

3. Inventory Routing 

4. Network Packet Routing 

5. Quadratic Assignment Problem 

6. Assembly Line Car Sequencing 

 

2.2.1 Traveling Salesman Problem 

The following description of the Travelling Salesman Problem is paraphrased from 

(Biggs, 1986).  The travelling salesman problem is the most well-known of all the 

combinatorial problems.  The principle is that a salesman wishes to travel to all of the 

cities on his route while covering the least distance possible.  In the most common 

variant the salesman must visit all the cities however there are other variants of this 

problem which are more realistic.  The multiple TSP accounts for the fact that in 

reality there is likely to be more than one salesman travelling for a particular company. 

 

The TSP is the go to problem for ACO it is used to benchmark most new variants of 

the ACO metaphor.  (Dorigo & Gambardella, 1997) tested the concept of ACO and 

found that it could solve this problem.  (Stützle & Hoos, 2000) used TSP to verify that 

Max Min ant systems were superior to those proposed by (Dorigo & Gambardella, 

1997).   

 

(Junjie & Dingwei, 2006) worked on a variant of the TSP involving multiple salesmen 

MTSP.  MTSP is a more realistic variant of the problem as it has to cope with multiple 

salesmen travelling to multiple locations.  This has similarities to network packet 

rooting.  The work on the MTSP used a Max Min system they found that it had 



22 

 

competitive results when compared to the Modified Genetic Algorithm (MGA) 

developed as part of work done by (Tang, Liu, Rong, & Yang, 2000) to improve iron 

and steel production in China.  However, the MGA algorithm performed better than 

the ACO when there were larger numbers of salesmen and cities to visit. 

 

Another variant of the TSP is the GTSP.  This breaks the cities up into sub-classes and 

the salesman must visit these sub classes.  (Yang, Shi, Marchese, & Liang, 2008) 

developed an ACO to solve this problem it is a more realistic type of problem than the 

TSP. 

 

2.2.2 Image Edge Detection 

Image edge detection is fundamental to computer vision.  ACO have been significantly 

useful in this area (Tian, Yu, & Xie, 2008), (Agrawal, Kaur, Kaur, & Dhiman, 2012) 

and (Rafsanjani, Marjan, Kuchaki, & Varzaneh, Zahra Asghari, 2015) have all used an 

ACO approach to detect image edges.  The approaches were all similar.  Edges were 

detected by finding divergences between areas of the image.   If a divergence was 

detected pheromone was laid on these edges. Each of the papers showed that ACO 

could outperform other edged detection algorithms such as Canny and Sobel.  The 

results of this can be seen in Figure 2.9. 



23 

 

 

Figure 2.9 Comparative ACO vs. Canny vs. Sobel Edge Detection (Agrawal, Kaur, Kaur, & Dhiman, 2012) 

The work by (Rafsanjani, Marjan, Kuchaki, & Varzaneh, Zahra Asghari, 2015) was an 

improvement on the previous methods which used ACO for edge detection.  It was 

able to improve edge detection in nosier images and the edges were thinner.  This work 

used a state detection function which was less sensitive to gaussian noise.     

   

2.2.3 Inventory Routing 

A feature of modern e-commerce is the return of non-damaged goods these can be re-

sold to new customers. (Deng, Li, Guo, & Liu, 2016) developed an inventory routing 

system using ACO to cater for the return of non-damaged and damaged goods.  The 

paper showed that the ACO system could reduce costs and improve turn-around times 

for return of non-damaged goods. 

  

2.2.4 Network Traffic Management 

Routing network packets is not much different than the MTSP.  The structure of 

TCP/IP is ideal for mapping onto a graph with packets travelling from node to node in 

much the same way as salesmen travelling from city to city.  Research into the power 

usage of sensors in a wireless network (Gnanasundari, 2015) showed that power 



24 

 

savings of up-to 10% could be achieved using an ACO approach.  While ACO may be 

useful for wireless sensor networks the idea has been around since the late 1990’s (Di 

Caro & Dorigo, 1998) proposed a distributed stigmergetic Control for 

Communications Networks this was an Ant Colony system which would work on 

wired networks.  It did not catch on as TCP/IP is a robust mechanism and the cost of 

changing over would have been prohibitive.  This was also just before the development 

of Max Min systems so it is not certain how the network would have responded as it 

grew.  Given the relative cheapness of network hardware it is usually cheaper to 

simply throw hardware at any network than to fix the bottleneck.   

 

Mobile networks on the other hand have benefited from an ACO approach.  As GSM 

networks become busier the method for assigning frequencies has become more 

urgent.  The Automatic Frequency Planning (AFP) problem encountered by GSM 

networks was researched by (Luna, Blum, Alba, & Nebro, 2007), they showed in a 

comparison between ACO and EA that an ACO could outperform the (10,1) EA in 

allocating signals using time limits as a stopping condition.  The AFP had already been 

shown to be solvable using ACO by (Maniezzo & Carbonaro, 2000) in a paper entitled 

“An ANTS heuristic for the frequency assignment problem”.  

In the network multi-processing environment of Network-on-chip (NoC) systems 

(Hsin, Chang, & Wu, 2013) have shown that ACO can be used to increase the 

performance of routing between the processers.  The results showed a 16% 

improvement over a simple ACO.  This work implemented a backword mechanism 

which worked when network congestion was detected.  This was achieved by use of a 

“pheromone rooting table” when pheromone had built up too much on any route this 

was an indicator of congestion and the ants were back-tracked to other routes.  

 

Ad-Hoc vehicle networks are another area where ACO have been used (Amudhavel et 

al., 2015) discussed the use of ACO to improve the working of vehicle networks.  

These are networks where vehicles talk to each other through road-side stations.  This 

has many potentials for self driving vehicles which could communicate with each 

other. 

 

From the examples given above ACO can be used for network management.  

However, this is more useful with mobile topologies as they are more fluid.  A 



25 

 

standard desktop wired network is relatively stable and congestion problems are more 

easily tracked and resolved.  Given that the relative cost of hardware ACO are unlikely 

to have much of an impact here as it is easier to simply throw hardware at the problem.  

Mobile networks will benefit more from an ACO approach as the band-width is 

limited and the network much more fluid. 

 

2.2.5 Quadratic Assignment Problem QAP 

The QAP is a problem for assigning facilities at given distances and maximising the 

flows between them.  If there are a set of n facilities and n locations each pair of 

locations has a distance specified.  Each facility has a flow between it and other 

facilities (the flow could be anything from liquid to goods and services).   The problem 

is to optimise the flow between facilities while covering the minimum distance 

possible.   

 

The QAP was one of the tests used by (Stützle & Hoos, 2000) to demonstrate the 

performance of the Max Min ant system.  (Tavares & Pereira, 2011) used QAP to 

develop a prototype for a Self Ant System this is discussed further in section 2.3.2.  In 

a survey of solutions to the QAP (Loiola, de Abreu, Boaventura-Netto, Hahn, & 

Querido, 2007) highlighted the effectiveness of ACO when working on this problem.  

(Sahni & Gonzalez, 1976) showed that when the number of sites in the QAP rises 

above 26 it cannot reach convergence and only an optimal solution is possible. 

   

2.2.6 The n-bit Trap Problem 

The n-bit Trap Problem is a first order deceptive problem used to test both ACO and 

EA/GA (Chen, Bolun, Chen, Ling, & Sun, Haiying, 2014).  It is specifically useful for 

testing search bias.  The n-bit trap problem is to find a binary number with the highest 

fitness in a set of binary numbers from 0 to 2n – 1.  The fitness is given by the equation 

where h(s) is the Hamming distance between s and 0.  The answer is s* = 0.   

 

Figure 2.10 n-bit trap fitness function (Chen & Sun, 2008, p. 3) 



26 

 

 

2.2.7 The Grid Scheduling Problem 

This is similar to job-shop problems in that jobs must be executed in a reasonable time 

however this process relates to the submission of jobs to a computing grid or queue.  

As (MadadyarAdeh & Bagherzadeh, 2011) explain no one process controls the grid 

and jobs are added to it in a dynamic manner.  The problem is to allocate the jobs to 

the available nodes and gain an optimal performance in terms of resources.   

 

2.2.8 Assembly Line Car Sequencing  

As the car sequencing problem is used as the test case it is explained more thoroughly 

here than any of the other problems.  A quote often attributed to Henry Ford is “people 

can have a car in any colour as long as it is black”.  In such a simplistic world the car 

sequencing problem does not arise.  Modern manufacturing allows for mixed-model 

assembly lines where many variants of a model can be produced each variant has a set 

of features and these are grouped in to classes (Fliedner & Boysen, 2008).   (Parrello, 

Kabat, & Wos, 1986) described the car sequencing problem in a paper entitled “Job-

shop scheduling using automated reasoning: A case study of the car-sequencing 

problem”.  It was introduced to the Constraint Programming community two years 

later by (Dincbas, Simonis, Van Hentenryck, 1988) who developed a new Prolog 

variant for constraint handling Constrain Handling ln Prolog (CHIP). The car 

sequencing problem was used to demonstrate the effectiveness of CHIP.   When the 

CSPLib (Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, & Ian P. 

Gent, 1999) project was first setup the car sequencing problem was the first to be 

documented.    It was said to be an NP-Complete problem by (Parrello, Kabat, & Wos, 

1986) however (Kis, 2004) showed that it was only NP-Hard. 

 

To paraphrase (Bruce D. Parrello, Waldo C. Kabat, & L. Wos, 1986) from their paper 

on job shop scheduling using automated reasoning.   On a single assembly line of cars 

there are a number of work stations each of which install different components.  For 

example, one work station installs sun-roofs, another installs alloy-wheels and another 

installs air-conditioning systems.  Each work station has a limited capacity which 

means that they can only install a limited number of items.   

 



27 

 

A very simplistic solution to this problem would be to slow down the assembly line so 

that all cars get all options however this is extremely costly.  If only 60% of cars will 

ever get air conditioning it is better to design the system so that the rest of the cars are 

not waiting to be processed. 

 

The French car manufacturer Renault introduced further modifications to this problem 

(Solnon, Cung, Nguyen, & Artigues, 2008).  Their solution also took into account the 

environmental impact of spray-painting cars and was an attempt to reduce solvent 

usage.  This is a more real-world example of the Car sequencing problem but for the 

purposes of this research the car sequencing datasets being used are those available 

from CSP Library (Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, & 

Ian P. Gent, 1999). 

ACO were applied to the Renault problem by (Gagné, Gravel, & Price, 2006).  The 

work showed improvements over the previous work done on this by (Chew, David, 

Nguyen, & Tourbier, 1992).  As this project does not use the Renault problem it is not 

further discussed here. 

 

2.2.8.1 Formalising the Car Sequencing Problem 

A formal definition of the car sequencing problem is given in (Solnon, Cung, Nguyen, 

& Artigues, 2008, p. 913) 

“The car sequencing problem defined by a tuple (V,O,p,q,r) where: 

• V = {v1,v2,..vn} The set of vehicles to be produced. 

• O = {o1,o2,..om} The set of options.  

• p : O  → ℕ  and q : O  → ℕ this defines the capacity constraint associated 

with each option oi ∈ O this capacity constraint imposes that, for any 

subsequence of qi consecutive cars on the line, at most pi of them may 

require oi. 

• r: V X O → {1,0} defines options requirements, i.e., for each vehicle vj ∈ 

V and for each option oi ∈ O, rji = 1 if oi must be installed on vj, and rji = 0 

otherwise. “ 

 

 



28 

 

2.2.8.2 The Car Sequencing Problem as a CSP 

In their review of state-of-the-art solutions to the car sequencing problem (Solnon, 

Cung, Nguyen, & Artigues, 2008) outlined that converting the car sequencing problem 

to CSP involved adding three different types of variables and two different types of 

constraints.   The CSP they propose for the problem is: 

 

The Variables 

1. A Slot Variable Xi this is associated with each position i in the sequence of 

cars.  This represents the class of the ith car in the sequence and its domain is 

the set of classes for the cars.  Using the data in Table 3.1 the domain would be 

D = {0,1,2,3,4,5}. 

2. An Option Variable 𝑶𝒊
𝒋
 this is associated with each position i in the sequence 

and each option j.  If option j is required by the ith car this variable is set to 1 

otherwise it is set to 0.  The domain for this value is D = {1,0}.  

 

The Constraints 

1. The Link Constraint is a link between the slot and option variables.   𝑶𝒊
𝒋
=1 if 

option j has to be installed on Xi. 

2. The Capacity Constraints specifies that the work station capacity must not be 

exceeded.  This means that for each option j and each subsequence qi cars a 

linear inequality specifies that the sum of the corresponding option variables 

must be ≤ pi 

3. The Demand Constraints specifies that for each car of this class the number of 

cars that need to be sequenced.   

 

2.2.8.3 The Car Sequencing Problem and ACO 

The Car Sequencing problem has been used as a benchmark for many ACO algorithms 

and for testing new variants of these.  During the process of integrating an ACO with a 

constraint programming language (Khichane, Albert, & Solnon, 2008) used the Car 

Sequencing problem as a benchmark for this work. 



29 

 

In a study to determine the effectiveness of combining dual pheromone structures 

(Solnon, 2008) used the car sequencing problem to demonstrate the effectiveness of 

this approach showing that the algorithm outperformed its competitors.  

The car sequencing problem was used to evaluate the performance of a Dual Layer 

ACO (DLACO) (Li-Ning Xing, Ying-Wu Chen, & Ke-Wei YANG, 2008).  This 

approach broke the problem up into two steps the first was to assign operations to 

machines, the second step was to schedule the operations of the machines.   

 

2.2.8.4 Other Approaches to the Car Sequencing Problem 

As it is a benchmark for constraint satisfaction problems other approaches have been 

used to solve this problem.  These are briefly discussed here.   

(Fliedner & Boysen, 2008) used a Branch and Bound B&B approach to solve car 

sequencing.  This is similar to an ACO in that it represents a problem space as a 

decision tree, however there is no pheromone laying and solutions are checked against 

lower and upper bounds of the optimal solution. 

 

Simulated Annealing (SA) (Kolonko, 1999) applied this process to the car sequencing 

problem.  They showed that the Car Sequencing Problem was not easily solved using 

SA then they used a EA to execute a number of SA to improve the results.  When a SA 

algorithm had found a good local optimal this result would be combined to previous 

results using the EA over time a superior global optimal was found.  This process is 

similar in many ways to the combining of ACO with EA for example the work done by 

(Zhao, Yao, Luan, & Song, 2016) for more information see section 2.3.3 Combining 

ACO and Evolutionary/Genetic Algorithms (EA/GA). 

Tabu Search (TS) (Pezzella & Merelli, 2000) used the car sequencing problem to 

evaluate the performance of TS and a new technique for finding bottlenecks in the 

process.   

A combination of ACO and TS (Huang & Liao, 2008) used the car sequencing 

problem to evaluate the algorithm.  The work done by (Huang & Liao, 2008) is 

discussed in more detail in section 2.3.3.   

 



30 

 

2.3 Common Solutions to the Inherent Problem with ACO 

All ACO suffer from an inherent problem the negative search bias referred to hereafter 

as just search bias.  The problem is inherent to the design of the algorithm itself.  As an 

ant finds a useful path it lays pheromone on that path and this skews the probability 

that more and more ants will follow this path.  This is what gives the algorithm its 

power and leads to its inherent flaw.   

 

The best way to understand this flaw is the hill climbing problem.  The objective of 

hill climbing is to get to the highest point and the best way to do that is to walk up-hill 

however this simplistic strategy may not succeed as the climber could follow a path to 

a lower point and have no way to get to the highest point without back tracking down 

hill.  This is known as a local optimal point.  ACO are vulnerable to this problem as 

the pheromone trails will guide more and more ants to the incorrect location.  This 

problem does have a counterpart in nature called the “death spiral” where ants can 

become confused and will walk in circles until they die.    

 

Search bias is not unique to ACO it can be found in other similar algorithms.  Tabu 

Search (Glover, 1986), (Glover, 1989) and Simulated Annealing (Kirkpatrick, Gelatt, 

Vecchi, 1983) both use a similar process of retaining sub optimal solutions to solve the 

search bias problem.  Artificial Bee Colony (ABC) (Karaboga, 2005) uses a system of 

scout bees to overcome the local optimal problem.   

 

In a comprehensive study of ACO (Adubi & Misra, 2014) listed the main variants of 

the algorithm and its differences based on this work the list below describes how the 

main ACO variants deal with the local optimal problem.  The list contains a summary 

of these approaches and they are explained in detail in the subsequent sub sections.   

1. Multiple Pheromone Structures.  The use of negative pheromone to prevent bad 

paths from being chosen.  The use of dual pheromone structures to identify the 

good paths and critical components. 

2. Elitist Solutions.  The Max Min system allows only the best ants to lay 

pheromone.  The Rank system places more pheromone on shorter paths.   



31 

 

3. Combining ACO and EA.  The use of Evolutionary Algorithms and ACO 

together has allowed for the finding of good global optima and the ACO takes 

over to find good local optima.  

4. Combining ACO with Other Metaheuristics.  Tabu search and Simulated 

Annealing have been used in conjunction with ACO to solve search bias. 

5. Back-Tracking Ants for Solving Search Bias.  This combines ACO with odd 

even turn for adaptive rooting algorithm. 

 

2.3.1 Multiple Pheromone Structures 

Based on the behaviour of real ants, observed in a paper by (Robinson, Jackson, 

Holcombe, & Ratnieks, 2007) the idea of a no-entry signal or negative pheromone has 

been used to identify paths which ants should not follow.  The papers listed below use 

this system of oppositional learning to improve the results of ACO, however most of 

them pre-date the publication of the paper so it cannot have been said to have 

influenced their work.  

The idea of a negative pheromone surfaced at about the same time as Max-Min 

systems it was proposed by (Iredi, Merkle, & Middendorf, 2001). They used it in the 

Single Machine Tool Tardiness Problem SMTTP.  The results were mixed but the 

approach showed some promise with smaller versions of the problem.   

 

Another attempt to apply opposition based learning ideas to ACO was introduced by 

(Malisia & Tizhoosh, 2007) who used negative pheromone values.   The use of a 

negative pheromone value was applied to the TSP.  The research showed mixed results 

with improved performance on the smaller versions of the TSP but worse performance 

on the larger versions.  While the results were mixed this approach was innovative. 

 

The (Robinson, Jackson, Holcombe, & Ratnieks, 2007) research was exploited by 

(Rodrigues & Ramos, 2014) in a document categorisation system for news articles the 

negative pheromone structures showed improved performance.  The process of finding 

news articles is becoming more difficult, as a result a word association graph was 

created where key words were associated with larger articles.  The negative pheromone 

structure was able to discount non-related documents reducing the search results to 

more relevant topics. 



32 

 

 

In a more comprehensive paper on finding a method for avoiding the searching bias in 

ACO deceptive problem solving, (Chen, Bolun, Chen, Ling, & Sun, Haiying, 2014) 

used the n-bit trap problem to test the performance of an ACO which did not use 

negative pheromone against an ACO which did use negative pheromone.   The 

negative pheromone over-came the search bias inherent to ACO.  The bias avoiding 

ACO (BA-ACO) tested showed significant improvement over the classical ACO as 

can be seen in Figure 2.11. 

 

Figure 2.11 Comparison of the percentage of trials reaching the optimal (Chen, Bolun, Chen, Ling, & Sun, Haiying, 

2014, p. 59) 

 

In a paper entitled “Ants can Learn from the Opposite” (Rojas-Morales, Riff, & 

Montero, 2016) introduce negative pheromones at the start of the learning process of 

the ACO to identify paths which should not be visited.  The second step in the process 

removed the elements marked with negative pheromone from the search space.  This 

research used the Ant Solver Algorithm proposed in a 2002 paper “Ants can solve 

constraint satisfaction problems” (Solnon, 2002) which is a Max Min system.  The 

addition of the negative pheromone improved the performance of Ant Solver on the 

CSP problems it was applied to.  The problems were TSP and QAP. 

 

The concept of crowding was discussed in relation to ACO by (Czaczkes, 2014).  This 

system tracks the number of ants on a path and determines if there are too many.  The 

excess are allocated to other paths.  The study implemented two mechanisms 



33 

 

Crowding Negative Feedback CNF and Pheromone Negative Feedback PNF.  The 

findings are at odds with most of the research in that it found Pheromone Negative 

Feedback did not improve performance but Crowding Feedback did improve results.  

The crowding mechanism is similar to the behaviour of Max Min systems which 

achieve the same results by setting maximum pheromones.  It is also les elegant in that 

it records the number of ants on a path in a separate data structure as opposed to Min-

Max systems which use the concepts of ACO to achieve the same affect.   

 

The combining of pheromone structures to improve performance when solving the Car 

Sequencing problem was proposed by (Solnon, 2008).  This combines two pheromone 

structures the first structure identifies good car sequences the second identifies critical 

cars.  The results showed that this was a competitive result when compared to IDWalk 

and VLFS algorithms.  This work differs from (Iredi, Merkle, & Middendorf, 2001) 

and the other examples discussed in that both the pheromone values here are positive 

pheromones which encourage courses of action as opposed to discouraging courses of 

action. 

 

As a method of solving search bias inherent to ACO the use of negative pheromone is 

clearly a well-researched method for achieving this.  The research in this area is on-

going and shows significant results.  The use of positive pheromone structures also 

improves performance. 

 

2.3.2 Exclusivity / Elitist Solutions 

Another approach to the problem of search bias is the use of an exclusivity policy. This 

began with (Stützle & Hoos, 2000) when the Max Min ant system was developed.  The 

principle is that each ant builds its solution and the ant that builds the best solution lays 

the pheromone.   This system was tested on the TSP and the QAP.    It showed better 

performance for the TSP than the original ant system.  At the time, it was the best 

ACO for the QAP. 

 

In their paper “Towards the Development of Self-ant Systems” (Tavares & Pereira, 

2011) used an exclusive strategy to build a prototype generic ACO.  Most ACO are 

limited to specific problem domains and require tweaking to work in other areas.  The 



34 

 

self ant system proposed here used the QAP to test an exclusive strategy allowing ants 

to determine what the specifics of the QAP were.  This showed promise in the 

development of a Generic ant system to solve QAP.  

 

The routing of traffic using an ACO was explored by (Doolan & Muntean, 2014).  

This is certainly an unusual usage for ACO as the metaphor is based on ants following 

the same paths.  The solution to this problem was to use time as a factor in the 

pheromone laying.  Ants would only lay pheromone on particular roads ant optimal 

times.  Only the best ants laid pheromone for each cycle.  This resulted in a 19% 

increase in performance when compared to the best variant of the Dynamic Navigation 

Algorithm DNA1 as can be seen in Figure 2.12.  

 

Figure 2.12 Percentage of vehicles which reached destination during simulation (Doolan & Muntean, 2014, p. 955) 

 

An elitist coefficient was added by (MadadyarAdeh & Bagherzadeh, 2011) to an ACO 

to solve the Grid Scheduling Problem.  The elitist strategy is similar to Max Min 

systems however the pheromone does not have a Max value but is initialised by a 



35 

 

deterministic algorithm which examines the grid to determine the initial values for the 

pheromone.  The elitist coefficient is then used to determine which ant lays 

pheromone. 

 

A combination of an elitist strategy and reduced candidate list was used by (Karmakar, 

Mitra, Dey, Chakraborty, & Nayak, 2016) to improve the performance of solutions to 

the TSP.  The solution involved the breaking down of the number of cities into smaller 

candidate lists which ants would choose from once the list of candidates had been 

exhausted the ants would then move to the next set of candidates.  Combined with an 

elitist strategy where the ant with the shortest path laid pheromone this improved the 

performance of the algorithm.   

 

The key difference between this and other approaches is that the candidate lists are 

dynamic and will change as the algorithm progresses.  In other elitist ACO the 

candidate list is constructed at the start and involves all the cities in the TSP. 

 

As a method for improving ACO performance and preventing the search bias elitist 

systems have their supporters and have been shown to produce competitive results.  

The algorithm used in this project is an elitist Max Min system.  

 

2.3.3 Combining ACO and Evolutionary/Genetic Algorithms (EA/GA) 

Combining of ACO with other algorithms as a strategy for setting the initial 

pheromone values is not new.  As mentioned in the previous section (MadadyarAdeh 

& Bagherzadeh, 2011) used this approach with a determinist algorithm.  This section 

will focus on the combination of ACO and EA/GA. 

 

In their proposed Best Worst Ant System (Cordon, Viana, Herrera, & Moreno, 2000) 

adopt an evolutionary approach to the ACO system.  It incorporated three factors: 

 

1. The global best and the current worst ant were used to create positive and 

negative updates. 

2. If the pheromone value is too high for some nodes it is re-set to a lower value.  

This prevents all the ants going down the same route. 



36 

 

3. Mutation of the pheromone structure, this concept is unique to this particular 

type of ACO and is borrowed directly from Evolutionary algorithms. 

 

This approach combines EA and ACO and pheromone re-set behaves similarly to the 

Min Max system.  Given the approach it could be considered both a Min Max system 

and hybrid ACO/EA system. 

 

Fusing of the Genetic Algorithm and a ACO to optimise partner selection for a virtual 

enterprise was proposed by (Yao, Liu, & Wang, 2008).  The research was exploratory 

and used a small dataset as proof of concept.  The algorithm worked in two stages. The 

GA would find good global solutions.  Once it had found optimal solutions initial 

pheromone values were set on the most promising paths.  The ACO would then take 

over to find the local optimal solution.  The paper acknowledged that further research 

was needed and a larger dataset.   Despite this the work was interesting in that it 

modelled a business problem which is not usually modelled using ACO business 

partner selection has not been subject to this form of analysis in the same way as other 

problems like TSP or manufacturing.   

 

Following on from this (Yao, Pan, & Lai, 2009) improved this process they added a 

full Max Min system and used the GA/EA to set the Max and Min values of 

pheromone.  This improved the solution compared to the GA, and ACA algorithms.  

The superior performance of HGAACA can be seen in Figure 2.13. 



37 

 

 

Figure 2.13 A Comparison of Optimal Process with GAACA & HGAACA (Yao, Pan, & Lai, 2009, p. 246) 

 

A further fused ACO/GA algorithm was proposed by (Zhao, Yao, Luan, & Song, 

2016) this worked on the same principles as outlined by (Yao, Liu, & Wang, 2008) and 

(Yao, Pan, & Lai, 2009).  The GA would work on the global problem until it reached a 

good global solution.  The global solution was the point at which the GA could not 

gain any improvements after a number of generations.  The pheromone values would 

be then set and the ACO would take over to solve the local problems arriving at an 

optimal solution.  When applied to the supplier selection problem this approach 

showed a time improvement over ACO or GA used separately.     

 

2.3.4 Combining ACO with Other Metaheuristics 

In a paper entitled “Ant colony optimization combined with tabu search for the job 

shop scheduling problem” (Huang & Liao, 2008) combined an ACO with tabu search 

mechanism in an attempt to improve performance.  A global pheromone queue was 

created to guide the Tabu search and the research showed that results were competitive 

with a standard Max Min ACO. 

The ACO carried out local search and updated its local search pheromone.  Once this 

was completed the global pheromone was then updated.  The global pheromone queue 



38 

 

then guided the tabu search which maintained the tabu list and updated local 

pheromone if the ACO was becoming trapped.  This was detected by comparing the 

results of the ACO during its recent cycles and if it was not improving the Tabu search 

mechanism was employed. 

 

A hybrid ACO and Simulated Annealing algorithm was developed by (Niknam, 

Firouzi, & Nayeripour, 2008) this outperformed the standard ACO, SA or k-means 

clustering algorithms (MacQueen, 1967) run separately.  The combination worked by 

generating a series of small ant colonies and placing them on separate areas of the 

search graph.  The SA is used to do this.  The Ants find the best local optima and the 

SA moves them to new positions.  This process continues until a convergence is 

reached.   

 

Based on the work done by (Niknam, Firouzi, & Nayeripour, 2008) an ACO was 

combined with FAPSO (fuzzy adaptive particle swarm optimization) and k-means 

algorithm.  It was called FAPSO-ACO–K (Niknam & Amiri, 2010).  The k-means 

cluster mechanism was used to combine data in clusters before searching by the 

ACO/PSO.  This algorithm was benchmarked against the Simulated Annealing ACO 

combination.  The results showed clear improvements.  Given the modifications made 

to this system it is arguable that this is no longer an ACO.  

 

2.3.5 Back-Tracking Ants for Solving Search Bias 

As discussed previously (Hsin, Chang, & Wu, 2013) developed an ACO for Network-

on-chip (NoC) environment.  The innovation with this system is that it added a 

backtracking component which they referred to as backword ants.  The process worked 

in conjunction with standard network routing tables and it maintained a “rooting table” 

of pheromone values.  If the value got too high this indicated congestion and the ants 

were back-tracked to a less congested path.    

 

The mechanism for doing this is the network packet header which contains an ant 

index as an ant passes through a node the pheromone table is updated.  This process 

has elements in-common with Max Min systems but there is no minimum pheromone 

value. 



39 

 

It is debateable whether this can be considered an ant system or not as it uses the odd 

even turn for adaptive rooting algorithm (Chiu, 2000) to determine ant behaviour not 

just the pheromone values.   

 

 

Figure 2.14 The flow of foreword and backword ant system (Hsin, Chang, & Wu, 2013, p. 48) 

 

2.4 The Work of Christine Solnon Explained 

The work of Christine Solnon is the work on which this project is based it originated as 

two papers one on Solving permutation constraint satisfaction problems with artificial 

ants, (Solnon, 2000) and the second on combining pheromone structures “Combining 

two pheromone structures for solving the car sequencing problem with Ant Colony 

Optimization” (Solnon, 2008) and was further described in her book “Ant Colony 

Optimization and Constraint Programming” (Solnon, 2010).  This work is explained 

here. 

 

The paper proposed dual pheromone structures to solve the car sequencing problem 

using a greedy randomised local search (Gottlieb, Puchta, & Solnon, 2003).  The 



40 

 

algorithm for the greedy randomised local search can be seen in Figure 2.15.  Starting 

with an empty sequence the cars are added to the end of the sequence until all cars 

have been sequenced.  Line 4 of the algorithm ensures that cars with the smallest 

number of violations are added at each step.  The greedy approach was then combined 

with two pheromone structures. 

 

The first pheromone structure identified good car sequences.  This was achieved by 

finding permutations of the car sequencing problem (C, O, p, q, r) where no constraints 

were violated.  A classical Max Min ant system (Stützle & Hoos, 2000).  The 

pheromone trails were first set to the Tmax limit during a cycle each ant constructs a 

sequence of cars then the pheromone trails are updated. The algorithm continues until 

an ant has found a solution or the maximum number of cycles has been found.  This is 

similar to the elitist coefficient structure proposed by (MadadyarAdeh & Bagherzadeh, 

2011) when they were working on an improved ant algorithm for the grid scheduling 

problem using biased initial ants. Both of these systems used a Tmin value in the case of 

(MadadyarAdeh & Bagherzadeh, 2011) it was set by a deterministic function.  Solnon 

does not use the term elitist coefficient however the behaviour of the first pheromone 

structure is similar. 

 

 

Figure 2.15 Greedy Ransomised Car Sequencing Algorithm (Solnon, 2008, p. 1046) 

 

The second pheromone structure lays pheromone on critical cars these are cars which 

have the highest number of constraints and are hard to sequence.  This structure is not 

managed by a Max Min system as it is necessary to find critical cars quickly and the 



41 

 

Max-Min system is designed to increase the search space which would slow the 

algorithm down.  A Tmin value was used to prevent the probability of choosing a car 

from becoming null.  As car sequencing has classes of cars which require the same 

options the second pheromone structure uses this mechanism to identify the cars more 

efficiently.   

 

The algorithm can be run using the single pheromone structure to build cars or it can 

be run with both in which case the first pheromone will have identified the best 

sequences and the second will identify the critical cars and ensure that they are built 

first. 

 

The results of this work have shown that the dual pheromone structure makes it 

possible to obtain competitive results on the car sequencing problem.  The algorithm 

was able to solve many instances much more quickly than the VFLS algorithm.  VFLS 

was the local search based algorithm that won the ROADEF 2005 challenge (Solnon, 

Cung, Nguyen, & Artigues, 2008).  However, on the largest instances for the car 

sequencing problem and for the longer time limits the dual pheromone approach is 

outperformed by VFLS. 

 

2.5 Gaps and Limitation of Literature 

From the types of problem that can be solved with ACO and the on-going research into 

the area it is clear that this approach has merits and real-world application.  The 

literature shows an on-going need to improve the ACO algorithm to avoid the search 

bias inherent to the algorithm and the performance problems when applied to larger 

datasets. 

These approaches include: 

 

1. Multiple Pheromone Structures 

2. Exclusive / Elitist Strategies 

3. Combining ACO with Evolutionary / Genetic Algorithms 

4. Combining ACO with Other Metaheuristics 

5. Back-Tracking Ants for Solving Search Bias 

 



42 

 

What they all have in common is that they focus exclusively on the pheromone 

structure and ignore the ants which lay it.  There are also inherent problems with them.   

In an attempt to develop a non-hybrid ACO (Krynicki, Houle, & Jaen, 2015) pointed 

out that most of the combinations of ACO and EA/GA suffer from efficiency problems 

or are too specific and can only solve a single type of problem. 

 

In relation to negative pheromone (Robinson, Jackson, Holcombe, & Ratnieks, 2007) 

show how too much of it can cause the search space to become too large and the 

algorithm to become inefficient.   

 

From reviewing the literature there are no attempts to look at the ants themselves and 

determine if they can be given more autonomy to find solutions without simply 

following pheromone trails.  

 

The closest that any of the approaches listed above has come to this idea is the Self Ant 

system proposed by (Tavares & Pereira, 2011).  This contained the seed of an idea that 

the ants should be able to discover more about their world and adapt to it.   

 

Continuous Orthogonal Ant Colony (Hu, Zhang, & Li, 2008) also have a step where 

ants explore sub-sets of the problem but it too relies on pheromone structures and not 

the behaviour of the ants themselves or the creation of any type of specialist ant to do 

the exploring. 

 

In the area of Artificial Bee Colonies the idea of an explorer or scout has been 

implemented.  While ABC do not lay pheromone in the same way as ACO they have 

certain similarities.  (Karaboga & Kaya, 2016) uses scouts as part of their approach 

when training ANFIS a hybrid artificial intelligence algorithm created by combining 

the learning ability of neural networks and the inference feature of fuzzy logic.  

 

ABC Algorithm (Karaboga, 2005) has had an influence on the concept of different 

types of ants as outlined in this work.  In the ABC approach the artificial bees go 

through three stages when solving a problem these are: 

 

1. Employee Bee: - The bee is exploiting some solution to the problem. 



43 

 

2. Onlooker Bee: - The bee in this stage is waiting its turn to solve the same 

problem 

3. Scout Bee: - This bee abandons the current solution and tries to find a new path 

to solve the problem.    

 

The use of Evolutionary Algorithms to set initial pheromone values of the ACO also 

suggests the question why not have a type of ant to do this continuously throughout the 

life of the algorithm? 

 

2.6 Research Question 

The review of the literature and the questions it poses inspired this research.  It is 

proposed to explore the idea of a type of ant that could prevent the inherent problem of 

search bias and in so doing improve the performance of the algorithm.   

 

Given the vast amount of problems that are available to test these ideas on it was then 

necessary to find one which matched the following criteria: 

 

1. A readily available dataset. 

2. Good coverage in the literature. 

3. An algorithm that could be modified and compared to its unmodified state. 

4. The ability to test this without too much computing power. 

 

The car sequencing problem and the work done by Christine Solnon were chosen as it 

matched these criteria.  If a type of Exploring ant was implemented it would have to 

improve the performance of the algorithm and improve or at least generate results that 

were as good as the current algorithm. 

 

The question was refined to suit these conditions and the question that this research 

proposes to answer is. 

 

Can the addition of Persistent Explorer Artificial Ants (PEAA) as opposed to 

setting Pheromone values alone reduce the number of cycles and detect 

unsolvable sequences in the Car Sequencing Problem? 



44 

 

Based on the gaps found in the literature and the objectives of this research the next 

chapter will describe the design of experiments designed to achieve these goals.    



45 

 

3 DESIGN OF EXPERIMENTS AND METHODOLOGY   

To answer the question formulated in section 2.6 the following hyphothasis were 

developed. 

 

Null Hypothesis HA0: PEAA will not statistically Reduce the number of 

cycles when solving the Car Sequencing problem.   

Alternative Hypothesis HA1: PEAA will Reduce the number of cycles when 

solving the Car Sequencing problem.  

 

Null Hypothesis HB0: PEAA will not statistically Detect the unsolvable Car 

Sequencing Problems and abandon it before the maximum amount of 

iterations. 

Alternative Hypothesis HB1: PEAA will statistically Detect the unsolvable 

Car Sequencing Problems and abandon it before the maximum amount of 

iterations. 

 

The approach to this research was informed by the methodologies used in similar 

experiments.  It also draws on experience gained from years of development.  Test 

Driven Development has had a large influence on this work.  TDD is the process of 

developing a set of tests before development to help define requirements1.   TDD is a 

more scientific approach to development and appropriate for this work. 

 

(Derrac, García, Molina, & Herrera, 2011) provide a tutorial on assessing the 

performance of swarm intelligence algorithms using various metrics.  While not all of 

these are appropriate the Sign test is a useful method for determining the winning 

algorithm.  

 

The CRISP-DM (CRoss Industry Standard Process for Data Mining) (Wirth & Hipp, 

2000) is also used as a reference standard for the overall project methodology.  These 

methodologies are iterative processes and somewhat evolutionary which is appropriate 

for the subject matter of this research.   

 

                                                 
1 http://www.agilemodeling.com/essays/agileRequirements.htm  

http://www.agilemodeling.com/essays/agileRequirements.htm


46 

 

The design of the experiments is explained in detail in the following sections an 

overview of the process can be seen in Figure 3.1 and is summarised here. 

 

Figure 3.1 Overview of the Experiment 

Data Preparation The data used in 

this experiment is available from the 

CSPLib resource this is explained in 

sections 3.1 and 3.2. 

 

Repeat Original Experiment & 

Add Persistent Explorer Ants The 

first step will be to repeat the 

original experiment to ensure that 

the subsequent experiments are 

comparable.  This is explained in 

sections 3.3 and 3.4. The addition of 

explorer ants to explore unexplored 

paths is explained in section 3.5 

 

HA Experiment Reduce the 

number of Cycles using Explorer 

ants.  This is explained in section 

3.6 

 

HB Experiment Detect the 

unsolvable Sequences and 

Terminate.  This is explained in 

section 3.7 

 

Evaluation of Results Based on the 

type of results this will determine 

the statistical methods used Section 

3.8 explains this.   

 



47 

 

3.1 Data Preparation 

CSPLib (Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, & Ian P. 

Gent, 1999) maintain a data-set which will be used for this problem.  It is a series of 

space delimited text files.  The structure of which is displayed in the next section.  This 

data is available on the CSPLib website (Barbara Smith, 1999) and was originally 

proposed by (Dincbas, Simonis, and Van, 1988).  There are 109 separate sets of car 

sequence data.  Each contained in a separate file. 

 

• 9 Files contain 100 cars 

• 80 Files contain 200 cars 

• 10 Files contain 300 cars 

• 10 Files contain 400 cars 

 

The experiments carried out by (Solnon, 2008), (Gottlieb, Puchta, & Solnon, 2003), 

and (Bruce D. Parrello, Waldo C. Kabat, & L. Wos, 1986) use car sequences of no less 

than 100 cars.  As the number of cars increases the constraints on the problem making 

the tests more relevant.  A set of 10 cars with 5 options is a relatively easy problem to 

solve.  As the number grows the algorithm has to manage more constraints and prevent 

violations.  For this reason data sets of 100 ,200, 300 and 400 cars are used. 

 

3.1.1 Car Sequencing Data Explained 

The data in this section is used to illustrate how the car sequencing data is structured it 

will not be used in the experiment as 10 cars is simply not useful for testing.  The 

experiments carried out by (Solnon, 2008), (Gottlieb, Puchta, & Solnon, 2003), and 

(Bruce D. Parrello, Waldo C. Kabat, & L. Wos, 1986) use car sequences of no less 

than 100 cars. A full car sequencing data set can be seen in Appendix B.  



48 

 

 

 

 
1 2 3 4 5 6 7 

Line 1 10 5 6 
    Line 2 1 2 1 2 1 

  Line 3 2 3 3 5 5 
  Line 4 0 1 1 0 1 1 0 

Line 5 1 1 0 0 0 1 0 

Line 6 2 2 0 1 0 0 1 

Line 7 3 2 0 1 0 1 0 

Line 8 4 2 1 0 1 0 0 

Line 9 5 2 1 1 0 0 0 
Table 3.1 Sample CSPLab as it appears in the file 

 

 
1 2 3 4 5 6 7 

Line 1 10 5 6 
    Line 2   1 2 1 2 1 

Line 3   2 3 3 5 5 

Line 4 0 1 1 0 1 1 0 

Line 5 1 1 0 0 0 1 0 

Line 6 2 2 0 1 0 0 1 

Line 7 3 2 0 1 0 1 0 

Line 8 4 2 1 0 1 0 0 

Line 9 5 2 1 1 0 0 0 
Table 3.2 Sample CSPLib Data in a more user friendly 

layout 

 

Table 1 Line 1:- Explained  

Col 1 Number of Cars = 10 

Col 2 Number of Options = 5 

Col 3 Number of Types/Classes = 

6.  They are numbered 0-5 

 

Table 1 Line 2-3:- Explained  

Col 1-5 This is the capacity of the 

work station to install an option  

Capacity 1 of 2 

Capacity 2 of 3 

Capacity 1 of 3 

Capacity 2 of 5 

Capacity 1 of 5 

 

For example, car class 3 (on line 7) 

requires installation of option 2 and 

option 4 (Line 2 and 3 columns 2 and 4), 

and two cars of this class are required 

(Line 7, col 2). The workstation for 

option 2 can process only two out of 

every sequence of three cars. The 

workstation for option 4 has less 

capacity—two out of every five cars. 

 

Line 4-9:- Explained  

Col 1 This is related to the 

This is a valid solution to the car 

sequencing data example as given above. 



49 

 

Number of Types its values go 

from 0 to 5 (6 Types) 

Col 2 This is related to the 

Number of Cars Row 1 Col 1 a 

total of the column is 10 the same 

as the number of cars. 

Col 3-7 0 or 1 if a car class has an 

option the value is 1 otherwise it is 

0  

 

 

Cars Class Options 

1 0 1 0 1 1 0 

2 1 0 0 0 1 0 

3 5 0 1 0 0 1 

4 2 0 1 0 1 0 

5 4 1 0 1 0 0 

6 3 1 1 0 0 0 

7 3 1 1 0 0 0 

8 4 1 0 1 0 0 

9 2 0 1 0 1 0 

10 5 0 1 0 0 1 
Table 3.3 Valid solution 

 

3.1.2 The Car Sequencing Graph 

As illustrated by (Solnon, 2008) and (Solnon, 2010) the car sequencing problem can be 

modelled as searching for the best Hamiltonian path in a graph (a Hamiltonian path is a 

path where all the nodes in the graph are visited once).  The nodes in the graph 

represent the different classes of cars. As there are 10 cars there will be 10 nodes.  The 

order of these classes of cars is governed by the constraints as illustrated in table 3.1 in 

the previous section.   

Figures 3.2 and 3.3 Illustrate a car sequence before and after it has been processed. 



50 

 

 

Figure 3.2 Graph of Cars Before Processing 



51 

 

 

Figure 3.3 Graph After Processing 

3.2 The Ant Car Software Code 

The Ant Car Solver was developed to research the use of the dual pheromone structure 

discussed in a paper entitled “Combining two pheromone structures for solving the car 

sequencing problem with Ant Colony Optimization” (Solnon, 2008).  That research 

combined the pheromone structure for finding “good” sequences of cars with a 

pheromone structure for finding “critical cars”.  

 

The algorithm is written in C and imports the car sequences using standard C 

functions.  This code is available from the 'Solving Car Sequencing Problems with 

ACO’2 web site.   

 

3.2.1 Supporting Software Tools 

The tools used in these experiments are: 

 

                                                 
2 http://liris.cnrs.fr/csolnon/AntCar.tgz Ant Car Source Code 

http://liris.cnrs.fr/csolnon/AntCar.tgz


52 

 

• gcc – GNU Compiler Collection (v4.8.4).  The Free Software Foundations C 

compiler.  

• bash – Linux shell scripting. 

• valgrind – This is used for memory management and detecting leeks.  It will 

mainly be used for debugging purposes.   

• top – This is used to monitor Linux/Unix processes and their resource usage.    

• make – This is the standard GNU make utility and is used for compiling and 

testing changes to code. 

• Neo4j – (v3.1.0) This is the graph database which is used to generate and 

validate the graphs generated as part of the research. 

 

3.3 Experiment Setup 

The data originally generated by the Ant Car algorithm was output as a series of name 

value pairs.  This was modified to output the results as a set of CSV files which are 

more useful.  The algorithm was also modified to take a test number to make the 

tracking of test output more accurate.   

 

A shell script was developed to execute the algorithm and manage the test numbers.  

The tests were run on three versions of the Linux operating system to strengthen the 

conclusions derived from these experiments.  This can be seen in Table 3.4.  As with 

the original experiments each test was carried out 50 times both (Solnon, 2008) and 

(Derrac, García, Molina, & Herrera, 2011) also used 50 tests for their research.  

  

Operating System Kernel Version  CPU Virtual Machine 

(Y/N) 

Kali Linux  3.18.0_Kali3 Pentium 4 3.20 

GHz 32-Bit 

N 

Ubuntu Linux 3.19.0-

25_GENERIC 

Intel® Core ™ i7-

5500U 2.40 GHz 

64-Bit 

Y 

NetBSD Unix 7.0.1_PATCH AMD64 Opteron 

150 

N 



53 

 

Table 3.4 Test Environments 

 

3.4 Repeat Original Ant Car Experiment 

The original experiments carried out with the Ant Car solution will be re-run to 

measure the performance of the two-pheromone structures as a means of solving the 

car sequencing problem.  This is to ensure that results can be re-produced.  This also 

ensures that problems which might arise when using a different operating system are 

catered for.   

 

Once it has been established that the Ant Car algorithm can perform as described in the 

original experiment the modifications to add the Persistent Exploring Ants will be 

carried out.  The results of this experiment will be discussed in section 4.   

 

The performance monitoring tools mentioned previously will be used to measure the 

performance and as a source of objective data which will be necessary to ensure that 

no inefficiencies were added when the Explorer Ants were added. 

 

The efficiency of the code is not the primary focus of this research but it is necessary 

to know how it performs in terms of system resources to ensure that the algorithm does 

not use up too much resources to make it viable. 

 

3.5 Implement Changes to Add Explorer Ants 

The change to implement the Explorer ants will involve creating a data structure which 

will contain a list of the paths which have been explored by the normal ants.  The 

explorers will be applied to paths which have not yet been processed.  The explorers 

will randomly choose paths to explore from the list of unexplored paths.  

 

If promising sequences are found the non-explorer ants will be re-directed to these 

nodes and the explorers will continue to explore new paths.  The exploration and 

building of sequences will continue in tandem which will give this algorithm an 

advantage over the current algorithm.   Figure 3.4 illustrates this process. 

 



54 

 

This algorithm will be implemented as an addition to the existing functions and will be 

controlled with a command line option.   

 

 

 

Figure 3.4 Example of PEAA Processing the Sequences 

 

3.6 HA Experiment – Reduce the Number of Cycles 

The number of cycles is the number of steps required to solve a sequence it will be first 

determined by repeating the original experiment as described in section 3.4.  Each of 

the car sequences will be processed using both the unaltered algorithm and the explorer 

ants.   

The results of the unaltered code will be compared to the previous results in section 3.4 

to ensure that no errors or inefficiencies have been introduced during the changes.  The 

previously mentioned tools will be used to monitor the code to ensure that the 

performance is objectively measured. 

 



55 

 

The experiment will be repeated on Ubunto, Kali and NetBSD to ensure that the 

results are reliable and an accurate figure for the number of cycles has been obtained. 

The sequences will be checked against the results set maintained by the CSPLib to 

ensure that the sequences are valid.   Section 3.9 explains this in more detail.  

Unsolvable sequences will not be included in this experiment. 

 

 

3.7 HB Experiment – Unsolvable Car Sequencing Problem 

There are unsolvable sequences of cars which cannot be built by any algorithm.  The 

car sequences in block 10/93 and 16/81 are known to have no solution.  The purpose of 

this experiment is to use explorer ants to discover this quickly and terminate the 

processing before the maximum number of cycles (5,000 by default) is reached.  Only 

Unsolvable sequences will be included in this experiment. 

 

The experiment will be repeated on Kali, Ubunto and NetBSD to ensure that the 

results are reliable see Table 3.4. 

 

3.8 Evaluation of Experimental Results 

The results are most likely to be normally distributed however (Derrac, García, 

Molina, & Herrera, 2011) have shown that the comparison of swarm intelligence 

algorithms can produce non-parametric results.  For these reasons, it is necessary to 

consider two approaches to evaluating the data.   

 

If the data is normally distributed the T-Test will be used to evaluate the data.  This is 

given by the formulas below.    

 

 

 

T-Test Where: 

𝑥̅1= Mean of first set of values 

𝑥̅2= Mean of second set of values 



56 

 

𝑡 =  
𝑥̅1 − 𝑥̅2

√
𝑆1

2

𝑛1
+

𝑆2
2

𝑛2

 

 

 

S1 = Standard deviation of first set of values 

S2 = Standard deviation of second set of 

values 

n1 = Total number of values in first set 

n2 = Total number of values in second set. 

 

Standard Deviation 

𝑆 = √
∑(𝑥 − 𝑥̅)2

𝑛 − 1
 

 

Where: 

x = Values given 

𝑥̅= Mean 

n = Total number of values. 

 

 

If the data is not normally distributed then the Sign Test can be used.  (Derrac, García, 

Molina, & Herrera, 2011) recommend this as a method for comparing results for 

swarm intelligence algorithms.  The process involves: 

 

1. Counting the case where each algorithm is the overall winner. 

2. (Derrac, García, Molina, & Herrera, 2011, p. 6) “If the number of wins is at 

least 

 
𝑛

2
+ 1.96 ∙  

√𝑛

2
  then the algorithm is significantly better”.  

 

Table 4 and 5 of (Derrac, García, Molina, & Herrera, 2011) serves as an example of 

this process. 

 

3.9 Strengths and Limitations of Solution Design 

The strengths of the approach are the use of a comprehensive set of car sequencing 

data.  The 109 datasets are more extensive than that used by (Solnon, 2008) which 

used 82 datasets.  The experiments will also be validated against the best available 

solutions currently recorded in the literature. 



57 

 

The limitations on this approach are the relatively limited number of platforms on 

which it is run all of which are Unix or Linux.  The hardware was also limited to only 

3 processers two intel processers and one AMD. 

 

While the design of this experiment is a good approximation of the Car Sequencing 

problem it is not as extensive as that proposed by the French car manufacturer Renault.  

The ROADEF (Solnon, Cung, Nguyen, & Artigues, 2008) car sequencing problem 

includes additional constraints for paint batching.  Renault needed this constraint to cut 

down on the use of solvents.   

 

Given the time constraints and the different dataset formats used for the ROADEF 

problem it would not be possible to incorporate it here.  This however would be a 

useful next step in this research if the PEAA approach proves useful.  

 

3.10 Triangulation of Findings with State of the Art Techniques 

The CSPLib maintains a list of best solutions for the car sequencing data.  These 

results will be used to determine if the solutions are valid.  The best results are those 

obtained with the least number of violations of the constraints.  The sequences have 

been downloaded and will be automatically compared against the results obtained 

during the experiments.   

   



58 

 

4 EXPERIMENTAL RESULTS 

This chapter explains the experiment execution.  It follows the heading structure of the 

previous chapter.  The execution of the experiments is explained in detail in the 

following sections an overview of the process can be seen in Figure 4.1 and is 

summarised here. 

 

 

Figure 4.1 Overview of Experiment Execution 

Data Preparation The data used in 

this experiment and the data 

processing undertaken are explained 

in sections 4.1 

 

Code Modifications The code was 

modified to implement the PEAA and 

to provide reporting facilities using 

CSV files this is explained in sections 

4.2 and 4.3 

 

Repeat Original Experiment & 

Add Persistent Explorer Ants The 

Original Ant Car experiment was 

repeated due to time constraints a 4th 

test environment was added.  This is 

explained in section 4.4 

 

HA Experiment The PEAA did not 

reduce the number of cycles they 

produced car sequences with more 

violations and these could not be used 

as the non-explorers were better.  

This is explained in section 4.6 

HB Experiment PEAA did not detect the unsolvable Sequences and Terminate.  This 

is explained in section 4.7 

 



59 

 

Evaluation of Results Based on the results PEAA do not improve the performance of 

the algorithm.  This is explained in sections 4.8 – 4.9. 

 

 

 

4.1 Data Preparation 

The Car sequencing datasets were downloaded from the CSP Library as described in 

the previous section. They were then locally stored on each of the test environments to 

ensure the fastest possible access to the data. 

 

Each execution of the algorithm generated six data files (the files marked with * were 

for error checking purposes).  The TEST_NO refers to the test number.  The PID refers 

to the Process ID number.  The six file types are listed below: 

 

1. <TEST NO>_<PID>_car_file_data.csv* – This contained the number of cars, 

number of options and the classes of the cars. 

2. <TEST NO>_<PID>_cycles.csv – This contained the number of cycles the 

algorithm ran for. 

3. <TEST NO>_<PID>_solution.csv – This contained the final sequence of cars. 

4. <TEST NO>_<PID>_cycles_avg.csv* – This contained the average cycles. 

5. <TEST NO>_<PID>_parameters.csv* – This file contained the parameters 

with which the program was executed. 

6. <TEST NO>_<PID>_violations.csv – this contained the number of violations 

for the execution of an algorithm.   

 

A single execution of a test would generate 654 files and five tests would generate 

3,270 files.  Each test involves testing both the single and dual pheromone structures 

this will generate a total of 6,540 files.  To process these files a second shell script was 

executed to read the contents and put them into cumulative CSV files. 

 

Four log files were also generated to allow for validation of the test results.  Each test 

execution wrote a single line to the log file.  These files were: 

 



60 

 

• strategy_1_sequence.csv : - This contained the results for the single 

pheromone test with no explorers (a repeat of the first part of the original 

experiment). 

• strategy_1_sequence_exp.csv : -  This was a test of the PEAA against the first 

pheromone structure. 

• strategy_2_sequence.csv : - This contained the results for the dual pheromone 

test with no explorers (a repeat of the second part of the original experiment) 

• strategy_2_sequence_exp.csv : - This was a test of the PEAA against the dual 

pheromone structure. 

 

Once a set of tests was completed the number of files created was verified by the logs 

to ensure that tests had run correctly.  The parameters in the log-files were checked 

against the parameters for each execution of the algorithm.  The *_car_file_data.csv 

and the *_cycles_avg.csv were not used as they were not necessary. There were no 

problems with this part of the experiment and all tests run were valid. 

 

4.2 The Ant Car Software Code 

The code was modified to report its results as CSV files rather than simply writing 

them to the console.  This change affected the reporting of all results for tests using the 

PEAA and those not using the PEAA.   

Two new command line arguments were added to allow for more control: 

 

-Z <TEST NO> 

-E <NO OF EXPLORER ANTS> 

 

The PEAA were implemented using a standard C data structure and functions were 

added to process the list of unused options by the non-Explorers.  Each non-explorer 

chooses a sequence based on the pheromone laid by previous non-explorers and there 

is a random component to this process.  The PEAA use the options not chosen by the 

non-explorers to build alternative sequences of cars.   

 



61 

 

4.3 Experiment Execution 

The tests were executed using a single shell script and run in batches of 5 or 3.  Each 

test involved the 109 datasets.  Each test was run for both single and dual pheromone 

structures.  Due to time constraints, a fourth test environment was setup.  The test 

environments are listed in the table below.  To ensure that the tests executed as quickly 

as possible and had the highest priority the GNU nice3 command was used. 

 

Operating System Kernel Version  CPU Virtual Machine 

(Y/N) 

Kali Linux  3.18.0_Kali3 Pentium 4 3.20 

GHz 32-Bit 

N 

Ubuntu Linux 3.19.0-

25_GENERIC 

Intel® Core ™ i7-

5500U 2.40 GHz 

64-Bit 

Y 

NetBSD Unix 7.0.1_PATCH AMD64 Opteron 

150 

N 

RedHat Linux 

4.4.6-4 

2.6.32-042stab123.2 Intel(R) Xeon(R) 

CPU E5-2620 v2 

@ 2.10GHz 

N 

Table 4.1 Test Environments 

 

4.4 Repeat Original Ant Car Experiment 

Repeating the original ant car experiment was necessary to evaluate the effectiveness 

of the Persistent Explorer Artificial Ants PEAA.  This gave a base-line for the 

performance of the PEAA.  After the addition of the reporting functionality (CSV 

files) this would have slowed down the algorithm slightly as it was writing to files.  

The sequences of cars built would have been unaffected.   

 

 

 

                                                 
3 https://www.gnu.org/software/coreutils/manual/html_node/nice-invocation.html GNU nice command 

https://www.gnu.org/software/coreutils/manual/html_node/nice-invocation.html


62 

 

Environment No Times  

109 Data Sets 

Processed 

Average Time 

Single Pheromone 

Average Time 

Dual 

Pheromone 

Kali 3 00:02:32 00:01:17 

Ubuntu 10 00:00:03 00:00:03 

BSD 3 00:00:54 00:01:02 

RedHat 

Linux 

10 00:00:06 00:00:06 

Table 4.2 Time Taken Single & Dual Pheromone Structure 

 

4.5 Implement Changes to Add Explorer Ants 

The PEAA were then activated using the command line switch.  The number of PEAA 

was set to 10.  This was a compromise between efficiency and thoroughly testing the 

PEAA concept.   The tuning of this parameter was guided by testing the 9 datasets 

containing 100 cars and determining if all the PEAA would build sequences for cars.   

In all cases each of the PEAA built a sequence.  This ensured that in the case of the 

larger datasets the PEAA would be used. 

While 10 PEAA were created by the algorithm at start-up they were only used if they 

had alternative paths to explore.  Otherwise they had no-where to go and nothing to do.  

As can be seen from Table 4.3 and Figure 4.2 performance was significantly reduced 

by the addition of PEAA. 

 

Environment No Times  

109 Data Sets 

Processed 

Average Time 

Single Pheromone 

Average Time 

Dual 

Pheromone 

Kali 3 00:08:01 00:08:07 

Ubuntu 10 00:00:51 00:03:11 

BSD 3 00:06:26 00:06:58 

RedHat 

Linux 

10 00:02:10 00:05:10 

Table 4.3 Explorer Ants Time Taken Single & Dual Pheromone Structure 

 



63 

 

 

Figure 4.2 Time taken by Non-PEAA and PEAA (PEAA shown on right) 

 

4.6 HA Experiment – Reduce the Number of Cycles 

The Violation rates PEAA were consistently greater than those for the first non-

explorer ant.  The tables below are samples of the violation rates as taken from the 

Ubuntu test.  The full tables are in Appendix A. The significance of these violation 

rates is that in a greedy Max Min ACO the best option is always selected (the option 

with the lowest violation rates) this means that the car sequences built by PEAA will 

not be chosen as the first non-PEAA builds a better option.  This occurs for both the 

single and dual pheromone structures.   

 

Non Exp 1 EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 EX9 EX10 

0 14 17 15 18 21 29 36 32 32 35 

0 16 19 21 21 20 21 29 24 22 32 

4 14 11 19 24 28 26 22 33 34 35 

0 6 9 14 19 20 23 24 18 29 31 

2 7 11 19 18 18 18 17 19 25 25 

4 7 7 15 20 29 19 20 21 28 32 

1 1 7 9 9 9 21 17 33 30 31 

0 3 4 4 12 10 11 16 17 25 26 

0 5 16 16 18 21 36 39 45 54 63 

0 5 11 16 24 29 34 34 41 39 42 
Table 4.4 Ubuntu Single Pheromone PEAA Violation Rates 

 

00:00:00

00:01:26

00:02:53

00:04:19

00:05:46

00:07:12

00:08:38

Single Dual PEAA Single PEAA Dual

Time Taken - Non-PEAA and PEAA

Kali Ubuntu BSD RedHat Linux



64 

 

 

Non Exp 1 EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 EX9 EX10 

4 44 53 94 94 98 107 115 114 119 127 

21 47 66 76 73 75 83 89 88 91 94 

15 94 123 131 136 156 148 159 155 165 162 

25 79 104 121 131 114 140 132 133 139 140 

1 65 80 102 98 132 134 127 144 156 169 

25 88 135 139 157 166 173 176 183 185 190 

1 69 104 111 130 131 142 141 152 165 175 

7 92 115 131 139 169 179 174 178 162 176 

29 109 155 162 176 180 194 199 206 204 212 

17 60 69 80 91 116 111 114 119 123 138 
Table 4.5 Ubuntu Dual Pheromone PEAA Violation Rates 

 

 

Figure 4.3 Ubuntu Single Pheromone Structure Violation Rates for First Non-PEAA and First PEAA 

 

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

Violation Rates for First Non-PEAA and First PEAA

Non Exp 1 Exp 1



65 

 

 

Figure 4.4 Ubuntu Dual Pheromone Structure Violation Rates for First Non-PEAA and First PEAA 

 

Another clear trend in this data is that the violation rate of PEAA rises with each 

explorer.   

 

 

Figure 4.5 Single Pheromone Structure Violation Rate Rises for Every New PEAA 

 

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Violation Rates for First Non-PEAA and 
First PEAA

Non Exp 1 Exp 1

0

50

100

150

200

250

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

The Violation Rate of PEAA  Riese

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Exp 6 Exp 7 Exp 8 Exp 9 Exp 10



66 

 

 

Figure 4.6 Dual Pheromone Structure Violation Rate Rises for Every New PEAA 

 

Once the trend was identified on the Ubuntu environment the results for ten random 

datasets were selected from the Kali tests (five from the single pheromone test and five 

from the dual pheromone test) environment and these showed the same trend.   

 

Non Exp 1 EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 EX9 EX10 

4 44 53 94 94 98 107 115 114 119 127 

21 47 66 76 73 75 83 89 88 91 94 

15 94 123 131 136 156 148 159 155 165 162 

25 79 104 121 131 114 140 132 133 139 140 

1 65 80 102 98 132 134 127 144 156 169 
Table 4.6 Kali Single Pheromone PEAA Violation Rates 

 

Non Exp 1 EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 EX9 EX10 

0 14 17 15 18 21 29 36 32 32 35 

0 16 19 21 21 20 21 29 24 22 32 

4 14 11 19 24 28 26 22 33 34 35 

0 6 9 14 19 20 23 24 18 29 31 

2 7 11 19 18 18 18 17 19 25 25 
Table 4.7 Kali Dual Pheromone PEAA Violation Rates 

This process was repeated for the RedHat and NetBSD test environments and the 

results showed that the PEAA consistently built worse sequences for these 

environments too. 

0

100

200

300

400

500
1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

The Violation Rate of PEAA  Riese

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Exp 6 Exp 7 Exp 8 Exp 9 Exp 10



67 

 

4.7 HB Experiment – Unsolvable Car Sequencing Problem 

The unsolvable car sequence as represented by datasets pb10-93.txt and pb16-81.txt 

are known to be unsolvable (Smith, n.d.).  As illustrated by the data PEAA build 

increasingly sub optimal car sequences and as such are not a reliable way of detecting 

the unsolvable car sequences.  

 

4.8 Evaluation of Experimental Results 

In their paper on methods for comparing swarm intelligence algorithms (Derrac, 

García, Molina, & Herrera, 2011) recommend comparing the number of wins as a 

method for comparing algorithms quickly.  This method is a useful first step as it can 

clearly show what further analysis is needed. 

 

To determine if the PEAA had outperformed non-PEAA algorithm it had to do four 

tasks these were: 

 

1. The PEAA had to build car sequences. 

2. These car sequences had to have lower violation rates than the non-explorers.   

3. The algorithm had to perform with a reduced number of cycles.   

4. The final sequences had to have less or equal violations than those built when 

PEAA were not used.   

 

The data clearly shows that the violation rate of PEAA was consistently higher than 

that for non-PEAA which ensured that while they built sequences the algorithm would 

not use them because of their poorer performance.  The number of wins for the PEAA 

was zero due to the higher violation rates of the first PEAA compared to the non-

PEAA. 

 

The results of these experiments clearly show: 

 

• The time taken by the algorithm is significantly increased when the PEAA are 

added. 



68 

 

• PEAA have consistently higher violation rates than the first non-explorer ant.  

As this is a Min Max ant system (Stützle & Hoos, 2000) the setting of the 

pheromone values at the start of the algorithm clearly worked for the Car 

Sequencing problem in allowing it to pick very good candidates at the start.   

• PEAA violation rates increase with each new PEAA added. 

• They cannot be used to reduce the number of cycles in solving the car 

sequencing problem. 

• They cannot be used in detecting and abandoning the unsolvable problems. 

 

The reason PEAA are out-performed by the Non-PEAA is the selection criteria applied 

by (Solnon, 2008) when choosing the first car in a sequence is extremely effective 

whether using the single or dual pheromone structure.   As is repeated throughout the 

literature the ACO are specific problem solvers.   When they are designed they are 

designed to solve a specific problem.   

 

The (Solnon, 2008) algorithm put much greater weighting on the options required for 

each car and was able to choose very good options.  The random element was far less 

significant than it might have been.  The result was that as a non-Explorer ant was 

building a sequence it left worse options for the PEAA to use and as a result the PEAA 

results were always going to be sub-optimal. 

 

A subset of the data was tested to demonstrate this.  Ten problems were selected and 

tested five times.  The GNU command diff was the used to determine if there was any 

difference between the sequences generated by the first non-PEAA.  Table 4.8 shows 

the results for these tests.  It is clear that the random element is not as important as the 

problem specific elements of the ACO metaheuristic.   

  



69 

 

 

Single Pheromone Dual Pheromone 

Problem Cars Differences Problem Cars Differences 

pb_16_81.txt 100 0 pb_16_81.txt 100 0 

Pb_200_01.txt 200 0 Pb_200_01.txt 200 0 

pb_300_01.txt 300 0 pb_300_01.txt 300 0 

pb_400_01.txt 400 0 pb_400_01.txt 400 0 

pb_400_02.txt 400 0 pb_400_02.txt 400 0 

Table 4.8 Test of Randomness Sequences Generated 

The tests were then re-run a day later on the BSD environment and were compared 

with each other using the diff command.  They showed the same results.  Finally, the 

tests run on ubuntu were compared with those run on BSD and these tests also showed 

no difference.  This clearly demonstrates that the dual pheromone structure is superior 

at selecting car sequences and the random element is far less important.  

 

4.9 Strengths and Solution Findings 

The strengths of the approach are the use of a comprehensive set of car sequencing 

data.  The experimentation process was shown to be easily adaptable when a further 

test environment was easily added.  The method chosen to rank the algorithms in terms 

of winners and losers proved effective in determining that the PEAA were not 

impacting the sequences being built.  The reporting facility added to the algorithm 

allowed for the generation of results which were easily analysed.   

 

The limitation of the approach is that it cannot completely exclude the use of PEAA 

for some problems however it does show that they are unlikely to be of much use.  

It was proposed that the results be triangulated with the list of best known solutions 

maintained by the CSPLib however, given that the PEAA did not improve the building 

of any of the car sequences this step is not necessary.  

  



70 

 

5 DISCUSSION AND CONCLUSIONS 

This section summarises the structure and findings of the project.  The contributions to 

the body of knowledge is addressed and recommendations for further research.  Figure 

5.1 Illustrates this process. 

 

Figure 5.1 Research Process 

 

5.1 Research Overview and Problem Definition 

This research was undertaken to determine if a more efficient Ant Colony 

Optimisation Algorithm could be developed by using Permanent Explorer Artificial 

Ants PEAA.  It was based on work done by (Solnon, 2008) who used a dual 

pheromone structure to more efficiently solve the Car Sequencing problem as defined 

by (Parrello, Kabat, & Wos, 1986).   

It is clear from the literature that most of the work to improve ACO involved altering 

or adding pheromone structures.  This research investigated if it might be better to use 

a different type of ant to explore un-explored paths and thus find a better solution.  The 

idea of Permanent Explorer Ants was conceived to implement this solution. 

 

The idea for PEAA was inspired by (Tavares & Pereira, 2011) who developed a model 

for what they termed a “self-ant system”, where the ants could explore the problem 

space before deciding how to set pheromone values.  Further inspiration came from a 



71 

 

related area of swarm intelligence Bee Colony Algorithms (Karaboga & Kaya, 2016) 

which use “scouts” to find new solutions. 

 

Once the concept had been formulated a problem area was then necessary to test this 

on.  After many areas such as Image Edge Detection (Agrawal, Kaur, Kaur, & 

Dhiman, 2012) and closed loop inventory problems as described by (Deng, Li, Guo, & 

Liu, 2016), were reviewed.  It was decided to use the Car Sequencing problem. 

 

The car sequencing problem was chosen as it could be worked on within the time 

constraints of the project and there was an available data source maintained by the 

Constraint Programming Library project (Christopher Jefferson, Ian Miguel, Brahim 

Hnich, Toby Walsh, & Ian P. Gent, 1999).  As well as maintaining a data set this 

project also maintains a list of best solutions which allowed for the further 

strengthening of the findings of the project as it could be determined not only that the 

PEAA performed as expected but also that they produced good solutions.  

 

5.2 Experiment Evaluation and Results 

The hypotheses were then formed to test the performance of PEAA these were: 

Null Hypothesis HA0: PEAA will not statistically Reduce the number of 

cycles when solving the Car Sequencing problem.   

Alternative Hypothesis HA1: PEAA will Reduce the number of cycles when 

solving the Car Sequencing problem.  

 

Null Hypothesis HB0: PEAA will not statistically Detect the unsolvable Car 

Sequencing Problems and abandon it before the maximum amount of 

iterations. 

Alternative Hypothesis HB1: PEAA will statistically Detect the unsolvable 

Car Sequencing Problems and abandon it before the maximum amount of 

iterations. 

 

Once the hypotheses were formulated two tests were required to determine whether to 

accept or reject the Alternative hypothesis in both cases.  These tests were carried out 



72 

 

on three Linux machines.  As the experiments developed it became clear that more 

processing power was needed and a fourth test environment was added.   

The experiments were run twenty six times using 109 datasets the results were 

analysed and it was clear that the PEAA were not and could not ever out-perform the 

single or dual pheromone structures as a method of building car sequences.  The 

PEAA consistently build sub-optimal sequences from the start and only worsened as 

further explorers were added.  Continuing with the original plan to run the experiments 

50 times would not have changed the results.  The testing of the results against the 

best-known solutions for the Car Sequencing problem was also unnecessary as the 

results were no different than the original algorithm. 

  

5.3 Contribution to the Body of Knowledge 

This research has shown that PEAA are not a good solution for the Car Sequencing 

problem and it is reasonable to extrapolate that they are not a good solution for similar 

types of problems such as Quadratic Assignment and the Travelling Salesman.  They 

do not perform in an efficient of effective manner.  The time taken to execute the 

PEAA significantly slows down the algorithm and the reason for this is that the PEAA 

build suboptimal solutions from the start and worsen as more PEAA are added.  Once 

the non-PEAA have executed there simply are not enough good options left to build a 

car sequence.   

 

Given the comprehensive dataset and the testing carried out the rejection of HA1 and 

HB1 is significant as It shows that the use of a dual pheromone structure is an efficient 

way of solving the car sequencing problem ant that an approach along these lines will 

be useful in the future.    

 

However, PEAA clearly show that they can consistently detect sub-optimal paths and 

this is useful for oppositional learning (learning from mistakes).   Any future work 

could consider using PEAA if they wish to find sub-optimal results.  

  



73 

 

5.4 Future Work 

While the PEAA will not improve the performance of ACO when finding optimal 

solutions there is still room for testing this concept in other areas.  Like most 

approaches to ACO’s this project concentrated on limiting the search space for the 

algorithm to the best solutions.  In their paper “Ants can Learn from the Opposite” 

(Rojas-Morales, Riff, & Montero, 2016) propose a mechanism for using what they 

term anti-pheromone (pheromone with a negative value) to mark sub-optimal paths.  

Given that the PEAA cannot produce optimal results they may be useful for 

identifying sub-optimal results.  Currently this oppositional approach to finding 

solutions is only employed at the start of the process PEAA might be a solution for 

continuously doing this throughout the search. 

 

A second area of interest for further PEAA research would be to combine them with 

other Evolutionary Algorithms.  Differential Evolutionary algorithms for example 

(Tang & Zhao, 2010) developed an oppositional Differential Evolutionary algorithm 

which used oppositional learning.  As has been shown above the combination of ACO 

and EA has led to an improved performance for both algorithms. 

 

In a paper entitled “Ant colony optimization combined with tabu search for the job 

shop scheduling problem” (Huang & Liao, 2008) combined an ACO with tabu search 

mechanism to improve performance.  As tabu searches allow the choosing of a less 

favourable solution to escape the local optimal trap PEAA may be a way of conducting 

a global search to find the least worst global optima. 

 

A final suggestion for future research using PEAA would be to combine the principles 

of PEAA with Artificial Bee Colony (Karaboga, 2005) and (Karaboga & Kaya, 2016).  

ABC use a system of explorers and a combination of these with ACO would be an area 

of many exciting possibilities.  At the time of this research there is no known hybrid 

between an ACO and ABC. 

 

Outside the area of ACO and PEAA the problems of the local optimal is common for 

all swarm intelligence algorithms and other search algorithms such as k-menas 

classification.  This is a well known problem and the methods for solving it have 



74 

 

mostly involved combining algorithms.  These approaches do suggest a number of 

questions: 

 

1. Is there a general purpose algorithm which could detect when any type of PSO 

algorithm is stuck at a local optimal for a given problem for example the car 

sequencing problem? 

2. Is there a general purpose algorithm which could detect when any type of PSO 

algorithm is stuck for any constraint problem regardless of what it is? 

3. When a PSO algorithm is stuck at a local optimal is there a universal rule for 

choosing a sub-optimal solution to escape this for a specific problem for 

example the car sequencing problem? 

4. When a PSO algorithm is stuck at a local optimal is there a universal rule for 

choosing a sub-optimal solution to escape this for all constraint problems?  

  



75 

 

 

BIBLIOGRAPHY 

Aaronson, S. (n.d.). Complexity Zoo. Retrieved 21 June 2017, from 
https://complexityzoo.uwaterloo.ca/Complexity_Zoo 

Adubi, S. A., & Misra, S. (2014). A comparative study on the ant colony optimization 
algorithms. In 2014 11th International Conference on Electronics, Computer 
and Computation (ICECCO) (pp. 1–4). 
https://doi.org/10.1109/ICECCO.2014.6997567 

Agrawal, P., Kaur, S., Kaur, H., & Dhiman, A. (2012). Analysis and Synthesis of an Ant 
Colony Optimization Technique for Image Edge Detection. In 2012 
International Conference on Computing Sciences (pp. 127–131). 
https://doi.org/10.1109/ICCS.2012.14 

Alauddin, M. (2016). Mosquito flying optimization (MFO). In 2016 International 
Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) 
(pp. 79–84). https://doi.org/10.1109/ICEEOT.2016.7754783 

Amudhavel, J., Kumar, K. P., Jayachandrameena, C., Abinaya, Shanmugapriya, 
Jaiganesh, S., … Vengattaraman, T. (2015). An robust recursive ant colony 
optimization strategy in VANET for accident avoidance (RACO-VANET). In 2015 
International Conference on Circuits, Power and Computing Technologies 
[ICCPCT-2015] (pp. 1–6). https://doi.org/10.1109/ICCPCT.2015.7159383 

Biggs, N. (1986). THE TRAVELING SALESMAN PROBLEM A Guided Tour of 
Combinatorial Optimization. Bulletin of the London Mathematical Society, 
18(5), 514–515. https://doi.org/10.1112/blms/18.5.514 

Bruce D. Parrello, Waldo C. Kabat, & L. Wos. (1986). Job-shop scheduling using 
automated reasoning: A case study of the car-sequencing problem. Journal of 
Automated Reasoning, 2(1), 1–42. https://doi.org/10.1007/BF00246021 

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). An improved Ant System algorithm 
for theVehicle Routing Problem. Annals of Operations Research, 89(0), 319–
328. https://doi.org/10.1023/A:1018940026670 

Bullnheimer, Bernd, Hartl, R. F., & Strauß, C. (1997). A new rank based version of the 
Ant System. A computational study. [Paper]. Retrieved 9 June 2017, from 
http://epub.wu.ac.at/616/ 

Bullnheimer, Bernd, Hartl, R. F., & Strauss, C. (1999). Applying the ant system to the 
vehicle routing problem. Meta-Heuristics: Advances and Trends in Local Search 
Paradigms for Optimization, 109–120. 

Chen, Bolun, Chen, Ling, & Sun, Haiying. (2014). A method for avoiding the searching 
bias in ACO deceptive problem solving. Web Intelligence & Agent Systems, 
12(1), 51–62. https://doi.org/10.3233/WIA-140285 

Chen, Y., & Sun, H. (2008). Convergence of ant colony optimization on first-order 
deceptive systems. In 2008 IEEE International Conference on Granular 
Computing (pp. 158–163). https://doi.org/10.1109/GRC.2008.4664719 

Chew, T., David, J., Nguyen, A., & Tourbier, Y. (1992). Solving constraint satisfaction 
problems with simulated annealing: The car sequencing problem revisited. In 

https://complexityzoo.uwaterloo.ca/Complexity_Zoo
https://doi.org/10.1109/ICECCO.2014.6997567
https://doi.org/10.1109/ICCS.2012.14
https://doi.org/10.1109/ICEEOT.2016.7754783
https://doi.org/10.1109/ICCPCT.2015.7159383
https://doi.org/10.1112/blms/18.5.514
https://doi.org/10.1007/BF00246021
https://doi.org/10.1023/A:1018940026670
http://epub.wu.ac.at/616/
https://doi.org/10.3233/WIA-140285
https://doi.org/10.1109/GRC.2008.4664719


76 

 

Proc. 12th International Conference on AI, Expert Systems and Natural 
Language. 

Chiu, G.-M. (2000). The odd-even turn model for adaptive routing. IEEE Transactions 
on Parallel and Distributed Systems, 11(7), 729–738. 
https://doi.org/10.1109/71.877831 

Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, & Ian P. Gent. (1999, 
January 1). CSPLib: A problem library for constraints. Retrieved 11 September 
2016, from http://www.csplib.org/ 

Cook, S. A. (1971). The Complexity of Theorem-proving Procedures. In Proceedings of 
the Third Annual ACM Symposium on Theory of Computing (pp. 151–158). 
New York, NY, USA: ACM. https://doi.org/10.1145/800157.805047 

Cordon, O., Viana, I. F. de, Herrera, F., & Moreno, L. (2000). A New ACO Model 
Integrating Evolutionary Computation Concepts: The Best-Worst Ant System. 

Czaczkes, T. J. (2014). How to not get stuck—Negative feedback due to crowding 
maintains flexibility in ant foraging. Journal of Theoretical Biology, 360, 172–
180. https://doi.org/10.1016/j.jtbi.2014.07.005 

Deneubourg, J.-L., Aron, S., Goss, S., & Pasteels, J. M. (1990). The self-organizing 
exploratory pattern of the argentine ant. Journal of Insect Behavior, 3(2), 159–
168. https://doi.org/10.1007/BF01417909 

Deng, S., Li, Y., Guo, H., & Liu, B. (2016). Solving a Closed-Loop Location-Inventory-
Routing Problem with Mixed Quality Defects Returns in E-Commerce by 
Hybrid Ant Colony Optimization Algorithm. Discrete Dynamics in Nature and 
Society, 2016, e6467812. https://doi.org/10.1155/2016/6467812 

Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of 
nonparametric statistical tests as a methodology for comparing evolutionary 
and swarm intelligence algorithms. Swarm and Evolutionary Computation, 
1(1), 3–18. https://doi.org/10.1016/j.swevo.2011.02.002 

Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed Stigmergetic Control for 
Communications Networks, 9, 317–365. https://doi.org/10.1613/jair.530 

Dincbas, M., Simonis, H., & Hentenryck, P. V. (1988). Solving the Car Sequencing 
Problem in Constraint Logic Programming (pp. 290–295). Presented at the In 
European Conference on Artificial Intelligence (ECAI-88. Retrieved from 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.1141 

Doolan, R., & Muntean, G. M. (2014). Time-Ants: An innovative temporal and spatial 
ant-based vehicular Routing Mechanism. In 2014 IEEE Intelligent Vehicles 
Symposium Proceedings (pp. 951–956). 
https://doi.org/10.1109/IVS.2014.6856444 

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE 
Computational Intelligence Magazine, 1(4), 28–39. 
https://doi.org/10.1109/MCI.2006.329691 

Dorigo, M, Birattari, M., & Stutzle, T. (2006). Ant colony optimization-Artificial ants as 
a computational intelligence Technique. IEEE Computational Intelligence 
Magazine, 11, 28–39. 

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning 
approach to the traveling salesman problem. IEEE Transactions on 
Evolutionary Computation, 1(1), 53–66. https://doi.org/10.1109/4235.585892 

https://doi.org/10.1109/71.877831
http://www.csplib.org/
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/j.jtbi.2014.07.005
https://doi.org/10.1007/BF01417909
https://doi.org/10.1155/2016/6467812
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1613/jair.530
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.1141
https://doi.org/10.1109/IVS.2014.6856444
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/4235.585892


77 

 

Dorigo, Marco, & Gambardella, L. M. (1997). Ant colonies for the travelling salesman 
problem. Biosystems, 43(2), 73–81. https://doi.org/10.1016/S0303-
2647(97)01708-5 

Fliedner, M., & Boysen, N. (2008). Solving the car sequencing problem via Branch & 
Bound. European Journal of Operational Research, 191(3), 1023–1042. 
https://doi.org/10.1016/j.ejor.2007.04.045 

Flood, M. M. (1956). The Traveling-Salesman Problem. Operations Research, 4(1), 61–
75. https://doi.org/10.1287/opre.4.1.61 

Gagné, C., Gravel, M., & Price, W. L. (2006). Solving real car sequencing problems with 
ant colony optimization. European Journal of Operational Research, 174(3), 
1427–1448. https://doi.org/10.1016/j.ejor.2005.02.063 

Glover, F. (1986). Future paths for integer programming and links to artificial 
intelligence. Computers & Operations Research, 13(5), 533–549. 
https://doi.org/10.1016/0305-0548(86)90048-1 

Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190–206. 
https://doi.org/10.1287/ijoc.1.3.190 

Gnanasundari, P. (2015). Scheduling and routing algorithm for co-operative wireless 
networks. In 2015 International Conference on Soft-Computing and Networks 
Security (ICSNS) (pp. 1–7). https://doi.org/10.1109/ICSNS.2015.7292437 

Gottlieb, J., Puchta, M., & Solnon, C. (2003). A study of greedy, local search, and ant 
colony optimization approaches for car sequencing problems. In Workshops 
on Applications of Evolutionary Computation (pp. 246–257). Springer. 

Gupta, D. K., Arora, Y., Singh, U. K., & Gupta, J. P. (2012). Recursive Ant Colony 
Optimization for estimation of parameters of a function. In 2012 1st 
International Conference on Recent Advances in Information Technology (RAIT) 
(pp. 448–454). https://doi.org/10.1109/RAIT.2012.6194620 

Hart, J. P., & Shogan, A. W. (1987). Semi-greedy heuristics: An empirical study. 
Operations Research Letters, 6(3), 107–114. https://doi.org/10.1016/0167-
6377(87)90021-6 

Holland, J. H. (1975). Adaptation in natural and artificial systems. An introductory 
analysis with application to biology, control, and artificial intelligence. Ann 
Arbor, MI: University of Michigan Press. 

Hsin, H. K., Chang, E. J., & Wu, A. Y. (2013). Implementation of ACO-Based Selection 
with Backward-Ant Mechanism for Adaptive Routing in Network-on-Chip 
Systems. IEEE Embedded Systems Letters, 5(3), 46–49. 
https://doi.org/10.1109/LES.2013.2276211 

Hu, X.-M., Zhang, J., & Li, Y. (2008). Orthogonal Methods Based Ant Colony Search for 
Solving Continuous Optimization Problems. Journal of Computer Science and 
Technology, 23(1), 2–18. https://doi.org/10.1007/s11390-008-9111-5 

Huang, K.-L., & Liao, C.-J. (2008). Ant colony optimization combined with taboo search 
for the job shop scheduling problem. Computers & Operations Research, 
35(4), 1030–1046. https://doi.org/10.1016/j.cor.2006.07.003 

IEEE Xplore Abstract Record. (n.d.). Retrieved from 
http://ieeexplore.ieee.org/abstract/document/5764154/ 

IEEE Xplore Full Text PDF. (n.d.). Retrieved from 
http://ieeexplore.ieee.org/ielx5/5756602/5764069/05764154.pdf?tp=&arnu
mber=5764154&isnumber=5764069 

https://doi.org/10.1016/S0303-2647(97)01708-5
https://doi.org/10.1016/S0303-2647(97)01708-5
https://doi.org/10.1016/j.ejor.2007.04.045
https://doi.org/10.1287/opre.4.1.61
https://doi.org/10.1016/j.ejor.2005.02.063
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1109/ICSNS.2015.7292437
https://doi.org/10.1109/RAIT.2012.6194620
https://doi.org/10.1016/0167-6377(87)90021-6
https://doi.org/10.1016/0167-6377(87)90021-6
https://doi.org/10.1109/LES.2013.2276211
https://doi.org/10.1007/s11390-008-9111-5
https://doi.org/10.1016/j.cor.2006.07.003
http://ieeexplore.ieee.org/abstract/document/5764154/
http://ieeexplore.ieee.org/ielx5/5756602/5764069/05764154.pdf?tp=&arnumber=5764154&isnumber=5764069
http://ieeexplore.ieee.org/ielx5/5756602/5764069/05764154.pdf?tp=&arnumber=5764154&isnumber=5764069


78 

 

Iredi, S., Merkle, D., & Middendorf, M. (2001). Bi-Criterion Optimization with Multi 
Colony Ant Algorithms. In Evolutionary Multi-Criterion Optimization (pp. 359–
372). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44719-9_25 

Junjie, P., & Dingwei, W. (2006). An Ant Colony Optimization Algorithm for Multiple 
Travelling Salesman Problem. In First International Conference on Innovative 
Computing, Information and Control - Volume I (ICICIC’06) (Vol. 1, pp. 210–
213). https://doi.org/10.1109/ICICIC.2006.40 

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. 
Technical report-tr06, Erciyes university, engineering faculty, computer 
engineering department. 

Karaboga, D., & Kaya, E. (2016). An adaptive and hybrid artificial bee colony algorithm 
(aABC) for ANFIS training. Applied Soft Computing, 49, 423–436. 
https://doi.org/10.1016/j.asoc.2016.07.039 

Karmakar, R., Mitra, R., Dey, A., Chakraborty, V., & Nayak, A. (2016). Solving TSP Using 
Improved Elitist Ant System Based on Improved Pheromone Strategy and 
Dynamic Candidate List. MAYFEB Journal of Computer Science, 1(0). Retrieved 
from http://mayfeb.com/OJS/index.php/COM/article/view/145 

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In , IEEE International 
Conference on Neural Networks, 1995. Proceedings (Vol. 4, pp. 1942–1948 
vol.4). https://doi.org/10.1109/ICNN.1995.488968 

Khichane, M., Albert, P., & Solnon, C. (2008). Integration of ACO in a Constraint 
Programming Language. In Ant Colony Optimization and Swarm Intelligence 
(pp. 84–95). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-
87527-7_8 

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated 
annealing. Science, 220(4598), 671–680. 

Kis, T. (2004). On the complexity of the car sequencing problem. Operations Research 
Letters, 32(4), 331–335. https://doi.org/10.1016/j.orl.2003.09.003 

Kolonko, M. (1999). Some new results on simulated annealing applied to the job shop 
scheduling problem. European Journal of Operational Research, 113(1), 123–
136. https://doi.org/10.1016/S0377-2217(97)00420-7 

Kötzing, T., Neumann, F., Sudholt, D., & Wagner, M. (2011). Simple Max-min Ant 
Systems and the Optimization of Linear Pseudo-boolean Functions. In 
Proceedings of the 11th Workshop Proceedings on Foundations of Genetic 
Algorithms (pp. 209–218). New York, NY, USA: ACM. 
https://doi.org/10.1145/1967654.1967673 

Krynicki, K., Houle, M. E., & Jaen, J. (2015). A Non-hybrid Ant Colony Optimization 
Heuristic for Convergence Quality. In 2015 IEEE International Conference on 
Systems, Man, and Cybernetics (pp. 1706–1713). 
https://doi.org/10.1109/SMC.2015.300 

Likas, A., Vlassis, N., & J. Verbeek, J. (2003). The global k-means clustering algorithm. 
Pattern Recognition, 36(2), 451–461. https://doi.org/10.1016/S0031-
3203(02)00060-2 

Li-Ning Xing, Ying-Wu Chen, & Ke-Wei YANG. (2008). Double Layer ACO Algorithm for 
the Multi-Objective FJSSP. New Generation Computing, 26(4), 313–327. 

Loiola, E. M., de Abreu, N. M. M., Boaventura-Netto, P. O., Hahn, P., & Querido, T. 
(2007). A survey for the quadratic assignment problem. European Journal of 

https://doi.org/10.1007/3-540-44719-9_25
https://doi.org/10.1109/ICICIC.2006.40
https://doi.org/10.1016/j.asoc.2016.07.039
http://mayfeb.com/OJS/index.php/COM/article/view/145
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/978-3-540-87527-7_8
https://doi.org/10.1007/978-3-540-87527-7_8
https://doi.org/10.1016/j.orl.2003.09.003
https://doi.org/10.1016/S0377-2217(97)00420-7
https://doi.org/10.1145/1967654.1967673
https://doi.org/10.1109/SMC.2015.300
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1016/S0031-3203(02)00060-2


79 

 

Operational Research, 176(2), 657–690. 
https://doi.org/10.1016/j.ejor.2005.09.032 

Luna, F., Blum, C., Alba, E., & Nebro, A. J. (2007). ACO vs EAs for Solving a Real-world 
Frequency Assignment Problem in GSM Networks. In Proceedings of the 9th 
Annual Conference on Genetic and Evolutionary Computation (pp. 94–101). 
New York, NY, USA: ACM. https://doi.org/10.1145/1276958.1276972 

MacQueen, J. (1967). Some methods for classification and analysis of multivariate 
observations. In Proceedings of the fifth Berkeley symposium on mathematical 
statistics and probability (Vol. 1, pp. 281–297). Oakland, CA, USA. 

MadadyarAdeh, M., & Bagherzadeh, J. (2011). An improved ant algorithm for grid 
scheduling problem using biased initial ants. In 2011 3rd International 
Conference on Computer Research and Development (Vol. 2, pp. 373–378). 
https://doi.org/10.1109/ICCRD.2011.5764154 

Malisia, A. R., & Tizhoosh, H. R. (2007). Applying Opposition-Based Ideas to the Ant 
Colony System. In 2007 IEEE Swarm Intelligence Symposium (pp. 182–189). 
https://doi.org/10.1109/SIS.2007.368044 

Maniezzo, V., & Carbonaro, A. (2000). An ANTS heuristic for the frequency assignment 
problem. Future Generation Computer Systems, 16(8), 927–935. 
https://doi.org/10.1016/S0167-739X(00)00046-7 

Marco Dorigo. (1992). Optimization, learning and natural algorithms (PHD). 
Politecnico di Milano, Italy. 

Neumann, F., Sudholt, D., & Witt, C. (2009). Analysis of different MMAS ACO 
algorithms on unimodal functions and plateaus. Swarm Intelligence, 3(1), 35–
68. https://doi.org/10.1007/s11721-008-0023-3 

Niknam, T., & Amiri, B. (2010). An efficient hybrid approach based on PSO, ACO and k-
means for cluster analysis. Applied Soft Computing, 10(1), 183–197. 
https://doi.org/10.1016/j.asoc.2009.07.001 

Niknam, T., Firouzi, B. B., & Nayeripour, M. (2008). An efficient hybrid evolutionary 
algorithm for cluster analysis. In World Applied Sciences Journal. Citeseer. 

Papadimitriou, C. (1994). Computational Complexity Addison-Wesley Reading. 
Massachusetts Google Scholar. 

Pezzella, F., & Merelli, E. (2000). A tabu search method guided by shifting bottleneck 
for the job shop scheduling problem. European Journal of Operational 
Research, 120(2), 297–310. https://doi.org/10.1016/S0377-2217(99)00158-7 

Rafsanjani, Marjan, Kuchaki, & Varzaneh, Zahra Asghari. (2015). Edge detection in 
digital images using Ant Colony Optimization. Computer Science Journal of 
Moldova, 23(3), 343–359. 

Robinson, E. J., Jackson, D. E., Holcombe, M., & Ratnieks, F. L. (2007). No entry signal 
in ant foraging (hymenoptera: Formicidae): new insights from an agent-based 
model. Myrmecological News, 10. 

Robinson, I., Webber, J., & Eifrem, E. (2015). Chapter 1 Graph Databases. In Ant 
Colony Optimization and Constraint Programming (pp. 1–5). 1005 Gravenstein 
Highway North: O’Reilly Media Inc. 

Rodrigues, D. M. S., & Ramos, V. (2014). Traversing News with Ant Colony 
Optimisation and Negative Pheromones. arXiv:1405.6285 [Cs]. Retrieved from 
http://arxiv.org/abs/1405.6285 

https://doi.org/10.1016/j.ejor.2005.09.032
https://doi.org/10.1145/1276958.1276972
https://doi.org/10.1109/ICCRD.2011.5764154
https://doi.org/10.1109/SIS.2007.368044
https://doi.org/10.1016/S0167-739X(00)00046-7
https://doi.org/10.1007/s11721-008-0023-3
https://doi.org/10.1016/j.asoc.2009.07.001
https://doi.org/10.1016/S0377-2217(99)00158-7
http://arxiv.org/abs/1405.6285


80 

 

Rojas-Morales, N., Riff, M.-C., & Montero, E. (2016). Ants Can Learn from the 
Opposite. In Proceedings of the Genetic and Evolutionary Computation 
Conference 2016 (pp. 389–396). New York, NY, USA: ACM. 
https://doi.org/10.1145/2908812.2908927 

Sahni, S., & Gonzalez, T. (1976). P-Complete Approximation Problems. J. ACM, 23(3), 
555–565. https://doi.org/10.1145/321958.321975 

Shields, R. (2012). Cultural Topology: The Seven Bridges of Königsburg, 1736. Theory, 
Culture & Society, 29(4–5), 43–57. 
https://doi.org/10.1177/0263276412451161 

Simon, D. (2013a). Chapter 2 Classical Evolutionary Algorithms. In Evolutionary 
Optimization Algorithms (pp. 35–63). New Jersey: John Wiley & Sons Inc. 

Simon, D. (2013b). Chapter 10 Ant Colony Optimisation. In Evolutionary Optimization 
Algorithms (pp. 35–63). New Jersey: John Wiley & Sons Inc. 

Smith, B. (n.d.). CSPLib Problem 001: Car Sequencing. (C. Jefferson, I. Miguel, B. Hnich, 
T. Walsh, & I. P. Gent, Eds.). Retrieved from 
http://www.csplib.org/Problems/prob001 

Solnon, C. (2002). Ants can solve constraint satisfaction problems. IEEE Transactions 
on Evolutionary Computation, 6(4), 347–357. 
https://doi.org/10.1109/TEVC.2002.802449 

Solnon, Christine. (2000). Solving permutation constraint satisfaction problems with 
artificial ants. In Proceedings of the 14th European Conference on Artificial 
Intelligence (pp. 118–122). IOS Press. 

Solnon, Christine. (2008). Combining two pheromone structures for solving the car 
sequencing problem with Ant Colony Optimization. European Journal of 
Operational Research, 191(3), 1043–1055. 
https://doi.org/10.1016/j.ejor.2007.04.037 

Solnon, Christine. (2010a). Chapter 2 Computational Complexity. In Ant Colony 
Optimization and Constraint Programming (pp. 7–29). 

Solnon, Christine. (2010b). Chapter 4 Exact Approaches. In Ant Colony Optimization 
and Constraint Programming (pp. 53–65). 

Solnon, Christine. (2010c). Chapter 12 Sequencing Cars with ACO. In Ant Colony 
Optimization and Constraint Programming (pp. 165–183). 

Solnon, Christine, Cung, V. D., Nguyen, A., & Artigues, C. (2008). The car sequencing 
problem: Overview of state-of-the-art methods and industrial case-study of 
the ROADEF’2005 challenge problem. European Journal of Operational 
Research, 191(3), 912–927. https://doi.org/10.1016/j.ejor.2007.04.033 

Sörensen, K. (2015). Metaheuristics—the metaphor exposed. International 
Transactions in Operational Research, 22(1), 3–18. 
https://doi.org/10.1111/itor.12001 

Stützle, T., & Hoos, H. H. (2000). MAX–MIN Ant System. Future Generation Computer 
Systems, 16(8), 889–914. https://doi.org/10.1016/S0167-739X(00)00043-1 

Tang, J., & Zhao, X. (2010). On the improvement of opposition-based differential 
evolution. In 2010 Sixth International Conference on Natural Computation 
(Vol. 5, pp. 2407–2411). https://doi.org/10.1109/ICNC.2010.5583517 

Tang, L., Liu, J., Rong, A., & Yang, Z. (2000). A multiple traveling salesman problem 
model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex. 

https://doi.org/10.1145/2908812.2908927
https://doi.org/10.1145/321958.321975
https://doi.org/10.1177/0263276412451161
http://www.csplib.org/Problems/prob001
https://doi.org/10.1109/TEVC.2002.802449
https://doi.org/10.1016/j.ejor.2007.04.037
https://doi.org/10.1016/j.ejor.2007.04.033
https://doi.org/10.1111/itor.12001
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1109/ICNC.2010.5583517


81 

 

European Journal of Operational Research, 124(2), 267–282. 
https://doi.org/10.1016/S0377-2217(99)00380-X 

Tavares, J., & Pereira, F. B. (2011). Towards the Development of Self-ant Systems. In 
Proceedings of the 13th Annual Conference on Genetic and Evolutionary 
Computation (pp. 1947–1954). New York, NY, USA: ACM. 
https://doi.org/10.1145/2001576.2001838 

Tian, J., Yu, W., & Xie, S. (2008). An ant colony optimization algorithm for image edge 
detection. In 2008 IEEE Congress on Evolutionary Computation (IEEE World 
Congress on Computational Intelligence) (pp. 751–756). 
https://doi.org/10.1109/CEC.2008.4630880 

Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data 
mining. In Proceedings of the 4th international conference on the practical 
applications of knowledge discovery and data mining (pp. 29–39). 

Yang, J., Shi, X., Marchese, M., & Liang, Y. (2008). An ant colony optimization method 
for generalized TSP problem. Progress in Natural Science, 18(11), 1417–1422. 
https://doi.org/10.1016/j.pnsc.2008.03.028 

Yao, Z., Liu, J., & Wang, Y. G. (2008). Fusing genetic algorithm and Ant Colony 
Algorithm to optimize virtual enterprise partner selection problem. In 2008 
IEEE Congress on Evolutionary Computation (IEEE World Congress on 
Computational Intelligence) (pp. 3614–3620). 
https://doi.org/10.1109/CEC.2008.4631287 

Yao, Z., Pan, R., & Lai, F. (2009). Improvement of the Fusing Genetic Algorithm and 
Ant Colony Algorithm in Virtual Enterprise Partner Selection Problem. In 2009 
WRI World Congress on Computer Science and Information Engineering (Vol. 1, 
pp. 242–246). https://doi.org/10.1109/CSIE.2009.220 

Zhao, F., Yao, Z., Luan, J., & Song, X. (2016). A Novel Fused Optimization Algorithm of 
Genetic Algorithm and Ant Colony Optimization. Mathematical Problems in 
Engineering, 2016, e2167413. https://doi.org/10.1155/2016/2167413 

   

https://doi.org/10.1016/S0377-2217(99)00380-X
https://doi.org/10.1145/2001576.2001838
https://doi.org/10.1109/CEC.2008.4630880
https://doi.org/10.1016/j.pnsc.2008.03.028
https://doi.org/10.1109/CEC.2008.4631287
https://doi.org/10.1109/CSIE.2009.220
https://doi.org/10.1155/2016/2167413


82 

 

APPENDIX A: VIOLATION RATES OF PEAA ON UBUNTU 

Non Exp 1 EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 EX9 EX10 

0 14 17 15 18 21 29 36 32 32 35 

0 16 19 21 21 20 21 29 24 22 32 

4 14 11 19 24 28 26 22 33 34 35 

0 6 9 14 19 20 23 24 18 29 31 

2 7 11 19 18 18 18 17 19 25 25 

4 7 7 15 20 29 19 20 21 28 32 

1 1 7 9 9 9 21 17 33 30 31 

0 3 4 4 12 10 11 16 17 25 26 

0 5 16 16 18 21 36 39 45 54 63 

0 5 11 16 24 29 34 34 41 39 42 

1 8 9 12 18 18 27 38 36 40 51 

0 3 5 11 12 18 17 24 25 33 38 

0 8 21 15 24 27 36 36 34 32 42 

8 9 3 11 14 14 24 20 21 26 28 

2 6 10 18 17 17 17 16 20 22 25 

4 6 10 20 28 31 33 33 33 33 42 

2 7 14 15 17 19 22 23 30 30 32 

1 11 7 8 21 24 23 18 27 27 34 

0 6 18 18 22 23 31 34 42 55 66 

0 5 15 16 11 17 18 15 20 24 27 

2 7 12 24 25 34 38 41 51 52 60 

0 8 9 15 16 30 37 44 52 58 69 

6 8 15 19 16 20 16 28 37 45 46 

13 0 4 11 21 18 29 17 24 26 37 

2 4 13 28 30 35 36 40 41 41 42 

3 5 5 9 18 19 26 22 29 32 35 

1 13 13 11 19 19 26 26 26 28 32 

3 2 18 22 25 27 28 23 34 34 46 

0 6 17 17 24 29 40 43 49 61 75 

2 5 12 20 31 27 29 30 36 38 40 

6 9 24 35 42 41 43 41 53 63 66 

0 15 16 15 20 23 35 47 41 52 56 

2 14 22 27 25 23 37 34 41 42 44 

6 2 5 5 9 14 15 17 23 26 33 

1 2 12 30 31 33 32 33 33 34 37 

0 5 3 10 21 21 19 22 22 37 31 

2 2 6 9 11 16 21 19 19 28 32 

2 2 6 9 11 16 21 19 19 28 32 



83 

 

0 10 14 17 25 18 32 38 47 50 60 

1 5 12 19 27 26 31 39 42 41 40 

5 14 18 21 29 32 34 45 47 53 67 

3 9 22 38 44 48 50 45 50 51 61 

1 12 18 20 30 27 23 33 46 33 39 

12 4 8 7 13 19 19 26 29 39 49 

4 3 16 35 35 36 51 51 54 64 59 

0 5 2 22 31 32 35 30 37 46 44 

1 1 5 14 13 13 12 24 24 29 36 

5 7 12 19 22 33 28 33 35 41 41 

2 10 13 22 22 27 33 32 40 40 55 

2 13 10 15 27 31 37 36 43 40 56 

5 4 12 25 24 31 42 51 50 61 65 

0 9 24 28 30 26 28 34 40 39 40 

0 2 7 10 10 11 22 24 29 29 30 

0 0 10 24 21 30 45 45 51 43 43 

4 6 10 12 16 24 25 19 27 28 28 

2 15 13 20 31 29 40 42 37 51 44 

3 1 7 18 18 17 23 28 30 32 30 

8 7 8 21 26 19 21 26 19 38 41 

5 8 14 23 31 37 40 38 43 39 40 

0 15 19 26 27 44 41 38 42 44 47 

4 6 11 21 22 22 33 38 47 59 60 

5 11 22 25 34 37 43 46 38 48 58 

8 3 3 12 21 43 66 59 63 66 62 

0 11 8 29 30 34 44 49 54 57 69 

1 8 20 31 32 38 52 47 60 67 72 

0 10 19 21 32 41 39 38 49 47 42 

4 9 10 19 16 24 30 33 34 31 46 

1 10 25 33 36 35 69 83 73 80 76 

0 4 13 21 28 41 46 49 58 59 60 

2 13 21 34 38 54 63 59 50 58 65 

2 191 191 191 191 191 191 191 191 191 191 

28 30 33 39 50 60 53 66 64 73 77 

34 33 31 27 35 40 45 52 51 61 64 

36 46 63 70 76 86 83 90 102 104 109 

32 24 35 47 58 59 56 67 67 72 83 

23 28 27 35 45 48 50 50 57 66 64 

21 33 51 54 63 79 86 86 96 97 103 

26 26 27 27 35 41 54 58 63 72 82 

19 35 41 46 56 65 74 71 73 77 88 

25 39 58 62 78 83 95 91 95 101 101 



84 

 

50 51 52 61 68 64 64 64 76 75 81 

20 27 29 41 50 58 61 59 60 64 69 

29 50 52 65 81 87 86 88 92 100 110 

26 48 65 69 69 68 69 73 76 81 87 

35 54 51 66 68 79 79 83 89 98 106 

76 96 110 121 123 131 131 127 143 145 160 

24 38 49 64 74 95 94 94 96 108 104 

17 29 43 48 50 53 56 59 65 71 75 

30 30 39 44 56 52 57 63 69 74 88 

25 48 63 77 90 90 98 104 115 125 138 

68 77 72 78 80 84 86 87 89 93 98 

13 22 34 39 48 53 55 54 62 66 71 

50 52 61 62 66 76 83 85 93 104 104 

26 32 37 48 54 55 54 59 60 61 70 

52 52 59 72 78 85 85 84 92 100 106 

24 42 57 63 66 76 86 89 80 83 92 

21 34 46 56 64 67 70 81 88 91 99 

20 36 56 56 71 84 90 95 94 108 123 

38 29 44 50 59 55 68 65 75 85 88 

49 52 62 63 70 77 88 88 88 97 98 

21 24 32 39 54 49 60 62 73 81 86 
Appendix 1 Single Pheromone PEAA Violation Rates 

 

Non Exp 1 EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 EX9 EX10 

4 44 53 94 94 98 107 115 114 119 127 

21 47 66 76 73 75 83 89 88 91 94 

15 94 123 131 136 156 148 159 155 165 162 

25 79 104 121 131 114 140 132 133 139 140 

1 65 80 102 98 132 134 127 144 156 169 

25 88 135 139 157 166 173 176 183 185 190 

1 69 104 111 130 131 142 141 152 165 175 

7 92 115 131 139 169 179 174 178 162 176 

29 109 155 162 176 180 194 199 206 204 212 

17 60 69 80 91 116 111 114 119 123 138 

14 54 70 100 97 108 115 133 127 143 143 

9 114 149 167 178 182 178 182 188 183 180 

14 117 117 148 162 174 189 192 193 190 198 

16 116 135 149 171 169 172 185 177 188 182 

0 73 98 114 129 129 138 151 152 148 155 

6 85 142 148 153 164 175 186 186 190 202 

5 63 100 128 120 126 157 173 154 170 172 



85 

 

2 111 137 133 137 171 163 184 173 180 197 

25 137 155 180 187 201 200 203 213 218 211 

7 59 92 121 125 147 152 150 165 168 172 

10 77 106 136 150 175 186 187 190 187 188 

11 129 153 168 194 199 205 219 213 211 213 

2 97 103 139 139 145 164 176 172 168 173 

6 117 131 162 180 192 187 208 208 202 210 

4 85 99 121 152 155 180 182 184 194 198 

2 105 136 156 162 183 193 183 188 196 195 

1 91 96 111 119 139 140 159 167 167 161 

7 80 128 135 157 157 178 184 187 188 193 

16 110 137 166 178 200 208 207 211 218 214 

6 67 110 149 158 165 183 186 200 199 193 

2 91 116 128 146 148 153 177 186 185 181 

6 132 167 179 187 203 191 197 213 234 230 

2 140 152 164 173 167 175 183 178 186 191 

11 125 146 182 194 186 207 212 209 202 211 

19 106 134 147 164 170 188 194 189 188 185 

4 119 133 173 175 175 185 187 185 191 190 

17 51 91 127 147 161 177 181 179 186 203 

17 51 91 127 147 161 177 181 179 186 203 

2 103 122 139 168 173 196 207 204 202 208 

4 83 97 125 142 160 169 177 172 170 168 

4 114 118 130 140 158 148 166 170 173 181 

16 129 165 176 197 196 202 204 226 234 236 

9 109 126 164 186 210 209 214 213 224 223 

10 145 149 197 192 195 207 226 218 225 227 

13 94 114 150 152 159 174 207 203 195 199 

9 109 131 135 150 162 169 169 175 166 181 

3 58 96 93 118 137 141 144 150 151 150 

5 118 162 156 179 182 182 203 207 202 194 

6 145 162 175 193 196 204 202 204 204 207 

3 134 129 161 182 204 208 222 224 225 223 

3 108 129 142 149 167 177 181 184 182 199 

5 122 121 157 152 172 185 194 201 194 210 

4 32 55 56 58 67 60 75 103 111 107 

21 98 106 116 129 138 140 134 136 134 143 

9 99 123 116 126 134 163 165 164 168 172 

36 104 133 143 150 165 153 177 181 182 192 

19 92 131 149 149 166 171 176 176 185 186 

20 185 184 209 221 229 233 221 239 244 244 

10 133 171 183 211 208 214 215 219 216 213 



86 

 

23 90 119 118 124 133 135 139 144 144 156 

4 105 140 171 177 183 178 199 197 197 193 

7 129 178 193 201 209 219 241 242 244 238 

9 126 160 155 172 172 172 187 190 175 170 

28 123 162 174 205 215 218 215 228 223 220 

0 167 153 177 184 195 218 215 217 206 212 

28 69 73 75 85 114 97 115 110 105 121 

48 180 195 206 221 228 225 243 231 242 239 

34 162 211 228 230 267 260 260 269 281 277 

28 105 141 141 148 144 167 168 178 186 185 

58 124 156 160 171 170 197 195 201 202 201 

2 198 198 198 198 198 198 198 198 198 198 

28 126 122 122 136 146 145 147 148 149 158 

14 172 174 182 187 195 190 194 193 204 214 

26 159 205 216 223 224 211 215 224 225 225 

26 161 177 169 188 193 194 191 190 201 197 

22 158 156 167 176 171 171 173 179 178 185 

26 119 163 183 183 188 185 192 188 196 195 

24 139 137 151 150 145 149 158 165 180 180 

24 147 176 178 177 175 170 172 179 180 186 

25 144 188 191 181 210 194 200 204 212 229 

44 150 161 166 171 172 170 171 174 176 174 

28 199 237 239 235 242 249 253 259 265 264 

28 187 186 176 178 197 197 192 208 219 229 

34 244 259 271 269 257 260 264 264 284 307 

32 245 255 275 295 276 280 280 277 278 285 

87 319 346 342 383 370 377 412 424 418 420 

28 193 213 237 253 261 254 248 254 258 264 

34 177 218 237 248 271 271 267 275 274 286 

35 258 264 268 279 285 289 287 289 295 295 

22 210 227 232 234 235 224 225 227 233 251 

53 241 270 295 287 292 297 323 334 328 323 

18 344 365 364 379 368 362 355 349 362 363 

47 370 401 413 432 411 409 417 414 411 435 

34 218 252 230 252 259 273 288 300 324 338 

52 366 368 372 395 379 385 384 399 400 404 

23 250 257 289 298 293 302 310 299 309 303 

26 227 271 252 263 255 264 267 268 263 274 

28 232 251 255 250 247 249 248 265 266 276 

32 323 333 366 354 347 359 358 366 370 368 

48 334 317 311 321 317 315 316 323 339 343 

34 271 281 298 307 311 316 325 324 326 328 



87 

 

Appendix 2 Dual Pheromone PEAA Violation Rates 

 

 

APPENDIX B: CAR SEQUENCE DATA EXAMPLE 

#####################################################################

# 

# Problem 16-81 CSP Lib  

# (Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, & Ian P. Gent, 

1999) 

#####################################################################

# 

100 5 26 

1 2 1 2 1 

2 3 3 5 5 

0 10 1 0 0 0 0 

1 2 0 0 0 0 1 

2 8 0 1 0 1 0 

3 8 0 0 0 1 0 

4 6 0 1 1 0 0 

5 11 0 1 0 0 0 

6 3 0 0 1 0 0 

7 2 0 0 1 1 0 

8 7 1 1 0 0 0 

9 2 1 0 0 1 1 

10 4 1 0 1 0 0 

11 7 1 0 0 1 0 

12 1 1 1 1 0 1 

13 3 0 1 1 1 0 

14 4 0 1 0 0 1 

15 5 1 1 1 0 0 

16 2 1 1 0 0 1 

17 1 1 0 1 1 1 



88 

 

18 2 1 0 1 1 0 

19 3 1 0 0 0 1 

20 2 0 1 1 0 1 

21 1 0 1 0 1 1 

22 3 1 1 0 1 0 

23 1 0 0 1 1 1 

24 1 1 1 1 1 1 

25 1 1 1 1 1 0 

 

APPENDIX C: SHELL SCRIPT FOR EXECUTING ALGORITHM 

#!/bin/bash 

PROG_DIR=/home/blindpng/dissertation/AntCar 

DATA_DIR=$PROG_DIR/data 

DATA_DIR2=$PROG_DIR/data/ProblemDataSet200to400 

TEST_DIR=$PROG_DIR/TestResults 

 

# top -b -u root -d 1 >$TEST_DIR/top.out & 

 

if ! [ -d "$TEST_DIE"] 

then 

    mkdir $TEST_DIR 

fi 

 

 

MAX_COUNT=5 

TEST_No=0 

 

# Strategy 1 

# Run all tests in sequcne 50 times 

COUNTER=0 

 

TEST_FILE=$TEST_DIR/strategy_1_sequence.txt 

echo 'TestNo,Start Time,Test File,Command' > $TEST_FILE 

 

while [  $COUNTER -lt $MAX_COUNT ]; do 

 

  for f in $DATA_DIR/*.txt  

  do 

    Strat_Date=`date` 

    echo $TEST_No,$Strat_Date,$f,$PROG_DIR/main -Z $TEST_No -f $f >> $TEST_FILE 

    $PROG_DIR/main -Z $TEST_No -f $f 

    let TEST_No+=1 

  done 

 

  let COUNTER+=1  

done 

# The second set of test files 

COUNTER=0 

while [  $COUNTER -lt $MAX_COUNT ]; do 

 



89 

 

  for f in $DATA_DIR2/*.txt  

  do 

    Strat_Date=`date` 

    echo $TEST_No,$Strat_Date,$f,$PROG_DIR/main -Z $TEST_No -f $f >> $TEST_FILE 

    $PROG_DIR/main -Z $TEST_No -f $f 

    let TEST_No+=1 

  done 

 

  let COUNTER+=1  

done 

 

# Strategy 2 

# Run all tests in sequcne $MAX_COUNT times 

 

COUNTER=0 

TEST_FILE=$TEST_DIR/strategy_2_sequence.txt 

echo 'TestNo,Start Time,Test File,Command' > $TEST_FILE 

 

while [  $COUNTER -lt $MAX_COUNT ]; do 

 

  for f in $DATA_DIR/*.txt  

  do 

    Strat_Date=`date` 

    echo $TEST_No,$Strat_Date,$f,$PROG_DIR/main -Z $TEST_No -t 2 -f $f >> $TEST_FILE 

    $PROG_DIR/main -Z $TEST_No -t 2 -f $f 

    let TEST_No+=1 

  done 

 

  let COUNTER+=1  

done 

 

# second set of data 

COUNTER=0 

while [  $COUNTER -lt $MAX_COUNT ]; do 

 

  for f in $DATA_DIR2/*.txt  

  do 

    Strat_Date=`date` 

    echo $TEST_No,$Strat_Date,$f,$PROG_DIR/main -Z -t 2  $TEST_No -f $f >> $TEST_FILE 

    $PROG_DIR/main -Z $TEST_No -t 2 -f $f 

    let TEST_No+=1 

  done 

 

  let COUNTER+=1  

done 

 

##################### 

### Explorer Ants ### 

##################### 

 

# Strategy 1 

# Run all tests in sequcne 50 times 

COUNTER=0 

 

TEST_FILE=$TEST_DIR/strategy_1_sequence_exp.txt 

echo 'TestNo,Start Time,Test File,Command' > $TEST_FILE 

 

while [  $COUNTER -lt $MAX_COUNT ]; do 

 

  for f in $DATA_DIR/*.txt  



90 

 

  do 

    Strat_Date=`date` 

    echo $TEST_No,$Strat_Date,$f,$PROG_DIR/main -E 10 -Z $TEST_No -f $f >> $TEST_FILE 

    $PROG_DIR/main -E 10 -Z $TEST_No -f $f 

    let TEST_No+=1 

  done 

 

  let COUNTER+=1  

done 

# The second set of test files 

COUNTER=0 

while [  $COUNTER -lt $MAX_COUNT ]; do 

 

  for f in $DATA_DIR2/*.txt  

  do 

    Strat_Date=`date` 

    echo $TEST_No,$Strat_Date,$f,$PROG_DIR/main -E 10 -Z $TEST_No -f $f >> $TEST_FILE 

    $PROG_DIR/main -E 10 -Z $TEST_No -f $f 

    let TEST_No+=1 

  done 

 

  let COUNTER+=1  

done 

 

# Strategy 2 

# Run all tests in sequcne $MAX_COUNT times 

 

COUNTER=0 

TEST_FILE=$TEST_DIR/strategy_2_sequence_exp.txt 

echo 'TestNo,Start Time,Test File,Command' > $TEST_FILE 

 

while [  $COUNTER -lt $MAX_COUNT ]; do 

 

  for f in $DATA_DIR/*.txt  

  do 

    Strat_Date=`date` 

    echo $TEST_No,$Strat_Date,$f,$PROG_DIR/main -E 10 -Z $TEST_No -t 2 -f $f >> $TEST_FILE 

    $PROG_DIR/main -E10 -Z $TEST_No -t 2 -f $f 

    let TEST_No+=1 

  done 

 

  let COUNTER+=1  

done 

 

# second set of data 

COUNTER=0 

while [  $COUNTER -lt $MAX_COUNT ]; do 

 

  for f in $DATA_DIR2/*.txt  

  do 

    Strat_Date=`date` 

    echo $TEST_No,$Strat_Date,$f,$PROG_DIR/main -E 10 -Z -t 2  $TEST_No -f $f >> $TEST_FILE 

    $PROG_DIR/main -E 10 -Z $TEST_No -t 2 -f $f 

    let TEST_No+=1 

  done 

 

  let COUNTER+=1  

done 

 

cp $PROG_DIR/*.csv $TEST_DIR 



91 

 

rm $PROG_DIR/*.csv 

 

pkill top 

  



92 

 

APPENDIX D: MAKEFILE FOR BUILDING ALGORITHM 

CFLAGS = -O3 -g -Wall -fstrict-aliasing -std=c99 

# TESTFILE = pbtest 

TESTFILE = pb16-81 

TESTFILE = pb_400_01.txt 

 

test:main 

# rm *.csv 

# ./main -E 1 -Z 2 -t 2 -f $(TESTFILE) 

 ./main -E 0 -Z 1 -f $(TESTFILE) 2> out1.txt 

 ./main -E 0 -Z 2 -f $(TESTFILE) 2> out2.txt 

 ./main -E 0 -Z 3 -f $(TESTFILE) 2> out3.txt 

 ./main -E 0 -Z 4 -f $(TESTFILE) 2> out4.txt 

 ./main -E 0 -Z 5 -f $(TESTFILE) 2> out5.txt 

   

main:main.c  

 $(CC) $(CFLAGS) main.c -o $@ 

 

debug:main.c  

 $(CC) $(CFLAGS) -D DEBUG=1 main.c -o main 

 ./main -Z 1 -f $(TESTFILE) 

 ./main -Z 1 -f $(TESTFILE) 

  

debugExp:main.c  

 $(CC) $(CFLAGS) -D DEBUG=1 main.c -o main 

 ./main -E 1 -Z 1 -f $(TESTFILE) 

 ./main -E 1 -Z 1 -t 2 -f $(TESTFILE) 

APPENDIX E: MODIFIED SOURCE CODE 

#define _XOPEN_SOURCE  

#include <time.h> 

#include <math.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include <unistd.h> 

#include <string.h> 

#include <sys/types.h> 

 

typedef struct{ 

 int nbCars, nbClasses, nbOptions; 

 int *nbCarsInClass, **requires, *classOf, *firstValue, *capacity, *frequency; 

 int *totReq; 

 int **reqOpt; 

} carSeqInstance; 

 

typedef struct { 

  int nbExpAnts; //The number of explorer ants set using command line argument. 

  int **seq; // The car sequence built by the explorer 

  int *nbViolations; 

  int *evalSeq;       // evalSeq[i] = nb of violated constraints in seq[i] 

  int *bestSeq;     // best computed sequence 

  int evalBestSeq;           // nb of violated constraints in bestSeq 

  int bestCycle;             // nb of violated constraints in the best sequence of the cycle 

  int TotalNonExpAnts; 

  int NonExpCurAnt;  // the number of the current non explorer ant 

  int *NonExpEvalSeq; 



93 

 

  int curAnt; // Current explerer ant used with seqPos 

  int *seqPos; //Sequences to this pos have been filled. 

  int *VisitedNodes; // Already visited nodes 

  int i;  // Counter added to prevent confusion with other counters. 

  int j; //  Counter added to prevent confusion with other counters.  

  int *k;  // K value is the randomly chosen path but with the explorers it is unexplored path 

  // the value of k is set for each explorer ant. 

 } explorerAnt; 

 

 //int BldExpAntSeq2(explorerAnt* exAnt, int* candidates, int nbCars, int CurCarNo, int 

nbCandidates); 

 int BldExpAntSeq2(explorerAnt* exAnt, int* candidates, int nbCars, int CurCarNo, int 

nbCandidates, int PrevChosen); 

 int MakeUnique(int *arr, int size, int srch); 

 int SelOthCan(int* PrevChosenArr, int* candidates, int nbCandidates); 

 int ExpHasCand(int* PrevChosenExpArr,int PrevChosen,int CurCarNo); 

 int findAvailCar(int* PrevChosenExpArr,int maxPos, int nbCars,int HasBeenUsed,int LoHi); 

 // @author Kieran OSullivan  

 int PrintTau(int prnt,int Ant,int t11S, int t12S, int t2S, float** tau1, float* tau2){ 

   int i,j,k; 

   fprintf(stderr, "Ant=%d",Ant); 

   if (prnt>=1){ 

     fprintf(stderr,"tau1\n  "); 

     for (i=0; i<t11S; i++ ){fprintf(stderr,"%d ",i);} 

     fprintf(stderr,"\n"); 

     for (i=0; i<t11S; i++ ){ 

       fprintf(stderr,"%d",i); 

       for(j=0; j<t12S; j++){fprintf(stderr," %.0f",tau1[i][j]);} 

       fprintf(stderr,"\n"); 

     } 

   }  

   if (prnt>=2){         

     fprintf(stderr,"tau2\n"); 

     for (k=0; k<t2S; k++){fprintf(stderr,"%d ",k);} 

     fprintf(stderr,"\n"); 

     for (k=0; k<t2S; k++){fprintf(stderr,"%.2f ",tau2[k]);} 

     fprintf(stderr,"\n"); 

   } 

   return 0; 

 } 

 /** 

 * @author Kieran OSullivan 

 */ 

 int PrintPValue(float* p){ 

   int n,i; 

   n = sizeof(p)/sizeof(p[0]); 

   if (n == 0){fprintf(stderr,"\np[0]=%f",p[0]);} 

   else {for (i=0;i<n;i++){fprintf(stderr,"\np[%d]=%f",i,p[i]);}}  

   return 0; 

 } 

 // @author Kieran OSullivan 

 int PrintSequences(int* seq, explorerAnt* exAnt, carSeqInstance* c){ 

   for (int kie=0; kie < c->nbCars; kie++){ 

    fprintf(stderr,"\nseq[%d]=%d",kie,seq[kie]); 

    if (exAnt->nbExpAnts > 0 ){ 

      for (exAnt->i = 0; exAnt->i < exAnt->nbExpAnts; exAnt->i++){ 

          fprintf(stderr," Xseq[%d][%d]=%d",exAnt->i,kie, exAnt->seq[exAnt-

>i][kie]); 

      } 

     } 



94 

 

  }  

  fprintf(stderr,"\n");  

  return 0; 

 } 

 /** 

 * @author Kieran OSullivan 

 */ 

 int PrintCandidates(int a, int nbCandidates, int *candidates, int size){ 

   fprintf(stderr,"Calling PrintCandidates=%d nbCandidates=%d\n",a,nbCandidates); 

   for (int i=0; i<size; i++){ 

     fprintf(stderr,"candidates[%d]=%d\n",i,candidates[i]); 

   } 

   return 0; 

 } 

 /** 

 * @author Kieran OSullivan 

 */ 

 int MakeUnique(int *arr, int size, int srch){ 

   /** 

     This function searche for a particular number in an unsorted array. 

     If that number exists it increments it and re-starts the search by setting i to -1 

     The array is initialised to -1 so that searchng for 0 does not cause an infinate loop. 

     The the search term will be incrimented until the loop finishes or a number if found that  

     is unique. 

     E.g. if 2 is passed down and 2 already exists then 3 will be returned. 

   */ 

    

   int i,process; 

   process=0; 

   for (i=0; i < size; i++) {if (arr[i]==-1){process=1;i=size;}} 

   if (process==1){ 

     for (i=0; i < size; i++){ 

       if (arr[i]==srch){srch++; if(i+1 < size){i=-1;}} 

       if (srch > size-1){srch=0;} 

     } 

   } 

   return srch;  

 } 

 /** 

 * @author Christine Solnon 

 */ 

 void getData(char* file_name, carSeqInstance* c){ 

  // Read car sequencing instance contained in file_name and initialize c 

  int unused __attribute__((unused)); 

  

  FILE* fd; 

  int i, j, k, nbReq; 

  k =0; 

  if ((fd=fopen(file_name,"r"))==NULL){fprintf(stderr, "ERROR: Cannot open ascii input file 

%s", file_name); return;}; 

  unused = fscanf(fd, "%d%d%d", &(c->nbCars), &(c->nbOptions), &(c->nbClasses)); 

   

  c->capacity = (int*)calloc(c->nbOptions,sizeof(int)); 

  c->frequency = (int*)calloc(c->nbOptions,sizeof(int)); 

  c->totReq = (int*)calloc(c->nbOptions,sizeof(int)); 

  c->nbCarsInClass = (int*)calloc(c->nbClasses,sizeof(int)); 

  c->firstValue = (int*)calloc(c->nbClasses,sizeof(int)); 

  c->requires = (int**)calloc(c->nbClasses,sizeof(int*)); 

  c->reqOpt = (int**)calloc(c->nbClasses,sizeof(int*)); 

  c->classOf = (int*)calloc(c->nbCars,sizeof(int)); 



95 

 

   

  for (i=0; i<c->nbOptions; i++){  

   unused = fscanf(fd,"%d",&(c->capacity[i])); 

   } 

  for (i=0; i<c->nbOptions; i++){ 

   unused = fscanf(fd,"%d",&(c->frequency[i])); 

   c->totReq[i] = 0; 

  } 

  for (i=0; i<c->nbClasses; i++) { 

   c->requires[i] = (int*)calloc(c->nbOptions,sizeof(int)); 

   c->reqOpt[i] = (int*)calloc(c->nbOptions+1,sizeof(int)); 

   unused = fscanf(fd,"%d%d",&j,&(c->nbCarsInClass[i])); 

   nbReq = 0; 

   for (j=0; j<c->nbOptions; j++){ 

    unused = fscanf(fd,"%d",&(c->requires[i][j])); 

    if (c->requires[i][j] > 0){ 

     c->reqOpt[i][nbReq] = j; 

     nbReq++; 

     c->totReq[j] += c->nbCarsInClass[i];  

    } 

   } 

   c->reqOpt[i][nbReq] = -1; 

    

   c->firstValue[i]=k; 

   for (j=0; j<c->nbCarsInClass[i]; j++){ 

    c->classOf[k]=i; 

    k++; 

   } 

  } 

  fclose(fd); 

 } 

 

 /** 

 * @author Christine Solnon 

 */ 

 int usage (char *exec) { 

   #ifdef DEBUG 

     fprintf(stderr, "\nEnterin Function: usage (char *exec)"); 

   #endif 

  fprintf(stderr,"\nUsage :\n\n\t%s -a (alpha: int) -b (beta: int) -r (rho1: float) -R (rho2: float) -c 

(max nb cycle: int) -n (nb ants: int) -m (tau1 min: float) -M (tau1 max: float) -t (strategy: 1 if 

ACO(tau1,utilRate); 2 if ACO(tau1,tau2)) -Z (int test number) -E (int number of Explorer Ants) -f 

(filename: string) -v display-frequency -s (seed: positive int)\n\n",exec); 

  return(0); 

 } 

 /** 

 * @author Christine Solnon 

 */ 

 int parse(int* alpha, int* beta, float* rho1, float* rho2, int* maxCycles, int* nbAnts, float* tau1Min, 

float* tau1Max, int* verbose, int* displayFreq, char* fileName, int* seed, int* strategy, int* TestNo, 

int* ExpAnt, char* argv[], int argc){ 

 // read arguments to initialize parameters 

   #ifdef DEBUG 

     fprintf(stderr,"\nEnterin Function: parse(int* alpha, int* beta, float* rho1, float* rho2, 

int* maxCycles, int* nbAnts, float* tau1Min, float* tau1Max, int* verbose, int* displayFreq, char* 

fileName, int* seed, int* strategy, int* TestNo,  char* argv[], int argc)\n"); 

   #endif 

  char ch; 

  extern char* optarg; 

  while ( (ch = getopt(argc, argv, "a:b:r:R:c:n:m:M:v:f:?:h:s:t:Z:E:"))!=-1 ) { 



96 

 

    #ifdef DEBUG 

         fprintf(stderr,"\n Characters to process on command line %c",ch); 

     #endif 

     

   switch(ch) { 

    case 'a': *alpha=atoi(optarg); break; 

    case 'b': *beta=atoi(optarg); break; 

    case 'r': *rho1=atof(optarg); break; 

    case 'R': *rho2=atof(optarg); break; 

    case 's': *seed=atoi(optarg); break; 

    case 't': *strategy=atoi(optarg); break; 

    case 'c': *maxCycles=atoi(optarg); break; 

    case 'n': *nbAnts=atoi(optarg); break; 

    case 'm': *tau1Min=atof(optarg); break; 

    case 'M': *tau1Max=atof(optarg); break; 

    case 'v': *verbose=1; *displayFreq=atoi(optarg); break; 

    case 'Z': *TestNo=atoi(optarg); break; 

    case 'E': *ExpAnt=atoi(optarg); break; 

    case 'f': strncpy(fileName, optarg, 254); break; 

    case '?': 

    case 'h': 

    default: usage(argv[0]); return(1); 

   } 

  } 

  return(0); 

 } 

 /** 

 * @author Christine Solnon 

 */ 

 void displayCar(int car, carSeqInstance *c){ 

  int k = c->classOf[car]; 

  fprintf(stdout, "%d ",k); 

 } 

 /** 

 * @author Christine Solnon 

 */ 

 float myPow(float x, int y){ 

   float res = 1.00; 

   int i; 

   if (y==1){res = x;} 

   for(i=1; i < y; i++){ 

     if (i==1){res=x*x;} 

     else {res=res*x;} 

   } 

   return res; 

 } 

 /** 

 * @author Christine Solnon 

 */ 

 int choose(float *p, int nbCand, float f){ 

  /* for i in 0..nbCand-1], p[i] = sum_{j<i} tau1[j]^alpha */ 

  /* returns k with probability (p[k]-p[k-1])/p[nbCand-1] */ 

   // fprintf(stderr,"\nEntering Function: choose(float *p, int nbCand=%d, float 

f=%f)",nbCand,f); 

   // PrintPValue(p); 

    

  int left=0; 

  int right=nbCand-1; 

  int k; 

  float total=p[nbCand-1]; 



97 

 

   

  while (left<right){ 

    k=(left+right+1)/2; 

   if (f<p[k-1]/total) {right=k-1;} 

   else if (f>p[k]/total) {left=k+1;} 

   else {return k;} 

  } 

  return left; 

 } 

 /** 

 * @author Kieran OSullivan 

 */ 

 int findAvailCar(int* PrevChosenExpArr,int maxPos, int nbCars,int HasBeenUsed,int LoHi){ 

   int i,j; 

   if (LoHi==0){ 

     for (i=0;i<nbCars; i++){ 

       if (i != HasBeenUsed){ 

         for (j=0; j <= maxPos; j++){ 

           if (ExpHasCand(PrevChosenExpArr,j,maxPos)==0) { 

             return j; 

           }  

         } // for j 

       } // if i != HasBeenUsed 

     } // for i 

   } else { 

     for (i=nbCars; i >= 0; i--){ 

       if (i != HasBeenUsed){ 

         for (j=0; j <= maxPos; j++){ 

           if (ExpHasCand(PrevChosenExpArr,j,maxPos)==0) { 

             return j; 

           }  

         } // for j 

       } // if i != HasBeenUsed 

     } // for i 

   } 

   return -200; 

 } 

 /** 

 * @author Kieran OSullivan 

 */ 

 int BldExpAntSeq2(explorerAnt* exAnt, int* candidates, int nbCars, int CurCarNo, int 

nbCandidates, int PrevChosen){ 

   int PrevChosenArr[nbCandidates]; 

   int PrevChosenExpArr[CurCarNo]; 

   int i,j,k; 

      

   for (j=0;j< CurCarNo; j++){PrevChosenExpArr[j]=-1;} 

    

   if (nbCandidates==1){ 

       // There is only one option so the explorers have to use it. 

       // if it is already used then the lowest possible car is chosen. 

     for (exAnt->i = 0; exAnt->i < exAnt->nbExpAnts; exAnt->i++){ 

        

       for (j=0;j< CurCarNo; j++){ 

         PrevChosenExpArr[j]=exAnt->seq[exAnt->i][j];         

         if (PrevChosenExpArr[j]==PrevChosen){PrevChosen=-1;} 

       } 

       if (PrevChosen==-1){ 

         for (k=0;k<nbCars;k++){ 

           if (ExpHasCand(PrevChosenExpArr,k,CurCarNo)==0){ 



98 

 

             PrevChosen=k; 

             break; //k=nbCars; // No need to go further. 

           } 

         } 

       } 

        

       exAnt->seq[exAnt->i][CurCarNo] = PrevChosen; 

       // fprintf(stderr," exAnt->seq[%d][%d]=%d",exAnt->i,CurCarNo,exAnt-

>seq[exAnt->i][CurCarNo]); 

     } 

   } else { 

     PrevChosenArr[0]=PrevChosen; 

     for (i=1;i< nbCandidates; i++){PrevChosenArr[i]=-1;} 

     i=1;  

// re-set is so that it can be used to track when the number or explorers exceeds the number of 

candidates. 

      

     for (exAnt->i = 0; exAnt->i < exAnt->nbExpAnts; exAnt->i++){ 

        

       if (i < nbCandidates){ 

         for (j=0;j< CurCarNo; j++){PrevChosenExpArr[j]=exAnt->seq[exAnt-

>i][j];} 

         exAnt->seq[exAnt->i][CurCarNo] = 

SelOthCan(PrevChosenArr,candidates,nbCandidates); 

         if (ExpHasCand(PrevChosenExpArr,exAnt->seq[exAnt-

>i][CurCarNo],CurCarNo)==1){ 

           // fprintf(stderr,"\n%d already used by this ant so using %d 

instead.",exAnt->seq[exAnt->i][CurCarNo],PrevChosen); 

           // remove this code it may be wrong. 

           for (j=0;j< CurCarNo; j++){ 

             PrevChosenExpArr[j]=exAnt->seq[exAnt->i][j];         

             if (PrevChosenExpArr[j]==PrevChosen){PrevChosen=-

1;} 

           } // for j 

           if (PrevChosen==-1){ 

             for (k=0;k<nbCars;k++){ 

               if 

(ExpHasCand(PrevChosenExpArr,k,CurCarNo)==0){ 

                 PrevChosen=k; 

                 break; k=nbCars; // No need to go further. 

               } 

             } // for k 

           }// if PrevChosne==-1 

           exAnt->seq[exAnt->i][CurCarNo] = PrevChosen;        

         } 

          

         PrevChosenArr[i]=exAnt->seq[exAnt->i][CurCarNo]; 

          

       } else { 

         // There are too many explorers to be of any use. 

         for (j=0;j< CurCarNo; j++){ 

           PrevChosenExpArr[j]=exAnt->seq[exAnt->i][j];         

           if (PrevChosenExpArr[j]==PrevChosen){PrevChosen=-1;} 

         } 

         if (PrevChosen==-1){ 

           for (k=0;k<nbCars;k++){ 

             if (ExpHasCand(PrevChosenExpArr,k,CurCarNo)==0){ 

               PrevChosen=k; 

               break; //k=nbCars; // No need to go further. 

             } 



99 

 

           } 

         } 

        

         exAnt->seq[exAnt->i][CurCarNo] = PrevChosen; 

         PrevChosenArr[i]=exAnt->seq[exAnt->i][CurCarNo]; 

       } 

       // fprintf(stderr," nbCandidates=%d exAnt-

>seq[%d][%d]=%d",nbCandidates,exAnt->i,CurCarNo,exAnt->seq[exAnt->i][CurCarNo]); 

       i++; 

     } // for exAnt->i 

   } // end if else block 

   // fprintf(stderr,"\n"); 

   return 0; 

 } 

 /** 

 * @author Kieran OSullivan 

 */ 

 int SelOthCan(int* PrevChosenArr, int* candidates, int nbCandidates){ 

   int returnval; 

   int i,j,k; 

   returnval=-1; 

    

   for(i=0; i<nbCandidates; i++){ 

     for (j=0; j<nbCandidates; j++){ 

       // fprintf(stderr,"\nPreviousCandidate[%d]=%d 

candidate[%d]=%d\n",j,PrevChosenArr[j],i,candidates[i]); 

       if (PrevChosenArr[j] == -1){ 

         j=nbCandidates; // the rest of this array does not need to be processsed. 

       } else { 

         if (PrevChosenArr[j] != candidates[i]) {returnval=candidates[i];} 

       } 

       //if there is a return value then it cannot be in the list of previously used ones. 

       if (returnval >-1){ 

         for (k=0; k < nbCandidates;k++){ 

           if (PrevChosenArr[k]==-1){k=nbCandidates;} 

           else if (PrevChosenArr[k]==returnval){ 

             returnval=-1; 

             k=nbCandidates; 

           } 

         }// for k 

       } // if returnval > -1 

       if (returnval >-1){return returnval;} 

     } // for j 

   }// for i 

   return returnval; 

 } 

 /** 

 * @author Kieran OSullivan 

 */ 

 int ExpHasCand(int* PrevChosenExpArr,int PrevChosen,int CurCarNo){ 

   for (int i=0; i < CurCarNo; i++){ 

     if (PrevChosenExpArr[i] == PrevChosen){return 1;} 

   } 

   return 0; 

 } 

 /** 

 * @author Christine Solnon 

 */ 

 int walkDoublePhero(carSeqInstance* c, float** tau1, float* tau2, int alpha, int beta, float rho2, int* 

seq, explorerAnt* exAnt){ 



100 

 

  // input: c = a car sequencing instance 

  //        tau1 = first pheromone structure 

  //        tau2 = second pheromone structure 

  //        alpha and beta = parameters 

  // output: seq = sequence of cars built by an ant w.r.t. ACO(tau1,tau2) 

  // returns the number of constraint violations 

   

  float total; 

  int nbAssignedCars, j, k, l, cc, min, nbViolations; 

  int k_tmp; // added as part of explorer ants to store values for each choise after the first choice 

and before the last. 

  int nbCandidates = 0; 

  float p[c->nbClasses]; 

  int candidates[c->nbClasses], nbSelected[c->nbClasses], cpt[c->nbOptions]; 

  int first, next[c->nbClasses], nbViolationsClass[c->nbClasses]; 

   

  nbViolations = 0; 

   

  // choice of the first car 

  total = 0; 

  first = 0; 

  for (j=0; j<c->nbClasses; j++){ 

   nbSelected[j] = 0; 

   next[j] = j+1; 

   p[j] = myPow(tau2[j],beta) + total; 

   total = p[j]; 

  } 

  next[j-1] = -1; //This is to mark the last classs if there are 26 classes the pos 25 = -1 

    

  k = choose(p,j,drand48()); 

    

  seq[0] = c->firstValue[k]; 

  // Explorer ants will start with different seqcunces 

   // Not the one already chosen. 

   // each explorer ant has its own sequence and does not just copy its previous ant. 

   // The first explorer ant is based on the value of k for the non explorer ant. 

   // the secont explorer ant is basd on the first and the third is based on the second.  

  // the possible candidates this time are all the cars in future calls to this function 

  // they will be limited to the candidates short-listed buy the noen explorer ants.  

  // k is passed down twice as the function uses it the second time to limit the possible choices. 

   

  if (exAnt->nbExpAnts > 0 ){ 

    // BldExpAntSeq2(exAnt, c->firstValue, c->nbCars, 0, c->nbClasses); 

    BldExpAntSeq2(exAnt, c->firstValue, c->nbCars, 0, c->nbClasses, seq[0]); 

  } 

   

  nbSelected[k]++;  //The selected option will be 1 all the others will be 0 

   

  if (c->nbCarsInClass[k]==1){ 

   if (k==0) {first = 1;} 

   else {next[k-1] = next[k];} 

  } 

  for (l=0; l<c->nbOptions; l++) { 

    cpt[l] = c->requires[k][l]; 

  } 

   

  // choice of the next cars 

   

  for (nbAssignedCars=1; nbAssignedCars<c->nbCars-1; nbAssignedCars++){ 

   min = c->nbOptions+1; 



101 

 

   for (j=first; j>=0; j=next[j]){ 

    nbViolationsClass[j] = 0; 

    for (l=0; c->reqOpt[j][l]>=0; l++){  

     if (cpt[c->reqOpt[j][l]]+1-c->capacity[c->reqOpt[j][l]]>0){ 

       nbViolationsClass[j]++; 

         } 

       } 

    if (nbViolationsClass[j] < min){ 

     min=nbViolationsClass[j]; 

     candidates[0]=c->firstValue[j]+nbSelected[j]; 

     p[0]=myPow(tau1[seq[nbAssignedCars-

1]][candidates[0]],alpha)*myPow(tau2[j],beta); 

     total = p[0]; 

     nbCandidates=1; 

     // if (exAnt->nbExpAnts > 0 ){exAnt->nbCandidates = 1;} 

    } 

    else if (nbViolationsClass[j] == min){ 

     candidates[nbCandidates] = c->firstValue[j]+nbSelected[j]; 

     p[nbCandidates]=myPow(tau1[seq[nbAssignedCars-

1]][candidates[nbCandidates]],alpha) 

     *myPow(tau2[j],beta) + total; 

     total = p[nbCandidates]; 

     nbCandidates++; 

    } 

   } 

   k_tmp = choose(p,nbCandidates,drand48()); 

   // PrintCandidates(nbAssignedCars,nbCandidates,candidates,nbCandidates); 

   seq[nbAssignedCars] = candidates[k_tmp]; 

    

   // Each Explorer ant now builds their sequence based on what other ants have done 

   // No point just doing it all from scratch explorers should go where normal ants have not gone 

   // fprintf(stderr, "\nwalkDual candidates[%d]=%d 

k_tmp=%d",nbCandidates,candidates[nbCandidates],k_tmp); 

    

   if (exAnt->nbExpAnts > 0 ){ 

     // BldExpAntSeq2(exAnt, candidates, c->nbCars, nbAssignedCars, nbCandidates); 

     BldExpAntSeq2(exAnt, candidates, c->nbCars, nbAssignedCars, nbCandidates, 

seq[nbAssignedCars]); 

   } 

 

   k = c->classOf[seq[nbAssignedCars]]; 

   if (min>0) // all classes violate constraints => add pheromone on tau2 

    for (cc=first; cc>=0; cc=next[cc]) tau2[cc] += nbViolationsClass[cc]; 

   for (l=0; l<c->nbOptions; l++){ 

    if (c->requires[k][l]==1){ 

     cpt[l]++; 

     if (nbAssignedCars >= c->frequency[l]-1){ 

      if (cpt[l] > c->capacity[l]) nbViolations++; 

      cpt[l] -= c->requires[c->classOf[seq[nbAssignedCars-c->frequency[l]+1]]][l]; 

     } 

    } 

    else if (nbAssignedCars>=c->frequency[l]-1){ 

     if (cpt[l] > c->capacity[l]) nbViolations++; 

     cpt[l] -= c->requires[c->classOf[seq[nbAssignedCars-c->frequency[l]+1]]][l]; 

    } 

   } 

   nbSelected[k]++; 

   if (nbSelected[k]==c->nbCarsInClass[k]){ 

    if (first==k) first = next[first]; 

    else{ 



102 

 

     for (j=first; next[j] != k; j=next[j]); 

     next[j] = next[k]; 

    } 

   } 

  } 

  // choice of the last car 

  k_tmp = c->firstValue[first]+nbSelected[first]; 

  seq[nbAssignedCars] = k_tmp; 

   

  if (exAnt->nbExpAnts > 0 ){ 

    // BldExpAntSeq2(exAnt, c->firstValue, c->nbCars, nbAssignedCars, nbCandidates); 

    BldExpAntSeq2(exAnt, c->firstValue, c->nbCars, nbAssignedCars, nbCandidates, 

seq[nbAssignedCars]); 

  } 

   

  for (l=0; l<c->nbOptions; l++){ 

   if (c->requires[first][l]==1){ 

    if (cpt[l]+1 > c->capacity[l]){ 

     nbViolations++; 

     tau2[first]++; 

    } 

   } 

   else if (cpt[l] > c->capacity[l]) nbViolations++; 

  } 

  /* evaporation of pheromone for the second pheromone structure */ 

   

  for (j=0; j<c->nbClasses; j++) 

   if (tau2[j]>1) tau2[j] *= 1-rho2; 

   

  // PrintSequences(seq,exAnt,c);  

  return nbViolations; 

 } 

 /** 

 * @author Christine Solnon 

 */ 

 int walkUtilRate(carSeqInstance* c, float** tau, int alpha, int beta, int* seq, explorerAnt* exAnt){ 

  // input: c = a car sequencing instance 

  //        tau = first pheromone structure 

  //        alpha and beta = parameters 

  // output: seq = sequence of cars built by an ant w.r.t. ACO(tau1,utilRate) 

  // returns the number of constraint violations 

  float total; 

  int nbAssignedCars, i, j, k, l, min, nbViolatedSeq; 

  int k_tmp; 

  int nbCandidates = 0; 

  float p[c->nbClasses]; 

  int candidates[c->nbClasses], nbSelected[c->nbClasses], cpt[c->nbOptions]; 

  int first, next[c->nbClasses]; 

  int currentReq[c->nbOptions]; 

  float utilRate[c->nbOptions]; 

  float u; 

  for (j=0; j<c->nbOptions; j++){ 

   cpt[j] = 0; 

   currentReq[j] = c->totReq[j]; 

   utilRate[j] = (float)(currentReq[j] * c->frequency[j]) /  

   (float)(c->capacity[j] * c->nbCars); 

  } 

  first = 0; 

  nbViolatedSeq = 0; 

  // choice of the first car 



103 

 

  total = 0; 

  for (j=0; j<c->nbClasses; j++){ 

   nbSelected[j] = 0; 

   next[j] = j+1; 

   u = 0; 

   for (i=0; c->reqOpt[j][i]>=0; i++) u += utilRate[c->reqOpt[j][i]]; 

   p[j] = myPow(u,beta) + total; 

    

   total = p[j]; 

  } 

  next[j-1] = -1; 

  k = choose(p,j,drand48()); 

  // PrintCandidates(0, c->nbCars, c->firstValue,c->nbCars); 

  seq[0] = c->firstValue[k]; 

   

  if (exAnt->nbExpAnts > 0 ){ 

    //BldExpAntSeq2(exAnt, c->firstValue, c->nbCars, 0, c->nbClasses); 

    BldExpAntSeq2(exAnt, c->firstValue, c->nbCars, 0, c->nbClasses, seq[0]); 

  } 

   

   

  nbSelected[k]++; 

  if (c->nbCarsInClass[k]==1){ 

   if (k==0) {first = 1;} 

   else {next[k-1] = next[k];} 

  } 

  for (l=0; c->reqOpt[k][l]>=0; l++){ 

   cpt[c->reqOpt[k][l]]++; 

   currentReq[c->reqOpt[k][l]]--; 

   utilRate[c->reqOpt[k][l]] = (float)(currentReq[c->reqOpt[k][l]] * c->frequency[c-

>reqOpt[k][l]]) / (c->capacity[c->reqOpt[k][l]] * (c->nbCars - 1)); 

  } 

  // choice of the next cars 

  for (nbAssignedCars=1; nbAssignedCars<c->nbCars-1; nbAssignedCars++){ 

   min = c->nbOptions+1; 

   for (j=first; j>=0; j=next[j]){ 

    k = 0; 

    u = 0; 

    for (l=0; c->reqOpt[j][l]>=0; l++){ 

     u += utilRate[c->reqOpt[j][l]]; 

     if (cpt[c->reqOpt[j][l]]+1-c->capacity[c->reqOpt[j][l]]>0) k++; 

     /* 

     if (exAnt->nbExpAnts > 0 ){ 

       for (exAnt->i = 0; exAnt->i < exAnt->nbExpAnts; exAnt->i++){ 

         if(exAnt->cpt[exAnt->i][c->reqOpt[j][l]]+1-c->capacity[c-

>reqOpt[j][l]]>0){ 

           exAnt->k++; 

         // ************* COME BACK TO THIS ***** 

         } 

       } 

     }*/ 

    } 

    if (k<min){ 

     min=k; 

     candidates[0]=c->firstValue[j]+nbSelected[j]; 

     p[0]=myPow(tau[seq[nbAssignedCars-1]][candidates[0]],alpha)*myPow(u,beta); 

     total = p[0]; 

     nbCandidates=1; 

     // if (exAnt->nbExpAnts > 0 ){exAnt->nbCandidates = 1;} 

    } 



104 

 

    else if (k==min){ 

     candidates[nbCandidates] = c->firstValue[j]+nbSelected[j]; 

     p[nbCandidates]=myPow(tau[seq[nbAssignedCars-

1]][candidates[nbCandidates]],alpha) 

     *myPow(u,beta) + total; 

     total = p[nbCandidates]; 

     nbCandidates++; 

     // if (exAnt->nbExpAnts > 0 ){exAnt->nbCandidates++;} 

    } 

   } 

   k_tmp = choose(p,nbCandidates,drand48()); 

   seq[nbAssignedCars] = candidates[k_tmp]; 

   if (exAnt->nbExpAnts > 0 ){ 

     // BldExpAntSeq2(exAnt, c->firstValue, c->nbCars, nbAssignedCars, nbCandidates); 

     BldExpAntSeq2(exAnt, c->firstValue, c->nbCars, nbAssignedCars, nbCandidates, 

seq[nbAssignedCars]); 

   } 

   

   // Each Explorer ant now builds their sequence based on what other ants have done 

   // No point just doing it all from scratch explorers should go where normal ants have not gone 

    

      

   k = c->classOf[seq[nbAssignedCars]]; 

   nbSelected[k]++; 

   if (nbSelected[k]==c->nbCarsInClass[k]){ 

    if (first==k) {first = next[first];} 

    else{ 

     for (j=first; next[j] != k; j=next[j]); 

     next[j] = next[k]; 

    } 

   } 

    

   for (l=0; l<c->nbOptions; l++){ 

    if (c->requires[k][l]==1){ 

     currentReq[l]--; 

     cpt[l]++; 

     /* 

     if (exAnt->nbExpAnts > 0 ){ 

       for (exAnt->i = 0; exAnt->i < exAnt->nbExpAnts; exAnt->i++){ 

         exAnt->cpt[exAnt->i][l]++; 

       } 

     } 

     */ 

     if (nbAssignedCars >= c->frequency[l]-1){ 

      if (cpt[l] > c->capacity[l]) nbViolatedSeq++; 

      cpt[l] -= c->requires[c->classOf[seq[nbAssignedCars-c->frequency[l]+1]]][l]; 

      /* 

      if (exAnt->nbExpAnts > 0 ){ 

        for (exAnt->i = 0; exAnt->i < exAnt->nbExpAnts; exAnt->i++){ 

          if (exAnt->cpt[exAnt->i][l] > c->capacity[l]){exAnt-

>nbViolations[exAnt->i]++;} 

          exAnt->cpt[exAnt->i][l] -= c->requires[c->classOf[exAnt-

>seq[exAnt->i][nbAssignedCars-c->frequency[l]+1]]][l]; 

             } 

      }*/ 

     } 

    } 

    else if (nbAssignedCars>=c->frequency[l]-1){ 

     if (cpt[l] > c->capacity[l]) nbViolatedSeq++; 

     cpt[l] -= c->requires[c->classOf[seq[nbAssignedCars-c->frequency[l]+1]]][l]; 



105 

 

    } 

    utilRate[l] = (float)(currentReq[l]*c->frequency[l]) / 

    (float)(c->capacity[l]*(c->nbCars - nbAssignedCars - 1)); 

   } 

  } 

   

  // choice of the last car 

  seq[nbAssignedCars] = c->firstValue[first]+nbSelected[first]; 

  if (exAnt->nbExpAnts > 0 ){ 

    // BldExpAntSeq2(exAnt, c->firstValue, c->nbCars, nbAssignedCars, nbCandidates); 

    BldExpAntSeq2(exAnt, c->firstValue, c->nbCars, nbAssignedCars, nbCandidates, 

seq[nbAssignedCars]); 

  } 

   

    

  for (l=0; l<c->nbOptions; l++){ 

   if (c->requires[first][l]==1){ 

    if (cpt[l]+1 > c->capacity[l]){ 

     nbViolatedSeq++; 

    } 

   } 

   else if (cpt[l] > c->capacity[l]){ 

      nbViolatedSeq++; 

   } 

  } 

  //PrintSequences(seq,exAnt,c);  

  return nbViolatedSeq; 

 } 

 /** 

 * @author Christine Solnon 

 */ 

 int checkEvalSeq(carSeqInstance* c, int* seq){ 

  // input: c = a car sequencing instance 

  //        seq = a sequence of cars 

  // returns the number of constraint violations in seq 

  int i, j,k, l, nbViolations; 

  k =0; 

  k=k+1; 

  k=k-1; 

  int cpt; 

  nbViolations = 0; 

  for (i=0; i<c->nbCars; i++){ 

   k = c->classOf[seq[i]]; 

   for (l=0; l<c->nbOptions; l++){ 

    if (i >= c->frequency[l]-1){ 

     cpt = 0; 

     for (j=0; j<c->frequency[l]; j++) cpt += c->requires[c->classOf[seq[i-j]]][l]; 

     if (cpt > c->capacity[l]) nbViolations++; 

    } 

   } 

  } 

  return nbViolations; 

 } 

 /** 

 * @author Christine Solnon 

 */ 

 int main (int argc, char *argv[]) { 

  // Parameters 

  char fileName[1024]; 

  char buff[1024]; 



106 

 

  int verbose = 1; 

  int displayFreq = 200; 

  int alpha = 2; 

  int beta = 6; 

  float rho1 = 0.01; 

  int maxCycles = 5000; 

  int nbAnts = 30; 

  float tau1Min = 0.01; 

  float tau1Max = 4; 

  float rho2 = 0.03; 

  int TestNo = -1; 

  int ExpAnt = 0; 

   

  int seed = 1; 

  int strategy = 1; 

  pid_t pid = getpid(); 

    

  carSeqInstance c; 

  int i, j, nbCycles, total; 

  int **seq; // seq[i] = sequence computed by ant i 

  int *evalSeq;       // evalSeq[i] = nb of violated constraints in seq[i] 

  int *bestSeq;     // best computed sequence 

  int evalBestSeq;           // nb of violated constraints in bestSeq 

  int bestCycle;             // nb of violated constraints in the best sequence of the cycle 

  float** tau1; // first pheromone structure 

  float* tau2; // second pheromone structure 

 

  float qtyLaid; 

  int max; 

  clock_t c0=clock(); 

  if( parse(&alpha, &beta, &rho1, &rho2, &maxCycles, &nbAnts, &tau1Min, &tau1Max,  

      &verbose, &displayFreq, fileName, &seed, &strategy, &TestNo, &ExpAnt, argv, argc) 

== 1) return(1); 

    

  if (verbose==1){ 

   

  /* 2017-03-18 Kieran O'Sullivan Start */ 

    sprintf(buff, "%d_%d_parameters.csv", TestNo,pid); 

    if(freopen(buff, "w", stdout) !=NULL ){} 

   

    fprintf(stdout, 

"TestNo,PID,alpha,beta,rho1,rho2,tau1Min,tau1Max,nbCycles,nbAnts,verbose,Display 

Frequency,input,seed,strategy,ExpAnt\n"); 

    fprintf(stdout, "%d,%d,%d,%d,%f,%f,%f,%f,%d,%d,%d,%d,%s,%d,%d,%d\n", 

     TestNo,pid,alpha, beta, rho1, rho2, tau1Min, tau1Max, maxCycles, nbAnts, verbose, 

displayFreq, fileName, seed, strategy,ExpAnt); 

        

   /* 2017-03-18 Kieran O'Sullivan End */ 

 

    

   /* Kieran 2017-03-16 fprintf(stdout, "Parameters: alpha=%d beta=%d rho1=%f rho2=%f 

tau1Min=%f tau1Max=%f nbCycles=%d nbAnts=%d verbose=%d(%d) input=%s seed=%d 

strategy=%d\n", 

   alpha, beta, rho1, rho2, tau1Min, tau1Max, maxCycles, nbAnts, verbose, displayFreq, 

fileName, seed, strategy);*/ 

   } 

    

  getData(fileName,&c); 

   

  /*Kieran O'Sullivan Addition of Explorer Ant Data Structure */ 



107 

 

  explorerAnt exAnt; 

   

  exAnt.nbExpAnts = ExpAnt; 

   

  if (ExpAnt > 0 ){ 

     exAnt.TotalNonExpAnts = nbAnts; 

     exAnt.NonExpEvalSeq = (int*)calloc(nbAnts,sizeof(int*)); 

     exAnt.seq = (int**)calloc(exAnt.nbExpAnts,sizeof(int*)); 

     exAnt.seqPos = (int*)calloc(exAnt.nbExpAnts,sizeof(int*)); 

     exAnt.curAnt =0; 

     exAnt.nbViolations = (int*)calloc(exAnt.nbExpAnts,sizeof(int*)); 

     exAnt.k = (int*)calloc(exAnt.nbExpAnts,sizeof(int*)); 

     exAnt.evalSeq = (int*)calloc(exAnt.nbExpAnts,sizeof(int)); 

     exAnt.VisitedNodes =(int*)calloc(c.nbCars,sizeof(int)); 

      

     for (exAnt.i=0; exAnt.i < exAnt.nbExpAnts; exAnt.i++){ 

       exAnt.seq[exAnt.i] =(int*)calloc(c.nbCars,sizeof(int)); 

       // Set the explorer ant sequences to -1  

       exAnt.seqPos[exAnt.i] = 0; 

       for (exAnt.j=0; exAnt.j < c.nbCars; exAnt.j++){ 

         exAnt.seq[exAnt.i][exAnt.j]=-1; 

         exAnt.seqPos[exAnt.i] = 0; 

       } 

       // exAnt.cpt[exAnt.i] =(int*)calloc(c.nbOptions,sizeof(int*)); 

       exAnt.k[exAnt.i] = 0; 

        

     }  

  } 

   

  sprintf(buff, "%d_%d_car_file_data.csv",TestNo,pid); 

  if(freopen(buff, "w", stdout) !=NULL ){} 

  fprintf(stdout, "Test No,PID,File Name,No Cars,No Opts,No Classes\n"); 

  fprintf(stdout, 

"%d,%d,%s,%d,%d,%d\n",TestNo,pid,fileName,c.nbCars,c.nbOptions,c.nbClasses); 

 

  srand48(seed); 

   

  seq = (int**)calloc(nbAnts,sizeof(int*)); 

   

  for (i=0; i<nbAnts; i++){ 

     seq[i]=(int*)calloc(c.nbCars,sizeof(int)); 

   } 

    

  bestSeq = (int*)calloc(c.nbCars,sizeof(int)); 

  evalSeq = (int*)calloc(nbAnts,sizeof(int)); 

  max = c.nbCars * c.nbOptions; 

   

  tau1 = (float**)calloc(c.nbCars,sizeof(float*)); 

  for (i=0; i<c.nbCars; i++){ 

    // Addition of Explorer Ants Set visited node to -1 

   tau1[i] = (float*)calloc(c.nbCars,sizeof(float)); 

   for(j=0; j<c.nbCars; j++) tau1[i][j]=tau1Max; 

  } 

  tau2 = (float*)calloc(c.nbClasses,sizeof(float)); 

  for (i=0; i<c.nbClasses; i++) tau2[i] = 1; 

 

  evalBestSeq = max; 

  total = 0; 

  /* 2017-03-18 Kieran O'Sullivan Start */ 

  sprintf(buff, "%d_%d_cycles.csv", TestNo,pid); 



108 

 

  if (freopen(buff, "w", stdout)!= NULL){} 

 

   fprintf(stdout, "Test No,PID,Cycle,Walk,Cycle / Walk,New Best\n"); 

   /* 2017-03-18 Kieran O'Sullivan End */ 

    

  for (nbCycles=0; ((nbCycles < maxCycles) && (evalBestSeq>0)); nbCycles++) { 

   bestCycle = max; 

   /* Each ant computes a path */  

   for (i=0; ((i<nbAnts) && (evalBestSeq>0)); i++){ 

     //PrintTau(3,i,c.nbCars,c.nbCars,c.nbClasses,tau1,tau2); 

     // Start Addition of Explorer Ants Kieran O'Sullivan 

     if (ExpAnt > 0){exAnt.NonExpCurAnt=i;} 

     // End Addition of Explorer Ants Kieran O'Sullivan 

    if (strategy==1){ 

     evalSeq[i]=walkUtilRate(&c,tau1,alpha,beta,seq[i],&exAnt); 

    } else { 

     evalSeq[i]=walkDoublePhero(&c,tau1,tau2,alpha,beta,rho2,seq[i],&exAnt); 

       } 

        

       if (ExpAnt > 0){ 

        for (exAnt.i = 0; exAnt.i < exAnt.nbExpAnts; exAnt.i++){ 

          exAnt.evalSeq[exAnt.i] = checkEvalSeq(&c,exAnt.seq[exAnt.i]); 

        }       

       } 

       

    total += evalSeq[i]; 

     

    if (evalSeq[i]<bestCycle){ 

     bestCycle = evalSeq[i]; 

     if (bestCycle<evalBestSeq){ 

      evalBestSeq = bestCycle; 

      if (verbose == 1){ 

        // fprintf(stdout, "Cycle,Walk,Cycle / Walk,New Best\n"); 

        fprintf(stdout, "%d,%d,%d,%d,%f,%d\n", 

          TestNo,pid,nbCycles+1,nbCycles*nbAnts+i+1,(float)(clock()-

c0)/CLOCKS_PER_SEC,evalBestSeq); 

       /* Kieran 2017-03-16 fprintf(stdout, "Cycle %d / Walk %d / %fs: new best = 

%d\n", nbCycles+1,nbCycles*nbAnts+i+1,(float)(clock()-c0)/CLOCKS_PER_SEC,evalBestSeq);*/ 

           } 

      for (j=0; j<c.nbCars; j++){ bestSeq[j] = seq[i][j];} 

       

     } 

    } 

    // Clear Explorer 

    if (ExpAnt > 0 ){ 

      exAnt.curAnt=0; 

      for (exAnt.i = 0; exAnt.i < exAnt.nbExpAnts; exAnt.i++){ 

           exAnt.seqPos[exAnt.i] = 0; 

        } 

    } 

   } 

   if (evalBestSeq==0) { 

     break;         

   } 

   /* evaporation of pheromone for the first pheromone structure */ 

   for (i=0; i<c.nbCars; i++) 

    for (j=0; j<c.nbCars; j++) 

     if (tau1[i][j]>tau1Min) tau1[i][j] *= 1-rho1; 

    

   /* pheromone laying on the first pheromone structure */ 



109 

 

    

   for (i=0; i<nbAnts; i++){ 

     if (ExpAnt >0){ 

      if (i < exAnt.nbExpAnts){// SHIT 

        if (evalSeq[i]<exAnt.evalSeq[i]){ 

          if (exAnt.evalSeq[i]==bestCycle){ 

           qtyLaid = 1.0/(float)(1+exAnt.evalSeq[i]-evalBestSeq); 

           for (j=1; j<c.nbCars; j++){ 

            if (tau1[exAnt.seq[i][j-1]][exAnt.seq[i][j]]<tau1Max) 

tau1[exAnt.seq[i][j-1]][exAnt.seq[i][j]] += qtyLaid; 

          } // for j 

             } // if evalSeq[i] 

        } else { 

          if (evalSeq[i]==bestCycle){ 

           qtyLaid = 1.0/(float)(1+evalSeq[i]-evalBestSeq); 

           for (j=1; j<c.nbCars; j++){ 

            if (tau1[seq[i][j-1]][seq[i][j]]<tau1Max) tau1[seq[i][j-

1]][seq[i][j]] += qtyLaid; 

          } // for j 

             } // if evalSeq[i] 

           }// end else 

      } // if (i < exAnt.nbExpAnts 

    } else { 

      if (evalSeq[i]==bestCycle){ 

       qtyLaid = 1.0/(float)(1+evalSeq[i]-evalBestSeq); 

       for (j=1; j<c.nbCars; j++){ 

        if (tau1[seq[i][j-1]][seq[i][j]]<tau1Max) tau1[seq[i][j-1]][seq[i][j]] += 

qtyLaid; 

           } // for j 

         } // if evalSeq[i] 

    } // end else 

   }// for i 

    

   if (((nbCycles+1)%displayFreq==0) && (verbose==1)){ 

     sprintf(buff, "%d_%d_cycles_avg.csv", TestNo,pid); 

     if (freopen(buff, "w+", stdout)!= NULL){} 

 

     fprintf(stdout, "TestNo,PID,Cycle,Average Eval\n"); 

    fprintf(stdout, "%d,%d,%d / %f,%f\n", 

        TestNo,pid,nbCycles+1,(float)(clock()-

c0)/CLOCKS_PER_SEC,(float)(total)/(float)(displayFreq*nbAnts)); 

       /* Kieran 2017-03-16 fprintf(stdout, "Cycle %d / %fs : average eval = %f\n", 

nbCycles+1,(float)(clock()-c0)/CLOCKS_PER_SEC,(float)(total)/(float)(displayFreq*nbAnts));*/ 

    total = 0; 

   } 

  }; 

   

  sprintf(buff, "%d_%d_solution.csv", TestNo,pid); 

  if(freopen(buff, "w+", stdout) !=NULL ){} 

   

  fprintf(stdout,"TestNo,PID,No Violations,File Name,Solution\n"); 

  fprintf(stdout, "%d,%d,%d,%s,",TestNo,pid,checkEvalSeq(&c,bestSeq),fileName); 

  for (i=0; i<c.nbCars; i++) {displayCar(bestSeq[i],&c); } 

 

  sprintf(buff, "%d_%d_violations.csv", TestNo,pid); 

  if(freopen(buff, "w+", stdout) !=NULL ){} 

   

  fprintf(stdout,"TestNo,PID,File Name,Ant No,No Violations,"); 

  if (ExpAnt > 0){ 

    for (exAnt.i = 0; exAnt.i < exAnt.nbExpAnts; exAnt.i++){ 



110 

 

      fprintf(stdout,"XAnt No,No Violations,"); 

    }      

  } 

  for (i=0; i<nbAnts; i++){ 

    fprintf(stdout,"%d,%d,%s,%d,%d,",TestNo,pid,fileName,i,evalSeq[i]); 

    if (ExpAnt > 0){ 

      for (exAnt.i = 0; exAnt.i < exAnt.nbExpAnts; exAnt.i++){ 

        fprintf(stdout,"%d,%d,",exAnt.i,exAnt.evalSeq[exAnt.i]); 

       } 

    } 

    fprintf(stdout,"\n");        

  }   

 ; 

  return(0); 

 } 


	The Use of Persistent Explorer Artificial Ants to Solve the Car Sequencing Problem
	Recommended Citation

	tmp.1521386104.pdf.53KfD

