114 research outputs found

    Modern Views of Machine Learning for Precision Psychiatry

    Full text link
    In light of the NIMH's Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of the ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. Additionally, we review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We further discuss explainable AI (XAI) and causality testing in a closed-human-in-the-loop manner, and highlight the ML potential in multimedia information extraction and multimodal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research

    Leveraging Artificial Intelligence to Improve EEG-fNIRS Data Analysis

    Get PDF
    La spectroscopie proche infrarouge fonctionnelle (fNIRS) est apparue comme une technique de neuroimagerie qui permet une surveillance non invasive et Ă  long terme de l'hĂ©modynamique corticale. Les technologies de neuroimagerie multimodale en milieu clinique permettent d'Ă©tudier les maladies neurologiques aiguĂ«s et chroniques. Dans ce travail, nous nous concentrons sur l'Ă©pilepsie - un trouble chronique du systĂšme nerveux central affectant prĂšs de 50 millions de personnes dans le monde entier prĂ©disposant les individus affectĂ©s Ă  des crises rĂ©currentes. Les crises sont des aberrations transitoires de l'activitĂ© Ă©lectrique du cerveau qui conduisent Ă  des symptĂŽmes physiques perturbateurs tels que des changements aigus ou chroniques des compĂ©tences cognitives, des hallucinations sensorielles ou des convulsions de tout le corps. Environ un tiers des patients Ă©pileptiques sont rĂ©calcitrants au traitement pharmacologique et ces crises intraitables prĂ©sentent un risque grave de blessure et diminuent la qualitĂ© de vie globale. Dans ce travail, nous Ă©tudions 1. l'utilitĂ© des informations hĂ©modynamiques dĂ©rivĂ©es des signaux fNIRS dans une tĂąche de dĂ©tection des crises et les avantages qu'elles procurent dans un environnement multimodal par rapport aux signaux Ă©lectroencĂ©phalographiques (EEG) seuls, et 2. la capacitĂ© des signaux neuronaux, dĂ©rivĂ© de l'EEG, pour prĂ©dire l'hĂ©modynamique dans le cerveau afin de mieux comprendre le cerveau Ă©pileptique. Sur la base de donnĂ©es rĂ©trospectives EEG-fNIRS recueillies auprĂšs de 40 patients Ă©pileptiques et utilisant de nouveaux modĂšles d'apprentissage en profondeur, la premiĂšre Ă©tude de cette thĂšse suggĂšre que les signaux fNIRS offrent une sensibilitĂ© et une spĂ©cificitĂ© accrues pour la dĂ©tection des crises par rapport Ă  l'EEG seul. La validation du modĂšle a Ă©tĂ© effectuĂ©e Ă  l'aide de l'ensemble de donnĂ©es CHBMIT open source documentĂ© et bien rĂ©fĂ©rencĂ© avant d'utiliser notre ensemble de donnĂ©es EEG-fNIRS multimodal interne. Les rĂ©sultats de cette Ă©tude ont dĂ©montrĂ© que fNIRS amĂ©liore la dĂ©tection des crises par rapport Ă  l'EEG seul et ont motivĂ© les expĂ©riences ultĂ©rieures qui ont dĂ©terminĂ© la capacitĂ© prĂ©dictive d'un modĂšle d'apprentissage approfondi dĂ©veloppĂ© en interne pour dĂ©coder les signaux d'Ă©tat de repos hĂ©modynamique Ă  partir du spectre complet et d'une bande de frĂ©quences neuronale codĂ©e spĂ©cifique signaux d'Ă©tat de repos (signaux sans crise). Ces rĂ©sultats suggĂšrent qu'un autoencodeur multimodal peut apprendre des relations multimodales pour prĂ©dire les signaux d'Ă©tat de repos. Les rĂ©sultats suggĂšrent en outre que des gammes de frĂ©quences EEG plus Ă©levĂ©es prĂ©disent l'hĂ©modynamique avec une erreur de reconstruction plus faible par rapport aux gammes de frĂ©quences EEG plus basses. De plus, les connexions fonctionnelles montrent des modĂšles spatiaux similaires entre l'Ă©tat de repos expĂ©rimental et les prĂ©dictions fNIRS du modĂšle. Cela dĂ©montre pour la premiĂšre fois que l'auto-encodage intermodal Ă  partir de signaux neuronaux peut prĂ©dire l'hĂ©modynamique cĂ©rĂ©brale dans une certaine mesure. Les rĂ©sultats de cette thĂšse avancent le potentiel de l'utilisation d'EEG-fNIRS pour des tĂąches cliniques pratiques (dĂ©tection des crises, prĂ©diction hĂ©modynamique) ainsi que l'examen des relations fondamentales prĂ©sentes dans le cerveau Ă  l'aide de modĂšles d'apprentissage profond. S'il y a une augmentation du nombre d'ensembles de donnĂ©es disponibles Ă  l'avenir, ces modĂšles pourraient ĂȘtre en mesure de gĂ©nĂ©raliser les prĂ©dictions qui pourraient Ă©ventuellement conduire Ă  la technologie EEG-fNIRS Ă  ĂȘtre utilisĂ©e rĂ©guliĂšrement comme un outil clinique viable dans une grande variĂ©tĂ© de troubles neuropathologiques.----------ABSTRACT Functional near-infrared spectroscopy (fNIRS) has emerged as a neuroimaging technique that allows for non-invasive and long-term monitoring of cortical hemodynamics. Multimodal neuroimaging technologies in clinical settings allow for the investigation of acute and chronic neurological diseases. In this work, we focus on epilepsy—a chronic disorder of the central nervous system affecting almost 50 million people world-wide predisposing affected individuals to recurrent seizures. Seizures are transient aberrations in the brain's electrical activity that lead to disruptive physical symptoms such as acute or chronic changes in cognitive skills, sensory hallucinations, or whole-body convulsions. Approximately a third of epileptic patients are recalcitrant to pharmacological treatment and these intractable seizures pose a serious risk for injury and decrease overall quality of life. In this work, we study 1) the utility of hemodynamic information derived from fNIRS signals in a seizure detection task and the benefit they provide in a multimodal setting as compared to electroencephalographic (EEG) signals alone, and 2) the ability of neural signals, derived from EEG, to predict hemodynamics in the brain in an effort to better understand the epileptic brain. Based on retrospective EEG-fNIRS data collected from 40 epileptic patients and utilizing novel deep learning models, the first study in this thesis suggests that fNIRS signals offer increased sensitivity and specificity metrics for seizure detection when compared to EEG alone. Model validation was performed using the documented open source and well referenced CHBMIT dataset before using our in-house multimodal EEG-fNIRS dataset. The results from this study demonstrated that fNIRS improves seizure detection as compared to EEG alone and motivated the subsequent experiments which determined the predictive capacity of an in-house developed deep learning model to decode hemodynamic resting state signals from full spectrum and specific frequency band encoded neural resting state signals (seizure free signals). These results suggest that a multimodal autoencoder can learn multimodal relations to predict resting state signals. Findings further suggested that higher EEG frequency ranges predict hemodynamics with lower reconstruction error in comparison to lower EEG frequency ranges. Furthermore, functional connections show similar spatial patterns between experimental resting state and model fNIRS predictions. This demonstrates for the first time that intermodal autoencoding from neural signals can predict cerebral hemodynamics to a certain extent. The results of this thesis advance the potential of using EEG-fNIRS for practical clinical tasks (seizure detection, hemodynamic prediction) as well as examining fundamental relationships present in the brain using deep learning models. If there is an increase in the number of datasets available in the future, these models may be able to generalize predictions which would possibly lead to EEG-fNIRS technology to be routinely used as a viable clinical tool in a wide variety of neuropathological disorders

    Methods and models for brain connectivity assessment across levels of consciousness

    Get PDF
    The human brain is one of the most complex and fascinating systems in nature. In the last decades, two events have boosted the investigation of its functional and structural properties. Firstly, the emergence of novel noninvasive neuroimaging modalities, which helped improving the spatial and temporal resolution of the data collected from in vivo human brains. Secondly, the development of advanced mathematical tools in network science and graph theory, which has recently translated into modeling the human brain as a network, giving rise to the area of research so called Brain Connectivity or Connectomics. In brain network models, nodes correspond to gray-matter regions (based on functional or structural, atlas-based parcellations that constitute a partition), while links or edges correspond either to structural connections as modeled based on white matter fiber-tracts or to the functional coupling between brain regions by computing statistical dependencies between measured brain activity from different nodes. Indeed, the network approach for studying the brain has several advantages: 1) it eases the study of collective behaviors and interactions between regions; 2) allows to map and study quantitative properties of its anatomical pathways; 3) gives measures to quantify integration and segregation of information processes in the brain, and the flow (i.e. the interacting dynamics) between different cortical and sub-cortical regions. The main contribution of my PhD work was indeed to develop and implement new models and methods for brain connectivity assessment in the human brain, having as primary application the analysis of neuroimaging data coming from subjects at different levels of consciousness. I have here applied these methods to investigate changes in levels of consciousness, from normal wakefulness (healthy human brains) or drug-induced unconsciousness (i.e. anesthesia) to pathological (i.e. patients with disorders of consciousness)

    Clinical applications of magnetic resonance imaging based functional and structural connectivity

    Get PDF
    Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective

    Deep Learning for Electrophysiological Investigation and Estimation of Anesthetic-Induced Unconsciousness

    Get PDF
    Neuroscience has made a number of advances in the search for the neural correlates of consciousness, but our understanding of the neurophysiological markers remains incomplete. In this work, we apply deep learning techniques to resting-state electroencephalographic (EEG) measures of healthy participants under general anesthesia, for the investigation and estimation of altered states of consciousness. Specifically, we focus on states characterized by different levels of unconsciousness and anesthetic depths, based on definitions and metrics from contemporary clinical practice. Our experiments begin by exploring the ability of deep learning to extract relevant electrophysiological features, under a cross-subject decoding task. As there is no state-of-theart model for EEG analysis, we compare two widely used deep learning architectures - convolutional neural networks (cNNs) and multilayer perceptrons (MLPs) - and show that cNNs perform effectively, using only one second of the raw EEG signals. Relying on cNNs, we derive a novel 3D architecture design and a standard preprocessing pipeline, which allows us to exploit the spatio-temporal structure of the EEG, as well as to integrate different acquisition systems and datasets under a common methodology. We then focus on the nature of different predictive tasks, by investigating classification and regression algorithms under a variety of clinical ground-truths, based on behavioral, pharmacological, and psychometrical evidence for consciousness. Our findings provide several insights regarding the interaction across the anesthetic states, the electrophysiological signatures, and the temporal dynamics of the models. We also reveal an optimal training strategy, based on which we can detect progressive changes in levels of unconsciousness, with higher granularity than current clinical methods. Finally, we test the generalizability of our deep learning-based EEG framework, across subjects, experimental designs, and anesthetic agents (propofol, ketamine and xenon). Our results highlight the capacity of our model to acquire appropriate, task-related, cross-study features, and the potential to discover common cross-drug features of unconsciousness. This work has broader significance for discovering generalized electrophysiological markers that index states of consciousness, using a data-driven analysis approach. It also provides a basis for the development of automated, machine-learning driven, non-invasive EEG systems for real-time monitoring of the depth of anesthesia, which can advance patients' comfort and safety

    Investigation of neural activity in Schizophrenia during resting-state MEG : using non-linear dynamics and machine-learning to shed light on information disruption in the brain

    Full text link
    Environ 25% de la population mondiale est atteinte de troubles psychiatriques qui sont typiquement associĂ©s Ă  des problĂšmes comportementaux, fonctionnels et/ou cognitifs et dont les corrĂ©lats neurophysiologiques sont encore trĂšs mal compris. Non seulement ces dysfonctionnements rĂ©duisent la qualitĂ© de vie des individus touchĂ©s, mais ils peuvent aussi devenir un fardeau pour les proches et peser lourd dans l’économie d’une sociĂ©tĂ©. Cibler les mĂ©canismes responsables du fonctionnement atypique du cerveau en identifiant des biomarqueurs plus robustes permettrait le dĂ©veloppement de traitements plus efficaces. Ainsi, le premier objectif de cette thĂšse est de contribuer Ă  une meilleure caractĂ©risation des changements dynamiques cĂ©rĂ©braux impliquĂ©s dans les troubles mentaux, plus prĂ©cisĂ©ment dans la schizophrĂ©nie et les troubles d’humeur. Pour ce faire, les premiers chapitres de cette thĂšse prĂ©sentent, en intĂ©gral, deux revues de littĂ©ratures systĂ©matiques que nous avons menĂ©es sur les altĂ©rations de connectivitĂ© cĂ©rĂ©brale, au repos, chez les patients schizophrĂšnes, dĂ©pressifs et bipolaires. Ces revues rĂ©vĂšlent que, malgrĂ© des avancĂ©es scientifiques considĂ©rables dans l’étude de l’altĂ©ration de la connectivitĂ© cĂ©rĂ©brale fonctionnelle, la dimension temporelle des mĂ©canismes cĂ©rĂ©braux Ă  l’origine de l’atteinte de l’intĂ©gration de l’information dans ces maladies, particuliĂšrement de la schizophrĂ©nie, est encore mal comprise. Par consĂ©quent, le deuxiĂšme objectif de cette thĂšse est de caractĂ©riser les changements cĂ©rĂ©braux associĂ©s Ă  la schizophrĂ©nie dans le domaine temporel. Nous prĂ©sentons deux Ă©tudes dans lesquelles nous testons l’hypothĂšse que la « disconnectivitĂ© temporelle » serait un biomarqueur important en schizophrĂ©nie. Ces Ă©tudes explorent les dĂ©ficits d’intĂ©gration temporelle en schizophrĂ©nie, en quantifiant les changements de la dynamique neuronale dite invariante d’échelle Ă  partir des donnĂ©es magnĂ©toencĂ©phalographiques (MEG) enregistrĂ©s au repos chez des patients et des sujets contrĂŽles. En particulier, nous utilisons (1) la LRTCs (long-range temporal correlation, ou corrĂ©lation temporelle Ă  longue-distance) calculĂ©e Ă  partir des oscillations neuronales et (2) des analyses multifractales pour caractĂ©riser des modifications de l’activitĂ© cĂ©rĂ©brale arythmique. Par ailleurs, nous dĂ©veloppons des modĂšles de classification (en apprentissage-machine supervisĂ©) pour mieux cerner les attributs corticaux et sous-corticaux permettant une distinction robuste entre les patients et les sujets sains. Vu que ces Ă©tudes se basent sur des donnĂ©es MEG spontanĂ©es enregistrĂ©es au repos soit avec les yeux ouvert, ou les yeux fermĂ©es, nous nous sommes par la suite intĂ©ressĂ©s Ă  la possibilitĂ© de trouver un marqueur qui combinerait ces enregistrements. La troisiĂšme Ă©tude originale explore donc l’utilitĂ© des modulations de l’amplitude spectrale entre yeux ouverts et fermĂ©es comme prĂ©dicteur de schizophrĂ©nie. Les rĂ©sultats de ces Ă©tudes dĂ©montrent des changements cĂ©rĂ©braux importants chez les patients schizophrĂšnes au niveau de la dynamique d’invariance d’échelle. Elles suggĂšrent une dĂ©gradation du traitement temporel de l’information chez les patients, qui pourrait ĂȘtre liĂ©e Ă  leurs symptĂŽmes cognitifs et comportementaux. L’approche multimodale de cette thĂšse, combinant la magĂ©toencĂ©phalographie, analyses non-linĂ©aires et apprentissage machine, permet de mieux caractĂ©riser l’organisation spatio-temporelle du signal cĂ©rĂ©brale au repos chez les patients atteints de schizophrĂ©nie et chez des individus sains. Les rĂ©sultats fournissent de nouvelles preuves supportant l’hypothĂšse d’une « disconnectivitĂ© temporelle » en schizophrĂ©nie, et Ă©tendent les recherches antĂ©rieures, en explorant la contribution des structures cĂ©rĂ©brales profondes et en employant des mesures non-linĂ©aires avancĂ©es encore sous-exploitĂ©es dans ce domaine. L’ensemble des rĂ©sultats de cette thĂšse apporte une contribution significative Ă  la quĂȘte de nouveaux biomarqueurs de la schizophrĂ©nie et dĂ©montre l’importance d’élucider les altĂ©rations des propriĂ©tĂ©s temporelles de l’activitĂ© cĂ©rĂ©brales intrinsĂšque en psychiatrie. Les Ă©tudes prĂ©sentĂ©es offrent Ă©galement un cadre mĂ©thodologique pouvant ĂȘtre Ă©tendu Ă  d’autres psychopathologie, telles que la dĂ©pression.Psychiatric disorders affect nearly a quarter of the world’s population. These typically bring about debilitating behavioural, functional and/or cognitive problems, for which the underlying neural mechanisms are poorly understood. These symptoms can significantly reduce the quality of life of affected individuals, impact those close to them, and bring on an economic burden on society. Hence, targeting the baseline neurophysiology associated with psychopathologies, by identifying more robust biomarkers, would improve the development of effective treatments. The first goal of this thesis is thus to contribute to a better characterization of neural dynamic alterations in mental health illnesses, specifically in schizophrenia and mood disorders. Accordingly, the first chapter of this thesis presents two systematic literature reviews, which investigate the resting-state changes in brain connectivity in schizophrenia, depression and bipolar disorder patients. Great strides have been made in neuroimaging research in identifying alterations in functional connectivity. However, these two reviews reveal a gap in the knowledge about the temporal basis of the neural mechanisms involved in the disruption of information integration in these pathologies, particularly in schizophrenia. Therefore, the second goal of this thesis is to characterize the baseline temporal neural alterations of schizophrenia. We present two studies for which we hypothesize that the resting temporal dysconnectivity could serve as a key biomarker in schizophrenia. These studies explore temporal integration deficits in schizophrenia by quantifying neural alterations of scale-free dynamics using resting-state magnetoencephalography (MEG) data. Specifically, we use (1) long-range temporal correlation (LRTC) analysis on oscillatory activity and (2) multifractal analysis on arrhythmic brain activity. In addition, we develop classification models (based on supervised machine-learning) to detect the cortical and sub-cortical features that allow for a robust division of patients and healthy controls. Given that these studies are based on MEG spontaneous brain activity, recorded at rest with either eyes-open or eyes-closed, we then explored the possibility of finding a distinctive feature that would combine both types of resting-state recordings. Thus, the third study investigates whether alterations in spectral amplitude between eyes-open and eyes-closed conditions can be used as a possible marker for schizophrenia. Overall, the three studies show changes in the scale-free dynamics of schizophrenia patients at rest that suggest a deterioration of the temporal processing of information in patients, which might relate to their cognitive and behavioural symptoms. The multimodal approach of this thesis, combining MEG, non-linear analyses and machine-learning, improves the characterization of the resting spatiotemporal neural organization of schizophrenia patients and healthy controls. Our findings provide new evidence for the temporal dysconnectivity hypothesis in schizophrenia. The results extend on previous studies by characterizing scale-free properties of deep brain structures and applying advanced non-linear metrics that are underused in the field of psychiatry. The results of this thesis contribute significantly to the identification of novel biomarkers in schizophrenia and show the importance of clarifying the temporal properties of altered intrinsic neural dynamics. Moreover, the presented studies offer a methodological framework that can be extended to other psychopathologies, such as depression

    The cognitive neuroscience of visual working memory

    Get PDF
    Visual working memory allows us to temporarily maintain and manipulate visual information in order to solve a task. The study of the brain mechanisms underlying this function began more than half a century ago, with Scoville and Milner’s (1957) seminal discoveries with amnesic patients. This timely collection of papers brings together diverse perspectives on the cognitive neuroscience of visual working memory from multiple fields that have traditionally been fairly disjointed: human neuroimaging, electrophysiological, behavioural and animal lesion studies, investigating both the developing and the adult brain

    Social and Affective Neuroscience of Everyday Human Interaction

    Get PDF
    This Open Access book presents the current state of the art knowledge on social and affective neuroscience based on empirical findings. This volume is divided into several sections first guiding the reader through important theoretical topics within affective neuroscience, social neuroscience and moral emotions, and clinical neuroscience. Each chapter addresses everyday social interactions and various aspects of social interactions from a different angle taking the reader on a diverse journey. The last section of the book is of methodological nature. Basic information is presented for the reader to learn about common methodologies used in neuroscience alongside advanced input to deepen the understanding and usability of these methods in social and affective neuroscience for more experienced readers

    Learning to regulate homeostatic brain networks

    Get PDF
    Eine dynamische Balance der physiologischen Gegebenheiten wie Körpertemperatur, Blutdruck, Blut-PH-Wert, Hormonspiegel, Blutzucker und Insulinkonzentration ist fĂŒr die Gesundheit und das Überleben unverzichtbar. Viele Krankheiten haben eine Störung der Homöostase zur Folge. Vor allem das Nerven- und das Hormonsystem steuern Regulationsmechanismen und sobald diese ein Ungleichgewicht feststellen, gibt es passende biochemische oder physiologische Feedback-KreislĂ€ufe, die den Gesamtzustand in die Balance zurĂŒckfĂŒhren. Diese Dissertation untersucht neuartige Methoden des Echtzeit-Neurofeedbacks, das auf funktioneller Magnetre-sonanztomographie basiert (Real-time functional magnetic resonance imaging – rt-fMRI-NF), um es gesunden Probanden und Patienten zu ermöglichen, homöostatische Netzwerke des Gehirns zu regulieren. Die erste Studie hatte zum Ziel, die Auswirkungen der Hochregulierung der funktionellen KonnektivitĂ€t durch rt-fMRI-NF-Training (engl. Functional connectivity – FC) zwischen Beloh-nungs- und impulsivitĂ€tsregulierenden Gehirnarealen auf das Essverhalten zu untersuchen. Diese Studie war ein Pilotexperiment im Pre-Post-Schema. Die zweite Studie untersuchte die Möglichkeit, die funktionelle KonnektivitĂ€t zwischen der anterioren Insula (AIC) und dem soma-tosensorischen Kortex (SC) durch Belohnung von gleichzeitiger AktivitĂ€t dieser Regionen zu be-einflussen. AIC und SC sind Gehirnregionen, die physiologische Zustandsinformationen von Kör-pergewebe und großflĂ€chigen Hautsegmenten erhalten. Wir nahmen an, dass die funktionelle Verbindung zwischen diesen Regionen die Verarbeitung dieser Signale der inneren Organe und Körpergewebe ĂŒbernimmt. Dies stellt einen Kernbereich des GefĂŒhlskonzeptes von James-Lang dar. In der dritten Studie untersuchten wir, ob Patienten mit kontaminationsbezogenen Zwangsgedanken und Waschzwang lernen können, ihre BOLD-AktivitĂ€t in der Insula herunterzu-regulieren, wenn sie mit ekelerregenden oder Angst hervorrufenden Stimuli konfrontiert wer-den. Die Ergebnisse der ersten Studie zeigten, dass die willentliche Hochregulierung der Korrela-tion zu einer erhöhten funktionellen KonnektivitĂ€t zwischen dem dorsolateralen prĂ€frontalen Kortex (dlPFC) und dem ventromedialen prĂ€frontalen Kortex (vmPFC) fĂŒhrt. Diese KonnektivitĂ€t betrifft Selbstkontrolle und die Entscheidung fĂŒr gesunde Nahrungsmittel. Die Verhaltenstests deuten darauf hin, dass die Probanden sich in der Transfersitzung (nach der Intervention) fĂŒr weniger ungesunde Nahrungsmittel entscheiden als in der Sitzung vor der Intervention. Die zweite Studie bestĂ€tigte unsere Hypothese, dass die willentliche Hochregulierung von gleichzei-tiger BOLD-AktivitĂ€t von AIC und SC deren funktionale KonnektivitĂ€t erhöht. Diese Verbindung ermöglicht eine verstĂ€rkte Körperwahrnehmung und ein verĂ€ndertes subjektives GefĂŒhlserle-ben. Wir beobachteten, dass die VerĂ€nderung der funktionellen KonnektivitĂ€t zwischen AIC und SC die Leistung der Probanden in der Aufgabe (Wahrnehmung des Herzschlags) verbesserte. In der dritten Studie fanden wir heraus, dass Patienten mit Zwangsstörungen (OCD) nach einigen Trainingseinheiten die Selbstkontrolle der BOLD-AktivitĂ€t der Insula erreichen konnten. Fasst man die Ergebnisse der drei Studien zusammen, konnten wir zeigen, dass die FĂ€higkeit des Ge-hirns zur homöostatischen Selbstregulierung durch die Verwendung von rt-FMRI-Training ver-bessert werden kann. Zudem ist nun klarer, dass die VerĂ€nderung und die Modulation von neu-ronalen Pfaden in Gehirnnetzwerken, die der Selbstkontrolle, der Entscheidungsfindung und der GefĂŒhlswahrnehmung zugrunde liegen, zu vielversprechenden VerhaltensverĂ€nderungen fĂŒhrt

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)
    • 

    corecore