4,601 research outputs found

    Neurocontroller Alternatives for Fuzzy Ball-and-Beam Systems with Nonuniform Nonlinear Friction

    Get PDF
    The ball-and-beam problem is a benchmark for testing control algorithms. Zadeh proposed (1994) a twist to the problem, which, he suggested, would require a fuzzy logic controller. This experiment uses a beam, partially covered with a sticky substance, increasing the difficulty of predicting the ball\u27s motion. We complicated this problem even more by not using any information concerning the ball\u27s velocity. Although it is common to use the first differences of the ball\u27s consecutive positions as a measure of velocity and explicit input to the controller, we preferred to exploit recurrent neural networks, inputting only consecutive positions instead. We have used truncated backpropagation through time with the node-decoupled extended Kalman filter (NDEKF) algorithm to update the weights in the networks. Our best neurocontroller uses a form of approximate dynamic programming called an adaptive critic design. A hierarchy of such designs exists. Our system uses dual heuristic programming (DHP), an upper-level design. To our best knowledge, our results are the first use of DHP to control a physical system. It is also the first system we know of to respond to Zadeh\u27s challenge. We do not claim this neural network control algorithm is the best approach to this problem, nor do we claim it is better than a fuzzy controller. It is instead a contribution to the scientific dialogue about the boundary between the two overlapping disciplines

    Comparative Study of Takagi-Sugeno-Kang and Madani Algorithms in Type-1 and Interval Type-2 Fuzzy Control for Self-Balancing Wheelchairs

    Get PDF
    This study examines the effectiveness of four different fuzzy logic controllers in self-balancing wheelchairs. The controllers under consideration are Type-1 Takagi-Sugeno-Kang (TSK) FLC, Interval Type-2 TSK FLC, Type-1 Mamdani FLC, and Interval Type-2 Mamdani FLC. A MATLAB-based simulation environment serves for the evaluation, focusing on key performance indicators like percentage overshoot, rise time, settling time, and displacement. Two testing methodologies were designed to simulate both ideal conditions and real-world hardware limitations. The simulations reveal distinct advantages for each controller type. For example, Type-1 TSK excels in minimizing overshoot but requires higher force. Interval Type-2 TSK shows the quickest settling times but needs the most force. Type-1 Mamdani has the fastest rise time with the lowest force requirement but experiences a higher percentage of overshoot. Interval Type-2 Mamdani offers balanced performance across all metrics. When a 2.7 N control input cap is imposed, Type-2 controllers prove notably more efficient in minimizing overshoot. These results offer valuable insights for future design and real-world application of self-balancing wheelchairs. Further studies are recommended for the empirical testing and refinement of these controllers, especially since the initial findings were limited to four-wheeled self-balancing robotic wheelchairs

    Nonlinear control systems laboratory

    Get PDF

    Study of Motion Control of A Flexible Link

    Get PDF
    20th century has witnessed massive upsurge in the use of manipulators in several industries especially in space, defense, and medical industries. Among the types of manipulators used, single link manipulators are the most widely used. A single link robotic manipulator is nothing but a link controlled by an actuator to carry out a particular function such as placing a payload from point A to point B. For low power requirements single link manipulators are made up of light weight materials which require flexibility considerations.Flexibility makes the dynamics of the link heavily non-linear which induces vibrations and overshoot. In this project initially the dynamic model of rigid flexible manipulator is explained, then the state space model of the manipulator system is incorporated into MATLAB. The link flexibility is studied by a single beam FEmodel, where expressions for kinetic and potential energyare employed to derive the torqueequation.The 3 flexible link equations are coupled in terms of 3 variables, θ, Ø and v. The tip angle is finally given aslvfor flexible case whereas for the rigid manipulator the tip angle is same as the hub angle θ. Thereforeaccurate computation of v is very important. The joint flexibility is excluded from analysis.Several comparisons were made between the rigid and flexible link for torque requirement. The relation between the trajectory and hub angle is also plotted in a graph.Finally a PD controller taking the errors and its derivative is designed based on the rigid link dynamics

    Invited Review: Recent developments in vibration control of building and bridge structures

    Get PDF
    This paper presents a state-of-the-art review of recent articles published on active, passive, semi-active and hybrid vibration control systems for structures under dynamic loadings primarily since 2013. Active control systems include active mass dampers, active tuned mass dampers, distributed mass dampers, and active tendon control. Passive systems include tuned mass dampers (TMD), particle TMD, tuned liquid particle damper, tuned liquid column damper (TLCD), eddy-current TMD, tuned mass generator, tuned-inerter dampers, magnetic negative stiffness device, resetting passive stiffness damper, re-entering shape memory alloy damper, viscous wall dampers, viscoelastic dampers, and friction dampers. Semi-active systems include tuned liquid damper with floating roof, resettable variable stiffness TMD, variable friction dampers, semi-active TMD, magnetorheological dampers, leverage-type stiffness controllable mass damper, semi-active friction tendon. Hybrid systems include shape memory alloys-liquid column damper, shape memory alloy-based damper, and TMD-high damping rubber

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    Vibration attenuation control of ocean marine risers with axial-transverse couplings

    Get PDF
    The target of this paper is designing a boundary controller for vibration suppression of marine risers with coupling mechanisms under environmental loads. Based on energy approach and the equations of axial and transverse motions of the risers are derived. The Lyapunov direct method is employed to formulated the control placed at the riser top-end. Proof of existence and uniqueness of the solutions of the closed-loop system is provided. Stability analysis of the closed-loop system is also included

    ANFIS multi-tasking algorithm implementation scheme for ball-on-plate system stabilization

    Get PDF
    This paper presents the design and realization of a ball-on-plate system using a 3-degree-of-freedom parallel robot controlled by an adaptive neuro-fuzzy in-ference system. The ball-on-plate system is nonlinear, multivariable, with an under-actuated feature. Initially, the parallel robot is designed using SolidWorks and mechanized using a computer numerical control machine. Followed by the presentation of the ball-on-plate system mathematical model and the simplified model obtained. Afterwards, the inverse kinematics are performed to derive the appropriate angle for each servomotor. Eventually, the controller is designed and implemented in a double loop feedback scheme. A comparison between the proposed controller and a conventional proportional–integral–derivative controller in terms of time response, overshoot, and steady-state error is carried out. Furthermore, a comparison between sequential and asynchronous parallel processing is conducted for two different scenarios. The first scenario is when moving the ball to the origin while the second is for disturbance rejection. Simulation and experimental results show that the adaptive neuro-fuzzy inference system implemented using asynchronous parallel processing improves the real-time system stability by considerably decreasing oscillations as well as enhancing the ball movement smoothness with a small stead-state error

    Non-Linear Robust Observers For Systems With Non-Collocated Sensors And Actuators

    Get PDF
    Challenges in controlling highly nonlinear systems are not limited to the development of sophisticated control algorithms that are tolerant to significant modeling imprecision and external disturbances. Additional challenges stem from the implementation of the control algorithm such as the availability of the state variables needed for the computation of the control signals, and the adverse effects induced by non-collocated sensors and actuators. The present work investigates the adverse effects of non-collocated sensors and actuators on the phase characteristics of flexible structures and the ensuing implications on the performance of structural controllers. Two closed-loop systems are considered and their phase angle contours have been generated as functions of the normalized sensor location and the excitation frequency. These contours were instrumental in the development of remedial actions for rendering structural controllers immune to the detrimental effects of non-collocated sensors and actuators. Moreover, the current work has focused on providing experimental validation for the robust performances of a self-tuning observer and a sliding mode observer. The observers are designed based on the variable structure systems theory and the self-tuning fuzzy logic scheme. Their robustness and self-tuning characteristics allow one to use an imprecise model of the system and eliminate the need for the extensive tuning associated with a fixed rule-based expert fuzzy inference system. The first phase of the experimental work was conducted in a controlled environment on a flexible spherical robotic manipulator whose natural frequencies are configuration-dependent. Both controllers have yielded accurate estimates of the required state variables in spite of significant modeling imprecision. The observers were also tested under a completely uncontrolled environment, which involves a 16-ft boat operating in open-water under different sea states. Such an experimental work necessitates the development of a supervisory control algorithm to perform PTP tasks, prescribed throttle arm and steering tasks, surge speed and heading tracking tasks, or recovery maneuvers. This system has been implemented herein to perform prescribed throttle arm and steering control tasks based on estimated rather than measured state variables. These experiments served to validate the observers in a completely uncontrolled environment and proved their viability as reliable techniques for providing accurate estimates for the required state variables

    Optimization for finite element modeling of electronic components under dynamic loaDing

    Full text link
    Usage of electronic components in the U.S. ARMY applications is becoming more challenging due to their usage in harsh environments. Experimental verification of these components is expensive and it can yield information about specific locations only. This research outlines the finite element modeling methodology for these electronic components that are subjected to high acceleration loads that occur over extremely short time such as impact, gun firing and blast events. Due to their miniature size these finite element models are computationally expensive. An optimization engine was presented to have an efficient analysis procedure that provides a combination of accuracy, computational speed and modeling simplicity. This research also involves experimental testing of the electronic components mounted on the circuit boards. Testing was conducted at different strain levels in order to study the behavior of boards. Finite element models were developed for these tests and compared with experimental results
    corecore