381 research outputs found

    Automation of garment assembly processes

    Get PDF
    Robotic automation in apparel manufacturing is reviewed and investigated. Gripper design for separation and de-stacking of batch cut fabric components is identified as an important factor in implementing such automation and a study of existing gripper mechanisms is presented. New de-stacking gripper designs and processes are described together with experimental results. Single fabric component handling, alignment and registration techniques are investigated. Some of these techniques are integrated within a demonstrator robotic garment assembly cell automating the common edge binding process. Performance results are reported

    Middle Byzantine silk in context: integrating the textual and material evidence

    Get PDF
    This work represents the most comprehensive investigation of silk in the middle Byzantine period to date. The current interpretation of silk as an imperial prerogative confined to elite use is poorly integrated with the body of evidence and lacks explanatory value. The difficult terminology and scattered mentions in written sources limits application of conventional research methods. Although a number of silk fragments survive in institutional collections, the lack of find and contextual information represents a formidable obstacle. This dissertation redefines silk in Byzantium by demonstrating its social importance, contribution to technology development, and integration in the regional economy. Findings are based on intensive analysis of production and consumption data from parallel investigation of texts and textile fragments according to a common framework. To aid data collection and analysis, information technology tools involving relational database methods and digital imaging were devised for this purpose. The evidence suggests that the historical process involving silk was shaped by a continuing cycle of elite differentiation and imitative reproduction, which contributed to the transmission of the material and production in the region. From a broader perspective, this work demonstrates the relevance of textile studies to the interpretation of economic and social history

    Smart Fabric sensors for foot motion monitoring

    Get PDF
    Smart Fabrics or fabrics that have the characteristics of sensors are a wide and emerging field of study. This thesis summarizes an investigation into the development of fabric sensors for use in sensorized socks that can be used to gather real time information about the foot such as gait features. Conventional technologies usually provide 2D information about the foot. Sensorized socks are able to provide angular data in which foot angles are correlated to the output from the sensor enabling 3D monitoring of foot position. Current angle detection mechanisms are mainly heavy and cumbersome; the sensorized socks are not only portable but also non-invasive to the subject who wears them. The incorporation of wireless features into the sensorized socks enabled a remote monitoring of the foot

    Fashion Industry

    Get PDF
    Fashion is a lot more than providing an answer to primary needs. It is a way of communication, of distinction, of proclaiming a unique taste and expressing the belonging to a group. Sometimes to an exclusive group. Currently, the fashion industry is moving towards hyperspace, to a multidimensional world that is springing from the integration of smart textiles and wearable technologies. It is far beyond aesthetics. New properties of smart textiles let designers experiment with astonishing forms and expressions. There are also surprising contrasts and challenges: a new life for natural fibers, sustainable fabrics and dyeing techniques, rediscovered by eco-fashion, and "artificial apparel," made of wearable electronic components. How is this revolution affecting the strategies of the fashion industry

    Surface engineering by titanium particulate injection mounding

    Get PDF
    In a recent study a structural hold down component was designed and produced using the particulate injection moulding (PIM) process. The material of choice was titanium due not only to the material properties but also due to the desire to create custom made components for a state-of-the-art marine vessel. On removal from the mould the green parts were seen to have an irregular surface on the top face. The irregular surface presented no through part defects and although the surface irregularities were caused by separation of the two-phases the effect was restricted to the outer surface of the parts. In a more historic study by the author the surface properties of titanium dental implants were modified by the use of adaptive mould inserts during the moulding phase of PIM. These two contrasting studies are considered and have become the basis of a current investigation looking to engineer surface irregularities in an ordered fashion. The application of meso-machining, and additive manufacture are considered and the functionality which may arise are presented

    Development of innovative cross-disciplinary engineering showcase

    Get PDF
    The development of engineering education relies substantially on interactive showcases and practical knowledge. The cross-disciplinary engineering showcase is designed to be fully interactive by having user input, producing a tangible output, and to understand distinct elements from each of the engineering disciplines such as, civil, mechanical and electrical (CME). The showcase operates from the input of mechanical rotational energy by the user pedalling the exercycle. Mechanical energy is then transferred to the pump via a gear train, which converts the user input of 30 rpm to the optimal pump operating speed of 2900 rpm. Further, it is used to pump water from the lower eservoir to the upper reservoir via one of the three flow paths, which the user can select by opening or closing flow valves. Once the water reaches a given height, it then flows back to the lower reservoir via a micro-hydro generator. As a result, it generates electrical energy stored in a power bank that can be used by the user to charge a digital device. Also, the showcase has a QR code to digital media, which will provide an additional explanation/exposition of the presented engineering principles to the user/students. The aim of this project is to develop a cross- disciplinary engineering showcase to enhance student learnings by interpreting the CME engineering principles in schools, institutes, and universities

    Development of innovative cross-disciplinary engineering showcase

    Get PDF
    The development of engineering education relies substantially on interactive showcases and practical knowledge. The cross-disciplinary engineering showcase is designed to be fully interactive by having user input, producing a tangible output, and to understand distinct elements from each of the engineering disciplines such as, civil, mechanical and electrical (CME). The showcase operates from the input of mechanical rotational energy by the user pedalling the exercycle. Mechanical energy is then transferred to the pump via a gear train, which converts the user input of 30 rpm to the optimal pump operating speed of 2900 rpm. Further, it is used to pump water from the lower eservoir to the upper reservoir via one of the three flow paths, which the user can select by opening or closing flow valves. Once the water reaches a given height, it then flows back to the lower reservoir via a micro-hydro generator. As a result, it generates electrical energy stored in a power bank that can be used by the user to charge a digital device. Also, the showcase has a QR code to digital media, which will provide an additional explanation/exposition of the presented engineering principles to the user/students. The aim of this project is to develop a cross- disciplinary engineering showcase to enhance student learnings by interpreting the CME engineering principles in schools, institutes, and universities

    Developing an integrated enterprise resource planning framework for South African clothing and textile industries

    Get PDF
    Abstract: This research recommends development of an integrated Enterprise Resource Planning (ERP) framework for South African clothing and textile industries, mainly is Small Medium Enterprise (SME). The study and framework will cover ERP Critical Success Factors (CSF), namely: Vision and planning of Project, Choice of an ERP system, Support from Top Management, Project Management, Project Champion, Business Process Re-engineering, Communication, User Training and Education, and Organizational Resistance); ERP implementation process, challenges and benefits of implementing an ERP system. The framework will be used as a plan of implementing an ERP system in Clothing and Textile industries. The study used Mixed Method approach to identify benefits, critical success factors, and challenges in the ERP industries. Two slightly different questionnaires were designed, of which 18 were sent to clothing and textile industries, and 101 were sent to ERP specialists around South Africa. The majority of the respondents were from Gauteng. More than six companies using different ERP system were part of the respondents. The target populations were: directors, managers, supervisors, and also employees. Descriptive statistics, reliability indices, factor analysis, and gap analysis were used to analyse the data. The use of questionnaires was an advantage because while data collection and analysis was time consuming, the data were analysed using SPSS. Majority of the respondents were aware and understood ERP systems and implementation that is why the feedback was remarkable.D.Phil. (Engineering Management

    Textile-Based Sensors and Smart Clothing System for Respiratory Monitoring

    Get PDF
    Long-term respiratory monitoring provides valuable information for diagnostic and clinical treatment. Traditional measures of respiration require a mouthpiece or a mask, neither of which can be used as ubiquitous healthcare equipment. Using a smart clothing system seems to be a better alternative. Researchers in the field of smart textiles have focused on the development of health-related products since the 1990s, and textile-based sensors used for respiratory measurements have been discussed in several projects. Although the soft and flexible characteristics of textile-based sensors make them attractive, the flexibility of the materials also affects the signal quality. In a laboratory situation, where each sensor is tested as a single element, this is not as critical as in a user situation, where the sensor is integrated into the clothing and worn by different users engaging in different activities. The principal objective of this thesis was to explore the possibility of performing reliable respiratory monitoring using a clothing platform. The research began by investigating the possible methods and materials that can be used to produce textile-based sensors for respiratory monitoring applications. The aim was to determine the most suitable method for integrating the sensing function into the clothing system. Study results have shown that sensors made with a conductive coating demonstrated superior performance in terms of sensitivity, stability, and reliability. Therefore, five prototype systems based on conductive coating technique were developed. Sensor placement, signal collection techniques, and the clothing system configuration were the main concerns, while issues related to the sensor wearability, maintenance, and aesthetic appearance, as well as the environment and health, were also discussed. Knitting was found to be the most economical method for producing the textile-based sensors; however, sensors made of knit fabric do not perform as well as the coated ones. Therefore, elastic-conductive hybrid yarns have been created to improve the electro-mechanical properties of knitted-based sensors, and eventually, a prototype with two sensors and a built-in data-bus was made by fully-fashion knitting technique. Two smart clothing system prototypes, based on conductive coating technique, were tested systematically by ten subjects. The first prototype consisted of one sensing element, and the results show that the smart clothing system could successfully monitor the subjects’ breathing patterns during sitting, standing, and different forms of running. The system has also proven to be useful in the observation of sleep apnea disorder symptoms. The second prototype consisted of two sensing elements. Apart from all the characteristics of the first prototype system, a system with two sensing elements can be used to determine the relationship between the rib cage and abdomen compartments, which provides information for certain diseases, e.g., cardiac arrhythmias. The second smart clothing system prototype was compared with a conventional respiratory belt for validation. Signals from the clothing system and the respiratory belt were collected simultaneously with a self-designed LabVIEW program, and further processed with MATLAB. Quantitative analyses were conducted based upon different comparison techniques, such as Pearson’s correlation, ANOVA and Fast Fourier Transform analysis. The results demonstrate that the smart clothing system can provide reliable respiratory measurements, with signals of comparable quality to the conventional respiratory belt. In addition, the wearability and user acceptance were studied by means of a survey. The survey results indicate that users were more comfortable with the smart clothing system and that most believe that using a smart clothing system will improve both health condition and quality of life

    Textile-Based Sensors and Smart Clothing System for Respiratory Monitoring

    Get PDF
    Long-term respiratory monitoring provides valuable information for diagnostic and clinical treatment. Traditional measures of respiration require a mouthpiece or a mask, neither of which can be used as ubiquitous healthcare equipment. Using a smart clothing system seems to be a better alternative. Researchers in the field of smart textiles have focused on the development of health-related products since the 1990s, and textile-based sensors used for respiratory measurements have been discussed in several projects. Although the soft and flexible characteristics of textile-based sensors make them attractive, the flexibility of the materials also affects the signal quality. In a laboratory situation, where each sensor is tested as a single element, this is not as critical as in a user situation, where the sensor is integrated into the clothing and worn by different users engaging in different activities. The principal objective of this thesis was to explore the possibility of performing reliable respiratory monitoring using a clothing platform. The research began by investigating the possible methods and materials that can be used to produce textile-based sensors for respiratory monitoring applications. The aim was to determine the most suitable method for integrating the sensing function into the clothing system. Study results have shown that sensors made with a conductive coating demonstrated superior performance in terms of sensitivity, stability, and reliability. Therefore, five prototype systems based on conductive coating technique were developed. Sensor placement, signal collection techniques, and the clothing system configuration were the main concerns, while issues related to the sensor wearability, maintenance, and aesthetic appearance, as well as the environment and health, were also discussed. Knitting was found to be the most economical method for producing the textile-based sensors; however, sensors made of knit fabric do not perform as well as the coated ones. Therefore, elastic-conductive hybrid yarns have been created to improve the electro-mechanical properties of knitted-based sensors, and eventually, a prototype with two sensors and a built-in data-bus was made by fully-fashion knitting technique. Two smart clothing system prototypes, based on conductive coating technique, were tested systematically by ten subjects. The first prototype consisted of one sensing element, and the results show that the smart clothing system could successfully monitor the subjects’ breathing patterns during sitting, standing, and different forms of running. The system has also proven to be useful in the observation of sleep apnea disorder symptoms. The second prototype consisted of two sensing elements. Apart from all the characteristics of the first prototype system, a system with two sensing elements can be used to determine the relationship between the rib cage and abdomen compartments, which provides information for certain diseases, e.g., cardiac arrhythmias. The second smart clothing system prototype was compared with a conventional respiratory belt for validation. Signals from the clothing system and the respiratory belt were collected simultaneously with a self-designed LabVIEW program, and further processed with MATLAB. Quantitative analyses were conducted based upon different comparison techniques, such as Pearson’s correlation, ANOVA and Fast Fourier Transform analysis. The results demonstrate that the smart clothing system can provide reliable respiratory measurements, with signals of comparable quality to the conventional respiratory belt. In addition, the wearability and user acceptance were studied by means of a survey. The survey results indicate that users were more comfortable with the smart clothing system and that most believe that using a smart clothing system will improve both health condition and quality of life
    • …
    corecore