1,292 research outputs found

    Water and environmental issues

    Get PDF
    Water is a precious and finite part of the environment which is vital for socioeconomic development, sustainability of the environment and survival. Malaysia is fortunate that it is located in a humid tropical area rich in rainfall and water resources. The rapid economic growth of Malaysia in the past decades is also mainly attributed to its ability to exploit abundant natural resources including water. The exploitation of water resources is an important catalyst of economic growth but continuous exploitation without proper management and conservation may cause the depletion of water supplies, rendering water resources unsustainable. In recent years, water problems have escalated in Malaysia due to climate change, urbanization and population explosion. Therefore, effective water conservation, efficient waste water and sewage management integrated with recent technologies are important for fostering the tandem development of economic growth and the sustainability of environmental resources

    Second ECOOP Workshop on Precise Behavioral Semantics (with an Emphasis on OO Business Specifications)

    Full text link
    Business specifications are essential to describe and understand businesses (and, in particular, business rules) independently of any computing systems used for their possible automation. They have to express this understanding in a clear, precise, and explicit way, in order to act as a common ground between business domain experts and software developers. They also provide the basis for reuse of concepts and constructs ("patterns") common to all - from finance to telecommunications -, or a large number of, businesses, and in doing so save intellectual effort, time and money. Moreover, these patterns substantially ease the elicitation and validation of business specifications during walkthroughs with business customers, and support separation of concerns using viewpoints.Comment: 21 pages, 0 figure

    On the role of domain ontologies in the design of domain-specific visual modeling langages

    Get PDF
    Domain-Specific Visual Modeling Languages should provide notations and abstractions that suitably support problem solving in well-defined application domains. From their user’s perspective, the language’s modeling primitives must be intuitive and expressive enough in capturing all intended aspects of domain conceptualizations. Over the years formal and explicit representations of domain conceptualizations have been developed as domain ontologies. In this paper, we show how the design of these languages can benefit from conceptual tools developed by the ontology engineering community

    Practical verification strategy for refinement conditions in UML models

    Get PDF
    This paper presents an automatic and simple method for creating refinement condition for UML models. Conditions are fully written in OCL, making it unnecessary the application of mathematical languages which are in general hardly accepted to software engineers. Besides, considering that the state space where OCL conditions are evaluated might be too large (or even infinite), the strategy of micromodels is applied in order to reduce the search space. The overall contribution is to propitiate the performing of verification activities during the model-driven development process.1st International Workshop on Advanced Software Engineering: Expanding the Frontiers of Software Technology - Session 2: Software ModelingRed de Universidades con Carreras en Informática (RedUNCI

    Practical verification strategy for refinement conditions in UML models

    Get PDF
    This paper presents an automatic and simple method for creating refinement condition for UML models. Conditions are fully written in OCL, making it unnecessary the application of mathematical languages which are in general hardly accepted to software engineers. Besides, considering that the state space where OCL conditions are evaluated might be too large (or even infinite), the strategy of micromodels is applied in order to reduce the search space. The overall contribution is to propitiate the performing of verification activities during the model-driven development process.1st International Workshop on Advanced Software Engineering: Expanding the Frontiers of Software Technology - Session 2: Software ModelingRed de Universidades con Carreras en Informática (RedUNCI

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose

    Model evolution and system evolution

    Get PDF
    In this paper we define an evolution mechanism with formal semantics using the metamodeling methodology [Geisler et al.98] based on dynamic logic. A remarkable feature of the metamodeling methodology is the ability to define the relation of intentional and extensional entities within one level, allowing not only for the description of structural relations among the modeling entities, but also for a formal definition of structural\nconstraints and dynamic semantics of the modeled entities. While dynamic semantics on the extensional level means run-time behavior, dynamic semantics on intentional level describes model evolution in the system life cycle
    • …
    corecore