19 research outputs found

    Sistem Pengelolahan Data Surat Masuk dan Surat Keluar Kelurahan Curug

    Get PDF
    An accurate and efficient application of incoming and outgoing report reports at the Curug Kelurahan Office, making an effective and efficient application of incoming and outgoing mail management in accordance with the needs of the Curug Kelurahan office, making applications that facilitate administration in mail management, making incoming mail applications and the user's outgoing mail, making an application for incoming and outgoing mail that is easily used by the user. The research method used to design this data processing application is the method of library study, observation and interviews to get more complete data. After the author designs and makes this data processing application, the writer can draw the conclusion that with this application can provide solutions in helping Curug Kelurahan in recording incoming and outgoing letters, with the application already made, the duties of the Administration and Secretary of the Village Head can be easier and better recorded because it is assisted by a computerized system. Keywords: System Design, Data Processing, Incoming and Outgoin

    Design Concepts for Space-Borne Multi-Mission Sensors for Tactical Military Needs

    Get PDF
    A standard electro-optical sensor can perform several different surveillance missions to support tactical military users. The missions include environmental sensing, land and ocean remote sensing, tactical missile tracking, and space object surveillance. The key is that while the spacecraft is a standard configuration for all missions, its design is a compromise between the specific requirements for each mission; the orbit chosen and operations mode for each mission also vary. Although sub-optimal for any given mission, standard sensor systems have the advantage of achieving a higher benefit-to-cost ratio by realizing economies of scale in production and reduced development. Point designs of three different multi-mission sensors are presented, supported by design analysis, and encompassing several approaches to telescope design, focal plane design, scanning system design, data processing system design, and orbits/coverage and operations. The resulting sensor system designs are highly capable, compared to existing systems, meet the performance goals established, and yet fit within the tactical satellite class

    Power Reduction Sleep Scheduling Technique for Cloud Integrated Green Social Sensor Network

    Get PDF
    The wireless sensor network is the maximum appropriate technology nowadays with such awesome applications and areas including Infrastructure tracking, environment tracking, health care tracking, etc. Cloud Computing has fantastic data collecting skills and effective data processing ability. Social Network is a group of People or organizations of human beings with similar intentions. Social Sensor Cloud is one type of expertise-sharing mechanism wherein similar types of human beings can connect. Energy Consumption is nowadays the largest challenge as far as the concern with green environment. Because the battery life of the sensor is so limited, the Social Sensor Cloud must be energy efficient. As a result, this article will concentrate on Energy-Efficient Techniques for the Social Sensor Cloud. According to our findings, findings, the majority of energy-saving measures will cope with not unusual place Parameters including Network Lifetime, Network Work rate, Throughput, Energy, Bandwidth, etc. We will Summarize current Technology and we Will Provide Our Architecture for Energy Reduction in Social Sensor Cloud

    Need Identification on Android-Based Neighborhood Electric Vehicle Dashboard View Using The Kano Model

    Get PDF
    A customer is someone who repeatedly comes to the same place when he wants to buy an item or get service because he is satisfied with the goods or services. Companies must understand the needs and desires of customers in order to satisfy customer needs. Technology that is currently developing is electric cars, especially the Neighborhood Electric Vehicle (NEV) with the application of smartphones. Conventional dashboards can be replaced with smartphones Android-based. Fulfillment of customer satisfaction with smartphone dashboard products is identified by conducting a customer desires survey and categorized it using the Kano model. The survey was conducted on 14 attributes by producing three categories, such as one dimensional, attractive and indifferent. The Android dashboard is built based on survey results instruments. The use of Arduino nano and ESP32 as controllers that process vehicle instrument data sent using Wi-Fi in real time to Android-based smartphones has a maximum error of 5% for speed data

    Design and development of a 5-Channel Arduino-Based Data Acquisition System (ABDAS) for experimental aerodynamics research

    Get PDF
    In this work, a new and low-cost Arduino-Based Data Acquisition System (ABDAS) for use in an aerodynamics lab is developed. Its design is simple and reliable. The accuracy of the system has been checked by being directly compared with a commercial and high accuracy level hardware from National Instruments. Furthermore, ABDAS has been compared to the accredited calibration system in the IDR/UPM Institute, its measurements during this testing campaign being used to analyzed two different cup anemometer frequency determination procedures: counting pulses and the Fourier transform. The results indicate a more accurate transfer function of the cup anemometers when counting pulses procedure is used

    Analysis of the sum rate for massive MIMO using 10 GHz measurements

    Get PDF
    Orientador: Gustavo FraidenraichTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Este trabalho apresenta um conjunto de contribuições para caracterização e modelagem de canais reais de rádio abordando aspectos relacionados com as condições favoráveis de propagação para sistemas massive MIMO. Discutiremos como caracterizar canais de rádio em um ambiente real, processamento de dados e análise das condições favoráveis de propagação. Em uma segunda parte, focamos na determinação teórica de alguns aspectos da tecnologia de massive MIMO utilizando propriedades de distribuições matriciais Wishart. Inicialmente, apresentamos uma contribuição sobre a aplicação do algoritmo ESPRIT, para estimar parâmetros de um conjunto de dados multidimensional. Obtivemos dados por varredura em frequência de um Analisador Vetorial de Rede e os adaptamos para o algoritmo ESPRIT. Mostramos como remover a influência do ganho de padrão de antenas e como utilizar um gerador de modelo de canal baseado nas medidas reais de canal de rádio. As medidas foram feitas na frequência de 10.1 GHz com largura de faixa de 500 MHz. Utilizando um gerador de modelo de canal, fomos além do universo das simulações por distribuições Gaussianas. Introduzimos o conceito de propagação favorável e analisamos condições de linha-de-visada usando arranjos lineares uniformes e arranjos retangulares uniformes de antena. Como novidade da pesquisa, mostramos os benefícios de explorar um número extra de graus de liberdade devido à escolha dos formatos de arranjo de antenas e ao aumento do número de elementos. Esta propriedade é observada ao analisarmos a distribuição dos autovalores de matrizes Gramianas. Em seguida, estendemos o mesmo raciocínio para as matrizes de canal geradas a partir de informações reais e verificamos se as propriedades ainda permaneceriam válidas. Na segunda parte deste trabalho, incluímos mais de uma antena no terminal móvel e calculamos a probabilidade de indisponibilidade para várias configurações de antenas e número arbitrário de usuários. Esboçamos inicialmente a formulação para a informação mútua e, em seguida, calculamos os resultados exatos em uma situação com dois usuários e duas antenas, tanto na estação base (EB) como nos terminais de usuário(TU). Visto que as formulações para a derivação exata dos casos com mais antenas e mais usuários mostrou-se muito intrincada, propusemos uma aproximação Gaussiana para simplificar o problema. Esta aproximação foi validada por simulações Monte Carlo para diferentes relações sinal/ruídoAbstract: This thesis presents a set of contributions for channel modeling and characterization of real radio channels delineating aspects related with the favorable propagation for massive MIMO systems. We will discuss about how to proceed for characterizing radio channels in an real environment , data processing, and analysis of favorable conditions. In a second part, we focused on determination of some theoretical aspects of the Massive MIMO technology using properties of Wishart distribution matrices. We initially present a contribution on the application of ESPRIT algorithm for estimating a multidimensional set of measured data. We have obtained data by frequency sweep carried out by a vector network analyzer(VNA) and adapted it to fit in the ESPRIT algorithm. We show how to remove antenna pattern gain using virtual antenna arrays and how to use a channel model generator based on radio channel measurements of real environments. The measurements were conducted at the frequency of 10.1 GHz and 500 MHz bandwidth. By using a channel model generator, we have explored beyond the simulation of Gaussian Distributions. We will introduce the concept of favorable propagation and analyze the line-of-sight conditions using ULA and URA array shapes. As a research novelty, we will show the benefits of exploiting an extra degree of freedom due to the choice of the antenna shapes and amount of antenna elements. We observe these properties through the distribution of the Gramian Matrices. Next, we extend the same rationale to channel matrices generated from real channels and we verify that the properties are still valid. In a second part of the research work, we included more than one antenna in the mobile terminals and calculated the outage probability for several antenna configurations and arbitrary number users. We introduce a formulation for mutual information and then we calculate exact results in a case with two users with two antennas in both Base Station (BS) and User Terminals (UT). Since the formulations to the exact derivation for cases with more antennas and users seems to be intricate, we propose a Gaussian approximation solution to simplify the problem. We validated this approximation with Monte Carlo simulations for different signal-to-noise ratiosDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia Elétrica248416/2013-8CNPQCAPE

    ASPIE: A Framework for Active Sensing and Processing of Complex Events in the Internet of Manufacturing Things

    Get PDF
    Rapid perception and processing of critical monitoring events are essential to ensure healthy operation of Internet of Manufacturing Things (IoMT)-based manufacturing processes. In this paper, we proposed a framework (active sensing and processing architecture (ASPIE)) for active sensing and processing of critical events in IoMT-based manufacturing based on the characteristics of IoMT architecture as well as its perception model. A relation model of complex events in manufacturing processes, together with related operators and unified XML-based semantic definitions, are developed to effectively process the complex event big data. A template based processing method for complex events is further introduced to conduct complex event matching using the Apriori frequent item mining algorithm. To evaluate the proposed models and methods, we developed a software platform based on ASPIE for a local chili sauce manufacturing company, which demonstrated the feasibility and effectiveness of the proposed methods for active perception and processing of complex events in IoMT-based manufacturing
    corecore