1,205 research outputs found

    Neural networks in control engineering

    Get PDF
    The purpose of this thesis is to investigate the viability of integrating neural networks into control structures. These networks are an attempt to create artificial intelligent systems with the ability to learn and remember. They mathematically model the biological structure of the brain and consist of a large number of simple interconnected processing units emulating brain cells. Due to the highly parallel and consequently computationally expensive nature of these networks, intensive research in this field has only become feasible due to the availability of powerful personal computers in recent years. Consequently, attempts at exploiting the attractive learning and nonlinear optimization characteristics of neural networks have been made in most fields of science and engineering, including process control. The control structures suggested in the literature for the inclusion of neural networks in control applications can be divided into four major classes. The first class includes approaches in which the network forms part of an adaptive mechanism which modulates the structure or parameters of the controller. In the second class the network forms part of the control loop and replaces the conventional control block, thus leading to a pure neural network control law. The third class consists of topologies in which neural networks are used to produce models of the system which are then utilized in the control structure, whilst the fourth category includes suggestions which are specific to the problem or system structure and not suitable for a generic neural network-based-approach to control problems. Although several of these approaches show promising results, only model based structures are evaluated in this thesis. This is due to the fact that many of the topologies in other classes require system estimation to produce the desired network output during training, whereas the training data for network models is obtained directly by sampling the system input(s) and output(s). Furthermore, many suggested structures lack the mathematical motivation to consider them for a general structure, whilst the neural network model topologies form natural extensions of their linear model based origins. Since it is impractical and often impossible to collect sufficient training data prior to implementing the neural network based control structure, the network models have to be suited to on-line training during operation. This limits the choice of network topologies for models to those that can be trained on a sample by sample basis (pattern learning) and furthermore are capable of learning even when the variation in training data is relatively slow as is the case for most controlled dynamic systems. A study of feedforward topologies (one of the main classes of networks) shows that the multilayer perceptron network with its backpropagation training is well suited to model nonlinear mappings but fails to learn and generalize when subjected to slow varying training data. This is due to the global input interpretation of this structure, in which any input affects all hidden nodes such that no effective partitioning of the input space can be achieved. This problem is overcome in a less flexible feedforward structure, known as regular Gaussian network. In this network, the response of each hidden node is limited to a -sphere around its center and these centers are fixed in a uniform distribution over the entire input space. Each input to such a network is therefore interpreted locally and only effects nodes with their centers in close proximity. A deficiency common to all feedforward networks, when considered as models for dynamic systems, is their inability to conserve previous outputs and states for future predictions. Since this absence of dynamic capability requires the user to identify the order of the system prior to training and is therefore not entirely self-learning, more advanced network topologies are investigated. The most versatile of these structures, known as a fully recurrent network, re-uses the previous state of each of its nodes for subsequent outputs. However, despite its superior modelling capability, the tests performed using the Williams and Zipser training algorithm show that such structures often fail to converge and require excessive computing power and time, when increased in size. Despite its rigid structure and lack of dynamic capability, the regular Gaussian network produces the most reliable and robust models and was therefore selected for the evaluations in this study. To overcome the network initialization problem, found when using a pure neural network model, a combination structure· _in which the network operates in parallel with a mathematical model is suggested. This approach allows the controller to be implemented without any prior network training and initially relies purely on the mathematical model, much like conventional approaches. The network portion is then trained during on-line operation in order to improve the model. Once trained, the enhanced model can be used to improve the system response, since model exactness plays an important role in the control action achievable with model based structures. The applicability of control structures based on neural network models is evaluated by comparing the performance of two network approaches to that of a linear structure, using a simulation of a nonlinear tank system. The first network controller is developed from the internal model control (IMC) structure, which includes a forward and inverse model of the system to be controlled. Both models can be replaced by a combination of mathematical and neural topologies, the network portion of which is trained on-line to compensate for the discrepancies between the linear model _ and nonlinear system. Since the network has no dynamic ·capacity, .former system outputs are used as inputs to the forward and inverse model. Due to this direct feedback, the trained structure can be tuned to perform within limits not achievable using a conventional linear system. As mentioned previously the IMC structure uses both forward and inverse models. Since the control law requires that these models are exact inverses, an iterative inversion algorithm has to be used to improve the values produced by the inverse combination model. Due to deadtimes and right-half-plane zeroes, many systems are furthermore not directly invertible. Whilst such unstable elements can be removed from mathematical models, the inverse network is trained directly from the forward model and can not be compensated. These problems could be overcome by a control structure for which only a forward model is required. The neural predictive controller (NPC) presents such a topology. Based on the optimal control philosophy, this structure uses a model to predict several future outputs. The errors between these and the desired output are then collected to form the cost function, which may also include other factors such as the magnitude of the change in input. The input value that optimally fulfils all the objectives used to formulate the cost function, can then be found by locating its minimum. Since the model in this structure includes a neural network, the optimization can not be formulated in a closed mathematical form and has to be performed using a numerical method. For the NPC topology, as for the neural network IMC structure, former system outputs are fed back to the model and again the trained network approach produces results not achievable with a linear model. Due to the single network approach, the NPC topology furthermore overcomes the limitations described for the neural network IMC structure and can be extended to include multivariable systems. This study shows that the nonlinear modelling capability of neural networks can be exploited to produce learning control structures with improved responses for nonlinear systems. Many of the difficulties described are due to the computational burden of these networks and associated algorithms. These are likely to become less significant due to the rapid development in computer technology and advances in neural network hardware. Although neural network based control structures are unlikely to replace the well understood linear topologies, which are adequate for the majority of applications, they might present a practical alternative where (due to nonlinearity or modelling errors) the conventional controller can not achieve the required control action

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio

    Intelligent methods for complex systems control engineering

    Get PDF
    This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions

    A novel MRE adaptive seismic isolator using curvelet transform identification

    Get PDF
    Magnetorheological elastomeric (MRE) material is a novel type of material that can adap-tively change the rheological property rapidly, continuously, and reversibly when subjected to real-time external magnetic field. These new type of MRE materials can be developed by employing various schemes, for instance by mixing carbon nanotubes or acetone contents during the curing process which produces functionalized multiwall carbon nanotubes (MWCNTs). In order to study the mechanical and magnetic effects of this material, for potential application in seismic isolation, in this paper, different mathematical models of magnetorheological elastomers are analyzed and modified based on the reported studies on traditional magnetorheological elastomer. In this regard, a new feature identification method, via utilizing curvelet analysis, is proposed to make a multi-scale constituent analysis and subsequently a comparison between magnetorheological elastomer nanocomposite and traditional magnetorheological elastomers in a microscopic level. Furthermore, by using this “smart” material as the laminated core structure of an adaptive base isolation system, magnetic circuit analysis is numerically conducted for both complete and incomplete designs. Magnetic distribution of different laminated magnetorheological layers is discussed when the isolator is under compressive preloading and lateral shear loading. For a proof of concept study, a scaled building structure is established with the proposed isolation device. The dynamic performance of this isolated structure is analyzed by using a newly developed reaching law sliding mode control and Radial Basis Function (RBF) adaptive sliding mode control schemes. Transmissibility of the structural system is evaluated to assess its adaptability, controllability and nonlinearity. As the findings in this study show, it is promising that the structure can achieve its optimal and adaptive performance by designing an isolator with this adaptive material whose magnetic and mechanical properties are functionally enhanced as compared with traditional isolation devices. The adaptive control algorithm presented in this research can transiently suppress and protect the structure against non-stationary disturbances in the real time

    Application of Wilcoxon Norm for increased Outlier Insensitivity in Function Approximation Problems

    Get PDF
    In system theory, characterization and identification are fundamental problems. When the plant behavior is completely unknown, it may be characterized using certain model and then, its identification may be carried out with some artificial neural networks(ANN) (like multilayer perceptron(MLP) or functional link artificial neural network(FLANN) ) or Radial Basis Functions(RBF) using some learning rules such as the back propagation (BP) algorithm. They offer flexibility, adaptability and versatility, for the use of a variety of approaches to meet a specific goal, depending upon the circumstances and the requirements of the design specifications. The first aim of the present thesis is to provide a framework for the systematic design of adaptation laws for nonlinear system identification and channel equalization. While constructing an artificial neural network or a radial basis function neural network, the designer is often faced with the problem of choosing a network of the right size for the task. Using a smaller neural network decreases the cost of computation and increases generalization ability. However, a network which is too small may never solve the problem, while a larger network might be able to. Transmission bandwidth being one of the most precious resources in digital communication, Communication channels are usually modeled as band-limited linear finite impulse response (FIR) filters with low pass frequency response

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Process control for WAAM using computer vision

    Get PDF
    This study is mainly about the vision system and control algorithm programming for wire arc additive manufacturing (WAAM). Arc additive manufacturing technology is formed by the principle of heat source cladding produced by welders using molten inert gas shielded welding (MIG), tungsten inert gas shielded welding (TIG) and layered plasma welding power supply (PA). It has high deposition efficiency, short manufacturing cycle, low cost, and easy maintenance. Although WAAM has very good uses in various fields, the inability to control the adding process in real time has led to defects in the weld and reduced quality. Therefore, it is necessary to develop the real-time feedback through computer vision and algorithms for WAAM to ensure that the thickness and the width of each layer during the addition process are the same

    Value Function Estimation in Optimal Control via Takagi-Sugeno Models and Linear Programming

    Full text link
    [ES] La presente Tesis emplea técnicas de programación dinámica y aprendizaje por refuerzo para el control de sistemas no lineales en espacios discretos y continuos. Inicialmente se realiza una revisión de los conceptos básicos de programación dinámica y aprendizaje por refuerzo para sistemas con un número finito de estados. Se analiza la extensión de estas técnicas mediante el uso de funciones de aproximación que permiten ampliar su aplicabilidad a sistemas con un gran número de estados o sistemas continuos. Las contribuciones de la Tesis son: -Se presenta una metodología que combina identificación y ajuste de la función Q, que incluye la identificación de un modelo Takagi-Sugeno, el cálculo de controladores subóptimos a partir de desigualdades matriciales lineales y el consiguiente ajuste basado en datos de la función Q a través de una optimización monotónica. -Se propone una metodología para el aprendizaje de controladores utilizando programación dinámica aproximada a través de programación lineal. La metodología hace que ADP-LP funcione en aplicaciones prácticas de control con estados y acciones continuos. La metodología propuesta estima una cota inferior y superior de la función de valor óptima a través de aproximadores funcionales. Se establecen pautas para los datos y la regularización de regresores con el fin de obtener resultados satisfactorios evitando soluciones no acotadas o mal condicionadas. -Se plantea una metodología bajo el enfoque de programación lineal aplicada a programación dinámica aproximada para obtener una mejor aproximación de la función de valor óptima en una determinada región del espacio de estados. La metodología propone aprender gradualmente una política utilizando datos disponibles sólo en la región de exploración. La exploración incrementa progresivamente la región de aprendizaje hasta obtener una política convergida.[CA] La present Tesi empra tècniques de programació dinàmica i aprenentatge per reforç per al control de sistemes no lineals en espais discrets i continus. Inicialment es realitza una revisió dels conceptes bàsics de programació dinàmica i aprenentatge per reforç per a sistemes amb un nombre finit d'estats. S'analitza l'extensió d'aquestes tècniques mitjançant l'ús de funcions d'aproximació que permeten ampliar la seua aplicabilitat a sistemes amb un gran nombre d'estats o sistemes continus. Les contribucions de la Tesi són: -Es presenta una metodologia que combina identificació i ajust de la funció Q, que inclou la identificació d'un model Takagi-Sugeno, el càlcul de controladors subòptims a partir de desigualtats matricials lineals i el consegüent ajust basat en dades de la funció Q a través d'una optimització monotónica. -Es proposa una metodologia per a l'aprenentatge de controladors utilitzant programació dinàmica aproximada a través de programació lineal. La metodologia fa que ADP-LP funcione en aplicacions pràctiques de control amb estats i accions continus. La metodologia proposada estima una cota inferior i superior de la funció de valor òptima a través de aproximadores funcionals. S'estableixen pautes per a les dades i la regularització de regresores amb la finalitat d'obtenir resultats satisfactoris evitant solucions no fitades o mal condicionades. -Es planteja una metodologia sota l'enfocament de programació lineal aplicada a programació dinàmica aproximada per a obtenir una millor aproximació de la funció de valor òptima en una determinada regió de l'espai d'estats. La metodologia proposa aprendre gradualment una política utilitzant dades disponibles només a la regió d'exploració. L'exploració incrementa progressivament la regió d'aprenentatge fins a obtenir una política convergida.[EN] The present Thesis employs dynamic programming and reinforcement learning techniques in order to obtain optimal policies for controlling nonlinear systems with discrete and continuous states and actions. Initially, a review of the basic concepts of dynamic programming and reinforcement learning is carried out for systems with a finite number of states. After that, the extension of these techniques to systems with a large number of states or continuous state systems is analysed using approximation functions. The contributions of the Thesis are: -A combined identification/Q-function fitting methodology, which involves identification of a Takagi-Sugeno model, computation of (sub)optimal controllers from Linear Matrix Inequalities, and the subsequent data-based fitting of Q-function via monotonic optimisation. -A methodology for learning controllers using approximate dynamic programming via linear programming is presented. The methodology makes that ADP-LP approach can work in practical control applications with continuous state and input spaces. The proposed methodology estimates a lower bound and upper bound of the optimal value function through functional approximators. Guidelines are provided for data and regressor regularisation in order to obtain satisfactory results avoiding unbounded or ill-conditioned solutions. -A methodology of approximate dynamic programming via linear programming in order to obtain a better approximation of the optimal value function in a specific region of state space. The methodology proposes to gradually learn a policy using data available only in the exploration region. The exploration progressively increases the learning region until a converged policy is obtained.This work was supported by the National Department of Higher Education, Science, Technology and Innovation of Ecuador (SENESCYT), and the Spanish ministry of Economy and European Union, grant DPI2016-81002-R (AEI/FEDER,UE). The author also received the grant for a predoctoral stay, Programa de Becas Iberoamérica- Santander Investigación 2018, of the Santander Bank.Díaz Iza, HP. (2020). Value Function Estimation in Optimal Control via Takagi-Sugeno Models and Linear Programming [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/139135TESI
    corecore