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AABBSSTTRRAACCTT  

 

 In system theory, characterization and identification are fundamental problems. When 

the plant behavior is completely unknown, it may be characterized using certain model and then, its 

identification may be carried out with some artificial neural networks(ANN) (like multilayer 

perceptron(MLP) or functional link artificial neural network(FLANN) ) or Radial Basis 

Functions(RBF) using some learning rules such as the back propagation (BP) algorithm. They offer 

flexibility, adaptability and versatility, for the use of a variety of approaches to meet a specific goal, 

depending upon the circumstances and the requirements of the design specifications. The first aim of 

the present thesis is to provide a framework for the systematic design of adaptation laws for 

nonlinear system identification and channel equalization. While constructing an artificial neural 

network or a radial basis function neural network, the designer is often faced with the problem of 

choosing a network of the right size for the task. Using a smaller neural network decreases the cost of 

computation and increases generalization ability. However, a network which is too small may never 

solve the problem, while a larger network might be able to. Transmission bandwidth being one of the 

most precious resources in digital communication, Communication channels are usually modeled as 

band-limited linear finite impulse response (FIR) filters with low pass frequency response.  

 

 The second aim of the thesis is to propose a method of dealing with the inevitable 

presence of Outliers in system identification and function approximation problems.  In statistics, an 

outlier is an observation that is numerically distant from the rest of the data. Statistics derived from 

data sets that include outliers may be misleading. As is well known in statistics, the resulting linear 

regressors by using the rank-based Wilcoxon approach to linear regression problems are usually 

robust against (or insensitive to) outliers. This is the prime motivation behind the introduction of the 

Wilcoxon approach to the area of machine learning in this paper. Specifically, we investigate two 

new learning machines, namely Wilcoxon neural network (WNN) and Wilcoxon generalized radial 

basis function network (WGRBFN).These provide alternative learning machines when faced with 

general nonlinear learning problems.  

 

 This thesis presents a comprehensive comparative study covering the implementation 

of Artificial Neural Network (ANN) and Generalized Radial Basis Functions (GRBFNN) and their 



ii 
 

Wilcoxon versions, namely Wilcoxon Neural Network (WNN) and Wilcoxon Generalized Radial 

Basis Function Neural Network (WGRBFNN) for nonlinear system identification and channel 

equalization. All the structures mentioned above, and their conventional gradient-descent training 

methods were extensively studied.  

 Simulation results show that the Wilcoxon learning machines proposed as such have 

good robustness against outliers as applied to artificial neural networks and generalized radial basis 

functions. 
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1. INTRODUCTION 

1.1. INTRODUCTION.  

  System identification is one of the most important areas in engineering because of 

its applicability to a wide range of problems. Mathematical system theory, which has in the past 

few decades evolved into a powerful scientific discipline of wide applicability, deals with 

analysis and synthesis of systems. The best developed theory for systems defined by linear 

operators using well established techniques based on linear algebra, complex variable theory and 

theory of ordinary linear differential equations. Design techniques for dynamical systems are 

closely related to their stability properties. Necessary and sufficient conditions for stability of 

linear time-invariant systems have been generated over past century, well-known design methods 

have been established for such systems. In contrast to this, the stability of nonlinear systems can 

be established for the most part only on a system-by-system basis. 

  In the past few decades major advances have been made in adaptive identification 

and control for identifying and controlling linear time-invariant plants with unknown parameters. 

The choice of the identifier and the controller structures based on well established results in 

linear systems theory. Stable adaptive laws for the adjustment of parameters in these which 

assures the global stability of the relevant overall systems are also based on properties of linear 

systems as well as stability results that are well known for such systems [1.1]. 

Machine learning, namely learning from examples, has been an active research area for several 

decades. Popular and powerful learning machines proposed in the past include artificial neural 

networks (ANNs) [1]–[4], generalized radial basis function networks (GRBFNs) [5]–[7], fuzzy 

neural networks (FNNs) [8], [9], and support vector machines (SVMs). They are different in 

their origins, network configurations, and objective functions. They have also been successfully 

applied in many branches of science and engineering. In statistical terms, the aforementioned 

learning machines are nonparametric in the sense that they do not make any assumptions of the 

functional form, e.g., linearity, of the discriminant or predictive functions. Among these, we 

would be particularly interested in ANN and GRBFNN. 

  Robust smoothing is a central idea in statistics that aims to simultaneously 

estimate and model the underlying structure. Outliers are observations that are separated in some 

fashion from the rest of the data. Hence, outliers are data points that are not typical of the rest of 
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the data. Depending on their location, outliers may have moderate to severe effects on the 

regression model. A regressor or a learning machine is said to be robust if it is insensitive to 

outliers in the data 

 

1.2. MOTIVATION  

 Adaptive filtering has proven to be useful in many contexts such as linear 

prediction, channel equalization, noise cancellation, and system identification. The adaptive filter 

attempts to iteratively determine an optimal model for the unknown system, or “plant”, based on 

some function of the error between the output of the adaptive filter and the output of the plant. 

The optimal model or solution is attained when this function of the error is minimized. The 

adequacy of the resulting model depends on the structure of the adaptive filter, the algorithm 

used to update the adaptive filter parameters, and the characteristics of the input signal.  

 When the parameters of a physical system are not available or time dependent it is 

difficult to obtain the mathematical model of the system. In such situations, the system 

parameters should be obtained using a system identification procedure. The purpose of system 

identification is to construct a mathematical model of a physical system from input-output 

mapping. Studies on linear system identification have been carried out for more than three 

decades [1.3]. However, identification of nonlinear systems is a promising research area. 

Nonlinear characteristics such as saturation, dead-zone, etc. are inherent in many real systems. In 

order to analyze and control such systems, identification of nonlinear system is necessary. 

Hence, adaptive nonlinear system identification has become more challenging and received 

much attention in recent years [1.4]. The conventional LMS algorithm [1.5] fails in case of 

nonlinear channels and plants. Several approaches based on Artificial Neural Network (ANN) 

and Generalized Radial Basis Functions (GRBFNN) have been discussed in this paper for 

estimation of nonlinear systems. 

 In statistics, an outlier is an observation that is numerically distant from the rest of 

the data. Depending on their location, outliers may have moderate to severe effects on the 

regression model. Statistics derived from data sets that include outliers may be misleading. For 

example, if one is calculating the average temperature of 10 objects in a room, and most are 

between 20 and 25 degrees Celsius, but an oven is at 350 °C, the median of the data may be 23 
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but the mean temperature will be 55. In this case, the median better reflects the temperature of a 

randomly sampled object than the mean. Outliers may be indicative of data points that belong to 

a different population than the rest of the sample set. As is well known in statistics, the resulting 

linear regressors by using the rank-based Wilcoxon approach to linear regression problems are 

usually robust against (or insensitive to) outliers. It is then natural to generalize the Wilcoxon 

approach for linear regression problems to nonparametric Wilcoxon learning machines for 

nonlinear regression problems. This is the prime motivation behind the introduction of the 

Wilcoxon approach to the area of machine learning in this paper. Specifically, we investigate two 

new learning machines, namely Wilcoxon neural network (WNN) and Wilcoxon generalized 

radial basis function network (WGRBFN).These provide alternative learning machines when 

faced with general nonlinear learning problems. 

  

1.3. A BRIEF SKETCH OF CONTENTS 

 In Chapter 2, adaptive modeling and system identification problem is defined for linear 

and nonlinear plants. The conventional LMS algorithm and other gradient based 

algorithms for FIR system are derived. Nonlinearity problems are discussed briefly and 

various methods are proposed for its solution.  

 

 In Chapter 3, the theory, structure and algorithms of various artificial neural networks 

are discussed. We focus on Multilayer Perceptron (MLP).  

 

 Chapter 4 gives an introduction to Radial Basis Function Neural Network (RBFNN). 

Different training strategies to train GRBFNN are thoroughly discussed. Simulations are 

carried out for the stochastic gradient approach for identification of non-linear and noisy 

plants. 

  

 In Chapter 5, introduces the Wilcoxon Learning Approach as applied to various learning 

machines. The Wilcoxon Norm is defined and its application in developing Wilcoxon 

Neural Networks (WNN) and Wilcoxon Generalized Radial Basis Functions 

(WGRBFNN) is shown. The gradient descent methods for these new networks are 

derived.  
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 Chapter 6 summarizes the work done in this thesis work and points to possible directions 

for future work, more precisely, application of Wilcoxon Norm to various learning 

machines for increasing the robustness against outliers in various function approximation 

problems. Simulations are shown with the new update equations as derived and the 

results are compared with conventional ANN and GRBFNN.    
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2. ADAPTIVE MODELING AND SYSTEM IDENTIFICATION  

2.1. INTRODUCTION  

Modeling and system identification is a very broad subject, of great importance in the fields of 

control system, communications, and signal processing. Modeling is also important outside the 

traditional engineering discipline such as social systems, economic systems, or biological 

systems. An adaptive filter can be used in modeling that is, imitating the behavior of physical 

systems which may be regarded as unknown “black boxes” having one or more inputs and one or 

more outputs. The essential and principal property of an adaptive system is its time-varying, self-

adjusting performance. System identification [2.1, 2.2] is the experimental approach to process 

modeling. System identification includes the following steps : 

• Experiment design Its purpose is to obtain good experimental data and it includes the 

choice of the measured variables and of the character of the input signals.  

• Selection of model structure A suitable model structure is chosen using prior knowledge 

and trial and error.  

• Choice of the criterion to fit: A suitable cost function is chosen, which reflects how well 

the model fits the experimental data.  

• Parameter estimation An optimization problem is solved to obtain the numerical values of 

the model parameters. 

• Model validation: The model is tested in order to reveal any inadequacies.  

The adaptive systems have following characteristics  

1) They can automatically adapt (self-optimize) in the face of changing (non-

stationary) environments and changing system requirements.  

2) They can be trained to perform specific filtering and decision making tasks.  

3) They can extrapolate a model of behavior to deal with new situations after trained 

on a finite and often small number of training signals and patterns.  

4) They can repair themselves to a limited extent.  

5) They can be described as nonlinear systems with time varying parameters.  

The adaptation is of two types  
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(i) open-loop adaptation  

The open-loop adaptive process is shown in Fig.2.1.(a). It involves making measurements of 

input or environment characteristics, applying this information to a formula or to a computational 

algorithm, and using the results to set the adjustments of the adaptive system. The adaptation of 

process parameters don’t depend upon the output signal. 

 
(a)                               (b) 

Fig.2.1. Type of adaptations (a) Open-loop adaptation and (b) Closed-loop adaptation  
 
(ii) closed-loop adaptation  

Close-loop adaptation, as shown in Fig. 2.1.(b),on the other hand involves the automatic 

experimentation with these adjustments and knowledge of their outcome in order to optimize a 

measured system performance. The latter process may be called adaptation by “performance 

feedback”. The adaptation of process parameters depends upon the input as well as output signal.  

 

2.2. ADAPTIVE FILTER  
 

An adaptive filter [2.3, 2.4] is a computational device that attempts to model the 

relationship between two signals in real time in an iterative manner. Adaptive filters are often 

realized either as a set of program instructions running on an arithmetical processing device such 

as a microprocessor or digital signal processing (DSP) chip, or as a set of logic operations 

implemented in a field-programmable gate array (FPGA). However, ignoring any errors 
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introduced by numerical precision effects in these implementations, the fundamental operation of 

an adaptive filter can be characterized independently of the specific physical realization that it 

takes. For this reason, we shall focus on the mathematical forms of adaptive filters as opposed to 

their specific realizations in software or hardware. An adaptive filter is defined by four aspects:  

1. The signals being processed by the filter.  

 

2. The structure that defines how the output signal of the filter is computed from its input signal  

 

3. The parameters within this structure that can be iteratively changed to alter the filter's input-

output relationship.  

 

4. The adaptive algorithm that describes how the parameters are adjusted from one time instant 

to the next.  

 

By choosing a particular adaptive filter structure, one specifies the number and type of 

parameters that can be adjusted. The adaptive algorithm used to update the parameter values of 

the system can take on an infinite number of forms and is often derived as a form of optimization 

procedure that minimizes an error. 

       
                      Fig.2.2. General Adaptive Filtering 

Fig.2.2. shows a block diagram in which a sample from a digital input signal x(n) is fed into a 

device, called an adaptive filter, that computes a corresponding output signal sample y(n) at time 
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n. For the moment, the structure of the adaptive filter is not important, except for the fact that it 

contains adjustable parameters whose values affect how y(n) is computed. The output signal is 

compared to a second signal d(n), called the desired response signal, by subtracting the two 

samples at time n. This difference signal, given by 

e(n) = d(n) – y(n)                (2.1) 

is known as the error signal. The error signal is fed into a procedure which alters or adapts the 

parameters of the filter from time n to time (n + 1) in a well-defined manner. As the time index n 

is incremented, it is hoped that the output of the adaptive filter becomes a better and better match 

to the desired response signal through this adaptation process, such that the magnitude of e(n) 

decreases over time. In the adaptive filtering task, adaptation refers to the method by which the 

parameters of the system are changed from time index n to time index (n +1). The number and 

types of parameters within this system depend on the computational structure chosen for the 

system. We now discuss different filter structures that have been proven useful for adaptive 

filtering tasks. 

2.3. FILTER STRUCTURES 

In general, any system with a finite number of parameters that affect how y(n) is 

computed from x(n) could be used for the adaptive filter in Fig. 2.2.. Define the parameter or 

coefficient vector  

W(n) = [ w0(n)  w1(n) …… wL-1(n) ]T             (2.2) 

where { wi(n)}, 0 < i < L - 1 are the L parameters of the system at time n.  

The filter model typically takes the form of a finite-impulse-response (FIR) or infinite-impulse-

response (IIR) filter. Figure2.3. shows the structure of a direct-form FIR filter, also known as a 

tapped-delay-line or transversal filter, where z-1 
denotes the unit delay element and each wi(n) is 

a multiplicative gain within the system. In this case, the parameters in W(n) correspond to the 

impulse response values of the filter at time n. We can write the output signal y(n) as  

 

          =   WT(n)X(n)     (2.3) 

where  X(n) = [ x(n)  x(n-1) …… x(n- L + 1) ]T    denotes the input signal vector and -
T 

denotes 

vector transpose. Note that this system requires L multipliers and L - 1 delays to implement and 
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these computations are easily performed by a processor or circuit so long as L is not too large 

and the sampling period for the signals is not too short. It also requires a total of 2L memory 

locations to store the L input signal samples and the L coefficient values, respectively.  

 

    Fig.2.3. FIR filter structure 

2.4. APPLICATION OF ADAPTIVE FILTERS.  
Perhaps the most important driving forces behind the developments in adaptive filters 

throughout their history have been the wide range of applications in which such systems can be used. 

We now discuss the forms of these applications in terms of more-general problem classes that 

describe the assumed relationship between d(n) and x(n). Our discussion illustrates the key issues in 

selecting an adaptive filter for a particular task. 

 

2.4.1. Direct Modeling (Function Approximation & System Identification)  
 

In function approximation problems, we are given a set of input-output patterns and we try to 

estimate the underlying function that relates the input to the output. This is done by passing the same 

set of input points to the function and an adaptive filter kept parallel to the function,Fig.2.4 gives an 

illustration. The outputs or response of both the function and the filter is found out and their 

difference is noted. This difference is the error.  The error is minimized by an adaptive algorithm that 

updates the weights of the adaptive filter. System Identification is a special case of function 

approximation. Here the underlying function is the provided by a plant or system and our aim is to 

determine the impulse response of this system. 

 
In direct modeling, the adaptive model is kept parallel with the unknown plant. Modeling a 

single-input, single-output system is illustrated in Fig.2.5..Both the unknown system and adaptive 

filter are driven by the same input. The adaptive filter adjusts itself in such a way that its output is 
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matched with that of the unknown system. Upon convergence, the structure and parameter values of 

the adaptive system may or may not resemble those of unknown systems, but the input-output 

response relationship will match. In this sense, the adaptive system becomes a model of the unknown 

plant 

                                       
                                                 Fig.2.4. Function approximation 

           
                                                      Fig.2.5. System Identification 

Let d(n) and y(n) represent the output of the unknown system and adaptive model with 

x(n) as its input. Here, the task of the adaptive filter is to accurately represent the signal d(n) at 

its output. If y(n) = d (n), then the adaptive filter has accurately modeled or identified the portion 

of the unknown system that is driven by x(n).  

Since the model typically chosen for the adaptive filter is a linear filter, the practical goal of the 

adaptive filter is to determine the best linear model that describes the input-output relationship of 

the unknown system. Such a procedure makes the most sense when the unknown system is also a 

linear model of the same structure as the adaptive filter, as it is possible that y(n) = d(n) for some 

set of adaptive filter parameters. For ease of discussion, let the unknown system and the adaptive 

filter both be FIR filters, such that  
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d(n)=   WT
OPT(n)X(n)          (2.4) 

where W
OPT

(n) is an optimum set of filter coefficients for the unknown system at time n. In this 

problem formulation, the ideal adaptation procedure would adjust W(n) such that W(n) = W
OPT 

(n) as 

n→∞ . In practice, the adaptive filter can only adjust W(n) such that y(n) closely approximates d(n) 

over time.  

The system identification task is at the heart of numerous adaptive filtering applications. We list 

several of these applications here 

 
• Plant Identification  
 
• Echo Cancellation for Long-Distance Transmission  
 
• Acoustic Echo Cancellation  
 
• Adaptive Noise Canceling  
 

2.4.2. Inverse Modeling  

We now consider the general problem of inverse modeling, as shown in Fig.2.6. In this 

diagram, a source signals s(n) is fed into a plant that produces the input signal x(n) for the 

adaptive filter. The output of the adaptive filter is subtracted from a desired response signal that 

is a delayed version of the source signal, such that  

d(n) = s (n - Δ)            (2.5) 

where Δ is a positive integer value. The goal of the adaptive filter is to adjust its characteristics 

such that the output signal is an accurate representation of the delayed source signal. 

 
Fig.2.6 Inverse Modeling 
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2.5. GRADIENT BASED ADAPTIVE ALGORITHM  

An adaptive algorithm is a procedure for adjusting the parameters of an adaptive filter to 

minimize a cost function chosen for the task at hand. In this section, we describe the general 

form of many adaptive FIR filtering algorithms and present a simple derivation of the LMS 

adaptive algorithm. In our discussion, we only consider an adaptive FIR filter structure, such that 

the output signal y(n) is given by (2.3). Such systems are currently more popular than adaptive 

IIR filters because  

(1) The input-output stability of the FIR filter structure is guaranteed for any set  

of fixed coefficients, and  

(2) The algorithms for adjusting the coefficients of FIR filters are simpler in general than those 

for adjusting the coefficients of IIR filters. 

2.5.1. General Form of Adaptive FIR Algorithm  
The general form of an adaptive FIR filtering algorithm is  

W(n+1) = W(n) + μ(n) G ( e(n),X(n),φ(n) )       (2.6) 

where G(-) is a particular vector-valued nonlinear function, μ(n) is a step size parameter, e(n) and 

X(n) are the error signal and input signal vector, respectively, and φ(n) is a vector of states that store 

pertinent information about the characteristics of the input and error signals and/or the coefficients at 

previous time instants. In the simplest algorithms, φ(n) is not used, and the only information needed 

to adjust the coefficients at time n are the error signal, input signal vector, and step size.  

The step size is so called because it determines the magnitude of the change or "step" that is taken by 

the algorithm in iteratively determining a useful coefficient vector. Much research effort has been 

spent characterizing the role that μ(n) plays in the performance of adaptive filters in terms of the 

statistical or frequency characteristics of the input and desired response signals. Often, success or 

failure of an adaptive filtering application depends on how the value of μ(n) is chosen or calculated to 

obtain the best performance from the adaptive filter. 

2.5.2. The Mean-Squared Error Cost Function  

The form of G(-) in (2.6) depends on the cost function chosen for the given adaptive filtering 

task. We now consider one particular cost function that yields a popular adaptive algorithm. Define 

the mean-squared error (MSE) cost function as  

1
2

∞

∞
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                                                              =  E{ }      (2.7) 

where p
n
(e(n)) represents the probability density function of the error at time n and E{-} is shorthand 

for the expectation integral on the right-hand side of (2.7). The MSE cost function is useful for 

adaptive FIR filters because  

• ξ
MSE 

(n) has a well-defined minimum with respect to the parameters in W(n);  

 

• the coefficient values obtained at this minimum are the ones that minimize the power in the error 

signal e(n), indicating that y(n) has approached d{n); and  

 

• ξ
MSE 

is a smooth function of each of the parameters in W(n), such that it is differentiable with 

respect to each of the parameters in W(n). The third point is important in that it enables us to 

determine both the optimum coefficient values given knowledge of the statistics of d(n) and x(n) as 

well as a simple iterative procedure for adjusting the parameters of an FIR filter.  

 
2.5.3. The Wiener Solution.  

For the FIR filter structure, the coefficient values in W(n) that minimize ξ
MSE 

(n) are well-

defined if the statistics of the input and desired response signals are known. The formulation of 

this problem for continuous-time signals and the resulting solution was first derived by Wiener 

[2.3]. Hence, this optimum coefficient vector W
MSE 

(n) is often called the Wiener solution to the 

adaptive filtering problem. The extension of Wiener's analysis to the discrete-time case is 

attributed to Levinson . To determine W
MSE 

(n) we note that the function ξ
MSE

(n) in (2.7) is 

quadratic in the parameters {w
i
(n)}, and the function is also differentiable. Thus, we can use a 

result from optimization theory that states that the derivatives of a smooth cost function with 

respect to each of the parameters is zero at a minimizing point on the cost function error surface. 

Thus, W
MSE 

(n) can be found from the solution to the system of equations  

  0    , 0  L-1                        (2.8) 

 
Taking derivatives of ξ

MSE 
(n) in (2.7) we obtain  
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   =  E{ e(n)   }            (2.9) 

       =  E{ e(n)   }          (2.10) 

       =  E{ e(n)  }          (2.11) 

                  =  ( E{ d(n)  }   ∑     (2.12) 

 

where we have used the definitions of e(n) and of y(n) for the FIR filter structure in (2.1) and 

(2.6), respectively, to expand the last result in (2.15). By defining the matrix R
XX

(n) 

(autocorrelation matrix) and vector P
dx

(n) (cross correlation matrix) as  

  R
XX

(n) = E ( X(n)X(n)T ) 

            and         (2.13)  

            P
dx

(n) = E ( d(n) X(n) ) 

 
respectively, we can combine (2.8) and (2.13) to obtain the system of equations in vector form as  
 

  R
XX

(n) W
MSE 

(n)    P
dx

(n) = 0     (2.14) 

 
where 0 is the zero vector. Thus, so long as the matrix R

XX
(n) is invertible, the optimum Wiener 

solution vector for this problem is  
 
                        W

MSE 
(n) = R

XX 
-1(n)  P

dx
(n)      (2.15) 
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2.5.4. The Method of Steepest Descent  

The method of steepest descent is a celebrated optimization procedure for minimizing the 

value of a cost function ξ(n) with respect to a set of adjustable parameters W(n). This procedure 

adjusts each parameter of the system according to  

1    

                                                                                                                              (2.16) 

In other words, the i
th 

parameter of the system is altered according to the derivative of the cost 
function with respect to the i

th 
parameter. Collecting these equations in vector form, we have  

 

1    

            (2.17) 

where ∂ξ(n)/∂W(n) is a vector of derivatives dξ(n)/dw
i
(n).  

 
Substituting these results into (2.17) yields the update equation for W(n) as  
 
                                  1       (2.18) 

 
However, this steepest descent procedure depends on the statistical quantities E{d(n)x(n-i)} and 

E{x(n-i)x(n-j)} contained in P
dx

(n) and R
xx

(n), respectively. In practice, we only have 

measurements of both d(n) and x(n) to be used within the adaptation procedure. While suitable 

estimates of the statistical quantities needed for (2.21) could be determined from the signals x(n) 

and d{n), we instead develop an approximate version of the method of steepest descent that 

depends on the signal values themselves. This procedure is known as the LMS (least mean 

square) algorithm.  

 
2.6. LMS ALGORITHM  

The cost function ξ(n) chosen for the steepest descent algorithm of (2.16) determines the 

coefficient solution obtained by the adaptive filter. If the MSE cost function in (2.7) is chosen, 

the resulting algorithm depends on the statistics of x(n) and d(n) because of the expectation 

operation that defines this cost function. Since we typically only have measurements of d(n) and 
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of x(n) available to us, we substitute an alternative cost function that depends only on these 

measurements.  

 
we can propose the simplified cost function ξ

LMS
(n)given by  

 

ξ
LMS

(n) =  e2(n)      (2.19) 
 
This cost function can be thought of as an instantaneous estimate of the MSE cost function, as 

ξ
MSE

(n) =
 
E{ ξ

LMS
(n )}. Although it might not appear to be useful, the resulting algorithm 

obtained when ξ
LMS

(n) is used for ξ(n) in (2.16) is extremely useful for practical applications. 

Taking derivatives of ξ
LMS

(n) with respect to the elements of W(n) and substituting the result 

into (2.16), we obtain the LMS adaptive algorithm given by  

 

W(n+1) = W(n) + μ(n)e(n) X(n)    (2.20) 
 
Equation (2.20) requires only multiplications and additions to implement. In fact, the number and 

type of operations needed for the LMS algorithm is nearly the same as that of the FIR filter 

structure with fixed coefficient values, which is one of the reasons for the algorithm's popularity.  

The behavior of the LMS algorithm has been widely studied, and numerous results concerning 

its adaptation characteristics under different situations have been developed. For now, we 

indicate its useful behavior by noting that the solution obtained by the LMS algorithm near its 

convergent point is related to the Wiener solution. In fact, analysis of the LMS algorithm under 

certain statistical assumptions about the input and desired response signals show that  

lim    

                       (2.21) 

when the Wiener solution W
MSE 

(n) is a fixed vector. Moreover, the average behavior of the LMS 

algorithm is quite similar to that of the steepest descent algorithm in (2.18) that depends 

explicitly on the statistics of the input and desired response signals. In effect, the iterative nature 

of the LMS coefficient updates is a form of time-averaging that smoothes the errors in the 

instantaneous gradient calculations to obtain a more reasonable estimate of the true gradient.The 

problem is that gradient descent is a local optimization technique, which is limited because it is 
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unable to converge to the global optimum on a multimodal error surface if the algorithm is not 

initialized in the basin of attraction of the global optimum.  

Several modifications exist for gradient based algorithms in attempt to enable them to overcome 

local optima. One approach is to simply add a momentum term [2.3] to the gradient computation 

of the gradient descent algorithm to enable it to be more likely to escape from a local minimum. 

This approach is only likely to be successful when the error surface is relatively smooth with 

minor local minima, or some information can be inferred about the topology of the surface such 

that the additional gradient parameters can be assigned accordingly. Other approaches attempt to 

transform the error surface to eliminate or diminish the presence of local minima [2.16], which 

would ideally result in a unimodal error surface. The problem with these approaches is that the 

resulting minimum transformed error used to update the adaptive filter can be biased from the 

true minimum output error and the algorithm may not be able to converge to the desired 

minimum error condition. These algorithms also tend to be complex, slow to converge, and may 

not be guaranteed to emerge from a local minimum.  

Another approach, attempts to locate the global optimum by running several LMS 

algorithms in parallel, initialized with different initial coefficients. The notion is that a larger, 

concurrent sampling of the error surface will increase the likelihood that one process will be 

initialized in the global optimum valley. This technique does have potential, but it is inefficient 

and may still suffer the fate of a standard gradient technique in that it will be unable to locate the 

global optimum. By using a similar congregational scheme, but one in which information is 

collectively exchanged between estimates and intelligent randomization is introduced, structured 

stochastic algorithms are able to hill-climb out of local minima. This enables the algorithms to 

achieve better, more consistent results using a fewer number of total estimate.  

 
2.7. SYSTEM IDENTIFICATION  

System identification concerns with the determination of a system, on the basis of input 

output data samples. The identification task is to determine a suitable estimate of finite 

dimensional parameters which completely characterize the plant. The selection of the estimate is 

based on comparison between the actual output sample and a predicted value on the basis of 

input data up to that instant. An adaptive automaton is a system whose structure is alterable or 

adjustable in such a way that its behavior or performance improves through contact with its 
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environment. Depending upon input-output relation, the identification of systems can have two 

groups   

A. Static System Identification  

In this type of identification the output at any instant depends upon the input at that instant. 

These systems are described by the algebraic equations. The system is essentially a memoryless 

one and mathematically it is represented as y(n) = f [x(n)] where y(n) is the output at the nth 

instant corresponding to the input x(n). 

B. Dynamic System Identification  

In this type of identification the output at any instant depends upon the input at that instant as 

well as the past inputs and outputs. Dynamic systems are described by the difference or 

differential equations. These systems have memory to store past values and mathematically 

represented as y(n)=f [x(n), x(n-1),x(n-2)………..y(n-1),y(n-2),……] where y(n) is the output at 

the nth instant corresponding to the input x(n).  

 
Fig.2.7. Block Diagram of System Identification 
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A system identification structure is shown in Fig.2.6. The model is placed parallel to the 

nonlinear plant and same input is given to the plant as well as the model. The impulse response 

of the linear segment of the plant is represented by h(n) which is followed by nonlinearity(NL) 

associated with it. White Gaussian noise q(n) is added with nonlinear output accounts for 

measurement noise. The desired output d(n) is compared with the estimated output y(n) of the 

identifier to generate the error e(n) which is used by some adaptive algorithm for updating the 

weights of the model. The training of the filter weights is continued until the error becomes 

minimum and does not decrease further. At this stage the correlation between input signal and 

error signal is minimum. Then the training is stopped and the weights are stored for testing. For 

testing purpose new samples are passed through both the plant and the model and their responses 

are compared.  
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2. ARTIFICIAL NEURAL NETWORK 
 
3.1. INTRODUCTION  

Because of nonlinear signal processing and learning capability, Artificial Neural 

Networks (ANN’s) have become a powerful tool for many complex applications including 

functional approximation, nonlinear system identification and control, pattern recognition and 

classification, and optimization. The ANN’s are capable of generating complex mapping 

between the input and the output space and thus, arbitrarily complex nonlinear decision 

boundaries can be formed by these networks. An artificial neuron basically consists of a 

computing element that performs the weighted sum of the input signal and the connecting 

weight. The sum is added with the bias or threshold and the resultant signal is then passed 

through a non-linear element of tanh(.) type. Each neuron is associated with three parameters 

whose learning can be adjusted; these are the connecting weights, the bias and the slope of the 

non-linear function. For the structural point of view a neural network(NN) may be single layer or 

it may be multi-layer. In multi-layer structure, there is one or many artificial neurons in each 

layer and for a practical case there may be a number of layers. Each neuron of the one layer is 

connected to each and every neuron of the next layer.  

A neural network is a massively parallel distributed processor made up of simple processing unit, 

which has a natural propensity for storing experimental knowledge and making it available for 

use. It resembles the brain in two types  

1. Knowledge is acquired by the network from its environment through a learning process.  

2. Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge.  

Artificial Neural Networks (ANN) has emerged as a powerful learning technique to perform 

complex tasks in highly nonlinear dynamic environments. Some of the prime advantages of 

using ANN models are their ability to learn based on optimization of an appropriate error 

function and their excellent performance for approximation of nonlinear function. At present, 

most of the work on system identification using neural networks are based on multilayer feed 

forward neural networks with back propagation learning or more efficient variations of this 

algorithm On the other hand the Functional link ANN(FLANN) originally proposed by Paois a 

single layer structure with functionally mapped inputs. The performance of FLANN for system 
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identification of nonlinear systems has been reported [3.5] in the literature. Patra and Kot have 

used Chebyschev expansions for nonlinear system identification and have shown that the 

identification performance is better than that offered by the multilayer ANN (MLANN) model. 

Wang and Chen  have presented a fully automated recurrent neural network (FARNN) that is 

capable of self-structuring its network in a minimal representation with satisfactory performance 

for unknown dynamic system identification and control 

 
3.2. SINGLE NEURON STRUCTURE  

In 1958, Rosenblatt demonstrated some practical applications using the perceptron [3.8]. 

The perceptron is a single level connection of McCulloch-Pitts neurons sometimes called single-

layer feed forward networks. The network is capable of linearly separating the input vectors into 

pattern of classes by a hyper plane. A linear associative memory is an example of a single-layer 

neural network. In such an application, the network associates an output pattern (vector) with an 

input pattern (vector), and information is stored in the network by virtue of modifications made 

to the synaptic weights of the network.  

                                         
The structure of a single neuron is presented in Fig. 3.1.An artificial neuron involves the 

computation of the weighted sum of inputs and threshold [3.9, 3.10]. The resultant signal is then 

passed through a non-linear activation function. The output of the neuron may be represented as,  

   

               (3.1) 

Where b(n) = threshold to the neuron is called as bias.  
w

j
(n) = weight associated with the j

th 
input, and N = no. of inputs to the neuron.  
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3.2.1. Activation Functions and Bias.  

The perceptron internal sum of the inputs is passed through an activation function, which 

can be any monotonic function. Linear functions can be used but these will not contribute to a 

non-linear transformation within a layered structure, which defeats the purpose of using a neural 

filter implementation. A function that limits the amplitude range and limits the output strength of 

each perceptron of a layered network to a defined range in a non-linear manner will contribute to 

a nonlinear transformation. There are many forms of activation functions, which are selected 

according to the specific problem. All the neural network architectures employ the activation 

function [3.1, 3.8] which defines as the output of a neuron in terms of the activity level at its 

input (ranges from -1 to 1 or 0 to 1). Table 3.1 summarizes the basic types of activation 

functions. The most practical activation functions are the sigmoid and the hyperbolic tangent 

functions. This is because they are differentiable.  

The bias gives the network an extra variable and the networks with bias are more 

powerful than those of without bias. The neuron without a bias always gives a net input of zero 

to the activation function when the network inputs are zero. This may not be desirable and can be 

avoided by the use of a bias. 
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3.2.2 Learning Processes  
 

The property that is of primary significance for a neural network is that the ability of the 

network to learn from its environment, and to improve its performance through learning. The 

improvement in performance takes place over time in accordance with some prescribed measure. 

A neural network learns about its environment through an interactive process of adjustments 

applied to its synaptic weights and bias levels. Ideally, the network becomes more 

knowledgeable about its environment after each iteration of learning process. Hence we define 

learning as:  

“It is a process by which the free parameters of a neural network are adapted through a process 

of stimulation by the environment in which the network is embedded.”  

The processes used are classified into two categories as described in [3.1]:  

(A) Supervised Learning (Learning With a Teacher)  

(B) Unsupervised Learning (Learning Without a Teacher)  

(A) Supervised Learning:  

We may think of the teacher as having knowledge of the environment, with that 

knowledge being represented by a set of input-output examples. The environment is, however 

unknown to neural network of interest. Suppose now the teacher and the neural network are both 

exposed to a training vector, by virtue of built-in knowledge, the teacher is able to provide the 

neural network with a desired response for that training vector. Hence the desired response 

represents the optimum action to be performed by the neural network. The network parameters 

such as the weights and the thresholds are chosen arbitrarily and are updated during the training 

procedure to minimize the difference between the desired and the estimated signal. This updation 

is carried out iteratively in a step-by-step procedure with the aim of eventually making the neural 

network emulate the teacher. In this way knowledge of the environment available to the teacher 

is transferred to the neural network. When this condition is reached, we may then dispense with 

the teacher and let the neural network deal with the environment completely by itself. This is the 

form of supervised learning.  

The update equations for weights are derived as LMS:  

                                           1                                               (3.2)    

 is the change in w
j 
in nth iteration.  
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(B) Unsupervised Learning:  

In unsupervised learning or self-supervised learning there is no teacher to over-see the 

learning process, rather provision is made for a task independent measure of the quantity of 

representation that the network is required to learn, and the free parameters of the network are 

optimized with respect to that measure. Once the network has become turned to the statistical 

regularities of the input data, it develops the ability to form the internal representations for 

encoding features of the input and thereby to create new classes automatically. In this learning 

the weights and biases are updated in response to network input only. There are no desired 

outputs available. Most of these algorithms perform some kind of clustering operation. They 

learn to categorize the input patterns into some classes. 

 

3.3. MULTILAYER PERCEPTRON  

In the multilayer perceptron (MLP), the input signal propagates through the network in a 

forward direction, on a layer-by-layer basis. This network has been applied successfully to solve 

some difficult problems by training in a supervised manner with a highly popular algorithm 

known as the error back-propagation algorithm [3.1,3.9]. The scheme of MLP using four layers 

is shown in Fig.3.2.  represent the input to the network,  and   represent the output of 

the two hidden layers and  represents the output of the final layer of the neural network. 

The connecting weights between the input to the first hidden layer, first to second hidden layer 

and the second hidden layer to the output layers are represented by , ,  respectively. 

 
3.2 MLP network                       
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If P
1 

is the number of neurons in the first hidden layer, each element of the output vector of first 

hidden layer may be calculated as, 

 φ   1,2,3, … , 1,2,3, . .                                                           3.3  

 where  is the threshold to the neurons of the first hidden layer, N is the no. of inputs and  .   

is the nonlinear activation function in the first hidden layer chosen from the Table 3.1. The time 

index n has been dropped to make the equations simpler. Let P
2 

be the number of neurons in the 

second hidden layer. The output of this layer is represented as,  and may be written as 

     φ , 1,2,3, …                                                                                      3.4  

 

where,  is the threshold to the neurons of the second hidden layer. The output of the final 

output layer can be calculated as 

 φ , 1,2,3, …                                                                                      3.5  

where,  is the threshold to the neuron of the final layer and P
3 

is the no. of neurons in the 

output layer. The output of the MLP may be expressed as 

φ φ φ                                          3.6  
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3.3.1. Backpropagation Algorithm. 

                          
An MLP network with 2-3-2-1 neurons (2, 3, 2 and 1 denote the number of neurons in the input 

layer, the first hidden layer, the second hidden layer and the output layer respectively) with the 

back-propagation (BP) learning algorithm, is depicted in Fig.3.3. The parameters of the neural 

network can be updated in both sequential and batch mode of operation. In BP algorithm, 

initially the weights and the thresholds are initialized as very small random values. The 

intermediate and the final outputs of the MLP are calculated by using (3.3), (3.4.), and (3.5.) 

respectively.  

The final output  at the output of neuron l, is compared with the desired output d(n) and the 

resulting error signal   is obtained as 

                                                                                                               (3.7) 

The instantaneous value of the total error energy is obtained by summing all error signals over all 

neurons in the output layer, that is 

 
1
2  

                                                                                           (3.8) 

where P
3 
is the no. of neurons in the output layer.  

This error signal is used to update the weights and thresholds of the hidden layers as well as the 

output layer. The reflected error components at each of the hidden layers is computed using the 

errors of the last layer and the connecting weights between the hidden and the last layer and error 

obtained at this stage is used to update the weights between the input and the hidden layer. The 
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thresholds are also updated in a similar manner as that of the corresponding connecting weights. 

The weights and the thresholds are updated in an iterative method until the error signal becomes 

minimum. For measuring the degree of matching, the Mean Square Error (MSE) is taken as a 

performance measurement. The updated weights are, 

 1 Δ                                         3.9   

 1 Δ                                       3.10   

 1 Δ                                        3.11   

where, ,     are the change in weights of the second hidden layer-to-

output layer, first hidden layer-to-second hidden layer and input layer-to-first hidden layer 

respectively. That is, 

Δ 2µ µ  

 µ φ  

               (3.12) 

Where, μ is the convergence coefficient (0≤μ≤1). Similarly the Δ  and Δ  can be computed  

The thresholds of each layer can be updated in a similar manner, i.e. 

1    ∆                                        3.13  

1   ∆                                       3.14  

 1   ∆                                        3.15  

where,  ∆ , ∆ , ∆   are the change in thresholds of the output, hidden and input 

layer respectively. The change in threshold is represented as, 

∆   2µ µ                µ φ  

(3.16) 

 

 

 



31 
 

 

CChhaapptteerr  44    
 

 

 

 

 

 

 

 

RRAADDIIAALL  BBAASSIISS  FFUUNNCCTTIIOONNSS  NNEETTWWOORRKK  



32 
 

4.  RADIAL BASIS FUNCTIONS NETWORK 

 

4.1. INTRODUCTION  

Radial Basis Function Networks (RBFN) are multilayer feed-forward neural networks 

consisting of one input layer, one hidden layer and one output layer with linear weights as shown 

in Fig4.1. The function of the hidden layer is to perform a non-linear transformation of the input 

space. The hidden layer typically comprises an activation function which is a non-linear function 

of the distance between the input space and the corresponding centers decided by the hidden 

space or rather, the Euclidean Norm of the input points and the centers. These activation 

functions which are real valued with values depending upon the radial distance of a point from 

the origin or center are called Radial Basis Functions and the Networks using them are hence 

called Radial Basis Function Networks(RBFNs).  The hidden space is typically of higher 

dimensionality than the input space corresponding to Cover’s theorem(’65) which states that a 

complicated pattern classification problem that is non-linearly separable is more likely to be 

linearly classified if it is cast into a high dimensional space rather than a low dimensional one. 

The output layer that contains linear weights perform a linear regression to predict the desired 

targets. The structure is drawn from biological receptive fields to perform function mappings. 

Weights on the output layer are adapted via supervised learning.  

 

4.2. RBFNN SRUCTURE  

                 
Fig.4.1 Structure of RBFNN 
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As shown in the figure, the input vector  of dimension M is in the input layer. Hidden layer 

contains the Radial Basis Functions that perform the nonlinear mapping. There are K nodes , so 

its dimensionality is K such that K>M. Each node has a center vector . The ouput layer 

contains the linear weights W = [w0 w1 ….. wK]T  that perform  linear regression. The input-

output mapping is given by the following equation:  

  ;    

(4.1) 

4.2.1. VARIOUS RADIAL BASIS FUNCTIONS 

A radial basis function (RBF) is a real-valued function whose value depends only on the distance 

from the origin, so that        ; or alternatively on the distance from some other point 

t, called a center, so that ,        . 

RBF types : 

1. Multiquadric 
       for  0   and  r =             (4.2) 

2. Inverse Multiquadric 
       for  0   and  r =             (4.3) 

3. Gaussian 
  /          for  0   and  r =            (4.4) 

 

 
Fig.4.2 The Gaussian Function 
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In our context,  

  ;    
 

 

                                                                                                             (4.5) 

Where  is the input vector,    is the center vector  is the width of the Gaussian function and 

   is the Euclidean distance between  and  . The Gaussian function is the most 

popular amongst the above. 

 

As can be seen from the form of the  radial basis functions , the multiquadric function 

increases monotonically with increase in r while the inverse multiquadric and Gaussian functions 

decrease with increase in r. Further, the rate at which the output decreases can be controlled by 

varying the width  in case of a Gaussian kernel function. This means the output of the RBFN 

will decrease in case the input point is far from the centre and will tend to zero if we use 

Gaussian or inverse multiquadric functions and the output will increase if we use multiquadric. 

So ,theoretically speaking, RBFN with inverse multiquadric function is good for extrapolation 

whereas RBFN with  inverse multiquadric or Gaussian functions is good for interpolation. It is 

note worthy that the most commonly used Radial Basis Function is the Gaussian function. So, 

we could safely say that  RBFN is good for interpolation. It should be noted that we do not 

consider the Regularized Radial Basis Function Network which takes the same number of 

centers as the number of input points in the training set. This computationally very complex if 

we have even slightly large training sets. We rather would discuss in detail the Generalized 

Radial Basis Function Network(GRBFN) which has number of centers less than the number of 

input points. The number and location of these centers are chosen strategically so that function 

approximation and system identification problems can be solved with more precision and less 

computational complexity. Henceforth by RBFNN we would refer specifically to GRBFNN.   

 

4.3. LEARNING STRATEGIES APPLIED TO GRBFNNs   

Like a multilayer perceptron, RBFN has universal approximation ability. The advantages of 

RBFN are linearity in parameters and the availability of fast and efficient training methods. 

RBFN learns to approximate the desired input-output map represented by training data 

{ , }where  is the input vector and  is the desired response (target), i = 1, 2,…, N. A 
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number of learning methods exist to approximate the desired input-output maps. And by these 

learning methods we mean the efficient selection of the centers and a method to update the linear 

weights. 

 

4.3.1. Fixed Centers Selected at Random  

In this learning method,  RBFs of the hidden units are fixed, that is, the centers are not 

updated ; they are fixed. The locations of the centers may be chosen randomly from the training 

data set. We can use different values of centers and widths for each radial basis function for 

which experimentation with training data is needed. Only the output layer weights need to be 

learned. The values of the output layer weights are obtained easily by pseudo-inverse method. 

This method is apparently very simple but to produce results that can show a satisfactory level of 

performance, it requires a large training set and rigorous experimentation on the training data. 

 

4.3.2 Self-organized Selection of Centers 

Self-organized selection of centers employs a hybrid learning approach which combines 

self-organized learning algorithm based on K-Means Clustering Algorithm and supervised 

learning algorithm based on stochastic gradient. The former is used to determine the center of 

Gaussian function, while the later is employed to adjust the output weights. The number of 

centers is depended on the number of clusters of data, or it could well be the user’s discretion – 

an arbitrary selection.  

K-means clustering algorithm is used to cluster data into k number of clusters. Specifically, this 

algorithm places centers of radial basis function in the input space area where the data are 

significant. K-means clustering algorithm proceeds as follows :  

1. Initialization, select randomly center values 0  ; the only requirement is that values of 

0  must be different for each k = 1, 2,…, K. It is suggested that Euclidean norm of each 

center sufficiently small.  

2. Sampling, take a sample vector u of input space with certain probability. Vector u represents 

input applied to RBFN. 

3. Similarity matching, find center of the winner at n
th 

iteration, with minimum euclidean 

distance :  

                          arg              k = 1, 2, …,K                                        (4.6)  
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4. Updating, adjust center position according to:  

1    
    ,

 ,
                                                       (4.7) 

 

The spread or width of the Gaussian function is determined by taking   
√

   where  = 

maximum distance between the centers and K= number of nodes of RBFN.The weights are then 

updated by supervised learning using LMS. 

 

4.3.3 Stochastic Gradient Approach (Supervised Learning)  

In this method, RBF network design takes on its most generalized form. As we know, the 

RBFN has three parameters: centers   , spread  and output layer weights . Here, all these 

parameters the centers   , spread  of the radial-basis functions and all the weights  of the 

network undergo a supervised learning process. A natural candidate is error-correction learning, 

using a stochastic gradient descent of the error criterion. The Basic concept of this method  is 

similar to LMS algorithm. 

Algorithm: 

 We take the Cost Function         | |           for  n = 1,2,……..,N 

 Where e(n) is the error signal  

   

               ∑   ;   

         ∑    ⁄  

 To minimize ξ(n), we would use the stochastic gradient descent method : 

                            1    

                               1        

                               1      

 

 

 



37 
 

Hence the results of the stochastic gradient approach can be summarized as: 

 ∑   ;               (1) 

 e n   d n  –  y n                                                 2  
 

Parameter Update Equations:    

 1      ;            (3) 

   

 1      ;  /   (4) 

 

 1      ;   /   (5) 

 

where      ;            (6) 
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5.  WILCOXON LEARNING MACHINES 

 
5.1 INTRODUCTION 
 

Machine learning, namely learning from examples, has been an active research area for 

several decades. Popular and powerful learning machines proposed in the past include artificial 

neural networks , generalized radial basis function networks (GRBFNs) ,fuzzy neural networks 

(FNNs)  and support vector machines (SVMs). They are different in their origins, network 

configurations, and objective functions. They have also been successfully applied in many 

branches of science and engineering. In statistical terms, the aforementioned learning machines 

are nonparametric in the sense that they do not make any assumptions of the functional form, 

e.g., linearity, of the discriminant or predictive functions. A detailed discussion of two of the 

above machines has been done, namely ANNs and GRBNs. 

Robust smoothing is a central idea in statistics that aims to simultaneously estimate and model 

the underlying structure. In statistics, an outlier is an observation that is numerically distant from the 

rest of the data. Hence, outliers are data points that are not typical of the rest of the data. Statistics 

derived from data sets that include outliers may be misleading. Depending on their location, outliers 

may have moderate to severe effects on the regression model. A regressor or a learning machine 

is said to be robust if it is not sensitive to outliers in the data. 

As is well known in statistics, the resulting linear regressors by using the rank-based Wilcoxon 

approach to linear regression problems are usually robust against (or insensitive to) outliers. It is 

then natural to generalize the Wilcoxon approach for linear regression problems to 

nonparametric Wilcoxon learning machines for nonlinear regression problems. The prime 

motivation behind this thesis is to apply and study the Wilcoxon approach to the machines we 

studied before (ANN and GRBFN) and see how these machines perform in presence of outliers. 

We would try to demonstrate that these Wilcoxon learning machines are robust against outliers.   
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5.2 WILCOXON NORM 
 
Before investigating the Wilcoxon learning machines, an introduction to the Wilcoxon Norm is 

required. To define the Wilcoxon norm of a vector, we need a score function. A score function is 

a function  : 0,1  which is non-decreasing such that 

 ∞  

Usually the score function is standardized such that 

  1              0 

The score associated with the score function   is defined by 

  1  
Where l is a fixed positive number. 

It can be shown that the following function is a pseudonorm (seminorm) on  , 

  .   

   … . .  

(5.1) 

 

Where  is the rank of  among , … . .  .   … .   are the ordered values 

of  … . .  .      and  √12 0.5 . 

  is called the Wilcoxon Norm of the vector . 

 
5.3 WILCOXON NEURAL NETWORK WNN   
 
5.3.1 Neural Network Structure  

We consider a three layered neural network with one input , one hidden and one output layer. 

This neural network is for the analysis of a general input-output mapping of  n dimensions to p 

dimensions, i.e. input vector o n dimensions is to be mapped to an output of p dimensions. Hence 

we consider the following network of n+1 input nodes m+1 hidden nodes and p output nodes. 
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Fig.5.1 Wilcoxon Neural Network Structure 

Let the input vector be      … . .  or      … . .    =  … . .  1  

Let   denote the connection weight from the ith input node to the input of the jth hidden node. 

Then, the input  and output  of the jth hidden node are given by, respectively 

  .    ,    1  ,              

                (5.2) 

where  .  is the activation function of the hidden node. Some commonly used activation 

functions are sigmoidal functions, i.e., monotonically increasing S-shaped functions as follows:  

 Unipolar logistic function                  
 

 

 

 Bipolar sigmoidal function                 
 

 

 Hyperbolic tangent function               
 

 

 

Let   denote the connection weight from the output of the jth hidden node to the input of the 

kth output node. Then, the input  and output  of the jth hidden node are given by, respectively 
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  .    ,    1  ,              

            (5.3)  

where  .  is the activation function of the output node. For classification problems, the output 

activation functions can be chosen as sigmoidal functions, while for regression problems, the 

output activation functions can be chosen as linear functions with unit slope. 

The final output   of the network is given by            ,             

Where  is the bias. 

We define 

  … . .          

                … . .             1 

                                                       … . .         

                         (5.4a) 

                                                                  (5.4b) 

From 5.2 – 5.4 we have, 

   ;      ;        ;      ;                              (5.5) 

 

Let       . We are given a training set  

  ,   

            ,   

In the following, we will use the subscript to denote the qth example. 

In a WNN, the approach is to choose network weights that minimize the Wilcoxon norm of the 

total residuals 

Ψ  .   

               (5.6a) 

                                                                        (5.6b) 
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Where  is the rank of  among , … . .  .   … .   are the 
ordered values of , … . .  .the Wilcoxon norm of residuals at the kth output node is 
given by 

 Ψ  .   

                                                                                                       (5.7a)         
                                                                  (5.7b) 
 

                                               … . .                  (5.7c) 

Ψ   Ψ  

The NN used here is the same as that used in standard ANN, except the bias terms at the outputs. 

The main reason is that the Wilcoxon norm is not a usual norm, but a pseudonorm (seminorm).In 

particular  0 for    … . .  implies that . This means that, 

without the bias terms, the resulting predictive function with small Wilcoxon norm of total 

residuals may deviate from the true function by constant offsets. 

5.3.2. Learning Algorithm of WNN   

Now, we introduce an incremental gradient–descent algorithm. In this algorithm, Ψ s are 

minimized in sequence. From the definition of Ψ   in (5.7) together with (5.5), we have 

 Ψ  .   
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Updating rules for the weights connecting input layer to hidden layer and those connecting 

hidden to output layer. 

  
Ψ

 

  
Ψ

 

0  is the learning rate. 

From (5.8) we have, 

Ψ
  1   

                1   

where .  denotes the total derivative of . with respect to its argument and  is the kth 

component of the qth vector . Hence, the updating rule becomes 

  
Ψ

  1              

i.e., 

     

                               (5.9) 

Again, 

Ψ
  1  

…
… . .   

Hence the updating rule becomes 

 

                    1 

(5.10) 
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where .  denotes the total derivative of . with respect to its argument and  is the jth 

component of the qth vector . 

The bias term  ,     is given by the median of the residuals at the kth output node i.e. 

     1        (5.11)  

 

5.4 WILCOXON GENERALISED RADIAL BASIS FUNCTION NETWORK (WGRBFN) 

The Wilcoxon approach to GRBFN is similar to the approach used in ANN. In fact, the 

three layer network we considered in fig5.1 can be conceptualized as a GRBFN if we replace the 

activation function of the hidden layer by the Gaussian function used in RBF and taking the 

output layer activation function as a linear function with unity slope.   

Continuing our treatment using fig5.1 

We define      … . .       and    … . .       

The predictive function  is a non-linear map given by 

  

 
2

   ,     

(5.12) 

Here,  is the connection weight between jth hidden node to kth output. 

  , … . .  is thecenter of the jth basis function. 2  is the ith variance of the jth 

basis function and  is the bias term. This system can also be represented as a feed-forward 

network. In this network, there are one input layer with nodes, one hidden layer with nodes, and 

one output layer with nodes. We also have bias terms at the output nodes. 

Defining for     ,    ,      

 

 
 

2
  , exp   ,     

Then from 5.12 we have  
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Suppose we are given the same training set as in Section 5.3 The Wilcoxon norm Ψ  of residuals 

at the kth output node is the same as defined in Section 5.3. The incremental gradient–descent 

algorithm requires that Ψ s be minimized in sequence. By similar derivations, the weights 

updating rules are given by 

  
Ψ

   

  
Ψ

 2  
2

 

  
Ψ

  2  
 

2
 

(5.13) 

 

Where 0  is the learning rate and the bias term  ,     is given by the median of the 

residuals at the kth output node i.e. 

 1  
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6.1 SIMULATIONS 
 
In this section, we compare the performances of various learning machines for several illustrative 

nonlinear regression problems. Emphasis is put particularly on the robustness against outliers for 

various learning machines. The updating rules for WNN are (9) and (10), WGRBFN are (13). It 

should be pointed out that different parameter settings for learning machines might produce 

different results. The parameters of each learning machine used in the following simulation may 

not be the optimal parameters for a given learning problem. This is the model selection problem, 

which always exists for a general learning problem. For “fair” comparison, similar machines will 

use the same set of parameters in the simulation. Thus, for ANN and WNN, we use the same 

number of hidden nodes, the same activation functions for hidden nodes, and the output node. 

Similarly, for GRBFN and WGRBFN, we use the same kernel function for both machines 

 

In each simulation of Examples 1 and 2, the uncorrupted training data set consists of 50 

randomly chosen x-points(training patterns) with the corresponding y-values (target values) 

evaluated from the underlying true function. The corrupted training data set is composed of the 

same -points as the corresponding uncorrupted one but with randomly chosen -values corrupted 

by adding random values from a uniform distribution defined on [-1,1]. It would be interesting to 

know what happens if the noise is progressively increased and if the number of outliers is 

increased. To this end, 20%, 30%, and 40% randomly chosen y-values of the training data points 

will be corrupted. 

PERFORMANCE COMPARISION OF ANN & WNN 

Example 1 : 
1, 0

sin
, 0      10,10  

In this example, we compare the performances of ANN, WNN. For ANN and WNN, the number 

of hidden nodes is 30, the activation functions of the hidden nodes are bipolar sigmoidal 

functions, and the activation function of the output node is a linear function with unit slope. As 

we can see the input and output both are one dimensional so here referring to fig.5.1 , 

n=1,m=30,p=1. The results are plotted in the figures that follow. 

All the figures have input values “x” on the x-axis and the corresponding estimates on the y-axis. 
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Fig.6.1 Performance of ANN & WNN ‐uncorrupted data  

 
 
 

 
 

Fig.6.2 Performance of ANN & WNN ‐10% corrupted data  
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Fig.6.3 Performance of ANN & WNN ‐20% corrupted data  

 
 

 
 

Fig.6.4 Performance of ANN & WNN ‐30% corrupted data  
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Fig.6.5 Performance of ANN & WNN ‐40% corrupted data  

 
 
 
Example 2: 
 

1.1 . 1        ,    5,5  
 
 
 

 
Fig.6.6 Performance of ANN & WNN ‐uncorrupted data  
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Fig.6.7 Performance of ANN & WNN ‐10% corrupted data  

 

 
Fig.6.8 Performance of ANN & WNN ‐20% corrupted data  
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Fig.6.9 Performance of ANN & WNN ‐30% corrupted data  

 

Fig.6.10 Performance of ANN & WNN ‐40% corrupted data  
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PERFORMANCE COMPARISION OF GRBFN & WGRBFN 

 
Example 2:               The true function is given by the Hermite function 
 

1.1 . 1        ,    5,5  
 
In this example, we compare the performances of GRBFN & WGRBFN. For all these networks, 

the number of hidden nodes is 20, which is somewhat arbitrary. The range for the training targets 

is [0.0002,2.7157] . The simulation results for GRBFN and WGRBFN are shown in the 

following figures. 

 

 
Fig.6.11 Performance of GRBFN & WGRBFN ‐uncorrupted data  
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Fig.6.12 Performance of GRBFN & WGRBFN ‐10%corrupted data  

 

 
Fig.6.13 Performance of GRBFN & WGRBFN ‐20%corrupted data  
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Fig.6.14 Performance of GRBFN & WGRBFN ‐30%corrupted data  

 

 
Fig.6.15 Performance of GRBFN & WGRBFN ‐40%corrupted data  
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6.2 CONCLUSION 
 

The simulation results for ANN and WNN are shown in Fig. 6.1-6.10.Two examples are 

taken. The range for the training targets is [0.2171, 0.99879] in the first example and [0.0002, 

2.7157] in the second one. For uncorrupted data shown in Fig. 6.1 & 6.6, WNN performs better 

than ANN and we are not over fitting the training data. For corrupted data shown in Fig. 6.2–6.5 

and Fig. 6.6–6.10 with progressively increased corruption, WNN estimates are affected to a lot 

lesser extent by these corrupted outliers and outperform ANN estimates. 

 

In case of simulations of GRBFN and WGRBFN, we take only one example of the 

function to be approximated. We take the Hermite function. For uncorrupted data shown in Fig. 

6.11, GRBFN and WGRBFN estimates are almost indistinguishable from the true function and 

we are not over fitting the training data. For corrupted data shown in Fig. 6.12–6.15 with 

progressively increased corruption, WGRBFN estimates are robust to outliers since they are 

affected to a lot lesser extent by these corrupted outliers and they outperform GRBFN estimate. 

 

  This thesis demonstrates the Wilcoxon approach to nonlinear learning problems for the 

ANNs and GRBFNs. These provide alternative learning machines when faced with general 

nonlinear learning problems. Simple weights updating rules based on gradient descent were 

derived. Some numerical examples were provided to compare the robustness against outliers for 

standard learning machines and Wilcoxon learning machines. Simulation results showed that the 

Wilcoxon learning machines have good robustness against outliers. 

 

The computational performances of the Wilcoxon learning machines are not discussed in 

this study. The reason is that it is still very time-consuming to obtain the numerical solutions of 

the Wilcoxon learning problems so that it makes little sense at this moment to present the data 

for computational performances of the Wilcoxon learning machines. The search of more efficient 

learning rules for Wilcoxon learning machines could be a future prospect. We are in the process 

of developing a novel learning machine based on FLANN using the Wilcoxon approach. The 

simulations of this machine are not ready yet.  There was also an attempt on our side to develop 

algorithms based on LMS using Wilcoxon approach (we might call it WLMS) for linear 
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regression problems. The reason it hasn’t been introduced in this thesis is for brevity and that the 

algorithm is still very computationally expensive. 

  

It is true illustrative examples do not provide a rigorous proof for the robustness of the 

Wilcoxon learning machines. The results reported in this thesis provide only a start up or just a 

preliminary study on Wilcoxon learning machines. Similar approach can be used to other 

learning machines. As a final thought, we could only say that it is just a matter of time when we 

could actually see the application of Wilcoxon Norms and possibly other novel methodologies 

being developed for outlier rejection and robustness. In literature, much has been written on 

increasing the robustness of various learning machines against outliers. Wilcoxon Learning 

Machines could well be the answer to this very old problem.   
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