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TERMS OF REFERENCE 

This. thesis presents the results of an investigation into the possible utilization of neural 
networks as part of control structures. 

The requirements for this research, as set out by Associate Professor M. Braae, were to : 

• Establish an overview of the many different neural network based control strategies 
suggested in the literature. 

• Motivate the selection of a control structure and network topology for the evaluation 
of this new field. 

■ Compare the performance of that structure with that of more established control 
strategies. 

■ Evaluate the viability of the neural network approach in control engineering. 

. . 
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SYNOPSIS 

The purpose of this thesis is to investigate the viability of integrating neural networks into 
control structures. 

' These networks are an attempt to create artificial intelligent systems with the ability to 
learn and remember. They mathematically model the biological structure of the brain and 
consist of a large number of simple interconnected processing units emulating brain cells. 
Due to the highly parallel and consequently computationally expensive nature of these 
networks, intensive research in this field has only become feasible due to the availability of 
powerful personal computers in recent years. Consequently, attempts at exploiting the 
attractive learning and nonlinear optimization characteristics of neural networks have been 
made in most fields of science and engineering, including process control. 

The control structures suggested in the literature for the inclusion of neural networks in 
control applications can be divided into four major classes. The first class includes 
approaches in which the network forms part, of an adaptive mechanism which modulates the 
structure or parameters of the controller. In the second class the network forms part of the 
control loop and replaces the conventional control block, thus leading to a pure neural 
network control law. The third class consists of topologies in which neural networks are 
used to produce models of the system which are then utilized in the control structure, whilst 
the fourth category includes suggestions which are specific to the problem or system 
structure and not suitable for a generic neural network-based-approach to control problems. 

Although several of these approaches show promising results, only model based structures 
are evaluated in this thesis. This is due to the fact that many of the topologies in other 
classes require system estimation to produce the desired network output during training, 
whereas the training data for network models is obtained directly by sampling the system 
input(s) and output(s). Furthermore, many suggested structures lack the mathematical 
motivation to consider them for a general structure, whilst the neural network model 
topologies form natural. extensions of their linear model based origins. 

Since it is impractical and often impossible to collect sufficient training data prior to 
implementing the neural network based control structure, the network models have to be 
suited to on-line training during operation. This limits the choice of network topologies for 
models to those that can be trained on a sample by sample basis (pattern learning) and 
furthermore are capable of learning even when the variation in training data is relatively 
slow as is the case for most controlled dynamic systems. 

A study of feedforward topologies (one of the main classes of networks) shows that the 
multilayer perceptron network with its backpropagation training is well suited to model 
nonlinear mappings but fails to learn and generalize when subjected to slow varying training 
data. This is due to the global input interpretation of this structure, in which any input 
affects all hidden nodes such that no effective partitioning of the input space can be 
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achievoo. This problem is overcome in a less flexible feedforward structure, known as 
regular Gaussian network. In this network, the response of each hidden node is limited to a 

-sphere around its center and these centers are fixed in a uniform distribution over the entire 
input space. Each input to such a network is therefore interpreted locally and only effects 
nodes with their centers in close proximity. 

A deficiency common to all feedforward networks, when considered as models for dynamic 
systems, is their inability to conserve previous outputs and states for future predictions. 
Since this absence of dynamic capability requires the user to identify the order of the system 
prior to training and is therefore not entirely self-learning, more advanced network 
topologies are investigated. The most versatile of these structures, known as a fully 
recurrent network, re-uses the previous state of each of its nodes for subsequent outputs. 
However, despite its superior modelling capability, the tests performed using the Williams 
and Zipser training algorithm show that such structures often fail to converge and require 
excessive computing power and time, when increased in size. 

Despite its rigid structure and lack of dynamic capability, the regular Gaussian network 
produces the most reliable and robust models and was therefore selected for the evaluations 
in this study. 

To overcome the network initialization problem, found when using a pure neural network 
model, a combination structure· _in which the network operates in parallel with a 
mathematical model is suggested. This approach allows the controller to be implemented 
without any prior network training and initially relies purely on the mathematical model, 
much like conventional approaches. The network portion is then trained during on-line 
operation in order to improve the model. Once trained, the enhanced model can be used to 
improve the system response, since model exactness plays an important role in the control 
action achievable with model based structures. 

The applicability of control structures based on neural network models is evaluated by 
comparing the performance of two network approaches to that of a linear structure, using a 
simulation of a nonlinear tank system. · 

The first network controller is developed from the internal model control (IMC) structure, 
which includes a forward and inverse model of the system to be controlled. Both models can 
be replaced by a combination of mathematical and neural topologies, the network portion 
of which is trained on-line to compensate for the discrepancies between the linear model 

_ and nonlinear system. Since the network has no dynamic ·capacity, .former system outputs 
are used as inputs to the forward and inverse model. Due to this direct feedback, the trained 
structure can be tuned to perform within limits not achievable using a conventional linear 
system. 

As mentioned previously the IMC structure uses both forward and inverse models. Since the 
control law requires that these models are exact inverses, an iterative inversion algorithm 
has to be used to improve the values produced by the inverse com.bination model. Due to 
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deadtimes and right-half-plane zeroes, many systems are furthermore not directly invertible. 
Whilst such unstable elements can be r~t,nOYC9 , from rriathen;tt\ti~ models, the inverse 

,>ii..,··t;.~~.)._t.J._iPf/_•·•::- ',",;• .. ~'~ i"·,.': :_if:~·;~~-' 
network is trained directly from the forwarct•inooel and' can not be compensated. These 
problems· could be overcome by a control structure for which only a forward model is 
required. 

The neural predictive controller (NPC) presents such a topology. Based on the optimal 
control philosophy, this structure uses a model to predict several future outputs. The errors 
between these and the desired output are then collected to form the cost function, which 
may also include other factors such as the magnitude of the change in input. The input value 
that optimally fulfils all the objectiyes used to formulate the cost function, can then be 
found by locating its minimum. Since the model in this structure includes a neural network, 
the optimization can not be formulated in a closed mathematical form and has to be 
performed using a numerical method. For the NPC topology, as for the neural network IMC 
structure, former system outputs are fed back to the model and again the trained network 
approach produces results not achievable with a linear model. Due to the single network 
approach, the NPC topology furthermore overcomes the limitations described for the neural 
network IMC structure and can be extended to include multivariable systems. 

This study shows that the nonlinear modelling capability of neural networks can be 
exploited to produce learning control structures with improved responses for nonlinear 
systems. Many of the difficulties described, are due to the computational burden of these 
networks and associated algorit.hms. These are likely to become less significant due to the 
rapid development in computer technology and advances in neural network hardware. 

Although neural network based control structures are unlikely to replace the well 
understood linear topologies, which are adequate for the majority of applications, they 
might present a practical alternative where (due to nonlinearity or modelling errors) the 
conventional controller can not achieve the required control action. 
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1. NEURAL NETWORKS - AN 
INTRODUCTION AND OVERVIEW 
Artificial neural networks and parallel distributed processing are currently rece1vmg 
significant interest from many scientific disciplines, in the hope that. they might help to 
produce·solutions where conventional methods have not been satisfactory. 

This introductory chapter starts with a brief historical discussion showing the origin of 
neural networks as well as their place within the field knowi:i as artificial intelligence or AL 
After this the underlying biological principle for all these networks is explained, before an 
overview of the remainder of this study is given. 

1.1 HISTORICAL DEVELOPMENTS 

Since the early days of modern science there has been considerable interest and effort to 
understand the underlying principles that constitute intelligence. This curiosity about the 
brain and the thinking process is to be expected from related fields such as physiology and 
psychology. In other disciplines of science however, it can be ascribed to the desire of re­
creating features such as the abilities to learn and to reason in artificial intelligent systems. 
Most of the early research work performed in this area, consisted of experiments conducted 
to understand basic processes such as color perception and · recognition as well . as the 
functioning of single nerve cells. This was done in the hope that a thorough knowledge of 
the elementary principles might help to eventually understand the entire system. 

Although this bottom-up approach was and is producing valuable results, it soon became 
clear that it would not necessarily deliver a satisfactory explanation for the storage, retrieval 
and processing of knowledge. This insight inspired research of a top-down nature, in which 
theories for the above mechanisms were developed with -little concern about their 
implementation in the underlying biological system. 

With the advent of the modern computer in the nineteen fifties it became feasible to 
implement and test some ,of these hypothesis for the first time. This attracted many non­
physiologists and gave a new definition to this field, now well known as artificial intelligence 
or AI.. Although computers provided a platform for testing . many of the theories, their 
sequential execution and symbol manipulation capability also injected some bias into the 
formulation of new algorithms. Consequently, theories lending themselves towards the 
implementation on a von Neumann type architecture were often favoured above more 
biologically plausible ones. 
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The lack of agreement on the appropriate form of knowledge representation raised the 
fundamental question, that remains unresolved, of whether the purpose of Al is to produce 
clever computer programs or to understand and model human intelligence. It also resulted 
in a division of the discipline, producing the two sub-disciplines known as symbolic Al and 
nonsymbolic AI. 

1.1.1 SYMBOLIC AI 

In this approach to AI, knowledge is represented and stored in the form of symbols, which 
. can be operated on by a set of rules. 

The most well known result of this approach is the expen system, for which the knowledge 
of one or more people, considered to be experts on the particular subject, is captured in a 
knowledge database. This database can be interrogated by a set of rules to produce the • · 
desired output. A simplistic view of expert systems is a collection of if-then-else rules, 
which are applied using various mechanisms such as applicability, thresholds and priority. 

One of the features that distinguish expert systems from other AI systems is that the _ 
knowledge base is designed prior to their use and therefore rigid and nonadaptive. 
Although the system might learn to adapt its response by modifying thresholds and 
priorities, it can not alter or add information. While this might seem like a deficiency for a 
supposedly intelligent system, it does have the advantage that the system is guaranteed to 
work within its capabilities from _the outset and does not require further training or 
development. . 

Expert systems have been implemented successfully in applications where the necessary 
knowledge could be extracted and captured in the required format. These applications are 
in areas where . decisions have to be made in accordance with well known rules and 

. constraints. Typical examples of such systems are expen advisers, which assist people in 
fields such as medical diagnosis or technical design. 

Despite the fact that the field of symbolic AI produced impressive results relatively 
qu~ckly, it has become apparent that this approach alone will not be able to deliver the 
initial promise of anijicial systems with human like intelligence [1]. This is because the 
human brain is not a sequential, analytical machine operating on a knowledge base and 
although the symbolic approach lends itself for implementation on a von Neumann 
architecture, it is not appropriate as a model for the information representation and 
processing in the brain. In his review on AI and the brain, Smolensky [2] notes that: 

• ·111e symbolic approach 'has provided precious little insight into the computational 
organization ·of _the brain'. 

. ' 

• The 'fine structure of cognition seems to be more naturally described by non­
symbolic models'. 

• 'The symbolic rules and the logic· used to manipulate those rules tend to produce 
rigid and brittle systems'. 
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1.1.2 NONSYMBOLIC (CONNECTIONIST) AI 
' ' . ' 

Whilst the early supporters of symbolic AI were trying to create an environment in which 
knowledge was presented in a format suitable to simulate reasoning on a digital computer, 
another group of researchers attempted to solve the problem by creating mathematical 
representations of what was known about the physical brain structure. In these 
approaches, which became known as connectionist AI, the system generally consists of a 
large number of highly interconnected simple processing units, much like the brain with all 
its nerve cells and synaptic links. Researchers in this field of study, also known as 
connectionism due to the great importance placed on interconnectivity, were thus 
attempting to create artificial intelligence by modelling the biological structure of the 
brain, rather than striving to formulate an abstract knowledge representation format 
suitable for manipulation. 

The main difference between these theories and symbolic AI is therefore the 
representation of knowledge. While the expert system relies on an exact representation of 
knowledge in the form of a rule operating on symbols, no equivalent format exists in the 
connectionist approaches. In the neural network, which is one such nonsymbolic model, the 
information is stored in the connection strengths (equivalent to biological synaptic links) 
between individual nodes and is therefore scattered over part or even the entire network, 
resulting in the so-called distributed representation. Due to this distributed representation 
it is not possible to program or store all initial knowledge in the network and the system 
has to learn from a set of input and associated desired output patterns, before it can be 
used. 

In spite of some exciting and prom1smg results such as the perceptron model and 
associated convergence procedure [3] during the early nineteen sixties, connectionism 
faded into the background during the seventies. This was due to a number of reasons: 

. ■ Although the research had shown some promise, it had failed to deliver anything 
comparable to the reliable, seemingly clever systems the symbolic field was able to 
produce. 

■ In a time when the required computing resources where expensive and rare, it was 
difficult to motivate the use of precious computing time on a research area which is 
not suited to serial processing and the von Neumann architecture. · 

■ In their book 'Perceptrons' [ 4] Minsky (by then a well known personality in the field 
of Al) and Papert proved the limitation of a single layer perceptron model (a neural 

. network model receiving considerable interest at the time) and suggested that an 
extension to multilayer systems would not produce any worthwhile results; a 
statement which greatly discouraged funding for further research in the field. 

Despite these setbacks, research in the non-symbolic field continued and the availability of 
cheap computing power in the eighties, together with the realization that symbolic AI 
might not deliver what it promised (1], generated renewed interest. This revival has 
resulted in many different connectionist models and learning algorithms. Currently neural 
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networks, probably the most well known product of the connectionist field, are tested on a 
wide variety of problems ranging from character - or sound recognition to stock market 
prediction and in this study the applicability of these networks in the field of process 
control is investigated. 

Presently both, the symbolic and nonsymbolic approaches are contmumg to produce 
promising results, each in their own areas of application. Some scientists believe that only a 
synthesis of the two methods will result in true artificial intelligence [2]. 

1.2 NEURAL NETWORK PRINCIPLES 
(BIOLOGICAL MOTIVATION) 

Despite the fact that even amongst connectionists there is no agreement regarding the 
neural network topology and learning mechanisms, most networks use building blocks very 
similar to biological neurons. In this subsection the close link between these building blocks 
and their biological counterparts in the brain is clarified. The elementary processing unit is 
illustrated in figure 1. 1. 

STRUCTURE OF ELEMENTARY NEURAL 
NETWORK PROCESSING UNIT 

external 
output 

Figure 1.1 - Elementary Processing Unit 

As shown, the unit has a number of inputs which might be outputs from other units (it) or 
external inputs (i2,b) from the environment. Each of these inputs is scaled according to its 
weight or importance (w1,w2,wJ) for this unit. The scaled inputs are then summed or 
multiplied to form a scalar activation value for the unit. If this activation value exceeds the 
threshold value of the particular unit, it is passed through the nonlinear activation function 
f(x) to produce an output (o). The output of the particular unit may in turn form an input to 
other units and/or be used as an external output as indicated. In order to create a neural 
network, a number of these processing units are linked together. Training for such a system 
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entails finding the optimal set of connection weights and thresholds such that the network 
produces the desired external outputs for each set of external inputs. 

. : ~~i::·:\:: :<:::~,;\f'": . 1>:"'7( ·:·· .'• ;,,:·,-.:11 \ 

· From the above discussion and· illustration it can be seen that the elementary processing 
unit for neural networks is i3- mathematical representation of the biological neuron with its 
cell body, activation threshold, dendrites and axons, as well as synaptic links of varying 
strengths with other neurons. Although the adjustment of. weights can furthermore be 
likened to the known biological · process of establishing and modifying synaptic links 
between neurons during learning, the underlying mechanism for these adaptations· in living 
systems is not yet fully understood. ConsequenUy many _different weight-update t~eories and 
algorithms exist, each claiming to be more biologically plausible than others. 

Even though most artificial neural networks utilize processing units very similar to the one 
illustrated above, there exist many ways of interconnecting these units (network topologies) 
and finding the optimal set of parameters for the· network (training algorithms). A 
discussion of several network topologies and training algorithms is included in later chapters 
of this thesis, where several networks are evaluated. An overview of the different types of 
networks and their origins can be found in the discussions by Grossberg [s], Lippmann [6] as 
well as Rumelhart et al [7]. 

1.3 OVERVIEW OF THE REMAINING CHAPTERS 

The remainder of this study deals with an investigation into the use of neural networks in 
the field of process control. 

■ Work previousJy performed in this area is included in the literature review in chapter 
2, which also contains an explanation and motivation for the choice of control 
structures and networks to be studied. 

■ In chapters 3 and 4, different types of network topologies are evaluated to determine 
their suitability for the chosen control algorithms. 

■ In chapter 5 two neural network based control strategies and their linear system 
counterparts are compared. 

■ Finally conclusions as to the suitability of neural networks as part of control 
structures and algorithms are drawn. 



. . 

Neural Networb in Control Eogioeering 

REFERENCES 

l •.•.•• Dreyfus H.L and Dreyfus S.E., "KUNSTLICHE INTELLIGENZ - VON DEN GRENZEN 
DER DENKMASCHINE UND DEM WERT DER INTUITION", ori_g. "MIND OVER MATTER", 
New York, The Free Press, 1986. 

2 ..•.•. Smolensky P., "CONNECTIONIST AI, SYMBOLIC AI, AND THE BRAIN", 
Artificial Intelligence Review, 1987, pp. 95-109. 

3 .••••. Rosenblatt F., "PRINCIPLES OF NEURODYNAMICS: PERCEPTRONS AND THE THEORY 
OF BRAIN MECHANISMS", Washington, DC: Sparta Books, 1962. 

4 •••••• Minsky M., Seymour P., "PERCEPTRONS: AN INTRODUCTION TO COMPUTATIONAL 
GEOMETRY", Cambridge, MA: MIT Press, 1969. 

5 •••••• Grossberg S., "NONLINEAR NEURAL NETWORKS: PRINCIPLES, MECHANISMS, AND 
ARCHITECTURES", Neural Networks, Vol. 1, 1988, pp. 17-61. 

6 •••••• Lippmann R. P., "AN INTRODUCTION TO COMPUTING WITH NEURAL NETS", IEEE 
ASSP Magazine, 1987, pp. 4-22. 

7 •••••• Rumelhart D.E., McClelland J.L. and the PDP research group, "PARALLEL 
DISTRIBUTED PROCESSING EXPLORATION IN THE MICROSTRUCTURE OF 
COGNITION, Volume 1: Foundations, ch. 1: The Appeal of PDP", Cambridge, 
MA: MIT Press, 1986 • 

-6-



2. NEURAL NETWORKS FOR 
PROCESS CONTROL 
Due to the predominantly discrete nature of the first networks, most of the early 
connectionist efforts looked at utilizing networks for pattern recognition and classification 
problems, such as machine vision and speech analysis. The change to continuous 
nonlinearities (e.g. the perceptron with sigmoidal transfer function) enabled a mathematical 
analysis of the approximation or learning problem and led· to several different formulations 
of the so-called existence theorem. These proofs generally show that, provided the network 
contains sufficient hidden nodes, it can approximate any mapping with any desired accuracy. 

One of the earliest and better known of these theorems was not new, but rather a re­
phrasing of Kolmogorov's 1957 solution to the 13th problem of Hilbert[1] by Hecht-Nielsen 
[2]. Since the rediscovery of Kolmogorov there have been a host of other theorems [3], [4] 
and today almost every neural network publication refers to one of them. The detail of a 
more general version, as suggested by Kreinovich [s], js presented in Appendix I. 

Once proven, the functional approximation capabilities of neural networks caused 
considerable interest from many fields, such as process control where the modelling and 
estimation of unknown and possibly nonlinear systems or functions forms an important part 
of the design. 

This chapter provides an overview of recent attempts to utilize neural networks in the field 
of control engineering. After this the choice of networks and topologies to be studied in the 
remainder of this thesis is explained and motivated. Finally a set of requirements and 
criteria for these networks is established. 

!,__ ___ 2_.1_NE_URA __ L_NE_T_w_o_RK __ A_P_PL_1_c_A_T_1o_N_s_IN_P_R_o_c_ES __ ·_s_c_o_NTR_·_o_L _____ ___. 

The fact that connectionist networks have been developed as mathematical models of the 
human brain invokes expectations of unsupervised, self-organizing control structures with 
human-like performance. However, until the principle for learning in the brain has been 
fully understood and models of the size and capacity of the human brain can both be 
developed and managed (the human brain contains in excess of 10 billion neurons whilst 
even large application artificial neural networks seldom contain more than a few hundred 
units), such implementations will remain impractical and unreliable . 

. . Due to the above reason, most practical efforts towards the integration of artificial neural 
networks into process control problems, implement the network in a well defined role in 
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order to exploit its nonlinear approximation and learning abilities, rather than attempting to 
reproduce human-like controllers. This section provides an overview of such attempts to 
incorporate neural networks as part of a control structure or algorithm. Due to the fast 
changing nature and amount of neural network research, the discussion is not intended as 
exhaustive, authoritive study of the field but rather as background for the remainder of this 
thesis. 

Although each of the approaches described is essentially different, an attempt has been 
made to group them into applications which: 

■ Utilize a neural network as part of an adaptive mechanism, external to the control 
loop. 

■ Use a neural network in the position of the conventional controller. 
• Include a forward or inverse neural network model in the control structure. 
■ Use a unique structure not fitting any of the above. 
• Are very specific to the problem studied. 

Since these categories are not mutually exclusive, some methods fit more than one 
description and in such cases the dominant characteristic is used for classification. 

2.1.1 NEURAL NETWORKS IN ADAPTIVE MECHANISMS 

In these applications the neural network is not situated in the direct path of the control 
loop, but forms part of an external adaptive mechanism. The network is usually used to 
either switch or modulate the parameters of a fixed control law as illustrated in figure 2.1. 

NEURAL NETWORK AS 
PART OF ADAPTIVE MECHANISM 

Adaplive §§ measurable system stales 

~::~= :~~0~ and / or oiutputa i 
Neural Net 0 

~ 

':.._®+r-:71' Jl .. G Y, 

~ UnknoWD 
Controller System 

Figure 2.1 - Adaptive Structure 

Guez et al [6] for example, employ a neural estimator in a 'model reference adaptive 
control' or MRAC configuration to modify the parameters of the controller depending on . 
the current basin of attraction in the optimization space. This is achieved by implementing 
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a Cohen-Grossberg type network which adjusts the feedback gains in the controller 
according to the estimation of the unknown coefficients for a process of known dynamic 
behavior. ,,, , ,, 

In a more recent paper Kumar and Guez [1] propose the use of an adaptive resonance 
theory (or ART-II) network to implement a pole placement algorithm. The network is 
used as a nearest neighbor type classifier, which categorizes the underlying system using 
preprocessed step response information. The network output i's then utilized in the pole 
placement algorithm to modify the controller parameters. 

In a similar type of application Cooper et al [a] utilize a Kohonen type network to 
implement pattern based control, in which the gain of an existing control algorithm is 
updated by analyzing disturbance patterns in the output of a controlled system. The 
network is employed to classify the disturbance patterns as true load disturbances (which 
warrant a change in the control law) and purely oscillatory disturbances (which should be 
ignored). 

Another adaptive mechanism is proposed by Cheok and Smith [9], who suggest the 
training of a network to recall the. parameters of a number of discrete pre-designed 
controllers as a function of one or more system parameters. Due to the interpolation 
property of neural networks, the final adaptive mechanism should then provide one 
smooth, continuous and adjustable control algorithm from all these controllers. 

2.1.2 NEURAL NETWORKS lN PLACE OF CONVENTIONAL CONTROLLERS 

Figure 2.2 depicts the control loop structure for the algorithms included in this subset. As 
illustrated, the neural network occupies the place of the conventional controller and is an 
integral part of the feedback loop. 

NEURAL NETWORK IN 
CONVENTIONAL CONTROLLER POSITION 

NN controller Unknown S,st.em 

~.[:J 

Figure 2.2 - NN Controller Structure 
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In the configuration shown, the network needs to be trained in such a way that it produces 
the required input signal(s) y to ensure that the system output(s) y_s reach(es) the desired 
state y_d. Since these required inputs are not known a priori for an unknown system, the 
basic difference between algorithms included in this subsection is the method used to 
generate or estimate an error signal to train the network. The approaches incorporated in 
this category can therefore be further classified according to the type of training algorithm 
and network used. 

(a) Multilayer Perceptrons and Backpropagation 

The main obstacle with this gradient descend algorithm (discussed in detail in chapter 3) 
is that the error is only measurable at the system output and would have to be 
backpropagated through the unknown system to allow updating of the neural network 
weights during training. 

One possible method to overcome this problem is to train the network to emulate an 
existing pre-designed control law. This approach, included in the discussions by Hampo 
et al [10] and Karsai [11], might be considered where the existing controller is in fact a 
person regulating the system or where the copied neural network provides a more cost­
efficient alternative than the existing system. 

A similar approach was adopted by Kong and Kosko [12]. In their comparative study of a 
fuzzy and neural network controller they use estimation and the outputs of the fuzzy 
control law to generate the ideal network outputs during training. 

Another possibility suggested by Hampo and Marko [10] is to generate the network 
error, by utilizing the system output error in a cost function. Cramer and Womack [13] 
take this approach one step further and use the sum of errors between desired and actual . 
plant states, directly, to train the neural network controller. 

In their study Cui and Shin [14] overcome the problem by extending the conventional 
back propagation algorithm to allow training of the controller using the error between 
desired and actual output(s). The approach is novel since only the direction of the plant 
response is required as a priori knowledge. 

Narendra et al [is] and Troudet et al [16] present a further alternative for training a 
multilayer perceptron network in the controller position. They use an MRAC structure in 
which a filter or reference model generates the desired closed system responses and 
implement a pre-trained neural network model in place of the system during training. 
This allows conventional error backpropagation through this 'system model' to the neural 
controller. 
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The approach is also adopted by Nguyen,?Jld ,Wi(i;row [17linJh,1.rir famous example of the 
truck backer-upper in which they first trairi a forward neural network model, which is then 
used to backpropagate the final position error to the controller network during training. 

(b) Non-gradient Search Algorithms 

Hsuing et al [1a] as well as Moore [19] avoid the problem of error backpropagation 
through an unknown system by utilizing reinforcement learning as credit assignment 
algorithm for their multilayer perceptron networks. With reinforcement learning the, 
search for the. best parameters is guided by evaluating the effect of exploratory steps in 
the weight space. Hsuing et al point out that although this optimization method is slower 
than most gradi~nt algorithms, it makes provision for a larger variety of objectives. 

Similar non-gradient algorithm based approaches are discussed by Cotter et al [20] who 
compare a biased search with simulated annealing for training a recursive network. Both 

· .of these approaches do not require the calculation of an error gradient and are therefore 
suitable for this structure. 

In another study, Anderson and Vemuri [21] use their chemotaxis search algorithm, 
· based on the movement of bacteria in a liquid with varying concentrations, to show that 
neural networks can be trained to generate time-optimal control signals in an open loop 
configuration. · · 

(c) Genetic Algorithms 

Genetic algorithms present a further possible technique for training networks in the 
conventional controller position. This optimization technique, . based on the process · of 
evolution, uses concepts such as crossover, mutation and inversion to develop ·ojftpring 
with a higher degree of fitness as determined by some objective function, which selects 
the parents. 

In their paper Ichikawa and Sawa [22] implement a modified version of this procedure to 
train a feedforward neural network controller. The genetic approach is also adopted by 
Wieland [23] in his study on the use of recurrent networks to control unstable systems. 
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2.1.3 CONTROL STRUCTURES CONTAINING FORWARD OR INVERSE NEURAL 
NETWORK MODELS 

Approaches included in this subsection differ from those discussed previously, in that they 
utilize a neural network model of the forward or inverse plant characteristic as part of the 
control structure. 

A frequently used method of this type is to train a network to estimate the inverse of the 
plant characteristic. In other words, the network would be exercised to reproduce the 
input(s) from the resulting syst~m output(s). Once trained such a network forms the ideal 
control law since it predicts the required inputs for the system to generate the desired 
outputs. 

In one of the earlier studies regarding the use of neural networks in control engineering, 
Psaltis et al [24] investigate this option. Their investigation focuses on several possible 
inverse system training architectures which have since been adopted in other investigations 
[25]. 

The concept of an inverse neural network model has also been adopted in an open loop 
control structure in several other studies. Typical examples are the work of Steck et al [26] 
on distillation columns as well as Levin et al [21] who investigate the use of a delayed­
input delayed-state network in this configuration. 

A control structure, including a direct neural network model of the system, is presented by 
Willis et al [2a], [29]. They suggest the use of a neural network model to predict future 
outputs for a DMC-like optimization technique, which determines future inputs to 
minimize the deviations between neural network predicted and desired system outputs.· 

In their attempts, Hoskins et al [Jo] also implement a-direct model of the system, together 
with an iterative inversion algorithm, to generate the required control signals. 

Another control structure containing a n~ural network to estimate part of a forward 
model, is suggested by Spall and Cristian [31]. They examine the use of a stochastic_ 
approximation technique based on simultaneous perturbation, rather than gradient 
estimation, to estimate the unknown component of the transfer function in order to 
implement an adaptive control law. 

Cui and Shin [32] also utilize a forward neural network predictor in their multi-system 
coordinator, which uses the output of the model to synchronize the interaction between 
several linked systems, such as two robot arms holding one object. 

The configuration proposed by Wu et al [33] contains both a forward and inverse model in 
the control loop and uses the former to allow backpropagation training of the_ inverse or 
controller network. The difference between this and similar approaches discussed earlier, 
is that bcith models remain in the system and are trained on-line. 
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In their employment of neural networks in an internal mod~l control (IMC) framework, 
_ ~ ..•. ,"':~:i,:·1, 1.•,, \',•,,\ ... ,,•~.•t::_;t,l't . 

Hunt and Sbarbaro [25] suggest yet another·structure containing· both a forward and an 
inverse model. 

2.1.4 OTHER TOPOLOGIES 

This section includes attempts in which the suggested control structure does not fit into 
any of the above classifications. 

The integration of several neural networks into one control structure has been the topic of 
several research studies. Narendra and Mukhopadhyay [34] for example, suggest the use of 
a two level neural network based controller, where the higher level detects the current 
plant configuration and activates the required lower level control law. In another study 
Narenda and Levin [35] show that a multiple-network approach might be superior for the 
regulation of nonlinear dynamic systems with multiple equilibrium states. 

Another multi-network approach is suggested by Jacobs and Jordan [36], who use a gating 
network to mediate the competition between several expert networks (which learn the 
training patterns) in a gain scheduling methodology. 

The idea of several control surfaces is also supported by Barto et al [37], who suggest the 
use of a layered associative network to transform a nonlinear control problem into a 
presentation which can then be solved linearly. 

An entirely different control structure is described in the work by Iiguni et al [3a] in which 
the integration of neural networks into the classical linear optimal regulator structure is . 
investigated. The networks are included to overcome the slight discrepancies and 
uncertainties between the actual system and the model used to develop the optimal 
control law. 

Moore and Naidu [39] present yet another alternative by showing that a finite-horizon 
linear quadratic regulator problem can be transformed into a nonlinear programming 
problem, which can then.be solved by a Hopfield type neural network. 

A further novel approach is suggested by Berenji {40]. He suggests an integration of fuzzy 
systems and neural networks, to allow the storage of a priori knowledge, whilst retaining 
the capability to learn and discusses the suitability of the new model for several space 
applications. 

The work by Sznaier and Damborg [41] shows another dimension of utilizing neural 
networks in process control. They exploit the speed of an analog neural network circuit to 
perform on-line optimization for constrained linear systems. 

- 13-



Neural Networb in Coatrol Eogiueering 

2.1.5 PROBLEM SPECIFIC APPROACHES 

Approaches included in this subsection are very particular to the problem studied and 
therefore not applicable to other control problems, without modification. 

Examples of studies which are restricted to systems with a certain structure are the work of 
Chen [42] as well as Guez et al [43]. Both studies restrict themselves to a certain transfer 
function format and are hence only applicable to a small subset of control problems. 

Other investigations are completely specific to the system under investigation. Typical 
examples in this group are the CMAC network for biped walking by Miller et al [44]; a 
visual servo system which learns to move the manipulator into the correct position to grab · 
an object by Hashimoto et al (4s]; vibration cancellation by Bozich and MacKay [46] and 
the application of a neural network in a military flight control system by Steinberg and 
DiGirolamo [47]. 

Of the many applications presented in the previous sections, only a subset are _suitable for a · 
generic neural network controller. The selection of the topologies investigated in this study, 
is motivated in the following section, which also introduces a set of criteria and 
requirements for the type of neural network to be used in these approaches. 

2.2 CHOICE OF CONTROL TOPOLOGIES AND NETWORK REQtJIREMENTS 

Although the list of possible implementations, presented in the previous section, contains 
many promising and novel possibilities, the remainder of this study will be concentrated on 
applications containing direct and inverse neural network models. 

There are two reasons for this focus: 

• Firstly, the creation of valid and accurate models of dynamic systems is in itself an 
important area within the field of process control. Using the model based approach 
allows an examination of the suitability of neural networks as dynamic models. 

• Secondly, the model based topologies ( examined later in chapter 5) are based on 
well known control structures and laws, the mathematical validity of which has been 

. established even for nonlinear systems. This is not the case for many of the other· 
approaches. 

The selection of model based control structures affects the choice of neural network 
topologies and training algorithms. In the remainder of this section certain preferences for 
the networks to be investigated are explained and a set of requirements for neural network 
based dynamic models is established. 
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2.2.1 DISCRETE OR CONTINUOUS NETWORKS 

Although the continuous nature of the systems to be modelled calls for networks with 
continuous outputs, it is possible to implement a discrete input/output network with 
analog-to"."digital ~d digital-to-analog converters as depicted in figure 2.3. An additional 
hamming network may also be included between the network outputs and D/ A, in order 
to force the output vector into the nearest of the corners in then-dimensional output space 
hypercube, before reconverting. 

TOPOLOGY FOR DISCRETE NETWORK 
AS ANALOG MODEL 

(assuming 2 lnputs, 1 output and 8 bit resoluUon) 

input hidden output 
layer layer(s) layer 

-01 -o 
-o 
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m=1~1 ~ii 

discrete 
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discrete 
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Figure 2.3 - Discrete NN Model 

Such an arrangement is favoured by the fact that most modern control loops, contain a 
digital computer, in which the continuous signals do already exist as digitized numbers. A 
further advantage of the depicted arrangement is the possibility of utilizing typical 
classification networks (such as Grossberg's ART and ART-II), otherwise not suitable for 
these applications. 

The use of discrete networks also entails certain disadvantages. Both the network size and 
input/output dimensionality is much higher than for continuous. networks. Assuming 
common twelve bit resolution for the converters, a two-iQput single-output continuous 
network for example, would result in a twentyfour-input, twelve-output discrete network. 
A further disadvantage of the discrete implementation is the importance or weight· 
associated with the higher order bits in a digital representation. This importance, together 
with the fact that the output of each discrete node is interpreted to be in either one of only 
two states, makes errors in these higher order output bits both likely and costly. For these 
reasons, it was decided to concentrate this study on continuous output networks. 
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2.2.2 LEARNING AND TRAINING REQUIREMENTS FOR NEURAL NETWORK 
MODELS 

Since the networks investigated in this study are to model the forward or inverse 
characteristics of a dynamic system, they are trained in supervised mode. This method of 
training is performed by presenting the network with an input vector, to which the desired 
output is known, and then adjusting the network parameters to minimize the difference 
between network and desired response. 

For the models of a dynamic system these input/desired output pairs are actual samples of 
the systems input(s) and output(s), which have to be collected during operation. Assuming 
that it is pos.sible to collect sufficient data from the system initially; the network models 
could be trained off-line prior to their implementation in the control loop. -

Such an initial collection of data is not unique to this method since most conventional 
controller design methods require an initial identification process, where a mathematical 
model is either derived from, or validated against, actual process data. 

Since the model has to be representative for the entire operating space of the process, it is . 
essential that the collection · of system data includes sufficient samples from all regions 
within this space. Adequate coverage of the operating space can however only be 
achieved, if the system input is perturbed in a sufficiently turbulent manner. Such harsh 
regulation of the input variables is in most cases unacceptable both for the equipment 
involved, .as well as the underlying process. Hence, a more controlled method consisting of 
a set of regulated step changes in the system input(s), to observe their effect on the 
output(s), is generally employed. 

Figure 2.4 below shows a typical set of such step perturbations for a laboratory system, in 
which the level in a tank with constant inflow is regulated both above and below an 
overflow pipe, using an automatic control valve in the tank's outlet. 

Figure 2.4- S.teP Test Results 

It is important to note that the range of perturbations chosen for the above set of steptests 
covers almost the entire input space for the process. Such generous steps are generally not 
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permissible in an industrialenvironment; wher~ inputs usually have to remain within a few 
;j•~,,':J..";_l,/!'f,~)'. 1 ,1,_ , l~"••'·";,1 '"'•• t,'~•J> 

percent of their normal operating ranges ....... · : • · ' · · · · ·' · · · 

Although the above set of steptest results would be more than sufficient to develop a 
linear model for the system, this is not necessarily true for a neural network model. 
Figure 2.5 shows the distribution of the collected samples in a normalized input space 
(assuming a first order model i.e. y[n+ l] = f(u[n],y[n])) and illustrates that the distribution 
of samples is very localized in spite of these liberal input perturbations. 

.. 
o.e 

0,4 

o . .a .. 

o.o. 

-o.:a 

-0,4 

-0,6 

-0,8 

-,.o 

······i··~---···· 

. . . . . . . . . . . . . . . . . . . 

Figure 2.5 - Input Space 
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As expected the samples are confined to narrow bands of constant input values and the 
space includes many areas with few or no data points. This poor distribution of samples, 
even in an laboratory environment; highlights a · number of learning and training 
requirements for neural network models of dynamic systems. 

(a) Generalization Capability (Interpolation and Extrapolation) 

The training of neural network models for dynamic systems has to be performed using 
discrete data points collected from the system to be modelled. 

As shown, the number of training samples is generally limited and often local in nature 
(i.e. due to practical constraints the training data only covers certain regions of the 
system's operating sufficiently). The ability-of the network to interpolate between these 
discrete points and localized regions, as well as to extrapolate into the areas with few or 
no training samples, is therefore one of the important requirements for neural network 
models. 
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(b) On-line or Off-line Training 

The previous example illustrates that although theoretically possible, the collection of 
sufficient training data for off-line training prior to using the network, is not feasible in 
practice. 

Due to the localized and scattered nature of the training data, even a network with 
excellent interpolation and extrapolation capability can not be trained to sufficient 
accuracy using only sampled system data. This is particularly true for regions in the 
operating space, which the system may never enter in an open-loop configuration, but 
might be forced into, in a demanding closed-loop configuration. Such regions would 
consequently not be covered adequately in the sampled data and only an on-line training 
algorithm could ensure an accurate model. 

On-line training. of neural network models, incorporated in control structures, is also 
attractive as it facilitates compensation for slow time-varying processes. In other words, 
on-line training ensures that the control system will remain optimal even for changing 
processes (such as chemical reactions involving catalysts), provided that the system 
change is slow in comparison to the·network learning rate. 

This requirement, of training the network models in an on-line configuration, favours 
certain types of training philosophies as discussed in the following subsection. 

(c) Pattern Learning or Batch Learning 

Much of the early and current neural network research looks at classification problems, 
where a sufficiently large and representative set of training data is available. 
Consequently, many of the training algorithms utilize the entire training set during 
learning and evaluate the error over all samples between each weight update. These 
bat~h-learning algorithms are not suited for on-line training, since some method of 
managing the training set would be required to prevent uncontrollable sizes. 

Pattern-learning algorithms on the other hand, use only the current input/output pair to 
determine the error and weight changes and are therefore preferable· for on-line training. 

(d) Storing and Extracting Knowledge 

The (!lOtivation for employing a non-parametric modelling technique, such as a neural 
network, is usually that the underlying system is unknown and difficult to capture or 
describe, using more conventional methods. 

In spite of this, the designer often has some knowledge of the process behavior. 
Capturing this information prior to training would be beneficial for both, the speed of 
learning as well as interpolation and extrapolation into regions not covered by training 
&ta. . 
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· Similarly, the extraction of knowledge,,fromranetwork,•can be useful for' judging. the 
training performance; identifying areas with insufficient training data, assessing the 
network topology and size, obtaining information about the modelled process and 
integrating neural networ~s with other methods such as fuzzy logic. 

(e) Computational Effort 

Since t~e neural network forward and/or inverse model are to be implemented as part of 
the control structure and are to be trained on-line, both the network output and training 
algorithms have to be such, that they can be carried out between successive samples 
without compromising the quality of the control loop. 

(0 Ease of Use 

One of the motivations for integrating neural networks into control structures is that 
these net_works are self-adjusting and learning. Such new control structures can only be 
considered viable alternatives to ~xisting algorithms, if they are easy to apply. The 
network initialization and training should therefore not require any in-depth knowledge 
or understanding of neural network theory,. 

The preceding discussion and other network or algorithmic specific criteria are used to 
evaluate the suitability of a number of neural network structures and training algorithms in 
chapters 3 and 4. 

\ 
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3. FEEDFORWARD NET,WORKS 
In the prevfous chapter the framework for the remainder of this study was established and a 
set of requirements for neural networks to be used as forward or inverse models of dynamic 
models was deriv.ed. These requirements and other criteria are used, in this chapter to 
evaluate the suitability of feedforward networks. · 

,,__ _________ ._3._l_G_E_NE_RA_L_T_O_PO_LO_. __ G_Y _________ __.I 

The general topology of f eedforward neural networks is depicted in figure 3 .1 below. 
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Figure 3 .1 - Topology of Feedforward Networks 

As shown, these networks consist of an input layer, one or more hidden layers and an output 
layer, each consisting of one or more nodes. The nodes in the input layer usually perform no 
processing and just serve to redistribute the external inputs to the first hidden layer, via a set 
of connection weights (Wi-ht). At each of the hidden nodes the scaled inputs are then 
processed (e.g. summed or multiplied) before they are passed through an activation 
function, to form the outputs of that layer. These outputs are then re-scaled before they 
become the inputs of the next hidden or output layer. The nodes in the final or output layer 
again collect all their inputs scaled via Whn-o and produce the network's output vector by 
passing these scalars through an activation function. .J 
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Feedforward networks derive their name from the fact that the outputs of each layer only 
feed into the next layer and not to nodes within the same or previous layers. In other words 
the network generates an output vector by propagating the input vector, in a forward 
direction, until it appears at the network outputs. 

Learning or optimization of such a structure consists of adjusting the weights associated 
with the connections between layers, as well as other activation function particular 
parameters, in order to minimize the error between desired and network outputs for all 
training data samples. 

Networks of the feedforward type are further classified according to the type of activation 
function used, the number of hidden layers utilized and the kind of training algorithm 
employed. In the following two subsections multilayer perceptrons and radial basis function 
feedforward networks are examined in detail. 

3.2 MULTILAYER PERCEPTRON 

This type of network, with its origin in some of the earliest work performed in the field [1], 
was made famous by Rumelhart and McClelland [2] and is today probably the most well 
known and most often applied neural network. 

3.2.1 TOPOLOGY 

Figure 3.2 depicts the topology of the multilayer perceptrons investigated in this study. 
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Figure 3.2 - Multilayer Perceptron Topology 
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As shown, the network uses a single hiq9~q .Jciyer and employs, a logistic type activation 
function in its hidden nodes. Both choices are 'explained in detail below. 

In the remainder of this subsection multilayer perceptrons, of the topology shown, will be 
denoted as 1-m-n networks, where 1, m and n present the number of nodes in the input, 
hidden and output layers respectively. 

Although many multilayer perceptron studies include a node with constant output in their 
hidden layer to compensate for any de offset, it was found that the inflexibility of such a 
constant node limits the training rates achievable before instability. Using one of the 
standard hidden nodes· to learn any constant offset instead, allows higher learning rates 
and accelerates the training process. 

(a) Number of Hidden Layers 

As indicated in the general topology in figure 3.1, feedforward networks (and hence 
multilayer perceptrons) can have any number of hidden layers. 

In· spite of the fact that networks with suffic_ient nodes in a single hidden layer have been 
proven capable of approximating any continuous function with any desired accuracy [3], 
many applications (in particular classification problems) still use two-hidden layer 
networks. The motivation for the two-layer topology is that the first layer is expected to 
perform some pre-processing on the raw data, before presenting it in a more manageable 
format for the second hidden layer, to complete the classification or identification task. 

In a. recent paper comparing single and two-hidden layer networks for classification 
problems however, de Villiers and Barnard [4] conclude that: 

■ there is no statistically significant difference between the optimal performance of the 
two networks 

■ single-hidden layer networks do better classification on average 

■ two-hidden layer networks are more prone to the local minima problem during 
training. 

According to the research, the use of more than one hidden layer thus offers no 
advantages. Consequently, only single-hidden layer perceptrons are investigated in this 
study. 
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(b) Type of Activation Function 

Figure 3.3 depicts the logistic activation function (suggested by Rumelhart and 
McClelland) employed in the hidden nodes for all multilayer perceptrons used in this 
evaluation. 

The sigmoidal shape of the function 
highlights its origin as a continuous 
alternative for the hard-limiter in the 
pattern classification field, where the 
output of each unit is· expected to be 
either on or off. For such classification 
applications, where the output of each 
node is trained to be in either of the two 
binary states, other similarly shaped 
functions, with larger derivatives, have 
been shown to produce faster learning 
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rates for gradient descent training Figure 3.3 - Sigmoidal Activation 
algorithms (s]. Since the nonlinear Function 
portions of the sigmoid, rather than its . 
saturated regions, are used in Junction approximation problems, the above accelerated 
shifting is not desirable. In their Taylor series analysis of the approximation property of 
neural networks, Wray and Green [6] also suggest that for approximation applications, 
different activation functions only vary the way individual weights contribute to the 
coefficients in the polynomial series representation. 

The above function is furthermore attractive since the ability of approximating any 
continuous function by superpositions of a sigmoidal function has been proven 
mathematically [7] and since its derivative can be evaluated in a convenient closed form 
for gradient descent training, as shown in the foflowing subsection. 

3.2.2 TRAINING ALGORITHMS 

As with all networks, training a multilayer perceptron consists of finding a set of 
connection weights and other activation function specific parameters, such that the error 
between desired and actual outputs is sufficiently small for all input/output pairs used 
during training. 

Training is therefore an n-dimensional, non-linear optimization problem where n presents 
the number of unknown network parameters to be determined. 

Since the mathematical format of the underlying function and hence also the error surface 
is unknown, the optimization has to be performed using numerical search or optimization 
algorithms which rely solely on the evaluation of this function. Due to the absence of one 
guaranteed numerical solution to optimization problems of this nature, there have b~n -
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many different attempts, using widely diffef::ing algorithms. Allt_hese algorithms perform a 
search and can usually be classified as eithet gradient descent or directed search methods. 
Whilst the former employ an· estimation of the error function gradient to direct their 
search, the latter are usually guided by modelling some physical or biological optimization 
process, such as the cooling of a metal or the movement of bacteria in a liquid. 

(a) Gradient Descent Search Algorithms 

As mentioned previously, algorithms of this type direct their search along the actual or 
approximated gradient of the error or cost function. Backpropagation or the generalized 
delta rule, popularized by Rumelhart et al [2] is currently the most well kno_wn and most 
applied supervised neural network training algorithm. 

The following equations summarize both the forward and backpropagation rules for a 
· multilayer perceptron. A detailed mathematical treatment of the algorithm can be found 

in [2]. 

Writing the equations governing the forward propagation for each node in the 
network as follows,. 

where - j - the layer of this node 
i the previous layer 
xpj - the input to node j for pattern p 
f() - the activation function 
opj - the output of node j-for pattern p 
wij - the weights connecting the outputs of the previous 

layer to this node 
() - an activation function dependent parameter 

the change in weight according to the generalized delta rule is given by 

~Wij = f/ 0 pj O pj 
with 

Opj = (tpj - Opj)f'(Xpj) 

and 
Opj = f' (Xpj>i<o pkw kj) 

if j is a node in the output layer 
where tpj is the target output for pattern p 

for a node in a hidden layer 

Since this initial format, there have been many attempts at improving the above or 
finding better gradient training algorithms. Most of these efforts aim to accelerate the 
learning rate using methods such as the inclusion of second order derivatives [8][9], re­
scaling.of variables during training [10][11][12], or adding other features to the algorithm 
[13)[14][15][16]. 
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Due to the need to estimate the gradient, all these algorithms do restrict the choice of 
network topology and type of activation function. This limitation, together with the fact 
that the generalized delta rule, or any other gradient descent algorithm, are unlikely 
candidates for biological learning in the brain, inspired some researchers to look for non­
gradient methods. 

(b) Directed Search Algorithms 

These methods usually model a physical or biological optimization process in their search 
for the optimal set of network parameters. The chemotaxis and simulated annealing 
methods included below, provide some insight into this type of algorithm. It should be 
noted that, although these methods are presented as alternatives for backpropagation, 
they are not restricted to multilayer perceptrons and feedforward networks, since they do 
not assume a fixed network topology or activation function. 

(i) Chemotaxis 

This optimization method, developed by Bremermann and Anderson [11] and [1s], 
resembles bacterial movement in a medium with varying concentration of 
chemoattractants. In such a medium, bacteria generate random directions until they 
detect an increase in concentration. Movement along that direction is then sustained 
until there is no more increase, at which stage they stop and repeat their search for a new 
direction. 

For optimization purposes, the algorithm thus implements intermittent random searches 
with sustained movements along declining slopes, once found. 

The actual steps of computation for the chemotaxis algorithm are shown below. 

l. Initialize all network parameters to small random values. 

2. Present all p input patterns ip and calculate the corresponding output 
patterns op. 

3. Determine the 'energy' (error) of the objective function E1 over the 
whole data set. 

- typically where tk are target outputs 
ok are network outputs 
k is the number of outputs 
pis the number of training 

samples 
4. Generate random weight adjustment vector 4w 

from Gaussian distribution with mean µ=O and std. deviation a=l. 

5. Increment weights with random vector 
i.e. w = w + H4w where His an adjustable step size. 
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6. Calculate energy E2 with new set of weights. 

7. If E2 < E1 then 
retain the modified steps 
set E1 to E2 
go to step 5 

if E2 > E1 then 
retain the old weights 
go to step 4 

tr•, 

During these iterations the stepsize H can be increased if successive moves 
along the same direction yield better energy values or decreased if several 
attempts do not produce a better set of weights. 

As the above equations show, the algorithm does not implement any gradient estimation 
and is therefore completely independent of the network topology and choice of activation 
functii>ns. This flexibility was exploited by Willis et al [19] to include adjustable first 
order responses for each node in a multilayer perceptron, a modification not easily 
possible with backpropagation·. 

(ii) Simulated Annealing 

This training algorithm, based on the work of Kirkpatrick [20] and used ,extensiv~ly by 
Hopfield and Tank [21] is an analogy to the way metals cool and anneal to a state of 
minimal internal energy. 

As with the chemotaxis algorithm, the weights are adjusted by a random amount between 
each evaluation of the cost or energy function. Whilst only .steps which reduce the overall 
energy (error) are· implemented in the chemotaxis algorithm however, the simulated 
annealing method sometimes allows parameter variations which increase the error, 
depending on the temperature of the system. This is achieved by using the s<rcalled 
Boltzmann probability distribution, to ensure that parameter changes resulting in a lower 
state of en~rgy are always followed, whilst those resulting in a higher error might occur at 
high enough temperatures. This facility of temporarily moving to a state of higher energy 
provides the system with the flexibility to escape local minima and move to another basin 
of attraction, provided that the temperature is sufficiently high to allow such a change. 

A general description of the equations governing the simulated annealing algorithm are 
shown below. 

1. Initialize all network parameters to small random values. 

2. Present all.p input patterns ip and calculate the corresponding output 
patterns Op· 

3. Determine the 'energy' (error) of the objective function E1 over the 
whole data set. 
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-·typically where tk are target outputs 
ok are network outputs 
k is the number of outputs 
pis the number of training 

samples 

4. Generate random weight adjustment vector ~w 
from Gaussian distribution with mean µ=O and std. deviation a=l. 

s. Increment weights with random vector 
i.e. w = w + H~w where His an adjustable step size. 

6. Calculate energy E2 with new set of weights. 

7. Calculate probability of retaining new weights. 

- typically p = e where k is Boltzmans constant 
Tis the system temperature 

if p>O.S then retain new weights irrespective whether E2 > E1 
else keep previous weights 

Reduce temperature T. 

Go to step 4. 

Although the above description assumes that the optimal solution can be reached by 
gradually reducing the temperature only once, this is not necessarily the case. In their 
discussion, Ingman and Merlis [22] suggest that the system be melted and solidified 
several times, each time escaping from the local basin of attraction and moving closer to 
the global minimum. 

Even though both non-gradient methods discussed above offer attractive features such as 
increased flexibility in the choice of network topologies and activation functions, they both 
require a comprehensive set of training patterns and are not suited for on-line learning. In 
other words, both these algorithms are of the batch learning type (where the error is 
evaluated over the entire set of training samples) and are therefore inappropriate for the 
applications studied in this work, as explained in the previous chapter. 

Despite the fact that the backpropagation algorithm, discussed in section (a), should also 
be used in a batch learning configuration (i.e. all weight adjustments are collected and only 
implemented once the entire set of training patterns has been presented) to ensure true 
gradient descent, Rumelhart et al [2] claim that the pattern learning version (weight 
updates are effected after each pattern) presented above, will produce the same results, 
provided the training rate is kept small. This is confirmed by the work of Qin et al [23], in 
which they show that the pattern learning generalized delta rule for feedforward networks 
is in fact a first order approximation of the equivalent batch learning rule and therefore 
equivalent for small learning rates. Qin et al also show that pattern learning is stable for 
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· ·higher learning rates than batch learning.,l~eyascribe this to the fact that batch learning · 
overshoots the minimum for high learning fates, whilst the continuous updating of weights 

. prevents thisin pattern learning. 

Of all algorithms discussed.only the generalized delta rule is suitable for pattern and hence 
on-line training. All training in the following evaluation of the multilayer per:ceptron was 
therefore done using backpropagation. 

3.2.3 NONLINEAR MODELLING CAPABILITY 

In this subsection the function approximation capability of multilayer perceptron networks 
with a single hidden layer and using the logistic function nonlinearity is illustrated. 
Although this ability can and has been proven mathematically [24], an understanding of 
the underlying mechanism·is useful for the evaluation of these networks. 

As mentioned earlier, training modulates the weights and activation function parameters 
in order to obtain the best possible fit for all training patterns. In figure 3.4, the modelling 
capability of a single hidden node with a single input is demonstrated. 

HIDDEN UNIT WITH SINGLE INPUT 

wi --•x 

f(x) = 
1 

WO o--•Y 

-(1:Hh) 
1 + e 

EFFECT Of INPUT WEIGHT 
V 

1.01+-------

wi ... -1.5 

EFFECT Of THRESHOLD ,. ErrECT Of OUTPUT SC~AL~I~N-6_~~ 
wo•1.S 

wo=t.0 
l. .o 

th=.rr~. ~ th=O 
th:-3 

0.8 

o.s 0.0 

wo=-o.s 
-o.e 

wo=-1.0 

>C -Ls >C 

Figure 3.4 - Modelling Capability of Single Hidden Node 
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The figure illustrates that the output of a hidden node can be scaled and shifted to any 
desired size and position by varying the input scaling, threshold and output scaling. 

Whilst threshold and output scaling have the same effect for nodes with more than one 
input, it is worthwhile to picture the re-organizing effect of modifying the input weights in 
a multi- _dimensional space, rather than in one dimension using the scalar input to the unit. 

Figure 3.5 shows that for such nodes, scaling of the individual inputs changes the 
orientation of the sigmoidal surface in the input space. 

SIGMOID WITH 2 WEIGHED INPUTS 
HIDDEN UNIT WITH TWO INPUTS 

wit•t wi2•t 
t .00 output 

inpl 0.75 

~ WO 

~x 

0 y 

inp 
X = inphwl+ 

inp2•w2 
y = O•WO 

1 
f(x) = 

-(:,:+th) 
1 + e 

inp2 

SI GMO ID WI TH 2 WEIGHED INPUTS SIGMOID WI TH 2 WEI SHED INPUTS 
wit=t wi2•-t 

t .00 output 

inp2 inp2 

Figure 3.5 - Orientation of Sigmoidal Surface in 2-dimensional Input Space 

By adding the outputs of a number of these scaled hidden node outputs, a multilayer 
perceptron can approximate any nonlinear function. This is illustrated in figures 3.6(a) and 
3.6(b), which depict the learning process of a a 2-5-1 multilayer perceptron modelling a 
paraboloid, as well as the contribution of each of the hidden nodes in the trained network. 
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Figµre 3.6(a) - Multilayer Perceptron Model of a Paraboloid 
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Figure 3.6(b)- Contribution of Individual Nodes in Trained Network 

In the above example node 5 has been trained to provide the constant offset required, as 
described earlier in this chapter. 
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3.2.4 EVALUATION 

This subsection contains an evaluation of the suitability of multilayer perceptrons and 
backpropagation training for nonlinear modelling. The analysis focuses on the set of 
criteria established at the end of chapter 2 as well as other network and training algorithm 
specific probl~ms, some of which were first presented in Durban in 1991 [2s]. 

Since this examination serves to assess the multilayer perceptron as one of the possible 
networks for dynamic modelling, it highlights possible problem areas, rather than focus on 
strong points, such as noise filtering, exhibited by most networks. 

(a) Test Setup 

Although multilayer perceptrons can approximate functions of several variables as shown 
in the previous subsection, the evaluation criteria are illustrated for single variable 
functions to allow easier and clearer presentation. 

Due to the on-line (or pattern) learning requirement discussed in chapter 2, the networks 
are not trained using a fixed set of training samples. Instead samples are generated 
during training by choosing an input and calculating the respective output, much like an 
on-line system for which both the input and output are sampled at given intervals., Unless 
otherwise specified, the input samples are chosen at random with uniform distribution 
within the input range on which training is performed. Where required, the random 
number generator was started with the same seed value in consecutive runs, to ensure 
that the same training samples would be used. 

Wherever displayed, the root-mean-squared (rms) error was calculated by evaluating the 
function and network output for several hundred equally spaced input values over the 
permissible input range. 

All programs used in the tests were written in Turbo Pascal ver. 6.0 by Borland and a 
listing of the neural network algorithms is included in Appendix II. 

(b) Extrapolation and Interpolation Capability 

As illustrated in chapter 2, the data collected from step perturbations of a dynamic 
system is often very localized and does not necessarily cover the entire input space 
sufficiently. This localized nature of the training data also exists during on-line training, 
where the underlying dynamic system is usually only operated within a well defined 
region. 

One of the desired properties for a neural network model is therefore that it should be 
able to interpolate between and extrapolate from these localized islands of training data, 
to cover the entire operating space. 
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(i) Extrapolation 

This refers to the ah.ility of the network to anticipate the behavior of the underlying 
function into regions which contain no training data. · 

As shown above, the multilayer perceptron model is a sum of scaled sigmoidal fuijctions, 
which display highly nonlinear -behavior on both ends, before saturation. Since usually 

· only one of the two nonlinear ends is used in the approximation, the sigmoids are scaled 
such that the other tail is just beyond the training data range. This implies that a • 
multilayer perceptron model does not exhibit any useful extrapolation quality unless the · 
underlying function tapers off in a similar manner. 

Figure 3. 7 illustrates this poor capacity to extrapolate. The figure presents the results for 
a 1-3-1 network trained to model an offset parabola on the interval [-1,1]. 
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Figure 3. 7 - Perceptron Extrapolation Capability 

As shown the trained network is an accurate model for the range on which it was trained, 
but fails to predict the parabola's behavior even for small excursions beyond the training 
limits. 

(ii)' Interpolation 

Whilst extrapolation refers to the ability to predict ~nto areas with no data, int~rpolation 
pertains to the estimation between groups of localized data. As with extrapolation, the 
ability of multilayer perceptrons to perform such estimation depends on the behavior of 
the underlying function and.on the distribution of the training data. 

Figure 3.8(a) below shows a l-3-1 network, as before trained to model the same offset 
I 

parabola, but only using data on the intervals [-1.0,-0.8], [-0.1,0.1) and [0.8,1.0]. 
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FUNCTION AND NETWOQK APPROXIMATION 
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J:igure 3.8(a) - Perceptron Interpolation Capability 
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As illustrated on the left, the network still learns to model the function and also 
interpolates very well between the islands of training data shown in the detailed view on 
the right. 

Acceptable interpolation performance can however only be achieved if the opening 
between these islands is small enough for the interpolation to be performed by a single 
node and where the behavior of the underlying function in these gaps is sufficiently 
similar to that of the sigmoid, as in the above example. This is illustrated in figure 3.8(b), 
which shows· the same 1-3-1 network trained to model the identical function, but this time 
only utilizing training data from intervals [-0.1,0.0] and [0.8, 1.0]. 

FUNCTION AND NETWORK APPROXIMATION NETWORK INTERPOLATION 
output output 
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0.4 
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i put 
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Figure 3.8(b) - Perceptron Interpolation Capability 

Whilst previously using two nodes to model each of the parabola halves (and one to 
produce the constant offset), the new training intervals are such that the· network can 
produce a sufficiently close match inside these, with only one node. Between the training 
intervals the approximation now deviates significantly from the underlying function, thus 
resulting in very poor interpolation. 
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(c) On-line Training : Data Presentation and Interpretation 
. . :·)··.\-·, ., ' ··. ' 

Although the generalized delta rule is suitable for pattern learning and thus also for on­
line training, as illustrated in the previous examples, it still. requires the training samples 
to be presented in a random fashion. In other. words consecutive training samples have to 
be significantly different to ensure sufficient excitation for the network to escape from 
local minima and to learn and remember. 

(i) Random Data Presentation 

This problem is illustrated in figure 3.9, where instead of choosing the input samples in a 
random fashion, a sinusoidal excitation signal is used to drive the inputs of both the 
system (parabola) and the network. · 
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Figure 3.9 - Non-random Excitation 

In spite of the fact that the network output follows the desired function output very 
accurately almost immediately, the network does not learn as can be seen from the poor 
response _in the intervals where training is stopped. As mentioned above this· is because 
consecutive training samples do not differ enough to excite the weights sufficiently in 
order to · escape from their initial local minimum. The above problem was also 
experienced by Narendra and Parthasarathy [26] in their investigation. 
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(ii) Global Input Interpretation 

Besides the need for randomization of the training data, the multilayer perceptron with 
its semi-infinite sigmoids is also prone to forget or re-learn when not presented with data 
from all areas of the input space at all times. In other words, due to the global nature of 

· the sigmoidal function each hidden node is affected by any input in the entire input space 
and inputs are thus interpreted globally. 

The resulting problem is illustrated in figure 3.10. The left part of the figure shows how a 
1-3-1 network, due to its insufficient number of hidden nodes to model the underlying 
function accurately, learns to generalize as required, if the training data samples are 
selected from the entire input space. When later presented with training data restricted 
to a subsection of the input space however, the previously trained network relearns and 
in the process destroys knowledge about the area now omitted as illustrated in the right 
hand plot. 

FUNCTION ANO NETWOQK ADDQOXIMATION FUNCTION ANO NETWOQK ADDQOXIMATION 
outpu outpu 

. . . 
0.75 . . . . . . . . . . . . . . . -:- ............... {· ............... ,,: ............. . 0.8 ......••••.•... -:- .•••....•.•••.. ,,: ......••.•...•.. i· .••.......... . . . . . . . . . . . ! \ : !function 
0 .so ···············j·········funct ion········:·· .. ······· ..... o. ............ :........... . ........ 1..:...... . 

. . . . . . 
0,25 ............. ,: . . . . ... 

.....•.••...... ~-. . ......... ~- ..............• !' ................. . 
. . . . . . . 

0 

t o.oo 

-o.:as . . . . . . . . . . . ........... .; ................ .; ................ . 
• I 

............ ; ............. !.. .. .. 

-o. 

. . . . . . . . 
. ........... ., ................ .- ................ . . . . . 

: : 
............ ; ............. t.. 

: I . . . . . . . . ............................................... . . 
: : 

const'rainad .,.. . ....... .. . . 
input input 

Figure 3.10 - Global Input Interpretation 

Although the problem was illustrated using an abstract single variable example, it applies 
to most dynamic systems, where the data obtained is usually localized and where, due to 
the effect of disturbances and fast poles, the network has to generalize without 
inappropriately destroying previously captured information. 

Since the inputs to and outputs from most dynamic systems are slow varying signals and 
often localized for considerable periods of time, the above two phenomena imply that 
multilayer perceptrons with backpropagation are not suited for direct on-line training 
and_would require some form of data capturing and preprocessing. 

Even though the above data presentation problems was illustrated for a network 
containing too few hidden nodes to accurately model the underlying system, it is also 
likely to occur for structures with more hidden mxies, if poor initial parameters are 
selected. 
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(d) Initial Weight and Training Rate Choices 

Both, the set of initial network parameters and the training rate have to be chosen prior 
to training the network. The magnitude of lhese parameters can have significant impact 
on the network's learning performance. 

(i) Initial Network Parameters 

All adjustable weights and thresholds of a multilayer perceptron are usually initialized to 
small random values prior to training. Although this initialization procedure is generally 
satisfactory and does not significantly influence the rate of convergence for 
.approximation networks (larger initial weights generally imply faster initial learning but 
slower fine tuning and vice versa), an unfortunate choice of initial weights might result in 
either too much or too little generalization. 

This effect of initial weight choices is illustrated in figure 3.11. The graph on the left 
depicts how a 1-5-1 network with small initial weights learns to generalize.· If all the 
initial weights are scaled by a factor of ten, the same network fails to generalize and 
learns the exact underlying function as shown on the right. 
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Figure 3.11 - Effect of Initial Weight Choices 

Depending on whether the small humps present an important part of the model or just an 
unwanted disturbance, either of the two resulting neural network models could be 
unsatisfactory. Some a priori knowledge of the underlying function is therefore required 
in order to choose the correct magnitude for the initial network parameters, such that the 
model is sufficiently accurate but ignores all undesirable disturbances. 

(ii) Training Rate 

Figure 3.12 depicts the evolution of the rms error for the same 1-3-1 network with 
identical initial parameters but varying training rates. For simplicity the momentum term, 
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which has a filtering effect and generally improves the learning rate, was omitted in the 
example. 

The.choice of 0.02 is too small and never 
allows the network parameters to escape 
from their local minimum. For a training 
rate . of 0. 2 on the other. hand, 
convergence is initially slow but · then 
accelerates. and the rms error settles at an 
acceptable value. The slow convergence 
during the early stages of learning, also 
known as premature saturation [21], is 
due to the initial re-orientation of the 
sigmoidal outputs of the hidden nodes. In 
the problem chosen here, a training rate 
of 2.0 is close to optimal, producing fast ,1 
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Figure 3.12 - Effect of Training Rate· 

and efficient convergence~ Although a larger training rate of 5.0 also produces fast initial 
convergence, th'? first oscillations and signs of instability are noticeable, indicating that 
this training rate is too high for the specific problem. 

Whilst the examples in this subsection are not meant to suggest specific choices of · 
parameters for all · approximation problems, they· illustrate that poor network. 
performance might not only be the· result of network size or the quality of the training 
data, .but also due to poor choices of parameters and/or learning rates. 

' 

(e) Number of Hidden Nodes 

Despite the many algorithms that exist to prove that a single hidden layer containing a 
sufficient number· of nodes is,adequate to model any function, no accepted method of 
determining this number exis~, particularly for problem~ where the underlying function 
is unknown. · 

Whilst increasing the number · of hidden nodes in a network is generally believed to 
improve their performance and, due to the distributed representation, create ~me form 
of backup.for classification networks, this is not the case for m~elling networks. _Since 
each of the utilized hidden nodes models part of the underlying function, any additional 
nodes that cannot significantly improve the accuracy of the model are not applied and do 
not improve the overall performance of the network.· 

This is depicted in figure 3.13 below, where the contribution of individual nodes of a 
1-5-1 multilayer perceptron network, trained to model a parabola, are depicted. Only two 
of the four nodes contribute· to the actual model and one of the remaining three nodes 
would suffice to provide the necessary off set. · 

-40-



3. Feedf'orwanl Networks 

FUNCTION ANO NETWORK APPROXIMATION 
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Figure 3.13 - Redundant Nodes 

Although this condition does not impact on the performance in the example shown 
above, it implies that modelling multilayer perceptrons do not exhibit true distributed 
representation as their classification counterparts. These networks can therefore also not 
be expected to degrade gracefully, if one or more of the utilized hidden nodes are 
damaged. 

In section (d) above, it was shown that the number of nodes utj.lized in the network 
model not only depends on the underlying function, but is furthermore influenced by the 
initial choice of parameters. In other words, even if the network could utilize more of its 
hidden nodes, it might not do so due to poor initial weight choices. 

(0 Network Interpretation 

This division deals with the possibilities of storing knowledge in the weights of a 
multilayer perceptron prior to training, as well as the interpretation_ and extraction of 
information stored in the weights of a trained network. 

(i) Storing a priori Knowledge 

Due to the global input interpretation discussed previously, any attempt to store a priori 
knowledge in a multilayer perceptron network would require the anticipation of the final 
position of and scaling for each hidden node, to ensure that the stored information will 
remain and not be destroyed by subsequent learning. 

Th~ problem is compounded by the sensitivity of these networks to initialization errors as 
dis~ussed in (d). Even if the initial knowledge could be stored, the weights chosen might. 
restrict further learning of the network and hence limit its approximation potential. 

(ii) Extracting Data 

Due to the high flexibility of multilayer .perceptrons, the knowledge stored in a trained 
network model can generally not be interpreted or extracted directly from the network 
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parameters. The idea of using Taylor series representations for each of the hidden node 
suggested by Wray arid Green [6] might produce useful results for small networks but 
becomes impractical for larger _structures. 

(g) Local Minima 

The local minima problem refers to the condition, where due to a basin of attraction in 
the weight space, the search for the optimal set of parameters remains trapped in this 
region of suboptimal choices. As illustrated in the above examples, this might be due to a 
number of reasons, such as poor choices for initial parameters or training rates,. the 
number of hidden nodes utilized or even the order of presenting the training data. 

This problem of not converging or only converging to a local minimum, has not yet been 
resolved and remains one of the main arguments against multilayer perceptrons and 
backpropagation training. · 

(h) Computational Effort and Ease of Use 

(i) Computational Ejfon 

·;Both the forward and backpropagation algorithm for the multilayer perceptron are of 
medium complexity and moderately sized networks of this type are therefore suitable for 
on-line implementation and training. 

(ii) Ease of Use 

In spite · of the suitability from a computational. point of view and the fact that a 
multilayer perceptron is easy to configure and program, the evaluation shows that the 
performance of the network depends largely on appropriate choices of network 
parameters, the number of hidden nodes and the presentation of the training data. This 
type of network and training algorithm is therefore not well suited for a generic 
approach, where the designer may have little or no knowledge of neural networks. 

The assessment of the multilayer perceptron and the backpropagation training algorithm, 
demonstrated that although these networks are flexible and capable of modelling almost 
any nonlinear function, they have several shortcomings. The fact that they are not suited 
for direct on-line training without some processing or re-arranging of the training data and 
furthermore require a skilled train~r to select the parameters and steer the training, are the 
more serious for the type of applications considered in this thesis. 
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·J.3 RADIAL BASIS FUN~TI:ON'Y(RBF) FEEDF()RWARD NETWORKS · 

Although not yet as well-known as the multilayer perceptron, this type of feedforward 
. network is receiving increased interest as a viable alternative, which might overcome some 
of the limitations highlighted in the previous section. 

As in the analysis of multilayer perceptrons, this section starts with an discussion of the 
network topology, before several training methods are presented. After this the selected 
network and algorithm are evaluated. 

3.3.1 TOPOLOGY 

Figure 3. 14 depicts the general topology of feed forward RBF networks. · 

RBF NETWORK TOPOLOGY 

network ® network 
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outputs 

inputs 

-0 ® -
-o 0-® • 

• 
• • 

-o • • 
• • 
• 0-input 

® layer 
Wh-o 

linear 
Gaussian output units 

hidden units 

Figure 3 .14 - Feed forward RBF Network Topology 

As shown, the structure of this type of network does not differ significantly from that of the 
multilayer perceptron studied in the previous section. Both networks have a single hidden 
layer and only utilize nonlinear activation functions in their hidden nodes. The main 
difference between the two topologies is the type of activation function applied in the 
hidden nodes. Although this difference might not seem significant, it is probably the main 
reason why RBF networks do not exhibit some of the problems illustrated earlier for 
multilayer perceptrons. 

The radial basis function approach has also been motivated mathematically. Girosi and 
Poggio [2a] demonstrate that these networks have the best approximation property (i.e. the 
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set of RBF networks contains at l_east one approximation with minimum norm from the 
function to be approximated) and that multilayer perceptrons do not possess this property. 

The following divisions motivate and discuss the radial basis type activation function, the 
absence of weights between input and hidden layer and the use of a single hidden layer for 
these networks. 

(a) Radial Basis Activation Function 

Most RBF networks employ the Gaussian 
function depicted in figure 3.15 as the 
activation function in the hidden nodes. 
The local nature is the most significant 
difference between this RBF and the 
sigmoidal type of activation function. In 
other words, whilst the logistic function is 
semi-infinite, the RBF functions only 
produces an output on a restricted, local 
sphere of influence. This localized 

. response is due to the fact that the 
activation of a RBF function depends on 
the distance of the input vector· from its 
center, rather than the absolute values of 
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Figure 3.15 - Gaussian Activation 
Function 

the inputs. The output of such a function is therefore maximal, if the input vector 
coincides with its center and gradually decreases to zero for inputs further away, thus 
resulting in a spherical space of reaction around the center of the node. 

The advantage of hidden nodes with such local response is not only beneficial for 
modelling applications (as shown later in this chapter) but also for classification 
problems. In their attempt to utilize neural networks for process fault classification, 
Leonard and Cramer [29] note that RBF networks overcome the problem of non­
intuitive, non-robust decision surfaces produced by multilayer perceptrons and 
backpropagation. 

(b) Weights from Input to Hidden Layer 

The structure in figure 3.14 shows no weight matrix for the connections between input 
and hidden layer. Again this is due to the radial basis type activation function, where the 
equivalent of input scaling is performed by adjusting the bandwidth of each node for each 
input dimension. In other words, internal parameters (equivalent to the standard 
deviation) can be modified to widen or narrow the region of influence for each of the 
inputs to each of the nodes. 
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Although possible, most RBF applications do not use different bandwidth parameters for 
different input dimensions and do,pqqqcIµde J>arairrte.~i:~ crq~s-linking these dimensions, 
since the resulting ellipsoid typt; 18f"~~ti~atio~'t;:gi3~; "'hot aligned with the major 
directions of the iriput dimensions, would require extensive optimization for each node. 
Single bandwidth parameters without cross-linking terms are thus used in most RBF 
applications. 

(c) Number of Hidden Layers 

Although some multilayer perceptron applications utilize two hidden layers, this is not 
the case for RBF networks. This is partly because, as for multilayer perceptrons, 
algorithms exist to prove that a single hidden layer suffices. However, the main reason 
for a single hidden layer in RBF networks is their structure. The underlying idea of 
utilizing radial basis type functions is that the network will partition the input space, so ' 
that each of the hidden nodes has a well defined, local sphere of influence, on which it 
models the underlying function. The addition of further layers in such a structure would 
therefore not improve the modelling capability of the network and the additional nodes 
should rather be used in the first layer to perform a finer division of the input space. 

3.3.2 TRAINING ALGORITHMS 

As with multilayer perceptrons, there exist a large variety of training algorithms to 
determine the tunable parameters for RBF networks. These parameters, to be determined 
prior to or during training include: 

• the number of hidden nodes 

• the center for each of the hidden nodes (mean for Gaussians) 

• the sphere of influence for each hidden node (standard deviation) 

• the weight between each hidden and output node 

In the overview of training methoos presented below, the algorithms appear in order of 
network flexibility. Whilst the first algorithm determines all the above network 
parameters, the third only adjusts the connection weights between hidden and output 
layers and requires that the remaining variables are determined by other means prior to 
training. 

(a) Hierarchically Self-Organizing Learning 

As mentioned above this RBF training algorithm suggested by Lee and Kil [Jo] 
determines all the parameters of an RBF network. 
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An overview of the steps involved m generating and training the network using this 
algorithm are presented below: 

The network starts with no hidden nodes and an output of zero. The following 
algorithm is then applied to generate all the hidden nodes and the necessary 
connection weights. 

1. Start with no hidden nodes and set the effective radius ri large enough 
to cover the entire input space. 

2. Invoke new learning cycle (for all patterns) as described below: 
(i) get next training pattern 
(ii) if the output of the network differs by more than the error margin 

from the desired output then 
- if the input vector falls within the effective radius of an 

existing hidden node then update the mean, standard deviation 
and weight associated with that hidden node to accommodate the 
training pattern 

- else create a new hidden node with its center at the input 
vector, its weight equal to the desired output, its standard 
deviation to small initial values and its effective radius to 
the current value 

3. Reduce the effective radius of each hidden unit by a pre-determined value 
or using a measure of the error gradient to judge when 'saturation of 
learning' occurs for the current number of hidden nodes. 

4. Go back to step 2 until the difference between network - and desired 
output is within the error margin for all training patterns. 

The algorithm thus grows the network, starting with one node, covering the entire input 
space and then slowly shrinking its sphere of influence whilst adding more nodes as 
required. 

(b) Clustering Type Algorithms 

For this type of algorithm the required number of hidden units has to be estimated prior 
to training. During optimization the remaining parameters are then usually determined 
in three phases. First the center for each of the units is located, then the bandwidth of 
each is adjusted and finally the connection weights with each of the output units are 
established. 

Due to the many variations of this type of algorithm published in literature [311(321(33], 

the discussion below includes more than one method of determining the parameters, 
where applicable. 
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Phase 1 - Locating the CenteJ::"},t._. ,, , . ;,, 
; t ---~ '. · .. 'f,' ,' -~-- :. '" 

If all training patterns are available, this_is usually done using standard 
k-means clustering: 

(i) The centers are set to randomly chosen training pattern inputs., 
(ii) Each training sample is then assigned to the unit with it:s center 

nearest to its input. 
(iii) When all units have been assigned, the center of each cluster is 

moved to the average po.sition of all points in the cluster. 
(iv) Go to step (ii) until convergence (the centers don't move 

significantly). 

For 
(i) 

more on-line orientated algorithms: 

( ii) 
( iii) 

Choose centers randomly distributed in the input space. 
Present the next pattern with input Xp to the network. 
Find the unit with its center Xh closest to the input of this 
pattern and move it fractionally towards the input· 
Xh(t+l) = Xh(t) + 11<xp-Xh(t)) where 11 is the learning rate which 

decreases with time. 
(iv) Go to step (ii) until there is no more significant improvement. 

To ensure a more global optimization, the updating might be applied to all 
centers in the topological neighborhood, which decreases with time much 
like the effective radius in the above algorithm. 

Phase 2 - Determining the Bandwidth (interpolation) 

- For both, batch and pattern learning a P-nearest neighbor heuristic is 
usually employed to find the bandwidth for each hidden node 
i.e. 

(1 = 
h 

where Xj are the P nearest neighbors of the center. Xh 

- Other iterative algorithms to determine these parameters exist [30). 

Phase 3 - Training the Hidden-Output Weights 

- ·since all other parameters have been fix~d at this stage, finding the 
weights between the hidden and output units (which only sum all their 
inputs to produce a network output), presents a linear optimization 
problem, where the least mean square solution is required. 

This solution can be obtained in one pass for batch type problems, using 
a pseudo inverse matrix of the hidden node activation vectors for all 
training patterns A and ~ultiplying this with the matrix of target 
outputs T. 
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For pattern or on-line learning, the solution has to be obtained by 
adjusting the weights proportional to the contribution of the node and 
the error between desired and actual output 

where - a is the learning rate 
- Ki is the output of the hidden 

unit 
- err is the difference between· 

desired and actual output. 

Training continues until the error is acceptably small for all patterns. 

Although the algorithms discussed are attractive as far as network flexibility is concerned, 
they are not suited for on-line training. This is because these algorithms are of the batch 
learning type and require the entire training set prior to training. Even the pattern 
learning type clustering algorithm adjusts the centers, bandwidths and weights in stages 
and therefore requires that during each of these, the training patterns used are 
representative for the entire operating space. 

A less flexible network structure, more suited for true on-line training, was therefore 
used in this study. 

(c) Regular Gaussian RBF Network Learning 

This type of simplified network structure and learning algorithm, suggested by Hunt and 
Sbarbaro [34], is a simplification of the above method. Instead of utilizing actual input 
patterns during the first two phases, the available number of nodes are distributed 
uniformly over the entire input space and the bandwidth of all nodes is predetermined to 
ensure smooth interpolation. The steps below describe and motivate the procedures used 
to generate and train such a regular Gaussian network. 

The discussion below assumes the following network notations and equations: 

The output of hidden node j for input pattern pis given by 

Kj = e-d(x,~,.A) 

where d(X,Xp,.A) = (x-is.p)T.A<x-xp) 

with x - the center of the unit 
Xp - the input vector 
A - a diagonal matrix of the bandwidth value a. 
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Each of the o outputs foi a--!~;t.
1
~ork wit.t/\i· h'fdden units is then 

determined as follows : 

Yo where wjo is the weight connecting hidden 
node j to.this output. 

Using this notation, the network is initialized and trained as follows: 

1. Distribute the available nodes uniformly in an n-dimensional unit cube 
(all inputs to the RBF are normalized.) 

- where n presents the number of inputs to the network 
(each input dimension receives the same number of units to allow the 
use of a single bandwidth parameter per unit). 

2. Calculate the bandwidth. 
- Due to the uniform distribution the number of nearest neighbors 

depends on the input dimension (2 for 1 input, 4 for 2 inputs etc.). 
- It was however found that even for multi-dimensional problems the 

following fixed bandwidth produced the best interpolation results, 

2 
.:1 = 

(distance betw. nearest nodes) 2 

Figure 3.16 shows the result of this 
initialization procedure for a 1-7-1 
regular Gaussian network where the hidden 
to output weight for each of the nodes was 
set to 0.5. The figure highlights the 
trade-off between smooth interpolation and 
inter-node interference in choosing the 
bandwidth for hidden nodes. 
The network output shown, furthermore 
illustrates the poor interpolation near the 
edge, which explains why the input range of 
[-1 •• 1] is re-mapped to [-0.75 .• 0.75] in 
the feedforward algorithm. 
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o. 

Figure 3.16 - RBF 
Initialization 

3. Initialize all network weights who to small random values. 

4. During training update the weights connecting each of the j hidden nodes 
to each of the k output nodes using the least squares regression 
algorithm described above 

Although the regular Gaussian network sacrifices a significant · amount of the standard 
RBF network flexibility, the resulting structure ensures a homogeneous distribution of 
nodes and hence modelling capability over the entire input space and can be trained on-
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line. Both are important requirements for neural network models and warrant an 
evaluation of this type of network as an alternative to the multilayer perceptron. 

3.3.3 NONLINEAR MODELLING CAPABILITY 

As described above, the flexibility of individual hidden nodes in the regular Gaussian 
network structure is limited· to the strength of their connection weight(s) with the 
output(s). The only adjustment for individual nodes is thus their height as illustrated for 
single and two-dimensional input nodes in figure 3 .17. 
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Figure 3.17 - Modelling Capability of Hidden Nodes in Regular Gaussian Networks 

As wjth the multilayer perceptron, the summation of a number of these scalable nodes in a 
network can be trained to model a nonlinear function. This is depicted in figures 3.18(a) 
and (b), which show the generation of a 2-9-1 regular Gaussian network model for a 
paraboloid and the contribution of each of the nine hidden nodes to the trained network 
output. 
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Figure 3.18(a) - Regular Gaussian Network Model of a Paraboloid 
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Figure 3.18(b) - Contri~ution of Hidden Nodes 
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It is worth noting that although the regular Gaussian network requires nearly twice the 
number of hidden nodes when compared with the · multilayer perceptron discussed 
previously, it converges using far less training samples. 

From the error surface for the trained network it is clear that due to the rigid structure of 
the network (fixed centers and bandwidth), some of the nodes have to compromise, 

· resulting in a less than optimal model. This _is particularly ev'ident for the nodes on each of 
the corners ·as well as the node at the center of the training space. 

· These and other advantages and· disadvantages of the regular Gaussian network are 
discussed in the following evaluation. 

3.3.4 EVALUATION 

As for the multilayer perceptron, this section investigates the suitability of the network and 
learning.method for nonlinear modelling. In order to compare the applicability of regular 
Gaussian networks with that of multilayer perceptrons, particular attention is paid to the 
problems highlighted for the latter in the previous section. 

(a) Test Setup 

The test arrangement used in this assessment is identical to the one utilized earlier; 
problems are illustrated . for single input networks; training patterns are generated at 
random during run-time unless otherwise specified; the root-mean-squared (rms) error is 
calculated by evaluating function and network output for several hundred equally spaced 
values, on the permissible input range. 

Again all the required software was developed in Turbo Pascal ver. 6.0 and all the 
relevant algorithms are included in Appendix II. 

(b) Extrapolati()n and Interpolation Capability 

As discussed earlier, the clustered nature of data collected from dynamic systems due to 
their localized method of operation, demands some form of extrapolation from and 
interpolation between these jslands of training data. 

· (i) ~trapolation 

Since all inputs to regular Gaussian networks have to be normalized to within the 
permissible [-1. .1] interval, a 1-5-1 network was trained to model an offset parabola, 
using a restricted training interval [-0.5 .. 0.5] and was then examined between 0.5 and LO 
in order to judge the extrapolation capability of this type of network. Figure J.19 depicts· 
the results of this test. · 
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Figure 3.19 - Regular Gaussian Extrapolation Capability 

As shown, the network has learned to model the underlying function accurately on the 
trained interval (left), but fails to predict function values for inputs beyond the limits. 
This poor extrapolation capability is expected for RBF type networks where, due to the 
local nature of each hidden unit, nodes beyond the interval receive no or little training 
and are therefore not modified. 

Although this behavior is disadvantageous from an extrapolation point of view, it is the 
very same qual,ity that prevents a regular Gaussian network from forgetting like the 
perceptron, if trained in a local fashion. The advantage of this local learning is illustrated 
later in this assessment. 

(ii) Interpolation 

As with the multilayer perceptron, the ability of regular Gaussian networks to interpolate 
between localized regions· of training data ·depends on the number of units and the 
behavior of the underlying function between the data islands. 

If the number ofnodes is sufficiently small as in the 1-3-1 network trained on intervals 
[-1.0 .. -0.81,[-0.l.,0.l] and [0.8 .. l.0] shown in figure 3.20(a) (left) below, the resulting 
network model is acceptable and predicts the function values adequately in the untrained 
interval (right). This is due to the fact that despite th~small intervals used, each of the 
hid~en nodes is receiving sufficient training input. 
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Figure 3.20(a) - Regular Gaussian Interpolation Capability 

The networks interpolation capability is reduced considerably if the number of hidden 
nodes between the two training intervals is increased, such that the active input region 
for some of these nodes lies entirely outside the training intervals (i.e. the node receives 
no training). This is illustrated in figure 3.20(b) which shows the results of training a 1-9-1 
network, using the same intervals as above. 
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Figure 3.20(b) - Regular Gaussian Interpolation Capability 

input 

Although the network model is very accurate on the trained intervals, the interpolation 
between these is extremely poor. Due to interpolation, units with their .centers close to 
the trained intervals receive one-sided training and are therefore distorted in order to 
improve the model in the trained interval (e.g. node at 0.2), whilst nodes further inside 
the interval receive no training at all. 

These extrapolation and interpolation results for regular Gaussian networks highlight the 
need for sufficiently dense and distributed training data and/or some form of network 
initialization, to ensure adequate performance in regions with little or no training. 
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In the evaluation of multilayer perceptrons, the need for random presentation of and 
sufficient variation in the training data was highlighted as one of the major drawbacks of 
the backpropagation training algorithm. Due to the local response of the activation 
function used in their hidden units, regular Gaussian networks can overcome these 
problems. 

(i) Training Data Presentation 

Although random presentation of training patterns allows higher training rates and hence 
accelerated learning·in regular Gaussian networks, his possible to train such a network 
with a slow varying input signal. This is illustrated in figure 3.21, where a sinusoidal input 
signal is used to drive both, the parabola to be learned as well as the input to the 1.-10-1 
regular Gaussian network model. 
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J. 4 
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Figure 3.21 - Sinusoidal Excitation for Regular Gaussian Network 

The larger than required number of hidden nodes was chosen to provide a very fine 
partitioning of the input space and a low training rate was used to allow slow 
convergence of the weights and prevent overshoot. As Shown, the network learns 
gradually and accurately predicts the lower half of the model whe.n learning is stopped 
for the first time (20 .. 30]. After further training, the network performance continues to 
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improve and when training is stopped again [50 .. 601, the network is an accurate model for 
all but a very small region at one end of the input ·space. 

(ii) Input Interpretation 

The global input interpretation and resulting loss of information when trained locally, 
was highlighted as one of the reasons why multilayer perceptrons are not suited for true 
on-line training. Again the local response of the nodes .in a regular Gaussian network 
help to overcome this limitation as illustrated in figure 3.22 below. 
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Figure 3.22 - Local Training for Regular Gaussian Network 

The graph on the left shows the output of a 1-10-1 regular Gaussian network model 
together with the underlying function after training on the entire input range. The 
network was then trained further on a reduced interval [-1. .0] and as shown on the right, 
even after considerable training, only the output of one node directly adjacent to this 
area is affected. Nodes sufficiently far away [0.4 .. 1.0] are not influenced· and the network 
thus remembers the information previously learned for that input region, provided the 
network contains a sufficient number of hidden nodes. 

(d) Initial Weight and Training Rate Choices 

As with all neural networks both, the initial network parameters and the training rate 
have to be choseri prior to training. 

(i) Initial Network Parameters · 

The only adjustable network parameters for a regular Gaussian network are the weights 
connecting each of the hidden nodes to the outputs. For most applications these are 
initialized to small random numbers. Due to the well defined, localized area of response 
pre-assigned to each of the hidden nodes, the initial value of these weights does not 
determine the performance of nodes in the trained network, as in the case of the 
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multilayer perceptron. In other words, the initial choice of parameters does not influence 
the modelling capability of the net~W~· :w. , , . :, •· . 

(ii) Training Rate 

Figure 3.23 shows the convergence of a 1-5-1 multilayer perceptron with identical initial 
conditions for different training rates. 

As shown the rms error declines steadily 
to the final minimum for a training rate of 
0.02. The network does however learn 
much faster for a value of 0.2, for which 
the final minimum is reached after one 
tenth of the number of training samples. 
As illustrated, a further increase of the 
training rate to 2.0 leads to oscillations 
Le. the error does not converge and the 
system borders on ·instability. 
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As before, this example was not included Figure 3.23 _ Effect of Training Rate 
to recommend an optimal training rate, 
since this depends on the underlying function as well as the format in which the training 
data is presented (for slow varying input signals only small parameters lead to 
convergence), but rather to show that the network converges for all, except very large 
training rates. 

Both, the initial choice of weights as well as the training rate are thus not as critical for_ 
regular Gaussian networks as they are for multilayer perceptrons. 

(e) Number of Hidden Nodes 

In the evaluation of multilayer perceptrons it was shown that such a structure only 
utilizes the number of hidden nodes required to approximate the underlying function and 
that the addition of further nodes does not improve the model. 

This is not the case for regular Gaussian networks, where each node is assigped a certain 
input partition prior to training and hence all hidden nodes are employed in the model. 
Figures 3.24(a) and (b) below show the resulting approximation and node contribution 
for regular.Gaussian networks containing five and ten hidden nodes respectively. 
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FUNCTION AND NETWORK APPROXIMATION CONTRIBUTION Of INDIUIDUAL NODES 
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Figure 3.24(a) - Five Node Approximation 
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Figure 3.24(b) -Ten Node Approximation 

As shown, all nodes are utilized in both networks and the only difference is a finer 
resolution of the input space for the 'ten hidden node' network. 

(0 Network Inflexibility and Size 

Although many of the advantages of regular Gaussian networks over multilayer 
perceptrons, are due to predetermined fixed positions and bandwidths of the hidden 
nodes, this rigid structure also has drawbacks. One of the main disadvantages associated 
with this inflexible topology is that the fixed position and width of the Gaussians might 
not be optimal for the underlying function, hence forcing the network to compromise 
even though a better approximation could be achieved with the same number of hidden 
nodes. 

This is illustrated in figure 3.25 below, where the output of a trained 1-8-1 network is 
shown together with the underlying function. 
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Figure 3.25 - Regular Gaussian Network Inflexibility 

The poor performance near -0.8 could easily be resolved if the network had the flexibility 
to shift the center and modify the bandwidth of the node labeled node 2 on the right hand 
plot. Due to the fixed arrangement of centers and bandwidths for these networks, such a 
solution is not feasible and more hidden nodes would have to be employed, if a more 
accurate model is required. 

Whilst this approach, of increasing the number of nodes until satisfactory accuracy is 
achieved, is acceptable for single input systems, it becomes a problem for networks with 
more than one dimension. Since for regular Gaussian networks the number of nodes 
required to. achieve a certain resolution per input dimension grows exponentially as a 
function of the number of inputs, higher dimension structures have to be limited to few 
nodes per input dimension in order to keep -the number of nodes within manageable 
limits. This restriction might in tum compromise the modelling performance of the 
network as illustrated in the above example. · 

(g) Network Interpretation 

Unlike the multilayer perceptron for which both, the storage of a priori knowledge and 
extraction of information from the network were not feasible, the regular Gaussian 
network is relatively easy to initialize and interpret. 

Again this i~ due to the well defined partitioning of the input space. The weight between 
each hidden node and the output{s) is a direct reflection of the modelled function output 
at the center of this node and can be used to both, initialize an untrained network and 
obtain information about the rriodelled function in a certain · region after training 
(provided the interpolation·of neighboring nodes is taken into consideration). 

A further benefit of the well defined structured topology of regular Gaussian networks is 
their similarity with fuzzy inference systems. This link between self-adjusting, learning 
and rule-based systems is currently receiving considerable interest [35] and might in 
future provide other, more appropriate methods for storing and extracting knowledge. 
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(h) Computational Effort and Ease of Use 

(i) Computational Effort 

Although the forward propagation algorithm for regular Gaussian networks is not 
complex, it is computationally intensive since the distance from the center of each hidden 
node, rather than the actual input vector is used. The problem is particularly evident for 
multi-input systems. The training algorithm on the other hand, is very fast and robust and 
compensates som~what for the slow forward propagation, rendering the combined system 
suitable for on-line implementation on real-time systems. 

(ii) Ease of Use 

In the above evaluation of regular Gaussian networks it was shown that these networks 
are very robust, converge for almost any choice of parameters and are suitable for true 
on-line learning. In addition these networks utilize all available hidden nodes and store 
information in an accessible format, allowing easy interpretation and interrogation of the 
network. This type of network is hence easy to use and does not require an in-depth 
understanding of neural networks. 

The above assessment of regular Gaussian networks illustrated that despite several 
drawbacks, these networks are capable of nonlinear modelling and overcome some of the 
problems experienced with multilayer perceptrons discussed in the previous section. 

3.4 DISCUSSION 

The suitability of two typical feedforward networks for nonlinear modelling was analyzed in 
this chapter. This subsection summarizes the main results of this evaluation and highlights 
one further drawback of all' feed forward networks. 

3.4.1 A COMPARISON OF MULTILAYER PERCEPTRONS AND REGULAR 
GAUSSIAN NETWORKS 

Both types of network perform poor extrapolation and only accomplish satisfactory 
interpolation if the local islands of training data can be incorporated into one node. 

Due to the local interpretation of inputs in the regular Gaussian network, this structure is 
more suited for true on-line learning, does not forget when trained in localized regions, 
utilizes all its available nodes (independent of the initial parameter choices) and lends 
itself for storing and extracting knowledge. 
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.Despite th_ese advantages the inflexi!:~l~segu,arGau~si~:;tpw,logy can lead to suboptimal 
results and becomes impractical for high resolution multi-input systems due to the large 
number of hidden nodes required for such a system. A more adaptable structure, such as 
that of the multilayer perceptron, may therefore be more appropriate for such 
applications. 

The tests performed in the assessment of the two structures do suggest that the loss in 
flexibility in a regular Gaussian network is compensated for by its robust performance and 
that these networks are therefore more suitable for the application considered in this 
study. 

3.4.2 THE LACK OF DYNAMICS IN FEEDFORW ARD NETWORKS 

This section highlights one common limitation shared by all feedforward neural network 
models of dynamic systems. Since feedforward neural networks propagate an input vector 
in one direction through each of the layers to produce an output, these· structures possess 
no internal dynamics. In other words, the network can only utilize information contained 
in the current input vector to generate the output and has no access to previous inputs, 
outputs or internal values. 

For models of dynamic systems, in which the output(s) is (are) a function of current and 
previous inputs as well as previous outputs, this implies that the order of the system 
(number of previous inputs and outputs required) has to be known prior to training and 
that)all these previous values have to be included in the network input vector. 

The lack of dynamics in these networks also implies that the network can only predict one 
step ahead and that feedforward neural network models are therefore not suited as off­
line models, unless previous network predictions are.re-utilized as network inputs. Such a 
feedforward structure with feedback as well as· several other attempts to introduce 
dynamic behavior into neural networks, are investigated in the following chapter. 
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' 

MODELLING CAPACITY 
The discussion of feedforward networks in the previous chapter illustrated their ability to 
copy nonlinear input/output mappings but also accentuated their lack of dynamic response 
as one of the drawbacks for their use as models of dynamic systems. Since this shortcoming 
is inherent to the feedforward topology, more complex network structures are required for 
dynamic modelling. 

This chapter starts with an overview of such networks, before introducing and evaluating 
one of the better known topologies and training algorithms. 

4.1 OVERVIEW 

Due to the static behavior of feedforward networks the number of previous input(s) and 
output(s), required to predict the next output(s), have to be identified prior to training and 
the prediction horizon is furthermore limited to one sample interval. The former can be 
overcome either if the system to be modelled-is well defined and understood or by adopting 
a trial and error approach in which these numbers are varied until a satisfactory result is 
obtained. The·limitation to.one prediction implies however, that feedforward networks can 
not be used as stand alone models without modifying their topology. Despite the fact that 
both these reasons do not prevent 'the use of feedforward neural networks as part of a 
control structure, they warrant an investigation into other topologies which overcome these 
limitations. 

The lack of dynamic behavior in feedforward networks is due to the fact that information is 
only propagated in a forward direction and hence none of the internal or external outputs 
are retained and re-used when the next output is calculated. In order to include dynamic 
behavior in these structures, some form of information storage is required. This is generally 
accomplished using some form of feedback within the network i.e. the outputs of nodes are 
fed back to be re-utilized as node inputs, thus ensuring that the network output is a function 
of both the external inputs as well as the previous state of the network. 

These feedback connections, included for dynamic response, are time delayed (the previous 
output is used to calculate the next output) and the resulting topology, hence also known as 
time-lag recurrent structure, therefore produces a valid output vector, which incorporates 
the current inputs as well as the previous state of the network, for each iteration. · 

The type of recurrent structure, referred to above, is not to be mistaken for the fully 
connected associative memory topology (such as the Hopfield network), where all nodes are 
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interconnected and transmission along all connections is supposed to occur simultaneously. 
The fact that the equations governing such structures have to be solved iteratively before 
converging to the final stable network state (which is then used as valid output) and thus 
produce a series of output vectors for each new input, is an undesirable side-effect due to 
the sequential nature of digital computers, rather than a desired consequence of the 
network topology. 

As with feedforward networks, many different topologies and optimization algorithms exist 
· and the choice of network again requires a careful examination. The following subsections 

introduce some of the approaches to date. 

4.1.1 EXTERNAL RECURRENT NETWORKS 

One approach to overcome the one step ahead limitation of feedforward networks is to 
utilize time delayed versions of the network estimations, rather than the system outputs, in 
the input vector. Once trained, such a structure could then be used as a stand alone model 
for long term predictions since only the system input values have to be supplied. 

(a) Topology 

Figure 4.1 below shows this external recurrent topology, in which theoretically any type 
of feedforward network can be utilized in the position indicated. 

EXTERNAL RECURRENT NEURAL 
NETWORK TOPOLOGY 

time delay 

0 ·~·~ ~ ~ 
output(s) · -o~:~· 

-o • --~Ill• o 
current & 
previous 
Inputs 

feedforward network 

system 

output(s) 

Figure 4.1 - External Recurrent Topology 

As illustrated, the output(s) of the feedforward network are fed back via a time delay, to 
form part of the network's input vector. Although a single time delay is depicted in figure 
4.1 above, many training methods permit multiple delays per output if required. 
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(b) Net.work Training 

Despite the · fact that the external recurrent topology is constructed around a standard 
feedforward net~ork, the algorithms used to train the feedforward network are not 
applicable, with~ut modification. This is due to the fact that a new source of error has· 
been introduced and even though the network is still expected to learn the same 
input/ouput mapping as in the standard feedforward topology, convergence is no longer 
guaranteed. 

Training algorithms for feedforward networks presume a correct input vector i.e. the 
algorithms are based on the assumption that any error between actual and desired 
output(s) is solely due to network parameters and not due to inaccuracies in the input 
vector. This does not apply to the topology shown in figure 4.1, where any error in the 
network outputs becomes an error in the input vector for the subsequent iteration and 
therefore produces an invalid input/output pair, which distorts the network mapping and 
hence complicates learning. 

Several modifications to conventional feedforward training methods and algorithms have 
been suggested to overcome this problem: 

Narendra et al [1] for example, propose that a multilayer perceptron be trained for ·use 
in the external recurrent topology using . standard backpropagation but that such 
training be performed in two stages. Initially the standard series-parallel structure, in 
which true system outputs are utilized as network_ inputs, is employed. Once the 
network has converged sufficiently, further. training is performed in the parallel 
configuration in which the network outputs, rather than the system outputs, are 
employed. 

A mathematically more correct method, in which the. network is trained entirely in the 
external recurrent configuration, is known as backpropagation through time. This 
method has its origins in the work by Rumelhart et al [ 2], who unfold the recurrent 
structure into a feedforward network growing by an extra layer for each sample interval; 
a method only suitable for finite time series. The algorithm was formalized for the 
general external recurrent structure depicted in figure 4.1 by Werbos [3], usi~g his 
ordered derivative approach. In their study of neural network models for a biological 
wastewater treatment plant, Su and McA voy [ 4] employ this training algorithm to 
compare the performance of an external recurrent network with that of a feedforward 
structure. 

(c) Discussion 

The external recurrent structure can overcome the one step ahead limitation of 
feedforward networks as is evident from the work of Su and McA voy mentioned above, 
in which they show· that the recurrently trained structure performs better for long term 
prediction. The approach does however; not eliminate the need to identify the number of 
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delayed outputs that have to be included in the input vector. In other words, the designer 
still has to identify the number of feedback requirements before initializing and training 
the network. 

In their comparison Su and McA voy furthermore show that for one step ahead 
prediction, a recurrently trained network can not match the accuracy of the 
feedforwardly trained structure. Since most control structures require high accuracy and 
are only evaluated sample by sample, this suggests that external recurrent networks might 
find more use as off-line models, rather than as part of a control loop. 

4.1.2 NETWORKS WITH DYNAMIC NODES 

In the external recurrent topology described previously, the feedback connections extend 
from the network outputs back to its inputs and hence only the final network output values 
are preserved for subsequent iterations. This subsection introduces an alternative 
approach in which the output of each individual node is dynamic and each node thus has a 
time delayed feedback connection to itself. 

(a) Topology 

Figure 4.2 below depicts the structure of a feedforward network with dynamic nodes. 

DYNAMIC NEURAL NETWORK 

network (Z)-[g network 

inputs outputs 

-0 (Z)-[g (Z)-[g-
-0 

(Z)-[g (Z)-[g-
• 

-0 • • 
• • 
• (Z)-[g-input 

(Z)-[g layer 'If 
1-11 'If 

sigmoids 1st order 
11-o output units 

response■ 

hidden units 

Figure 4.2 - Networks with Dynamic Nodes 

This type of network, suggested by Willis et al [s] is in effect a multilayer perceptron, in 
which each node in all the hidden layers and the output layer is augmented by a first 
order response, for which the time constant has to be determined as part of the training 
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process.: The output of this type of network is therefore the sum of a number of nonlinear 
first order responses. ,. .'. , , ,; 

Even though only a single hidden layer is shown in figure 4.2, the network's modelling 
ability can be increased further by adding more layers with dynamic nodes. Willis et al 
for example, usually implement a network with two hidden layers in their studies (s][6](7] 
in which they employ this topology to model various highly· nonlinear processes such as 
biomass concentration in a fermenter and product composition in a distillation column. 

(b) Network Training 

Since the filter time constant for each of the nodes has to be determined as part of the 
training process, the backpropagation algorithm is not suitable for these modified 
perceptrons. In their studies, Willis et al use the chemotaxis algorithm (discussed in the 
previous chapter), which implements a directed search optimization, independent of any 
network equation or gradient and hence also independent of the network topology. 

(c) Discussion 

Although the idea of compounding each of the nodes in a feedforward network with a 
first order response is biologically plausible and provides the system with dynamic 
capability, the approach still has several shortcomings. 

The information retained in the network for subsequent iterations is not shared amongst 
all nodes and does not reappear as network inputs. In other words, the previous state of a 
node is only available to that node, for subsequent iterations and hence none of the 
retained information is shared directly. The above topology is therefore not truly 
recurrent but rather a feediorward type network with some dynamic capability. 

An examination of this structure furthermore raises the question, whether such an 
attempt of modelling the system as a number of nonlinear first order responses could not 

1 

be improved by extending the capability of each node to include dead time, as well as 
oscillatory response (i.e. a complex pole). 

The most serious restriction of the above topology is nevertheless the lack of a pattern 
training algorithm which would allow on-line optimization of these networks. As pointed 

. . 
out in chapter three, the chemotaxis optimization. technique is not suited for pattern 
learning since the effect of a change in parameters has to be evaluated over the entire 
training set. 
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4.1.3 FULLY RECURRENT NETWORKS 

In the approaches discussed, the information retained in the network was either limited to 
a few outputs (external recurrent structure) or restricted to _a subsection of the network 
(dynamic node network). For the fully recurrent topology on the other hand, the output of 
each node is re-used in subsequent iterations and forms a scaled input to all other nodes. 
This implies, that the complete state of the network can be re-used by each node in the 
subsequent iteration. 

(a) Topology 

The structure of a node for a fully recurrent network is illustrated in figure 4.3 below. 

NODE STRUCTURE FOR FULLY 
RECURRENT TOPOLOGY 

to all other time dela 
nodes in the t y 

network . ~ 

node inputs · l 
consisting of (]) 

external inputs~ J . 
and delayed 

outputs of othe? · node output 
· processing nodes may be utilised 

as net.work output 

Figure 4.3 - Fully Recurrent Network Node 
Structure 

As shown, the interconnections of the network are such that each node receives the 
previous outputs from all other nodes, together with all external network inputs, as its 
inputs. In such a structure the network can no longer be separated into distinct layers and 
nodes are classified as input if they serve to distribute an external input signal, as output if 
their output is u~ as one of the system outputs and as hidden otherwise. The output 
nodes are a subset of the processing nodes which implies that the structure must contain 
at least as many nodes as outputs required. 

Since each of the processing nodes receives all inputs as well as the previous outputs of 
all processing nodes, the input vector is a combination of external inputs as well as the 
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previous state of the network. This is known as the fully interconnected or fully recurrent 
structure in which the entire netwo_rk., s,taJ~.,,:can be. re-:u~ ,in the subsequent iteration. 

. ~,' ·: /,:p/' •·•- ., , "!;. •, -,", ,, ··''. 

Due to the fact that the recurrent connections are furthermore adjustable, the network 
can be trained to select or learn the required delayed output values and internal states 
required for the next iteration. The fully recurrent structure is therefore extremely 
flexible and requires little designer input. 

(b) Network Training 

Due to the high degree of feedback or recurrent connectivity, the fully recurrent 
structure requires an optimization method, which includes and compensates for the 
iterative nature, in which the error of previous outputs influences the result of 
subsequent iterations. 

Although most early recurrent network investig~tions employed search based algorithms 
(which are only suitable for batch and hence off-line training) a nurriber of gradient 
based training methods have been developed in recent years. Of these, the method 
suggested by Williams and Zipser [s] is probably the best known although other 
algorithms such as Tsung [9] and Sun et al [10) are also being used [11]. These algorithms 
apply a gradient descent type optimization and can therefore be applied on-line, in a 
pattern learning structure, much like the gradient based algorithms for feedforward 
networks. The William and Zipser algorithm is discussed in detail later in this chapter. 

(c) Discussion 

The time-lag, fully recurrent structure is clearly the most versatile. and suitable of the 
three topologies introduced. It theoretically allows a black box approach in which the 
network is merely supplied with the current system input(s) and desired output(s) from 
which it then establishes all the required feedback connections, thus becoming a true 
dynamic model. Due to the internal feedback connections such a trained network can 
then be utilized as both an on-line model within a control structure and for stand alone, 

· off-line simulation. 

The fully recurrent structure could therefore overcome the one-step ahead limitation and 
eliminate the need to identify the number of delayed input(s) and output(s) required. 
These features, together with the fact that algorithms exist to train these networks on­
line, warrant a more detailed evaluation of this type of network. 
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4.2 EVALUATION OF A FULLY RECURRENT NETWORK 

The topology and training algorithm suggested by Williams and Zipser [a] is evaluated in 
this subsection. Although all the criteria established for the assessment of feedforward 
topologies still apply and are included in the discussion, the aim is to establish whether 
these structures are more suitable as models of dynamic systems than the feedforward 
networks introduced in the previous chapter. Printouts of all relevant programs are included 
in Appendix II. 

4.2.1 NETWORK TOPOLOGY 

The fully recurrent structure as Williams and Zipser, shown in figure 4.4 below, is very 
similar to the general topology described previously (figure 4.3). 

3 NODE, 2 INPUT FULLY RECURRENT 
TIME-LAG NETWORK STRUCTURE 

internal 
feedback 

connections 

time 
delay 

I 
external J 
inputs 

0 0 

node outputs chosen 
as network outputs 

all forward 
connections 

have a weight 

processing 
nodes 

node 

Figure 4.4 - Williams & Zipser Recurrent Network Structure 

As indicated, all processing nodes utilize the logistic squashing function that is also used in 
the multilayer perceptron. Although other semi-linear functions can be employed, the 
clamping nature of the sigmoidal function has an important stabilizing effect in this 
structure with possible positive feedback connections. The resulting similarity with the 
multilayer perceptron is mentioned in the following evaluation. 

Since the weights of the feedback connections in the above structure have to be 
established as part of the training, this topology requires a training algorithm in which the 
effect of re-iterated errors are either compensated for or eliminated. 
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4.2.2 TRAINING ALGORITHM 

This subsection introduces the gradietit:rdescent learning:•algorithm, as suggested by 
Williams and Zipser, for the fully recurrent structure above . As mentioned earlier, it is 
one of the few optimization methods for these networks, suitable for pattern learning and 

· . therefore applicable in an on-line configuration. 

· The description below shows the equations governing the network O!Jtput generation and 
training. A detailed mathematical treatment can be found in [a]. 

The equations below assume a network with m external inputs and n processing 
units. 
1. Standard Training Algorithm 

- Using the notation as per Williams et al where 
y(t) - then-element output vector at time t 
~(t) - them-element external input vector at time t 
~(t) - a concatenation of y(t) and ~(t) i.e.· 

{ 
Yk (t) if kEU 

zk(t) = 
Xk, (t) if kEI 

(The order of inputs and outputs was changed from that suggested by ) 
(Williams and Zipser in order to simplify the calculation of indices in ) 
(the software but is not significant for the functioning of the algorithm.) 

- The weights connecting each of the units with each other and each of the 
inputs to each of the units can then be collected in a single n X (n+m) 
matrix w. 

- A bias or offset for each unit is provided by including an external input 
which is always 1. 

- Also let U denote the set of indices k for which zk is the output of a 
processing unit, I for which zk is an external input and T the subset of U 
for which zk is furthermore an external output. 

- The forward propagation of the network can then be calculated as follows: 
the input to each processing unit k is given by 

lEUUI 

from which the next output Yk is then generated by 

Yk(t+l) = fk(sk(t)) where fk() is the activation function for 
unit. (In this evaluation only 

- Letting dk(t) denote the desired 
error vector ~(t) is given by 

are used.) 
output of the kth unit at time 

if kET(t) 

otherwise 

that 
sigmoids 

t, the 

where 'r is a function of time thus providing the possibility of varying 
the processing units chosen as external outputs~ 
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- Defining the total network error at time t as 
J ( t ) = ½E ( ek ( t ) ) 2 k E U 

k 

Williams and Zipser derive a weight update rule which implements a 
gradient decent i.e. dJ(t) 

This is achieved 
where k 

Pij(t+l) 

k 
by ~efining[variab~es Pij for kEU,]iEU, jEUUI 

= fk(sk(t)) fwitlPij (t) + OikZj(t) lEU 

where o ikdenotes the Kronecker delta. 

From this the weight update is then calculated as follows 

k 
~Wij(t) = ~~~(t)Pij(t) 

- As with the backpropagation algorithm, all the weight updates should be 
collected and only implemented once all training samples have been 
presented in order to implement a true gradient decent, but can be applied 
after each iteration provided the training rate a is sufficiently small. 

The above method describes a training algorithm in which the effect of re­
iterated errors is compensated for. 

- Another possibility is to eliminate such errors by using the desired 
rather than_ the actual output for subsequent iterations as described 
below. 

2. Teacher-Forced Training 

For this variation of the above algorithm the original~ is replaced by 

{ 
die. (t) if kET(~) 

zk(t) = YJt(t) if kEU(lT(t) 
X]t (t) if kEI 

This modification ensures that any errors in the external output units 
not re-i~erated and hence the corresponding dynamic learning variables 
these nod:s are zero, Le. the[ update 

1 
rule becomes. ] 

Pij(t+l) = fk(sk(t)) fwitlPij (t) + oikzj(t) 

are 
for 

In order to select one of the two training algorithms for the evaluation, their dynamic 
modelling ability was examined using data generated by a recurrent network with known 
parameters. A small network with a single processing/output node and one input was 
employed for the evaluation. To generate the training and test data, this network was then 
excited using random step perturbations and the resulting input and output sequences are 
shown in figure 4.5. Of the 1000 point data sequence, only the first half was used during 
training, whilst the entire series was employed to evaluate the accuracy of the trained 
network model. 
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One of the problems experienced, particularly with the teacher-forced version of the 
training algorithm, was that when using a fixed training rate, the rms · error decreased 
initially as expected but then started to increase, before settling to a new value above the 
previously achieved minimum. An example of this profile showing the rms error versus 
training iterations is included in figure 4.6 below. 
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Figure 4.6 - RMS Progression for Teacher Forced Leaming with Fixed Learning Rate 
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Although this increase in therms error for fixed learning rates can also be observed with 
the normal learning algorithm,· it generally only occurs much later during the training cycle 
and is of negligible magnitude. The type of profile shown, suggests that the training rate is 
too high, thus causing an overshoot and preventing the algorithm from settling closer to 
the actual minimum. To overcome this problem,·a smaller fixed training rate as well as an 
automatic training rate adjustment procedure (in which the .training rate is halved 
whenever the rms error increases and new weights are only accepted if they result in a· 
lower rms) were tried. Only the automatic training rate adjustment produced better results 
and it was applied for all teacher force learning. 

The two versions of the algorithm were then used to train a network of the same structure 
as that used to generate the training data. The training was performed for five different 
sets of initial conditions (weights) and in each case training was terminated after one 
hundred iterations at which stage the algorithms had usually converged. The desired and 
network output for one such training run is depicted in figure 4. 7. The figure shows these 
signals prior to training (a), after standard training (b) and after teacher-force training (c). 

,1.00 

o.so 

0,60 

0.40 

0.20 

l..00 

o.so 

0.60 

0.40 

0.20 

DESIRED - ANO NEURAL NETWORK OUTPUTS BEFORE TRAINING 
output 
-desired 
.... ,network 

Figure 4. 7(a) - Desired and Network Outputs before Training 
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Figure 4. 7( c) - Desired and Network Outputs after Teacher-Force Training 

As shown both algorithms produce a model which follows the desired output, but whilst 
desired and ,network outputs are still distinguishable for the teacher-force trained network 
[4.7(c)], they are practically identical after standard training [4.7(b)]. This outcome was the 
same for all five training runs and despite the different starting points and various training 
rates, . the teacher force version never converged to the same level of accuracy as the 
standard version of the algorithm. Figure 4.8 below shows the network parameters used to 
generate the training data,. together with the estimates produced by the two versions for 
each of the five training runs. 
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Figure 4.8 - Actual Parameters and Estimates 

As indicated, the standard training algorithm converged towards the actual (act) 
parameters i.e. the global minimum for each run, wher~ the teacher force method got 
stuck_ in a local minimum for each training cycle, despite the differing initial conditions. 

Whilst these results are not intended to discredit the validity and usefulness of the teacher 
force training method, they suggest that although the former might be useful in situations 
where the network has to learn marginally stable behavior such as to model an oscillator 
[s], the standard version of the training algorithm is more suited to the type of dynamic 
modelling investigated in this study. All training in the evaluation was therefore performed 
using standard recurrent learning. 
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4.2.3 NONLINEAR MODELLING CAPABILITY - A COMPARISON WITII 
FEEDFORW ARD NETWORKS 

The evaluation of recurrent networks (as per Williams and Zipser) in this subsection 
focuses on a comparison with feedforward networks, in particular regular Gaussian 
networks, rather than assessing their capability in isolation. 

Due to the use of the same logistic squashing function as in the multilayer perceptron, the 
recurrent structure furthermore shares many of the problems discussed for the perceptron 
in the previous chapter. Among these are the inability to interpolate and extrapolate, to 
learn without destroying. previous knowledge and to utilize all the nodes provided. The 
complex structure of the recurrent structure is furthermore difficult to analyze, which 
makes the initialization and/or interpretation of these networks even more complex than 

· for the multilayer perceptron. 

Since the recurrent topology requires training data to be presented in chronological order 
the random/non-random training discussed for feedforward networks is not applicable. 

(a) Test Setup 

The structure of a fully recurrent network with its internal feedback connections would 
be underutilized in a single-valued .mapping investigation as performed for the 
f eedforward structures in the previous chapter and hence all · tests are performed using 
data from dynamic systems, such that the network can· utilize these feedbacks. 

The desired outputs were furthermore scaled to fall into the linear interval of the logistic 
squashing function. This was done to prevent the output node of the recurrent structure 
from performing any nonlinear modelling, . which could lead to saturation and 
compromise the network performance. In other words, the output node performs as a 
linear combiner of all other nodes, much like the output nodes in ·feedforward networks. 
Since the regular Gaussian network (RGN) utilizes_ linear output nodes, the range of 
outputs is not significant and hence the same scaled values were utilized. 

In the RGN topology input values are not re-scaled internally but are expected to lie 
within the unit cube. Any output, included in the input vector for these networks, was 
therefore re-scaled prior to use in order to ensure full utilization of the RGN network. 

The data for each test was generated by performing random step perturbations of the 
input variable every 10 or 20 time steps. In each case a sequence of 1000 data samples 
was produced. Of these, only the first half was used for training, whilst the entire set was 
used for testing. The rms error shown, was calculated for the entire set of samples. 
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'(b) Learning the Required Feedback .Connections 
·. !. • • ~ ~ , ', 

As mentioned earlier, one of the main advantages fully recurrent structures enjoy over 
the feedforward topology is their ability to learn the required feedback combinations. In 
other words, the basic framework includes all the required connections and weights for 
feedback and hence unlike feedforward networks, no estimation of the number of 
previous inputs and outputs is required. In order to illustrate this advantage, a recurrent 
and RGN network were trained to approximate a simple linear system with complex pole 
(i.e. the two previous output values are required to produce the next estimate). 

The two-node recurrent network, which has the capability to twice delay the output 
within its own structure, learns the required connections to become a near perfect model 
as shown in figure 4.9(a) below., 
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- de&irad 

0 .575 ····· natwork 

0.550 

o.:52:5 

0.500 

0.475 

o.4:50 
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DESIQED - AND NEUQAL NETWORK OUTPUTS 
training no training 

Figure 4.9(a) - Recurrent Model for Linear Process (Indistinguishable) 

rl"ls error 
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Unlike the recurrent structure above, the RGN network has no form of feedback and 
hence requires that the essential number of previous inputs and outputs (to be included 
in the input vector) are estimated. Any mistakes in these estimations can seriously 
impede the network's modelling capability as illustrated in figure 4.9(b), which shows the 
approximation produced by a regular Gaussian network in which only the most recent 
output value is included as input (i.e. the network can only perform a first order 
approximation). 
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output 
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Figure 4.9(b) - First Order RGN Model for Linear Process 
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The restricted modelling capacity is particularly evident in the transient phases and can 
only be overcome by also including the twice-delayed output in the input vector. The 
approximation produced by this arrangement is depicted in figure 4.9(c). 

DESIRED - ANO NEURAL NETWORK OUTPUTS 
training r'<> training 

Figure 4.9(c) - Second Order RGN Model for Linear Process 

rl'ls error 
0.00082 

As shown, this configuration produces a more accurate model. The fact that the rms 
error is not quite as low as for the recurrent network is due to the fixed RGN structure, 
which is less suited to model exact linear relationships than the flexible recurrent 
topology. 

Besides the ability to learn the required feedback connections, recurrent networks are 
also more suitable as stand alone models. This is because these structures are trained in 
the so called parallel mode where only the system input and desired output are utilized 
during training. The recurrent network therefore needs no information from the actual' 
system and can be expected to perform with the same accuracy if used as a stand alone 
model. For the RGN on the other hand, the serial-parallel structure, for which all 
previous output values are taken from the actual system rather than the network 
estimations, is used. Since thes.e networks are not trained to operate in the parallel mode, 
their performance usually deteriorates if used in the external recurrent configuration 
discussed earlier, since any errors are re-introduced as incorrect inputs for subsequent 
iterations. For the RGN (figure 4.9(c)) therms error more than doubles, if the network is 
employed in a stand alone (external recurrent) configuration. 

Despite the above advantage, recurrent networks have a. number of drawbacks as 
disc.ussed in the following subsections. 
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(c) Local Minima and Insufficient Convergence 

One of the main problems with fully recurrent networks is. their incapability to 
consistently convergence. This problem is not unique to the Williams and Zipser training 
algorithm but rather a common problem with most recurrent structures. Su and McA voy 
for example, employ random search techniques as part of the training in their study of 

· external recurrent networks. 

The lack of convergence is illustrated in the following example in which both, a fully 
recurrent and a regular Gaussian network were trained to approximate a nonlinear 
system governed by the following equation. 

l 

Yn+l = ---- + (Un)
3 

l + (Yn)2 

As before, the first half of a 1000 point sequence was generated to train and test the 
networks and again the output was scaled into the linear range of the sigmoid. 

Figure 4. lO(a) below shows the system output together with the estimation produced by a 
four node recurrent network. 
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Figure 4. lO(a) - Recurrent Network for Nonlinear System 
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As shown, the network follows the overall trend of the sys4'm but fails to capture its 
nonlinear and dynamic characteristics. This . lack of convergence for the recurrent 
structure could not be improved by changing the initial conditions, allowing more 
training iterations or even increasing the number of processing nodes to more than 
double. 

A RGN with two inputs and nine hidden nodes on the other hand, rapidly learns to 
approximate the same system as show in figure 4.l0(b) below. 
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OESIREO - AHO NEURAL HET~ORK .OUTPUTS 
output 
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Figure 4. lO(b) - RGN Model for Nonlinear System 

These results suggest that despite its limiting effects, the rigid structure of regular 
Gaussian networks does ensure a certain level of convergence, whilst the much more 
flexible recurrent topology is more likely to get trapped in local minima and not to 
converge sufficiently. 

Although an increase in the number of nodes and more training iterations did not 
produce a better model. in this example, it might stnt be argued that a sufficiently large 
recurrent network with sufficiently long training will produce more satisfactory results. 
Due to the high computing requirements of recurrent training algorithms such an 
approach is however not practical, as shown in the following subsection. 

(d) Timing Considerations 

_As mentioned earlier, any training algorithm for fully recurrent structures has to include 
and compensate for feeding back errors via its internal feedback connections. Although 
this is possible, as illustrated by the Williams and Zipser algorithm, it greatly increases 
the computational requirements of these training algorithms, when compared with those 

'for feedforward topologies. Whilst such considerations might not be important in other 
applications, timing requirements are critical in sampl_ed control systems, where the next 
input has to be calculated in a fraction of the sample period if the control algorithm is to 
perform as expected. · 

In art attempt to highlight the difference between the fully recurrent and regular 
Gaussian networks, the time for one training iteration is shown against the number of 
nodes in the network. Th~ training iteration referred to includes the assigning of input(s) 

· as well as desired output, generating the network output and performing the 
optimi7.ation. All measurements were performed on an IBM compatible 33 MHz 486-DX 
PC and in order to avoid any inaccuracy due to · other interrupts, the time for one 
iteration was calculated as the average value of one thousand iterations. 
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Figure 4.11 below depicts the time ,requirements for a fully recurrent network with one 
external input ~d output, using the 'Williams and Zipser training algorithm: 
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Figure 4.11 - Timing Requirements for Recurrent Network 

The bar graph clearly shows the exponential growth of the time as a function of nodes, 
which is due to the O(N 4) calculations required for each iteration (where N presents the 
number of nodes).• As shown, the time for one iteration exceeds a quarter of a second for 
more than ten nodes which, when considered with the fact that often many thousand 
iterations are required during training, renders such structures unfeasible for 
incorporation into control structures. 

The RGN training algorithm, on the other hand, requires O(INO) calculations, where I 
presents the number of inputs, N the number of hidden nodes and O the number of 
output nodes. For a fixed number of inputs and outputs, the number of calculations is 
therefore a linear function of the number of hidden nodes. In order to provide a valid 
comparison for the recurrent structure above, an RGN with two inputs (allowing for one 
previous output or feedback) and one output was choSyn. The bar graph in figure 4.12 
below shows the time for one iteration against the number of nodes per input dimensio.n. 
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Figure 4.12 - Timing Requirements for Regular Gaussian Network 
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The more than linear increase is due to the fact that the total number of hidden nodes 
(shown in brackets) is a function of the number of inputs (here the square). In other 
words, the linear relationship mentioned above, holds for the total number of hidden 
nodes shown in brackets. Despite the fact that the RGN with 12 node resolution per 
input does consist of 144 hidden nodes, it still only requires one thirtieth of the time 
taken by the twelve node recurrent network. 

One significant advantage the recurrent structure enjoys over that of the RGN is that an 
N node network has the built in capability to re-use the N previous inputs and outputs, 
whereas each of these has to be included as a separate input in the RGN structure. Since 
the number of hidden nodes in the RGN structure is an exponential function of the 
number of inputs, this can very quickly lead to a large number of hidden nodes and 
consequent high iteration times. This is illustrated in figure 4.13, which shows the 
iteration times for an RGN with 2 nodes per dimension as a function of the number of 
inputs. The total number of hidden nodes is again shown in brackets below. 
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Figure 4.13 - RGN Timing Requirements for Varying Number of Inputs 

It is worth noting however, that in spite of this rapid increase in the number of nodes, the 
training times still compare favorably with those produced by the recurrent structure. 

The slow convergence of recurrent structures together with the computationally 
expensive nature of their training algorithms presents a serious obstacle. In their 
comparison of several neural network models for a chemical process, Lambert and 
Hec_ht-Nielsen [11] recorded training times of two days on a Sun 4 workstation, in order 
to sufficiently train an eight node recurrent network. 
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4.2.4 DISCUSSION , 
. . :. ·. . . . •. I . 
The above evaluation of fully recurrent networks showed that whilst these structures do 
have· the ability to learn feedback connections and therefore overcome thb limitations 

. I 

associated with the feedforward topology, this additional flexibility does have its 

drawbacks. . J 
Firstly, the recurrent structure (as per Williams and Zipser) investigated in this chapter 
does not converge consistent! y. Although the structure produced an extre I el y accurate 
model for a linear system, it failed to capture the dynamic behavior of a more complex, 
nonlinear system. A second drawback of the recurrent structur~ are its excessive 
computational requirements which lead to unacceptably large training times. 

The less flexible regular Gaussian network, on the other hand, can not learn the required 
feedback connections but converges reliably and requires acceptable computation and 
training times. The RGN structure is therefore more suited for on-line implementation in 
control structures. 

It is worth noting that the excessive training time is a limitation imposed by the current 
state of technology. The rapid growth in the computing field as weHas t.he development of 
neural network chips, might soon produce the required hardware to make training and on­
line implementation of more complex, recurrent structures feasible. 
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5. NEURAL NETWORK BASED1 

CONTROL STRUCTURES 

The first two chapters of this thesis introduced the concept of neural networks and 
I 

suggested the possibility of utilizing them as part of a control structure. In chapters three 
and four the suitability of several network topologies and training algorithiris for such an 
application were investigated. In this final chapter two model-based control structures, in 
which the model can· be replaced by an artificial neural network, are exan4ined. Although 
both these structures have been suggested elsewhere [1][2], the original 96nfigurations had 
to be modified or augmented in order to accommodate some of the req~irements, such as 
on-line training, outlined in chapter two. · 1 

In order to evaluate the performance of these neural network controllers, their performance 
is compared to that of a linear model control structure, using a simulation of a nonlinear 
tank system. The first section of this chapter describes the tank system and highlights the 
discrepancy between the actual system and a typical linear model derived from step­
pertubation data. In the subsequent section the internal model control structure is 
introduced and the performance of a linear model based controller and neural network 
model based controller are compared. After this an alternative model based topology, 
known as neural predictive control, is introduced and evaluated. Th~ final section of this 
chapter summarizes the advantages and disadvantages of the two neural network 
approaches and highlights some of the practical issues that need to be addressed before 
these network based control structures can be employed in industrial systems. 

A listing of all software procedures and algorithms used to generate the results in this 
chapter are included in Appendix II. 

5.1 NONLINEAR SYSTEM 

One of the primary motivations for the interest in nonlinear, self-adjusting control systems 
(such as neural network based controllers) is that most real systems exhibit some nonlinear 
behavior. In many cases this is due to non-ideal factors such as friction or non-laminar flow, 
which cannot be modelled easily, whilst in other circumstances the nonlinear response is a 
direct result of the physical laws governing the behavior of the system. 

The tank system chosen to evaluate the neural network based control structures, is an 
example of the latter. As shown in figure 5.1, the process consists of a tank with an outflow 
at the bottom, and an inflow which can be regulated via a control valve. For this study it is 
assumed that the tank forms part of a larger system and that it is desirable to regulate the 
level of liquid in the tank. 
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NONLINEAR TANK SYSTEM 

output 
y 

Figure 5 .1 - Tank System Schematic 

The outflow of liquid in systems such as the above, has a nonlinear dependence on the level 
in the tank, thus resulting in a nonlinear equation as shown below. 

■ Denoting the level (or output) as y and the signal to the control valve 
(or input) as u, the system equation can be derived as follows 

dV(t) 
= 

dt 

where V - volume 
Fin - flow in 
Fout flow out 
A - cross sect. area of 

the tank 

Assuming that the reaction time of the valve is negligible in comparison 
to the system response, the inflow is given by 

[ ii 1 where k - constant 

Assuming furthermore that the outflow is homogeneous and laminar and that 
friction can be ignored, the flow out of the tank is determined as 

Fout(t) = Aout ·v(t) [iii] 

dy 

where Aout - cross sectional area of pipe 
v - velocity of liquid 

Since A>> Aout ~ 
dt 

<< v and hence v can be approximated using 
Torricelli's equation (3) i.e. 

v(t) 2 = 2·g·y(t) [iv) 
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Substituting [iiJ,[iii) and [iv] into [i) 

dy(t) dV(t) 
---=---

dt dt 

1 1 

=- · [k·u(t) - J2•g·y(t)] 
A A 

= c1·u(t) - c2·Jy(t) 
1 

from which: sy = c1 ·u(t) - c2·Jy(t) or y = - [ c1 · u ( t ) - c2 · J y ( t ) ) 
s 

In the drscrete domain, the dynamic eqn. becomes 

which is the equation used in all simulation.s below. 

■ Since the expression assumes a constant y(n) during ~t, this value has to 
be kept small to minimize errors and ensure the assumption for [iv]. 

■ The constants c1 and c2 were chosen as 0.1 and 0.02 respectively such that 
for maximum input (u=l.0) and no outflow, the incr. in level would be 
0.1 [m/s) and that the maximum level achievable is 25 [m). 

Due to the slow response time of the system, a twenty second sampling interval is adequate .. 
The significance of large sampling intervals for neural network based control structures is 
discussed later. It should be noted that within this twenty second· inte,rval the simulation 
equation is solved on an iterative basis every 0.1 seconds to provide the required accuracy. 

Figure 5.2 shows two perspectives of the change of level after one sampling interval (20 
seconds) as a function of the previous level and input. Both surfaces clearly ·indicate the 
nonlinear nature of the system. 
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Figure 5 .2 - Change in Level vs. Previous Level and Input 
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Of the many methods that . exist to derive a linear model for a system with unknown 
characteristics, the so-called step test approach in which the system response to step 
perturbations in the input is modelled, is one of the most common. This technique was 
selected to develop the linear model for the above system and the step test results are shown 
in figure 5.3 below. Although the number of tests and their range might seem minimal, this 
is common in commercial applications where open loop step tests are often expensive or 
detrimental to product quality and models frequently have to be developed from even less 
data. 
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Figure 5.3 - Tank System Step Responses 

The nonlinear character of the tank system is reflected in the widely varying gains and time 
responses. The system does however display a general first order character and 
normalization of the step responses with respect to the change in input and the final value 
(shown in figure 5.4) suggest a gain of 15 and a time constant of 250 seconds. It should be 
noted that the step tests were selected to favour the choice of a low gain and high time 
constant, to enhance the difference between the linear model and the actual system and 
thus illustrate the advantages of the neural network approach. 
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Figure 5.4 - Normalized Step Response 

The linear first order model with the above parameters is used throughout the remainder of 
this chapter in both, the conventional linear control structures and as part of the 
model/network combination described in the following subsection. 

5.2 MODEL/NETWORK COMBINATION 

As mentioned in chapter 2, the applications considered in this study are model based 
control systems in which the linear model may be replaced by a neural network approach. 
Although it is possible (and common) to utilize a pure network model, the approach 
selected here is a mathematical model/network combination as shown in figure 5.5 below. 

MATHEMATICAL/ NEURAL NETWORK 
COMBINATION MODEL 
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Figure 5.5 - Combination Model 
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Although the mathematical model shown in the above topology can be any type of equation 
derived from system data or based on past experience, one of the most obvious choices is a 
linear model derived from first principles or step test data. The neural network in this 
structure therefore learns the difference between the mathematical model and the actual 
system, rather than the entire modei. Even though the inclusion of a mathematical model 
might seem superfluous, this combination enjoys two distinct advantages over the pure 
network. approach: 

One of the difficulties with a control structure in which pure neural network models are 
employed, is the initialization of these networks. The problem can be overcome by 
attempting to collect adequate system data to train the network off-line, but as ·shown 
earlier it is difficult to collect a sufficiently dense set of data to ensure acceptable training. 
An alternative approach is based on the assumption that the majority of systems can be 
controlled using linear models, even though the control may be sub-optimal. Based on this, 
the network can thus be trained prior to use, utilizing data generated by a linear model of 
the system. Although not ideal, this method is preferable to the former since it allows 
more uniform training and only requires the subset of data needed to develop the linear 
model. 

Utilizing the above combination, rather than the pure network topology, allows a further 
simplification since tf1e linear model can now be used as part of the model and the 
network does not require any prior training. In other words, provided the initial network 
weights are kept sufficiently small, the model starts as a pure linear model which is then 
refined and improved by training the network portion on-line. 

A further advantage of the combination topology is that the network does not sacrifice any 
of its accuracy by modelling the general system behavior, which can be captured in the 
mathematical part of the model. This is particularly pertinent for the regular Gaussian 
RBF topology which, due to its inflexibility, is not well suited to model linear systems . 

. Regular Gaussian networks therefore produce superior accuracy if used to learn the 
discrepancy between linear model and system, rather than to model the entire process. 

These advantages of the combination model are illustrated in the following subsections, in 
which the performance of model based control strategies are examined and compared. 
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I 5.3 LINEAR AND NON~hl.NEAR INTERNAE''MODEL CONTROL 

The renewed interest in this control structure, in which both a forward and inverse model of 
the prqcess to be controlled are included, can be attributed to the relative ease with which 
such controllers can be designed as opposed to more conventional approaches. Due to the 

· fact that the principles of this method [ 4] ,have since been extended to include non-linear 
systems [s], it lends itself to the incorporation of neural network based nonlinear models. 

This section starts with an overview of the IMC• (internal model control) structure and 
algorithm. After this the performance of the standard linear IMC control structure for_ the 
tank system is evaluated. Since an IMC structure with first order model and filter is 
equivalent and can be converted to a conventional Pl controller with the same functionality, 
this controller is used for comparison purposes in the remainder of the chapter. 

The next subsection then introduces an IMC structure in which the linear models are 
replaced by the combination model explained in section 5 .2 and demonstrates how the 
neural network portion can be trained in an on-line configuration. The applicability of the 
control structure is again illustrated using the tank system to allow a comparison with the 
above Pl type control. In the final part of this subsection some of the limitations of the 
suggested IMC structure are highlighted. 

5.3.1 INTERNAL MODEL CONTROL ALGORITHM 

Figure 5.6 shows the IMC structure and highlights the key function that both the f9rward 
and reverse model play in this control configuration. 

INTERNAL MODEL CONTROL STRUCTURE 

· F - filter C - inverse model G - system )( - model 

Figure 5.6- IMC Structure J 

From. the configuration it follows that, if the model is an exact replica of the process (thus 
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resulting in zero feedback), the system output is the desired (filtered) response to the 
setpoint since the system dynamics are cancelled by the inverse model. A mathematical 
analysis of the properties for both linear and nonlinear IMC structure can be found in the 
work by Morari et al ( 4](5]. The main results can be summarized as follows: 

• For stability and the perfect controller, the model needs to be exact and both the 
_ system as well as the controller need to be stable. 

• Zero off set for a steady setpoint can be ensured by selecting the controller such that 
the product of steady state gains of model and controller is unity. 

■ The filter included in the controller compensates for modelling errors and thus 
introduces robustness into the IMC structure since it reduces the loop gain. 

These factors suggest that although zero offset can be achieved relatively easy using the 
IMC structure, the exactness of the model plays a key role in determining the quality of 
the dynamic behavior. 

The equations governing the IMC configuration are summarized below: 

Using the notations of figure 5.6, the calculations for each sample instance 
are -

• obtain sample Yp(t) from the system 

• calculate model output Ym(t) 

• using the above together with the setpoint Ys(t) calculate the error e(t) 
as follows e(t) = Ys(t) - (Yp(t)-ym(t)J 

• the error is then fed into the filter to produce r(t) i.e. r(t) = F(e(t)) 

• the next input u(t) is then calculated using the inverse model C 

In linear applications the filter F and inverse model care often combined to 
form a single causal block (known as controller). 

The above equations are intentionally general since several variations exist between the 
linear and neural network based structures. These variations are discussed, as they are 
introduced, in the following subsections in which the performance of linear-model and 
neural-network-combination-model based IMC structures are compared. 
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· 5.3.2 LINEAR IMC 

This subsection shows the results obiliih&H.1s1ng thelineID-•model (derived earlier) and its 
· inverse within the IMC structure shown above. The filter, which presents the desired 

system response, was chosen as a unity gain, first order system with a time-constant of one 
hundred seconds. 

As mentioned earlier, this particular linear IMC structure can be converted to a 
conventional PI controller and is therefore representative for conventional well­
established linear control methodology. In order to evaluate the performance of this 
control structure, the system was subjected to a number of step setpoiilt perturbations. The 
output together with the setpoint, desired response and input action are shown in figure 
5.7. 
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These step tests show that although the system is both stable and exhibits the expected 
zero offset setpoint tracking, the response for the first two steps is initially sufficiently fast 
but becomes unacceptably slow in its final approach. Since this poor performance is due to 

. the discrepancy between model and system, the performance of this controller can not be 
improved by simply increasing the gain. This is also evident from the high initial input 
spikes, following each of the setpoint step changes, which indicate a high loop gain. 
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Besides the ability to track and respond sufficiently fast to changes in the setpoint, the 
capacity to reject disturbances is a further important criterion for any control system. 
Whilst this ability can be determined analytically as a function .of frequency for purely 
linear systems, this is not possible if the structure includes nonlinear elements. The 
disturbance rejection capability is therefore evaluated by injecting disturbance signals and 
observing the response. 

Figure 5.8 shows the system response together with the setpoint, disturbance and input 
signal for constant disturbances and a sinusoidal interference. For convenience the 
disturbance signal is shown on the tank level graph, centered around the system setpoint, 
rather than on a separate graph, centered around zero. It should be noted that this line 
does not present the system response without any control but rather the change in level 
per sampling interval i.e. a disturbance of 0.5 (shown as 5.5 on the graph) presents a 
change of level by 0.5m per sampling interval. In other words the effect of the disturbance 
signal shown is cumulative and the level plus disturbance is used in the tank equation, to 
calculate the subsequent level. " 
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As with the step responses, the graphs show that the system is stable and does strive to 
follow tJ:ie setpoint but again the slow dynamic response results in rather slow and 
unsatisfactory performance. 
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In the discussion of the IMC properties, it was mentioned that the quality of the dynamic 
response is dependent on the exactn~ss ;Pf the model. .S.~nce a non-optimal, linear 
representation of the nonlinear system was· used in the above simulations, the modelling 
errors are significant and hence impact negatively on the overall performance. In order to 
improve the response of this structure a more accurate model is therefore required. 

5.3.3 NON-LINEAR NEURAL NETWORK Th1C 

In the previous subsection the performance of a linear model t>ased IMC controller for a 
nonlinear process was evaluated, emphasizing that although such a structure is stable and 
does ensure setpoint tracking, it fails to produce the desired dynamic response. Since this 
is mainly due to the error between the model and system, a more accurate representation 
should produce improved results. This, together with the fact that the IMC structure is 
suitable for nonlinear control structures, motivated Hunt and Sbarbaro [1] to utilize neural 
networks in place of the forward and inverse model. 

One of the problems with the implementation suggested by Hunt and Sbarbaro is that 
although they use regular Gaussian RBF networks (as recommended in chapter four), they 
assume that both networks can be trained prior to use and therefore do not implement any 
on-line optimization. Besides the difficulty of obtaining a sufficiently dense set of training 
data for a dynamic system (discussed in chapter two), such an implementation deprives a 
neural network based structure of one of its most significant attractions, namely on-line 
adaptability. The lack of on-line training thus renders such a system as susceptible to non­
optimal parameter choices, due to limited training data, as a linear model. The utilization 
suggested in this study is a modification of the one proposed by Hunt and Sbarbaro, 

\ 

allowing for on-line training and optimization. This subsection starts with a discus~ion of 
the modifications to the standard IMC structure, before showing the responses of a neural 
network based controller to the same step and disturbance perturbations as the linear 
structure. 

(a) Modifications and Network Training 

Using RBF or other feedforward type networks to replace the forward and inverse model 
requires a modification to the standard IMC structure. Due to the lack of dynamic 
capability of these networks, they have to be supplied with the required- previous input(s) 
and output(s) of the actual system or else be implemented in an external recursive 
configuration. Since the latter does not produce satisfactory accuracy as shown in the 
previous chapter, both networks are supplied with past values from the actual system. For 
the tank system this implies that both models receive the previous tank level, rather than 
their past output as one of the inputs. Although this modification is strictly only valid if 
the model is exact (a requirement for most IMC properties) it still produces a forward 
and inverse model as required by the IMC structure, thus ensuring a zero offset control 
law even when the model is not precise. 
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Since neural ne~orks are not exact mathematical expressions, some residual error 
between the forward and reverse models is expected, even after exhaustive training and 
irrespective of network size. In order to eliminate these discrepancies, which oppose one 
of the key requirements for the IMC structure,· Hunt and Sbarbaro employ a successive 
substitution algorithm [6] to improve ~he accuracy of the values produced by the inverse 
model. This recursive algorithm (shown below) can be used to find the inverse at any 
operating point and although it could "replace the inverse model entirely, this model can 
still help to supply initial estimates, thereby limiting the number of iterations _required 
and saving valuable calculation time. Although other methods such as Newton's Method 
might converge faster, they are generally not directly applicable since they require 
differentiation and integration of the model which includes a neural network in the 
structure suggested here. 

Given a function (or model) 
f(x), the following iterative 
inversion algorithm can be used 
to find the value x for which 
f(x) = Ydes 

The small gain theorem shows 
that·this algorithm shown in 
figure 5.9 is stable if 

ITERATIVE INVERSION ALGORITHM 
BLOCK DIAGRAM 

- Figure 5.9 - Iterative Inversion Block 
Dia~ram 

The above algorithm is used to improve the initial estimate provided by the inverse 
model. Although the iterative process should ideally only be terminated when successive 
iterations do not change the result significantly, the real-time requirements. of a control 
structure demand that a maximum allowable number of iterations also be imposed. The 
accuracy of the inverse model, which supplies the initial estimates, therefore plays an 
important part in this structure. 

As mentioned previously, Hunt and Sbabaro suggest off-line training of both the forward 
and inverse model. In their configuration the forward model is trained using sampled 
system data and although the same data could be used to teach the inverse, it is more 
appropriate to generate its training data using the already converged forward model 
since this helps to ensure that the two models are exact inverses of each other. This 
training is performed using both specialized and general learning structures adopted 
from Psaltis et al [1]. Despite the fact that these training methods facilitate adequate 
training of the inverse, they do rely on the assumption that the forward model has been 
trained sufficiently which implies that sufficient training data could be collected prior to 
training. Due to the fact that it is seldom possible to obtain such a sufficient set of 
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training data from any dynami.f;1.~Y~!rm,. and:,'":'sln~:1,,~9ch a pre-trained structure 
furthermore restrains the flexibility of a neural network configuration, a more practical 
solution with on-line learning is suggested in this application. Rather than attempting to 
collect an exhaustive set of training data, the system is initially controlled using linear 
models, which can be derived from a few step tests as shown previously. Once controlled, 
both models can then be trained on-line to optimize the controller. The initial linear 
models can be obtained by training two pure network models prior to using them, a 
method employed successfully for the control of a laboratory tank system [a], or more 
efficiently by using the combination type model described in section 5.2, in which the 
linear model is used together with a regular Gaussian RBF network, the weights of which 
are initially negligible. 

Figure 5 .10 below shows the step responses of the tank system using an IMC control 
structure in which both the forward and reverse combination model consist of the linear 
models, used previously, together with untrained 100 node RGN networks. 
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Figure 5 .10 - Neural Network IMC before Training 

Although the response time of the system has improved significantly from that of the 
standard linear IMC structure, the input action shows oscillations unacceptable for most 
practical applications. These oscillations are due to the discrepancy between the 
untrained model (which is identical to the linear model used earlier) and the actual 
system. Since the past system output is used as input in both models, these errors are fed 

[&] 



Neural Networks in Control Engineering 

back and effect the output of these blocks in the next iteration. This direct feedback thus 
ensures that the system does follow the desired response but due to the large discrepancy 
between model and system, this response can only be achieved using unacceptable input 
modulation. In order to eliminate the above problem it is necessary to improve the 
accuracy of both models, which can be achieved by further on-line training. Since the 
input signals shown above are undesfrable ·for any real system, the controiler first has to 
be detuned for initial training. This dett.Jning can be realized by increasing the filter time­
constant or using a filtered version of the setpoint to introduce additional robustness. In 
this application the latter option was selected _and for simplicity the desired output, which 
is a filtered version of the setpoint, was utilized. The response of this detuned, untrained 
neural network IMC controller is shown in figure 5 .11 below. 
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Figure 5.11 - Modified Neural Network IMC before Training 

As shown, the system has lost some of its responsiveness but is more robust in terms of 
discrepancies between system and model. The input signal generated with this dampened 
controller is more acceptable and although the response is slower than before, it still 
compares favorably with that of the standard linear IMC controller. The above structure 
is therefore acceptabl_e as an initial controller and can be used in this form for further 
training. Once the initial control law has been configured as above; the IMC structure 
can be enhanced by training the networks contained in both models, thus providing an 
on-line optimization method which caters for both imminent inconsistencies between· the 
linear models and the system, as well as future changes in the system's behavior. 
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Whilst the training samples for the forward model are obtained directly as a result of 
sampling the system response, the improved. value obtained from the iterative inversion 
algorithm provides the desired outpift' itst'lhe inv~~se

1
.Ysi~fe there is generally a delay 

between generating the current input and taking the next sample in sampled control 
systems, this time can be utilized to perform the network training. Due to the fact that 
training is performed on-line, successive training samples may vary little when compared 
with off-line training, where the samples can be selected at random. Although a 
sufficiently small training rate is generally sufficient, more elaborate precautions such as 
limiting the number of training iterations per setpoint interval or complementing the 
training with off-line training methods between successive samples, may be required in 
some cases. The data for such training could be selected at random from a FIFO list 
which is updated regularly to ensure that slow system changes are captured. Such 
intricate methods are however only required for systems in which the setpoint is varied 
infrequently, but uniform training is still required. Other systems might only operate 
around a fixed setpoint and for such processes adequate training in that operating region 
is sufficient. 

In order to illustrate the learning capability of this structure the system chosen for this 
example was subjected to setpoint step changes at regular intervals and hence none of 
the above training enhancing -methods were required. Figure 5.12 below shows the 
evolution of the neural network portion of the forward model in this training. 
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The final error surface highlights to what extent the inclusion of the network reduces the 
. error between model and system. Due to the fact that the setpoint remains constant 
between the step changes the training is localized, as is evident from the network surface 
after some initial training. 

Since the iterative equation used in the simulation can not be inverted, the development 
of the inverse model and network is not shown. The network was however trained with 
the same localized data and developed in a similar fashion. It should be noted that 
although the clamping of the input could be incorporated into the inverse network (i.e. it 
could be trained to produce clamped values), such abrupt discontinuities usually 
compromise the accuracy of networks near these boundaries and hence the network was 
trained using unbounded values. 

Once sufficiently trained, the additional robustness introduced previously (such as the 
additional setpoint filtering in this example) can be removed to enhance the system 
performance. 

(b} Results for Neural Network IMC Controller 

The response of a trained IMC ·structure without additional filtering is shown in figure 
5.13 below. 
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Figure 5.13 -Trained Neural Network IMC Step Responses 
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The system behavior is in most ~~.s ingj.~tinguishabl~Jr:om the desired response and 
uses· a realistic and acceptable ·input signal. In addition to the superior performance of 
this structure for the above step tests, it also shows a significant improvement when 
subjected to the same disturbances used previously, as illustrated in figure 5.14. 
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Figure 5.14 -Trained Neural Network IMC Disturbance Rejection 

As shown, the controller significantly reduces the magnitude as well as the time taken to 
recover from the step disturbances, whilst also reducing the amplitude of the sinusoidal 
disturbance to a far more acceptable level than· the previous linear IMC structure. 

It is important to note that the improved response of this structure is not due to the 
enhanced accuracy of the ·models but rather the direct feedback of the system output to 
these models. The more accurate models are · however essential in this modified 
structure, to produce a stable and robust controller which generates acceptable input 
requirements. 

5.3.4 LIMITATIONS DUE TO INVERSE MODEL 
( 

Despite the encouraging results illustrated above, the need for an inverse model in this 
approach presents a serious limitation since many systems can not simply be inverted. In 
their discussion of the IMC structure for linear systems Morari and Garcia [ 4] exclude all 
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time delays and zeros outside the unit circle since these would require prediction and 
result in unstable poles respectively, if they were to be inverted. Whilst such a distinction is 
feasible in an analytical design, the numerical and neural network inversion operate 
directly on the model and do therefore not distinguish between feasible and non-invertible 
components. 

The problem becomes more apparent for multi-variable systems for which even the 
analytical inversion of linear systems is often non-trivial. In their treatment of nonlinear 
IMC structures Economou and Morari [ 4] note that the analytical construction of 
nonlinear inverses uses higher order derivatives thus making it too sensitive to noise and 
other errors to be used in practical cases and therefore suggest that only an iterative 
numerical inversion technique is used. 

Morari and Economou furthermore note that no guidelines exist for the design of the filter 
and that it is to be expected that nonlinear filters could lead to distinct advantages. Since 
the filter together with the inverse model represent the controller portion in the IMC 

---structure, the uncertainties in the design of both these blocks for nonlinear systems 
suggests that an alternative approach may be more appropriate. 

The neural predictive control structure introduced in the next subsection is such an 
approach in which the filter and . inverse are replaced by a more manageable, nonlinear 
controller. 

5.4 NEURAL NETWORK PREDICTIVE CONTROL 

This algorithm, suggested by Willis et al (2], is based on the optimal control philosophy 
where a cost function is minimized in order to determine the most effective input. Since a 
system model is required to predict the output(s) for various inputs in order to formulate 
the cost function, this structure again lends itself towards the incorporation of a nonlinear 
and in particular a neural network model. The subsection starts with an introduction of the 
NPC control structure which is then implemented and tested using the nonlinear tank 
system. 

5.4.1 NEURAL PREDICTIVE CONTROL ALGORITHM 

Despite the fact that this algorithm does not fit the standard block diagram structure, it 
can be represented as shown in figure 5. 15. 
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F - filter G - system M - model 

Figure 5.15 - NPC Structure 

Although shown in two places, the model block M is in effect one and the same forward 
model which is used to calculate the error as· well as to generate the cost function. As 
mentioned earlier, the controller implements the well-known predictive control strategy 
for which the future deviations between system output and setpoint are minimized. In 
order to achieve this, the squares of these differences are collected as a function of the 
input(s) to form the so-called cost function which can then be minimized to find the 
optimal input or input sequence. One significant variation from more common predi~tive 
control structures is the use of a neural network based non-linear model to perform the 
predictions required for the cost function. Unlike the .~tandard approaches the minimum 
of the cost function can therefore not be found analytically and a numerical optimization 
method has to be employed. This optimization is indicated as a separate block, receiving 
the desired output(s) [ys] and using the model [M] to produce the next input(s) [u] in the 
above diagram. As in the IMC structure, the function of the feedback loop with filter [F] is 
to ensure setpoint tracking in the presence of model-system mismatches or disturbances. 

The calculations to be performed for the NPC algorithm at each sampling instance are 
summarized below: 

For completeness the steps below show the extensions for a multivariable 
system: 

(i) Take samples of system output(s) Yp(t). 

(ii) Generate model predictions Ym(t) using the current input(s) u(t) and 
previous plant output(s) Yp(t-Ts>· 

(iii) Calculate the error(s) e(t) = Yp(t) - Ym(t) and filter if required. 
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(iv) Using the nonlinear optimization algorithm find the minimum of the 
following cost function 

N1N2,i 2 Nu,i 2 
J = I: {E[Ysi(t+n·Ts) - Ymi (t+n·Ts)J + E[µ;i::lu (t+~ )] } 

i=ln=N1,i k=Oi 
where: N1 - the number of control loops (controlled variables) 

Nl,i - the minimum output prediction horizon for each loop 
N2 ,i - the maximum output prediction horizon for each loop 
Nu,i - the control horizon for each loop 
/.Li - weighting to penalize excessive input changes for 

each input 
Ys - desired output(s) 
Ym - predicted output(s) generated by the model and 

corrected using the error from (iii) 

(v) Implement the first of the calculated input(s) and return to (i). 

Although the controller structure provides the facility to calculate several future input 
values, only the first is used in a receding horizon fashion to avoid errors due to long-term 
extrapolation. 

As mentioned earlier, a nonlinear optimization algorithm has to be used to find the 
minimum of the cost function, since the predictions used are generated by a nonlinear 
neural network based model. Both, the optimization routine as well as the network 
configuration and training are therefore vital parts of this control structure. 

(a) Nonlinear Optimization Algorithm 

Although very similar to the problem of finding the best set of weights for a neural 
network, the optimization problem considered here is limited to fewer dimensions (the 
number of input moves for all loops) and hence more computationally intensive 
algorithms can and must be employed to find the minimum with the required accuracy in 
the short period available for this calculation. As with network training algorithms 
however, these optimization methods perform a search in the multidimensional variable 
space and can be classified into gradient and gradient-free methods. 

Whilst the use of the actual or estimated derivative often accelerates the convergence, 
these methods are not feasible due to the presence of measurement noise and model 
uncertainties which might produce discontinuities in the objective functions. In this 
application the so-called Nelder and Mead algorithm [9] was selected for its robustness 
and because it is a self-contained method which makes no assumptions about the shape 
of the surface it has to minimize. Other non-gradient techniques, particularly Powell's 
method [10] may produce more efficient searches and have also been implemented 
successfully (11]. The significance of the convergence speed in this type of application is 
discussed later in the chapter. 
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The Nelder-Mead optimization algorithm accomplishes its search in then-dimensional 
space by guiding a (n + 1) simplex using contraction, reflection and expansion in order to 
find the minimum. In this application the previous optimal input value is supplied as the 
initial estimate and thus forms one corner of the starting simplex. To ensure that the 
minimum found is global, the algorithm is restarted from this value and must re-converge 
to the same neighborhood for the algorithm to terminate. Some of the other more 
specific tuning choices for its application in a control structure are discussed with the 
program listing in Appendix II. 

(b) Neural Network Implementation and Training 

In their applications Morris et al [2],[10] usefeedfonvard networks with dynamic nodes as 
introduced in the previous chapter and utilize the chemotaxis algorithm for training. 
Although feasible, this again implies that the networks have to be trained off-line prior to 
their implementation. In an attempt to overcome this limitation, the combination type 
model with a regular Gaussian RBF network used in the nonlinear IMC structure, was 
employed in this structure. As before, the linear model derived from step test results can 
be employed immediately, together with an untrained network to produce an initial 
controller for the plant. The network is again evolved during on-line operation, thus 
learning to compensate for the discrepancy between the linear model and the system. 
Most precautions mentioned earlier for the on-line training of networks in the IMC 
structure also apply to this configuration. 

One significant difference from the IMC structure is that a number of future predictions 
may be required in this configuration. This implies that previous model outputs have to 
be re-used, leading to an external recursive topology which might impact negatively on 
the accuracy, as shown in the previous chapter. Since other dynamic network structures 
often fail to converge and/or are not suited for on-line training however, the regular 
Gaussian RBF topology still presents the most reliable option. 

In their investigation Morris et al [10] suggest an alternative training method in order to 
improve the long-term prediction accuracy for feedforward networks. .Rather than 
training the network for one-step ahead prediction, they allow the network to generate 
the required number of iterations before updating the weights. Although this approach 
might improve the accuracy in a pure network model structure, it does not train the 
network for the on-line requirements where the control horizon is generally less than the 
prediction horizon and inputs are applied in a receding horizon fashion. In other words, 
whilst the optimization routine employs the model to predict a number of steps ahead 
with a constant input, the actual inputs to the plant vary for each sampling instance and 
are therefore not a true reflection of the prediction requirements. Despite this, the 
method has merit and could be included as additional optimization technique between 
sampling intervals if required. 
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Another noteworthy difference from the IMC application is that in this topology the 
network can be trained on-line without effecting the controller performance. In the IMC 
topology the desired output of the inverse model is generated by using the forward model 
in an iterative algorithm. To learn, both these models therefore have to utilize their 
network portion whilst being used to control the plant. Since this structure only uses a 
forward model, the system can be operated using only the linear part of _the model whilst 
the network part is being trained in a parallel, non-contributing configuration. 

Although this discussion does not exhaust all aspects of the NPC structure it provides the 
framework for its implementation, which is illustrated in the following subsection. 

5.4.2 NPC RESULTS FOR TANK SYSTEM 

This subsection shows the results of an implementation of the NPC control algorithm for 
the nonlinear tank system. All the results presented were obtained using N 1 = N2 = 5 
(smaller Nl produce more input action but do not improve the control), Nu= 1 and a first 
order filter with a time-constant of 60 seconds. 

As for the IMC approach, the linear model was first implemented with an untrained 100 
node regular Gaussian RBF network. The response of this structure to the step 
perturbations is shown in figure 5.16. 
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Figure 5 .16 - Untrained NPC Step Responses 
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From this- response it_ is evident thal}'1~~.<!}sgepan~l!,5i•J>~~rn model and system cause 
unacceptable modulation of the system input. The system therefore has to be detuned to 
allow satisfactory operation until the network has been trained sufficiently. 

This detuning can be accomplished in several ways in the NPC structure. Since the 
oscillations are due to large modelling errors, orte solution would be to increase the filter 
time-constant. The use of a filtered setpoint as for the IMC structure presents another 
correction. Since the NPC algorithm does however also inclucie a term to penalize 
excessive control moves such as shown in figure 5.16, the most obvious solution is to 
increase the weighting of this factor. Figure 5 .17 shows the response of the identical 
untrained system in which the weighting of this factQr has been increased from Oto 100. 
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Figure 5 .17 - Modified Untrained NPC Step Responses 

As shown, the system reacts somewhat slower than before but utilizes reasonable input 
action to achieve the desired output. The system is· now controllable and can be used in 
this configuration, whilst the network portion of the model is trained.·. As mentioned 
earlier, one of the advantages that the NPC structure enjoys over the IMC topology is that 
the network can be trained without being used in the model i.e. it can be trained 
separately without impacting on the system performance. 
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In this example the training of the network portion of the model was achieved by 
performing steps of random magnitude as in the IMC application. The progression of the 
network is therefore very similar to that shown previously and is hence not repeated here. 
As the model accuracy improves due to the network's contribution, the penalization of 
excessive input moves can be reduced. Figure 5.18 below shows the responses of the NPC 
structure with a fully trained network and no input penalization. 
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As shown, the control structure achieves the desired response times (taken from the IMC 
investigation) with moderate input modulation and no oscillations. 

Cal 

Csl 

The trained NPC configuration was also subjected to the disturbance used to evaluate the 
two previous controllers and the resulting input and output patterns are shown in figure 
5.19 overleaf. The controller responds quickly and effectively to the step disturbances and 
also attenuates the sinusoidal interference significantly. 
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The NPC control structure introduced in this subsection is not only a feasible alternative to 
the neural network based IMC approach, but also includes several attractive features not 
available in the latter. The final part of this chapter highlights some of the differences 
between the two methods and also raises some general concerns about the viability of these 
structures for practical applications. 

5.5 DISCUSSION 

In this chapter two neural network based control structures were introduced and applied to 
a simulated nonlinear tank system. Both methods use combination type models and can be 
initiated in a suboptimal or detuned structure with only the mathematical part of the model 
complete, thus allowing on-line training of the neural network portion in a controlled 
system. 

Although the application, chosen to illustrate the capability of these methods, could possibly 
be controlled adequately by a carefully designed linear controller, the. example highlights 
. typical practical constraints when a linear model is developed from insufficient or non-
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representative data and the design is kept conservative, resulting in a sub-optimal system. In 
both methods the neural network portion of the model is trained on-line in order to correct· 
modelling discrepancies and once trained allows far superior control than achievable if only 
the linear model is employed. Both techniques are. thus learning control laws in which the 
system is activated using a priori knowledge and i~ then optimized in a controlled state as 
the model(s) learn and become more exact. The advantages of such control laws for systems 
with nonlinear characteristics or slow changing behavior are evident. 

This section starts with a brief discussion of the advantages and disadvantages of the two · 
approaches and then highlights some of the common problems that need to be addressed if 

· such structures are to be implemented in practical systems. 

5.5.1 A COMPARISON OF THE NEURAL NETWORK IMC AND NPC APPROACHES 

Despite the fact that there is litde difference between the performance of the final control 
laws generated by either method, the two approaches do differ in certain aspects. 

One of the possible problem areas of the IMC structure is the need for the inverse model, 
which may not exist or be unstable for certain systems. Although the inversion can in such 
cases be performed, using only the iterative inversion algorithm, such a search does in fact 
still attempt to find the inverse of the system at that point. The optimization algorithm of 
the NPC structure on the other hand, does not endeavor to find the inverse of the system 
but rather the optimum input to minimize the cost function, which in turn only relies on 
forward predictions and can be formulated in such a way that possible obstacles are 
avoided. Due to the above, the NPC algorithm can be extended to multivariable systems 
and has been implemented successfully on a simulation of a distillation column [10], whilst 
the inversion of multivariable systems required for the IMC structure is often non-trivial. 

One drawback of the NPC structure is that the network has to be implemented in an 
external recursive connection which is not ideal for feedforward networks such as the 
regular Gaussian topology. The problem is lessened by the use of a combination model 
and on-line training but could still impact on the performance if a large number of 
iterations are required. Since only one-step ahead predictions are employed ,in the IMC 
structure, this difficulty does not arise. 

A difficulty shared by both methods is the exponential growth of regular Gaussian 
networks as a function of inputs, which suggests that despite inferior modelling and a lack 
of on-line learning capacity other network topologies might have to be considered for 
higher order and multivariable systems. 

A further common problem, linked to the network sizes, is the time required to generate 
the next input, once the outputs have been sampled. Although this problem is more 
pronounced in the NPC structure, which generajly requires more network evaluations to 
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find the next input, even the network IMC topology is not suited for high speed 
applications as shown in the followin,g:cs~p~tion. 

'~~., 1' ·.)':"'-'{ct . I 
. "f, ~:~:':'"',', :t~~. {f:· J. 

5.5.2 COMPUTATIONAL POWER AND TIMING CONSIDERATIONS 

For any sampled system, the time between sampling the output(s) and generating the next 
input(s) has to be kept to a minimum and should be considerably less than the sampling 
period as illustrated in figure 5.20. 

TIMING SEQUENCE FOR SAMPLED SYSTEM 
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Figure_ 5. 20 - Timing Diagram 

Whilst this requirement is easily met for control laws in which the next input(s) are . 
calculated using some pre-determined closed form mathematical equation, this is not the 
case for the neural network controllers suggested in this study. Both the neural network 
IMC and NPC methods utilize an optimization algorithm in order to determine the next 
input(s) and hence the calculation time can easily become excessive and impact ·on the 
overall system performance. 

The effect of an increased calculation time is shown in figure 5.21 which illustrates the 
response of the . trained NPC · structure to the same step perturbation for various 
calculation times. These responses show the impact on both the system response and input 
once the calculation time becomes comparable to the sampling period. · 
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Figure 5. 21 - Effect of Calculation Time 

The aim of the results shown for both structures in the previous sections was to illustrate 
their ability to control the system rather than to perform a real-time simulation and hence 
the calculation time was not incorporated i.e. a calculation time of zero was assumed in 
both cases. Due to the large sampling period (20 seconds) the average calculation times of 
180 and 580 milliseconds measured on a 33 MHz 486DX personal computer for IMC and 
NPC respectively, do seem negligibly small. Individual calculation times might 
nevertheless be of the order of seconds, indicating that these algorithms do require a 
certain minimum amount of computation time and are therefore not suitable for high 
speed applications in their current format. 

Since the high calculation times are a direct consequence of the number of model 
evaluations required by the optimization methods, a reduction in either the computation 
time of the model or the number of evaluations is beneficial. Although the latter can be 
achieved by increasing the tolerance and reducing the number of iterations in the search 
algorithms, there exists a limit beyond which the decrease in accuracy impacts negatively 
on the controller performance. 

Whilst a further reduction in calculation time can be achieved by optimizing the code 
and/or algorithms used as well as by increasing the computing power of the platform on 
which these are realized, the implementation of neural network based control structures 
on a large scale might be delayed until neural network chips become available to produce 
the required speed at a reasonable price. 
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One of the main objections levelled against nonlinear and non-standard learning ,, 
approaches such as these, is that they cannot be proven to be stable and robust on a 
system-by-system · basis and· are therefore not as reliable as their linear counterparts. 
Whilst this is true, !he question remains as to how valid such a proof for a linear system is, 
if the underlying system is in fact highly nonlinear or exhibits significant changes over time. 

This final chapter illustrated the utilization of neural networks within two model based 
control structures. In both cases the network was introduced in an untrained state arid was 

· optimized during on-line operation. The network was used · to minimize modelling 
discrepancies between a linear model and the system. The improved model could then in 
tum be utilized to enhance the controller performance. Despite the fact that the two trained 
control structures performed equally well and that·· the NPC configuration is 
computationally more intensive, its flexibility and the ease with which it can be extended to 
other systems make it the preferred solution. The excessive ,computing power and long 
calculation times of neural network based control topologies currently limits the 
applicability of these structures to slow systems. 
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6. CONCLUSIONS 

This thesis presents the results of an investigation into the possible use of neural networks 
as part of control structures. 

Initially an overview of neural network based control structures was provided, together with 
the motivation for selecting a subset of these for this investigation. After this a framework of 
prerequisites for neural 'networks to be used in these structures was introduced. The 
subsequent section of the thesis focussed on the concept of feedforward networks and 
evaluated the suitability of two topologies, using the above prerequisites. This analysis of 
network structures was then extended to include topologies which incorporate dynamic 
capability. Finally the performance of two network based control structures was evaluated 
using a simulation of a nonlinear tank system. 

The _conclusions pertaining to the information presented in this study are discussed below. 

6.1 CHOICE OF NEURAL NETWORK BASED CONTROL STRUCTURES 
I 

As shown in chapter 2, neural networks have been used in various control laws and 
structures. These can be grouped into applications which use a ne_twork in an adaptive 
mechanism, in place of a conventional controller or as a model in the control structure and 
other problem specific utilizations. 

Although many of the adaptive and conventional approaches are theoretically plausible, 
they lack the mathematical foundation to ensure convergence and often require the 
estimation of system parameters or gradients to generate the training samples. Such systems 
are therefore not suited for application to practical problems. Since the problem specific 
approaches lack the generic suitability required, only model based structures are examined 
in this study. 

The networks in such structures learn to model the underlying system and hence the training 
data is obtained directly as system samples and needs no advanced processing such as the 
estimation of unknown parameters and gradients or even the backpropagation of errors 
through unknown systems required for some of the other approaches. 

Model based structures are furthermore mathematically motivated as extensions of their 
linear origins, assuming that a more accurate improved model might produce better control, 
particularly for nonlinear systems for which the linear model is nq_t adequate. 
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6.2 SELECTION OF TRAINING ALGORITIIMS AND TOPOLOGIES FOR 
NETWORK MODEIS IN CONTROL STRUCTURES 

6.2.1 TRAINING ALGORITHMS 

The training of any neural network structure is in effect an optimization problem in n 
dimensions, where n presents the number of adjustable parameters for that network. 
Depending on whether an adjustment of parameters is evaluated using a complete, pre­
defined set of training data or only the current sample, the algorithms utilized to perform 
this optimization can be classified as either batch or pattern learning algorithms 

Due to the difficu~ty of obtaining a representative set of training data from any dynamic 
system and since the network model is furthermore required to learn whilst operating on­
line, only pattern learning algorithms are suitable for the applications considered in this 
study. 

6.2.2 FEEDFORW ARD NETWORKS 

Multilayer perceptrons and regular Gaussian networks are both feedforward structures 
suitable for on-line training and incorporation as models into a control structure. 

Although the multilayer perceptron is more flexible and adaptable in an ideal learning 
environment, the local nature and fixed positions of the hidden nodes in the regular 
Gaussian, radial basis function (RBF) structure produce a more robust and faster learning 
configuration which is better equipped for the non-ideal training circumstances within a 
control structure. 

6.2.3 NETWORKS WITH DYNAMICS 

One of the main drawbacks of feedforward networks as models for dynamic systems is 
their lack of dynamic capability, which is due to the unidirectional flow of information. 

More complex structures in which previous outputs and network states are re-utilized do 
exist and although the Williams and Zipser structure and training algorithm are suitable for 
on-line training, the evaluation shows that these structures often fail to converge and 
require excessive computing times when increased in size. 

Of all the topologies investigated, the regular Gaussian RBF structure is therefore currently 
the best suited for implementation in a control structure and on-line training, despite its 
rigid structure and lack of dynamic capability. 
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6.J~IMPLEMENTATIQNt; 

6.3.1 COMBINATION MODEL 

The combination type model, in which a neural network is used in parallel with a 
mathematical model, permits the implementation of the controller without any prior 
training and is therefore superior to the pure network model. 

6.3.2 COMPARISON OF NEURAL NETWORK AND STANDARD LINEAR CONTROL 

Even prior to training both the neural network based internal model control (NNIMC) 
· and neural predictive control (NPC) produce controllers of equivalent standard as the 
linear IMC control law. 

After sufficient training the improved model allows further tuning of these topologies to 
produce control action not possible using standard linear approaches and the inadequate 
model. 

Due to the recursive algorithms used in both network approaches, the time required to 
calculate the next input far exceeds that of linear control laws and therefore currently 
limits these approaches to applications on slow systems. 

6.3.3 COMPARISON OF NEURAL NETWORK IMC AND NPC 

Although the final control laws generated by these approaches, produce almost identical 
results, there are a num}?er of significant differences. 

Since the NPC algorithm usually requires prediction for several sampling intervals 
(prediction horizon) the network has to be utilized in an external recursive topology which 
might compromise the accuracy. The larger number of network evaluati'ons furthermore 
implies an increased calculation time, thus rendering this approach less applicable for fast 
systems. 

Despite these drawbacks the flexible and transparent nature of the NPC algorithm makes 
it easier to tune, allows the incorporation of many external constraints and can be 
extended to multivariable systems without modification. Since the timing limitations, 
mentioned above, might furthermore be overcome due to the rapid advances in computer 
technology or the availability of neural network chips, the clear NPC structure 1s 
preferable to the IMC topology. 
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6.4 CONCLUDING REMARKS 

The results presented in this thesis show that it is feasible to exploit the modelling and 
· learning capability of neural networks for process control. 

Whilst the neural network approach is however unlikely to replace the well known and 
understood linear controllers which are adequate for the majority of control problems, it 
might become a reality for highly nonlinear or difficult to model problems for which the 
linear algorithms fail to deliver the required response. 

Although the approaches suggested are currently still computationally expensive and slow, 
the rapid advances in the field of computer and neural network technology are likely to. 
improve this considerably. 
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APPENDIX I, -
GENERAL EXISTENCE THEOREM 
This Appendix presents one of the many network mapping theorems. The proof included 
here is taken directly from Kreinovich (1] and was selected as an example due to its 
generality, rather than to validate the mapping competence of all networks discussed in this 

· work. 

Preliminary Remarks and Definitions 

A neural network approximates the function f(x1,x2•••Xm) (defined on [-X,X]m) 
with precision e>O, if for every vector ,KE [-x,xf', IY - f(.!.) I < e where y is 
the output of the network for input.!.• 

Since mappings f: (-X,X]m - 9? n n>l are effectively n functions 
fk(x 1 ,x2 .•. xm>, k=l,2 ••• n with each function mapping the dependence of the k­
th coordinate of the output on the input vector.!.• Such a mapping can 
therefore be approximated with precision e if each of then outputs is 
approximated as described above. 

Main Theorem 

Assume that g(x) is an arbitrary smooth (at least three times differentiable 
function) m➔m, X and e are positive real numbers, and f is a continuous 
mapping from [-X,X]m to 9? n. Then there exists a neural network that consists 
of linear elements.and elements x-g(x) that approximates f with precision e. 

Proof 

1. Since a mapping to 9? n can be represented by_ combining n functions, it is 
sufficient to show that the network can approximate any real-valued 
function. 

2. The Weierstrass approximation theorem shows that any arbitrary continuous 
function on a cube can be approximated by a polynomial with precision d 
{where dis any real number> 0). 
It is therefore sufficient to show that neural networks can approximate 
polynomials with precision e/2, since the polynomial can then be used to 
approximate the function f with the same precision thus resultirg in a 
network which approximates f with precision e. 

3. A polynomial of m input variables is obtained by addition and 
multiplication of these inputs x1,x2···xm. 
Since the linear elements included can perform the addition, it is 
sufficient to show that the network can also implement multiplication. 
(It is· worth noting that using a Taylor expansion in networks without 
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linear elements the addition can be shown to be performed by the nonlinear 
members.) 

4. Since g(x) is at least three times differentiable and nonlinear its second 
derivative exists and has to be nonzero for some x i.e. there exists a 
point x0 where g'' (x0 )=d¢0 
then g(x0 +h) = g(x0 ) + g'(x0 )h + dh2 + o(h2 ) 

where F = o(G) means that F/G ... 0 ash ... 0 i.e. for every e1 there exists 
an H such that for hE[-H,H] 

I h ) ) h - dh21 h 2 g('b + ) - g('b - g' ('b < el 
and hence 

lg(x +h) - g('b) - g' ('b )h - dh
2
1 < e 1H 

2 

or I h 
2 

- a ( h) I < ~ H2 
/ d where a ( h) = ( g ( 'b + h) - g ( 'b ) - g ' ( 'b ) h) / d 

Since all elements of a(h) are linear and constants, the expression can be 
implemented by a neural network which im~lies that this neural network 
approximates the squaring function h ... h on (-H,H]. 

For the above to apply to (-X,X] this interval is transformed linearly into 
(-H,H] • 
- substituting for h = (H/X)x and then applying a(h) which is a network 

and let y = (X/H) 2a(h) then since a(h) is an approximation to 
h2 = ((H/X)x) 2 it follows that y is an approximation to 

(X/H) 2 ((H/X)x) 2 = x 2 

the precision of this approximation is obtained by multiplying both 
sides of I a(h) - h2 j < e 1 H 2/d b{. (X/H) 2 which, since (X/H) 2 h 2 =x 2 and 
(X/H)

2a(h)=y, results in IY - x I< e"¥- 2 

Choosing e 1 such that e 1 < c/X 2 where c is an arbitrary positive real 
number, then b~ applying the above network y it is possible to approximate 
the function x with precision c. 

5. Since ~he network can approximate linear functions and x2 , it can implement 
multiplication x,y ... xy as 1/4( (x + y) 2 - (x - y)2 ), which in view of 1-3 
above completes the proof of the theorem. Q.E.D. 
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· APPENDIX II -. . 

SOURCE CODE LISTING 

This appendix contains listings of all relevant source code. Rather than including a listing of 
each of the programs; the appropriate units and examples of how to apply them have been 
inclu-ded. All listings shown, were developed and run using Borland's Turbo Pascal version 
6.0. 

1. FEEDFORW ARD NETWORKS 

UNIT FFNETS; 

(*========== ======================== =================================================================== =*) 
INTERFACE 

CONST 

max inp = 10· 
max-hid = 10b• 
max:outp = 10;' 

TYPE 

Xfer = function(x:real):real; 

FFNet = object 
inp,hid, 
outp 
lnpVec 
HidVec 
DesOutp, 

integer; 
array[1. .max inp] of real; 
array[1..max:hid] of real; 

OutpVec array[1 •• max outpl 
inp Xfer, -
hiaXfer, 

of real; 

outp Xfer : Xfer; 
\It hid outp, 
d\1-hiaoutp: arrayC1 •• max_hid,1 .. max_outp] of real; 
heta,aTpha : real; 
fname string; 

end; 

FastPerceptron = object(FFNet) 
DeltaHid : arrayC1..max hid] of real· 
Del taOutp : arrayC1. .max--outp] of real; 
\It inp hid, - . 
d\1-inpnid: arrayC1..Cmax inp+1),1 •. max hid] of real; 
constructor I nit( 1; h, o: integer ;ht, al: reaT; nam: string); 
procedure FeedFoi-ward; virtual; 
procedure BackP.ropagate; virtual; 
function SaveNet:integer; 
function LoadNet:integer; 
destructor Done; 

end; 

FastRBF = object(FFNet) 
delta : real; 
i rh : integer; 

centres: array[1 •• max h d,1 •• max inpl of real; 
constructor lnit(i, ih,o: nteger;aT:real;nam:string); 
procedure FeedForward; v rtual; · 
procedure Train; virtual 
function SaveNet:integer 
function LoadNet:integer 
destructor Done; 

end; · 
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{maxinun nurber of inputs} 
{maxinun nl.Jl'ber of hidden nodes} 
{maxinun niirt>er of outputs} 

{type for Xfer function} 

{abstract feedforward network object} 

{actual size parameters} 
{input vector} 
{outp. of hidden} 
{desired output} 
{output vector} 
{transfer function} 
{for individ. } 
{layers } 
{wts from hid to out} 
{wt changes for offset} 
{learning and momentum rates} 
{directory & filename} 

{perceptron with single hidden layer} 
{delta for hidden l.} 
{delta for output l.} 
{wts from ihp to hid - add 1 for theta's} 
{wt changes in hidden layer } 

{RBF network} 
{baridw.i dth} 
< inputh root of hidden - nodes per 

dimens.} 
{coord. of centres - stored for speed} 

I 
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(*·········································································--------··········-····-·-------*) 
IMPLEMENTATION 

c•------··············--·--·············· :···- .. ··-··············----·· ·----·-··------------------------*> 
function Linear(x:real):real; far; (linear Xfer function} 

begin 
Linear := x; 

end; 

function Sigmold(x:real):real; far; 

be!Jin 
1f x>10 then Sigmoid:= 0,999999999 

end; 

else if x<-10 then Sigmoid:= 0.00000001 
else Sigmoid:= 1/(1+exp(-x)); 

{sigmoidal (logistic) Xfer ·function) 

c•-~------····-------·····-------------------·----------------------------------------------··-------------*> 
function Gaussian(x:real):real; far; (Gaussian Xfer function} 

be\lin 
1f x<1e·9 then Gaussian:= 0.999999999 

else if x>20 then Gaussian:= 0.00000001 

end; 
else Gaussian:= exp(·x); 

(*·---------------------------------······-·---------------------------------------------------------------•) 
CONST 

lin ~Xfer = Linear; 
sigm:Xfer = Sigmoid; 
Gaus:Xfer = Gaussian; 

(define Xfer functions as canst to pass} 
( as parameters) 

(*------------------------ ·--·····-··------------------··-·----- ---------------------·----------- --------*) 
constructor FastPerceptron.lnit(i,h,o:integer;ht,al:real;nam:string); (create perceptron} 

var 
q,r : integer; 

begin 

inp := i+1; 
InpVec[inpl := 1; 
hid:= h; 
outp := o; 
inp Xfer ~= l!n; 
hiaXfer := s1gm; 
outp_Xfer := Lin; 
heta := ht; 
alpha := al; 
fname := nam; 

Randomize; 
for q:=1 to inp do 

for r:=1 to hid do 
begin 

Wt inp hidtq,rl := 
dW-inp-hidtq,r] := 

encl•- -

(ranclom-0.5)*2; 
O· 
' 

for q:=l to hid do 
for r:=1 to outp do 

begin 
Wt hid outp[q, r] 
dWni aoutp[q, r] 

encl;- -
encl; ,,. 

:= (ranclom·0.5)*2; 
:= O; 

(constant input for hid. layer thetas} 

(initialize all weights} 

(*-··--·----·-···········--·---··--·-------·--·-·---·-···. ------·-····-·-·---------------------·-----------•) 
procedure FastPerceptron.FeedForward; 

var 
q, r : integer; 

begin 
lnpVec[inp] :=1; 
for q:=1 to hid do 

begin 
HidVec[g] := O; 
for r:=1 to inp do 

(calculate output with current inputs} 
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HidVec[q] := HidVec[ql+Wt inp hid[r,q]*lnpVec[rl; 
HidVec[q] := Sigmoid(flidVec1ql); 

end· 
for q:=1 to outp do 

begin 

end· , 

OutpVec[q] := O; 
for r:=1 to hid do 

OutpVec[q] := OutpVec[q]+Wt hid outp[r,ql*HidVec(rl; 
end; .. -

{hid. layer inp} 
{hid. layer outp} 

{outp. layer inp.=outp. since lin.> 

(*·····"···~·······························································································*) 

procedure FastPerceptron.BackPr~pagate; {perform backprop. optimiztion} 

var 
q, r : integer; 

begin 

for q:=1 to outp do 
deltaOutp(ql := OesOutp[ql·OutpVec[ql; {delta outp. for lin. units} 

for q:=1 to hid do 
begin 

deltaHid[ql := O; 
for r:=1 to outp do 

deltaHid[ql := deltaHid[ql + Wt hid outp[q,rl*deltaOutp[rl; 
deltaHid[ql := HidVec[ql*(1•HidVec[q])*deltaHid[ql; . {delta for sigm. hidden l.} 

end; 

for q:=1 to oute do 
for r:=1 to hid do 

begin 
dW hid outp[r ,q] := heta*del taOutp[ql*HidVec [r] + alpha*dW hid outp[r ,ql; 
Wtniaoutp[r,q] := Wt .. hid_outp[r,q] + d'.l_hid .. outptr,q]; - {update weights} 

end;- -

for q:=1 to hid do 
for r:=1 to inp do 

begin 
dW inp hid[r,q] := heta*deltaHid[qJ*InpVec[r] + alpha*d'.I inp hid[r,ql; 
Wt-inp .. hid[r,ql := Wt_inp_hid[r,qJ + dW_inp_hid[r,ql; - -

end;- -

end; 

C*·····································~-·························································~---·····*) 

function FastPerceptron.SaveNet:integer; 

var 
q,r integer; 
tfile text; 

begin 
{$1 ·} 

assi8n(tfile,fname); 
rewn te(tfi le); 

{save current network parameters} 

writeln(tfile,'Perceptron Weight File: ',fname); 
writeln(tfile>i 
writeln(tfile,1np,' ',hid,' ',outp,' • inputs(+const. for th.), hidden, outputs'); 
writelnCtfile)• 
writeln(tfile,heta,' •,alpha,' • heta, alpha'); 
writelnCtfi le); 
writeln(tfile,•-weights from inp. to hidden Cinp * hid) :'); 
for q;=1 to inp do 

beg1n 
for r:=1 to hid do write(tfile,Wt inp hid[q,rl,' '); 
writeln(tfile); - -

end· 
writeln(tfile); 
writeln(tfile1 •weights from hidden to output : '); 
for q:=1 to h1d do •~ 

begin 
· for r:=1 to outp do wri te(tf ile,Wt hid outp[q, r], 1 '); 

writeln(tfile); - -
end· 

close(tfile); 
{SI+} 

SaveNet := IOResult; 
end; 

(*•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ✓••••••••~••••••••••• •• •••••••••••••••••••*) 

function FastPerceptron.LoadNet:integer; 

var 
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q,r integer; 
tf i le text; 

begin 
($1-} 

assign(tfile,fname); 
reset(tfile); 

{$!+} 

readln(tfile>c readln(tfile); 
readln(tfile,1np,hid,outp); readln(tfile); 
readln(tfile,heta,alpha); readln(tfile); 
readln(tfile); 
for q:=1 to inp do 

begin 
for r:=1 to hid do read(tfile,Wt inp hid[q,rl); 
readln(tfile); - -

end· 
readl~(tfile); readln(tfile); 
for q:=1 to hid do 

begin 
for r:=1 to outp do read(tfile,Wt_hid_outp[q,rl); 
readln(tfi le); 

end· 
closeCtfi le); 

LoadNet := IOResult; 
end· 

(*----·------------------------·---------------------------------------------------------------------------*) 

destructor FastPerceptron.Done; 

begin 
end; 

{destructor for perceptron} 

(*----------------·-···------------------------------------------------------------------------------------*) 

constructor FastRBF.lnit(i,ih,o:integer;al:real;nam:string); 

var 
space : real c 
q,r,s,t,l : integer; 

be~in . 
1np := 1 • 
hid := i~; 
i rh := ih; 
for q:=1 to (inp-1) do 

hid:= hid*ih; 
outp := o; 
inp Xfer := l in; 
hiaXfer .- Gaus; 
outp Xfer := lin; 
alpha := al; 
fname := nam; 

{create RBF network} 

Randomize; {calculate centres & initialize all weights} 

space:= 2/Cirh-1); 

for q:=1 to hid do 
for r:=1 to inp do 

begin 
s := 1; 
for t:=1 to (r-1) do 

s := s*irh; 
centres[q,rl := -1+((Cq-1) div s)mod irh)*space; 

end; 

delta:= 2/sqr(space); 

for q:=1 to hid do 
for r:=1 to outp do 

begin 
Wt hid outp[q,r] := (random-0.5)/10; 

_end; 
end;- -

(*----------------------------------------------------------------------------------- ----------------------*) 
procedure FastRBF.Feedforward; 

var 
q,r : integer; 

begin 
for q:=1 to hid do 

begin 
HidVec[gl := O; 
for r:=1 to inp do 

{generate ouput} 
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HidVectqJ := HidVec[qJ+delta•sqr(0.75•1npvec[rJ·centres[q,rJ); 
HidVectql := GaussianCHidVec[ql); (hid. layer 

end· . 
for q;=1 to outp do · 

begin ' 
OutpVec[ql := O; 
for r:=1 to hid do 

(hid. layer inp} 
outp} 

nd 
OutpVec{ql := OutpVec[q]+Wt_hid_outp[r,q]•HidVec[rl; (outp. layer inp.=outp. since Lin.} 

e • 
end; ' 

procedure FastRBF.Train; 

var 
q,r : integer; 

begin 

(update weights} 

for q:=1 to hid do 
for r:=1 to outp do 

nd 
Wt_hid_outptq,rl := Wt_hid_outp[q,rl + alpha•Hidvectq]•coesOutp[r]·OutpVec[rl); (update weights} 

e ; 

c•···. ················································································· ···················•> 
function FastRBF.SaveNet:integer; 

var 
q,r 
tfi le 

begin 

integer; 
text; 

($1·) 
assi9n(tfile,fname); 
rewrite'( tf ile); 

(save current network parameters} 

writeln(tfile,'RBF Weight File: ',fname); 
writeln(tfile)< 
writeln(tfile,1np,' ',irh,' ',outp,' · inputs, i·r·h, outputs'); 
writeln(tfile); · 
writeln(tfile,alpha,' • alpha'); 

($I+} 

writeln(tfile); 
writeln(tfile,'weights from hidden to output :'); 
for q:=1 to h1d do 

begin 
for r:=1 to outp do write(tfile,Wt hid outp[q,rl,' '); 
writeln(tfile); - -

. end; 
ctose(tfile>; 

SaveNet := IOResul t; 
end; 

c•············································· ················································· ··········•> 
function FastRBF.LoadNet:integer; 

var 
qf, ~l t 1 e 

integer; 
text; 

begin 
($I·} 

assign(tfile,fname); 
reset(tfi le); 

($1+} 

readln(tfile>; readln(tfile); 
readln(tfile,1np irh,outp); readln(tfile); 
readl n( tf i le1 ~lpha); readln( tf i le); readln( tf i le); 
for q:=1 to n1d do · 

begin 
for r:=1 to outp do read(tfile,Wt_hid_outp[q,r]); 
readln( tfile); 

end· 
close(tf ile); 

LoadNet := IOResult; 
end; 

(load network parameters from file} 

(*·················································································-·~·-··················•*) 
destructor FastRBF.Done; (destructor for RBF net} 
· begin 

end· 
c•····'·············································································· ·····················•> 
End. 
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The following listings shows how to generate and use perceptron and RBF networks using 
the procedures listed above : 

(*··••·~·································-·-··-··········· - ···············································*) 
(to create perceptron} 

uses dos, 
crt, 
FFNets; 

var 
net: AFastPerceptron; 

begin 
(in main program} 

release(HeapOrg); 
new(net,lnit(1,3,1,0.2,0.5,'test.wts')); 

{include unit> 

(create occurence • here a pointer was 
chosen to create the network using heap 
memory} 

(create perceptron in heap} 

(*··.· ...................................... · ····························································*) 
(to use and train perceptron} 

with netA do 
begin 

lnpVec[1] := x; 
Feedforward; 
nn := OutpVec[1l; 
Des0utp[1] := y; 
BackPropagate; 

end; 

(set input(s)} 
(generate output(s)} 
(store output(s)} 
(set desired output(s)} 
{backpropagate} 

.(theta and alpha may need changing during 
operation} 

(*•········································································································*) 
{to save and load perceptron} 

writeln('Save curr~nt network parameters ••• •); 
ch := 'N'; · 
repeat 

write('enter filename: '); 
readlnCfilename); 
with netA do 

begin 
· fname := filename; 

if SaveNet<>O then 
begin 

write('saving not successful· try again [y/nl '); 
ch:= UpCase(ReadKey); 

end; 
end· 

until (ch='N' ); 

writeln('Load existing network parameters ••• '); 
ch := 'N'; 
repeat 

write('enter filename: '); 
readln(filename); 
with net" do 

begin 
fname := filename; 
if LoadNet<>O then 

begin 
writeC'loading not successful · try again (y/nl '); 
ch:= UpCase(ReadKey); 

end; 
end· 

until Cch='N' ); 
(*··················· ·······································.·············································*) 

Since RBF networks share the same abstract parent object, they are generated and used in a . 
similar way. 
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2. RECURRENT NETWORKS 

This subsection includes the listing of the recurrent network unit as well as an application 
example. 

Unit RECNETS; 

(*============================================================== ============ ====== ================----==*) 

INTERFACE 

CONST 
max m = 10· 
max -_·n = 15 ~ 

\' 

TYPE 

recptr = "recnet; 

{maximum number of external inputs} 
{maximun number of nodes} 

recnet = record 
m,n, t integer; 
x array[1 •• max ml of real; {external inputs} 
yd array[1 •• max-nl of real; {desired outputs} 
y,s,e array[1 •• max-nl of real; {netw. outp., inputs, errors - use 1 •• t units as ext. outp.} 
z array[1,.max-m+max nl of real; {netw. inp. and outp.} 
W,dW array[1 •• max=n, 1 •• iiiax_n+max_m] of real; {weights} 
p array[1 •• max n,1 •. max n+max m,1 •• max nl of real; 
alpha real· - - - -
fname string[12]; 

end; 

(*---------------------------------------------------------------------------------------------------------*) 

PROCEDURE INITRec(p:recptr); 
PROCEDURE Normz(p:recptr); 
PROCEDURE Forcelz(p:recptr); 
PROCEDURE RecOut(p:recptr); 
PROCEDURE CalcdW(p:recptr); 
PROCEDURE UpdateW(p:recptr); 
PROCEDURE Contlearn(p:recptr); 
PROCEDURE Forcelearn(p:recptr); 
PROCEDURE ClearP(p:recptr); 
PROCEDURE SaveWeights(p:recptr); 
PROCEDURE ReadWeights(p:recptr); 

(*=========================================================================================================*) 

IMPLEMENTATION 

i*----------------------------------------------------------------------------------------- -----------~ --*) 
FUNCTION Sigmoid(x:real):real; 

be!;jin 
1f x>10 then 

Sigmoid:= 0.99999 
else 

end; 

if x<-10 then 
Sigmoid:= 0.000001 
else 

Sigmoid := 1/(1+exp(-x)); 

Csigmoidal (logistic) activation function} 

(*-----. ----------------------------------------------------------- ---------------------------------------*) 
FUNCTION KronDelta(i,j:integer):real; 

begin 
if i=j then 

KronDelta := 1 
else KronDelta := O; 

end; 

{Kronecker delta} 

(*------ -------------------------------------------·------------------------------------------------------*) 
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PROCEDURE INITRec(p:recptr); 

var 
i, j ,k : integer; 

begin 
randomize; 
with p" do 

begin 

end; 

for i :=1 to max_n do · 
begin 

for j:=1 to (max m+max n) do 
begin - -

IJ [i, j] := C 1 ·2*random)l10; 
0

dlJ[1 j] := O; 
for k:=1 to max n do 

p Ci, j, kl : = O; 
end· 

e[i] f= O; 
y[i] := O; 

end; 
m := m+1; 

end; 

{creates network} 

{add constant node for bias) 

(*·······----·····---·-------·-········-·············································----···················•) 
PROCEDURE Normz(p:recptr); 

var 
k : integer; 

begin 
with rt' do 
- begin 

for k:=1 ton do 
z [kl : = y Ck] ; 

for k:=1 to (m-1) do 
z Ck+nJ := x Ck]; 

Z[n+m] := 1; 
end· 

end; • 

PROCEDURE Forcelz(p:recptr); 

var 
k : integer; 

begin 
with p" do 

begin 

end; 

for k:=1 ton do 
if k<=t then 

z [kl := yd[kl 
else z[kl := y[k]; 

for k:=1 to (m·1) do 
z [k+nJ := x [kl; 

z [n+m] := 1; 
end; 

{calculate z for normal learning) 

{constant input> 

{calculate z for force-learning) 

(constant input) 

c•······~-------··························-··-·······························. ·····························•> 
PROCEDURE RecOut(p:recptr); 

var 
k, l : integer; 

begin 
with p" do 

begin 

end; 

for k:=1 ton do 
begin 

s[kl := O; 
for l:=1 to (m+n) do 

s[kl := s[kl+IJ[k,l]•zetl; 
end; 

for k:=1 ton do 
begin 

end; 

· yCkl := Sigmoid(s[kl ); 
1f (k<=t) then 

end; 

e[kl := yd[kl·y[kl 
else e[k] :=O; 

{generate output} 

. {if one of the external outputs} 

-138-



Appendix II - Source Code Listing 

PROCEDURE UpOateP(p:recptr); 

var 
tmp array[1 •• max_nJ of real; 
i. l .. 
k, : integer; 

begin 
with pA do 

begin 
for i:=1 ton do 

end; 
end; 

for j:=1 to (m+n) do 
begin 

for k:=1 ton do 
begin 

tmp[k] :=O; 
for l:=1 ton do 

tmp[k] := tmp[k]+W[k, lJ*p[i j l] i 
tmp[k] := tmp[k]+KronDelta(i,k),l.z[J]; 

end; 
for k:=1 ton do 

p[i ,j,kJ := y[kJ*C1-y[kJ )*tmp[kJ; 
end; 

{intermediate calculation for training} 
{called from training procedure} 

(*---------------------------------------------------------------------------------------------------------*) 

PROCEDURE Calcdw(p:recptr); 

var 
tmp : real; 
i,j, 
k integer; 

begin 
UpOateP(p); 
with pA do 

begin 
for i:=1 ton do 

end· 
end; ' 

for j:=1 to (n+m+1) do 
begin 

tmp := O; 
for k:=1 ton do 

tmp := tmp+e[kJ*p[i,j,kl; 
dW Ci, jJ := alpha*tmp; 

end; 

{calculate change to weights for normal} 
{learning - used if changes are to be} 
{monitored} 

(*------------------------------------------------------------------------------ ---------------------------*) 
PROCEDURE UpdateW(p:recptr); 

var 
i,j : integer; 

begin 
with PA do 

begin 
for i:=1 ton do 

for j:=1 to (n+m) do 
W[l ,j] := W[i,j]+dW[i ,j]; 

end· 
end; ' 

{perform updates-use with above proc.} 

(*---------------------------------------------------------------------------------------------------------*) 

PROCEDURE ContLearn(p:recptr); 

var 
till> : real ; 
i,j, 
k integer; 

begin 
UpDateP(p); 
with pA do 

begin 
for i:=1 ton do 

for j:=1 to Cn+m) do 
begin 

tmp := O; 
for k:=1 ton do 

till>:= tmp+e[kJ*p[i,j,kJ; 
W[i,j] := W[i,j]+alpha*tmp; 

end; 
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end; 
end; 

(*•··-··································--································· ···························~-·-*) 
PROCEDURE Forcelearn(p:recptr); 

var 
tfll): real; 
i ,j, 
k integer; 

begin 
UpDateP(p); 
with p" do 

begin 
for i:=1 ton do 

for j:=1 to (n+m) do 
begin 

tmp := O; 
for k:=1 ton do 

till):= t~e[kl*p[i,j,kl; 
\.l[i,jl := \.l[i,j]+alpha*tlll); 

end· 
for i:=\ ton do 

end; 
end; 

for j:=1 to (n+m) do 
for k:=1 tot do 

p[i,j,k] := O; 

{force-learning algorithm} 
{use with Forcelz} 

{clear the corresponding p's} 
{after using them } 

(*··························-·············-····· ---······························-························*) 
PROCEDURE ClearP(p:recptr); 

var 
i,j, 
le integer; 

begin 
with p" do 

for i:=1 ton do 

end; 

for j:=1 to (n+m) do 
for k:=1 ton do 

p[i ,j,kl := O; 

PROCEDURE Save\.leights(p:recptr); 

var 
i,j : integer; 
outf: text; 

begin 
with p" do 

begin 
assi~n(outf,fname); 
rewr1te(outf); 
for i:=1 ton do 

begin 
for j:=1 to (m+n) do 

wr1te(outf,\.l[i,jl,' '>; 
writeln(outf); 

end• 
close(outf); 

end· 
end; ' 

{clear intermediate storage} 

{clear all p's} 

{save current weights to ASCII file} 

(*•···································---···············-··················································*) 
PROCEDURE Readtleights(p:recptr); 

var 
i, j : integer; 
inf·: text; 

begin 
with p" do 

begin 
assign(inf,fname); 
reset ( inf); 
for i:=1 ton do 

begin 
for j:=1 to (m+n) do 

read(inf,\.l[i,jJ); 
readln(inf); 

{load weights from ASCII file} 
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end; 

end;. 
close( inf>; 

end; 

. (*------------------------------------------------------------------------------------- -------------------*) 
End. 

(*========================================================================================· ================*) 

The following listing shows how to create and utilize a recurrent network using the above 
procedures. 

(*---------------------------------------------------------------------------------------------------------*) 
{create recurrent network} 

uses dos, 
crt, 
recnets; 

var 
M : recptr; 

begin 

new(M) • 
with Mj. do 

begin 
m := 1; 
n := 2; 
t := 1; 
alpha:= 0.5; 

~nd; 
InitRec(M); 
ClearP(M); 

{include unit} 

{create pointer (or variable)} 

{create space on heap} 
{set network parameters} 

{initialize.network} 

(*------------------------------------- ---------------------------- --------------------------------------*) 
{use and train network} 

W.x[1J := input; 
MA.yd[1J := out_des; 
Forcelz(M); 
RecOut(M); 
Forcelearn(M); 

MA .x[1J. := input; 
MA.yd[1J := out_des; 
Normz(M); 
RecOut(M); 
Contlearn(M); 

{force learning} 

{normal learning} 

{set network input(s)} 
{set desired output(s)} 
{generate z for force learning} 
{generate network output(s)} 
{perform learning/optimization} 

{set network input(s)} 
{set desired output(s)} 
{generate z for normal learning} 
{generate network output(s)} 
{perform learning/optimization} 

(*----------------.------------------- --------------------------------------------------------------------*) 
{save or load network weights} 

{save}· 
write('enter filename: '); 
readln(MA.fname); 
SaveWeights(M); 

{load} 
write('enter filename '); 
readln(MA.fname); 
ReadWeights(M); 

{note - no error checking performed} 
(*---------------------------------------------------------------------------------------------------------*) 
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3. SIMULATION AND CONTROL 

This subsection includes the listing of units and programs used for the tank simulation and 
control. 

3.1 TANK SIMULATION 

UNIT TANKLEV; 

(*======================================= - =======================================================·========*) 

INTERFACE 
FUNCTION Nextlev(y,u,dt:real):real; 

(*-----------------------------·---------------------------------------------------------------------------*) 

IMPLEMENTATION 

(*---------------------------------------------------------------------.------------------------------------*) 

FUNCTION Nextlev(y,u,dt:real):real; 

C Calcculates the level after time dt given the current level y and input u. To ensure sufficient accuracy, 
an iterative calculation is performed if dt>0.1. 

inputs: y - current level 
u - current input 
dt - time period over which level is to be evaluated 

-outputs Nextlev - level at time t+dt} 

var 
t"1)lev, 
time real; 

begin 
time := O; 
t"1)lev := y; 
if (dt>0.1) then 

repeat 
if t"1)lev<O then t"1)lev:=O; 
t"1)lev := t"1)lev + 0.1*(0.1*u-0.02*sqrt(t"1)lev)); 
time:= time+ 0.1· 

until ((dt-time)<0.1); 
if ((dt-time)>1E-10) then 

t"1)lev := t"1)lev + (dt-time)*(0.1*u-0.02*sqrt(t"1)lev)); 
Nextlev := t"1)lev; 

end; . 

C store intermediate level> 
C store cU1L1lative time } 

C for large ·dt - use iterative calc.} 
C to i"1)rove accuracy } 

C calculate change for remaining time} 

C or small initial dt} 

(*------------ --------------------------------------------------------------------------------------------*) 
begin 
end. 

(*=================================== =====================================================================*) 

3.2 OPTIMIZATION ALGORITIIM FOR NPC 

UNIT MINMAX; 

(*========================================================================================= ===============*) 

INTERFACE 

C Global Definitions> 
const 

np = 10; 
111) = 11; 

{maxinun no. of dimensions - optimization space} 
{points for n-tuple -> np+1 } 

type 
•point = array[1 •• np] of real; 
pointptr = Apoint; 
Fune = Fl.netion(p:pointptr):real; 

var 

{point in optimization space } 

{type of func. to be optimized} 
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Min: point; 

MinBound, 
MaxBound: point; 
bound: boolean; 

{global variable - holds initial guess in call } 
{ -~e~urns the minimun point after optimiz.i_tion} 
{ min1mun and · , } 
{ maximun values for clamping - if clarrp=true } 

(*---------------------------------------------*) 
PROCEDURE Nelder'Mead( F: Func;dim: integer); 

(*------------- ----------- -------------------------------------------------------------------------------*) 
IMPLEMENTATION 

(*---------------------------------------------------------------------------------------------------------*) 
PROCEDURE clamp(var val:real;index:integer); 

be!;lin 
1f val>MaxBound[indexJ 

then val : =MaxBound [ i.ndex] 
else if val<MinBound[indexl 

then val:=MinBound[indexJ; 
end; 

{clamp value to bounds defined in 
MaxBound and MinBound} 

(*------------------·------------------------------------------------------*) 
PROCEDURE NelderMead(F:Func;dim:integer); 

{ The procedure performs a search in the dim dimensional space to find 
the minimun value of function F, starting with a simplex built around 
the initial user supplied guess in min[1J ••• min[diml. If clal!l>ing is 
active (clamp set to true), the algorithm contains the search for each 
coordinate to the interval [MinBound[il .. MaxBound[ill. 
Based on algorithm in Num. Methods for Pascal. 

inputs: F - function to be optimized 
- define as: function fuhcname(p:pointptr):real; far; 

NB far and use p[1J .• p[nl inside 
NOTE : if minimum of F. is likely to be close to 0 

add 1 in F to avoid possible n1.J11eric overflow 

dim - dimension of optimization space 1<=dim<=10 

other variables to be initialized: 
min[1J •• min[dimJ - initialize with first guess 
clamp - set to true for clamping/false for none 
MinBound[1 •• dim] - if clamping is required 
MaxBound[1..dimJ - 11 

outputs: min[1J •• min[diml - coordinates at which Fis mininun} 

const 
nfuncmax = 100; 
ft.ol = 0.001; 
alpha= 1; 
beta = 0.5; 
ganma = 2; 

var 
p : array[1 •• mp] of point; 
y : array[1 •• mp] of real; 
count integer· 
ptry,psum, 
pstore point; 
mp~s, inhi ( ilo, 
ih1,1,eva integer; 
ytrr,ysave,sum, 
rto ,diff real; 

(*--------------------------------------------*) 
procedure MakeSimplex; 

var 
j ·: integer; 

begin 
Randomize< 
rrpts : = d1 m+1; 
for J:=1 to mpts do 

p[Jl := mini 
for j:=1 to dim do 

begin 
p[j] [j] := min[l"J+(random-0.5); 
if bound then c amp(p[j] [jJ,j); 
y[j] := F(iilp[j] ); 

end· 
y[mpt;J := F(iilp[mptsl); 
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{no. of evaluations} 
{tolerances for simplex hi/lo} 
{scaling for reflection,contraction etc_} 

{vertices of simplex } 
{store function values } 
{no. of evaluations } 

{teq,. storage locations > 
{internal storage variables } 
{ II } 

{ II } 

{create simplex around point min} 

{initialize all corners to min} 

{add random amount to one dim. for each} 
{corner except last} 

{evaluate function for all corners} 
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end· 
(*···-' ········-··----------------------------*) 
function amotry(hi:integer;fac:real):real; 

var 
j : integer; 
fac1,fac2,yn : real; 

begin 
fac1 := (1-fac)/dim; 
fac2 := fac1·fac; 
for j:=1 to dim do 

begin 
ptry[j] := psum[j]*fac1·p[hil [j]*fac2; 
if bound then clamp(ptry[j],j); 

end; 
yn : = F (a'lptry); 
lnc(count).; 
if yn<y[hil then 

begin 
y[hi] := yn; 
for j:=1 to dim do 

psum[j] := psum[j]+ptry[j] ·p[hil [j]; 
. p[hil := ptry; 

end· 
amotry := yn; 

end; 
C*··--········-···---···········----------·· ·-*> 
procedure Amoeba; 

var 
i<j : integer; 

begin 
count := O; 
for j:=1 ro dim do 

begin 
psum[j) := O; 
for i:=1 to mpts do 

ps1..1t1[j] := psum[j)+p[i] [j]; 
end; . 

repeat 
ilo := 1; 
if y[1J>y[2l then 

begin 
ihi := 1· 
inhi := ~; 

end 
else 

bei;iin 
1hi := 2· 
inhi := '; 

~nd; 
for 1:=1 to mpts do 

bei;iin 
1f_y[iJ <_y[ilo] then 

1lo := 1; 
if y[i] >y [ i hi l then 

bei;iin 
inhi := ihi • 
ihi := i; ' 

end 
else if y[i]>y[inhi) then 

if i<>1hi then inhi := i; 
end; 

ytry := amotry(ihi,·alpha); 
1f ytry<=y[ilo) then 

ytry := amotry(ihi 1gallllla) 
else if ytry>=y[ih1] then 

begin 
ysave := y[ihilc 
ytry := amotry(1hi,beta); 
1f ytry>=ysave then 

begin 
for i:=1 to mpts do 

if i<>Ho then 
begin 

for j:=1 to dim do 
ps1..1t1[j] := O.S*(p[il [j]+p(i lo) [jJ ); 

p[i] := psum; · 
y[i] := F(lilpsum); 

end• 
lnc(count); 
for j:=1 to dim do 

begin 

end; 

psum[j] := O; 
for i :=1 to mpts do 

psum[j] := psum[j]+p[i] [j]; 
end; 

end• 
rtol :=' 2*Abs(y[ihiJ ·y[iloJ >ICAbsCy[ihiJ )+Abs(y[ilol »; 
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until ((count>nfuncmax) OR (rtol<ftol)); 
e~ . 

(*------ ------------------------------------ ., begin · 
eval := O; 
repeat 

pstore := min; 
MakeSimplex; 
Amoeba; 
min :.= p[ilol; 
diff := O; 
for i:=1 to dim do 

. diff := diff+sqr(pstore[i] -min[il )/dim; 
diff := .sqrt(diff); 
lnc(eval); . 

until ({diff<1E·2) OR (eval=5)); 
end; 

{stop if tol ok or too many evaluations} 

{Main Loop} 

{store previous guess} 
{create new simplex} 
{find minimum} 

{calculate dist. from previous minimum} 

{until succ. point close enough or too} 
{many evaluations} 

(*-------------------------------------------------------------··-·------·--------------·-----·------------•) 
begin 

bound:= false; 
end. 
{*··--·-----··-·---·--------···-··--------------··-·-·---------·-··········-·------········-···-···········•) 
{NOTE: 
All tolerances and no. of evaluations effect the time taken by the algorithm and form part of the tuning if 
this algorithm is used in a control loop. The required accuracy therefore has to be traded off against the 
time required to find the next minimum. 
Furthermore, in the case of networks, the cost function may not be smooth enough to allow extremely high 
accur~cy and repeat~bility and these constants should therefore be relaxed sufficiently to allow the 
algorithm to converge.} . 

3.3CONTROL 

The following li~tings show the code used to perform the control simulation for linear IMC, 
neural network IMC and NPC. 

(*====================.====================================================================================*) 
{procedures and functions} 

{linear and combination model} 

function modnet{u,y:real):real; 

begin 
with modL-" do 

beijin 
1f y<O then y:=O· 
if y>25 then y:=25; 
lnpVec[1] := 2*u·1· 
lnpVec[2] := y/12.~·1; 
Feed forward; 
modnet := OutpVec[1l; 

end· 
end; ' 

function l inmod{u,y:real):real; 

begin 
linmod := exp(·20/250)•y + 15•u•c1-exp(-20/250)); 

end; 

function model(u,y:real):real; 

begin 
model := modnet{u,y)+linmod{u,y); 

end; 

{generate network prediction for} 
{current u,y} 

{linear model prediction} 

{combination model output} 

C*-----··------·---·--··---------------------------------------················-··-----·-·····-·····--····-•> 
{inverse linear and combination model} 

function invnet(ys,y:real):real; 

begin 
with invA do 

begin 

{inverse network} 
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end; 

lnpVec[1] := ys/12.5-1; 
lnpVec[2l := y/12.5-1; 
Feedforward; 
invnet := OutpVec[1J; 

end; 

function lininv(ys,y:real):real; 

begin 
lininv := (ys • exp(•20/250)*y)/(15*(1-exp(·20/250))); 

end; 

function inverse(ys,y:real):real; 

be9in 
1nverse := invnet(u,y)+lininv(ys,y); 

end; 

{linear inverse model} 

{combination inverse model} 

(*--------------------------------------------------------------------------····-·····-·-··----------------*) 

function smallgain(r,u:real):real; {small gain algorithm for NNIMC} 

var 
c : integer; 
y : real; 

begin 
C := O; 
repeat 

y := model(u,YP); 
u : = u + 0. 1 ,i.· ( r • y); 
inc(c); 

until ((Abs(r-y)<0.001)0R(c>1000)); 
smallgain := u; 

end; 

C*-·-····--·--·---------·-····--------····-·····--·······----·----·-----------------------··----------·,···*> 

function cost(p:pointptr):real; far; 
var 

yn,tmp: real; 
i : integer; 

begin 
yn := yp; 
tmp := O· 
e := o.n*e + 0.28*(yp-ynn); 
for i:=1 to N2 do 

begin 
yn := model(p~[1],yn) + e; 
1f (i>=N1) then . 

tmp := tmp + sqr(yn-ys); 
end; 

cost := tmp + 10*sqr(p~[1J-u) + 1; 
end; 

{cost function for NPC} 

{filtered error} 

{add errors· for N1<=i<=N2} 

{cost function output} 

(*====================================================================================================·====*) 
{Parts of Main Program} 
{all variables folowed by 'o' hold the value of the previous iteration} 

release(Heal;)Org)• 
new(modl,ln1t(2 ~O 1 0.001,'model')); 
new(inv,Init(2,~0,i,6.001,'inverse')); 

MinBound[1l := O; 
MaxBound[1J := 1; 
bound:= true; 
min[1] := O; 

{forward model network} 
{inverse model network NNIMC only} 

{boundaries for NPC only} 

(*----------------------------------------·--·-----···----·-··----------------------------·------·-·--·--·-*) 

yp := Nextlev(ypo,u,20); {generate next level} 

{------------- ----------·---····-···-LINEAR IMC--------------------------------------·····} 
ym := exp(-20/250) * ymo + 15*(1-exp(-20/250))*u; {model prediction} 
e := ys·(yp·ym)· {error} 
r := exp(-20/106) * ro + (1-exp(-20/100)) * e· {filter} 
u := 1/(15*(1-exp(-20/250))) * Cr - exp(·20/2~0)*ro); {inverse model} 
if u<O then u:=O; {clamping} 
if u>1 then u:=1; 
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{-··------···········-------··-·------NEURAL NETWORK IMC-----·------·······-·----·--------------···} 
ym := model(u,ypo) 'f {combination model prediction} · 
e := ys· (yp-ym) • 
r := exp(-20/106) * ro + (1-exp(-20/100)) * e; 
u := inverse(r,yp); 
u := smallgain(r,u); 
if u<O then u:=0; 
if u>1 then u:=1; 

with modl" do 
begin 

Des0utp[1J := yp·linmod(uo,ypo); 
Train; 

end; 

with inv" do 
begin 

DeSOutp[1J := u - lininv(r,yp); 
Train; 

end; 

{inverse comb. model} 
{smallgain optimisation} 

{forward model training} 

{desired output= diff. betw. actual and} 
{linear model} . 

{inverse model training} 

{desired outp. = optimised u - linear} 
{inverese} 

{-----------------------···-----------NEURAL PREDICTIVE CONTROL-------·········-------------------·--····-} 
ynn := model(u,ypo) {combination model prediction} 
NelderMead(cost,1); {find optimal input} 
u := min[1]; { and implement} 

with modl" do 
begin 

Des0utp[1J := yp-linmod(uo,ypo); 
Train; 

end; 

{forward model training} 

{desired output= diff. betw. actual and} 
{linear model} 

(*===================================================== ===================================================*) 
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