'NEURAL NETWORKS
- IN CONTROL ENGINEERING

by W. Trossbach

April 1994

i Thesis prepared in fulfilment of the requirements for the degree of M.Sc. in Electrical
‘ . and Electronic Engineering '

The University of Cape Town has be.en given e
the right to reproduce this thesis in whole
or in part. Copyright is held by the author. 1

. e i

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

ACKNOWLEDGMENTS

Many people contributed either directly or 1nd1rect1y to this thesis - some I want to mention
by name.

My sincere thanks to:

Associate Professor M. Braae for his supervision of this project.
DRL for their financial support during 1992.

R. Anderson (Los Alamos National Lab) for the reference material and pre—prmts of
papers.

D. Sbarbaro (University of Glasgow) for the reference material, letters and
telephone conversations. s

E. Barnard (University of Pretoria) and D. Weber (University of Stellenbosch) for
the useful and stimulating discussions at seminars. ‘

UCT’s Interlibrary Department for their help to locate and obtam copies of the many
references that were essential for this study.

Annabella and Brenda for their contmuous‘ support, cnéOuragement and
understanding without which this wouldn’t have been possible.

TERMS OF REFERENCE

This thesis presents the results of an investigation into the possible utilization of neural
networks as part of control structures.

The requirements for this research, as set out by Associate Professor M. Braae, were to :

« Establish an overview of the many different neural network based control strategies
suggested in the literature. C

= Motivate the selection of a control structure and network topology for the evaluation
of this new field.

» Compare the performance of that structure with that of more established control
strategies.

'» Evaluate the viability of the neural network approach in control engineering.

- i -

SYNOPSIS

The purpose of this thesis is to investigate the viability of integrating neural networks into
control structures.

These networks are an attempt to create artificial intelligent systems with the ability to
learn and remember. They mathematically model the biological structure of the brain and
consist of a large number of simple interconnected processing units emulating brain cells.
Due to the highly parallel and consequently computationally expensive nature of these
networks, intensive research in this field has only become feasible due to the availability of
powerful personal computers in recent years. Consequently, attempts at exploiting the
-attractive learning and nonlinear optimization characteristics of neural networks have been
made in most fields of science and engineering, including process control.

The control structures suggested in the literature for the inclusion of neural networks in
control applications can be divided into four major classes. The first class includes
“approaches in which the network forms part of an adaptive mechanism which modulates the
structure or parameters of the controller. In the second class the network forms part of the
control loop and replaces the conventional control block, thus leading to a pure neural
network control law. The third class consists of topologies in which neural networks are
~ used to produce models of the system which are then utilized in the control structure, whilst
the fourth category includes suggestions which are specific to the problem or system
structure and not suitable for a generic neural network-based-approach to control problems.

Although several of these approaches show promising results, only model based structures
are evaluated in this thesis. This is due to the fact that many of the topologies in other
classes require system estimation to produce the desired network output during training,
whereas the training data for network models is obtained directly by sampling the system
input(s) and output(s). Furthermore, many suggested structures lack the mathematical
motivation to consider them for a general structure, whilst the neural network model
topologies form natural extensions of their linear model based origins.

Since it is impractical and often impossible to collect sufficient tfaining data prior to
implementing the neural network based control structure, the network models have to be
suited to on-line training during operation. This limits the choice of network topologies for
models to those that can be trained on a sample by sample basis (pattern learning) and
furthermore are capable of learning even when the variation in training data is relatively
slow as is the case for most controlled dynamic systems.

A study of feedforward topologies (one of the main classes of networks) shows that the
multilayer perceptron network with its backpropagation training is well suited to model
nonlinear mappings but fails to learn and generalize when subjected to slow varying training
data. This is due to the global input interpretation of this structure, in which any input
affects all hidden nodes such that no effective partitioning of the input space can be

- iii -

Neural Networks in Control Engineering

achieved. This problem is overcome in a less flexible feedforward structure, known as
regular Gaussian network. In this network, the response of each hidden node is limited to a
-sphere around its center and these centers are fixed in a uniform distribution over the entire
input space. Each input to such a network is therefore interpreted locally and only effects
nodes with their centers in close proximity.

A deficiency common to all feedforward networks, when considered as models for dynamic
systems, is their inability to conserve previous outputs and states for future predictions.
Since this absence of dynamic capability requires the user to identify the order of the system
prior to training and is therefore not entirely self-learning, more advanced network
topologies are investigated. The most versatile of these structures, known as a fully
‘recurrent network, re-uses the previous state of each of its nodes for subsequent outputs.
However, despite its superior modelling capability, the tests performed using the Williams
and Zipser training algorithm show that such structures often fail to converge and require
excessive computing power and time, when increased in size.

Despite its rigid structure and lack of dynamic capability, the regular Gaussian network
produces the most reliable and robust models and was therefore selected for the evaluations
in this study. '

To overcome the network initialization problem, found when using a pure neural network
model, a combination structure in which the network operates in parallel with a
mathematical model is suggested. This approach allows the controller to be implemented
without any prior network training and initially relies purely on the mathematical model,
much like conventional approaches. The network portion is then trained during on-line
operation in order to improve the model. Once trained, the enhanced model can be used to
improve the system response, since model exactness plays an important role in the control
action achievable with model based structures. '

The applicability of control structures based on neural network models is evaluated by
comparing the performance of two network approaches to that of a linear structure, using a
simulation of a nonlinear tank system.

The first network controller is developed from the internal model control (IMC) structure,
which includes a forward and inverse model of the system to be controlled. Both models can
be replaced by a combination of mathematical and neural topologies, the network portion
of which is trained on-line to compensate for the discrepancies between the linear model
‘and nonlinear system. Since the network has no dynamic ‘capacity, former system outputs
are used as inputs to the forward and inverse model. Due to this direct feedback, the trained
structure can be tuned to perform within limits not achievable using a conventional linear
system. ' ~

As mentioned previously the IMC structure uses both forward and inverse models. Since the
control law requires that these models are exact inverses, an iterative inversion algorithm
has to be used to improve the values produced by the inverse combination model. Due to

-y -

Synopsis

deadtimes and right-half-plane zeroes, many systems are furthermore not directly invertible.
~ Whilst such unstable elements can be removed from mathemancal models, the inverse

network is trained directly from the forward model and’ can fiot be compensated. These
problems could be overcome by a control structure for which only a forward model is

| required.

- The neural predictive controller (NPC) presents such a topology. Based on the optimal

control philosophy, this structure uses a model to predict several future outputs. The errors
between these and the desired output are then collected to form the cost function, which
may also include other factors such as the magnitude of the change in“input. The input value
that optimally fulfils all the objectives used to formulate the cost function, can then be

- found by locating its minimum. Since the model in this structure includes a neural network,

" the optimization can not be formulated in a closed mathematical form and has to be

performed using a numerical method. For the NPC topology, as for the neural network IMC
structure, former system outputs are fed back to the model and again the trained network
approach produces results not achievable with a linear model. Due to the single network
approach, the NPC topology furthermore overcomes the limitations described for the neural
network IMC structure and can be extended to include multivariable systems.

This study shows that the nonlinear modelling capability of neural networks can be
- exploited to produce learning control structures with improved responses for nonlinear
systems. Many of the difficulties described, are due to the computational burden of these
networks and associated algorithms. These are likely to become less significant due to the
rapid development in computer technology and advances in neural network hardware.

Although neural network based control structures are unlikely to replace the well
~ understood linear topologies, which are adequate for the majority of applications, they
might present a practical alternative where (due to nonlinearity or modelling errors) the
conventional controller can not achieve the required control action.

TABLE OF CONTENTS

ACKNOWledgment B, s et eacasassassssnsssosorsnssassassasssnsasesssnonsnsesnves 1

Terms Of REfOreNCe....uocvurenreanncarinessasesanssonevavasssossacnsosssasa il

Synopsis

. 2
s 4 s s e s s 0t s eN e e e s EsENeAsIOEPIENBLIILIOESLIBROIENBSLSEOIEOIEOVLOGOURERSGEROOGILOO0ener M1

Table Of Cont’.ents..............................'.....‘.....;.......e....... Vi

List Of I1luBtrationB. . cevsvasscasoscenrsasssssnsesncsnsassnsssstssnsnsnssvesase X

NOMENC LAt UL @ e s eeeasroeassesssessacsssssessscssncsosssosnsasssessnnnsonnssess Xil

1. NEURAL NETWORKS — AN INTRODUCTION AND OVERVIEW. (i cuveveecevensvssnsncnonn
1.1 Historical Developments ..c.ceresvasesesesnsacnsccssssnssonsavacnsones
1.1.1 Symbolic Al ..uiueeveensosncesosesesasoossassosnnsossoscancaasnossos
1.1,2 Nonsymbolic (Connectionist) Alieeecnreccasncesncsncancsnnes

-1.2 Neural Network Principles (Biological MOtLivation) ceeveveeccaannnanns

1.3 Overview of the Remaining Chapters ¢...ceeeervecrcennscescncancnccoss

2. NEURAL NETWORKS FOR PROCESS CONTROL...cerecovcosevesinraossecsnsenvsnsnoene

2.1 Neural Network Applications in Process CONtrOlesesececsaoaoanns
2.1.1 Neural Networks in Adaptive Mechanisms.........c.civeneecencnannns
2.1.2 Neural Networks in place of Conventional Controllers............

s

7
8
9

(a) Multilayer Perceptrons and Backpropagationceeeeessces.o 10

(b)
(c)

Non-gradient Search Algorithmscecceeesevacececssssvsecens
Genetic Algorithms ...ciiicsetivecsvononnctancccastnscasanasannes

2.1.3 Control Structures containing forward or inverse Neural

2.1.4
2.1.5

2.2 Choice of Control Topologies and Network Requirements-

Network MOdels .. cvueeacerercnesserarcscocsoscsnsantsssacsanscnns
Other TOPOlOgieB..ueivereeeseesnsansesnsossnscoanssscrssavesnacnnss
Problem Specific ApproachesS ...c.vuviseceiveisscencssonssscnnosas

2.2.1 Discrete or Continuous NetwoOrKS8....cceetenocncnscensossansannna
© 2.2.2 Learning and Training Requirements for Neural Network Models...

(a)
(b)
(c)
(d)
(e)
(f)

Generalization Capability (Interpolation and Extrapolation) ...
On-line or Off-line Training ...cecveesersncecssssssnscccnsnncne
Pattern Learning or Batch Learningcceceneevencnnroscvecnnns
Storing and Extracting Knowledge Ceteeeereencenearatataanararan
Computational Effort ...c.ceeecenruscecnnsosssescsssssecasccanns

Ease of Use R R R R I PP

11
11

12
13
14

14
15
16
17
i8
18
18
i3
19

Table of Coatents .

3. FEEDFORWARD NETWORKS.....ccceens

3.1 General TOPOlOGY «vvveevnnnennns Ceteecesnencaenaaaan chreresseseaneas 23
3.2 Multilayer Perceptroneeceeeeecss Cieensesseceneseneans eeeeee 24
3.2.]1 TOPOLOGY ¢ cvvctvcovscsosavosonosssnsonossossvesnsosnsossnossesscs ceee 24
(a) Number of Hidden Layers Cecretcseccnennoe ceeseane cees 25
(b) Type of Activation FUNcCtionececeeeocecsccsscsscnass ceessess 26
3.2.2 Training Algorithms............ ceetrecesccascccnccns cecerecnesne 26
(a) Gradient Descent Search Algorithmsececescaccncrssvsccsscas 27
(b) Directed Search Algorxthms tecesccsettsstsesessseessessonasen e 28
(i) Chemotaxiscccceiiaennnnan esescesesesesscsecccncosesean - 28

(ii) Ssimulated Annealing............ eeecesccccccsssncsanne -
3.2.3 Nonllnear Modelling Capabxlxty............................ 31
3.2.4 Evaluation........ ceeesetes et et etess et et esesss sttt eenenne 34
(@) TESt SELUP vevvvvessesssassnssosoasssossosssssssssssasescssnns 34
(b) Extrapolation and Interpolation Capabilityceceeeeieeeeenns 34

) (i) Extrapolationc.ececiereceecececoccocncocascscassscsseasess 35
(ii) Interpolation .. .c.cciciteieriececeenccsonanscncscacsocsscsccs 35

(c) On-line Training: Data Presentation and Interpretation 37
(i) Random Data Presentation..........ccceeeeeannns teeseseseseee 37

(ii) Global Input Interpretationcceeceeveccccecesscssnnans k}:]

(d) Initial Weight and Training Rate Choicescveevvveeececece. 39
(i) Initial Network Parameters cerieceanaas cetesaenanas 39

(ii) Training Rate.......... ctecsscstesatessccencenctseseseanenne 39

(e) Number of Hidden NOAeScceeececencencncansacnns ceecreecees. 40
(f) Network Interpretationicveeveeeerencccecaccaccccas ceees 41
(i) Storing a priori KNOwledge «..cececesencesconconacanoannanns . 41

(ii) Extracting Data ...ccccceeeeeen crececcncns cessecsssssssescss 41

(g) Local Minima ...c.c.ecececececees ceesecceccns ceeescscscecscsssss 42
(h) Computational Effort and Ease of Use ceenee ceesececacas 42
(i) Computational Effortcccciuicecninecnoceonacseccncnncns 42

(ii) Ease of Us€....occecenn et ececsascessccascssce st sserenenee 42

3.3 Radial Basis Function (RBF) Feedforward Networks cesecesne . 43
©3.3.1 TOPOlOgY ccveeocvcioiocaccascncososcancssancnans Y- X |
(a) Radial Basis Activation Functionceeveeeeeccccccssocccnns 44
(b) Weights from Input to Hidden Layerc...... cecscssescsses 44

~ (¢) Number of Hidden LAYerS ...ceececescssescnssssossosssassnnnnnnse 45
3.3.2 Training Algorithms...... T P Geseecetectesrcsenroreconne 45
(a) errarchxcally Self-Organizing Learningccceevveneccencess 45
(b) Clustering type Algorithmsccciceeeintncaccnccnncnse cecsss 46
(c) Regular Gaussian RBF Network Learning tececssesesanns 48
3.3.3 Nonlinear Modelling Capability...c.ccccuceeecncencncscncccananas S0
3.3.4 BvaluatioN.seceeeeececcsccsccsscsscccoscsssscsccscsssoscssoseccscs 52
(2) TeBt SEtUP eeevreercrnnanncsnscnsaancinonns Cheeecceeenaeeaaas 52
(b) Extrapolation and Interpolation Capability ...eceecceeereennenn 52
(1) EXtrapolation cuceeeeeeeessescccssososscsesccnscsosnsosossssne 52

(ii) INterpolation ..c.civeecesseessscccssessscssccssocassassscssss 53
e .
(c) ‘On-Line Training : Data Presentation and Interpretatlon eseesss 55

(i) Training Data Presentation......... 11
(ii) Input INterpretationeeceeeceeccccccosssanans ceceance eese 56
(d) Initial Weight and Training Rate Choicescc0eeene.. .. 56
(i) Initial Network Parameters 15

- vii -

Neural Networks in Coutrol Engineering

(ii) Training Rate ...cceirieroenssorssoroscsssnsssnsvononsssnsnas
(e) Number of Hidden NOA@Bceccssvsenasoroscnecssvnsssnnsoaoannes
(f) Network Inflexibility and Siz@ ...vevevrceecrocerncnanassonanns
(g) Network Interpretationc.cecennorscreescasasosccossssnnsncs
{h) Computational Effort and Ease Of UBSE ...vevercensoecsossannnnsns

{i) Computational Effort cv.veseeensvecssnsnscoancscasssasosnsnsoss

(1i) Fa8@ Of UB@ cvvvvennesrececcseannstasssnsconssncasassnsanensas

3.4 DiSCUBBION tvvrueeneecnsescnnonssosesssosssscssssosvsasetssacsssnsnnass
3.4.1 A Comparison of Multilayer Perceptrons and Regular Gaussian

Netwcrkﬂ.............-.-..........................-......‘......

3.4.2 The Lack of Dynamics in Feedforward NetworkS.....cveveveneceans

4. NETWORKS WITH DYNARMIC MODELLING CAPACITY..ccoveveeeccsscosnsnsvcsnsonnas

4.] OVEIVAGW tociciauesnensisnssnasosossentnasanesesossnsnsssnasnsssscssnn

4.1.1 External Recurrent Networks........cocuieviriaonoencanenonnsnnn

{B) TOPOLlOGY «vueesencaoncacnonasossnsnssessssnssancnasssssvsssnsssan

(b) Network Training c.cuiveevenssssccsoscsersnsssonnnonsocsonsennsns

(C) DiBSCUSBLION «vevrveeetassaoasoasanaoscasssssosaasnacccannscansss

4.1.2 Networks with Dynamic NodesS.....cierineicearancenrncsnenencenons

(@) TOPOLOGY trverneceescsanesasstsaseascssasensnssnssssssssnnccssses

{b) Network Trainingccccsceeccecscscsccscsnsassosensscsonassnsas

{C) DiBCUBBION +..cicitencncncsescssosnncnsscsesassscssarcanencnsaosca

4.1.3 Fully Recurrent NetworKkScevennseetscosracrossancsnsesonsocs

{(2) TOPOLlOQY s evesersenrcsanscoscssosasasasssssssossssanuconcoaonsnsossos

(D) Network Training c.ceceesecoescsconsscsscocsconsssansonssonsons

(C) DiBCUSBION sesvssresenasacsenssssestonssasasssoncassasnsanasansas

4.2 Evaluation of a Fully Recurrent NetwoOrkcececeronacncenccensanes

4.2.1 NetwOrk TOPOLlOgY evevevrsoceassrsocscnossnsnossrsasscncscnsscnnoncsss

4.2.2 Training Algorithm....c.ciuieeenceiennscnercannccccennncennoanns
4.2.3 Nonlinear Modelling Capability -

A Comparison with Feedforward Networksceieevvrensccccnconnn

{(A) TEBL SELUP (.t viiiisrecsssonocncncsestsosssssossstsnnnnnntosssses

{(b) Learning the Required Feedback Connectionscece0ccneeuose

{c) Local Minima and Insufficient Convergencee.eeeeseees

(d) Timing Considerations .c.ieeeesrssosscrsssesnssssassosncnnsasasens

4.2.4 DiBCUBSION . ctaseeessesssnsosssscansaasconcsnsaossonsaonssnasas

- .

. »

5. NEURAL NETWORK BASED CONTROL STRUCTURES.....cctc0000s00ceusccscnsancons
5.1 Nonlinear SysStemceeeeocrsresssecencacsosassssavossooncasanenns
5.2 Model/Network Combination c.c.eieiesseensssscnassencnnsconssossssases

5.3 Linear and Non—linear Internal Model Control ..ccicveevaverononncens
5.3.1 Internal Model Control AlQOXithM....e.cevesncacecoaconcenannnes
5.3.2 LinN@Ar IMCuuuusceoconocecssnssnssesssseassraseanssnsanasosnsecnses
5.3.3 Noh-linear Neural Network IMC.....ecvevecscsesnoscsnoscscasnnas
(a) Modifications and Network Training ...cceceececscessssveossasces

. «

57
57
58
59
60
60
60

60

60
61

65

6%
66
66
67
67
68
68
69
69
70
70
71
71

72
72
73

78
78
79
81
82
85

87
87
91
93
93
95 |

917
97

{b) Results for Neural Network IMC Controllerc.coceocessssss 102
5.3.4 Limitations due to Inverse Model...vvvveoncoesesosssncnacsanss 103

- Viii -

E Table of Contents

5.4 Neural Network Predictive Cohtrol

5.4.1 Neural Predictive Control Algorithm............. ceteesarsaeas .

(a) Nonlinear Optimization Algorithmccceeeecececceceocncons

(b) Neural Network Implementation and Training ceeesne

5.4.2 NPC Results for Tank System..... saesrenns e ceccssssereenns ceces

5.5 Discussion cererereceaceas ceessseenaas ceeraesnesesseneene

5.5.1 A Comparison of the Neural Network IMC and NPC Approaches.....

5.5.2 Computational Power and Timing Considerations.................

5.5.3 Stability and Robustness........ ceeesee ceesseecseessscnsns cone

6. CONCLUSIONS....... et et eeeieaeeeaa e :

6.1 Choice of Neural Network Based Control Structuresce00000
6.2 Selection of Training Algorithms and Topologies for

Network Models in Control Structures.......ccecesscesscccsss .

6.2.1 Training Algorithms.....cceceeeecccencccocans cecsseseencscansa

6.2.2 Feedforward Networks...........cciieeennnn ceevsesssaassesen PN

6.2.3 Networks with DynamicCsSecevececcocssccsseccssossssasacanasns

- 6.3 Implementationcccvceieececncces Ceetsese e s essteeneceerssen cees

6.3.1 Combination Model.........ccu... Ceeterrecettteaetaans cecenanen

6.3.2 Comparison of Neural Network and Standard Linear Control......

6.3.3 Comparison of Neural Network IMC and NPC.....ccevvevnennceains

6.4 Concluding Remarksccceceeen. Sseescseseesssnsetessncns ceeeees

BIBLIOGRAPHY . o ¢t ovevevosoancsocsosacoasocsasasasscsanoassas Ceeseeeaeen. ..

APPENDIX I - GENERAL EXISTENCE THEOREM.cccccececeoccccsacae tececcsnonsns

- APPENDIX II - SOURCE CODE LISTING....................;........ coee

1. Feedforward NetWOIrKS .c..cceereeescesssccsacnssosanscsccscssscsasanansosoes

2. RECULIENt NELWOILKS «cuvveereeoceaosscosssscaasscssnnscsonnaccsssnnasn

3. Simulation And COMEIOL «..eeueseenneeennseennseenneeannssecannneens

3.1 Tank Simulation....... feeeeee Cheeieeeestectettaess st ttanasosenan

3.2 Optimization Algorithm for NPC....c.eceeeisosceccncecanasasanans

3.3 CONtErOl iveeeeeecesnsocsssssosssosenvsesocescssssnssscssascssnsssssssssssses

104
104
106
107
108

111
112
113
115

117

117

118
118
118
118

119.

119
119
119

120

121

129

131
131
137
142
142

142
145

LIST OF ILLUSTRATIONS |

Figure

Figure
Figure
Figure
Figure
.Figure

. Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

1.1 - Elementary Processing Unit....csvsererecasacssnnsassssasnvsonas @
2.1 Adaptive SLrUCHULE. .. .v ittt oecntesssosacacsonscancssennasens B
2.2 NN Controller StruCtUr@...vsesnsrscsvssovasscnsscsssncssnssnsos I
2.3 Discrete NN MOAel.....veevereonenncnssononsnassssansnassnenaes 15
2.4 - Step Test REBULLB....uuvrversearasastsssessonsacseacsanaanases 16
2.5 = INPUL SPACE:.c.ccevvesosoresssssessensssnsnsascsossccnssassaasse 17
3.1 Topology of Feedforward NetwOrKS..c..cececeovercscsonssanssses 23
3.2 - Multilayer Perceptron TOPOlogY..cscscsosessnescscscscnssnesece 24
3.3 Sigmoidal Activation FUunction..c.c.ieeieeerocncscrsscacnnnsanae 26
3.4 Modelling Capability of Single Hidden Rode...... cccveuuvenes.. 31
3.5 Orientation of Sigmoidal Surface in 2-dimensional Input Space. 32
3.6(a) - Multilayer Perceptron Model of a Paraboloid....c.ccceuse... 33
3.6(b}) =~ Contribution of Individual Nodes in Trained Network........ 33
3.7 - Perceptron Extrapolation Capability....ceccceeeese cenvssescsses 35
3.8(a) - Perceptron Interpolation Capability....c.cieiiiiennereaaess 36
3.8(b) = Perceptron Interpolation Capability....coceae0ec.. cesresvass 36
3.9 - Non-random Excitation...civesvucienscrsnnnncscsescsscsscannesss 37
3.10 - Global Input Interpretation........covseeececess cssssenen caess 38
3.11 - Effect of Initial Weight Choices.....ccvvvrvicrronnrecasanees 39

3.12
3.13
3.14
3.1%
3.16
3.17

- Effect Oof Training Rate.....ceveceeccscrcsecsocasnscsvsssssen 40
- Redundant NodeS.......o0veves. R sesessases 41
- Feedforward RBF Network TOPOlOgy..c.cecscosssesescnscrenossoase 43
- Gaussian Activation Function....esesceeretvescossccasanannnas . 44
- RBF InitializatioON...eveesncnosssasnsansan esrecrcccrcarssssss 49
~ Modelling Capability of Hidden Nodes in Regular Gaussian

NELWOLKS coceveceeienseonscsossnsssosscosssscsnscncooncnssnsnnnsnsaaas 50
3.18(a) - Regular Gaussian Network Model of a Paraboloid............ 51
-3.18(b) ~ Contribution of Hidden NOd€B....c.evevucecerssnsssennccasaas 51
3.19 - Regular Gaussian Extrapolation Capability.......c.caveeeueses 53
3.20(a) - Regular Gaussian Interpolation Capability................. 54
3.20(b) - Regular Gaussian Interpolation Capability.........ceveee.. 54
3.21 - sinusoidal Excitation for Regular Gaussian Network........... 85
3.22 -~ Local Training for Regular Gaussian NetwOrK....c...c.ecee.... 56
3.23 -~ Effect of Training Rate@...cccususnvesvecnnccscassssscnscnsncsns 57
3.24(a) - Five Node Approximation.....cicveiececaccccecsnerassssscess 58
3.24(b) - Ten Node Approximation......eceeeeeensevseceosenvnscnsneess 58
3.25 -~ Regular Gaussian Network Inflexibility.....viveeveeaecccecass 59

External Recurrent TOPOlOGgYcsceenensssoscssasocsascncncencssass 66
Networks with Dynamic NOdeB....e.cuenesverrcrsacaosccccncansnass 68
Fully Recurrent Network NOQe€..revevevsrsenscascnsssvssnsnsssnsns 10
Williams & Zipser Recurrent Network StruCture....cscseecsssscs 72
Recurrent Network Training Data..cccscesseosesococscsnsansasasa 15
RMS Progression for Teacher Forced Learning with .

Fixed Learning Rate...u.c.eveeecenarososcsssnsanassssssnsasacses 15

4.7(a} -~ Desired and Network Outputs before Training.......oeceeve.. 76
4.7(b} - Desired and Network Output after Normal Training.....scee.. 76
4.7(c) - Desired and Network Outputs after Teacher-Force Training... 77

List of Hflustrations

Figure
‘Figure
- Figure
~ Figure
Figure
Figure
Figure
Figure
' Figure

‘Figure
Figure
Figure
Figure
Figure
Figure
?igure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

4.8 -~ Actual Parameters and Estimates.......cciiveiittnnneesannnveonss
4.9(a) - Recurrent Model for Linear Process.......... ceen
4.9(b) = First Order RGN Model, fo Llnearmprocess...................
4.9(c) - Second Order RGN Model for Linear’ Process..................
4.10(a) - Recurrent Network for Nonlinear System...
4.10(b) - RGN Model for Nonlinear System...veeenecanss hessasnaerasen
4.11 - Timing Requirements for Recurrent Network........cesoevavaaea
4,12 - Timing Requirements for Regular Gaussian Network......cces.e..
4.13 - RGN Timing Requirements for Varying Number of Inputs.........

.

L]
bk it b bk AD 0 N N U S WA

T
OB WO

. » .

.

. s & s & »

5.17
5.18
5.19
5.20

5.21

Tank System SChematiC....cvesessevsscsacssnsinsossoscassessonna
Change in Level vs. Previous Level and Input......ccccvuvusenn .
Tank SyStem Step ReSPONBESB. .c.ccnveeecrersorascseronecsoneanns
Normalized Step ReSpPONSE...cvescesscssevsessssssssssonocssncns .o
Combination Model.............. chtesessensenseneeneetstsasoanas
IMC SErUCEUL@. e tetrenrenrnsocsncoassinssonsssnacssssnnnnnnn ..

"Linear IMC Step Responses.........

L I I I R N L I Y

Linear IMC Disturbance Rejection........cviersnrsncensncncsnnns
Iterative Inversion Block DiagraM..scsseeeevscscocecssocsansns
-~ Neural Network IMC before Training.....cvoivcecvecsincanaaess 99
- Modified Neural Network IMC before Training........
- Forward Model Network Tralnxng..............................
- Trained Neural Network IMC Step ReSpONSES...ccscesvcocvarass
- Trained Neural Network IMC Disturbance Rejectlon.......

- NPC Structure........ cesevevacens
- Untrained NPC Step Responses.....

N A R R

- Modified Untrained NPC Step Responses......is.ecss.

- Trained NPC Step ReSpOnN8es.......
- Trained NPC Disturbance Rejection
- Timing Diagram.........eecaesvaes
- Effect of Calculation Time.......

-xf -

D I L I B AR I I A B N B A

se s s e e s s s e s

.........

20000 0ce

77
79
79
80
81
82
83
83
84

88
89
90
91
91
93
95
96
98

100
101
102
103
105
108
109
110
111

113

114

NOMENCLATURE

NN

. RBF

RGN
IMC
NNIMC

NPC

i

or

ACC
IICNN

‘IJCNN

neural network
radial basis function (network)

regular Gaussian network

internal model control.

neural network internal model control
neﬁral predictive control

minimumwoétput prediction horizon for NPCk
maximum output prediction horizon for NPC

control hdrizon for NPC

desired output
system output
model ocutput

input

scalar value
vector

matrix

American Control Conference

. First International Conference on Neural Networks

First Joint Conference on Neural Networks

- Xil -

e T

1. NEURAL NETWORKS - AN
INTRODUCTION AND OVERVIEW

Artificial neural networks and parallel distributed processing are currently receiving
significant interest from many scientific disciplines, in the hope that they might help to
produce solutions where conventional methods have not been satisfactory. '

This introductory chapter starts with a brief historical discussion showing the origin of
neural networks as well as their place within the field known as artificial intelligence or AL
After this the underlying biological principle for all these networks is explained, before an
overview of the remainder of this study is given.

1.1 HISTORICAL DEVELOPMENTS

Since the early days of modern science there has been considerable interest and effort to
understand the underlying principles that constitute intelligence. This curiosity about the
brain and the thinking process is to be expected from related fields such as physiology and
psychology. In other disciplines of science however, it can be ascribed to the desire of re-
creating features such as the abilities to learn and to reason in artificial intelligent systems.
Most of the early research work performed in this area, consisted of experiments conducted
to understand basic processes such as color perception and recognition as well as the
functioning of single nerve cells. This was done in the hope that a thorough knowledge of
the elementary principles might help to eventually understand the entire system.

Although this bottom-up approach was and is producing valuable results, it soon became

clear that it would not necessarily deliver a satisfactory explanation for the storage, retrieval

and processing of knowledge. This insight inspired research of a fop-down nature, in which
theories for the above mechanisms were developed with - llttle concern about their

implementation in the underlying biological system.

With the advent of the modern computer in the nineteen fifties it became feasible to
implement and test some of these hypothesis for the first time. This attracted many non-
physiologists and gave a new definition to this field, now well known as artificial intelligence
or Al Although computers provided a platform for testing many of the theories, their
sequenﬂal execution and symbol mampulanon capability also injected some bias into the
formulation of new algorithms. Consequently, theories lending themselves towards the
implementation on a von Neumann type architecture ‘were often favoured above more
biologically plausible ones. c

Neural Networks in Coatrol Engineering

The lack of agreement on the appropriate form of knowledge representation raised the
fundamental question, that remains unresolved, of whether the purpose of Al is to produce
clever computer programs or to understand and model human intelligence. It also resulted

in a division of the discipline, producmg the two sub-disciplines known as symbolic AI and .
nonsymbolic Al.

1.1.1 SYMBOLIC Al

In this approach to Al, knowledge is represented and stored in the form of symbols which
.can be operated on by a set of rules. :

The most well known result of this approach is the expert system, for which the knowledge
of one or more people, considered to be experts on the particular subject, is captured in a
knowledge database. This database can be interrogated by a set of rules to produce the
desired output. A simplistic view of expert systems is a collection of if-then-else rules,
which are applied using various mechanisms such as applicability, thresholds and priority.

One of the features that distinguish expert systems from other AI systems is that the
~ knowledge base is designed prior to their use and therefore rigid and nonadaptive.

- Although the system might learn to adapt its response by modifying thresholds and
priorities, it can not alter or add information. While this might seem like a deficiency for a
supposedly intelligent system, it does have the advantage that the system is guaranteed to
work within its capabilities from the outset and does not require further training or
development, :

Expert systems have been implemented successfully in applications where the necessary
knowledge could be extracted and captured in the required format. These applications are

in areas where decisions have to be made in accordance with well known rules and
cconstraints. Typical examples of such systems are expert advisers, which asmst people in
fields such as medical diagnosis or technical design.

Despite the fact that the field of symbolic Al produced impressive results relatively
quickly, it has become apparent that this approach alone will not be able to deliver the
initial promise of artificial systems with human like intelligence [1]. This is because the
human brain is not a sequential, analytical machine operating on a knowledge base and
‘although the symbolic approach lends itself for implementation on a von Neumann
architecture, it is not appropriate as a model for the information representation and
processing in the brain. In his review on Al and the brain, Smolensky [2] notes that:

=« The symbohc approach 'has provided precious. little insight into the oomputatlonal
crgamzatlon of the btmn

» The ’fine structure of cognmon seems to be more naturally described by non-
symbolic models’.

= *The symbolic rules and the logic used to mampulatz those mles tend to produce
rigid and brittle systems’, :

1. Neural Networks - An Introduction and Overview

1.1.2 NONSYMBOLIC (CONNECTIONIST) AI

Whilst the early supporters of symbolic AI were trying to create an environment in which
knowledge was presented in a format suitable to simulate reasoning on a digital computer,
another group of researchers attempted to solve the problem by creating mathematical
representations of what was known about the physical brain structure. In these
approaches, which became known as connectionist Al, the system generally consists of a
large number of highly interconnected simple processing units, much like the brain with all
its nerve cells and synaptic links. Researchers in this field of study, also known as
connectionism due to the great importance placed on interconnectivity, were thus
éttempting to create artificial intelligence by modelling the biological structure of the
brain, rather than striving to formulate an abstract knowledge representation format
suitable for manipulation.

The main difference between these theories and symbolic AI is therefore the
representation of knowledge. While the expert system relies on an exact representation of
knowledge in the form of a rule operating on symbols, no equivalent format exists in the
connectionist approaches. In the neural network, which is one such nonsymbolic model, the
information is stored in the connection strengths (equivalent to biological synaptic links)
between individual nodes and is therefore scattered over part or even the entire network,
resulting in the so-called distributed representation. Due to this distributed representation
it is not possible to program or store all initial knowledge in the network and the system
has to learn from a set of input and associated desired output patterns, before it can be
used.

In spite of some éxciting and promising results such as the perceptron model and
associated convergence procedure [3] during the early nineteen sixties, connectionism
faded into the background during the seventies. This was due to a number of reasons:

- = Although the research had shown some promise, it had failed to deliver anything
comparable to the reliable, seemingly clever systems the symbolic field was able to
produce.

= In a time when the required computing resources where expensive and rare, it was
difficult to motivate the use of precious computing time on a research area which is
not suited to serial processing and the von Neumann architecture. -

= In their book 'Perceptrons’ [4] Minsky (by then a well known personality in the field
of AI) and Papert proved the limitation of a single layer perceptron model (a neural
_network model receiving considerable interest at the time) and suggested that an
extension to multilayer systems would not produce any worthwhile results; a
statement which greatly discouraged funding for further research in the field.

Despite these setbacks, research in the non-symbolic field continued and the availability of
cheap computing power in the eighties, together with the realization that symbolic Al
might not deliver what it promised [1], generated renewed interest. This revival has
resulted in many different connectionist models and learning algorithms. Currently neural

t

Neural Networks in Control Engineering

networks, probably the most well known product of the connectionist field, are tested on a
wide variety of problems ranging from character - or sound recognition to stock market
prediction and in this study the applicability of these networks in the field of process
control is investigated.

Presently both, the symbolic and nonsymbolic approaches are continuing to produce
promising results, each in their own areas of application. Some scientists believe that only a
synthesis of the two methods will result in true artificial intelligence [2].

1.2 NEURAL NETWORK PRINCIPLES
(BIOLOGICAL MOTIVATION)

Despite the fact that even amongst connectionists there is no agreement regarding the
neural network topology and learning mechanisms, most networks use building blocks very
similar to biological neurons. In this subsection the close link between these building blocks
and their biological counterparts in the brain is clarified. The elementary processing unit is
illustrated in figure 1.1.

STRUCTURE OF ELEMENTARY NEURAL
NETWORK PROCESSING UNIT

1

O % N
\ "O

: w to oth
2 __>z or -I-[: 1(x) S u?m. o
wotivetion

thwrestiold

external T
inputs Y3 externsal
output
i

k]

Figure 1.1 - Elementary Processing Unit

As shown, the unit has a number of inputs which might be outputs from other units (i1) or
external inputs (i2,i3) from the environment. Each of these inputs is scaled according to its
weight or importance (wi,wz2,w3) for this unit. The scaled inputs are then summed or
multiplied to form a scalar activation value for the unit. If this activation value exceeds the
threshold value of the particular unit, it is passed through the nonlinear activation function
f(x) to produce an output (0). The output of the particular unit may in turn form an input to
other units and/or be used as an external output as indicated. In order to create a neural
network, a number of these processing units are linked together. Training for such a system

1. Neural Networks - An lntrodueﬁon and Overview

AN

~ entails ﬁhding the optimal set of connection weights and thresholds such that the network
produces the desired external outputs for each set of extemal mputs :

}A

" From the above discussion and 111ustranon 1t can be seen that the elementary processmg
unit for neural networks is a mathematical representation of the biological neuron with its
cell body, activation threshold, dendrites and axons, as well as synaptic links of varying

“strengths with other neurons. Although the adjustment of weights can furthermore be
likened to the known biological process of establishing and modifying synaptic links

“between neurons during learning, the underlying mechanism for these adaptations in living
systems is not yet fully understood. Consequently many different weight-update theories and
algorithms exist, each claiming to be more biologically plausible than others.

Even though most artificial neural networks utilize processing units very similar to the one
illustrated above, there exist many ways of interconnecting these units (network topologies)
‘and finding the optimal set of parameters for the network (training algorithms). A

~ discussion of several network topologies and training algorithms is included in later chapters
of this thesis, where séveral networks are evaluated. An overview of the different types of
networks and their origins can be found in the discussions by Grossberg [s], Llppmann [6] as
well as Rumelhart et al [7].

1.3 OVERVIEW OF THE REMAINING CHAPTERS

The remainder of this study deals with an investigation into the use of neural networks in
the field of process control.

« Work previously performed in this area is included in the literature review in chapter
2, which also contains an explanation and motivation for the choice of control
structures and networks to be studied.

= In chapters 3 and 4, different types of network topologies are evaluated to determine
their suitability for the chosen control algorithms. '

s In chapter 5 two neural network based control strategies and their linear system
counterparts are compared.

« Finally conclusions as to the suitability of neural networks as part of control |
structures and algorithms are drawn.

Neural Networks in Control Engineering

REFERENCES

i......Dreyfus H.L and Dreyfus S.E., "KUNSTLICHE INTELLIGENZ - VON DEN GRENZEN
DER DENKMAS\CHINE UND DEM WERT DER INTUITION", orig. "MIND OVER MATTER",
New York, The Free Press, 1986.

2......Smolensky P., "CONNECTIONIST AI, SYMBOLIC AI, AND THE BRAIN",
Artificial Intelligence Review, 1987, pp. 95-109. '

3......Rosenblatt F., "PRINCIPLES OF NEURODYNAMICS: PERCEPTRONS AND THE THEORY
OF BRAIN MECHANISMS", Washington, DC: Sparta Books, 1962.

4......Minsky M., Seymour P., "PERCEPTRONS: AN INTRODUCTION TO COMPUTATIONAL
GEOMETRY", Cambridge, MA: MIT Press, 1969.

Se+....Grossberg S., "NONLINEAR NEURAL NETWORKS: PRINCIPLES, MECHANISMS, AND
ARCHITECTURES", Neural Networks, Vol. 1, 1988, pp. 17-61.

6......Lippmann R.P., "AN INTRODUCTION TO COMPUTING WITH NEURAL NETS", IEEE
ASSP Magazine, 1987, pp. 4-22.

7......Rumelhart D.E., McClelland J.L. and the PDP research group, "PARALLEL
DISTRIBUTED PROCESSING - EXPLORATION IN THE MICROSTRUCTURE OF
COGNITION, Volume 1: Foundations, ch. 1: The Appeal of PDP", Cambridge,
MA: MIT Press, 1986.

2. NEURAL NETWORKS FOR
PROCESS CONTROL

Due to the predominantly discrete nature of the first networks, most of the early
connectionist efforts looked at utilizing networks for pattern recognition and classification
problems, such as machine vision and speech analysis. The change to continuous
nonlinearities (e.g. the perceptron with sigmoidal transfer function) enabled a mathematical
analysis of the approximation or learning problem and led to several different formulations
of the so-called existence theorem. These proofs generally show that, provided the network
contains sufficient hidden nodes, it can approximate any mapping with any desired accuracy.

One of the earliest and better known of these theorems was not new, but rather a re-
phrasing of Kolmogorov’s 1957 solution to the 13th problem of Hilbert[1] by Hecht-Nielsen
[2]. Since the rediscovery of Kolmogorov there have been a host of other theorems [3], [4]
and today almost every neural network publication refers to one of them. The detail of a
more general version, as suggested by Kreinovich [5], is presented in Appendix I.

Once proven, the functional approximation capabilities of neural networks caused
considerable interest from many fields, such as process control where the modelling and
estimation of unknown and possibly nonlinear systems or functions forms an 1mportant part
of the design. :

This chapter provides an overview of recent attempts to utilize neural networks in the field
of control engineering. After this the choice of networks and topologies to be studied in the
remainder of this thesis is explained and motivated. Finally a set of requirements and
criteria for these networks is established.

2.1 NEURAL NETWORK APPLICATIONS IN PROCESS CONTROL

The fact that connectionist networks have been developed as mathematical models of the
human brain invokes expectations of unsupervised, self-organizing control structures with
human-like performance. However, until the principle for learning in the brain has been
fully understood and models of the size and capacity of. the human brain can both be
developed and managed (the human brain contains in excess of 10 billion neurons whilst
even large application artificial neural networks seldom contain more than a few hundred
units), such implementations will remain impractical and unreliable.

'..",Due to the above reason, most practical efforts towards the integration of artificial neural
.. networks into process control problems, implement the network in a well defined role in

Neural Netwerks in Control Engineering

order to exploit its nonlinear approximation and learning abilities, rather than attempting to

reproduce human-like controllers. This section provides an overview of such attempts to
incorporate neural networks as part of a control structure or algorithm. Due to the fast

changing nature and amount of neural network research, the discussion is not intended as

exhaustive, authoritive study of the field but rather as background for the remainder of this
thesis. '

Although each of the approaches described is essentially different, an attempt has been
made to group them into applications which:

Utilize a neural network as part of an adaptive mechanism, external to the control
loop. »

= Use a neural network in the position of the conventional controller.

» Include a forward or inverse neural network model in the control structure.

= Use a unique structure not fitting any of the above.

= Are very specific to the problem studied.

Since these categories are not mutually exclusive, some methods fit more than one
description and in such cases the dominant characteristic is used for classification.

2.1.1 NEURAL NETWORKS IN ADAPTIVE MECHANISMS

In these applications the neural network is not situated in the direct path of the control
loop, but forms part of an external adaptive mechanism. The network is usually used to
either switch or modulate the parameters of a fixed control law as illustrated in figure 2.1.

NEURAL NETWORK AS
PART OF ADAPTIVE MECHANISM

ti measurable system states
Hti:ix:i:; ‘Ogogz: < and / or outpuis
O

containing { .o,
i

K(s) - 6(s) Hx'
-»> @ | K) | e— s
Adjustable Unknown
- Controller System

Figure 2.1 - Adaptive Structure

Neural Net

Guez et al [6] for example, employ a neural estimator in a "model reference adaptive
control’ or MRAC configuration to modify the parameters of the controller depending on
the current basin of attraction in the optimization space. This is achieved by implementing

2. Neural Networks for Process Control

a Cohen-Grossberg type network which adjusts the feedback gains in the controller
according to the estimation of the unknown coefficients for a process of known dynamic
behavior. » e ¥ s e ay

In a more recent paper Kumar and Guez [7] propose the use of an adaptive resonance
theory (or ART-II) network to implement a pole placement algorithm. The network is
used as a nearest neighbor type classifier, which categorizes the underlying system using
preprocessed step response information. The network output is then utilized in the pole
placement algorithm to modify the controller parameters.

In a similar type of application Cooper et al [8] utilize a Kohonen type network to

- implement pattern based control, in which the gain of an existing control algorithm is
updated by analyzing disturbance patterns in the output of a controlled system. The
network is employed to classify the disturbance patterns as true load disturbances (which
warrant a change in the control law) and purely oscillatory disturbances (which should be
ignored). ‘

Another adaptive mechanism is proposed by Cheok and Smith [9], who suggest the
training of a network to recall the parameters of a number of discrete pre-designed
controllers as a function of one or more system parameters. Due to the interpolation
property of neural networks, the final adaptive mechanism should then provide one
smooth, continuous and adjustable control algorithm from all these controllers.

2.1.2 NEURAL NETWORKS IN PLACE OF CONVENTIONAL CONTROLLERS

Figure 2.2 depicts the control loop structure for the algorithms included in this subset. As
illustrated, the neural network occupies the place of the conventional controller and is an
- integral part of the feedback loop.

NEURAL NETWORK IN'
CONVENTIONAL CONTROLLER POSITION

" NN controlier Unknown éystem
X4 g -0 u | X,
*4- ® - < ——— G(=)

Figure 2.2 - NN Controller Structure

Neural Networks in Control Engineering

In the configuration shown, the network needs to be trained in such a way that it produces
the required input signal(s) u to ensure that the system output(s) ys reach(es) the desired
state yd. Since these required inputs are not known a priori for an unknown system, the
basic difference between algorithms included in this subsection is the method used to
generate or estimate an error signal to train the network. The approaches incorporated in
this category can therefore be further classified according to the type of training algorithm
and network used.

(a) Multilayer Perceptrons and Backpropagation

The main obstacle with this gradient descend algorithm (discussed in detail in chapter 3)

is that the error is only measurable at the system output and would have to be
backpropagated through the unknown system to allow updating of the neural network
weights during training. :

One possible method to overcome this problem is to train the network to emulate an
existing pre-designed control law. This approach, included in the discussions by Hampo
et al [10] and Karsai [11], might be considered where the existing controller is in fact a
person regulating the system or where the copied neural network provides a more cost-
efficient alternative than the existing system.

A similar approach was adopted by Kong and Kosko [12]. In their comparative study of a
fuzzy and neural network controller they use estimation and the outputs of the fuzzy
control law to generate the ideal network outputs during training.

Another possibility suggested by Hampo and Marko [10] is to generate the network
error, by utilizing the system output error in a cost function. Cramer and Womack [13]
take this approach one step further and use the sum of errors between desired and actual -
plant states, directly, to train the neural network controller.

In their study Cui and Shin [14] overcome the problem by extending the conventional
back propagation algorithm to allow training of the controller using the error between
desired and actual output(s). The approach is novel since only the direction of the plant
response is required as a priori knowledge.

Narendra et al [15] and Troudet et al [16] present a further alternative for training a
multilayer perceptron network in the controller position. They use an MRAC structure in
which a filter or reference model generates the desired closed system responses and
implement a pre-trained neural network model in place of the system during training.
This allows conventional error backpropagation through this ’system model’ to the neural
controller. '

-10-

2. Neural Networks for Process Comtml

The approach is also adopted by Nguyen and Wldrow [17] in thclr famous example of the
- truck backer-upper in which they first train a forward neural network model, which is then
- used to backpropagate the final position error to the controller network during training.

(b) Non-gradient Search Algorithms

. Hsuing et al [18] as well as Moore [19] avoid the problem of error backpropagation
~ through an unknown system by utilizing reinforcement learning as credit assignment

. algorithm for their multilayer perceptron networks. With reinforcement learning the,
search for the best parameters is guided by evaluating the effect of exploratory steps in
the weight space. Hsuing et al point out that although this optimization method is slower
than most gradient algorithms, it makes provision for a larger variety of objectives.

Similar non-gradient algorithm based approaches are discussed by Cotter et al [20] who

compare a biased search with simulated annealing for training a recursive network. Both -
of these approaches do not require the calculatlon of an error gradient and are therefore

suitable for this structure. ‘

- In another study, Anderson and Vemuri [21] use their chemotaxis search algorithm,
‘based on the movement of bacteria in a liquid with varying concentrations, to show that
neural networks can be trained to generate time-optimal control signals in an open loop

configuration. - |

(c) Genetic Algorithms -

‘Genetic algorithms present a further possible technique for training networks in the
conventional controller position. This optimization technique, based on the process of
evolution, uses concepts such as crossover mutation and inversion to develop offSpring
with a higher degree of ﬁmess as determined by some objectxve function, whlch selects‘
the parents :

In thelr paper Ichlkawa and Sawa [22] implement a modlﬂed version of this procedure to
train a feedforward neural network controller. The genetic approach is also adopted by
Wieland [23] in his study on the use of recurrent networks to control unstable systems.

-11-

Neural Networks in Control Engineering

2.1.3 CONTROL STRUCTURES CONTAINING FORWARD OR INVERSE NEURAL
NETWORK MODELS

Approaches included in this subsection differ from those discussed previously, in that they
utilize a neural network model of the forward or inverse plant characteristic as part of the
control structure. ‘

A frequently used method of this type is to train a network to estimate the inverse of the
plant characteristic. In other words, the network would be exercised to reproduce the
input(s) from the resulting system output(s). Once trained such a network forms the ideal
control law since it predicts the required inputs for the system to generate the desired
outputs.

In one of the earlier studies regarding the use of neural networks in control engineering,
Psaltis et al [24] investigate this option. Their investigation focuses on several possible
inverse system training architectures which have since been adopted in other investigations

[25].

The concept of an inverse neural network model has also been adopted in an open loop
control structure in several other studies. Typical examples are the work of Steck et al [26]
on distillation columns as well as Levin et al [27] who investigate the use of a delayed-
input delayed-state network in this configuration.

A control structure, including a direct neural network model of the system, is presented by

Willis et al [28], [29]. They suggest the use of a neural network model to predict future
outputs for a DMC-like optimization technique, which determines future inputs to

minimize the deviations between neural network predicted and desired system outputs.’

In their attempts, Hoskins et al [30] also implement a-direct model of the system, together
with an iterative inversion algorithm, to generate the required control signals.

Another control structure containing a neural network to estimate part of a forward
model, is suggested by Spall and Cristion [31]. They examine the use of a stochastic,
approximation technique based on simultaneous perturbation, rather than gradient
estimation, to estimate the unknown component of the transfer function in order to
implement an adaptive control law. '

Cui and Shin [32] also utilize a forward neural network predictor in their multi-system
coordinator, which uses the output of the model to synchronize the interaction between
several linked systems, such as two robot arms holding one object.

The configuration proposed by Wu et al {33] contains both a forward and inverse model in
the control loop and uses the former to allow backpropagation training of the inverse or
controller network. The difference between this and similar approaches discussed earlier,
is that both models remain in the system and are trained on-line.

-12-

2. Neural Networks for Process Control

In their employment of neural networks in an internal model control (IMO) framework,
" Hunt and Sbarbaro [25] suggest yet anothér striicture contammg both a forward and an
inverse model.

2.1.4 OTHER TOPOLOGIES

" This section includes attempts in which the suggested control structure does not fit into
any of the above classifications.

- The integration of several neural networks into one control structure has been the topic of
several research studies. Narendra and Mukhopadhyay [34] for example, suggest the use of
a two level neural network based controller, where the higher level detects the current
plant configuration and activates the required lower level control law. In another study
Narenda and Levin [35] show that a multiple-network approach might be superior for the
regulation of nonlinear dynamic systems with multiple equilibrium states.

Another multi-network approach is suggested by Jacobs and Jordan [36], who use a garing
network to mediate the competition between several expert networks (which learn the
training patterns) in a gain scheduling methodology. :

The idea of several control surfaces is also supported by Barto et al [37], who suggest the
use of a layered associative network to transform a nonlinear control problem mto a
presentation which can then be solved linearly.

An entirely different control structure is described in the work by Iiguni et al [38] in which
the integration of neural networks into the classical linear optimal regulator structure is
investigated. The networks are included to overcome the slight discrepancies and
uncertainties between the actual system and the model used to develop the optimal
control law.

Moore and Naidu [39] present yet another alternative by showing that a finite-horizon
linear quadratic regulator problem can be transformed into a nonlinear programming
problem, which can then.be solved by a Hopfield type neural network.

A further novel approach is suggested by Berenji [40]. He suggests an integration of fuzzy
systems and neural networks, to allow the storage of a priori knowledge, whilst retaining
the capability to learn and discusses the suitability of the new model for several space
apphcatmns '

- The WOrk by Sznaier and Damborg [41] shows another dimension of utilizing neural
networks in process control. They exploit the speed of an analog neural network circuit to
perform on-line optimization for constrained linear systems.

-13- .

Neural Networks in Coatrol Engineering

2.1.5 PROBLEM SPECIFIC APPROACHES

Approaches included in this subsection are very particular to the problem studied and
therefore not applicable to other control problems, without modification.

Examples of studies which are restricted to systems with a certain structure are the work of
Chen [42] as well as Guez et al [43]. Both studies restrict themselves to a certain transfer
function format and are hence only applicable to a small subset of control problems.

Other investigations are completely specific to the system under investigation. Typical

examples in this group are the CMAC network for biped walking by Miller et al [44]; a
visual servo system which learns to move the manipulator into the correct position to grab -
an object by Hashimoto et al [45]; vibration cancellation by Bozich and MacKay [46] and

the application of a neural network in a military flight control system by Steinberg and

DiGirolamo [47]. '

Of the many applications presented in the previous sections, only a subset are suitable for a -
generic neural network controller. The selection of the topologies investigated in this study,
is motivated in the following section, which also introduces a set of criteria and
requirements for the type of neural network to be used in these approaches.

2.2 CHOICE OF CONTROL TOPOLOGIES AND NETWORK REQUIREMENTS

Although the list of possible implementations, presented in the previous section, contains
many promising and novel possibilities, the remainder of this study will be concentrated on
applications containing direct and inverse neural network models.

There are two reasons for this focus:

« Firstly, the creation of valid and accurate models of dynamic systems is in itself an
important area within the field of process control. Using the model based approach
allows an examination of the suitability of neural networks as dynamic models.

» Secondly, the model based topologies (examined later in chapter 5) are based on
well known control structures and laws, the mathematical validity of which has been

- established even for nonlinear systems This is not the case for many of thé other-
approaches.

The selection of model based control structures affects the choice of neural network
topologies and training algorithms. In the remainder of this section certain preferences for
the networks to be investigated are explained and a set of requirements for neural network
based dynamic models is established.

-14-

2. Neural Networks for Process Control

2.2.1 DISCRETE OR CONTINUOUS NETWORKS

sipoeil TR

P mgE Il

ey
%

~ Although the continuous nature of the systems to be modelled calls for networks with
continuous outputs, it is possible to implement a discrete input/output network with
analog-to-digital and digital-to-analog converters as depicted in figure 2.3. An additional
hamming network may also be included between the network outputs and D/A, in order
to force the output vector into the nearest of the corners in the n-dimensional output space
hypercube, before reconverting. "

TOPOLOGY FOR DISCRETE NETWORK
AS ANALOG MODEL
(assuming 2 inputs, 1 output and 8 bit resolution)

input hidden output
layer layer(s) layer

- 0
- 0
-_— OE* saenes
=P | A/D | =8
, = 8 é 8 -
analog \—J =—O = g -
inputs ~— o U g o— D/A #
’ =9 = = an:logt
— 0L ... Q — outipu
— (40| =8 = P
=0 ' discrete
‘ - outputs
./ =— 0O
discrete
inputs

. Figure 2.3 - Discrete NN Model

Such an arrangement is favoured by the fact that most modern control loops contain a

digital computer, in which the continuous signals do already exist as digitized numbers. A
further advantage of the depicted arrangement is the possibility of utilizing typical
classification networks (such as Grossberg’s ART and ART-II), otherwise not suitable for
these applications. '

The use of discrete networks also entails certain disadvantages. Both the network size and
input/output dimensionality is much higher than for continuous. networks. Assuming
common twelve bit resolution for the converters, a two-input single-output continuous
network for example, would result in a twentyfour-input, twelve-output discrete network.
A further disadvantage of the discrete implementation is the importarce or weight
associated with the higher order bits in a digital representation. This importance, together
with the fact that the output of each discrete node is interpreted to be in either one of only
two states, makes errors in these higher order output bits both likely and costly. For these
reasons, it was decided to concentrate this study on continuous output networks.

-15-

Neural Networks in Control Engineering

2.2.2 LEARNING AND TRAINING REQUIREMENTS FOR NEURAL NETWORK
MODELS

Since the networks investigated in this study are to model the forward or inverse
characteristics of a dynamic system, they are trained in supervised mode. This method of
training is performed by presenting the network with an input vector, to which the desired
output is known, and then adjusting the network parameters to minimize the dlfference

between network and desired response.

For the models of a dynamic system these input/desired output pairs are actual sampies of
the systems input(s) and output(s), which have to be collected during operation. Assuming
that it is possible to collect sufficient data from the system initially, the network models
could be trained off-line prior to their implementation in the control loop.

Such an initial collection of data is not unique to this method since most conventional
controller design methods require an initial identification process, where a mathematical
model is either derived from, or validated against, actual process data.

Since the model has to be representative for the entire operating space of the process, it is
essential that the collection of system data includes sufficient samples from all regions
within this space. Adequate coverage of the operating space can however only be
achieved, if the system input is perturbed in a sufficiently turbulent manner. Such harsh
regulation of the input variables is in most cases unacceptable both for the equipment
involved, as well as the underlying process. Hence, a more controlled method consisting of
a set of regulated step changes in the system input(s), to observe their effect on the
output(s), is generally employed.

Figure 2.4 below shows a typical set of such step perturbations for a laboratory sjrstem, in
which the level in a tank with constant inflow is regulated both above and below an
overflow pipe, using an automatic control valve in the tank’s outlet.

TrRout TNy TGt UKy T TRt TRy Trwat 1KY
pe o4 4 O 004
ooh : 3 B804 04
(=2 PO & D

-r4 -4 A0 “ a0
204 20 m—l 20}

ol thou to3ll o] [Tros7e 1| e S v tasfl] $gom Ta3
oo r-—sr—w T Lo . A—
1004 100 oo hood
.0 wo S —— .04 - L
oo o) - -

-cr4 L 4 i
Y 20 S 204
o b3 Lo 3.3} ol 2ine Ea3 - Lirwm Eta) o Qsm LX)
Fw — Ww
N TN o] - o) W heound Lo
ooy o { o
-]) R o
m-—j 20 0
e I . . S | - o | Wi . L —
W s o —— —. —
ool l4:00: 1o o0
L . WS -
oo} o .o -
-0 o P s
m_______,_._-—-—"—"‘-'—-* 204 =N =m
o - Tjem o o tina Ea) v thows L6) o 2ive 63
-] om— | — - — ﬁ______.—___m_."u"w'h* _Wm._.___—”‘”‘“ﬂ _m

Figure 2.4 - Step Test Results

It is important to note that the range of perturbations chosen for the above set of steptests
covers almost the entire input space for the process. Such generous steps are generally not

-16-

W R Y T i e B

2. Neural Networks for Process Control

‘ >perm1s51ble in an industrial environment, where mputs usually have to remain within a few
il o e\ 1 B
percent of their normal operating ranges." '

L

Although the above set of steptest results would be more than sufficient to develop a
linear model for the system, this is not necessarily true for a neural network model.
Figure 2.5 shows the distribution of the collected samples in a normalized input space
(assuming a first order model i.e. y[n+1] = f(u[n],y[n])) and illustrates that the distribution
of samples is very localized in spite of these liberal input perturbations.

STEP TESTS - MODEL INPUT SPACE

i ares mot
i covared
tr-ln(m ut

Figure 2.5 - 1nput Space

As expected the samples are confined to narrow bands of constant input values and the
space includes many areas with few or no data points. This poor distribution of samples,
even in an laboratory environment, highlights a number of learning and training
requirements for neural network models of dynamic systems.

(a) Generalization Capability (Interpolation and Extrapolation)

" The training of neural network models for dynamic systems has to be performed using |
discrete data points collected from the system to be modelled.

As shown, the number of training samples is generally limited and often local in nature
(i.e. due to practical constraints the training data only covers certain regions of the
system’s operating sufficiently). The ability of the network to interpolate between these
discrete points and localized regions, as well as to extrapolate into the areas with few or
no training samples, is therefore one of the 1mportant requirements for neural network
models.

-17-

Neural Networks in Control Engineering

_ (b) On-line or Off-line Training

The previous example illustrates that although theoretically possible, the collection of
sufficient training data for off-line training prior to using the network, is not feasible in
practice. '

Due to the localized and scattered nature of the training data, even a network with
excellent interpolation and extrapolation capability can not be trained to sufficient
accuracy using only sampled system data. This is particularly true for regions in the
operating space, which the system may never enter in an open-loop configuration, but
might be forced into, in a demanding closed-loop configuration. Such regions would
consequently not be covered adequately in the sampled data and only an on-line training
algorithm could ensure an accurate model.

On-line training of neural network models, incorporated in control structures, is also °
attractive as it facilitates compensation for slow time-varying processes. In other words,
on-line training ensures that the control system will remain optimal even for changing
processes (such as chemical reactions involving catalysts), provided that the system
change is slow in comparison to the network learning rate.

This requirement, of training the network models in an on-line configuration, favours
certain types of training philosophies as discussed in the following subsection.

(c) Pattern Learning or Batch Learning

Much of the early and current neural network research looks at classification problems,
where a sufficiently large and representative 'set of training data is available.
Consequently, many of the training algorithms utilize the entire training set during

~ learning and evaluate the error over all samples between each weight update. These

- barch-learning algorithms are not suited for on-line training, since some method of
managing the training set would be required to prevent uncontrollable sizes.

Pattern-learning algorithms on the other hand, use only the current input/output pair to
determine the error and weight changes and are therefore preferable for on-line training.

(d) Storing and Extracting Knowledge

The motivation for employing a non-parametric modelling technique, such as a neural
network, is usually that the underlying system is unknown and difficult to capture or
describe, using more conventional methods.

In spite of this, the designer often has somé knowledge of the process behavior.
Capturing this information prior to training would be beneficial for both, the speed of
learning as well as interpolation and extrapolation into regions not covered by training
data. ' L |

-18-

,‘ 2. Neural Networks for Process Coatrol

- Similarly, the extraction of knowledgehfrom -a_network. can be useful for judging the
training performance, identifying areas with’ insufficient tralmng data, assessing the
_network topology and size, obtaining information about the modelled process and
integrating neural networks with other methods such as fuzzy logic. |

-

~ (e) Computational Effort

Since the neural network forward and/or inverse model are to be implemented as part of
the control structure and are to be trained on-line, both the network output and training
“algorithms have 'to be such, that they can be carried out between successive samples

without comprom1s1ng the quality of the control loop.

(f) Ease of Use

One of the motivations for integrating neural networks into control structures is that
these networks are self-adjusting and learning. Such new control structures can only be
considered viable alternatives to existing algorithms, if they are easy to apply. The
network initialization and training should therefore not require any in-depth knowledge
or understanding of neural network theory,.

The preceding discussion and other network or algorithmic specific criteria are used to
evaluate the suitability of a number of neural network structures and training algorithms in
chapters 3and 4.

REFERENCES

loveess Kolmogorov A.N., "ON THE REPRESENTATION OF CONTINUOUS FUNCTIONS OF MANY
' VARIABLES BY SUPERPOSITION OF CONTINUOUS FUNCTIONS OF ONE VARIABLE AND
ADDITION", Dokl. Akad. Nauk USSR, 114, 1957, pp. 935-956.

2......Hecht-Nielsen R., "KOLMOGOROV 'S MAPPING NEURAL NETWORK EXISTENCE
_"THEOREM", 1IEEE International Conference on Neural Networks 1987,
pp. III1l1-III14. . ' '

i PN Hornik K., Stinchcombe M. and White H., "MULTILAYER FEEDFORWARD

NETWORKS ARE UNIVERSAL APPROXIMATORS", Neural Networks, Vol. 2, 1989,

pp. 359-366.

-19-

Neural Networks in Control Engineering

4......Cybenko G., "APPROXIMATION BY SUPERPOSITION OF A SIGMOIDAL FUNCTION",
Mathematics of Control, Signals, and Systems, Vol. 2, 1989, pp. 303-
314. '

5......Kreinovich V. Y., "ARBITRARY NONLINEARITY IS SUFFICIENT TO REPRESENT

ALL FUNCTIONS BY NEURAL NETWORKS: A THEOREM", Neural Networks, Vol. 4,
1991, pp. 381-383.

6......6uez A., Eilbert J.L. and Kam M., "NEURAL NETWORK ARCHITECITURE FOR
CONTROL", 1EEE Control Systems Magazine, April 1988, pp. 23-25.

7+¢e.+.-.Kumar S8.S. and Guez A., "ART BASED ADAPTIVE POLE PLACEMENT FOR
NEUROCONTROLLERS", Neural Networks, Vol. 4, 1991, pp. 319~33S.

8......C00per D.J., Megan L. and Hinde R.F., "A NEURAL PATTERN ANALYZER FOR
ADAPTIVE PROCESS CONTROL", ACC 1991, pp. 2794-2799.

eeenne Chedk K.C. and Smith J.C., "ADAPTIVE NEURAL NETWORK CONTROL WITH
FREQUENCY-SHAPED OPTIMAL QUTPUT - FEEDBACK", International Joint
Conference on ileural Networks 1991, pp. I11741-I1746.

10.....Hampo R. and Marko K., "NEURAL NETWORK ARCHITECTURES FOR ACTIVE
SUSPENSION CONTROL", IJCNN 1991, pp. II765-11770.

1l.....Karsai G., "LEARNING TO CONTROL: SOME PRACTICAL EXPERIMENTS WITH NEURAL
NETWORKS", IJCNN 1991, pp. II701-II707.

12.....Kong 8.G. and Kosko B., “"ADAPTIVE FUZZY SYSTEMS FOR BACKING UP A TRUCK-
AND-TRAILER", IEEE Transactions on Neural Networks, Vol. 3, No. 2,
pp. 211-223, 1992.

13.....Cramer J.E. and Womack B.F., "ADAPTIVE CONTROL USING NEURAL NETWORKS",
ACC 1991, pp. 681-686.

14.....Cui X. and Shin K.G., "DESIGN OF AN INDUSTRIAL PROCESS CONTROLLER USING
NEURAL NETWORKS", ACC 1991, pp. 508~513.

15.....Narendra K.S. and Parthasarathy K., "IDENTIFICATION AND CONTROL OF
DYNAMICAL SYSTEMS USING NEURAL NETWORKS", 1EEE Transactions on Neural
Networks, Vol. 1, No. 1, 1990, pp. 4-27.

16.....Troudet T., Garg S., Mattern D. and Merril W., "TOWARDS PRACTICAL
CONTROL DESIGN USING NEURAL COMPUTATION", IJCNN 1991, pp. I11675~11681.

17.....Nguyen H. and Widrow B., "NEURAL NETWORKS FOR SELF~-LEARNING CONTROL
SYSTEKS“, IEEE Control Systems Magazine, April 1990, pp. 18-23.

18.....Hsuing J.T. and Himmelblau D.M., "DEVELOPMENT OF CONTROL STRATEGIES VIA
ARTIFICIAL NEURAL NETWORKS AND REINFORCEMENT LEARNING", ACC 1991,
pp. 2326-2330.

19.....Moore K.L., "A REINFORCEMENT-LEARNING NEURAL NETWORK FOR THE CONTROL OF
NONLINEAR SYSTEMS", ACC 1991, pp. 21-22.

-20-

’

2. Neural Networks for Process Control

- 20.....Cotter N.E., Guillerm T.M., Soller J.B. and Conwell P.R, "PREJUDICIAL
SEARCHES AND THE POLE BALANCER" IJCNN 1991, pp. 11689 ~I11694.

‘kce r"m‘ ' Y
o

21.....Anderaon R.W. and Vemuri V., “NEURAL NETWORKS CAN BE USED FOR OPEN~
LOOP, DYNAMICAL CONTROL*™, preprint, to appear in International Journal
of Neural Networks, 1991. ‘

22.....Ichikawa ;Y‘ and Sawa T., "NEURAL NETWORK APPLICATION FOR DIRECT
FEEDBACK CONTROLLERS", 1EEE Transactions on Neural Networks, Vol. 3,
No. 2, March 1992, pp. 224- 231.

,23....,wieland A.P., "EVOLVING NEURAL NETWORK‘ CONTROLLERS FOR UNSTABLE
SYSTEMS", IJCNN 1991, pp. 1I667-II673.

24.;...Paa1tis D., ©Sideris A. and Yamamura A., "NEURAL CONTROLLERS",
International Conference on Neural Networks 1987, pp. IV551-1IVS558.

25.....Hunt K.J. and Sbarbaro D., "NEURAL NETWORKS FOR NONLINEAR INTERNAL
" MODEL CONTROL", 1EE Proceedings-D, Vol. 138, No. 5, 1991, pp. 431-438.

26.....Steck J., Krishnamurthy K., McMillin B.‘ and Leiniger G., "NEURAL
MODELING AND CONTROL OF A DISTILLATION COLUMN", IJCNN 1992, pp. 11771~
11774. ‘ '

27.....Levin E., Gewirtzman R. and Inbar G.F., "NEURAL NETWORK ARCHITECTURE
FOR ADAPTIVE SYSTEM MODELING AND CONTROL", Neural Nétworka, vol. 4,
1991, pp. 185~191." ' '

28.....Willis M.J., Di Massimo C., Montague G.A., Tham M.T. and Morris A.J.,
"ARTIFICIAL NEURAL NETWORKS IN PROCESS ENGINEERING", lEE PrOceedings-D,
Vol. 138, No. 3, 1991, pp. 256-266.

29.....Willis M.J., Di Massimo C., Montague G.A., Tham M.T. and Morris A.J.,
"NON-LINEAR PREDICTIVE CONTROL USING OPTIMIZATION TECSNIQUES”, ACC
1992, pp. 2788-2793, '

" 30.....Boskins D.A., Bwang J.N. and Vagners, "ITERATIVB INVERSION OF NEURAL
NETWORKS AND ITS APPLICATION TO ADAPTIVE CONTROL” IEEE Transactions on
Neural Networks, Veol. 3, No. 2, 1992, pp. 292~ 301.

31.....8pall J.C. and Cristion J.A., "EFFICIENT WEIGHT ESTIMATION IN NEURAL
NETWORKS FOR ADAPTIVE CONTROL", ACC 1991, pp. 16-20.

32.....Cul X. and Shin K.G., "INTELLIGENT COORDINATION OF MULTIPLE SYSTEMS
'WITH NEURAL NETWORKS“, ACC 1991, pp. 481~486.

33.;.g.Wu Q.H., Hogg B.W. and Irwin G.W., "A NEURAL NETWORK REGULATOR FOR
TURBOGENERATORS", IEEE Transactions on Neural Networks, Vol. 3, No. 1,
1992, pp. 95-100. : : :

34.....Narendra K.s. and Mukhopadhyay S., "INTELLIGENT CONTROL USING NEURAL
- NETWORKS™, ACC 1991, pp. 1069~1074. : ‘

35.....Narendra K.S. and Levin A.U., "REGULATION OF NONLINEAR DYNAMICAL
SYSTEMS USING MULTIPLE NEURAL‘NETWORKS", ACC 1991, pp. 1699—1614.

-21-

Neural Networks in Control Engineering

36.....Jacobs R.A. and Jordan M.I1., "A MODULAR CONNECTIONIST ARCHITECTURE FOR
LEARNING PIECEWISE CONTROL STRATEGIES", RACC 1991, pp. 1597-1602.

37.....Barto A.G., Anderson C.W. and Sutton R.S., "SYNTHESIS OF NONLINEAR
CONTROL SURFACES BY A LAYERED ASSOCIATIVE SEARCH NETWORK", Biological
Cybernetics, 43, 1982, pp. 175-185.

38.....Iiguni Y., Sakai H. and Tokumaru H., "A NONLINEAR REGULATOR DESIGN IN
THE PRESENCE OF SYSTEM UNCERTAINTIES USING ﬂULTILAYBRED NEURAL

NETWORKS", I1EEE Transactions on Neural Networks, Vol. 2, No. - 1991,
pp. 410-417.

39.....Moore K.L. and Naidu S., "LINEAR QUADRATIC REGULATION USING NEURAL
NETWORKS", IJCNN 1991, pp. II735-I1739.

40.....Berenji H.R., "ARTIFICIAL NEURAL NETWORKS AND APPROXIMATE REASONING FOR
INTELLIGENT CONTROL IN SPACE", ACC 1991, pp. 1075-1080.

41.....82znaier M. and Damborg M.J., "AN ANALOG "NEURAL NET" BASED SUBOPTIMAL
CONTROLLER FOR CONSTRAINED DISCRETE-TIME LINEAR SYSTEMS", Automatica,
Vol. 28, No. 1, 1992, pp. 139-144.

42.....Chen F.C., "BACK-PROPAGATION NEURAL NETWORKS FOR NONLINEAR SELF-TUNING
ADAPTIVE CONTROL", I1EEE Control Systems Magazine, April 1990, pp. 44~
47. .

43.....Guez A. and Piovoso M., "CUSTOM NEUROCONTROLLER FOR A TIME DELAY
°~ PROCESS", ACC 1991, pp. 1592~1596.

44,.....Miller W.T., Latham P.J. and Scalera S.M., "BIPEDAL GAIT ADAPTION FOR
WALKING WITH DYNAMIC BALANCE”, ACC 1991, pp. 1603-1608.

45.....Hashimoto H., Kubota T., Kudou M. and Harashima F., "SELF-ORGANIZING
VISUAL SERVO SYSTEM BASED ON NEURAL NETWORKS", ACC 1991, pp. 2262-2267.

46.....Bozich D.J. and MacKay H.B., "VIBRATION CANCELLATION AT MULTIPLE
‘LOCATIONS USING NEUROCONTROLLERS WITH REAL—TIME LEARNING” IJCNN 1991,
pp- I1775-117840. ‘

47.....Steinberg M. and DiGirolamo R., "APPLYING NEURAL NETWORK TECHNOLOGY TO
FUTURE GENERATION MILITARY FLIGHT CONTROL SYSTEMS", presented at IJCNN
. 1991. ' : '

-22-

3. FEEDFORWARD NETWORKS

In the prevmus chapter the framework for the remainder of this study was established and a
~ set of requirements for neural networks to be used as forward or inverse models of dynamic
- models was derived. These requirements and other criteria are used in this chapter to
evaluate the suitability of feedforward networks.

" 3.1 GENERAL TOPOLOGY -

The general topology of feedforward neural networks is depicted in ﬁgure 3.1 below.

FEEDFORWARD TOPOLOGY

input 1st hidden nth hidden output
layer layer _layer

external network
_ inputs ’ outputs

 Figure 3.1 - Topology of Feedforward Networks

As shown, these networks consist of an input layer, one or more hidden layers and an output
layer, each consisting of one or more nodes. The nodes in the input layer usually perform no
processing and just serve to redistribute the external inputs to the first hidden layer, via a set
of connection weights (Wini1). At each of the hidden nodes the scaled inputs are then
- processed (e.g. summed or multiplied) before they are passed through an activation
function, to form the outputs of that layer. These outputs are then re-scaled before they
become the inputs of the next hidden or output layer. The nodes in the final or output layer
again collect all their inputs scaled via Wnao and produce the network’s output vector by
- passing these scalars through an actwatlon function. :

-23-

Neural Networks in Control Engineering

Feedforward networks derive their name from the fact that the outputs of each layer only
feed into the next layer and not to nodes within the same or previous layers. In other words
the network generates an output vector by propagating the input vector, in a forward
direction, until it appears at the network outputs.

Learning or optimization of such a structure consists of adjusting the weights associated
with the connections between layers, as well as other activation function particular
parameters, in order to minimize the error between desired and network outputs for all
training data samples.

Networks of the feedforward type are further classified according to the type of activation
function used, the number of hidden layers utilized and the kind of training algorithm
employed. In the following two subsections multilayer perceptrons and radial basis function
feedforward networks are examined in detail.

3.2 MULTILAYER PERCEPTRON

This type of network, with its origin in some of the earliest work performed in the field [1],
was made famous by Rumelhart and McClelland {2] and is today probably the most well
known and most often applied neural network.

3.2.1 TOPOLOGY

Figure 3.2 depicts the topology of the multilayer perceptrons investigated in this study.

MULTILAYER PERCEPTRON

network - network
inputs outputs
*
*
»
input -
layer

linear

sigmoidal output units
hidden units

Figure 3.2 - Multilayer Perceptron Topology

-24-

3. Feedforward Networks

As shown, the network uses a single hidden, layer and. employs a logistic type actlvatlon
function in its hidden nodes. Both choices are explained in detail below

In the remainder of this subsection multilayer perceptrons, of the topology shown, will be
denoted as I-m-n networks, where 1, m and n present the number of nodes in the input,
hidden and output layers respectlvely

Although many multllaye_r perceptron studies include a node with constant output in their
hidden layer to compensate for any dc offset, it was found that the inflexibility of such a
constant node limits the training rates achievable before instability. Using one of the
standard hidden nodes- to learn any constant offset 1nstead allows higher learning rates
and accelerates the training process.

(a) Number of Hidden Layers

As indicated in the general topology in figure 3.1, feedforward networks (and hence
multilayer perceptrons) can have any number of h1dden layers.

In’spite of the fact that networks with sufficient nodes in a smgle hidden layer have been
proven capable of approximating any continuous function with any desired accuracy [3],
many applications (in particular classification problems) still use two-hidden layer
networks. The motivation for the two-layer topology is that the first layer is expected to
perform some pre-processing on the raw data, before presenting it in a more manageable
format for the second hidden layer, to complete the classification or identification task.

In a recent paper comparing single and two-hidden layer networks for classification
problems however, de Villiers and Barnard [4] conclude that:

= there is no statistically significant difference between the optimal performance of the
two networks '
= single-hidden layer networks do better classification on average

= two-hidden layer networks are more prone to the local minima problem during
training.

According to the research, the use of more than one hidden layer thus offers no
advantages. Consequently, only single-hidden layer perceptrons are investigated in this
study.

-25-

Neural Networks in Control Eagineering

(b) Type of Activation Function

Figure 3.3 depicts the logistic activation function (suggested by Rumelhart and
McClelland) employed in the hidden nodes for all multilayer perceptrons used in this
evaluation.

The sigmoidal shape of the function ...&QQIﬁT.l.C..QQI.I.‘.J.’?'.T.I.QN..EQNQII.Q’.\‘.......:]

highlights its origin as a continuous
alternative for the hard-limiter in the
pattern classification field, where the
output of each unit is- expected to be
either on or off. For such classification
applications, where the output of each
node is trained to be in either of the two
binary states, other similarly shaped
functions, with larger derivatives, have

0-S+—g =3] % 5

been shown to produce faster learning
rates for gradient descent training Figure 3.3 - Sigmqidal Activation
algorithms [s]. Since the nonlinear Function

portions of the sigmoid, rather than its
saturated regions, are used in -function approximation problems, the above accelerated
shifting is not desirable. In their Taylor series analysis of the approximation property of
neural networks, Wray and Green [6] also suggest that for approximation applications,
different activation functions only vary the way individual weights contribute to the
_coefficients in the polynomial series representation.

The above function is furthermore attractive since the ability of approximating any
continuous function by superpositions of a sigmoidal function has been proven
mathematically [7] and since its derivative can be evaluated in a convenient closed form

for gradient descent training, as shown in the following subsection.

3.2.2 TRAINING ALGORITHMS

As with all networks, training a multilayer perceptron consists of finding a set of
connection weights and other activation function specific parameters, such that the error
between desired and actual outputs is sufficiently small for all mputfoutput pairs used
during training.

Training is therefore an n-dimensional, non-linear optimization problem where n presents
the number of unknown network parameters to be determined.

Since the mathematical format of the underlying function and hence also the error surface

is unknown, the optimization has to be performed using numerical search or optimization
algorithms which rely solely on the evaluation of this function. Due to the absence of one
guaranteed numerical solution to optimization problems of this nature, there have been’

-26-

J.RmMHWMdewmh

many different attempts using widely dlffenng algonthms All these algorithms perform a
search and can usually be classified as either gradlent descent or directed search methods.
‘Whilst the former employ an estimation of the error function gradient to direct their
search the latter are usually guided by modelling some physical or biological optimization
process, such as the cooling of a metal or the movement of bacteria in a 11qu1d

(a) Gradient Descent Search Algorithms

As mentioned previously, algorithms of this type direct their search along the actual or
approximated gradient of the error or cost function. 'Backpropagation or the generalized
delta rule, popularized by Rumelhart et al [2] is currently the most well known and most
applied supervised neural network training algorithm.

The foilowing equations summarize both the forward and backpropagation rules for a
" multilayer perceptron. A detalled mathematical treatment of the algorithm can be found
in [2].

Writing the equations governing the forward propagation for each node in the
network as follows,. .

*pj = F(¥ijopi)

= f(xpjl)

°pj |
where - j - the layer of this node
i - the previous layer
Xpy ~ the input to node j for pattern p
f() - the activation function

Opj ~ the output of node j-for pattern p

Wiy - the weights connecting the outputs of the previous
layer to this node

0 - an activation function dependent parameter

the change in weight according to the generalized delta rule is given by

ApWij = 18 pj0 pj

with ‘ .
Bpj = (tpj = opy)f'(xpy) if j is a node in the output layer
" where tpj is the target output for pattern p
and - ‘ ' ’
v 5pj = f’(xpj)i(apk"k? for a node Lt a hidden layet

Since this initial format, there have been many attempts at improving the above or
finding better gradient training algorithms. Most of these efforts aim to accelerate the
learning rate using methods such as the inclusion of second order derivatives [8][9], re-
scaling. of .variables during training [10][11][12], or adding other features to the algorithm

[13][24][15][16].

-27-

Neural Networks in Countrel Eagineering

Due to the need to estimate the gradient, all these algorithms do restrict the choice of

network topology and type of activation function. This limitation, together with the fact
that the generalized delta rule, or any other gradient descent algorithm, are unlikely

candidates for biological learning in the brain, inspired some researchers to look for non-
gradient methods.

(b) Directed Search Algorithms

These methods usually model a physical or biological optimization process in their search
for the optimal set of network parameters. The chemotaxis and simulated annealing
methods included below, provide some insight into this type of algorithm. It should be
noted that, although these methods are presented as alternatives for backpropagation,
they are not restricted to multilayer perceptrons and feedforward networks, since they do
not assume a fixed network topology or activation function.

(i) Chemotaxis

This optimization method, developed by Bremermann and Anderson [17] and [18],
resembles bacterial movement in a medium with varying concentration of
chemoattractants. In such a medium, bacteria generate random directions until they

detect an increase in concentration. Movement along that direction is then sustained

until there is no more increase, at which stage they stop and repeat their search for a new

direction.

For optimization purposes, the algorithm thus implements intermittent random searches
with sustained movements along declining slopes, once found.

The actual steps of computation for the chemotaxis algorithm are shown below.

1. Initialize all network parameters to small random values.

2. Present all p input patterns ip and calculate the corresponding output
patterns Op-

3. Determine the ‘energy’ (error) of the objective function Ey over the
whole data set.

k
- typically Ej = EE(tk - ok)2 . where : ty are target outputs
: oy are network outputs
k is the number of outputs
p is the number of training
samples
4. Generate random weight adjustment vector Aw
from Gaussian distribution with mean u=0 and std. deviation g=1.

5. Increment weights with random vector
i.e. W = w + HAw where H is an adjustable step size.

-28-

3. Feedforward Networks

6. Calculate energy E; with new set of weights.

7. If Eq <AE1 then
retain the modified steps
set E1 to Ej
go to step 5
if E5 > E; then
retain the old weights
go to step 4

During these iterations the stepsize H can be increased if successive moves
along the same direction yield better energy values or decreased if several
attempts do not produce a better set of weights.

As the above equations show, the algorithm does not implement any gradient estimation
and is therefore completely independent of the network topology and choice of activation
functions. This flexibility was exploited by Willis et al [19] to include adjustable first
order responses for each node in a multilayer perceptron, a modification not easily
possible with backpropagation.

(ii) Simulated Annealing

This training algorithm, based on the work of Kirkpatrick [20] and used extensively by
Hopfield and Tank [21] is an analogy to the way metals cool and anneal to a state of
minimal internal energy.

As with the chemotaxis algorithm, the weights are adjusted by a random amount between
each evaluation of the cost or energy function. Whilst only steps which reduce the overall
energy (error) are implemented in the chemotaxis algorithm however, the simulated
annealing method sometimes allows parameter variations which increase the error,
depending on the temperature of the system. This is achieved by using the so-called -
Boltzmann probability distribution, to ensure that parameter changes resulting in a lower
state of energy are always followed, whilst those resultmg in a higher error might occur at
high enough temperatures. This facility of temporarily moving to a state of higher energy
provides the system with the flexibility to escape local minima and move to another basin
of attraction, provided that the temperature is sufficiently high to allow such a change.

‘A general descnptlon of the equations governmg the simulated anneahng algcnthm are
, shown below.

1. Initialize all network parameters to small random values.

2. Present all p input patterns ip and calculate the corresponding output
patterns op. : ' ~ :

3. Determine the ‘energy’ (error) of the objective function Ej over the -
whole data set. ' ‘ ‘ : ‘ ’

L .29.

Neural Networks in Control Engineering

B 2 ,

- . typically Bq = E(ty - ox) where : t) are target outputs
oy are network outputs
k is the number of outputs
p is the number of training

samples
4. Generate random weight adjustment vector Aw
from Gaussian distribution with mean u=0 and std. deviation ¢=1.

5. Increment weights with random vector
i.e. w = w + HAw where H is an adjustable step size.

6. Calculate energy E, with new set of weights.
7. Calculate probabilitj of retaining new weights.
-(E; - Ez)/kT
- typically p = e where k is Boltzmans constant
T is the system temperature

if p>1 then p=1 (i.e. E5 < E3)

if p>0.5 then retain new weights irrespective whether E5; > E4
else keep previous weights

Reduce temperature T.

Go to step 4.

Although the above description assumes that the optimal solution can be reached by

gradually reducing the temperature only once, this is not necessarily the case. In their
discussion, Ingman and Merlis [22] suggest that the system be melted and solidified
several times, each time escaping from the local basin of attraction and moving closer to
the global minimum.

Even though both non-gradient methods discussed above offer attractive features such as
increased flexibility in the choice of network topologies and activation functions, they both
require a comprehensive set of training patterns and are not suited for on-line learning. In
other words, both these algorithms are of the batch learning type (where the error is
evaluated over the entire set of training samples) and are therefore inappropriate for the
applications studied in this work, as explained in the previous chapter.

Despite the fact that the backpropagation algorithm, discussed in section (a), should also
be used in a batch learning configuration (i.e. all weight adjustments are collected and only
implemented once the entire set of training patterns has been presented) to ensure true
gradient descent, Rumelhart et al [2] claim that the pattern learning version (weight
updates are effected after each pattern) presented above, will produce the same results,
provided the training rate is kept small. This is confirmed by the work of Qin et al [23], in
which they show that the pattern learning generalized delta rule for feedforward networks
is in fact a first order approximation of the equivalent batch learning rule and therefore
equivalent for small learning rates. Qin et al also show that pattern learning is stable for

-30-

3.Faﬂmnmdeéwod$

~higher Ieammg rates than batch learning: They ascribe this to the fact that batch leammg
overshoots the minimum for high learmng rates whilst the continuous updating of welghts
. prevents this in pattern learning.

o Of all algorithms discussed only the generalized delta rule is suitable for pattern and hence

‘on-line training. All training in the following evaluation of the multllayer perceptron was
* therefore done using backpropagatlon

3.23 NONLINEAR MODELLING CAPABILITY

In this subsection the function approximation capability of multilayer perceptron networks
with a single hidden layer and using the logistic function nonlinearity is illustrated.
- Although this ab1hty can and has been proven mathematically [24], an understandmg of
- the underlying mechanism is useful for the evaluation of these networks

As mentioned earlier, trammg modulates the welghts and activation function parameters
in order to obtain the best possible fit for all training patterns. In figure 3.4, the modellmg
capability of a smgle hidden node with a smgle 1nput is demonstrated

. ' _ ° EFFECT OF INPUT WEIGHT
HIDDEN UNIT WITH SINGLE INPUT u ,

wi=1

N) 1.0) _ o .
- N : ; wi=0.5
' 0.s —"#"::::jjjf\\g\\k‘ wi=0
1 . o.c - - _

1) : wi=—1.5
X} = . .
1+ e‘(‘ﬂh))
s . L »®
: : , 0.5 —g— 4 X 7] 8
EFFECT OF THRESHOLD C - EFFECT OF OUTRPUT SCALING
v . » ‘]
1.0 /,— 0.8
. . th=4 1///,#“-
0.5+ thZo ‘ 0.0

0.5l g 1.5 —g— 4

Figure 3.4 - Modelling Capability of Single Hidden Node

-31-

Neural Networks in Coutrol Engineering

The figure illustrates that the output of a hidden node can be scaled and shifted to any
desired size and position by varying the input scaling, threshold and output scaling.

Whilst threshold and output scaling have the same effect for nodes with more than one
input, it is worthwhile to picture the re-organizing effect of modifying the input weights in
a multi- dimensional space, rather than in one dimension using the scalar input to the unit.

Figure 3.5 shows that' for such nodes, scaling of the individual inputs changes the
orientation of the sigmoidal surface in the input space.

HIDDEN UNIT WITH TWO INPUTS

inpt ’
Xl outp. ‘
wo
X O sy Y
. % inp.
inp
x = inplawl+ = OxWO
ix?pZ*wz y T
] 1
f(x) =
1 + e(xﬂh)

SIGMOID WITH 2 WEIGHED INPUTS
wilt=1 wi2=-1
1.00+ coutput

SIGMOID WITH 2 WEIGHED INRUTS
wilel wi2=1
1.00y coutput

SIGMOIO HWITH 2 WEIGHED INRUTS
wil=—1 wi2=1
1.00; coutput

Figure 3.5 - Orientation of Sigmoidal Surface in 2-dimensional Input Space

By adding the outputs of a number of these scaled hidden node outputs, a multilayer

perceptron can approximate any nonlinear function. This is illustrated in figures 3.6(a) and
3.6(b), which depict the learning process of a a 2-5-1 multilayer perceptron modelling a
paraboloid, as well as the contribution of each of the hidden nodes in the trained network.

-32-

3. Feedforward Networks

NONLINEAR FUNCTION INITIAL NETUORK OUTPUT NETUORK OUTPUT AFTER {000 SAMPLES

L rrrri il ‘}’ff
=2 i

&/
&
Sl

Figure 3.6(a) - Multilayer Perceptron Mode! of @ Paraboloid

3

CONTRIBUTION OF NODE 1 CONTRIBUTION OF NODE 2 . CONTRIBUTION OF NODE 3

outout

L 22 e
L
AR LI X A AR IR IS

. 17
717

N i

ragnstisili.

S

&

g o

Figure 3.6(b) - Contribution of Individual Nodes in Trained Network

In the above example node 5 has been trained to pfovide the constant offset required, as |
described earlier in this chapter. V - «

-37-

Neural Networks in Control Engineering

3.2.4 EVALUATION

This subsection contains an evaluation of the suitability of multilayer perceptrons and
backpropagation training for nonlinear modelling. The analysis focuses on the set of
criteria established at the end of chapter 2 as well as other network and training algorithm
specific problems, some of which were first presented in Durban in 1991 [25].

Since this examination serves to assess the multilayer perceptron as one of the possible
networks for dynamic modelling, it highlights possible problem areas, rather than focus on
strong points, such as noise filtering, exhibited by most networks.

(a) Test Setup

Although multilayer perceptrons can approximate functions of several variables as shown
in the previous subsection, the evaluation criteria are illustrated for single variable
functions to allow easier and clearer presentation. '

Due to the on-line (or pattern) learning requirement discussed in chapter 2, the networks
are not trained using a fixed set of training samples. Instead samples are generated
during training by choosing an input and calculating the respective output, much like an
on-line system for which both the input and output are sampled at given intervals. Unless
otherwise specified, the input samples are chosen at random with uniform distribution
within the input range on which training is performed. Where required, the random
number generator was started with the same seed value in consecutive runs, to ensure
that the same training samples would be used.

Wherever displayed, the root-mean-squared (rms) error was calculated by evaluating the
function and network output for several hundred equally spaced input values over the
permissible input range.

All programs used in the tests were written in Turbo Pascal ver. 6.0 by Borland and a
listing of the neural network algorithms is included in Appendix II.

(b) Extrapolation and Interpolation Capability

As illustrated in chapter 2, the data collected from step perturbations of a dynamic
system is often very localized and does not necessarily cover the entire input space
sufficiently. This localized nature of the training data also exists during on-line training,
whére the underlying dynamic system is usually only operated within a well defined
region.

One of the desired properties for a neural network model is therefore that it should be
able to interpolate between and extrapolate from these localized islands of training data,
to cover the entire operating space.

-34-

3. Feedforward Networks

- (i) Extrapolation

DA
<

Tms refers to the ability of the network to anticipate the behavior of the underlymg
function into regions which contain no trammg data.’

As shown above, the multilayer perceptron model is a sum of scaled sigmoidal functions,
which display highly nonlinear behavior on both ends, before saturation. Since usually |
~ only one of the two nonlinear ends is used in the approximation, the sigmoids are scaled
such that the other tail is just beyond the training data range. This implies that a
multilayer perceptron model does not exhibit any useful extrapolation quality unless the

underlying function tapers off in a similar manner.

Figure 3.7 illustrates this poor capacity to extrapolate. The figure presents the results for
a 1-3-1 network trained to model an offset parabola on the interval [-1,1].

output

FUNCTION AND NETLORK ON TQHINED QﬁNGE

input

-

o 0 Q 0O

TRAINED NETWORK EXTQHDOLRTION

output

function

trained regfion -

Qs —a i3

Figure 3.7 - Perceptron Extrapolation Capability

As shown the trained network is an accurate model for the range on which it was trained,
but fails to predlct the parabola’s behavior even for small excursions beyond the trammg

limits.

(ii) Interpolation

Whilst extrapolation refers to the ability to predict into areas with no data, interpolation . -
pertains to the estimation between groups of localized data. As with extrapolation, the

* ability of multilayer perceptrons to perform such estimation depends on the behavmr of ‘
the underlying functlon and on the distribution of the trammg data.

Figure 3.8(a) below shows a 1-3-1 network, as before tramed to model the same offset
parabola, but only using data on the intervals [-1.0,-0.8], [-0. 1 0.1] and {0.8,1.0].

o -35-

Neural Networks in Control Engineering -

FUNCTION AND NETUUQK APPROXIMATION NETWORK INTERPOLATION
output] output
' | 1 : 0.8 |
10 | L . |
!] !] |
) ' ' 1 '
0.8 \ ' ! ' 0.6 '
TN\ ! L : ;
0.6 !no tralnlngi ino training ! no training

) ' 1 ' 0.4¢ :
a.af | P : :
| Lo : .
.24)
0.2r | . . :
1 ! i 1 !
c.0f i Lo ; '
' ' i | : 0.0+ :

: . [X input)) input

0-&F 5 ~a.S 0.0 0.5 0.0 0.2.___0.4 0.6 0.8
Figure 3.8(a) - Perceptron Interpolation Capability

As illustrated on the left, the network still learns to model the function and also
interpolates very well between the islands of training data shown in the detailed view on
the right.

Acceptable interpolation performance can however only be achieved if the opening
between these islands is small enough for the interpolation to be performed by a single
node and where the behavior of the underlying function in these gaps is sufficiently
similar to that of the sigmoid, as in the above example. This is illustrated in figure 3.8(b),
which shows the same 1-3-1 network trained to model the identical function, but this time
only utilizing training data from intervals [-0.1,0.0] and [0.8,1.0].

FUNCTION AND NETHDRK APPROXIMATION NETWORK INTERPOLATION
output output
[] 0.8 , 1
1.0 o : | -
. 1 i ! !
o.8 1] : :
.84 . : : : 0.6 | 1
no training : : no training : : no training 1
0.6+4 [T : :
: : \ 0.4 | 1
0.44 N ! ' !
! ': ! :
0.2 [) 0.2+ : :
P i ! '
0.04 : : : 5 network :
1
: i 0.0 ! function ¢
_ , . inpu
s 9.0 a5

Figure 3.8(b) - Perceptron Interpolation Capability

Whilst previously using two nodes to model each of the parabola halves (and one to
produce the constant offset), the new training intervals are such that the network can
produce a sufficiently close match inside these, with only one node. Between the training
intervals the approximation now deviates significantly from the underlymg function, thus.
resulting in very poor interpolation.

-36-

3. Feedforward Networks .

(c) On-line fTraining : Data Presentation and Interpretation

Although the generalized delta rule is suitable for pattern learning and thus also for on-

line training, as illustrated in the previous examples, it still requires the training samples
to be presented in a random fashion. In other words consecutive training samples have to
be significantly different to ensure sufficient excitation for the network to escape from
local minima and to learn and remember.

(i) Random Data Presentation

This problem is illustrated in ﬁgufe 3.9, where instead of choosing the input samples in a
random fashion, a sinusoidal excitation signal is used to drive the inputs of both the
system (parabola) and the network. '

SINUSOIOAL INPUT EXCITEMENT

input
0.8
0.4
0.0
-0.4
-0.8 .
N _ . sine inp
~1.2G— _ io Z0 =0 . I 1
) ' FUNCTION AND NEURAL NETHORK APPROXIMATION
output . . .
1.0 : :
0.8 ‘ il A AN
0.6 ‘ ‘ | s ANANANIWANAL
| t A] | H
. 0.4 { ’) | '| II ll h ; y H i B J II a { ||
o.2rf | ‘ :| YRYERY | YERUARY uf! YRYE Net
‘ il ! [1 g 0 | 'l
o.0f | . ! ! I, R b { \-_ \' \J w '
. =5 .

training no training training " no training

7] 1o — ‘ =0 1] — a0 ‘ 50

Figure 3.9 - Non-random Excitation

In spite of the fact that the network output follows the desired function output very

accurately almost immediately, the network does not learn as can be seen from the poor

response in the intervals where training is stopped. As mentioned above this’is because

consecutive training samples do not differ enough to excite the weights sufficiently in
order to escape from their initial local minimum. The above problem was also
experienced by Narendra and Parthasarathy [26] in their investigation.

-37-

Neural Networks in Coatrol Engineering

(ii) Global Input Interpretation

Besides the need for randomization of the training data, the multilayer perceptron with
its semi-infinite sigmoids is also prone to forget or re-learn when not presented with data
from all areas of the input space at all times. In other words, due to the global nature of
‘the sigmoidal function each hidden node is affected by any input in the entire input space
and inputs are thus interpreted globally.

The resulting problem is illustrated in figure 3.10. The left part of the figure shows how a
1-3-1 network, due to its insufficient number of hidden nodes to model the underlying
function accurately, learns to generalize as required, if the training data samples are
selected from the entire input space. When later presented with training data restricted
to a subsection of the input space however, the previously trained network relearns and
in the process destroys knowledge about the area now omitted as illustrated in the right
hand plot.

FUNCTION AND NETWORK APPROXIMATION FUNCTION AND NETWORK APPROXIMATION
output : : output : :
0.754 ; : 0.84 - -cooiiiiid S S [T
0.504 0‘5... :
: 1
0.254 O.3d ervciiesionenn i RN :
¢
0.004 [1 I 5 7 S N 77 £ :
_0.2s | ~ouabo o LN
i
-0 .S504 I, T % SO /O S R E.
[
—0.75 -0.8 i, natuork
) to this area input
-1 .00} -1.04¢ oo o5

Figure 3.10 - Global Input Interpretation

Although the problem was illustrated using an abstract single variable example, it applies
to most dynamic systems, where the data obtained is usually localized and where, due to
the effect of disturbances and fast poles, the network has to generalize without
inappropriately destroying previously captured information.

Since the inputs to and outputs from most dynamic systems are slow varying signals and
often localized for considerable periods of time, the above two phenomena imply that

multilayer perceptrons with backpropagation are not suited for direct on-line training

and would require some form of data capturing and preprocessing.

Even though the above data presentation problems was illustrated for a network
containing too few hidden nodes to accurately model the underlying system, it is also
likely to occur for structures with more hidden nodes, if poor initial parameters are
selected.

-38-

3. Feedforward Networks

(d) Initial Welght and Training Rate Ch0|ces L

Both, the set of initial network parameters and the training rate have to be chosen prior
to training. the network. The magnitude of these parameters can have significant impact
on the network’s learning performance.

(i) Initial Network Parameters

~ All adjustable weights and thresholds of a multilayer perceptron are usually initialized to
small random values prior to training. Although this initialization procedure is generally
satisfactory and does not significantly influence the rate of convergence for » _

- approximation networks (larger initial weights generally imply faster initial learning but : :.
slower fine tuning and vice versa), an unfortunate choice of initial weights might result in |
either too much or too little generalization. ‘i
This effect of initial weight choices is illustrated in figure 3.11. The graph on the left |

depicts how a 1-5-1 network with small initial weights learns to generalize.- If all the

initial weights are scaled by a factor of ten, the same network fails to generalize and

learns the exact underlying function as shown on the right.

i
FUNCTION ﬁND NETUOQK HDDQOXIMHTION FUNCTION_AND NETUUQK ﬁDDQOXINﬁTION A

output : : : output

.75
.50+
.2s5¢
.00-
.as}
.504 -

: 734
1.0 ———Fs—0 o=) 1-°‘i7ﬁ3
Figure 3.11 - Effect of Initial Weight Ch01ces

Depending on whether the small humps present an important part of the model or just an

unwanted disturbance, either of the two resulting neural network models could be

unsatisfactory. Some a priori knowledge of the underlying function is therefore required

in order to choose the correct magnitude for the initial network parameters, such that the
- model is sufficiently accurate but ignores all undesirable disturbances.

(ii) Training Rate

Figure 3.12 depicts the evolution of the rms error for the same 1-3-1 network with
- identical initial parameters but varying training rates. For simplicity the momentum term,

-39-

" Neural Networks in Coutrol Engineering

{?}“ﬁ: ﬁ . . N . _ ‘
- which has a ﬂltenng effect and generally i lmproves the learning rate, was omitted in the
example

The choice of 0.02 is too small and never : T E’.f.s, _ERROR DQOBQESSION ;

allows the network parameters to escape
from their local minimum. For a training
rate of 0.2 on the other hand,
convergence is initially slow butthen
accelerates and the rms error settles at an
acceptable value. The slow convergence
during the early stages of learning, also
known as premature saturation [27], is
due to the initial re-orientation of the
sigmoidal outputs of the hidden nodes. In : . :
the problem chosen here, a training rate Figure 3.12 - Effect of Training Rate
of 2.0 is close to optimal, producing fast -
and efficient convergence. Although a larger training rate of 5.0 also produces fast initial
convergence, the first oscillations and signs of instability are notlceable, indicating that
this training rate is too high for the spemﬁc problem.

Whilst the examples in this subsection are not meant to suggest specific choices of .
parameters for all - approximation problems, they- illustrate that poor network.

- performance might not only be the result of network size or the quality of the training
data, hut also due to poor choices of parameters and/or learning rates.

S

(¢) Number of Hidden Nodes

Despite the many algorithms that exist to prove that a single hidden layer containing a
sufficient number of nodes is adequate to model any function, no accepted method of
determining this number exists, particularly for problems where the underlymg functlon
is unknown,

Whilst increasing the number of hidden nodes in a network is generally believed to
improve their performance and, due to the distributed representation, create some form
of backup for classification networks, this is not the case for modelling networks. Since
each of the utilized hidden nodes models part of the underlying function, any additional
nodes that cannot significantly improve the accuracy of the model are not applied and do

~ not improve the overall performance of the network. :

This is depicted in ﬁgure 3.13 below, where the contribution of individual nodes of a_
1-5-1 multilayer perceptron network, trained to model a parabola, are depicted. Only two

- of the four nodes contribute to the actual model and one of the remaining three nodes
would suffice to provide the necessary offset.

3. Feedforward Networks

FUNCTION ﬁND NETUOQK ﬂDDQOXIMﬁTIGN I CDNTQIBUTION OF INDIUIDUHL NODES
output ! : : f ; 3 T3 : :

- : ! : input

Ao s 5 “9'5375—':51'5 o5 o5
Figure 3.13 - Redundant Nodes

Although this condition does not impact on the performance in the example shown
above, it implies that modelling multilayer perceptrons do not exhibit true distributed
representation as their classification counterparts. These networks can therefore also not
be expected to degrade gracefully, if one or more of the utilized hidden nodes are
damaged.

In section (d) above, it was shown that the number of nodes utilized in the network
model not only depends on the underlying function, but is furthermore influenced by the
initial choice of parameters. In other words, even if the network could utilize more of its
hidden nodes, it might not do so due to poor initial weight choices.

(f) Network Interpretation

This division deals with the possibilities of storing knowledge in the weights of a
multilayer perceptron prior to training, as well as the interpretation and extraction of
information stored in the weights of a trained network.

(i) Storing a priori Khowledge

Due to the global input interpretation discussed previously, any attempt to store a priori

~ knowledge in a multilayer perceptron network would require the anticipation of the final
position of and scaling for each hidden node, to ensure that the stored information will
remain and not be destroyed by subsequent learning.

The problem is compounded by the sensitivity of these networks to initialization errors as
discussed in (d). Even if the initial knowledge could be stored, the weights chosen might
restrict further learning of the network and hence limit its approximation potential.

(ii) Extracting Data

| Due to the high flexibility of multilayer perceptrons, the knowledge stored in a trained
network model can generally not be interpreted or extracted directly from the network

-41-

—

Neural Networks in Control Engineering '

parameters. The idea of using Taylor series representations for each of the hidden node
suggested by Wray and Green [6] might produce useful results for small networks but
becomes impractical for larger . structures

' (g) Local Minima

The local minima problem refers to the condition, where due to a basin of attraction in

the weight space, the search for the optimal set of parameters remains trapped in this

region of suboptimal choices. As illustrated in the above examples, this might be due to a
number of reasons, such as poor choices for initial parameters or training rates, the
number of hidden nodes utilized or even the order of presenting the training data.

This problem of not converging or only converging to a local minimum, has not yet been
resolved and remains one of the main arguments agamst mulnlayer perceptrons and
backpropagation training.

(h) Cbmputational Effort and Ease of Use
(i) Computatzonaf Effort

‘Both the forward and backpropagatlon algorithm for the multilayer perceptron are of
medium complexity and moderately sized networks of this type are therefore suitable for
on-line implementation and training.

(ii) Ease of Use

In spite of the suitability from a computational point of view and the fact that a
multilayer perceptron is easy to configure and program, thé evaluation shows that the
performance of the network depends largely on appropriate choices of network
parameters, the number of hidden nodes and the presentation of the training data. This
type of network and training algorithm is therefore not well suited for a generic
approach, where the designer may have little or no knowledge of neural networks.

~ The assessment of the multilayer perceptron and the backpropagation training algorithm,
demonstrated that although these networks are flexible and capable of modelling almost
any nonlinear function, they have several shortcomings. The fact that they are not suited
for direct on-line training without some processing or re-arranging of the training data and
furthermore require a skilled trainer to select the parameters and steer the training, are the
more serious for the type of applications considered in this thesis. 4

-42-

3. Feedforward Networks

- "3.3 RADIAL BASIS FUNGTION(RBF) FEEDFORWARD NETWORKS

Although not yet as well-known as the multilayer perceptron, this type of feedforward
“network is receiving increased interest as a viable alternative, whlch might overcome some
of the limitations hlghhghted in the previous section.

As in the analysis of multilayer perceptrons, thls section starts with an discussion of the
network topology, before several training methods are presented After this the selected
network and algorithm are evaluated.

3.3.1 TOPOLOGY

Figure 3.14 depicts the general topology of feedforward RBF' networks.

RBF ‘NETWORK TOPOL_OGY

' ' network
network outputs
inputs @ P

: @-—-—-
-
.
— O ¢
L
o ,
input @ —
layer @
wh—o
linear
Gaussian output units

hidden units

Figure 3.14 - Feedforward RBF Network Topology

As shown, the structure of this type of network does not differ significantly from that of the
multilayer perceptron studied in the previous section. Both networks have a single hidden
layer and only utilize nonlinear activation functions in their hidden nodes. The main
difference between the two topologies is the type of activation function applied in the
hidden nodes. Although this difference might not seem significant, it is probably the main
reason why RBF networks do not exhxbn some of the problems illustrated earlier for
multllayer perceptrons. :

The radial basis function approach has also been motivated mathematically. Girosi and
Poggio [28] demonstrate that these networks have the best approximation property (i.e. the

-‘4_3..

Neural Networks in Coatrol Engineering

set of RBF networks contains at least one approximation with minimum norm from the
function to be approximated) and that multilayer perceptrons do not possess this property.

The following divisions motivate and discuss the radial basis type activation function, the
absence of weights between input and hidden layer and the use of a single hidden layer for

these networks.

(a) Radial Basis Activation Function

Most RBF networks employ the Gaussian
function depicted in figure 3.15 as the
activation function in the hidden nodes.
The local nature is the most significant
difference between this RBF and the
sigmoidal type of activation function. In
other words, whilst the logistic function is
semi-infinite, the RBF functions only
produces an output on a restricted, local
sphere of influence. This localized
. response is due to the fact that the
activation of a RBF function depends on
the distance of the input vector from its
center, rather than the absolute values of

_.BAUSSIAN ACTIUATION FUNCTION

a
-

]

Figure 3.15 - Gaussian Activation
Function

the inputs. The output of such a function is therefore maximal, if the input vector
coincides with its center and gradually decreases to zero for inputs further away, thus
resulting in a spherical space of reaction around the center of the node.

The advantage of hidden nodes with such local response is not only beneficial for
modelling applications (as shown later in this chapter) but also for classification
problems. In their attempt to utilize neural networks for process fault classification,
Leonard and Cramer [29] note that RBF networks overcome the problem of non-
intuitive, non-robust decision surfaces produced by multilayer perceptrons and

backpropagation.

(b) Weights from Input to Hidden Layef

The structure in figure 3.14 shows no weight matrix for the connections between input
and hidden layer. Again this is due to the radial basis type activation function, where the
equivalent of input scaling is performed by adjusting the bandwidth of each node for each
input dimension. In other words, internal parameters (equivalent to the standard
deviation) can be modified to widen or narrow the region of influence for each of the

inputs to each of the nodes.

-44-

3. Feedforward Networks

~ Although possible, most RBF applications do not use different bandwidth parameters for
different input dimensions and do not mclude parameters cross~hnkmg these dimensions,
since the resulting ellipsoid type of‘ iét}vatlon réglon not aligned with the major

~ directions of the input dimensions, would require extensive optimization for each node.
Single bandwidth parameters w1thout cross-linking terms are thus used in most RBF

applications.

(c) Number of Hidden Layers

~ Although some multilayer perceptron applications utilize two hidden layérs, this is not

- the case for RBF networks. This is partly because, as for multilayer perceptrons,

- algorithms exist to prove that a single hidden layer suffices. However, the main reason
for a single hidden layer in RBF networks is their structure. The underlying idea of
utilizing radial basis type functions is that the network will partition the input space, so
that each of the hidden nodes has a well defined, local sphere of influence, on which it
models the underlying function. The addition of further layers in such a structure would
therefore not improve the modelling capability of the network and the additional nodes
should rather be used in the first layer to perform a finer division of the input space.

3.3.2 TRAINING ALGORITHMS

As with multilayer perceptrons, there exist a large variety of training algorithms to
determine the tunable parameters for RBF networks. These parameters to be determined
pnor to or during trammg include:

= the number of hidden nodes

= the center for each of the hidden nodes (mean for Gaussians)

« the sphere of influence for each hidden node (Standard deviation)

» the weight between each hidden and output node

In the overview of training methods presented below, the algorithms appear in order of
network flexibility. Whilst the first algorithm determines all the above network
parameters, the third only adjusts the connection weights between hidden and output
layers and requires that the remaining variables are determined by other means prior to
training. *

(@) Hierarchically Self-Organizing Learning

As mentioned above this RBF training algorith‘m suggested by Lee and Kil [30]
determines all the parameters of an RBF network.

-45-

Neural Networks in Control Engineering

An overview of the steps involved in generating and training the network using this
algorithm are presented below:

The network starts with no hidden nodes and an output of zero. The following

algorithm is then applied to generate all the hidden nodes and the necessary

connection weights.

1. start with no hidden nodes and set the effective radius r; large enough
to cover the entire input space. -

2. Invoke new learning cycle (for all patterns) as described below :
(1) get next training pattern
(ii) if the output of the network differs by more than the error margin
from the desired output then
- if the input vector falls within the effective radius of an
existing hidden node then update the mean, standard deviation
and weight associated with that hidden node to accommodate the
training pattern
- else create a new hidden node with its center at the input
vector, its weight equal to the desired output, its standard
deviation to small initial values and its effective radius to
the current value
3. Reduce the effective radius of each hidden unit by a pre-determined value
or using a measure of the error gradient to judge when ‘saturation of
learning’ occurs for the current number of hidden nodes.
4. Go back to step 2 until the difference between network - and desired
output is within the error margin for all training patterns.

[

The algorithm thus grows the network, starting with one node, covering the entire input
space and then slowly shrinking its sphere of influence whilst adding more nodes as
required.

(b) Clustering Type Algorithms

For this type of algorithm the required number of hidden units has to be estimated prior
to training. During optimization the remaining parameters are then usually determined
in three phases. First the center for each of the units is located, then the bandwidth of
each is adjusted and finally the connection weights with each of the output units are
established. '

Due to the many variations of this type of algorithm published in literature [31]{32][33],
the discussion below includes more than one method of determining the parameters,
where applicable.

-46-

3. Feedforward Networks

Phase 1 - Locating the Center

If all training patterns are available, this is usually done using standard
k-means clustering: '

(i)

(ii)
(iii)

(iv)

The centers are set to randomly chosen training pattern inputs.:
Each training sample is then assigned to the unit with its center
nearest to its input. ’ '
When all units have been assigned, the center of each cluster is
moved to the average position of all points in the cluster.

Go to step (ii) until convergence (the centers don‘t move
significantly).

For more on-line orientated algorithms:

(1)
(ii)
(iii)

(iv)

Choose centers randomly distributed in the input space.

Present the next pattern with input x, to the network.

Find the unit with its center x; closest to the input of this

pattern and move it fractionally towards the input-

Xp(t+1l) = xp(t) + n(gp-gh(t)) where 5 is the learning rate which
decreases with time.

Go to step (ii) until there is no more significant improvement.

To ensure a more global optimization, the updating might be applied to all
centers in the topological neighborhood, which decreases with time much
like the effective radius in the above algorithm.

Phase 2

- Determining the Bandwidth (interpolation)

- For both, batch and pattern learning a P-nearest neighbor heuristic is
usually employed to find the bandwidth for each hidden node

i.e.

Al

1
o = -
P

2

-y

o

Ix

where Xy are the P nearest neighbors of the center. xp

- Other iterative algorithms to determine these parameters exist (30].

Phase 3 - Training the Hidden-Output Weights

- ‘Since all other parameters have been fixed at this stage, finding the '
weights between the hidden and output units (which only sum all their
inputs to produce a network output), presents'a linear optimization
problem, where the least mean square solution is required. -

- This solution can be obtained in one pass for batch type problems, using
a pseudo inverse matrix of the hidden node activation vectors for all
training patterns A and multiplying this with the matrix of target

outputs T. ,

-47-

Neura! Networks in Coutrol Engineering

w = TaT(anT)"1
- For pattern or on-line learnihg, the solution has to be obtained by

adjusting the weights proportional to the contribution of the node and
the error between desired and actual output

i.e.. wij(t+1) = wij(t) + aKjerr where - o is the learning rate
- K; is the output of the hidden
unit
- err is the difference between
desired and actual output.

Training continues until the error is acceptably small for all patterns.

Although the algorithms discussed are attractive as far as network flexibility is concerned,
they are not suited for on-line training. This is because these algorithms are of the batch
learning type -and require the entire training set prior to training. Even the pattern
learning type clustering algorithm adjusts the centers, bandwidths and weights in stages
and therefore requires that during each of these, the training patterns used are
representative for the entire operating space.

A less flexible network structure, more suited for true on-line training, was therefore
used in this study.

(c) Regular Gaussian RBF Network Learning

This type of simplified network structure and learning algorithm, suggested by Hunt and
Sbarbaro [34], is a simplification of the above method. Instead of utilizing actual input
patterns during the first two phases, the available number of nodes are distributed
uniformly over the entire input space and the bandwidth of all nodes is predetermined to
ensure smooth interpolation. The steps below describe and motivate the procedures used
to generate and train such a regular Gaussian network. '

The discussion below assumes the following network notations and equations:
- The output of hidden node j for input pattern p is given by

K«

j = e'd(lrl‘.}?lé)

where d(x,xp,4) = (z-z.p)TA(z-lp)
with - the center of the unit

p — the input vector

- a diagonal matrix of the bandwidth value A.

D> 1% 1%

-48-

N

3. Feedforward Networks

ORI IR S B

et ,
th N hidden units is then

- Each of the o outputs for a network wi
determined as follows

N .
Yo = Ewhoxh where Wio is the weight connecting hidden
: node j to -this output.

Using this notation, the network is initialized and trained as follows :

1. Distribute the available nodes uniformly in an n-dimensional unit cube
(all inputs to the RBF are normalized) ' :
- where n presents the number of inputs to the networ
(each input dimension receives the same number of units to allow the
use of a single bandwidth parameter per unit).

2. Calculate the bandwidth.)
- Due to the uniform distribution the number of nearest neighbors
depends on the input dimension (2 for 1 input, 4 for 2 inputs etc.).
- It was however found that even for multi-dimensional problems the
following fixed bandwidth produced the bést interpolation results,

2
A=

'(distance betw. nearest nodes)2

. . TNDIUIDUAL NODE = ANO NETUORK GUTPUTS
Figure 3.16 shows the result of this . mn,h EDE - : -

initialization procedure for a 1-7-1
regular Gaussian network where the hidden
to output weight for each of the nodes was
set to 0.5. The figure highlights the
trade-off between smooth interpolation and
inter-node interference in choosing the
bandwidth for hidden nodes.

The network output shown, furthermore
illustrates the poor interpolation near the
edge, which explains why the input range of
(=1..1]) is re-mapped to (-0.75..0.75] in
the feedforward algorithm.

0.8} S R S

i network output

Figure 3.16 - RBF
Initialization

3. Initialize all network weights wp, to small random values.
4. During training update the weights connecting each of the j hidden nodes

to each of the k output nodes using the least squares regressipn
~algorithm described above

ij(t+l) = ij(t) aKj(Yk4desi_red(t+]7) = Yk-net (t+1))

Although the regular Gaussian network sacrifices a significant amount of the standard
RBF network flexibility, the resuiting structure ensures a homogeneous distribution of
nodes and hence modeiling capability over the entire input space and can be trained on-

-49-

Neural Networks in Control Engineering

line. Both are important requirements for neural network models and warrant an
evaluation of this type of network as an alternative to the multilayer perceptron.

3.3.3 NONLINEAR MODELLING CAPABILITY

As described above, the flexibility of individual hidden nodes in the regular Gaussian
network structure is limited to the strength of their connection weight(s) with the
output(s). The only adjustment for individual nodes is thus their height as illustrated for
single and two-dimensional input nodes in figure 3.17.

_ GAUSSIAN WITH SINGBLE INPUT BAUSSIAN WITH 2 INPUTS
output)

w=1.0

inpl

:I.hp‘

T inp2

GAUSSIAN WITH 2 INPUTS

1.00+7 output

inp2 ' inp2

Figure 3.17 - Modelling Capability of Hidden Nodes in Regular Gaussian Networks

As with the multilayer perceptron, the summation of a number of these scalable nodes in a
network can be trained to model a nonlinear function. This is depicted in figures 3.18(a)
and (b), which show the generation of a 2-9-1 regular Gaussian network model for a
paraboloid and the contribution of each of the nine hidden nodes to the trained network

output.

-50-

3. Feedforward Networig

NONLINEAR FUNCTION

Figure 3.18(a) - Regular Gaussian Netwbrk Model of a Paraboloid

CONTRIBUTION OF NOOE ¢ CONTRIBUTION OF NOOE 2 CONTRIBUTION OF NODE 3

CONTRIBUTION OF NODE 4

CONTRIBUTION OF NODE B8

Figure 3.18(b) - Contribution of Hidden Nodes

-51-

Neural Networks in Coatrol Engineering

It is worth nbting that although the regular Gaussian network requi'res nearly twice the
number of hidden nodes when compared with the multilayer perceptron dxscussed .
previously, it converges using far less training samples.

From the error surface for the trained network it is clear that due to the rigid structure of
the network (fixed centers and bandwidth), some of the nodes have to compromise,
“resulting in a less than optimal model. This is particularly evident for the nodes on each of

the corners-as well as the node at the center of the training space.

‘These and other advantages and disadvantages of thé regular Gaussian network are
discussed in the following evaluation.

3.3.4 EVALUATION -

As for the multilayer perceptron, this section investigates the suitability of the network and
learning method for nonlinear modelling. In order to compare the applicability of regular
Gaussian networks with that of multilayer perceptrons, particular attention is paid to the

problems highlighted for the latter in the previous section.

(a) Test Setup

The test arrangement used in this assessment is identical to the one utilized earlier;
problems are illustrated for single input networks; training patterns are generated at
random during run-time unless otherwise specified; the root-mean-squared (rms) error is
calculated by evaluating function and network output for several hundred equally Spaced
values, on the permissible input range.

Again all the required software was developed in Turbo Pascal ver. 6.0 and all the
relevant algorithms are included in Appendix II.

(b) Extrapolation and Interpolation Capability

. As discussed earlier, the clustered nature of data collected from dynamic systems due to
their localized method of operation, demands some form of extrapolation from and
interpolation between these islands of training data.

* (i) Extrapolation

Since all inputs to regular Gaussian networks have to be normalized to within the
permissible [-1..1] interval, a 1-5-1 network was trained to model an offset parabola,
using a restricted training interval [-0.5..0. 5] and was then examined between 0.5 and 1.0
in order to judge the extrapolation capabxhty of this type of network. Figure 3.19 depxcts

the results of this test.

-52-

"3, Feedforward Networks

FUNCTION AND NETLORK DN TRHINEU QﬁNGE’ MR TQﬂINED NETLJCIQK EXTQQDOLRTIDN
output : EIDE output : :
: i
[T = s ful:\(‘:t ion /"
! D
o. :
: '
'
1
0. 1
1
|
o. '
0.
: : : input _0 ' trazned region ‘ iﬁput
-075 i) 00 o3 %‘U’"—“‘ﬁ*‘ﬁ‘—“d"s. : 9.5 '

Figure 3 19 - Regular Gaussmn Extrapolatlon Capability

As shown, the network has learned to model the underlying function accurately on the
trained interval (left), but fails to prechct function values for mputs beyond the limits.
This poor extrapolation capability is expected for RBF type networks where, due to the
local nature of each hidden unit, nodes beyond the interval receive no or little training
and are therefore not modified.

Although this behavior is disadvantageous from an extrapolation point of view, it is the
very same quality that prevents a regular Gaussian network from forgesting like the
perceptron, if trained in a local fashion. The advantage of this local leammg is illustrated
later in this assessment.

(i) Interpolation

As with the multilayer perceptron, the ability of regular Gaussian networks to intei'polaté
between localized regions of training data depends on the number of units and the
behavior of the underlying function between the data islands.

If the number of nodes is sufficiently small as in the 1-3-1 network trained on intervals

' [-1.0..-0.8],[-0.1..0.1] and [0.8..1.0] shown in figure 3.20(a) (left) below, the resulfing
network model is acceptable and predicts the function values adequately in the untrained
interval (right). This is due to the fact that despite the small intervals used, each of the
hidden nodes is receiving sufficient training input.

-53-

Neural Networks in Control Engineering

FUNCTION AND NETHORK APPROXIMATION

NETHORK INTERPOLATION

output

no training no training

ko . - — —

5 V) TS .0 a5

output
0.8 ;
i
]
1
0.64 |
'
: no training
0.af
i
i
'
0.2 :
: network
! function
c.0+ |
! = . input
0.0 0.2 Q.4 a.6 0.8

Figure 3.20(a) - Regular Gaussian Interpolation Capability

The networks interpolation capability is reduced considerably if the number of hidden
nodes between the two training intervals is increased, such that the active input region
for some of these nodes lies entirely outside the training intervals (i.e. the node receives
no training). This is illustrated in figure 3.20(b) which shows the results of training a 1-9-1

network, using the same intervals as above.

FUNCTION AND NETWORK APPROXIMATION

NETHORK INTERPOLATION

output

1.04

0.8+

no training

- " - -

1 i
1]
] I
' |
13]
t |
+ i
i i
0.6+ ; po training '
; i
0.44 : H
1 1
: :
0.2+ ! !
1 i
1 {
0.0+ 1 1
1 t
1 L1
Y 1 X [. input
=Y.0 ~-0.% o.0 o.3

output

0.84 ' N
' '
1 1
! :
1

0.64 i]
: no training 1
H §
h §

0.44] '
H]
t 1
H)
H 1

4 ' H

0.2 ; e
\]
i 3
H i
H 1

0.0 H .
] untrained r'modes input

0.0 6.2 0.9 0.6 0.8

Figure 3.20(b) - Regular Gaussian Interpolation Capability

Although the network model is very accurate on the trained intervals, the interpolation
between these is extremely poor. Due to interpolation, units with their centers close to
the trained intervals receive one-sided training and are therefore distorted in order to
improve the model in the trained interval (e.g. node at 00.2), whilst nodes further inside

the interval receive no training at all.

These extrapolation and interpolation results for regular Gaussian networks highlight the
need for sufficiently dense and distributed training data and/or some form of network
initialization, to ensure adequate performance in regions with little or no training.

-54 -

3.FadﬁnwaniNau&ﬂm

- () On-Line Training : Data Preggggaﬁ;jggﬁgnd ;ntgrp@tggation

In the evaluation of multilayer perceptrons, the need for random presentation of and
- sufficient variation in the training data was highlighted as one of thie major drawbacks of
" the backpropagation training algorithm. Due to the local response of the activation
function used in their hidden units, regular Gaussian networks can overcome these
problems. '

(i) Traim}zg Data Presentation

Although random presentation of training patterns allows higher training rates and hence
accelerated learning in regular Gaussian networks, it is possible to train such a network
with a slow varying input signal. This is illustrated in figure 3.21, where a sinusoidal input
signal is used to drive both, the parabola to be learned as well as the input to the 1-10-1
regular Gaussian network model.

SINUSOIDAL INPUT EXCITEMENT

input
0.8 ‘

0.4

0.0

v - . -) : L ‘ sine inp.
-1.2q— o —=in 3% 55 =
. FUNCTION AND NEURAL NETHORK ARPROXIMATION o

.0 . : ' v : d ¥ .
-0.2% I\ S 20 N I A -
. ERROR BETUEEN FUNCTION AND NETWORK QUTRUT
ervor :
1.04 . .
0.5+
0.0
-0.54 : ; i
-1.0 training ino training! ‘ training ‘no training
] B\ S S -] — r i E— —=5

' Figure 3.21 - Sinusoidal Excitation for Regular Gaussian Network

The larger than required number of hidden nodes was chosen to provide a very fine
partitioning of the input space and a low training rate was used to allow slow
convergence of the weights and prevent overshoot. As shown, the network learns
gradually and accurately predicts the lower half of the model when learning is stopped
for the first time [20..30]. After further training, the network performance continues to

-55.

Neural Networks in Control Engineering

imprové and when training is stopped again [50..60], the network is an accﬁrate model for
all but a very small region at one end of the input space.

(ii) Input Interpretation

The global input interpretation and resulting loss of information when trained locally,
was highlighted as one of the reasons why multilayer perceptrons are not suited for true
on-line training. Again the local response of the nodes in a regular Gaussian network
help to overcome this limitation as illustrated in figure 3.22 below. | '

AFTER TRAINING ON ENTIQE QHNGE . AFTER TRAINING ON CONSTQHINED ﬁQEﬁ
output : : M. output : :
754 0.754+%----- , 4'. nodas un- /-

: : : : : : : changed
B N e

VSO FURCt EOM - irrrrrerrrrrsioniniinans Aol o.s0f. i T

0.254+. - f7 3\nn

e @ o o

0.004.. O S

-0. : : : ~0.254 f-- i I AR c
: ne t:uork : : : : : , nod ified :

—0.504F - deeeeneaenns P e Feeelibinnd -0.50@ e Teeeenniand :,at border.......;

B, 2S5 oo s W 2% S S L ORI SOPPRE

_ ; ; ; ; tnput | _

1.00—g5——g7—do0 0.4 0.8 | 19

Figure 3.22 - Local Training for Regular Gaussian Network

The graph on the left shows the output of a 1-10-1 regular Gaussian network model
together with the underlying function after training on the entire input range. The
network was then trained further on a reduced interval [-1..0] and as shown on the right,
even after considerable training, only the output of one node directly adjacent to this
area is affected. Nodes sufficiently far away {0.4..1.0] are not influenced and the network
thus remembers the information previously learned for that input region, provided the
network contains a sufficient number of hidden nodes.

() Initial Weight and Training Rate Choices

As with all neural networks both, the initial network parameters and the training rate
have to be chosen prior to training.

(i) Initial Network Parameters

The only adjustable network parameters for a regular Gaussian network are the weights
connecting each of the hidden nodes to the outputs. For most applications these are
initialized to small random numbers. Due to the well defined, localized area of response
pre-assigned to each of the hidden nodes, the initial value of these weights does not

determine the performance of nodes in the trained network, as in the case of the

-56-

3. Feedforward Networks-

multilayer perceptron. In other words, the 1mt1a1 chmce of parameters does not influence
‘the modellmg capability of the network

EAIER T S

(ii) Training Rate

Figure 3.23 shows the convergence of a 1-5-1 multilayer perceptron with identical initial
conditions for different training rates.

As shown the rms error declines steadily an ERROR_PROBRESSION

to the final minimum for a training rate of

0.02. The network does however learn
much faster for a value of 0.2, for which
the final minimum is reached after one

tenth of the number of training samples.

As illustrated, a further increase of the
training rate to 2.0 leads to oscillations
i.e. the error does not converge and the

system borders on instability.

© o o 0 b O © ©

As >before this example was not included Figﬁre '3.2'3 _ Effeét of Training Rate
to recommend an optimal training rate,

_ since this depends on the underlying function as well as the format i in which the training
data is presented (for slow varying input signals only small parameters lead to
convergence), but rather to show that the network converges for all, except very large
training rates.

Both, the initial choice of weights as well as the training rate are thus not as critical for
regular Gaussian networks as they are for multilayer perceptrons.

(e) Number of Hidden Nodes

In the evaluation of multilayer perceptrons it was shown that such a structure only
utilizes the number of hidden nodes required to approximate the underlying function and
that the addition of further nodes does not improve the model.

This is not the case for regular Gaussian networks, where each node is assigned a certain
input partition prior to training and hence all hidden nodes are employed in the model.
Figures 3.24(a) and (b) below show the resulting approximation and node contribution
for regular Gaussian networks containing five and ten hidden nodes respectively.

-57-

Neural Networks in Control Engineering

FUNCTION AND NETIJOQK ﬁPDQOXINﬁTIUN

CONTRIBUTION OF INDIUIDUHL NODES

ou tput ou tput

; ; input
g.0 g.4 0.8

Figure 3.24(a) - Five Node Approximation

FUNCTION ANO NETLIOQK ﬁDDQOXIHﬁTION

ou tput

CONTQIBUTION oF INDIUIDUﬁL NUDES

output

input | _
oG 0.2

0.0 0.3

Figure 3.24(b) - Ten Node Approximation

As shown, all nodes are utilized in both networks and the only difference is a finer
resolution of the input space for the ’ten hidden node’ network.

(f) Network Inflexibility and Size

Although many of the advantages of regular Gaussian networks over multilayer
perceptrons, are due to predetermined fixed positions and bandwidths of the hidden
nodes, this rigid structure also has drawbacks. One of the main disadvantages associated
with this inflexible topology is that the fixed position and width of the Gaussians might
not be optimal for the underlying function, hence forcing the network to compromise
even though a better approximation could be achieved with the same number of hidden
nodes.

This is illustrated in figure 3.25 below, where the output of a trained 1-8-1 network is
shown together with the underlying function.

-58-

3. Feedforward Networks

__FUNCTION AaNO NETUOQK HDDQOXIMHTIUN ; "~ CONTRIBUTION OF INDIUIDUHL NOBES

output : ; R output

7S+
.50+

- 254,

G

Figure 3.25 - Regular Gaussian NetWork Inflexibility

The poor performance near -0.8 could easily be resolved if the network had the flexibility
to shift the center and modify the bandwidth of the node labeled node 2 on the right hand
plot. Due to the fixed arrangement of centers and bandwidths for these networks, such a
solution is not feasible and more hidden nodes would have to be employed, if a more
accurate model is required.

Whilst this approach, of increasing the number of nodes until satisfactory accuracy is
achieved, is acceptable for single input systems, it becomes a problem for networks with
more than one dimension. Since for regular Gaussian networks the number of nodes
required to achieve a certain resolution per input dimension grows exponentxally as a
function of the number of inputs, higher dimension structures have to be limited to few
nodes per input dimension in order to keep the number of nodes within manageable
limits. This restriction might in turn compromise the modelling performance of the
network as illustrated in the above example. \

(g) Network Interpref,ation

Unlike the multilayer perceptron for which both, the storage of a priori knowledge and
- extraction of information from the network were not fea51ble, the regular Gaussian
network is relatively easy to initialize and interpret.

Again this is due to the well defined partmonmg of the input space. The weight between
each hidden node and the output(s) is a direct reflection of the modelled function output
at the center of this node and can be used to both, initialize an untramed network and
obtain information about the modelled function in a certain region after training
(provided the mterpolatlon of neighboring nodes is taken into con51derat10n)

A further benefit of the well defined structured topology of regular Gaussian networks is
their similarity with fuzzy inference systems. This link between seIf-adJustlng, learning
and rule-based systems is currently receiving considerable interest [35] and might in
future provide other, more appropriate methods for storing and extracting knowledge.

-59-

Neural Networks in Control Engineering

(h) Computational Effort and Ease of Use
(i) Computational Effort

Although the forward propagation algorithm for regular Gaussian networks is not
complex, it is computationally intensive since the distance from the center of each hidden
node, rather than the actual input vector is used. The problem is particularly evident for
multi-input systems. The training algorithm on the other hand, is very fast and robust-and
compensates somewhat for the slow forward propagation, rendering the combined system
suitable for on-line implementation on real-time systems.

(ii) Ease of Use

In the above evaluation of regular Gaussian networks it was shown that these networks
are very robust, converge for almost any choice of parameters and are suitable for true
on-line learning. In addition these networks utilize all available hidden nodes and store
information in an accessible format, allowing easy interpretation and interrogation of the
network. This type of network is hence easy to use and does not require an in-depth
understanding of neural networks.

The above assessment of regular Gaussian networks illustrated that despite several
drawbacks, these networks are capable of nonlinear modelling and overcome some of the
problems experienced with multilayer perceptrons discussed in the previous section.

3.4 DISCUSSION

The suitability of two typical feedforward networks for nonlinear modelling was analyzed in
this chapter. This subsection summarizes the main results of this evaluation and highlights
one further drawback of all feedforward networks. ’

3.4.1 A COMPARISON OF MULTILAYER PERCEPTRONS AND REGULAR
GAUSSIAN NETWORKS

Both types of network perform poor extrapolation and only accomplish satisfactory
interpolation if the local islands of training data can be incorporated into one node.

Due to the local interpretation of inputs in the regular Gaussian network, this structure is
more suited for true on-line learning, does not forger when trained in localized regions,
utilizes all its available nodes (independent of the initial parameter choices) and lends
itself for storing and extracting knowledge.

3. Feefiforward Networks

-Desplte these advantages the inflexible regular Gaussian‘topology can lead to subopnmal
results and becomes 1mpract1¢a1 for high resolution mulu—mput systems due to the large
number of hidden nodes required for such a system. A more adaptable structure, such as
that of the mumlayer perceptron may therefore be more appropriate for such
apphcauons '

The tests performed in the assessment of the two structures do suggest that the loss in
flexibility in a regular Gaussian network is compensated for by its robust performance and
that these networks are therefore more suitable for the apphcatxon considered in thls
study.

~ 3.4.2 THE LACK OF DYNAMICS IN FEEDFORWARD NETWORKS

This section highlights one common limitation shared by all feedforward neural network
models of dynamic systems. Since feedforward neural networks propagate an input vector
in one direction through each of the layers to prodice an output, these structures possess
no internal dynamics. In other words, the network can only utilize information contained
in the current input vector to generate the output and has no access to previous inputs,
outputs or internal values. ‘ |

For models of dynamic systems, in which the output(s) is (are) a function of current and
previous inputs as well as previous outputs, this implies that the order of the system
(number of previous inputs and outputs required) has to be known prior to training and
that-all these previous values have to be included in the network input vector.

The lack of dynamics in these networks also implies that the network can only predict one
step ahead and that feedforward neural network models are therefore not suited as off-
line models, unless previous network predictions are re-utilized as network inputs. Such a
feedforward structure with feedback as well as several other attempts to mtroduce
dynamic behavior into neural networks, are investigated in the following chapter

'REFERENCES

1.... .- Rosenblatt F., "PRINCIPLES OF NEURODYNAMICS: PERCEPTRONS AND THE THEORY
OF BRAIN MECHANISMS", Washington, DC:’Sparta Books, 1962.

2......Rumelhart D.E., McClelland J.L. and ‘the PDP Research group, "PARALLEL:
DISTRIBUTED PROCESSING - Exploration in the Microstructure of
Cognition, Volume 1: Foundations™, Cambridge, MA: MIT Press, 1986.

-61 -

Neural Networks in Control Engineering

3......Hornik K., Stinchcombe M. and White H., "MULTILAYER FEEDFORWARD
NETWORKS ARE UNIVERSAL APPROXIMATORS", Neural Networks, Vol. 2, 1989,
Pp. 359-366.

4......De Villiers J. and Barnard E., "BACKPROPAGATION NEURAL NETS WITH ONE

AND TWO HIDDEN LAYERS", IEEE Transactions on Neural Networks, Vol. 4,
No. 1, 1992, pp. 136-141.

5......8render K.K., "EFFICIENT ACTIVATION FUNCTIONS FOR THE BACK-PROPAGATION
NEURAL NETWORK", presented at IJCNN 1991.

6......Wray J. and Green G.G.R. , "HOW NEURAL NETWORKS WORK: THE MATHEMATICS
OF NETWORKS USED TO SOLVE STANDARD ENGINEERING PROBLEMS", ACC 1991,
pp. 2311-2313.

7.¢¢...Cybenko G., "APPROXIMATION BY SUPERPOSITIONS OF A SIGMOIDAL FUNCTION",
Mathematics of Control, Signals, and Systems, Vol. 2, 1989, pp. 303-
314. :

8......Watrous R. L., "LEARNING ALGORITHMS FOR CONNECTIONIST NETWORKS: APPLIED
GRADIENT METHODS OF NONLINEAR OPTIMIZATION", IICNN 1987, pp. I1I619-
11627. : :

9......Parker D.B. , "OPTIMAL ALGORITHMS FOR ADAPTIVE NETWORKS: SECOND ORDER

BACKPROPAGATION, SECOND ORDER DIRECT PROPAGATION, AND SECOND ORDER
HEBBIAN LEARNING", IICNN 1987, pp. II593-II600.

10.....Cater J.P., "SUCCESSFULLY USING LEARNING RATES OF 10 (AND GREATER) IN
BACK-PROPAGATION NETWORKS WITH THE HEURISTIC LEARNING ALGORITHM", IICNN
1987, pp. II645-II651.

11.....Weir M.K., "A METHOD FOR SELF-DETERMINATION OF ADAPTIVE LEARNING RATES
IN BACK PROPAGATION", Neural Networks, Vol. 4, 1991, pp. 371-379.

12.....Rigler A.K., Irvoine J.M. and Vogl T.P., "“RESCALING OF VARIABLES IN
BACK PROPAGATION LEARNING", Neural Networks, Vol. 4, 1991, pp. 225-229.

13.....Dahl E.D., "ACCELERATED LEARNING USING THE GENERALIZED DELTA RULE",
IICNN 1987, pp. II523-II530. :

14.....Shoemaker P.A., Carlin M.J. and Shimabukuro R.L., "BACK PROPAGATION
LEARNING WITH TRINARY QUANTIZATION OF WEIGHT UPDATES", Neural Networks,
vol. 4, 1991, pp. 231-241.

15.....Stornetta W.S. and Huberman B.A., "AN IMPROVED THREE-LAYER BACK
PROPAGATION ALGORITHM", IICNN 1987, pp. II637-1I643.

16.....Hirose Y., Yamashita K. and Hijiya S., "BACK-PROPAGATION ALGORITHM
’ WHICH VARIES THE NUMBER OF HIDDEN UNITS", Neural Networks, Vol. 4,
1991, pp. 61-66. :

17.....Bremermann H.J. and Anderson R.W., "AN ALTERNATIVE TO BACK-PROPAGATION:
A SIMPLE‘RULE OF SYNAPTIC MODIFICATION FOR NEURAL NET TRAINING AND
MEMORY", Internal Report, Center for Pure and Applied Mathematics,
.University of California, Berkeley, 1990.

-62-

3. Feedforward Networks

"18.....Bremermann. H.J. and Anderson R.W., “"HOW THE BRAIN ADJUSTS SYNAPSES -
MAYBE", preprint, to appear in "FESTSCHRIFT FOR WOODY BLEDSCE".
19.....Willis M.J., Di Massimo C., Montague G.A., Tham M.T. and Morris A.J.,

"ARTIFICIAL NEURAL NETWORKS IN PROCESS ENGINEERING", IEE Proceedings~D,

Vol. 138, No. 3, 1991, pp. 256-266.

N

‘20.....Kirkpatrick 8., Gelatt C.D. and Vecchi M.P., "OPTIMIZATION BY SIMULATED
ANNEALING", Science, Vol. 220, 1983, pp. 671-680,

21.....Hopfield J.J. and Tank D.W., “NEURAL COMPUTATION OF DECISIONS IN
OPTIMIZATION PROBLEMS", Biological Cybernetics, Vol. 52, 1985, pp. 141~

152.

22.....Ingman D. and Merlis Y., "LOCAL MINIMUM ESCAPE USING THERMODYNAMIC
PROPERTIES OF NEURAL NETWORKS", Neural Networks, Vol. 4, 1991, pp. 395~
404.

- 23.....0in 8., Su H. and McAvoy T., "COMPARISON OF FOUR NEURAL NET LEARNING
METHODS FOR DYNAMIC SYSTEM IDENTIFICATION", IEEE Transactions on Neural
~ Networks, Vol. 3, No. 1, 1992, pp. 122-130.

24.....Cybenco G., "APPROXIMATION BY SUPERPOSITION OF A SIGMOIDAL FUNCTION",
~ Math. Control Signals & Systems, Vol. 2, 1989, pp. 303-314.

25.....Trossbach W, and Qraae M., "INVESTIGATION INTC NEURAL NETWORKS FOR
CONTROL OF NON-LINEAR PROCESSES", presented at SACAC Tutorial and
Workshop on Neural Networks, Durban University, July 1991.

26.....Narendra K.S. and Parthasaraty K., "IDENTIFICATION AND CONTROL OF
DYNAMICAL SYSTEMS USING NEURAL NETWORKS®", IEEE Transactions on Neural
Networks, Vol. 1, No. 1, 1990, pp. 4-27,

27.....Youngjik L., Sang-Hoon ©. and Myung W.K., "THE >EFFECT GF INITIAL
WEIGHTS ON PREMATURE SATURATION IN BACK~PROPAGATION LEARNING", IJCNN
1991, pp. 1765-1770.

28.....Girosi F. and Poggio, "NETWORKS AND THE BEST APPROXIMATION PROPERTY",
Biological Cybernetics, 63, 1990, pp. 169-176. '

29.....Leonard J.A. and Kramer M.A., "RADIAL BASIS FUNCTION NETWORKS FOR
CLASSIFYING PROCESS FAULTS", IEEE Control Systems Magazine, April 1991,
pp. 31-38. :)

30.....Lee 8. and Kil R.M., "MULTILAYER FEEDFORWARD. POTENTIAL FUNCTION
NETWORK", pre-print, submitted to Neural Networks September 1989.

31...L,Moody T.J. and Darken C.J., "FAST LEARNING IN NETWORKS OF LOCALLY TUNED
' PROCESSING UNITS", Neural Computation, Vol. 1, 1989, pp. 151-160.

32.....8barbaro D. and Gawthrop P.J., "SELF-ORGANIZATION AND ADAPTION ’IN

GAUSSIAN NETWORKS", 9th IFAC/IFOR Symposium on Identification and
System Parameter Estimation, 1991. : . ’

-63-

Neural Networks in Control Engineering

33.....Chinrungrueng C. and Sequin C.H., "OPTIMAL ADAPTIVE K-MEANS ALGORITHM
WITH DYNAMIC ADJUSTMENT OF LEARNING RATE ", IJCNN 1991, pp. 1855-1862.

34..... Hunt K.J. and Sbarbaro D., "NEURAL. NETWORKS FOR - NONLINEAR INTERNAL
MODEL CONTROL", IEE Proceedings-D, Vol. 138, No. 5, 1991, pp. 431-438.

35.....Roger Jang J.S. and Sun C.T., "FUNCTIONAL EQUIVALENCE BETWEEN RADIAL
BASIS FUNCTION NETWORKS AND FUZZY INFERENCE SYSTEMS", 1EEE Transactions
on Neural Networks, Vol. 4, No. 1, 1993, pp. 156-159. : :

4. NETWORKS WITH DYNAMIC
'MODELLING CAPACITY

The dlSCUSSlOﬂ of feedforward networks in the prewous chapter illustrated their ability to
copy nonlinear input/output mappings but also accentuated their lack of dynamic response
as one of the drawbacks for their use as models of dynamic systems. Since this shortcoming
is inherent to the feedforward topology, more complex network structures are required for
dynamic modelling. '

This chapter starts with an overview of such networks, before introducing and evaluating
one of the better known topologies and training algorithms.

4.1 OVERVIEW

Due to the static behavior of feedforward networks the number of previous input(s) and

output(s), required to predict the next output(s), have to be identified prior to training and

the prediction horizon is furthermore limited to one sample interval. The former can be

overcome either if the system to be modelled-is well defined and understood or by adopting

a trial and error approach m which these numbers are varied until a satlsfactory result is

obtained. The limitation to one prediction implies however, that feedforward networks can
not be used as szand alone models without modifying their topology. Despite the fact that
both these reasons do not prevent the use of feedforward neural networks as part of a

control structure, they warrant an mvestxganon into other topologies which overcome these
limitations.

The lack of dynamic behavior in feedforward networks is due to the fact that information is
only propagated in a forward direction and hence none of the internal or external outputs
are retained and re-used when the next output is calculated. In order to include dynamic
behavior in these structures, some form of information storage is required. This is generally
accomplished using some form of feedback within the network i.e. the outputs of nodes are
fed back to be re-utilized as node inputs, thus ensuring that the network output is a function
of both the external inputs as well as the previous state of the network.

- These feedback connections, included for dynamic response, are time delayed (the previous
output is used to calculate the next output) and the resulting topology, hence also known as

time-lag recurrent structure, therefore produces a valid output vector, which incorporates
the current inputs as well as the previous state of the network, for each iteration.

The type of recurrent structure, referred to above, is not to be mistaken for the fully
connected associative memory topology (such as the Hopfield network), where all nodes are

- 65

Neural Networks in Control Engineering

interconnected and transmission along all connections is supposed to occur simultaneously.
The fact that the equations governing such structures have to be solved iteratively before
converging to the final stable network state (which is then used as valid output) and thus
produce a series of output vectors for each new input, is an undesirable side-effect due to
the sequential nature of digital computers, rather than a desired consequence of the
network topology. :

As with feedforward networks, many different topologies and optimization algorithms exist
- and the choice of network again requires a careful examination. The following subsections
introduce some of the approaches to date.

4.1.1 EXTERNAL RECURRENT NETWORKS

One approach to overcome the one step ahead limitation of feedforward networks is to
utilize time delayed versions of the network estimations, rather than the system outputs, in
the input vector. Once trained, such a structure could then be used as a stand alone model
for long term predictions since only the system input values have to be supplied.

(a) Topology

Figure 4.1 below shows this external recurrent topology, in which theoretically any type
of feedforward network can be utilized in the position indicated.

EXTERNAL RECURRENT NEURAL
NETWORK TOPOLOGY

time delay

previous
output(s)

system

> output(s)

current &
previous
inputs

feedforward network

Figure 4.1 - External Recurrent Topology

As illustrated, the output(s) of the feedforward network are fed back via a time delay, to
form part of the network’s input vector. Although a single time delay is depicted in figure
4.1 above, many training methods permit multiple delays per output if required.

- 66 -

4, Networks with Dynamic_ Modelling Capacity

- (b) Network Trammg

; M t FR T

Despite the fact that the external recurrent topology is constructed around a standard
feedforward network, the algorithms used to train the feedforward network are not
applicable, with’out modification. This is due to the fact that a new source of error has:
been introduced and even though the network is still expected to learn the same
input/ouput mapping as in the standard feedforward topology, convergence is no longer
guaranteed.

Training algorithms for feedforward networks presume a correct input vector i.e. the
“algorithms are based on the assumption that any error between actual and desired
output(s) is solely due to network parameters and not due to inaccuracies in the input
vector. This does not apply to the topology shown in figure 4.1, where any error in the
network outputs becomes an error in the input vector for the subsequent iteration and
therefore produces an invalid input/output pa1r which distorts the network mapping and

hence comphcates learning.

Several modiﬁcations to conventional feedforward training methods and algorithms have
been suggested to overcome this problem:

Narendra et al [1] for example, propose that a multilayer perceptron be trained for use
in the external recurrent topology using .standard backpropagation but that such
training be performed in two stages. Initially the standard series-parallel structure, in
which true system outputs are utilized as network inputs, is employed. Once the
network has converged sufficiently, further training is performed in the paraliel
conﬁguratlon in wh1ch the network outputs, rather than the system outputs, are
employed.

A mathematically more correct method, in which the network is trained entirely in the
external recurrent configuration, is known as backpropagation through time. This
method has its origins in the work by Rumelhart et al [2], who unfold the recurrent
structure into a feedforward network growing by an extra layer for each sample interval;
a method only suitable for finite time series. The algorithm was formalized for the
‘general external recurrent structure depicted in figure 4.1 by Werbos [3], using his
ordered derivative approach. In their study of neural network models for a biological
wastewater treatment plant, Su and McAvoy [4] employ this training algorithm to
compare the performance of an external recurrent network with that of a feedforward
structure. ~

(c) Discussion

- The external recurrent structure can overcome the one step ahead limitation of
feedforward networks as is evident from the work of Su and McAvoy mentioned above,
in which they show that the recurrently trained structure performs better for long term
prediction. The approach does however, not eliminate the need to identify the number of

-67-

Neural Networks in Control Eagineering

delayed dutputs that have to be included in the input vector. In other words, the designer
still has to identify the number of feedback requirements before initializing and training
the network.

In their comparison Su and McAvoy furthermore show that for one step ahead

prediction, a recurrently trained network can not match the accuracy of the

feedforwardly trained structure. Since most control structures require high accuracy and

are only evaluated sample by sample, this suggests that external recurrent networks might
find more use as off-line models, rather than as part of a control loop.

4.1.2 NETWORKS WITH DYNAMIC NODES

In the external recurrent topology described previously, the feedback connections extend
from the network outputs back to its inputs and hence only the final network output values
are preserved for subsequent iterations. This subsection introduces an alternative
approach in which the output of each individual node is dynamic and each node thus has a
time delayed feedback connection to itself. '

(a) Topology

Figure 4.2 below depicts the structure of a feedforward network with dynamic nodes.

DYNAMIC NEURAL NETWORK
wene 2 (D)-[E e

inputs

-0 D-EleossD-[E]-
~© D-[E ONSE

. .
* *
= O L] *
°
input @ - C -
layer WH‘ @ - E -
. . 1st order ®° output units
sigmoids
responses
hidden units

Figure 4.2 - Networks with Dynamic Nodes

This type of network, suggested by Willis et al [s] is in effect a multilayer perceptron, in
which each node in all the hidden layers and the output layer is augmented by a first
order response, for which the time constant has to be determined as part of the training

" 4. Networks with Dynamic Modelling Capacity

| process. The output of this type of network is therefore the sum ‘of a number of nonlinear
first order responses. , il

Even though only a single hidden layer is shown in figure 4.2, the network’s modelling
~ ability can be increased further by adding more layers with dynamic nodes. Willis et al
for example, usually implement a network with two hidden layers in their studies [5]{6][7]
in which they employ this topology to model various highly nonlinear processes such as
biomass concentration in a fermenter and product composition in a distillation column.

(b) Network Training

Since the filter time constant for each of the nodes has to be determined as part of the
training process, the backpropagation algorithm is not suitable for these modified
perceptrons. In their studies, Willis et al use the chemotaxis algorithm (discussed in the
previous chapter), which implements a directed search optimization, independent of any
network equation or gradient and hence also independent of the network topology.

(c) Discussion

Although the idea of compounding each of the nodes in a feedforward network with a
first order response is biologically plausible and provides the system with dynamic
capability, the approach still has several shortcomings.

The information retained in the network for subsequent iterations is not shared amongst
all nodes and does not reappear as network inputs. In other words, the previous state of a
.node is only available to that node, for subsequent iterations and hence none of the
retained information is shared directly. The above topology is therefore not truly
recurrent but rather a feedforward type network with some dynamxc capability.

An examination of this structure furthermore raises the question, whether such an
attempt of modelling the system as a number of nonlinear first order responses could not
be improved by extending the capability of each node to include dead time, as well as
oscillatory response (i.e. a complex pole).

The most serious restriction of the above topology is nevertheless the lack of a pattern
training algorithm which would allow on-line optimization of these networks. As pointed
out in chapter three, the chemotaxis optimization technique is not suited for pattérn
learning since the effect of a change in parameters has to be evaluated over the entire
training set.

-69-

Neural Networks in Coutrol Engineering

4.1.3 FULLY RECURRENT NETWORKS

In the approaches discussed, the information retained in the network-was either limited to
a few outputs (external recurrent structure) or restricted to a subsection of the network
(dynamic node network). For the fully recurrent topology on the other hand, the output of
each node is re-used in subsequent iterations and forms a scaled input to all other nodes.
This implies, that the complete state of the network can be re-used by each node in the
subsequent iteration.

(a) Topology

The structure of a node for a fully recurrent network is illustrated in figure 4.3 below.

- NODE STRUCTURE FOR FULLY
RECURRENT TOPOLOGY

to all other
nodes in the
network

time delay

Z

node inputs
consisting of
external 'mputs
and delayed

outputs of gmeg/ node output

- processing nodes may be utilised
as network output

Flgure 4.3 - Fully Recurrent Network Node
Structure

As shown, the interconnections of the network are such that each node receives the
previous outputs from all other nodes, together with all external network inputs, as its
inputs. In such a structure the network can no longer be separated into distinct layers and
nodes are classified as inpur if they serve to distribute an external input signal, as output if
their output is used as one of the system outputs and as hidden otherwise. The output
nodes are a subset of the processing nodes which implies that the structure must contain

at least as many nodes as outputs required.

Since each of the processing nodes receives all inputs as well as the previous outputs of
all processing nodes, the input vector is a combination of external inputs as well as the

-70-

4, Networks with Dynannc Modelling Capacity

- previous state of the network. This is known as the fully interconnected or fully recurrent

~ structure in which the entire network state can be. re-used in the subsequent iteration.
Due to the fact that the recurrent connectxons are furthermore adjustable, the network
can be trained to select or learn the required delayed output values and internal states
required for the next iteration. The fully recurrent structure is therefore extremely
flexible and requires little designer input.

(b) Network Training

Due to the high degree of feedback or recurrent connectivity, the fully recurrent
structure requires an optimization method, which includes and compensates for the
iterative nature, in which the error of previous outputs influences the result of
subsequent iterations.

Although most early recurrent network investigations employed search based algorithms
(which are only suitable for batch and hence off-line training) a number of gradient
based training methods have been developed in recent years. Of these, the method
suggested by Williams and Zipser [8] is probably the best known although other
algorithms such as Tsung [9] and Sun et al [10] are also being used [11]. These algorithms
- apply a gradient descent type optimization and can therefore be applied on-line, in a
pattern learning structure, much like the gradient based algorithms for feedforward
networks. The William and Zipser algorithm is discussed in detail later in this chapter. '

(c) Discussion

The time-lag, fully recurrent structure is clearly the most versatile and suitable of the
three topologies introduced. It theoretically allows a black box approach in which the
network is merely supplied with the current system input(s) and desired output(s) from
‘which it then establishes all the required feedback connections, thus becoming a true
dynamic model. Due to the internal feedback connections such a trained network can
then be utilized as both an on- -line model within a control structure and for stand alone,
~ off-line simulation.

The fully recurrent structure could therefore overcome the one-step ahead limitation and
eliminate the need to identify the number of delayed input(s) and output(s) required.
These features, together with the fact that algorithms exist to train these networks on-
line, warrant a more detailed evaluation of this type of network.

-71 -

Neural Networks in Control Engineering

4.2 EVALUATION OF A FULLY RECURRENT NETWORK

The topology and training algorithm suggested by Williams and Zipser [8] is evaluated in
this subsection. Although all the criteria established for the assessment of feedforward
topologies still apply and are included in the discussion, the aim is to establish whether
these structures are more suitable as models of dynamic systems than the feedforward
networks introduced in the previous chapter. Printouts of all relevant programs are included
in Appendix II.

4.2.1 NETWORK TOPOLOGY
The fully recurrent structure as or Williams and Zipser, shown in figure 4.4 below, is very

similar to the general topology described previously (figure 4.3).

3 NODE, 2 INPUT FULLY RECURRENT
TIME-LAG NETWORK STRUCTURE

all forward

internal i
connections
feedback)
< have a weight
connections

time processing
@ () D@ @) e
node outputs chosen hidden
node

as network outputs

Figure 4.4 - Williams & Zipser Recurrent Network Structure

As indicated, all processing nodes utilize the logistic squashing function that is also used in
the multilayer perceptron. Although other semi-linear functions can be employed, the
clamping nature of the sigmoidal function has an important stabilizing effect in this
structure with possible positive feedback connections. The resulting similarity with the
multilayer perceptron is mentioned in the following evaluation.

Since the weights of the feedback connections in the above structure have to be
established as part of the training, this topology requires a training algorithm in which the
effect of re-iterated errors are either compensated for or eliminated.

4. Networks with Dynamic Modelling Capacity

" 4.2.2 TRAINING ALGORITHM

This subsection introduces the gradientrdescent learning -algorithm, as suggested by
Williams and Zipser, for the fully recurrent structure above . As mentioned earlier, it is
one of the few optimization methods for these networks, suitable for pattern learning and

- therefore applicable in an on-line configuration.

‘The description below shows the equations govemmg the network output generatlon and
training. A detailed mathematical treatment can be found in [&].

The equations below assume a network thh m external inputs and n processxng
units. :
1. Standard Traxnxng Algorxthm

- Using the notation as per Williams et al where
y{(t) - the n-element output vector at time t
x(t) - the m-element external input vector at time t

z(t) - a concatenation of y(t) and x(t) i.e.’
Y (t) if k€U

t =
Zk x x (t) if k€I

{(The order ofrinputs and outputs was changed from that suggested by .)
(Wwilliams and Zipser in order to simplify the calculation of indices in)
(the software but is not significant for the functioning of the algorithm.)

- The weights connecting each of the units with each other and each of the
inputs to each of the units can thenkbe collected in a single n X (n+m)

matrix W.
-~ A bias or coffset for each unxt is provided by including an external input

which is always 1. :

- Also let U denote the set of indices k for which Zy is the output of a
processing unit, I for which zy is an external input and T the subset of v
for which zy is furthermore an external output.

- The forward propagation of the network can then be calculated as follows:
the input to each processing unit k is given by

sx{t) = fi:wklzl(t} l€uur

from which the next output yyx is then generated by

yx(t+l) = fk(sk(t)) where fy () is the activation function for that
unit. {(In this evaluatxon only sigmoids
are used.)
- Lettxng dk(t) denote the desired output of the kth unit at time t, the

error vector e(t) is given by
{ g (£)-ye () if KET(t)

e(t) = :
otherwise

where T is a function of time thus provxding the possxbility of varying
the processing units chosen as external outputs.

-73-

Neural Networks in Control Engineering

. = Defining the total network error at time t as
J(e) = HE(e())? x€Ev

Williams and Zipser derive a weight update rule which implements a
gradient decent i.e. : dJ(t)
Awij (t) o« -

dwij

k
This is achieved by defining variables Pij for k€U, i€U, jEUUI
where =)

' 1
Pij(t+l) = fy(sk(t))| Pwk1pij(t) + dixzj(t)] l1€v

where § jpdenotes the Kronecker delta.

From this the weight update is then calculated as follows
.
Aw; (L) = gze:?(t)l?ij(t)

- As with the backpropagation algorithm, all the weight updates should be
collected and only implemented once all training samples have been
presented in order to implement a true gradient decent, but can be applied
after each iteration provided the training rate a is sufficiently small.

- The above method describes a training algorithm in which the effect of re-
iterated errors is compensated for.

- Another possibility is to eliminate such errors by using the desired
rather than the actual output for subsequent iterations as described
below.

2. Teacher-Forced Training

- For this variation of the above algorithm the original z is replaced by

(t) if KET(t)
zx(t) = { %y

Yk (t) if KEUET(t)
xe (t) if k€I

This modification ensures that any errors in the external output units are
not re-iterated and hence the corresponding dynamic learning variables for
these nodes are zero i.e. the update rule becomes.

k . 1l
pij(t+1) = fk(sk(t)) {:Wl‘lpij (t) + 5ik2j(t)] IEUET(t)

In order to select one of the two training algorithms for the evaluation, their dynamic
modelling ability was examined using data generated by a recurrent network with known
parameters. A small network with a single processing/output node and one input was
employed for the evaluation. To generate the training and test data, this network was then
excited using random step perturbations and the resulting input and output sequences are
shown in figure 4.5. Of the 1000 point data sequence, only the first half was used during
training, whilst the entire series was employed to evaluate the accuracy of the trained
network model.

-74-

4 4. Networks with Dynamic Modelling Capacity

INPUT SEQ%IENE}E}\FOR TRﬁI?INS DATA
ERE e U A . [

I

X L i i " i 3 i " n
] 100 z00 300 00 560 600" 700 00 550)
) DUTRUT SEQUENCE FOR TRAINING DATA
output ‘)
1.004 o . -y ,.Ld_ ' " '
0.804 lj | [/ ULU
1 0.604 V
0.404 k
N i [‘)
0.204 u \ N L
h g v [
0.00+5 o0 260 500 A0 S0 600 700 560 SO0

Figure 4.5 - Recurrent Network Training Data

One of the problems experienced, particularly with the teacher-forced version of the
training algorithm, was that when using a fixed training rate, the rms error decreased
initially as expected but then started to increase, before settling to a new value above the
previously achieved minimum. An example of this profile showing the rms error versus
_ training iterations is included in figure 4.6 below.

s error

RHMS EAQQDQ PROGRESSION DURING LEARNING

40 60 . BO 100 120 140

160

Figure 4.6 - RMS Progression for Teacher Forced Learning with Fixed Learning Rate

-75-

Neural Networks in Control Engineering

Although this increase in the rms error for fixed learning rates can also be observed with
the normal learning algorithm, it generally only occurs much later during the training cycle
and is of negligible magnitude. The type of profile shown, suggests that the training rate is
too high, thus causing an overshoot and preventing the algorithm from settling closer to
the actual minimum. To overcome this problem,-a smaller fixed training rate as well as an
automatic training rate adjustment procedure (in which the training rate is halved
whenever the rms error increases and new weights are only accepted if they result in a
lower rms) were tried. Only the automatic training rate adjustment produced better results
and it was applied for all teacher force learning.

The two versions of the algorithm were then used to train a network of the same structure
as that used to generate the training data. The training was performed for five different
sets of initial conditions (weights) and in each case training was terminated after one
hundred iterations at which stage the algorithms had usually converged. The desired and
network output for one such training run is depicted in figure 4.7. The figure shows these
signals prior to training (a), after standard training (b) and after teacher-force training (c).

DESIvRED = AND NEURAL NETHORK OUTRUTS BEFORE TRAINING

output ms error
- des ired 0.360817 |
1.00l " netuwork .
o [
0.80+ {
0.60+ f
o.solll || | f J \
\
0.204 L u J L
[i ;
o . oc Fe - b i L. L 4 3. 3. i n
2] 100 200 200 400 500 600 700 800 900
Figure 4.7(a) - Desired and Network Outputs before Training
DESIRED - AND NEURAL NETWORK OUTRUTS AFTER NORMAL TRAINING
output rms err,
| —destrea .) 0.000052
1.004 natwork training M no traz"ning 7
ol H [’lJ r },‘ ’U—LU,
.
’
0.804+ { [!
-
5
»
0.604 '
]
s
0.404 :
. [. \
\ L LI
0.20+ ' . u L l}" \ ! |
]
r K L
0.00 - : 4 . 4 4 ;) 4 L
] 100 200 300 400 S00 600 700 800 900
Figure 4.7(b) - Desired and Network Output after Normal Training (Indistinguishable)

-76-

. R 3
Sl

4, Networks with Dynamic Modelling Capacity

DESIRED - ANO NEURAL NETHORK QUTPUTS AFTER FORCE LEARNING

output . ‘ rms err.,
—dasired) : ‘ 0.027495
.... netuork training R no training

-~

iy

0.604+ q | : E E i

‘.JH

S

L 2 A R T AR 220 2 2 2 8 7)
[etk

| 0.4a04 Ej E | U t d
‘\]‘ t H) § . g
0.204 : : H i
/ f L
) 3 L
0.00 i i N 4 o 4 i ") N n
00+ 160 =50 300 300 540" (Zv1) 700 §00 500

Figure 4.7(c) - Desired and Network Outputs after Teacher-Force Training

As shown both algorithms produce a model which follows the desired output, but whilst
desired and network outputs are still distinguishable for the teacher-force trained network
[4.7(c)], they are practically identical after standard training [4.7(b)]. This outcome was the
same for all five training runs and despite the different starting points and various training
rates, - the teacher force version never converged to the same level of accuracy as the
standard version of the algorithm. Figure 4.8 below shows the network parameters used to
generate the training data, together with the estimates produced by the two versions for
each of the five training runs.

- 04
00+
« B0
» 00
« B0
- 00

B EEREEEEER

Figure 4.8 - Actual Parameters and Estimates

As indicated, the standard training algorithm converged towards the actual (act)
parameters i.e. the global minimum for each run, whereas the teacher force method got
stuck in a local minimum for each training cycle, despite the differing initial conditions.

Whilst these results are not intended to discredit the validity and usefulness of the teacher
force training method, they suggest that although the former might be useful in situations
where the network has to learn marginally stable behavior such as to model an oscillator
[8], the standard version of the training algorithm is more suited to the type of dynamic
modelling investigated in this study. All training in the evaluation was therefore performed
using standard recurrent learning. ’

.77 -

Neural Networks in Control Engineering

4.2.3 NONLINEAR MODELLING CAPABILITY A COMPARISON WITH
FEEDFORWARD NETWORKS

" The evaluation of recurrent networks (as per Williams and Zipser) in this subsection
focuses on a comparison with feedforward networks, in particular regular Gaussian
networks, rather than assessing their capability in isolation. :

Due to the use of the same logistic squashing function as in the multilayer perceptron, the
recurrent structure furthermore shares many of the problems discussed for the perceptron
in the previous chapter. Among these are the inability to interpolate and extrapolate, to
learn without destroying previous knowledge and to utilize all the nodes provided. The
complex structure of the recurrent structure is furthermore difficult to analyze, which
makes the initialization and/or interpretation of these networks even more complex than

* for the multilayer perceptron. ‘

Since the recurrent topology requires training data to be presented in chronological order
the random/non-random training discussed for feedforward networks is not applicable.

(a) Test Setup

The structure of a fully recurrent network with its internal feedback connections would
be underutilized in a single-valued mapping investigation as performed for the
feedforward structures in the previous chapter and hence all tests are performed using
data from dynamic systems, such that the network can utilize these feedbacks.

The desired outputs were furthermore scaled to fall into the linear interval of the logistic
squashing function. This was done to prevent the output node of the reCurrent structure
from performing any nonlinear modelling, which could lead to saturation and
compromise the network performance. In other words, the output node performs as a
linear combiner of all other nodes, much like the output nodes in feedforward networks.
Since the regular Gaussian network (RGN) utilizes linear output nodes, the range of
outputs is not s1gmﬁcant and hence the same scaled values were utilized.

In the RGN topology input values are not re-scaled internally but are expected to lie
~ within the unit cube. Any output, included in the input vector for these networks, was
therefore re-scaled prior to use in order to ensure full utilization of the RGN network.

The data for each test was generated by performing random step perturbations of the
input variable every 10 or 20 time steps. In each case a sequence of 1000 data samples
was produced. Of these, only the first half was used for training, whilst the entire set was
used for testing. The rms error shown, was calculated for the entire set of samples.

-78-

4. Networks with Dynamic Modelling Capacity

(b) Learning the Required Feedba__gk :Cgpnections

As mentioned earlier, one of the main advantages fully recurrent structures enjoy over
the feedforward topology is their ability to learn the required feedback combinations. In
other words, the basic framework includes all the required connections and weights for
feedback and hence unlike feedforward networks, no estimation of the number of
previous inputs and outputs is required. In order to illustrate this advantage, a recurrent

~ and RGN network were trained to approximate a simple linear system with complex pole
(i.e. the two previous output values are required to produce the next estimate).
The two-node recurrent network, which has the capability to twice delay the output
within its own structure, learns the required connections to become a near perfect model
as shown in figure 4.9(a) below..

; DESIRED - AND NEURAL NETHORK OUTRPUTS rms error
[output training no training 0.00011
— dasiraed []
0.5754 — network :
]
0.5504 :
1
0.35254 :
]
0.500
0.475¢
0.4504
Ca
0.4254 }[H
:
\ A n
0.400+5 160 _ a6¢ : 5
Figure 4.9(a) - Recurrent Model for Linear Process (Indistinguishable)

Unlike the recurrent structure above, the RGN network has no form of feedback and
hence requires that the essential number of previous inputs and outputs (to be included

in the input vector) are estimated. Any mistakes in these estimations can seriously
impede the network’s modelling capability as illustrated in figure 4.9(b), which shows the
approximation produced by a regular Gaussian network in which only the most recent
output value is included as input (i.e. the network can only perform a first order
approximation). '

DESIRED - AND NEURAL NETHWORK OUTPUTS rms _arror
0.00424

Toutput &training no training

0.45.-HJ | O

o
.....E,...:’“:é....'......

Figure 4.9(b) - First Order RGN Model for Linear Process

-79-

Neursal Networks in Control Engineering

The restricted modelling capacity is particularly evident in the transient phases and can
only be overcome by also including the twice-delayed output in the input vector. The
approximation produced by this arrangement is depicted in figure 4.9(c).

ODESIRED ~ AND NEURAL NETWORK OUTRUTS

Toutput training ; no training

N

= W T
' ;

o ito =60 560 300 586] 760 800 960

T peme—

0.45¢1

Figure 4.9(c) - Second Order RGN Model for Linear Process

As shown, this configuration produces a more accurate model. The fact that the rms

- error is not quite as low as for the recurrent network is due to the fixed RGN structure,
which is less suited to model exact linear relationships than the flexible recurrent
topology. : '

Besides the ability to learn the required feedback connections, recurrent networks are
also more suitable as stand alone models. This is because these structures are trained in
the so called parallel mode where only the system input and desired output are utilized
during training. The recurrent network therefore needs no information from the actual’
system and can be expected to perform with the same accuracy if used as a stand alone
model. For the RGN on the other hand, the serial-parallel structure, for which all
previous output values are taken from the actual system rather than the network
estimations, is used. Since these networks are not trained to operate in the parallel mode,
their performance usually deteriorates if used in the external recurrent configuration
discussed earlier, since any errors are re-introduced as incorrect inputs for subsequent
iterations. For the RGN (figure 4.9(c)) the rms error more than doubles, if the network is
employed in a stand alone (external recurrent) configuration.

‘Despite the above advantage, recurrent networks have a.number of drawbacks as
discussed in the following subsections.

4. Networks with Dynamic Modelling Capacity

(c) Local Minima and Insufficient Convergence

" One of the main problems with fully recurrent networks is their incapability to .
consistently convergence. This problem is not unique to the Williams and Zipser training
~ algorithm but rather a common problem with most recurrent structures. Su and McAvoy -
for example, employ random search techniques as part of the training in their study of
- external recurrent networks.

The lack of convergence is illustrated in the following example in which both, a fully
recurrent and a regular Gaussian network were trained to approximate a nonlinear

system governed by the following equation.
_ : 1

Ypep = ——— + (“n)a
1 + (yp)

As before, the first half of a 1000 point sequence was generated to train and test the
networks and again the output was scaled into the linear range of the sigmoid.

Figure 4.10(a) below shows the system output together with the estimation produced by a
four node recurrent network.

- DESIRED - AND NEUQhL NETHORK QUTPUTS
output training ‘no training ms error
— desired " 0.090805
0.575+ network : —
]
0.5504 : 1]
]
0.5254 H
i
0.5004 \a
0.a7sl ¢
|]
0 .4504 :
|]
 0.425] o
, . \ . - , . .)
0.400+5 160 Z60__ 360 300 560660 750 8OO 900
- Figure 4.10(a) - Recurrent Network for Nonlinear System ' /

As shown, the network follows the overall trend of the system but fails to capture its
nonlinear and dynamic characteristics. This lack of convergence for the recurrent
structure could not be improved by changing the initial conditions, allowing more
training iterations or even increasing the number of processing'nodés to more than
double.

A RGN with two inputs and nine hidden nodes on the other hand, rapidly learns to
approximate the same system as show in figure 4.10(b) below.

-81-

Neural Networks in Control Engineering

DESIRED - AND NEURAL NETHORK OUTPUTS

output .
— dhen i red traini t < .
----- desire ainina no training r‘s!:logrz'agr

"

: . o _n
0.40+5 100 200 300 300 [7] 600 60 BH0 9500

Figure 4.10(b) - RCN Model for Nonlinear System

These results suggest that despite its limiting effects, the rigid structure of regular
Gaussian networks does ensure a certain level of convergence, whilst the much more
flexible recurrent topology is more likely to get trapped in local minima and not to
converge sufﬁcnently '

Although an increase in the number of nodes and more training iterations did not

- produce a better model.in this example, it might still be argued that a sufficiently large
recurrent network with sufficiently long training will produce more satisfactory results.
Due to the high computing requirements of recurrent training algorithms such an
approach is however not practical, as shown in the following subsection.

(d) Timing Considerations

‘As mentioned earlier, any training algorithm for fully recurrent structures has to include
and compensate for feeding back errors via its internal feedback connections. Although
this is possible, as illustrated by the Williams and Zipser algorithm, it greatly increases

" the computational requirements of these training algorithms, when compared with those
for feedforward topologies. Whilst such considerations might not be important in other
applications, timing requirements are critical in sampl‘ed control systems, where the next
input has to be calculated in a fraction of the sample period if the control algorithm is to
perform as expected ' '

In an attempt to highlight the dlfference between the fully recurrent and regular
Gaussian networks, the time for one training iteration is shown against the number of -

nodes in the network. The training iteration referred to includes the assigning of input(s)
~as well as desired output, generating the network output and performing the
optimization. All measurements were performed on an IBM compatible 33 MHz 486-DX
PC and in order to avoid any inaccuracy due to other interrupts, the time for one:
’lteramn was calculated as the average value of one thousand iterations.

-82-

4. Networks with Dynamic Modelling Capacity

- Figure 4.11 below depicts the time requirements for a fully recurrent network with one
external input and output, using the Williams and leser training algorithm.

RECURRENT NETUGQK - TIME FOR ONE TRAINING ITERATION US. NGO OF NODES

tine Is]

10

Figure 4.11 - Timing Requirements for Recurrent Network

The bar graph clearly shows the exponential growth of the time as a function of nodes,
which is due to the O(N #) calculations required for each iteration (where N presents the
number of nodes).-As shown, the time for one iteration exceeds a quarter of a second for
more than ten nodes which, when considered with the fact that often many thousand
iterations are required during training, renders such structures unfeasible for
incorporation into control structures.

The RGN training algorithm, on the other hand, requires O(INO) calculations, where I
presents the number of inputs, N the number of hidden nodes and O the number of
output nodes. For a fixed number of inputs and outputs, the number of calculations is
therefore a linear function of the number of hidden nodes. In order to provide a valid
comparison for the recurrent structure above, an RGN with two inputs (allowing for one
previous output or feedback) and one output was chosen. The bar graph in figure 4.12
below shows the time for one iteration against the number of nodes per input dimension.

2 INPUT RBF NETWORK - TIME FOR ONE TRAINING ITERﬁTION US. NO OF NODES PER DIM.

tine (=]
o I o F 1 - A O Ue SO D

P <3 V-3 NP UO O OO UPUU et aienteteeestanaetatathteaiestie et e nrtrh e et anteestat anreoatrrrraaenerernerensd
eI+ § V. ¥ O T OO OO T T P U PO OO SO PSP PPRIRUURRRRR
0.0124 oo B L LT L LTI PP NPT N PR E R PO PPPPPPRIPE e nnaaeanaeeas)
0.010¢ - U PSP PP ‘

Y s Lo | - 3 RO O OO . rrteeeneiraones

O 0064 it i R U UL RN

0.004/ ‘ '
0.002

nodes’par dim: 2) , 8 9 10 11 12
actual maaan.tn 91 11 €2%1 €361 (491 [6431 (811 [1001 £1211 [1441

Figure 4.12 - Timing Requirements for Regular Gaussian Network

Neural Networks in Control Engineering

The more than linear increase is due to the fact that the total number of hidden nodes
(shown in brackets) is a function of the number of inputs (here the square). In other
words, the linear relationship mentioned above, holds for the total number of hidden
nodes shown in brackets. Despite the fact that the RGN with 12 node resolution per
input does consist of 144 hidden nodes, it still only requires one thirtieth of the time
taken by the twelve node recurrent network.

One significant advantage the recurrent structure enjoys over that of the RGN is that an

N node network has the built in capability to re-use the N previous inputs and outputs,
whereas each of these has to be included as a separate input in the RGN structure. Since
the number of hidden nodes in the RGN structure is an exponential function of the
number of inputs, this can very quickly lead to a large number of hidden nodes and
consequent high iteration times. This is illustrated in figure 4.13, which shows the
iteration times for an RGN with 2 nodes per dimension as a function of the number of
inputs. The total number of hidden nodes is again shown in brackets below.

RBF NETHORK WITH 2 NODES PER INPUT - TIME FOR 1 ITERATION US. NO OF INPUTS

tine [s1]

0.027+

0.024+

0,021+

0.018+4

0.015+4

0.0124

0.0094

0 .0064

0.0034

Lq%‘éz%'. (21 [2] [g] [1?6] [352] [664]
Figure 4.13 - RGN Timing Requirements for Varying Number of Inputs

It is worth noting however, that in spite of this rapid increase in the number of nodes, the
training times still compare favorably with those produced by the recurrent structure.

The slow convergence of recurrent structures together with the computationally
expensive nature of their training algorithms presents a serious obstacle. In their
comparison of several neural network models for a chemical process, Lambert and
Hecht-Nielsen [11] recorded training times of two days on a Sun 4 workstation, in order
to sufficiently train an eight node recurrent network.

4. Networks with Dynamic Modelling Capacity

' 4.2.4 DISCUSSION

The above evaluation of fully recurrent networks showed that whilst these structures do
have ‘the ability to learn feedback connections and therefore overcome the limitations
associated with the feedforward topology, this additional ﬂex1b111ty does have its
drawbacks. _ :

Firstly, the recurrent structure (as per Williams and Zipser) investigated in| this chapter
does not converge consistently. Although the structure produced an extremely accurate
model for a linear system, it failed to capture the dynamic behavior of a more complex,
nonlinear system. A second drawback of the recurrent structure are its excessive
-computational requirements which lead to unacceptably large training times.

The less flexible regular Gaussian network, on the other hand, can not learn the required
feedback connections but converges reliably -and requires acceptable computation and
training times. The RGN structure is therefore more suited for on-line implementation in
control structures.

It is worth noting that the excessive training time is a limitation imposed by the current
state of technology. The rapid growth in the computing field as well as the development of
neural network chips, might soon produce the required hardware to make training and on-
line implementation of more complex, recurrent structures feasible.

REFERENCES

l1......Narendra K.S. and Parthasarathy K., "IDENTIFICATION AND CONTROL OF
DYNAMICAL SYSTEMS USING NEURAL NETWORKS", IEEE Transactions on Neural
Networks, Vol. 1, No. 1, 1990, pp. 4-27.

2...... Rumelhart D.E., McClelland J.L. and the PDP research group, "PARALLEL

DISTRIBUTED PROCESSING - - EXPLORATION IN THE MICROSTRUCTURE OF
COGNITION, Volume 1l: Foundations, ch. 8: Learning Internal

Representations", Cambridge, MA: MIT Press, 1986.

i P . .Werbos P.J., "GENERALIZATION OF BACKPROPAGATION WITH APPLICATION TO A

RECURRENT GAS MARKET MODEL", Neural Computation, Vol. 1, 1988, pp. 270-
280. "

4......Su H. and McAvoy T.J., "IDENTIFICATION OF CHEMICAL PROCESSES USING
RECURRENT NETWORKS", ACC 1991, pp. 2314-2319. .

Neural Networks in Control Engineering

5.¢....Willis M.J., Di Massimo C., Montague G.A., Tham M.T. and Morris A.J.,
- "ARTIFICIAL NEURAL NETWORKS IN PROCESS ENGINEERING", IEE Proceedings-D,
Vol. 138, No. 3 ,1991 , pp. 256-266.

6......Willis M.J., Montague G.A., Morris A.J. and Tham M.T., "ARTIFICIAL
NEURAL NETWORKS: - AM PANACEA TO MODELLING PROBLEMS2", ACC 1991,
PP- 2337-2342. : :

7......Willis M.J., Montague G.A., Di Massimo C., Tham M.T. and Morris A.J.,
"NON-LINEAR PREDICTIVE CONTROL USING OPTIMIZATION TECHNIQUES", ACC
1991, pp. 2788-2793.

8......Williams R.J. and Zipser D., "A LEARNING ALGORITHM FOR CONTINUALLY
RUNNING FULLY RECURRENT NETWORKS", Neural Computation, Vol. 1, 1989,

9......Téung F.s., "LEARNING 1IN ‘RECURRENT FINITE DIFFERENCE NETWORKS",
Connectionist Models Summer School 1991.

10.....8un G.2., Chen H.H. and Lee Y.C., "A FAST ON-LINE LEARNING ALGORITHM
FOR RECURRENT NEURAL NETWORKS", IJCNN 1991, pp. II13-II18.

1l.....Lambert J.M. and Hecht-Nielsen R., "APPLICATION OF FEEDFORWARD AND
RECURRENT NEURAL NETWORKS TO CHEMICAL PLANT PREDICTIVE MODELING", IJCNN
1991, pp. I1373-1378.

5. NEURAL NETWORK BASED
CONTROL STRUCTURES

The first two chapters of this thesis introduced the concept of neural networks and
suggested the possibility of utilizing them as part of a control structure. In chapters three
and four the suitability of several network topologies and training algorithms for such an
application were investigated. In this final chapter two model-based control structures, in
which the model can be replaced by an artificial neural network, are exan/lined. Although
both these structures have been suggested elsewhere [1][2], the original cc/)nﬁgurations had
to be modified or augmented in order to accommodate some of the requ1rements such as
on-line training, outlined in chapter two.

In order to evaluate the performance of these neural network controllers, their performance
is compared to that of a linear model control structure, using a simulation of a nonlinear
tank system. The first section of this chapter describes the tank system and highlights the
discrepancy between the actual system and a typical linear model derived from step-
pertubation data. In the subsequent section the internal model control structure is
introduced and the performance of a linear model based controller and neural network
model based controller are compared. After this an alternative model based topology,
known as neural predictive control, is introduced and evaluated. The final section of this
chapter summarizes the advantages and disadvantages of the two neural network
approaches and highlights some of the practical issues that need to be addressed before
these network based control structures can be employed in industrial systems.

A listing of all software procedures and algorithms used to generate the results in this
chapter are included in Appendix II.

5.1 NONLINEAR SYSTEM

One of the primary motivations for the interest in nonlinear, self-adjusting control systems
(such as neural network based controllers) is that most real systems exhibit some nonlinear
behavior. In many cases this is due to non-ideal factors such as friction or non-laminar flow,
which cannot be modelled easily, whilst in other circumstances the nonlinear response is a
direct result of the physical laws governing the behavior of the system.

The tank system chosen to evaluate the neural network based control structures, is an
example of the latter. As shown in figure 5.1, the process consists of a tank with an outflow
at the bottom and an inflow which can be regulated via a control valve. For this study it is
assumed that the tank forms part of a larger system and that it is desirable to regulate the
level of liquid in the tank.

-87-

Neural Networks in Coutrol Engineering

NONLINEAR TANK SYSTEM

input
a ¥

Figure 5.1 - Tank System Schematic

The outflow of liquid in systems such as the above, has a nonlinear dependence on the level
in the tank, thus resulting in a nonlinear equation as shown below.

. Denoting the level (or output) as y and the signal to the control valve
(or input) as u, the system equation can be derived as follows :

dv(t) where V - volume
Fin(t) = Foue(t) (i} Fin - flow in
dt ‘ : Fout - flow out
A - cross sect. area of
the tank

Assuming that the reaction time of the valve is negligible in comparison
to the system response, the inflow is given by

Fin(t) = k-u(t) {ii} where k - constant

Assuming furthermore that the outflow is homogeneous and laminar and that
friction can be ignored, the flow out of the tank is determined as

Fout(t) = Aqﬁt'v(t) {iii} where A,,+ - cross sectional area of pipe

v - velocity of liquid
dy _
Since A >> A ¢ = << v and hence v can be approximated using
dt - Torricelli’s equation (3} i.e.

v(t)? = 2-g-y(t) (iv]

5. Neural Network Based Coutrol‘Stnnmres

Subgtituting (ii),{iii] and (iv] into (i] :

dy(t) dv(t) 1 1 | ‘ |
= ce= == (keu(t) - {2°gy(t)]
dt d¢ A A o /

]

cqu(t) = Cz'JY(t)
1

from which : sy = c1~u(t)v— cz-Jy{t) or y == [c] u(t) - c2~Jy(t}]
‘ s
In the discrete domain, the dynamic eqn. becomes

y(n+l] = y(n] + At-[cy-u(n] - c3-{y(n])

which is the equation used in all simulations below.

s Since the expression assumes a constant y[n] during At, this value has to
be kept small to minimize errors and ensure the assumption for (iv].

s The constants ci and cy were chosen as 0.1 and 0.02 respectively such that

for maximum input (u=1.0) and no outflow, the incr. in level would be
0.1 (m/s]) and that the maximum level achievable is 25 [m].

Due to the slow response time of the system, a twenty second sampling interval is adequate..
The significance of large sampling intervals for neural network based control structures is
discussed later. It should be noted that within this twenty second interval the simulation
‘equation is solved on an iterative basis every 0.1 seconds to provide the required accuracy.

Figure 5.2 shows two perspectives of the change of level after one sampling interval (20
seconds) as a function of the previous level and input. Both surfaces clearly indicate the
nonlinear nature of the system. :

“LEUEL CHANBE US INDUT & DREU. LEUEL US PREU. LEUEL & INPUT

774’4 0.6 0.8 1.0 2 NN prev.
input ‘ ’

Neural Networks in Control Engineering

Of the many methods that exist to derive a linear model for a system with unknown
characteristics, the so-called step fest approach in which the system response to step
perturbations in the input is modelled, is one of the most common. This technique was
selected to develop the linear model for the above system and the step test results are shown

in figure 5.3 below. Although the number of tests and their range might seem minimal, this

is common in commercial applications where open loop step tests are often expensive or
detrimental to product quality and models frequently have to be developed from even less
data. :

INPUT ACTION

input
0.9}
0.8l
o.74
0.6t
o.st
0.4l
0.34
0.2+ l
0.1}

tine Is]
0.0- 0 1000 1500 2000 2300 3000 3500 4000 4500 S000 5300 6000 6500 7000 7500 6000
TANK LEUEL

level [n]

22. :

20.
17.
13.
2.
10.

© Wb oo o w

O N O N

Figure 5.3 - Tank System Step Responses

The nonlinear character of the tank system is reflected in the widely varying gains and time
responses. The system does however display a general first order character and
normalization of the step responses with respect to the change in input and the final value
(shown in figure 5.4) suggest a gain of 15 and a time constant of 250 seconds. It should be
noted that the step tests were selected to favour the choice of a low gain and high time
constant, to enhance the difference between the linear model and the actual system and
thus illustrate the advantages of the neural network approach.

5. Neural Network Based Control Structures

TR .,,ﬁ»Q‘QIL[:'.';.f'!.Jh%:ﬁ:?.]
STEP RESPONSE BAIN UALUES "~} STEP RESP. ‘NORMALIZED W.R.T. FINAL UALUE

normMm. -
.1__1.991
30.0 .
) 04
25 .0+
20 .0+
15.0

10.04

Figure 5.4 - Normalizéd Step Response

The linear first order model with the above parameters is used throughout the remainder of
this chapter in both, the conventional linear control structures and as part of the
model/network combination described in the following subsection.

5.2 MODEL/NETWORK COMBINATION

‘As mentioned in chapter 2, the applications considered in this study are model based
control systems in which the linear model may be replaced by a neural network approach.
Although it is possible (and common) to utilize a pure network model, the approach
selected here is a mathematical model/network combination as shown in figure 5.5 below.

. MATHEMATICAL / NEURAL NETWORK
COMBINATION MODEL

 C—
Mathe-
matical

Model
model — model]

+ |
st , —p
input(s) : M +® . output(s)
e

Figure 5.5 - Combination Model

-91-

Neural Networks in Coutrol Engineering

Although the mathematical model shown in the above topology can be any type of equation
derived from system data or based on past experience, one of the most obvious choices is a
linear model derived from first principles or step test data. The neural network in this
structure therefore learns the difference between the mathematical model and the actual
system, rather than the entire model. Even though the inclusion of a mathematical model
might seem superfluous, this combination enjoys two distinct advantages over the pure
network approach:

One of the difficulties with a control structure in which pure neural network models are
employed, is the initialization of these networks. The problem can be overcome by
attempting to collect adequate system data to train the network off-line, but as shown
earlier it is difficult to collect a sufficiently dense set of data to ensure acceptable training.
An alternative approach is based on the assumption that the majority of systems can be
controlled using linear models, even though the control may be sub-optimal. Based on this,
the network can thus be trained prior to use, utilizing data generated by a linear model of
the system. Although not ideal, this method is preferable to the former since it allows

- more uniform training and only requires the subset of data needed to develop the linear
model.

Utilizing the above combination, rather than the pure network topology, allows a further
simplification since the linear model can now be used as part of the model and the
network does not require any prior training. In other words, provided the initial network
weights are kept sufficiently small, the model starts as a pure linear model which is then
refined and improved by training the network portion on-line,

A further advantage of the combination topology is that the network does not sacrifice any
of its accuracy by modelling the general system behavior, which can be captured in the
mathematical part of the model. This is particularly pertinent for the regular Gaussian
RBF topology which, due to its inflexibility, is not well suited to model linear systems.
" .Regular Gaussian networks therefore produce superior accuracy if used to learn the
discrepancy between linear model and system, rather than to model the entire process.

These advantages of the combination model are illustrated in the following subsections, in
which the performance of model based control strategies are examined and compared.

-92-

5. Neural Network Based Control Structures

5.3 LINEAR AND NON-LINEAR INTERNAL‘MODEL CONTROL

The renewed interest in this control structure, in which both a forward and inverse model of
the process to be controlled are included, can be attributed to the relative ease with which

such controllers can be designed as opposed to more conventional approaches. Due to the

- fact that the principles of this method [4] have since been extended to include non-linear
systems [s], it lends itself to the incorporation of neural network based nonlinear models.

This section starts with an overview of the IMC. (internal model control) structure and
algorithm. After this the performance of the standard linear IMC control structure for the

tank system is evaluated. Since an IMC structure with first order model and filter is
equivalent and can be converted to a conventional PI controller with the same functionality,

this controller is used for comparison purposes in the remainder of the chapter.

The next subsection then introduces an IMC structure in which the linear models are
replaced by the combination model explained in section 5.2 and demonstrates how the
neural network portion can be trained in an on-line configuration. The applicability of the
control structure is again illustrated using the tank system to allow a comparison with the
above PI type control. In the final part of this subsection some of the 11m1tatlons of the
suggested IMC structure are highlighted.

5.3.1 INTERNAL MODEL CONTROL ALGORITHM

Figure 5.6 shows the IMC structure and .highlights' the key function that both the forward
and reverse model play in this control configuration.

INTERNAL MODEL CONTROL STRUCTURE

wes(F)¢)4 E]»é-r
| | M|
|

"F - titer € — inverse model G — system M — model

Figure 5.6 - IMC Structure

From the configuration it follows that, if the model is an exact replica of the process (thus

-93.

Neural Networks in Coatrol Eagineering

resulting in zero feedback), the system output is the desired (filtered) response to the
setpoint since the system dynamics are cancelled by the inverse model. A mathematical
analysis of the properties for both linear and nonlinear IMC structure can be found in the
work by Morari et al [4][5]. The main results can be summarized as follows:

= For stability and the perfect controller, the model needs to be exact and both the
_ system as well as the controller need to be stable.

s Zero offset for a steady setpoint can be ensured by selecting the controller such that
the product of steady state gains of model and controller is unity.

» The filter included in the controller compensates for modelling errors and thus
introduces robustness into the IMC structure since it reduces the loop gain.

These factors suggest that although zero offset can be achieved relatively easy using the
IMC structure, the exactness of the model plays a key role in determining the quality of
the dynamic behavior.

The equations governing the IMC configuration are summarized below:

Using the notations of figure 5.6, the calculations for each sample instance
are -

s obtain sample yp(t} from the system
n calculate'model output yn(t)

= using the above together with the setpoint yg(t) calculate the error e(t)
as follows e(t) = yg(t) - [yp(t)—ym(t)}

» the error is then fed into the filter to produce r(t) i.e. r(t) = F(e(t))
s the next input u(t) is then calculated using the inverse model C

In linear applications the filter F and inverse model C are often combined to
form a single causal block (known as controller).

The above equations are intentionally general since several variations exist between the
linear and neural network based structures. These variations are discussed, as they are
introduced, in the following subsections in which the performance of linear-model and
neural-network-combination-model based IMC structures are compared.

-94 -

5. Neural Network Based Coutrol Structures

'5.3.2 LINEAR IMC

This subsection shows the results obtined Using the liriér niodel (derived earlier) and its

“inverse within the IMC structure shown above. The filter, which presents the desired
system response, was chosen as a unity gain, first order syste'rh with a time-constant of one -
hundred seconds. i

As mentioned earlier, this particular linear IMC structure can be converted to a

conventional PI ‘controller and is therefore representative for conventional well-
established linear control methodology. In order to evaluate the performance of this
_control structure, the system was subjected to a nurnber of step setpoint perturbations. The
output together with the setpoint, desired response and input action are shown in figure

5.7. -

level ~ TANK LEUEL - STEP RESPONSES
] ’
13.51 .. setpoint
12 .04 e aotual resp.
10.54 T daes ired resp.
9.04
7.54
6.04
asy
3.0f
1.54
. ’ . tinme [s1
0.04+5 A 1000 IS00 2000 2500 S000 3500 4000 4500
input : INRPUT HCTIUN - STEP RESPONSES.
0.94
o.st
o.74
0.
o.
o.
0.
0.
o.
tine Is]
o. A500
Figure 5.7 - Linear IMC Step Responses

These stép tests show that although the system is both stable and exhibits the expected
zero offset setpoint tracking, the response for the first two steps is initially sufficiently fast
but becomes unacceptably slow in its final approach. Since this poor performance is due to
the discrepancy between model and system, the performance of this controller can not be
improved by simply increasing the gain. This is also evident from the high initial input
spikes, following each of the setpoint step changes, which indicate a high loop gain.

:95-

Neural Networks in Control Engineering

Besides the ability to track and respond sufficiently fast to changes in the setpoint, the
capacity to reject disturbances is a further important criterion for any control system.
Whilst this ability can be determined analytically as a function of frequency for purely
linear systems, this is not possible if the structure includes nonlinear elements. The
disturbance rejection capability is therefore evaluated by injecting disturbance signals and
observing the response.

Figure 5.8 shows the system response together with the setpoint, disturbance and input
signal for constant disturbances and a sinusoidal interference. For convenience the
disturbance signal is shown on the tank level graph, centered around the system setpoint,
rather than on a separate graph, centered arourid zero. It should be noted that this line
does not present the system response without any control but rather the change in level
per sampling interval i.e. a disturbance of 0.5 (shown as 5.5 on the graph) presents a
change of level by 0.5m per sampling interval. In other words the effect of the disturbance
signal shown is cumulative and the level plus disturbance is used in the tank equauon to
calculate the subsequent level.

level (] TANK LEUEL - DISTURBANCE REJECTION
------ setpoint
6 .54 wmee tank level .
~~~~~~~~ disturbance '
6.0+ H
:
5.5+ H
‘
%.0 '
:
4.9+ H
) :
4.0+ :
3.51 o step disturbance ! sinusoidal disturbance
3 ) tine (s]

-0+5 1000 2000 3000 4000 50606000 7000 " B000 S000
IN?UT ACTION - DISTURBANCE REJECTION '

input

323 X33 3 1 3 2 7%

o 00 0 0 0 € 0 0 O
O kb bdDdND Y

tine (=]

g

g To00 3000 G000 36060 €060 7000 8000 500

Figure 5.8 - Linear IMC Disturbance Rejection’

As with the step responses, the graphs show that the system is stable and does strive to
follow the setpoint but again the slow dynamic response results in rather slow and
unsausfactory performance.

-96-



. 5. Neural Network Based Control Structures

In the discussion of the IMC properties, it was mentioned that the quality of the dynamic
response is dependent on the exactness of the model. Since a non-optimal, linear
representation of the nonlinear system was used in the above simulations, the modelling
errors are significant and hence impact negatively on the overall performance. In order to
improve the response of this structure a more accurate model is therefore required.

5.3.3 NON-LINEAR NEURAL NETWORK IMC

In the previous subsection the performance of a linear model based IMC controller for a

nonlinear process was evaluated, emphasizing that although such a structure is stable and
does ensure setpoint tracking, it fails to produce the desired dynamic response. Since this
is mainly due to the error between the model and system, a more accurate representation

should produce improved results. This, together with the fact that the IMC structure is
suitable for nonlinear control structures, motivated Hunt and Sbarbaro [1] to utilize neural
networks in place of the forward and inverse model.

One of the problems with the implementation suggested by Hunt and Sbarbaro is that
although they use regular Gaussian RBF networks (as recommended in chapter four), they
assume that both networks can be trained prior to use and therefore do not implement any -
on-line optimization. Besides the difficulty of obtaining a sufficiently dense set of training
data for a dynamic system (discussed in chapter two), such an implementation deprives a
neural network based structure of one of its most significant attractions, namely on-line
adaptability. The lack of on-line training thus renders such a system as susceptible to non-
optimal parameter choices, due to limited training data, as a linear model. The utilization
suggested in this study is a modification of the one proposed by Hunt and Sbarbaro,
allowing for on-line training and optimization. This subsection starts with a discussion of
the modifications to the standard IMC structure, before showing the responses of a neural
network based controller to the same step and disturbance perturbations as the linear
structure. ‘

(a) Modifications and Network Training

Using RBF or other feedforward type networks to replace the forward and inverse model
requires a modification to the standard IMC structure. Due to the lack of dynamic
capability of these networks, they have to be supplied with the required previous input(s)
and output(s) of the actual system or else be implemented in an external recursive
configuration. Since the latter does not produce satisfactory accuracy as shown in the
previous chapter, both networks are supplied with past values from the actual system. For
the tank system this implies that both models receive the previous tank level, rather than
their past output as one of the inputs. Although this modification is strictly only valid if
the model is exact (a requirement for most IMC properties) it still produces a forward
and inverse model as required by the IMC structure, thus ensuring a zero offset control
law even when the model is not precise. ‘

-97-



Neural Networks in Control Engineering

Since neural networks are not exact mathematical expressions, some residual error
between the forward and reverse models is expected, even after exhaustive training and
irrespective of network size. In order to eliminate these discrepancies, which oppose one
of the key requirements for the IMC structure, Hunt and Sbarbaro employ a successive
substitution algorithm [6] to improve the accuracy of the values produced by the inverse
model. This recursive algorithm (shown below) can be used to find the inverse at any
operating point and although it could replace the inverse model entirely, this model can
still help to supply initial estimates, thereby limiting the number of iterations required
and saving valuable calculation time. Although other methods such as Newton’s Method
might converge faster, they are generally not directly applicable since they require
differentiation and integration of the model which includes a neural network in the
structure suggested here. ‘ :

ITERATIVE INVERSION ALGORITHM

Given a function (or model) BLOCK DIAGRAM

f(x), the following iterative

inversion algorithm can be used
to find the value x for which +
£(X) = Yges — 1 - Q) => I

Xn+1 = Xp t 7IYdes = £(xp)]

+L
The small gain theorem shows | -7t

that this algorithm shown in
figure 5.9 is stable if

Bzl fz-vel < 2

- Figure 5.9 - Iterative Inversion Block
Diagram

The above algorithm is used to improve the initial estimate provided by the inverse
model. Although the iterative process should ideally only be terminated when successive
iterations do not change the result significantly, the real-time requirements of a control

structure demand that a maximum allowable number of iterations also be imposed. The

accuracy of the inverse model, which supplies the initial estimates, therefore plays an
important part in this structure.

As mentioned previously, Hunt and Sbabaro suggest off-line training of both the forward
and inverse model. In their configuration the forward model is trained using sampled
system data and although the same data could be used to teach the inverse, it is more
appropriate to generate its training data using the already converged forward model
since this helps to ensure that the two models are exact inverses of each other. This
training is performed using both specialized and general learning structures adopted
from Psaitis et al [7]. Despite the fact that these training methods facilitate adequate
training of the inverse, they do rely on the assumption that the forward model has been
trained sufficiently which implies that sufficient training data could be collected prior to
training. Due to the fact that it is seldom possible to obtain such a sufficient set of

-98-



5. Neural Network Based Control Structures

- training data. from any dynamic; .System.. and...since: -such a pre-tramed structure
furthermore restrains the flexibility of a neural network configuration, a more practical
solution with on-line learning is suggested in this application. Rather than attempting to
collect an exhaustive set of training data, the system is initially controlled using linear
models, which can be derived from a few step tests as shown previously. Once controlled,
both models can then be trained on-line to optimize the controller. The initial linear
models can be obtained by training two pure network models prior to using them, a
method employed successfully for the control of a laboratory tank system [8], or more

“efficiently by using the combination type model described in section 5.2, in which the
linear model is used together with a regular Gaussmn RBF network, the weights of which

are initially negligible.

Figure 5.10 below shows the step responses of the tank system using an IMC control
structure in which both the forward and reverse combination model consist of the llnear

models, used prevmusly, together with untrained 100 node RGN networks.

TﬂNK LEVEL -~ STEP RESF’ONSES

« laval
Lmi

13.51 .. satpoint
12.04 ~ actual resp. ;
10.54 7 desired resp. . :\
9.04 i
7.5} \
6.0¢4 freeee
4.954
3.0
1.5+
0.0 ~15i0—20b0 b0 50603300 a0ho S0

oot INPUT ACTION - STEP RESPONSES

coocoo0o00o0G0
pryery YO

28565000

m’@b 1550 ﬁo

time (51

‘Figure 5.10 - Neural Network IMC before Training

Although the response time of the system has improved significantly from that of the
standard linear IMC structure, the input action shows oscillations unacceptable for most
practical applications. These oscillations are due to the discrepancy between the
untrained model (which is identical to the linear model used earlier) and the actual

system. Since the past system output is used as input in both models, these errors are fed




Neural Networks in Control Engineering

back and effect the output of these blocks in the next iteration. This direct feedback thus
ensures that the system does follow the desired response but due to the large discrepancy
between model and system, this response can only be achieved using unacceptable input
modulation. In order to eliminate the above problem it is necessary to improve the
accuracy of both models, which can be achieved by further on-line training. Since the
input signals shown above are undesirable for any real system, the controller first has to
be detuned for initial training. This detuning can be realized by increasing the filter time-
constant or using a filtered version of the setpoint to introduce additional robustness. In
this application the latter option was selected and for simplicity the desired output, which
is a filtered version of the setpoint, was utilized. The response of this detuned, untrained
neural network IMC controller is shown in figure 5.11 below.

level TANK LEUEL - STEP RESPONSES
| [l
| 13.51r . setpoint
| 12.0+ —— actual resp.
10.sl desired resp.
9.04
7.5}
6.0+
a.s4 i
" 3.04
1.1 ' :
: . timne [s]
0.04 1500 2000 2500 3000 3500 4000 4500
_ input ~ INPUT ACTION - STEP RESPONSES
0.94+
0.684
0.74
0.6+
0.3} .
0.4¢
0.3}
0.2}
0.1} .
) . tine [s]
0.0 0 1000 1500 2000 2 3000 3500 4000 4500
Figure 5.11 - Modified Neural Network IMC before Training

As shown, the system has lost some of its responsiveness but is more robust in terms of
discrepancies between system and model. The input signal generated with this dampened
controller is more acceptable and although the response is slower than before, it still
compares favorably with that of the standard linear IMC controller. The above structure
is therefore acceptable as an initial controller and can be used in this form for further
training. Once the initial control law has been configured as above, the IMC structure
can be enhanced by training the networks contained -in both models, thus providing an
on-line optimization method which caters for both imminent inconsistencies between the
linear models and the system, as well as future changes in the system’s behavior.

- 100 -~



5. Neural Network Based Control Structures

. Whilst the training samples for the forward model are obtained directly as a result of
sampling the system response, the improved value obtained from the iterative inversion

algorithm provides the desired outpiit Tér the invéfse. Since there is generally a delay
between generating the current input and taking the next sample in sampled control

systems, this time can be utilized to perform the network training. Due to the fact that
training is performed on-line, successive training samples may vary little when compared
with off-line training, where the samples can be selected at random. Although a
sufficiently small training rate is generally sufficient, more elaborate precautions such as
limiting the number of training iterations per setpoint interval or complementing the

training with off-line training methods between successive samples, may be required in
some cases. The data for such training could be selected at random from-a FIFO list
which is updated regularly to ensure that slow system changes are captured. Such

intricate methods are however only required for systems in which the setpoint i$ varied

infrequently, but uniform training is still required. Other systems might only operate

around a fixed setpoint and for such processes adequate training in that operating region
is sufficient.

In order to illustrate the learning capability of this structure the system chosen for this

example was subjected to setpoint step changes at regular intervals and hence none of

the above training enhancing -methods were required. Figure 5.12 below shows the
evolution of the neural network portion of the forward model in this training.

ERROR BETWEEN SYSTEM AND LINEAR MODEL NETHORK OUTPUT AFTER INITIAL TRAINING

level [nl level [nl

NETWORK OUTRPUT AFTER FURTHER TRAINING ERROR SURFACE RFTEQ TQHINING‘ )

" level [nl error [nl

Figure 5.12 - Forward Model Network Training

- 101 -



Neural Networks in Coatrol Engineering

The final error surface highlights to what extent the inclusion of the network reduces the

_error between model and system. Due to the fact that the setpoint remains constant
between the step changes the training is locahzed as is evident from the network surface
after some initial training.

Since the iterative equation used in the simulation can not be inverted, the development
of the inverse model and network is not shown. The network was however trained with
the same localized data and developed in a similar fashion. It should be noted that
although the clamping of the input could be incorporated into the inverse network (i.e. it
could be trained to produce clamped values), such abrupt discontinuities usually
compromise the accuracy of networks near these boundanes and hence the network was
trained usmg unbounded values.

Once sufficiently trained, the additional robustness introduced previously (such as the
additional setpoint filtering in this example) can be removed to enhance the system
performance.

(b) Results for Neural Network IMC Controller

The response of a trained IMC structure without additional filtering is shown in figure
5.13 below. :

_level TANK LEUVEL - STEP RESPONSES
(4.3

13.31 . setpoint
12.04 ——actual resp. Jreeerns
10.51 - desired resp. : /J‘-

9.04

7.54

6.04

4.5

3.04

1.5+

0.0 tinme (5]

<Oy TS60 3000 =500 3000 3500 46004500
INPUT ACTION ~ STEP RESPONSES
input

a.94

0.84

0.7+

0.6+

0.5+ n\

o.a4

0.3+

o.24

.14

tirem (5]
o.o 1000 20002500 3000 04000 4500
Figure 5.13 - Trained Neural Network IMC Step Responses

- 102 -



5. Neural Network Based Control Structures

- The system behavior is in most cases indistinguishable.from the desired response and
uses-a realistic and acceptable input signal. In addition to the superior performance of
this structure for the above step tests, it also shows a significant improvement when
subjected to the same disturbances used previously, as illustrated in figure 5.14.

TANK LEUEL - DISTURBANCE REJECTION

laval Inl

...... setpoint

6 .54 — tank level
~~~~~~~~ disturbance

A

sinusoidal disturbance

step disturbance

tine Is]

g 1000 2000 3000 4000 S000 6000 7000 8000 9000
V INPUT ACTION - DISTURBANCE REJECTION .

[= B = Y o T = T o B = TR = TR = B = Y = }
g bbb @D N

time (s3]

o 1000 =000 3000 A000 50060 €000 FH00 a000 9000

Figure 5.14 - Trained Neural Network IMC Disturbance Rejection

As shown, the controller significantly reduces the magnitude as well as the time taken to
recover from the step disturbances, whilst also reducing the amplitude of the sinusoidal
disturbance to a far more acceptable level than the previous linear IMC structure.

It is important to note that the improved response of this structure is not due to the
enhanced accuracy of the -models but rather the direct feedback of the system output to
‘these models. The more accurate models are however essential in this modified
structure, to produce a stable and robust controller which generates acceptable input
requirements. -

5.3.4 LIMITATIONS DUE TO INVERSE MODEL

- Despite the encouraging results illustrated above, the need for an inverse model in this
approach presents a serious limitation since many systems can not simply be inverted. In
their discussion of the IMC structure for linear systems Morari and Garcia [4] exclude all

-10% -

Neural Networks in Coatrol Engineering

time delays and zeros outside the unit circle since these would require prediction and
result in unstable poles respectively, if they were to be inverted. Whilst such a distinction is
feasible in an analytical design, the numerical and neural network inversion operate
directly on the model and do therefore not distinguish between feasible and non-invertible
components.

The problem becomes more apparent for multi-variable systems for which even the
analytical inversion of linear systems is often non-trivial. In their treatment of nonlinear
IMC structures Economou and Morari [4] note that the analytical construction of
nonlinear inverses uses higher order derivatives thus making it too sensitive to noise and
other errors to be used in practical cases and therefore suggest that only an iterative
numerical inversion technique is used.

Morari and Economou furthermore note that no guidelines exist for the design of the filter
and that it is to be expected that nonlinear filters could lead to distinct advantages. Since
the filter together with the inverse model represent the controller portion in the IMC
structure, the uncertainties in the design of both these blocks for nonlinear systems
suggests that an alternative approach may be more appropriate.

The neural predictive control structure introduced in the next subsection is such an
approach in which the filter and inverse are replaced by a more manageable, nonlinear
controller.

5.4 NEURAL NETWORK PREDICTIVE CONTROL

This algorithm, suggested by Willis et al [2], is based on the optimal control philosophy
where a cost function is minimized in order to determine the most effective input. Since a
system model is required to predict the output(s) for various inputs in order to formulate
the cost function, this structure again lends itself towards the incorporation of a nonlinear
and in particular a neural network model. The subsection starts with an introduction of the
NPC control structure which is then implemented and tested using the nonlinear tank
system.

5.4.1 NEURAL PREDICTIVE CONTROL ALGORITHM

Despite the fact that this algorithm does not fit the standard block diagram structure, it
can be represented as shown in figure 5.15.

- 104 -

5. Nmral-Networﬁ Based Control Structures

NEURAL PREDICTIVE CONTROL
" BLOCK DIAGRAM

Vs

d
NONLINEAR | , () J Yp
—

OPTIMIZATION G . ;@T
+
Ym +’

5 METHOD _
+®+<-[I]<-| M | =—p X

L m—

F - filter G — systern M — model

Figure 5.15 - NPC Structure

Although shown in two places, the model block M is in effect one and the same forward
“model which is used to calculate the error as well as to generate the cost function. As
“mentioned earlier, the controller implements the well-known predictive control strategy

for which the future deviations between system output and setpoint are minimized. In

order to achieve this, the squares of these differences are collected as a function of the
input(s) to form the so-called cost function which can then be minimized to find the
optimal input or input sequence. One significant variation from more common predictive
control structures is the use of a neural network based non-linear model to perform the
predictions required for the cost function. Unlike the standard approaches the minimum
of the cost function can therefore not be found analytically and a numerical optimization

- method has to be employed. This optimization is indicated as a separate block, receiving
the desired output(s) [ys] and using the model [M] to produce the next input(s) [u] in the
above diagram. As in the IMC structure, the function of the feedback loop with filter [F] is
to ensure setpoint tracking in the presence of model-system mismatches or disturbances.

The calculations to be performed for the NPC algorithm at each sampling instance are
summarized below: ' .

For completeness the steps below show the extensions for a multivariable
system:

.(i) Take samples of system output(s) Yp(t).

(ii) Generate model predictions ym(t) using the current input(s) u(t) and
~ previous plant output(s) yp(t—Ts).

-(iii) calculate the>error(s)'e(t) = yp(t) = ¥Ym(t) and filﬁer if required.'

- 105 -

Neural Networks in Control Engineering

(iv) Using the nonlinear optimization algorithm find the minimum of the
following cost function

NiN2, i 2 Ny, i 2
J =L (E[ygi(t+n'T8) - yp; (t+nTs)] + Llu 5 Au (tn’&)]}
i=ln=Np j k=0"
where : Nj - the number of control loops (controlled variables)

Ny,i - the minimum output prediction horizon for each loop
Ny,i - the maximum output prediction horizon for each loop
Ny - the control horizon for each loop

ui’l - weighting to penalize excessive input changes for
each input

Ys - desired cutput(s)

Ym -~ predicted output({s) generated by the model and

corrected using the error from (iii)

(v) Implement the first of the calculated input{s) and return to (i).

Although the controller structure provides the facility to calculate several future input
values, only the first is used in a receding horizon fashion to avoid errors due to long-term
extrapolation.

As mentioned earlier, a nonlinear optimization algorithm has to be used to find the
minimum of the cost function, since the predictions used are generated by a nonlinear
neural network based model. Both, the optimization routine as well as the network
configuration and training are therefore vital parts of this control structure.

(a) Nonlinear Optimization Algorithm

Although very similar to the problem of finding the best set of weights for a neural
network, the optimization problem considered here is limited to fewer dimensions (the

number of input moves for all loops) and hence more computationally intensive
algorithms can and must be employed to find the minimum with the required accuracy in

the short period available for this calculation. As with network training algorithms
however, these optimization methods perform a search in the multidimensional variable

space and can be classified into gradient and gradient-free methods.

Whilst the use of the actual or estimated derivative often accelerates the convergence,
these methods are not feasible due to the presence of measurement noise and model
uncertainties which might produce discontinuities in the objective functions. In this
application the so-called Nelder and Mead algorithm 9] was selected for its robustness
and because it is a self-contained method which makes no assumptions about the shape
of the surface it has to minimize. Other non-gradient techniques, particularly Powell’s
method [10] may produce more efficient searches and have also been implemented
successfully [11]. The significance of the convergence speed in this type of application is
discussed later in the chapter.

- 106 -

5., Neural Network Based Control Structures

The Nelder-Mead optimization algorithm accomplishes its search in the n-dimensional

space by guiding a (n+1) simplex using contraction, reflection and expansion in order to
find the minimum. In this application the previous optimal input value is supplied as the

initial estimate and thus forms one corner of the starting simplex. To ensure that the

minimum found is global, the algorithm is restarted from this value and must re-converge
to the same neighborhood for the algorithm to terminate. Some of the other more
specific tuning choices for its application in a control structure are discussed with the
program listing in Appendix II.

(b) Neural Network Implementation and Training

In their applications Morris et al [2],[10] use feedforward networks with dynamic nodes as
introduced in the previous chapter and utilize the chemotaxis algorithm for training.
‘Although feasible, this again implies that the networks have to be trained off-line prior to
their implementation. In an attempt to overcome this limitation, the combination type
model with a regular Gaussian RBF network used in the nonlinear IMC structure, was
employed in this structure. As before, the linear model derived from step test results can
be employed immediately, together with an untrained network to produce an initial
controller for the plant. The network is again evolved during on-line operation, thus
learning to compensate for the discrepancy between the linear model and the system. -
Most precautions mentioned earlier for the on-line training of networks in the IMC
structure also apply to this configuration.

One significant difference from the IMC structure is that a number of future predictions

may be required in this configuration. This implies that previous model outputs have to
be re-used, leading to an external recursive topology which might impact negatively on
the accuracy, as shown in the previous chapter. Since other dynamic network structures
often fail to converge and/or are not suited for on-line training however, the regular

Gaussian RBF topology still presents the most reliable option.

In their investigation Morris et al [10] suggest an alternative training method in order to
improve the long-term prediction accuracy for feedforward networks. Rather than
training the network for one-step ahead prediction, they allow the network to generate
the required number of iterations before updating the weights. Although this approach
might improve the accuracy in a pure network model structure, it does not train the
network for the on-line requirements where the control horizon is generally less than the
prediction horizon and inputs are applied in a receding horizon fashion. In other words,
whilst the optimization routine employs the model to predict a number of steps ahead
with a constant input, the actual inputs to the plant vary for each sampling instance and
are therefore not a true reflection of the prediction requirements. Despite this, the
method has merit and could be included as additional optimization technique between
sampling intervals if required.

- 107 -

Neural Networks in Control Engineering

Another noteworthy difference from the IMC application is that in this topology the
network can be trained on-line without effecting the controller performance. In the IMC
topology the desired output of the inverse model is generated by using the forward model
in an iterative algorithm. To learn, both these models therefore have to utilize their
network portion whilst being used to control the plant. Since this structure only uses a
forward model, the system can be operated using only the linear part of the model whilst

the network part is being trained in a parallel, non-contributing configuration.

Although this discussion does not exhaust all aspects of the NPC structure it provides the

framework for its implementation, which is illustrated in the following subsection.

'5.4.2 NPC RESULTS FOR TANK SYSTEM

This subsection shows the results of an implementation of the NPC control algorithm for
the nonlinear tank system. All the results presented were obtained using N1=N2=35
(smaller N1 produce more input action but do not improve the control), Nu=1 and a first

order filter with a time-constant of 60 seconds.

As for the IMC approach, the linear model was first implemented with an untrained 100
node regular Gaussian RBF network. The response of this structure to the step

perturbations is shown in figure 5.16.

rever TANK LEUEL - STEP RESPONSES
[l
13.51¢ .. setpoint
12.0+ —— actual resp. 7
10.5) U desired rgsp -
9.0} \
7.5{ KM
6.0} Wise
a.s¢
3.04
1.54
tinme [s1
0.0+g 1500 2000 2500 3000 3500 4000 4500
ot INDUT ACTION - STEP RESPONSES
0.9+
o.8}
0.7+
0.64
. o.s}
0.4} -
0.3+
o.2¢
0.1}
0.0+5—Sto 3000 1500 2000 2500 3000 3500 4000 4500

Figure 5.16 - Untrained NPC Step Responses

-108 -

5. Neural Network Based Control Structures

From this- response it is evident that the dlscrepanmes b ' een model and system cause
unacceptable modulation of the system mput "The system therefore has to be detuned to
allow satisfactory operation until the network has been trained sufficiently.

" This detuning can be accomplished in several ways in the NPC structure. Since the
oscillations are due to large modelling errors, orie solution would bé to increase the filter
- time-constant. The use of a filtered setpoint as for the IMC structure presents another

© correction. Since
excessive control

the NPC algorithm does however also include a term to penalize
moves such as shown in figure 5.16, the most obvious solution is to

~ increase the weighting of this factor. Figure 5.17 shows the response of the identical
untrained system in which the weighting of this factor has been increased from 0 to 100.

"’?:?’ TANK LEVEL - STEP RESPONSES
13.3+ ... setpoint
12.0+ ~ sctual resp.
0.8l T desired resp.
9.0+
7.5+
. 6.04
4 .34
3.04
1.9¢4
0.0 1500 2000 2S00 30D0&Sooadoo aso0
INPUT ACTION - STER RESPONSES -
0.9+
0.8+
0.7+
. 0.64
T 0.94
0.494
0.34
0.2+
0.1+ ‘
: tine I[s]
0.0 o T000 iSho 2'660 '2'%0_ F000 3‘553‘0 4dﬁu A500"

Figure 5.17 - Modified Untrained NPC Step Responses

As shown, the system reacts somewhat slower than before but utilizes reasonable input
action to achieve the desired output. The system is now controllable and can be used in

this configuration,

earlier, one of the
the network can

separately without

whilst the network portion of the model is trained.: As mentioned
advantages that the NPC structure enjoys over the IMC topology is that
be trained without being used in the model i.e. it can be trained
impacting on the system performance.

-109 -

Neural Networks in Coatrol Engineering

In this example the training of the network portion of the model was achieved by
performing steps of random magnitude as in the IMC application. The progression of the
network is therefore very similar to that shown previously and is hence not repeated here.
As the model accuracy improves due to the network’s contribution, the penalization of
excessive input moves can be reduced. Figure 5.18 below shows the responses of the NPC
structure with a fully trained network and no input penalization.

L level TANK LEUVEL - STEP RESPONSES .

[
13.
12.

10.

b ————motusl rese.
~~~~~~~~~ desired resp.

R EREENXEX.

QW& O N

tine I[s]

1500 2000350030060

5060

4000

a

0

INPUT ACTION - STER RESPONSES

000 000 0o
S = N O & U O N O

tine [s]

1] 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 5.18 - Trained NPC Step Responses

As shown, the control structure achieves the desired response times (taken from the IMC
investigation) with moderate input modulation and no oscillations.

The trained NPC configuration was also subjected to the disturbance used to evaluate the
two previous controllers and the resulting input and output patterns are shown in figure
5.19 overleaf. The controller responds quickly and effectively to the step disturbances and
also attenuates the sinusoidal interference significantly.

-110-



b o . i T A AR e TR LHE S b e i ol et

5. Neural Network Based Control Structures

" fever tm1 TANK LEVEL - DISTURBANCE nEJEcnoN
e setpoint *“i*u Hiyd 'f pal ; ‘
6.5+ — tank level o - .
e disturbance -
| 6. . o 0
9
.
5.5 H
. H
5.0 fp—u-fwru R pdee: P ITISTVOIY. cratpr ey _ SR
]
q.5¢4 1 -
]
a.0¢ E
3.5l step disturbance H sinusoidal disturbance

- tine [sl
3-0+g—3poo 2000 3000 4000 SHo0 6000 7000 B000 9000
INPUT ACTION - DISTURBANCE REJECTION ) .

.94 -

OO OO O OOOOOD

“tine [s1]

-O+5—1doo =000 3600 3000 S000 6000 7000 BOO0D 90600

Figure 5.19 - Trained NPC Disturbance Rejection

The NPC control structure introduced in this subsection is not only a feasible alternative to
the neural network based IMC approach, but also includes several attractive features not
available in the latter. The final part of this chapter highlights some of the differences
between the two methods and also raises some general concerns about the viability of these
structures for practical applications.

5.5 DISCUSSION

In this chapter two neural network based control structures were introduced and applled to

a simulated nonlinear tank system. Both methods use combination type models and can be
initiated in a suboptimal or detuned structure with only the mathematical part of the model
complete, thus allowing on-line training of the neural network portion in a controlled
system. :

Although the application, chosen to illustrate the capability of these methods, could possibly

- be controlled adequately by a carefully designed linear controller, the example highlights
typical practical constraints when a linear model is developed from insufficient or non-

-111-



Neural Networks in Control Engineering

representative data and the design is kept conservative, resulting in a sub-optimal system. In
both methods the neural network portion of the model is trained on-line in order to correct’

modelling discrepancies and once trained allows far superior control than achievable if only

the linear model is employed. Both techniques are thus learning control laws in which the
system is activated using a priori knowledge and is then optimized in a controlled state as

the model(s) learn and become more exact. The advantages of such control laws for systems
with nonlinear characteristics or slow changing behavior are evident.

This section starts with a brief discussion of the advantages and disadvantages of the two
approaches and then highlights some of the common problems that need to be addressed if
 such structures are to be implemented in practical systems.

'5.5.1 A COMPARISON OF THE NEURAL NETWORK IMC AND NPC APPROACHES

Despite the fact that there is little difference between the performance of the final control
laws generated by either method, the two approaches do differ in certain aspects.

One of the possible problem areas of the IMC structure is the need for the inverse model,
which may not exist or be unstable for certain systems. Although the inversion can in such
cases be performed, using only the iterative inversion algorithm, such a search does in fact
still attempt to find the inverse of the system at that point. The optimization algorithm of
the NPC structure on the other hand, does not endeavor to find the inverse of the system
but rather the optimum input to minimize the cost function, which in turn only relies on
forward predictions and can be formulated in such a way that possible obstacles are
avoided. Due to the above, the NPC algorithm can be extended to multivariable systems
and has been implemented successfully on a simulation of a distillation column [10], whilst
the inversion of multivariable systems required for the IMC structure is often non-trivial.

One drawback of the NPC structure is that the network has to be implemented in an
external recursive connection which is not ideal for feedforward networks such as the
regular Gaussian topology. The problem is lessened by the use of a combination model
and on-line training but could still impact on the performance if a large number of
iterations are required. Since only one-step ahead predlcnons are employed dn the IMC
structure, this difficulty does not arise.

A difficulty shared by both methods is the exponential growth of regular Gaussian
networks as a function of inputs, which suggests that despite inferior modelling and a lack

~ of on-line learning capacity other network topologies might have to be conmdered for
hlgher order and multivariable systems.

A further common problem, linked to the network sizes, is the time required to generate
the next input, once the outputs have been sampled. Although this problem is more
pronounced in the NPC structure, which generally requires more network evaluations to

-112-



5. Neural Network Based Coatrol Structures

find the next input, even the network IMC topology is not su1ted for high speed

applications as shown in the followmg subsectlon
‘ Fysl

5.5.2 COMPUTATIONAL POWER AND TIMING CONSIDERATIONS
~ For any sampléd‘system, the time between sampling the output(s) and generating the next

input(s) has to be kept to a minimum and should be considerably less than the sampling
period as illustrated in figure 5.20.

-

- TIMING SEQUENCE FOR SAMPLED SYSTEM

‘gampling interval Ts

) time
take mfut' next
sample e " sample

system
-
Te

cale. . ’
* time spare time to optimize
networks and predict next output

Figure 5.20 - Timing Diagram

. Whilst this requirement is easily met for control laws in which the next input(s) are ,
calculated using some pre-determined closed form mathematical equation, this is not the
case for the neural network controllers suggested in this study. Both the neural network

- IMC and NPC methods utilize an optimization algorithm in order to determine the next
_input(s) and hence the calculation time can easily become excessive and impact on the
overall system performance.

The effect of an increased calculation time is shown in figure 5.21 which illustrates the
response of the trained NPC structure to the same step perturbation for various
calculation times. These responses show the impact on both the system response and input
once the calculatmn time becomes comparable to the samphng period.

-113-



NaunlNdwodminCmnnﬂEhdnqwhg

TANK LEUEL (Tcz0) INPUT ACTION (Tc=0) TANK LEUEL (Tcelsec) INOUT ACTION (Tc=Lsoc)

7.0 0.3 .04 0.
o.a 0.8

0.7 0.7
0.6 0.64
0.5 0.84

.44 0.4
0. 0.3
0.34 0.24
0.1 0.1
0 - Sy T AT ST R e v
—— e o e e e e
TANK LEVEL (Tc=2s00) INBUT ACTION (Tc=2coc) TANK LEUEL (Tc=S5sec) INPUT ACTION (Tc=Sgec)

7.04 0.9 7.04 0.9

: o.a 0.8

6.0 &.04 .
0.7. 0.7
: H 0.64 * H 0.6
. o.s] . o.s]

0.44 0.44
0.4
0.3
0.3

0 - O vy vy 2T i AT R SO W

.3
0.24
0.3

0 -0 ey ae Tt oD Sk T T wo Yoo

O - 0% v vy sy iAot sy st Yoo sho v

e e o T — — e e
TANK LEVEL (Tc=10secs 1INBUT_ACTICN (Tc=10sec) TANK LEVEL (Tc=15sec) INDUT_ACTION (Tc=iSsec)

0.3 7.0 0.3
0.0 o.e]

0.7 0.7.
2\

0.64 : § \/ \v4 0.6

o.s4 «.04 o.s

0.44 i

0.3

0.2

0. 14
o.04

0.4
0.4
.24
0.4
0.04

Figure 5.21 - Effect of Calculation Time

The aim of the results shown for both structures in the previous sections was to illustrate
their ability to control the system rather than to perform a real-time simulation and hence
the calculation time was not incorporated i.e. a calculation time of zero was assumed in
both cases. Due to the large sampling period (20 seconds) the average calculation times of
180 and 580 milli seconds measured on a 33 MHz 486DX personal computer for IMC and
NPC respectively, do seem negligibly small. Individual calculation times might
nevertheless be of the order of seconds, indicating that these algorithms do require a
certain minimum amount of computation time and are therefore not suitable for high
speed applications in their current format.

- Since the high calculation times are a direct consequence of the number of model
evaluations required by the optimization methods, a reduction in either the computation
time of the model or the number of evaluations is beneficial. Although the latter can be
achieved by increasing the tolerance and reducing the number of iterations in the search
algorithms, there exists a limit beyond which the decrease in accuracy impacts negatively
on the controller performance.

Whilst a further reduction in calculation time can be achieved by optimizing the code
and/or algorithms used as well as by increasing the computing power of the platform on
which these are realized, the implementation of neural network based control structures
on a large scale might be delayed until neural network chips become available to produce
the required speed at a reasonable price.

-114-



h: - . It e~ L A e A N Al i A I St

- 5. Neural Network Based Control Structures

5.5.3 STABILITY AND ROBUSTNESS

One of the main objections levelled against nonlinear and non-standard learning
approaches such as these, is that they cannot be proven to be stable and robust on a
system-by-system -basis and are therefore not as reliable as their linear counterparts.
Whilst this is true, the question remains as to how valid such a proof for a linear system is,
if the underlying system is in fact highly nonlinear or exhibits significant changes over time.

This final chapter illustrated the utilization of neural networks within two model based
control structures. In both cases the network was introduced in an untrained state and was
‘optimized during on-line operation. The network was used to minimize modelling
discrepancies between a linear model and the system. The improved model could then in
turn be utilized to enhance the controller performance. Despite the fact that the two trained
control structures performed equally well and that- the NPC configuration is
computationally more intensive, its flexibility and the ease with which it can be extended to
other systems make it the preferred solution. The excessive computing power and long
calculation times of neural network based control topologies currently limits the
applicability of these structures to slow systems. '

REFERENCES

l1......Hunt K.J. and Sbarbaro D., "NEURAL NETWORKS FOR.  NONLINEAR INTERNAL
MODEL CONTROL", IEE Proceedings-D, 1991, Vol. 138, No. 5, pp. 431-438.

2......Willis M.J., -Di Massimo C., Mantague G.A., Tham M.T. and Morris A.J.,
"ARTIFICIAL NEURAL NETWORKS IN PROCESS ENGINEERING", 1EE Proceedings-D,
1991, Vol. 138, No. 3, pp. 256-266.

3...... Nelkon M. and Parker P., "ADVANCED LEVEL PHYSICS : Chapter 4 - Static
Bodies. Fluids", Heinemann Educational Books, London, 1974.

4...... Garcia C.E. and Morari M., "INTERNAL MODEL CONTROL. 1. A UNIEYING
REVIEW AND SOME NEW RESULTS", Ind. Eng. Chem. Process Des. Dev. 1982,
21, pp. 308323. . "

5..++.0.EcOnomou C.G., Morari M. and Palsson B.O.., "INTERNAL MODEL CONTROL. 5.

EXTENSION TO NONLINEAR SYSTEMS", Ind. Eng. Chem. Process Des. Dev.
1986, 25, pp. 403411. - . .

-115-



Neural Networks in Coatrol Engineering

6......Desoer C.A. and Vidyasagar M., “FEEDBACK SYSTEMS: INPUT-OUTPUT
PROPERTIES", Academic Press, London, 1975.

7......Psaltis D., Sideris A. and Yamamura A.A., "A MULTILAYERTED NEURAL
NETWORK CONTROLLER", IEEE Control System Mag., 1988, 8, pp. 1721.

8......Trossbach W. and Braae M., "NEURAL NETWORKS FOR REAL-TIME, NON-LINEAR
MODELLING AND CONTROL", presented at ‘Artificial Intelligence in
Process Engineering’ collogquium, University of Stellenbosch, April
1992. ' -

9......Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.,
*NUMERICAL RECIPES’, Cambridge University Press, 1988.

-10.....Powell M.J.D., ‘AN EFFICIENT METHOD FOR FINDING THE MINIMUM OF A
FUNCTION OF SEVERAL VARIABLES WITHOUT CALCULATING THE DERIVATIVES',
Computer Journal, 1964, 7, pp. 155-162.

11.....Willis M.J., Montague G.A., Di Massimo C., Tham M.T. and Morris A.J.,

*NON-LINEAR PREDICTIVE CONTROL USING OPTIMIZATION TECHNIQUES' ACC 1991,
pp. 2788-2793.

-

-116-



N

6. CONCLUSIONS

This thesis presents the results of an investigation into the possible use of neural networks
as part of control structures. '

Initially an overview of neural network based control structures was provided, together with
the motivation for selecting a subset of these for this investigation. After this a framework of
prerequisites for neural networks to be used in these structures was introduced. The
subsequent section of the thesis focussed on the concept of feedforward networks and
evaluated the suitability of two topologies, using the above prerequisites. This analysis of
network structures was then extended to include topologies which incorporate dynamic
capability. Finally the performance of two network based control structures was evaluated
using a simulation of a nonlinear tank system. '

The conclusions pertaining to the information presented in this study are discussed below.

6.1 CHOICE OF NEURAL NETWORK BASED CONTROL STRUCTURES

As shown in chapter 2, neural networks have been used in various control laws and
structures. These can be grouped into applications which use a network in an adaptive
mechanism, in place of a conventional controller or as a model in the control structure and

other problem specific utilizations.

Although many of the adaptive and conventional approaches are theoretically plausible,

they lack the mathematical foundation to ensure convergerice and often require the

estimation of system parameters or gradients to generate the training samples. Such systems
are therefore not suited for application to practical problems. Since the problem specific
approaches lack the generic suitability required, only model based structures are examined
in this study. ' : '

The networks in such structures learn to model the underlying system and hence the training
data is obtained directly as system samples and needs no advanced processing such as the
estimation of unknown parameters and gradients or even the backpropagation of errors

~ through unknown systems required for some of the other approaches.

Model based structures are furthermore mathematically motivated as extensions of their
linear origins, assuming that a more accurate improved model might produce better control,
particularly for nonlinear systems for which the linear model is not adequate.

-117 -



Neural Networks in Countrol Engineering

6.2 SELECTION OF TRAINING ALGORITHMS AND TOPOLOGIES FOR
NETWORK MODELS IN CONTROL STRUCTURES

6.2.1 TRAINING ALGORITHMS

The training of any neural network structure is in effect an optimization problem in n

dimensions, where n presents the number of adjustable parameters for that network.
Depending on whether an adjustment of parameters is evaluated using a complete, pre-

defined set of training data or only the current sample, the algorithms utilized to perform

this optimization can be classified as either batch or partern learning algorithms

Due to the difficulty of obtaining a representative set of training data from any dynamic
system and since the network model is furthermore required to learn whilst operating on-
line, only pattern learning algorithms are suitable for the applications considered in this
study.

6.2.2 FEEDFORWARD NETWORKS

Multilayer perceptrons and regular Gaussian networks are both feedforward structures
suitable for on-line training and incorporation as models into a control structure.

Although the multilayer perceptron is more flexible and adaptable in an ideal learning
environment, the local nature and fixed positions of the hidden nodes in the regular
Gaussian, radial basis function (RBF) structure produce a more robust and faster learning
configuration which is better equipped for the non-ideal training circumstances within a
control structure. \

6.2.3 NETWORKS WITH DYNAMICS

One of the main drawbacks of feedforward networks as models for dynamic systems is
their lack of dynamic capability, which is due to the unidirectional flow of information.

More complex structures in which previous outputs and network states are re-utilized do
exist and although the Williams and Zipser structure and training algorithm are suitable for
on-line training, the evaluation shows that these structures often fail to converge and
require excessive computing times when increased in size.

Of all the topologies investigated, the regular Gaussian RBF structure is therefore currently
the best suited for implementation in a control structure and on-line training, despite its
rigid structure and lack of dynamic capability.

~118 -



= T e s e - e g R e

6. Conclusions

6.3 IMPLEMENTATION*:

16.3.1 COMBINATION MODEL

The combination type model, in which a neural network is used in parallel with a
mathematical model, permits the implementation of the controller without any prior
training and is therefore superior to the pure network model.

6.3.2 COMPARISON OF NEURAL NETWORK AND STANDARD LINEAR CONTROL

Even prior to training both the neural network based internal model control (NNIMC)
-and neural predictive control (NPC) produce controllers of equivalent standard as the
‘linear IMC control law. '

After sufficient training the improved model allows further tuning of these topologies to
produce control action not possible using standard linear approaches and the inadequate
model.

Due to the recursive algorithms used in both network approaches, the time required to
calculate the next input far exceeds that of linear control laws and therefore currently
limits these approaches to applications on slow systems.

6.3.3 COI\'[PARISON OF NEURAL NETWORK IMC AND NPC

Although the final control laws generated by these approaches produce almost identical
results, there are a number of significant differences.

Since the NPC algorithm usually requires prediction for several sampling intervals
(prediction horizon) the network has to be utilized in an external recursive topology which
might compromise the accuracy. The larger number of network evaluations furthermore
implies an increased calculation time, thus rendering this approach less applicable for fast
systems.

Despite these drawbacks the flexible and transparent nature of the NPC algorithm makes
it easier to tune, allows the incorporation of many external constraints and can.be
extended to multivariable systems without modification. Since the timing limitations,
mentioned above, might furthermore be overcome due to the rapid advances in computer
technology or the availability of neural network chips, the clear NPC structure is
preferable to the IMC topology.

-119 -



Neural Networks in Control Eagineering

6.4 CONCLUDING REMARKS

The results presented in this thesis show that it is feasible to exploit the modelling and
'learning capability of neural networks for process control.

Whilst the neural network approach is however unlikely to replace the well known and

understood linear controllers which are adequate for the majority of control problems, it

might become a reality for highly nonlinear or difficuit to model problems for which the
linear algorithms fail to deliver the required response.

Although the approaches suggested are currently still computationally expensive and slow,
the rapid advances in the field of computer and neural network technology are likely to .
improve this considerably.

- 120-



Anderson R.W. and Vemuri V., "NEURAL NETWORKS CAN BE USED FOR OPEN-
- LOOP, DYNAMICAL CONYROL", prepnnt to appear in Intematlonal Joumal of Neural
Networks, 1991.

Barto A.G., Anderson C.W. and Sutton R.S., "SYNTHESIS OF NONLINEAR CONTROL
SURFACES BY A LAYERED ASSOCIATIVE SEARCH NETWORK™, Blologxcal '
- Cybernetics, 43, 1982, pp. 175-185.

Berenji H.R., "ARTIFICIAL NEURAL NETWORKS AND APPROXIMATE REASONING
FOR INTELLIGENT CONTROL IN SPACE", ACC 1991, pp. 1075-1080.

Bozich D.J. and MacKay H.B., "VIBRATION CANCELLATION AT MULTIPLE
LOCATIONS USING NEUROCONTROLLERS WITH REAL-TIME LEARNING", ICNN
1991, pp. 11775-11780.

Bremermann H.J. and Anderson R.W., "AN ALTERNATIVE TO BACK-PROPAGATION:
- A SIMPLE RULE OF SYNAPTIC MODIFICATION FOR NEURAL NET TRAINING AND
MEMORY", Internal Report, Center for Pure and Applied Mathematics, University of
California, Berkeley, 1990.

Bremermann H.J. and Anderson R.W., "HOW THE BRAIN ADJUSTS SYNAPSES -
MAYBE", preprint, to appear in "FESTSCHRIFT FOR WOODY BLEDSOE".

Cater J.P., "SUCCESSFULLY USING LEARNING RATES OF 10 (AND GREATER) IN
BACK-PROPAGATION NETWORKS WITH THE HEURISTIC LEARNING
ALGORITHM", TICNN 1987, pp. 11645-11651.

. Chen F.C., "BACK-PROPAGATION NEURAL NETWORKS FOR NONLINEAR SELF-
TUNING ADAPTIVE CONTROL", IEEE Control Systems Magazine, April 1990, pp. 44-47.

Cheok K.C. and Smith 1.C., "ADAPTIVE NEURAL NETWORK CONTROL WITH
FREQUENCY-SHAPED OPTIMAL OUTPUT FEEDBACK", International Joint
Conference on Neural Networks 1991, pp. 11741-11746.

Chinrungrueng C. and Sequin C. H "OPTIMAL ADAPﬁVE K-MEANS ALGORITHM
WITH DYNAMIC ADJUSTMENT OF LEARNING RATE", UCNN 1991, pp. 1855-1862.

Cooper D.J., Megan L. and Hinde R. F "A NEURAL PATTERN ANALYZER FOR
ADAPTIVE PROCESS CONTROL", ACC 1991, pp. 2794-2799.

Cotter N.E., Guillerm T.M., Soller J.B. and Conwell P.R, " PREJUDICIAL SEARCHES
AND THE POLE BALANCER", UCNN 1991, pp. I1689-11694.

-121-



Neural Networks in Control Engineering

Cramer 1.E. and Womack B.F., "ADAPTIVE CONTROL USING NEURAL NETWORKS",
ACC 1991, pp. 681-686. |

Cui X. and Shin K.G., "DESIGN OF AN INDUSTRIAL PROCESS CONTROLLER USING
NEURAL NETWORKS", ACC 1991, pp 508-513. '

Cui X. and Shin K.G., "INTELLIGENT COORDINATION OF MULTIPLE SYSTEMS
WITH NEURAL NETWORKS", ACC 1991, pp. 481-486.

Cybenko G "APPROXIMATION BY SUPERPOSITION OF A SIGMOIDAL FUNCTION",
Mathemancs of Control, Slgnals and Systems, Vol. 2, 1989, pp. 303-314.

" Dahl E.D., "ACCELERATED LEARNING USING THE GENERALIZED DELTA RULE",
IICNN 1987, pp. 11523-11530. V

De Villiers J. and Barnard E. "BACKPROPAGATION NEURAL NETS WITH ONE AND
TWO HIDDEN LAYERS" IEEE Transactions on Neural Networks, Vol. 4, No. 1, 1992,
-pp. 136-141. '

Desoer C.A. and Vidyasagar M., "FEEDBACK SYSTEMS: INPUT-OUTPUT
PROPERTIES", Academic Press London, 1975.

Dreyfus H.L and Dreyfus S.E., "KUENSTLICHE INTELLIGENZ - VON DEN GRENZEN
DER DENKMASCHINE UND DEM WERT DER INTUITION", orig. "MIND OVER
MATTER", New York, The Free Press, 1986.

Economou C.G., Morari M. and Palsson B.O. , "INTERNAL MODEL CONTROL. 5. .
EXTENSION TO NONLINEAR SYSTEMS", Ind. Eng. Chem. Process Des. Dev. 1986, 25,
pp. 403411.

Garcia C.E. and Morari M., "INTERNAL MODEL CONTROL. 1. A UNIFYING REVIEW
AND SOME NEW RESULTS", Ind. Eng. Chem. Process Des. Dev. 1982, 21, pp. 308323.

' Girosi F. and Poggio, "NETWORKS AND THE BEST APPROXIMATION PROPERTY",
Biological Cyberneucs 63, 1990, Pp. 169-176. "

Grossberg S., "NONLINEAR NEURAL NETWORKS: PRINCIPLES, MECHANISMS AND
ARCHITECIURES" ‘Neural Networks, Vol. 1, 1988, pp. 17-61.

Guez A. and Plovoso M., "CUSTOM NEUROCONZROLLER FOR A TIME DELAY
PROCESS", ACC 1991, pp. 1592-1596.

Guez A., Eilbert J.L. and Kam M., "NEURAL NETWORK ARCHITECTURE FOR
CONTROL", 1EEE Control Systems Magazine, April 1988, pp. 23-25.

Hampo R. and Marko K., "NEURAL NETWORK ARCHITECTURES FOR ACTIVE
SUSPENSION CONTROL", ICNN 1991, pp. I1765-11770.

-122-



Bibliograpby -

Hashlmoto H., Kubota T., Kudou M. and Harashlma F "SELF-ORGANIZING VISUAL
SERVO SYSTEM BASED ON NEURAL NETWORKS" " ACC 1991 pp. 2262- 2267

- Hecht-Nielsen R., "KOLMOGOROV’S MAPPING NEURAL NETWORK EXISTENCE
THEOREM", IEEE International Conference on Neural Networks 1987, pp. II11-I1114.

Hirose Y., Yamashita K. and Hijiya S., "BACK-PROPAGATION ALGORITHM WHICH
VARIES THE NUMBER OF HIDDEN UNITS", Neural Networks, Vol. 4, 1991, pp. 61-66.

Hopfield J.J. and Tank D.W., "NEURAL COMPUTATION OF DECISIONS IN
- OPTIMIZATION PROBLEMS", Biological Cybernetics, Vol. 52, 1985, pp. 141-152.

Hornik K., Stinchcombe M. and White H., "MULTILAYER FEEDFORWARD NETWORKS
ARE UNIVERSAL APPROXIMATORS", Neural Networks, Vol. 2, 1989, pp. 359-366.

Hoskins D.A., Hwang J.N. and Vagners, "ITERATIVE INVERSION OF NEURAL
NETWORKS AND ITS APPLICATION TO ADAPTIVE CONTROL", IEEE Transactions
on Neural Networks, Vol. 3, No. 2, 1992, pp. 292-301.

Hsuing J.T. and Himmelblau D.M., "DEVELOPMENT OF CONTROL‘STRAIEGIES VIA
ARTIFICIAL NEURAL NETWORKS AND REINFORCEMENT LEARNING", ACC 1991,
pp. 2326-2330.

Hunt K.J. and Sbarbaro D., "NEURAL NETWORKS FOR NONLINEAR INTERNAL
MODEL CONTROL", 1EE Proceedings-D, Vol. 138, No. 5, 1991, pp. 431-438.

Ichikawa Y. and Sawa T., "NEURAL NETWORK APPLICATION FOR DIRECT
FEEDBACK CONTROLLERS", IEEE Transactions on Neural Networks, Vol. 3, No. 2,
March 1992, pp. 224-231.

Iiguni Y., Sakai H. and Tokumaru H., "A NONLINEAR REGULATOR DESIGN IN THE
PRESENCE OF SYSTEM UNCERTAINTIES USING MULTILAYERED NEURAL
NETWORKS", 1EEE Transactions on Neural Networks, Vol. 2, No. 4, 1991, pp. 410-417.

“Ingman D. and Merlis Y., "LOCAL MINIM UM ESCAPE USING THERMODYNAMIC
PROPERTIES OF NEURAL NETWORKS", Neural Networks, Vol. 4, 1991, pp. 395-404.

Jacobs R.A. and Jordan M.1., "A MODULAR CONNECTIONIST ARCHITECTURE FOR
LEARNING PIECEWISE CONTROL STRATEGIES", ACC 1991, pp. 1597-1602.

Karsai G., "LEARNING TO CONTROL: SOME PRACTICAL EXPERIMENTS WITH
" NEURAL NETWORKS", ICNN 1991, pp. I701-11707.

Kirkpatrick S., Gelatt C.D. and Vecchl M.P., "OPTIMIZATION BY SIMULATED
ANNEALING", Science, Vol. 220, 1983, pp. 671-680.

-123 -



Neural Networks in Control Eagineering

Kolmogorov A.N., "ON THE REPRESENTATION OF CONTINUQUS FUNCTIONS OF
MANY VARIABLES BY SUPERPOSITION OF CONTINUOUS FUNCTIONS OF ONE
VARIABLE AND ADDITION", Dokl. Akad. Nauk USSR, 114, 1957, pp. 935-956.

Kong S.G. and Kosko B., "ADAPTIVE FUZZY SYSTEMS FOR BACKING UP A TRUCK-
AND-TRAILER", IEEE Transactions on Neural Networks, Vol. 3, No. 2, pp. 211-223, 1992.

Kreinovich V. Y., "ARBITRARY NONLINEARITY IS SUFFICIENT TO REPRESENT ALL
FUNCTIONS BY NEURAL NETWORKS: A THEOREM", Neural Networks, Vol. 4, 1991,
pp- 381-383.

Kumar S.S. and Guez A., "ART BASED ADAPTIVE POLE PLACEMENT FOR
NEUROCONTROLLERS", Neural Networks, Vol. 4, 1991, pp. 319-335.

Lambert J.M. and Hecht-Nielsen R., "APPLICATION OF FEEDFORWARD AND
RECURRENT NEURAL NETWORKS TO CHEMICAL PLANT PREDICTIVE
MODELING", UCNN 1991, pp. 1373-1378.

Lee S. and Kil R.M., "MULTILAYER FEEDFORWARD POTENTIAL FUNCTION
NETWORK", pre-print, submitted to Neural Networks September 1989.

Leonard J.A. and Kramer M.A., "RADIAL BASIS FUNCTION NETWORKS FOR
CLASSIFYING PROCESS FAULTS", IEEE Control Systems Magazine, April 1991, pp. 31-
38.

Levin E., Gewirtzman R. and Inbar G.F., "NEURAL NETWORK ARCHITECTURE FOR
.ADAPTIVE SYSTEM MODELING AND CONTROL", Neural Networks, Vol. 4, 1991,
pp. 185-191.

Lippmann R.P., "AN INTRODUCTION TO COMPUTING WITH NEURAL NETS", IEEE
ASSP Magazine, 1987, pp. 4-22.

Miller W.T., Latham P.J. and Scalera S.M., "BIPEDAL GAIT ADAPTION FOR WALKING
WITH DYNAMIC BALANCE", ACC 1991, pp. 1603-1608.

Minsky M., Seymour P., "PERCEPTRONS: AN INTRODUCTION TO COMPUTATIONAL
GEOMETRY", Cambridge, MA: MIT Press, 1969.

Moody T.J. and Darken C.J., "FAST LEARNING IN NETWORKS OF LOCALLY TUNED
PROCESSING UNITS", Neural Computation, Vol. 1, 1989, pp. 151-160.

Moore K.L. and Naidu S., "LINEAR QUADRATIC REGULATION USING NEURAL
NETWORKS", ICNN 1991, pp. 11735-11739.

Moore K.L., "4 REINFORCEMENT-LEARNING NEURAL NETWORK FOR THE
CONTROL OF NONLINEAR SYSTEMS", ACC 1991, pp. 21-22.

- 124 -



_ Bibliography

Narendra K.S. and Levin A.U., "REGULATION OF NONLINEAR DYNAMICAL
SYSTEMS USING MULTIPLE NEURAL NETWORKS", ACC 1991, Pp- 1609 1614,

'Narendra K.S. and Mukhopadhyay S., "INTELLIGENT CONTROL USING NEURAL
NETWORKS", ACC 1991, pp. 1069-1074.

" Narendra K.S. and Parthasaraty K. "IDENTIFICA’HON AND CONTROL OF
DYNAMICAL SYSTEMS USING NEURAL NETWORKS" IEEE Transactions on Neural
Networks, Vol. 1, No. 1, 1990, pp. 4-27.

Nelkon M. and Parker P., "ADVANCED LEVEL PHYSICS : Chapter 4 - Static Bodies.
Fluids", Heinemann Educational Books, London, 1974.

Nguyen H. and Widrow B., "NEURAL NETWORKS FOR SELF-LEARNING CONTROL
SYSTEMS", IEEE Control Systems Magazine, April 1990, pp. 18-23.

Parker D.B. , "OPTIMAL ALGORITHMS FOR ADAPTIVE NETWORKS: SECOND
ORDER BACKPROPAGATION, SECOND ORDER DIRECT PROPAGATION, AND
SECOND ORDER HEBBIAN LEARNING", TICNN 1987, pp 11593-11600.

Powell M.J.D., "AN EFFICIENT METHOD FOR FINDING THE MINIMUM OF A
FUNCTION OF SEVERAL VARIABLES WITHOUT CALCULATING THE
DERIVATIVES", Computer Journal, 1964, 7, pp. 155-162. '

Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T., "NUMERICAL RECIPES",
Cambridge University Press, 1988. ;

Psaltis D., Sideris A. and Yamamura A., "NEURAL CONTROLLERS", International
Conference on Neural Networks 1987, pp. IV551-IV558.

Psaltis D., ‘Sideris A. and Yamamura A.A., "A MULTILAYERTED NEURAL NETWORK |
CONTROLLER", 1EEE Control System Mag., 1988, 8, pp. 1721.

Qin S., Su H. and McAvoy T., "COMPARISON OF FOUR NEURAL NET LEARNING
METHODS FOR DYNAMIC SYSTEM IDENTIFICATION", IEEE Transactions on Neural
Networks, Vol. 3, No. 1, 1992, pp. 122-130. ‘

Rigler A.K., Irvoine J.M. and Vogl T.P., “RESCALING OF VARIABLES IN BACK
PROPAGATYON LEARNING", Neural Networks, Vol. 4, 1991, pp. 225-229.

~ Roger Jang J.S. and Sun C.T., "F UNCTIONAL EQUIVALENCE BETWEEN RADIAL
BASIS FUNCTION NEIWORKS AND FUZZY INFERENCE SYSTEMS", 1EEE
Transactions on Neural Networks, Vol. 4, No. 1, 1993, pp. 156-159. _

Rosenblatt F., "PRINCIPLES OF NEURODYNAMICS: PERCEPTRONS AND THE
THEORY OF BRAIN MECHANISMS", Washington, DC: Sparta Books, 1962.

-125-



Neural Networks in Control Engineering

Rumelhart D.E., McClelland J.L. and the PDP research group, "PARALLEL
DISTRIBUTED PROCESSING - EXPLORATION IN THE MICROSTRUCTURE OF
COGNITION, Volume 1: Foundations", Cambridge, MA: MIT Press, 1986.

Sbarbaro D. and Gawthrop P.J., "SELF-ORGA}VIZATION AND ADAPTION IN
GAUSSIAN NETWORKS", 9th IFAC/IFOR Symposium on Identification and System '
Parameter Estimation, 1991

Shoemaker P.A., Carlin M.J. and Shimabukuro R.L., "BACK PROPAGATION LEARNING
WITH TRINARY QUANTIZATION OF WEIGHT UPDATES" , Neural Networks, Vol. 4,
1991, pp. 231-241,

Smolensky P., "CONNECTIONIST AI, SYMBOLIC Al, AND THE BRAIN", Artificial
Intelligence Review, 1987, pp. 95-109.

Spall J .C. and Cristion J.A.,. "EFFICIENT WEIGHT ESTIMATION IN NEURAL
NETWORKS FOR ADAPTIVE CONTROL", ACC 1991, pp. 16-20.

Srender K.K., "EFFICIENT ACTIVATION FUNCTIONS FOR THE BACK-
PROPAGATION NEURAL NETWORK", presented at UICNN 1991.

Steck J., Krishnamurthy K., McMillin B. and Leiniger G., "NEURAL MODELING AND
CONTROL OF A DISTILLATION COLUMN", ICNN 1992, pp. 11771-11774.

Steinberg M. and DiGirolamo R., "APPL YING NEURAL NETWORK TECHNOLOGY TO
FUTURE GENERATION MILITARY FLIGHT CONTROL SYSTEMS", presented at
IJCNN 1991.

Stornetta W.S. and Huberman B.A., "AN IMPROVED THREE-LAYER BACK
PROPAGATION ALGORITHM", TICNN 1987, pp. 11637-11643.

Su H. and McAvoy T.J., "IDENTIFICATION OF CHEMICAL PROCESSES USING
RECURRENT NETWORKS", ACC 1991, pp. 2314-2319.

Sun G.Z., Chen H.H. and Lee Y.C., "A FAST ON-LINE LEARNING ALGORITHM FOR
RECURRENT NEURAL NETWORKS", ICNN 1991, pp. H13-II18.

~ Sznaier M. and Damborg M.J., "AN ANALOG “NEURAL NET” BASED SUBOPTIMAL
CONTROLLER FOR CONSTRAINED DISCRETE-TIME LINEAR SYSTEMS",
Automatica, Vol. 28, No. 1, 1992, pp. 139-144.

Trossbach W. and Braae M., "IMSTIGATION INTO NEURAL NETWORKS FOR
CONTROL OF NON-LINEAR PROCESSES", presented at SACAC Tutorial and Workshop
on Neural Networks, Durban University, July 1991.

-126-



" Bibliography

‘Trossbach W. and Braae M., "NEURAL NETWORKS FOR REAL- TIME, NON-LINEAR
MODELLING AND CONI'ROL" presented at ’ Artificial Intelhgence in Process
Engineering’ colloquium, University 6f Stellenbosch Apnl 1992.

Troudet T., Garg S., Mattern D. and Merril W., "TOWARDS PRACTICAL CONTROL
DESIGN USING NEURAL COMPUTATION", IICNN 1991, pp. 11675-11681.

“Tsung F.S., "LEARNING IN RECURRENT FINITE DIFFERENCE NETWORKS",
Connectionist Models Summer School 1991.

Watrous R. L., "LEARNING ALGORITHMS FOR CONNECTIONIST NETWORKS:
APPLIED GRADIENT METHODS OF NONLINEAR OPTIMIZATION", IICNN 1987, pp.
11619-11627.

Weir M.K., "4 METHOD FOR SELF-DETERMINATION OF ADAPTIVE LEARNING
RATES IN BACK PROPAGATION", Neural Networks, Vol. 4, 1991, pp. 371-379.

Werbos P.J., "GENERALIZATION OF BACKPROPAGATION WITH APPLICATION TO
A RECURRENT GAS MARKET MODEL", Neural Computation, Vol. 1, 1988, pp. 270-280.

Wieland A.P., "EVOLVING NEURAL NETWORK CONTROLLERS FOR UNSTABLE
SYSTEMS", ICNN 1991, pp. 11667-11673.

Williams R.J. and Zipser D., "A LEARNING ALGORITHM FOR CONTINUALLY
RUNNING FULLY RECURRENT NETWORKS", Neural Computation, Vol. 1, 1989.

Willis M.J., Di Massimo C.,-Mantague G.A., Tham M.T. and Morris A.J., "ARTIFICIAL -
NEURAL NETWORKS IN PROCESS ENGINEERING", 1EE Proceedings-D, 1991, Vol.
138, No. 3, pp. 256-266.

Willis M.J., Di Massimo C., Montague 'G.A., Tham M.T. and Morris A.J., "NON-LINEAR
PREDICTIVE CONTROL USING OPTIMIZATION TECHNIQUES", ACC 1992, pp. 2788-
2793.

Willis M.J., Montague G.A., Morris A.J. and Tham M.T., "ARTIFICIAL NEURAL
- NETWORKS: - AM PANACEA TO MODELLING PROBLEMS?", ACC 1991, pp. 2337-
2342. _

Wray J. and Green G.G.R. , "HOW NEURAL NETWORKS WORK: THE MATHEMATICS
OF NETWORKS USED TO SOLVE STANDARD ENGINEERING PROBLEMS", ACC
1991, pp. 2311-2313.

Wu Q.H., Hogg B.W. and Irwin G.W., "4 NEURAL NETWORK REGULATOR FOR
TURBOGENERATORS", IEEE Transactions on Neural Networks, Vol. 3, No. 1, 1992,
pp. 95-100.

-127-



Neural Networks in Control Engineering

Youngjik L., Sang-Hoon O. and Myung W.K., "THE EFFECT OF INITIAL WEIGHTS ON
PREMATURE SATURATION IN BACK-PROPAGATION LEARNING", IICNN 1991,
pp. 1765-1770. - _

- 128 -



APPENDIX I-
GENERAL EXISTEN CE THEOREM

This Appendix presents one of the many network mapping theorems. The proof included
here is taken directly from Kreinovich [1] and was selected as an example due to its
generality, rather than to validate the mapping competence of all networks discussed in thls

- work.

Preliminary Remarks and Definitions

A neural network approx;mates the function f({x3,%3...Xy) (defined on (-X,X] )
with precision >0, if for every vector x€([-X, xf“, ly - f(g)l < ¢ where vy is
the output of the network for input x.

Since mappings f:[—x,X]m - %" n>1 are effectively n functions
fri(xy,%X3...%y), k=1,2...n with each function mapping the dependence of the k-
th coordinate of the output on the input vector x. Such a mapping can
therefore be approximated with precision e if each of the n outputs is
approximated as described above.

Main Theorem

Assume that g({x) is an arbitrary smooth (at least three times differentiable
function) R->N, X and e are positive real numbers, and f is a continuous
mapping from (-X,X]™ to ® ™. Then there exists a neural network that consists
of linear elements and elements xﬂg(x)vthat‘approximates f with precision e.

" Proof

.1. Since a mapping to R 7 can be represented by combining n functions, it is
sufficient to show that the network can approximate any real-valued
funct;on.

2. The Weierstrass approximation theorem shows that any arbitrary continuous
function on a cube can be approximated by a polynomxal with precision d
{where d is any real number > 0).
It is therefore sufficient to show that neural networks can approximate
polynomxals with precision e/2, since the polynomxal can then be used to
approximate the function f with the same precision thus resulting in a
network which approximates f with precision e.

3. A polynomlal of m input varxables is obta;ned by addition and
multiplication of these inputs Ky X3 eXpe
Since the linear elements included can perform the addltxon, it is
sufficient to show that the network can also implement multiplication.
{It is worth noting that using a Taylor expansion in networks without

-129-



Neural Networks in Control Engineering

linear elements the addition can be shown to be performed by the nonlinear
members. ) V

4. Since g(x) is at least three times differentiable and nonlinear its second
derivative exists and has to be nonzero for some x i.e. there exists a
point x, where g’’(xg)=d#0 ’
then g(xo*h) = g(xg) + g'(xo)h + dh? + o(h?)

Qhere F = o(G) means that F/G - 0 as h - 0 i.e. for every e¢; there exists
an H such that for h€({-H,6H] .
2

2
g(x, +h) - g( - g’ th - dh™] < e;h
and henc!e g gxo) 9" % l i
2 2
lg(x +h) = g(x,) = g"(3%,)h - dn’| < e}

or

i

|n?- a(h)| < ¢ #°/d where a(h) (90, +h) = (%) = g’ (% )h]/d

Since all elements of a(h) are linear and constants, the expression can be
implemented by a neural network which imglies that this neural network
approximates the squaring function h - h® on [~H,H].

For the above to apply to [{~-X,X] this interval is transformed linearly into

{(-H,H] . A '

- substituting for h = (H/X)x and then applying a(h) which is a network’
and let y = (X/H)“a(h) then since a{(h) is an approximation to
h® = ((H/X)x)® it follows that y is an approximation to

' - | x/m2 (/)02 = %2

- the precision of this approximation is obtained by multiplying both
sides of |a(h) - hzi < ey Hz/d'bzy (X/H) 2whj.ch, since (X/H) 2h2=x2and
(X/H)y“a(h)=y, results in [y - X I < e

'Chooéing e] such that e 1< ¢/X 2where ¢ is an arbitrary positive real
number, then bg applying the above network y it is possible to approximate
the function x° with precision c.

5. Since the network can approximate linear functions and x2, it can implement
multiplication x,y = Xy as 1/4((x + y)2 - (X = y)z), which in view of 1~3
above completes the proof of the theorem. Q.E.D.

REFERENCES

3

1......Kreinovich V., "ARBITRARY NONLINEARITY IS SUFFICIENT TO REPRESENT ALL
FUNCTIONS BY NEURAL NETWORKS: A THEOREM", Neural Networks, Vol. 4,
1991, pp. 381-383. : ' ‘

-130-



r L ST -7

SOURCE CODE LISTING

This appéndix contains listings of all relevant source code. Rather than including a listing of
each of the programs, the appropriate units and examples of how to apply them have been
included. All listings shown, were developed and run using Borland’s Turbo Pascal version

6.0.
1. FEEDFORWARD NETWORKS
UNIT FFNETS;
(*=========ssssssssssssssssssssssssSssssss *)
INTERFACE
CONST
max_inp = 10; {maximum number of inputs)
max_hid = 108; {maximum number of hidden nodes}
max_outp = 10; {maximum number of outputs}
TYPE

Xfer = function(x:réal):real;

FFNet = object

inp,hid,

outp : integer;

InpVec : array({l..max_inp) of real;
Hidvec : array[l..max_hid] of real;
DesOutp,’

QutpVec : array[1..max_outp] of real;
inp_Xfer, .
hid Xfer,

outvafer : Xfer;
Wt_hi X
dwWw_hid outp: array[1..max_hid,1..max_outp] of real;

d_outp,

. heta,alpha : real;

friame : string;

end;
FastPerceptron = object(FFNet)

DeltaHid

: array[1..max_hid} of real;
DeltaOutp : array(1..max_outp] of reai;
Wt_inp_hid,

dW”inp_hid :

procedure FeedForward; virtual;
procedure BackPropagate; virtual;

~function SaveNet:integer;

end

Fa

end

function LoadNet:integer;
destructor Done;
H

stRBF = object(FFNet)
delta : real;
irh : integer;

centres : arrayl[1..max_hid,1..max_inp] of real;
constructor lnit(i,ih,o:integer;aT:real;nam:string);
procedure Feedforward; virtual; )

procedure Train; virtual;

function SaveNet:integer;

function LoadNet:integer;

destructor Done;

-131 -

“inp_| array[1..(max_inp+1),1..max_hid] of real;
constructor Init(i,h,o:integer;ht, al:real;nam:string);

{type for Xfer function)
{abstract feedforward network object)

{actual size parameters)
{input vectorga

{outp. of hidden)

{desired output)

{output vector)}

{transfer function)}

{for individ.

{layers )

{wts from hid to out)

{wt changes for offset 2}
{learning and momentum rates)
{directory & filename)

{perceptron with single hidden layer)
{delta for hidden |.)}

{delta for output L.}

{wts from inp to hid - add-1 for theta’s)
{wt changes in hidden layer )

{RBF network)}

{bandwidth} ) - .

€ inputh root of hidden - nodes per
dimens.)

{coord. of centres - stored for speed)




Neural Networks in Control Eagineering

SR R e e et L L R bbb bbbt bbb bbbt *)
IMPLEMENTATION
(t ......................................................................................................... *)
function Linear(x:real):real; far; {linear Xfer function}

begin

‘Linear := x;

end;
(*-----‘-----------.---; ................................................... g VU S *)
function Sigmoid(x:real):real; far;v {sigmoidal (logistic) Xfer function)

?f x>10 then Sigmoid := 0.999999999
else if x<-10 then Sigmoid := 0. 00000001
else Sigmoid := 1/(1+exp( x));
end; .

L IL LY mamemeememmecencsnraanans eemeteenceonnnn )

function Gaussian(x:real):real; far; {Gaussian Xfer function)
begin
if x<le-9 then Gaussian := 0,99999999%

else if x>20 then Gaussian := 0.00000001
else Gaussian := exp(-x);

end;
(t ......................................................................................................... *)
CONST . )
1in :Xfer = Linear; {define Xfer functions as const to pass)
sigm:Xfer = Sigmoid; { as parameters)
Gaus:Xfer = Gaussian;
(* ......................................................................................................... *)
constructor FastPerceptron.init(i, h,orinteger;ht,al:real;nam:string); {create perceptron)
var .
q,r : integer;.
begin

inp 1= i+l ' V ‘
gng?ec[1npl = 1; : {constant input for hid. layer thetas)
outp'
inp Xfer 1= lin;
hid Xfer 1= 519m,
outp Xfer := lin;
heta” := ht;
alpha := al;
fname := nam;
Randomi ze; {initialize all weights)

for q:=1 to :nﬁ
for ri=1 to hid do
begin
wt_inp_hidlq,r) :
ngw inp_| _hid(q,r) :

for q“i to hid do
for r:=1 to outp do
begin
Ht hid outplq,r] := (random-0.5)*2;
engu'hld'outp[q,r] = 0;

andom-0.5)*2;

(r
0;

end; “»
(*.-.....’. ................................................. R e kDL T - *)
procedure Fast?erceptron.FéedForuard; {calculate output with current inputs)
var . ' -
q,r : integer;
begi

!n Vec[tnp] =1;
fog q:=1 to hid do
begin
HidVeclql := 0;
for ri=1 to inp do

-132 -



- Appeadix II - Source Code Listing

HidVec[ql := HidVec[ql+Wt_inp_hidlr,ql*InpVeclr); Chid. layer inp)
HidvVeclql := Sigmoid(HidvecTql); {hid: layer outp)

end;
for q:=1 to outp do
begin
OutpVeclql := 0;

for ri=1 to hid do .
nd OutpVec [q] := OutpVeclql+Wt_hid _outplr,qi*Hidvecirl;
:

e

~3

(Fmnnmninne e e m = = e o m :

' procedure FastPerceptron.BackPrppagate; {perform backprop. optimiztion)

var .
q,r : integer;

begin

for q:=1 to outp do

deltaOutplql := DesOutplql-OutpVeclql;

for g:=1 to hid do
begin
deltalid[q]l := 0;

for r:=1 to outp do . .
deltaHid[q] := deltaHid{q] + Wt_hid_outp(q,rl*deltaOutplr];

end;

for q:=1 to outp do
for r:=1 to hid do

deltaHidiql := HidVec[ql*(1-HidVet[ql *deltalidiq];

begin : ' : )
_ dW_hid outplr,q] := heta*deltaOutpl[ql*HidVec(r] + alpha*dW_hid_outpir,ql;
n:t:hid:outp[r,q] := Wt_hid_outplr,ql + dW_hid outplr,ql; {update weights)
end; ;

for q:=1 to hid do

for r:=1 to inp do

begin

end

function FastPerceptron.SaveNet:integér;

var
q,r : integer;
tfile : text;
begin
-y .
assign(tfile, fname);
rewrite(tfile);

dw_inp_hid[r,q) := hetg*delgaai'dtq:*Igaw.:cm + alpha*dW_inp_hid(r,ql;
Wt_inp_hidlr,q) := Wt_inp_hid[r,q} +
d; ,

inp_hidir,ql;

writeln(tfile, 'Perceptron Weight File : 7, fname);

writeln(tfile);
writeln({tfile, inp,’
writeln(tfile);
uriteln(tf@le,ﬁeta,'
writeln(tfile);
writeln(tfile, wei
for q:=1 to inp do

' hid,t f,outp,’ - inputs{+const. for th.), hidden, outputs’};

‘,alpha,’ - heta, alpha’);

ghts from inp; to hidden (inp * hid) :7);

begin
gor r:=1 to hid do write(tfile,Wt_inp_hidlq,r],’ 7);

writeln(tfile);
end;
urite[n(tfile);

writeln(tfile,'weights from hidden to output :);

for q:=1 to hid do
pegin

writein{tfile);
c{oseitfile);
+

SaveNet := IOResult;
end;

or r:=1 to outp do write{tfile, Wt _hid outplq,rl,’ ');

_ function FastPerceptron.loadNet:integer; {load network parameters

var

+

-133 -

{outp. layer inp.=outp. since Lin.)

{delta outp. for lin. units)

{delta for sigm. hidden L.

{save current network parameters)

&

from file}



Neural Networks in Control Engineering

q,r : integer;
tfile : text;

begin
(s1->

assign(tfile, fname);

reset(tfile); .

readln(tfile); readln(tfile);

readln(tfile,inp,hid,outp); readln(tfile);

readln(tfile heta,alpha); readln(tfile);

readln(tfile);

for q:=1 to inp do

begin .

for r:=1 to hid do read(tfile,Wt_inp_hidlq,rl);
readln(tfile);

end;
~ readin(tfile); readln(tfile);
for q:=1 to hid do
begin .
for r:=1 to outp do read(tfile,Wt_hid_outplq,rl);
readln(tfile);

end;
close(tfile);
($1+)
LoadNet := IOResult;
end;
[ Gl ettt ittt il ettt ettt ettt *)
destructor FastPerceptron.Done; ) {destructor for perceptron)
begin
end;
(* ......................................................................................................... *)
constructor FastRBF.Init(i,ih,o:integer;al:real;nam:string); {create RBF network)
var

space : real;
q,r,s,t,l : integer;

iﬁ;

irh := ih;

for q:=1 to (inp-1) do
hid := hid*ih;

outp := o; .

inp_Xfer

hid_xfer

outp Xfer :

alpha := al;

fname := nam;

=2
a’
n ‘l; .l

lin;
Gaus;
lin;

Randomize; ' (calculate centres & initialize all weights)
space := 2/(irh-1);

for q:=1 to hid do
for r:=1 to inp do
begin :
s :=1;
for t:=1 to (r-1) do
s := s*irh; )
ngentres[q,r] 1= -1+(((g-1) div s)mod irh)*space;
end;

"delta := 2/sqr(space);

for q:=1 to hid do
for r:=1 to outp do

begin ,
Wt_hid_outplq,r] := (random-0.5)/10;
end; .
end;
(I‘ ......................................................................................................... I‘)
procedure FastRBF.FeedForward; {generate ouput)
var
q,r : integer;
begin
for q:=1 to hid do
begin

Hidveclq) := 0;
for r:=1 to inp do

-134-



Appendix II - Source Code Listing

Hidvec[q] := HldVec[q]+delta*sqr(0 75*Inpvec(r]- centres[ 1) - {hid. layer'ihp}
ﬂldVec[q] := Gaussian(Hidvec(ql); 1nd. layer outp}

for q-=1 to outp do

OutpVec[q] = 0;

for r:=1 to hid do )
d: outpVecfql := OutpVec[ql+Wt_hid_outplr,ql*HidVecirl; {outp. layer inp.=outp. since lin.}
€ ’ L L

procedure FastRBF.Train; {update weights)

var .
q,r : integer;

begi
%or q:=1 to hid do
for r:=1 to outp do A N
wt_hid_outplq,r]l := Wt_hid_outp(q,r] + alpha*HidVec[ql*(DesOutp(r]-CutpVeclrl}; {update weights}

end;
(¥ocomuvmmmvanacrrenmnmnoesmanann R dielrbbe ettt ioblbdildeideiedebdieietedeeddiieietebebh e de el *)
function FastRBF.SaveNet:integer; ‘ ' {save current network parameters)
var '
q,r : integer;
tfile : text;
begin
{$1-)

assign(tfile, frame);

reurtte(tf1le)‘

arlteln(tf1le,'RBF Uexght File : +, fname);

writein(tfile); . .
writeln(tfile,inp,’ *,irh,’ /,outp,’ - inputs, i-r-h, outputs’);
urlteln(tflle),

writein(tfile, alpha,’ - alpha’);

ur\teln(tf!(e)

urlteln(tfite"uenghts from hidden to output :’);

for q:=1 to hid do

begin
for ri=1 to outp do write(tfile,Wt_hid_outplq,rl,’ );
writeln(tfile);

ciose(tfile):
{$1+)

SaveNet := IOResult;
end;
(* ......................................................................................................... *)
function FastRBF.lLoadNet:integer; . {load network parameters from file)
var A
q,r : integer;
tfile : text;
begin

(%1}
- assign(tfile,fname);
reset{tfile)'
readln(tfxte)' readln(tfile);
readin(tfile, lnp irh,outp); readln(tfrle)'
readln(tfile a pﬁa): readln(tfile); readln(tftle),
for q:=1 to 51
begin
for ri=1 to outp do read(tfile Wt_hid outplq,rl);
readln(tftle)‘

clbse(tflle); ' Co-
+)

LoadNet := IOResult;
end;

destructor FastRBF. pone; {destructor for RBF net)
bggln
ena;

. 135-



Neural Networks in Coutrol Engineering

The following 1istings‘shows how to generate and use perceptron and RBF networks using

the procedures listed above :

('-.04-¢ ................................................... .-

{to create perceptron} .

uses dos,
crt, -
FFNets;

var

net : “FastPerceptron;

-----

begin
release(HeapOrg);
new(net,Init¢1,3,1,0.2,0.5, test.uts’));

e

{in main program}

(t--,-.----------...v ......... D T T T S wsmemccrecsvmmmanman

{to use and train perceptron}

with net” do
begin
InpVec(1]l := x;
Feedforward;
nn := OutpVecl[1l;
DesQutpf1) := y;
BackPropagate; . : -
end;

(i .................................................................

{to save and load perceptron}

u;iteln(‘Save current network parameters ...7});
c .
repeat
write(‘enter filename :
readin({filename);
with net” do
begin
fname := filename;
if SaveNet<>( then
begin
write(’saving not successful -
ch := UpCase(ReadKey);
end;

end;
until (ch=’N7);

w;itelgﬁ:Load existing network parameters ...');
ch := :
repeat .
write{’enter filename : ’);
readln(filename);
with net” do
begin
name := filename;
if LoadNet<>0 then
begin
write(’loading not successful - try again (y/nl :
nﬁh := UpCase(ReadKey);
end;

end;
until (ch=’'N');
(*---.‘--------------g-----,.....-.--.-...-----..----.--....-f...-

= 'N’;

I):

try again [y/n] : 7);

l);

Since RBF networks share the same abstract parent object,

similar way.

- 136 -

........................................ *)

Cinclude unit)

{create occurence - here a pointer was
chosen to create the network using heap
memory}

{create perceptron in heap)

........................................ i)

{set input(s))
{generate output(s))
{store output(s))

{set desired output(s))

{backpropagate)

.{theta and alpha may need changing during
operation)
.................................. ..----*)

...... .-------------..----;..‘........_--t)

they are generated and used in a_



Appendix II - Source Code Listing

2. RECURRENT NETWORKS

This subsection includes the listing of the recurrent network unit as well as an application |
-example. ‘

Unit RECNETS;

(t —————————— : : ———— = ...)
INTERFACE
CONST
max_m = 10; {maximum number of external inputs}
max_n = 15; {maximum number of nodes)
TYPE

recptr = “recnet;

recnet = record

m,n,t : integer;
X : array[l..max_m] of real; ({external inputs)
yd : array(1..max_n] of real' {desired outputs)
y,s,e : array[1..max_n] of real; {netw. outp., inputs, errors - use 1..t units as ext. outp.}
z : array[1..max_m+max_n] of real; {netw. inp. and outp.)
W, dw :,array[1..max n,1..max_n+max nn of real; (weights)
p : array[1..max n, .. max_n+max_m, 1. .max n] of real;
alpha : real;
fname : strlng[12];
end;
(t --------------------------------------------------------------------------------------------------------- i')

PROCEDURE INITRec(p:recptr);
PROCEDURE Normz(p:recptr);
PROCEDURE ForceLz(p:recptr);
PROCEDURE RecOut(p:recptr); -
PROCEDURE CalcduW(p:recptr);
PROCEDURE UpdateW(p:recptr);
PROCEDURE ContLearn(p:recptr);
PROCEDURE ForcelLearn(p:recptr);
PROCEDURE ClearP(p:recptr);
PROCEDURE SaveWeights(p:recptr);
PROCEDURE ReadWeights(p:recptr);

* : *
IMPLEMENTATION

J(*--------------------‘ ------------------------------------------------------------------------------------- *)
FUNCTION Sigmoid(x:real):real; {sigmoidal (logistic) activation function)

begin
7f x>10 then
Sigmoid := 0 99999
else .
if x<-10 then )

Sigmoid := 0.000001 -
else .

Sigmoid := 1/(1+exp(-x));

FUNCTION KronDelta(i,j:integer):real; {Kronecker délta)

- begin
i1f i=j then
KronDeita := 1
else KronDelta := 0;
end;

-137-



Neural Networks in Control Engineering

PROCEDURE INITRec(p:recptr); ) v (creates network)

var
i,j,k : integer;

begin

randomize’
with p* do

gin

for 1--1 to max n do
begin
for j:=1 to (max_mtmax_n) do
begin
W] a= (- 2*randcm)/10~

= mel; {add constant node for bias)

(* .................... R D D N L L T L T L L T mm———— i)

PROCEDURE Normz(p:recptr); (calculéte z for normal learning)

var :
k : integer; ,

begin
with p* do

- begi
%or k:=1 to n do
(k] := ylk];
for k:=1 to {(m~1) do
z[k+n] := x[K];

né[n+m] = 1; k {constant input)
end; .
end;
(* ......................................................................................................... *)
PROCEDURE Forcelz(p:recptr); {calculate z for force-learning)
var
k : integer;
begin
with p* do
begin
for k:=1 to n do

if k<=t then
z[k] := ydIk]
else z[k] := ylkl;
for k:=1 to (m-1) do
zlk+n] := x[KkI;

zln+m] := 1; ‘ {constant ihput}
end;
end;
(t ....... e memere e - 1 R R ¥ W o P e e *)
PROCEDURE Recaut(p:reéptr); {generate output)
var . ‘
k,l : integer;
begin
with p* do
begin
for k3 1 to n do
begi
s[k] := 0;

for L:=1 to {m*+n) do
slk] := stkl+Wik,l1*z(l1;

end;
for k- 1 to n do

tk] 1= S:gmoad(s[k]), : R
:f (k<=t) t . {if one of the external outputs)
elk] := yd[k] yik]
else e[k].~0
end;

-138 -



* Appendix II - Source Code Listing

PROCEDURE UpDateP(p:recptr);

var
tmp : array[1..max n]} of real;

k,t : integer;

begin . ) 7
with p* do
begin
for i:=1 to n do
for j:=1 to (m*n) do

begin
for k:=1 to n do
begin
tmp k] :=0;

tmpk) := tmp{k1+Wik, L1*p(i, |
tmp (k] := tmpl[ ]+KronDelta(1

fc)‘zm

{intermediate calculation for training) -
(called from training procedure}

end;
for k:=1 to n
iy pli,j, k] 1= y[k]*(1 y[k])*tmp[k],
end;
end;
end;
(* --------------------------------------------------------------------------------------------------------- *)

PROCEDURE Calcdw(p:recptr);

{calculate change to weights for normal}
{learning - used if changes are to be)

var {moni tored)
tmp : real;
i,0,
k : integer;
begin
UpDateP(p);
with p* do
begin
for i:=1 to n do
for j:=1 to (n+m+1) do
begin - 0;
fﬂg k:=1'to n dz N ‘
mp := tmp+elkl*pli,j,k];
dU[l j1 := alpha* tmp
end;
end;
. end;
(* ......................................................................................................... *)

PROCEDURE UpdateW(p:recptr);

var
i,j : integer;

begin
with p* do
begin
for i:=1 to n do
for j:=1 to (n+m) do
W1, == Wi, j)+dWli,jl;

PROCEDURE ContLearn(p:recptr)}

var
tmp : real;

V.,
k & integer;

begin
UpDateP(p);
uﬁhp do’
begin
for i:=t to n do
for j:=1 to (n*tm) do

begin 0;
fﬂ? k: —1 ton dz]*
= tmp+efl
H[l,j] = WIi, j]+a?pha*tmp,
end;

-139-

_ {perform updates-use with above proc.}

{standard learning routine}
{use with Normz)



Neural Networks in Control Engineering

PROCEDURE ReadWeights(pirecptr);

var

i,i. ¢ integer;
int : text;

begin
with p* do
begin -
assign{inf, fname);
reset(lnf),
for 1:=1 to n do
begin
for j:=1 to {(m+n) do
read({inf W[i,j1);
readln(!nf),

- 140 -

end;
end;
(Moo mem e mse e meessasueseuaansne s . e N aANemeaameEmEeAmAe e teereAeEmaneen e -
PROCEDURE ForcelLearn{p:recptr); {force-learning algorithm}
. {use with Forcelz}
var
tmp : real;
Vol |
k 1 integer;
begin
UpDateP(p);
with p~ do '
begin
for i:=1 to n do
for j:=1 to (n+m) do
begin 0;
for kas 1 ondo )
tmp := tmpre{kl*pli, ], ki;
ng[z,;] = 1]+a?phé*§mp;
for i:=1 to n do {clear the corresponding p’s)
for j:=1 to {(ntm) do {after using them 3
for k:=1 to t do
pli, ikl :=0;
end;
end:
(* ......................................................................................................... *)
PROCEDURE ClearP(p:recptr); {clear intermediate storage)}
var '
1.0,
k i integer;
begin
ulth * do
for it=1 to n do {clear all p’s)
for j:=1 to (n+m) do
for %;=! i? n dg
pt1,) = Uy
end; tde
(* ......................................................................................................... *)
PROCEDURE SaveWeights(p:recptr); {save current weights to ASCII file)
var .
i,j = integer;
outf: text;
begin
with p* do
beg un
asstgn(outf fname);
rewrite(outf);
for i:=1 ton do
begin
for j:=1 to (mtn) do
write(outf Wii, jl,’ ’);
urtteln(cutf)-
close(outf):
end;
end;
(t ......................................................................................................... *’

{load weights from §SCII file)



Appendix II - Source Code Listing

end;
close(inf);

-141 -

end;
end;
(t --------------------------------------------------------------------------------------------------------- t)
End.
(*===== =%)
The following listing shows how to create and utilize a recurrent network using the above
procedures. '
(¥-m-oeeoen R R e LR R L L P E P PP PR *)
{create recurrent network}
uses dos,
crt,
recnets; {include unit)
var
M : recptr; {create pointer (or variable))
begin
new(M) {create space on heap}
with M* do {set network parameters)
begin ! ;
n ;; 2;
t = 1;
alpha := 0.5;
end; .
InitRec(M); {initialize network)
ClearP(M);
B Y LR L R L L L L L L T L iy t)
{use and train network)}
{force learning}
M*.x[1] := input; {set network input(s))
M~.yd[1] := out_des; {set desired output(s))
ForcelLz(M); {generate z for force learning)
RecOut(M); {generate network output(s))
ForcelLearn(M); {perform learning/optimization)
: {normal learning)}
M*.x[1]). := input; {set network input(s))
M*.yd[1] := out_des; {set desired output(s))
Normz(M); {generate z for normal learning)}
RecOut(M); {generate network output(s)}
ContLearn(M); {perform learning/optimization)}
t.--..-.’-..------,----------.--------.‘-----------------------..-----..----.----.--;-----;--_ ............... *)
{save or load network weights}
{save)-
write(’enter filename : );
readln(M*.fname);
SaveWeights(M);
{load)
write(’enter filename : ');
readln(M*.fname);
ReadWeights(M);
{note - no error checking performed)
I S LR LO R L LT EER R EEREELEEEED e Rt e *)



Neural Networks in Control Engineering

3. SIMULATION AND CONTROL

This subsection includes the listing of units and programs used for the tank simulation and
control.

3.1 TANK SIMULATION

UNIT TANKLEV;

* < . *
INTERFACE

FUNCTION NextlLev(y,u,dt:real):real;
(* ......................................................................................................... *)
IMPLEMENTATION
(t ......................................................................................................... *)

FUNCTION NextLev(y,u,dt:real):real;

{ Calcculates the level after time dt given the current level y and input u. To ensure sufficient accuracy,
an iterative calculation is performed if dt>0. N

inputs : y - current level
u - current input
dt - time period over which level is to be evaluated

-outputs : NextLev - level at time t+dt )

var
tmplev, { store intermediate level )
time : real; { store cunulative time b
begin
time := 0;
tmplev := .
if (dt>0. 1) then { for large dt - use iterative calc. }
repeat { to improve accuracy )

if tmplev<0 then tnplev.
tmplev :=_tmplev + 0.1*(0. 1*u 0.02*sqrt(tmplev));
time := time + 0.1;

until ((dt-time)<0. 15

if ((dt time)>1E-10) then { calculate change for remaining time)
lev := tn?tev + (dt-time)*(0.1*u-0.02*sqrt(tmplev));
Next ev := tmplev; { or small initial dt )}
end; ’ .

(Fenennmneeans et T T L e PR *)
beginy
end.
(* *)

3.2 OPTIMIZATION ALGORITHM FOR NPC

UNIT MINMAX;

* ’ *)
INTERFACE '
{ Global Definitions }
const
np = 10; {maximum no. of dimensions - optimization space}
mp = 11; {points for n-tuple -> np+1 b
type
int = array{1..np) of real; {point in optimization space 3}
pointptr = “point;
= Function(p: pomtptr) real; {(type of func. to be optimized)
var

-142-



Appendix II - Source Code Listing

n : point; {global variable - holds initial guess in call )}
- { -returns the minimum ponnt after opt|m1zat1on)
. MinBound, . { minimum and
MaxBound ' : int; ¢ maximum values for clamping - if clamp—true )
bound : boo ean;
(t ............................................. Q)

(t ......................................................................................................... t)
IMPLEMENTATION

(G ettt eb bbb *)
PROCEDURE clamp(var val:real;index:integer); {clamp value to bounds defined in ~

. MaxBound and MinBound)
begin .
1f val>MaxBound(index]
then val:=MaxBound[index]
else if val<MinBound[index] :
nd then val:=MinBound([index]; :
end; -

PROCEDURE NelderMead(F:Func;dim:integer);

.. { The procedure ?erforms a search in the dim dimensional space to find
the minimum value of function F, starting with a simplex built around
the initial user supplied guess in min[1]...min[dim]. If clamping is
active (clamp set to true), the algorithm contains the search for each
coordinate to the interval (MinBound[i]..MaxBound[il].

Based on algorithm in Num. Methods for Pascal.

inputs : F - function to be optimized
- define as : function funcname(p:pointptr):real; far;
. NB far and use p[1]..p[n] inside
NOTE : if minimum of F is likely to be close to 0
add 1 in F to avoid possible numeric overflow

dim - dimension of optimization space 1<=dim<=10

other variables to be initialized :
minl1l..minldim] - initialize with first guess
clamp - set to true for clamping/false for none
MinBound(1..dim) - if clampmg is requn‘ed
MaxBound[1..dim] -

outputs : min[1)..minldim] - coordinates at which F is minimum)

const

nfuncmax = 100; ) {no. of evaluations)
ftol = 0.001; - {tolerances for simplex hi/lo)
alpha = 1; {scaling for reflection,contraction etc.)
beta = 0.5; -
gamma = 2;
var
p : array[1..mp] of po1nt- {vertices of simplex )
y : array[1..mp] of real; ) {store function values )
count : integer; {no. of evaluations )
ptry,psum, . i .
pstore : point; {temp. storage locations b
mﬁts inhi ilo, : .
eva( : integer; {internal storage variables )
ytrr ysave sum, - : ( " )
rtol,di : real; < " )
Heworrooemenmecsuaaacsnereacaaccasaancacaccanaas t)
procedure MakeSimplex; - {create simplex around point min)
var : .
j = integer;
begin .
Randomi ze;
mpts := dime1;
for[1]-1 to mpts do ] {initialize all corners to min)
J1 := min; .
for J:=1 to dim do : {add random amount to one dim. for each)
begin {corner except last)

plil[j] := m1n[i]+(ranQOm:0.§);
if bound then clamp(pljl(j1,]);
y{jl := F(apljl); . {evaluate function for all corners)

end;
y[mpts] := F(ap[mpts]),

-143 -



Neural Networks in Control Eagineering

function amotry(hi:integer;fac:real):real;
var
i+ integer;
fac1,fac2,yn : real;
be$1n R
- facl := (1-fac)/dim;
fac2 := facl-fac;
for j:=1 to dim do
begin

ound then clamp(ptryljl,]);
end;
yn := F(aptry);
Inc(count);
if yn<y[hi] then
begin_
y[hi] = yn;
for ji=1 to dim do . o
psunlj] := psumljl+ptry(jl-pChil(j]
. pthil == ptry;

end;
amptry := yn;
end; )
T L L L T *)
procedure Amoeba;
var .
1.} © integer;
begin

count := 0;
for j:=1 to dim do
begin
psum[j} := 0;
for i:=1 to mpts do L
psum{jl := psum{jl+plil(j];
end; .
ilo := 1;
if yl11>y(2] then
begin
ihi = 1;
inhi 1= 2;
end
else

end;
for i:1=1 to mpts do

begin
1f‘{{1] < ylilol then
ilo :=i;
if ylil>ylihil then
begin_ o
iphi := ihi;
ihi 1= §;

end i
else if y[il>ylinhi] then
if i<»>1hi then inhi := i;
end; h ph
try := amotry(ihi,-alpha);
?f ytry<=y[ilo]l then )
ytry := amotry{ihi gamma)
else if ytry>=y[ihi] then
begin L. -
ysave := y[ihil;
ytry := amotry(ihi, beta};
1f ytry>zysave then
begin

or i:=1 to mpts do
if i<>iloc then
begin :
for j:=1 to dim do

PE 12 Bebmium

y{i] := psum) ;

end; !

Inc{count);

for j:=1 to dim do
begin

sum[j] := 0;
%or i:=1 to ﬁpts do

el
end;

p:rgij] := psumljl*facl-plhi]l [j1*fac2;
i

I3
*

sum[j]l = psum[jl+plilLj);
nd:p ps P H

-~

psumljl := 0.5*(plil [jI+plilod Li1);

{try new point and if better then keep it}

(finds simplex around minimum}

{initialisation)

{modulate simplex)

{reflection}

{if better try doubling the distance)

{point was worse so try 1-dim.)
{contraction}

{not better -> )}

{contract around lowest point)

end;
rtol ==’2*AbS(Y[ihf]'Y[ilo])/(Abs(y[ihi])+Abs(Y[ilo])): {compute tolerance)

- 144 -



Appendix II - Source Code Listing

until ({count>nfuncmax) OR (rtol<ftol)); {stop if tol ok or too many evaluations)
(*—???:-.a-----u—-----------------------»-----A;!} -
begin ' {Main Loop)
eval = 0;
repeat ) ,
store := min; {store previous guess)
akeSimplex; {create new simplex}
Amoeba; ] {find minimum}

min := plilol;
i H R H

for i:=1 to dim do

. diff := diff+sgr{pstore[i]-min[i])/dim; ' {calculate dist. from previous minimum}
diff = sqre(diff);
Inc(eval); . i .
until ((diff<1E-2) OR (evalzl)); : {until succ. point close enough or too)
end; . {many evaluations)}
(Remmmm e mmmeeeeoeeoeemaaeeseomesemnaeemetemesmmcaseoseseesmmesemasmceecoemeencemmoemeeos *
* begin
bound := false;
end.
(* ......................................................................................................... *)
¢ NOTE : '

All tolerances and no. of evaluations effect the time taken by the algorithm and form part of the tuning if
this algorithm is used in a control loop. The required accuracy therefore has to be traded off against the
time required to find the next minimum. . .

- Furthermore, in the case of networks, the cost function may not be smooth enough to allow extremel{ high
accuracy and repeatability and these constants should therefore be relaxed sufficiently to allow the
algorithm to converge.}

3.3 CONTROL

The following listings show the code used to perform the control simulation for linear IMC,
neural network IMC and NPC. ‘

* o ssoECTEETTESESTSsToSEssoT =%)
{procedures and functions}

{linear and combination model)

function modnet(u,y:real):real; . {generate network prediction for }
be. {current u,y> )

gin
with modl” do

gin
if y<0 then y:=0;
if y>25 then y:=25; '
InpVec{1] := 2*u-1:
InpVec[2] := y/12.5-1;
Feedforward;
modnet := OutpVec(1l;
end;
end; -

i

function linmod(u,y:real):real; {linear model prediction}
begin

ndinmod := exp(-20/250)*y + 15%u*(1-exp(-20/250));

end;

function model(u,y:real):real; {combination model output}
begin ‘

model := modnet(u,y)+linmod(u,y);
end;

{inverse linear and combination model)

functioh invnet{ys,y:real):real; {inverse network)
begin '

with inv* do
begin

- 145 -



Neural Networks in Control Engineering

Inpvecf1] := ys/12.5-1;
InpVecl2]l := y/12.5- 1-
Feedforuard'
invnet := 0utpVec[1],
end;
end;

function lininv(ys,y:real):real;

begin

ininv = (ys - exp(-20/250)*y)/(15*%(1-exp(-20/250)));

end;

function inverse(ys,y:real):real;

{linear inverse model}

{combination inverse model}

begin A L.
inverse := invnet(u,y)+lininv(ys,y);
end;
(* ......................................................................................................... *)
function smallgain(r, usreal):real; {small gain algorithm for NNIMC)
var
¢ : integer;
y & real;
begin
0.
repeat del
y := model(u
u := u + 0. 'xp(r - y);
unt:l ((Abs(r y)<0. 001)0R(c>1000))'
smallgain := u;
end;
(* ......................................................................................................... *)

function cost(p:pointptr):real;
var
yn,tmp : real;

i : integer;
begin

yn s YP:

tmp 3

e =

0 Té*e + 0. 28*(yp ynn);
for i:=1 to N2 d
begin del (p*[11,yn)
n s= mode Lyn) + e;
?f (i>=N1) then
tmp = tmp + sqr(yn ys);
end;
cost := tmp + 10*sqr(p™[11-u) + 1'
end;

{cost function for NPC)

{filtered error}

C{add errors - for Ni<=i<z=N2)

{cost function output)

(-l- e o s 8 T O e

{Parts of Main Program)

{all variables folowed by ‘o’ hold the value of the previous iteration}

release(HeapOrg)
new{modl, Init(2
new({inv, Inlt(Z

fo,1

0.001, 'model *))
f0,1,0.

001, '1nverse')5

MinBound[1l :=
MaxBound[11 :=
bound := true;
min(1] := 0;

0:
1

-nw

(rmmmm oo LINEAR IMC---=-----

ym = ex?( 20/250) * ymo + 15%(1-
e = ys-

r o= xp( 0/106) * ro + (1-exp(-
u = 1/¢15%(1-exp(-20/250)3) * ¢
if u<Q then u:=0;

if w1 then u:=1;

exp(-20/250) Y*u;

20/100)) * e;
r - exp(-20/250)*ro);

- 146 -

{forward model networkl}
{inverse model network NNIMC only}

(boundafies for NPC onty}

{model prediction}
{error)

{filter)

{inverse model}
{clamping}



[ i b LA R L Rt NEURAL NETWORK IMC------ecocsvecrcmnurmaranmmmamnmreneoonrnn. }
ym := model(u,ypo) Coyo . - {combination model prediction}
e := ys-(vgwm)'
r = exp(- 0/100) * ro + (1-exp(-20/100)) * ¢;
u := inverse(r,yp); {inverse comb. model}
u := smallgain(r,u); {smallgain optimisation}

if u<0 then u:=0;
if w1 then u:=1; -

with medl” do {forward medel training)

begin ‘ ‘
DesOutpl1] := yp-linmod(uo,ypo); {desired out?ut = diff. betw. actual and)
Train; {linear model} .

end;

( with inv® do {inverse model training}

begin .
DesOutplil := u - lininv(r,yp); {desired outp. = optimised u - linear}
Train; : {inverese}

end;

[ R L L AR R R LAt NEURAL PREDICTIVE CONTROL---r-rw-eweccamccc o mrmarncmccccacsnunnnannan
ynn = model(u,ypo) {combination model grediction}
NelderMead(cost,1); ' {find optimal input
u = min{l1l; - € and implement)
uiéh modi” do {forward model trainingd

egin
pesOutpl1] := yp-linmod(uo,ypo); {desired output = diff. betw. actual and)}
Train; {linear model}
end; ‘ .
o _ *)

- 147 -




	Blank Page



