397 research outputs found

    Transformer Fault Diagnosis Method Based on Dynamic Weighted Combination Model

    Get PDF
    The paper tried to integrate the DGA data with the gas production rate, which are the major indexes of transformer fault diagnosis. Duval’s triangle method, BP neural network and IEC three-ratio method were weighted. Firstly, the paper regarded the gas production rate as the independent variables, fitted the cubic curves of the gas production rate and variance of each diagnosis method, and then defined the weights of each algorithm through the data processing method of unequal precision. At last, the dynamic weighted combination diagnosis model was established. That is, the weight is different as the gas production rate changes although the method is identical. The results of diagnosis examples show that the accuracy rate of the weighted combination model is higher than any single algorithm, and it has certain stability as well

    A Dynamic Integrated Fault Diagnosis Method for Power Transformers

    Get PDF
    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified

    Fault Diagnosis of Oil-Immersed Transformers Using Self-Organization Antibody Network and Immune Operator

    Get PDF
    There are some drawbacks when diagnosis techniques based on one intelligent method are applied to identify incipient faults in power transformers. In this paper, a hybrid immune algorithm is proposed to improve the reliability of fault diagnosis. The proposed algorithm is a hybridization of self-organization antibody network (soAbNet) and immune operator. There are two phases in immune operator. One is vaccination, and the other is immune selection. In the process of vaccination, vaccines were obtained from training dataset by using consistency-preserving K-means algorithm (K-means-CP algorithm) and were taken as the initial antibodies for soAbNet. After the soAbNet was trained, immune selection was applied to optimize the memory antibodies in the trained soAbNet. The effectiveness of the proposed algorithm is verified using benchmark classification dataset and real-world transformer fault dataset. For comparison purpose, three transformer diagnosis methods such as the IEC criteria, back propagation neural network (BPNN), and soAbNet are utilized. The experimental results indicate that the proposed approach can extract the dataset characteristics efficiently and the diagnostic accuracy is higher than that obtained with other individual methods

    A survey on the development status and application prospects of knowledge graph in smart grids

    Full text link
    With the advent of the electric power big data era, semantic interoperability and interconnection of power data have received extensive attention. Knowledge graph technology is a new method describing the complex relationships between concepts and entities in the objective world, which is widely concerned because of its robust knowledge inference ability. Especially with the proliferation of measurement devices and exponential growth of electric power data empowers, electric power knowledge graph provides new opportunities to solve the contradictions between the massive power resources and the continuously increasing demands for intelligent applications. In an attempt to fulfil the potential of knowledge graph and deal with the various challenges faced, as well as to obtain insights to achieve business applications of smart grids, this work first presents a holistic study of knowledge-driven intelligent application integration. Specifically, a detailed overview of electric power knowledge mining is provided. Then, the overview of the knowledge graph in smart grids is introduced. Moreover, the architecture of the big knowledge graph platform for smart grids and critical technologies are described. Furthermore, this paper comprehensively elaborates on the application prospects leveraged by knowledge graph oriented to smart grids, power consumer service, decision-making in dispatching, and operation and maintenance of power equipment. Finally, issues and challenges are summarised.Comment: IET Generation, Transmission & Distributio

    The blessings of explainable AI in operations & maintenance of wind turbines

    Get PDF
    Wind turbines play an integral role in generating clean energy, but regularly suffer from operational inconsistencies and failures leading to unexpected downtimes and significant Operations & Maintenance (O&M) costs. Condition-Based Monitoring (CBM) has been utilised in the past to monitor operational inconsistencies in turbines by applying signal processing techniques to vibration data. The last decade has witnessed growing interest in leveraging Supervisory Control & Acquisition (SCADA) data from turbine sensors towards CBM. Machine Learning (ML) techniques have been utilised to predict incipient faults in turbines and forecast vital operational parameters with high accuracy by leveraging SCADA data and alarm logs. More recently, Deep Learning (DL) methods have outperformed conventional ML techniques, particularly for anomaly prediction. Despite demonstrating immense promise in transitioning to Artificial Intelligence (AI), such models are generally black-boxes that cannot provide rationales behind their predictions, hampering the ability of turbine operators to rely on automated decision making. We aim to help combat this challenge by providing a novel perspective on Explainable AI (XAI) for trustworthy decision support.This thesis revolves around three key strands of XAI – DL, Natural Language Generation (NLG) and Knowledge Graphs (KGs), which are investigated by utilising data from an operational turbine. We leverage DL and NLG to predict incipient faults and alarm events in the turbine in natural language as well as generate human-intelligible O&M strategies to assist engineers in fixing/averting the faults. We also propose specialised DL models which can predict causal relationships in SCADA features as well as quantify the importance of vital parameters leading to failures. The thesis finally culminates with an interactive Question- Answering (QA) system for automated reasoning that leverages multimodal domain-specific information from a KG, facilitating engineers to retrieve O&M strategies with natural language questions. By helping make turbines more reliable, we envisage wider adoption of wind energy sources towards tackling climate change

    Risk Assessment – with Apllication for Bridges and Wind Turbines

    Get PDF

    Data Challenges and Data Analytics Solutions for Power Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Artificial intelligence approaches for materials-by-design of energetic materials: state-of-the-art, challenges, and future directions

    Full text link
    Artificial intelligence (AI) is rapidly emerging as an enabling tool for solving various complex materials design problems. This paper aims to review recent advances in AI-driven materials-by-design and their applications to energetic materials (EM). Trained with data from numerical simulations and/or physical experiments, AI models can assimilate trends and patterns within the design parameter space, identify optimal material designs (micro-morphologies, combinations of materials in composites, etc.), and point to designs with superior/targeted property and performance metrics. We review approaches focusing on such capabilities with respect to the three main stages of materials-by-design, namely representation learning of microstructure morphology (i.e., shape descriptors), structure-property-performance (S-P-P) linkage estimation, and optimization/design exploration. We provide a perspective view of these methods in terms of their potential, practicality, and efficacy towards the realization of materials-by-design. Specifically, methods in the literature are evaluated in terms of their capacity to learn from a small/limited number of data, computational complexity, generalizability/scalability to other material species and operating conditions, interpretability of the model predictions, and the burden of supervision/data annotation. Finally, we suggest a few promising future research directions for EM materials-by-design, such as meta-learning, active learning, Bayesian learning, and semi-/weakly-supervised learning, to bridge the gap between machine learning research and EM research

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    Design of software-oriented technician for vehicle’s fault system prediction using AdaBoost and random forest classifiers

    Get PDF
    Detecting and isolating faults on heavy duty vehicles is very important because it helps maintain high vehicle performance, low emissions, fuel economy, high vehicle safety and ensures repair and service efficiency. These factors are important because they help reduce the overall life cycle cost of a vehicle. The aim of this paper is to deliver a Web application model which aids the professional technician or vehicle user with basic automobile knowledge to access the working condition of the vehicles and detect the fault subsystem in the vehicles. The scope of this system is to visualize the data acquired from vehicle, diagnosis the fault component using trained fault model obtained from improvised Machine Learning (ML) classifiers and generate a report. The visualization page is built with plotly python package and prepared with selected parameter from On-board Diagnosis (OBD) tool data. The Histogram data is pre-processed with techniques such as null value Imputation techniques, Standardization and Balancing methods in order to increase the quality of training and it is trained with Classifiers. Finally, Classifier is tested and the Performance Metrics such as Accuracy, Precision, Re-call and F1 measure which are calculated from the Confusion Matrix. The proposed methodology for fault model prediction uses supervised algorithms such as Random Forest (RF), Ensemble Algorithm like AdaBoost Algorithm which offer reasonable Accuracy and Recall. The Python package joblib is used to save the model weights and reduce the computational time. Google Colabs is used as the python environment as it offers versatile features and PyCharm is utilised for the development of Web application. Hence, the Web application, outcome of this proposed work can, not only serve as the perfect companion to minimize the cost of time and money involved in unnecessary checks done for fault system detection but also aids to quickly detect and isolate the faulty system to avoid the propagation of errors that can lead to more dangerous cases
    • …
    corecore