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In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian
network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among
abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure
mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process
in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different
from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective
diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and
efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this
method is verified.

1. Introduction

Transformers play an essential role in power systems. Their
unexpected failure may result in power blackouts and sig-
nificant loss. To avoid the catastrophic result, dissolved gas
analysis (DGA) is used widely to detect potential transformer
failure at an early stage. Many effective diagnosis methods
have been proposed based on DGA [1–11]. However, with
DGA, only rough failure types (overheating or discharge) can
be obtained. In order to get more detailed information about
transformer condition, some researchers proposed various
diagnosis models based on DGA and other diagnostic tests
[12–15], which can get the detailed occurrence probability of
each failure mode. These models are called integrated fault
diagnosis models (IFDM) in this paper. IFDM can provide
more information on transformer condition than the DGA
method. Thus, it can serve transformer maintenance better
and is significant to the power grid security control in smart
grid.

The input parameters of IFDM are generally called evi-
dence. Obviously, the more evidence is obtained, the more

accurate the diagnosis result is. The most favorable situation
is to know the status of all condition factors by means of
monitoring or tests, but it is hard to realize due to the restric-
tion of technical levels and economic conditions. Therefore,
diagnostic tests should be performed selectively. Then, a
related question arises: What are the selection rules? The
primary objective is to reduce cost without loss of operation
reliability. To achieve this aim, an optimized selectionmethod
is needed.

Existing integrated fault diagnosis methods do not
involve this evidence-selection process; in other words, they
focus on the diagnosis with obtained evidence in one step, no
matter whether the evidence is valid or not. This diagnosis
method is called static fault diagnosis mechanism (SFDM).
SFDM does not optimize the evidence detection process.
As a result, the evidence input into the diagnostic model
may miss the most important one which is most related
to transformer failure condition and cause an inaccurate
diagnosis result. Some researchers briefly mentioned that
the fault diagnosis of transformer should be a multistep
process, but no specific embodiments and corresponding
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theoretical support were related [16–20]. As to this situation,
this paper proposes a dynamic fault diagnosis mechanism
(DFDM) based on the integrated fault diagnosis model,
which comprises an evidence-selection process. It selects the
evidence that better reflects the transformer condition so that
unnecessary diagnostic tests can be reduced and the diagnosis
accuracy can be improved. DFDM is of great significance to
the developing smart grid.

The rest of this paper is organized as follows: Section 2
introduces the ideas of dynamic integrated fault diagnosis
method. Section 3 gives a brief introduction to Bayesian
network, which is the basic theory of the model. Section 4
reviews our previous research work. Section 5 presents the
detailed dynamic integrated fault diagnosis method. And
then it is applied to two real cases in Section 6. Section 7 is
the conclusion part.

2. Ideas of Dynamic Integrated Fault
Diagnosis Method

The dynamic integrated fault diagnosis method proposed in
this papermeans a dynamic fault diagnosismechanism based
on the integrated fault diagnosismodel. Specifically speaking,
our work can be divided into two parts. One is to improve the
existing IFDM, and the other is to propose a dynamic fault
diagnosis mechanism based on the improved IFDM.

Referring to IFDM, obviously, the more failure-related
information is considered, the more accurate the diagnosis
result is. The information related to transformer failure
condition can be primarily divided into two types: influence
factors and characterization factors. Influence factors are the
factors that may cause transformer failure, such as abnormal
working conditions and family defects. Characterization
factors mean the failure symptoms detected by means of
various diagnostic tests, such as DGA, partial discharge test.
Because both influence factors and characterization factors
are diverse and the relationship between factors and failure
modes is difficult to quantitatively describe, establishing a
complete and accurate integrated fault diagnosis model is a
tough task.The relationship between characterization factors
and failure modes is relatively easier to obtain. In existing
integrated fault diagnosis models, only characterization fac-
tors are considered [12–14]. However, lack of consideration
of influence factors may cause inaccurate diagnosis result
because they affect transformer failure condition directly
and can significantly increase the occurrence probability of
certain failuremodes. For example, the experience of external
short circuit often corresponds to winding deformation.
Therefore, it is necessary to add influence factors to the
existing fault diagnosis model to get more accurate result.
This is the first work which has been done in this paper.

More importantly, the main purpose of this paper is to
propose a dynamic fault diagnosis mechanism based on the
improved IFDM. The building process of DFDM is directly
related to the diagnostic technique used in IFDM. IFDM can
be established bymeans of analyzing the relationship between
transformer failure modes, its influence factors and charac-
terization factors. However, the failure process of transformer
is complex, and its influence factors and characterization
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Figure 1: A diagram of Bayesian network.

factors are diverse, fuzzy, and incomplete. The relationship
between factors and failure modes is not one to one. As
to the characteristics mentioned, existing studies on the
relationship between failure modes and characterization
factors generally use intelligent diagnostic techniques, such
as neural networks, Bayesian network (BN), expert systems,
and evidential reasoningmethods [12–14]. In these intelligent
diagnostic methods, Bayesian network is a suitable technique
for IFDM because it is a probabilistic causal network, and the
relationship between influence factors and failure modes or
failuremodes and characterization factors is just probabilistic
causal. Influence factors, failure modes, and characterization
factors can be intuitively described by a three-layer BN.

Thus, BN is considered as the basic theory of the dynamic
integrated fault diagnosis method proposed in this paper.
It is necessary to emphasize the difference of the method
proposed in this paper since BNhas been used in transformer
fault diagnosis. On one hand, most of existing transformer
diagnosis models using BN are established based on DGA
data. Few have taken the diagnostic tests into account. In
other words, few studies have been done on the integrated
fault diagnosis model summarized in Section 1. Furthermore,
the transformer fault diagnosis model considering both
characterization factors and influence factors has not been
reported yet, and this work will be done in next section.
On the other hand, as mentioned in the previous section, all
the existing fault diagnosis models of transformers based on
BN are SFDM, without the evidence-selection process. The
DFDM will be proposed in Section 5.

BN is a powerful tool in transformer fault diagnosis and is
the basic algorithm of DFDM. A brief introduction to it will
be given in next section.

3. A Brief Introduction to Bayesian Network

Bayesian network includes two parts: network structure and
network parameters. Network structure is the qualitative part
of BN, while network parameters are the quantitative part.
The structure of BN is described with a directed acyclic
graph, as shown in Figure 1. 𝑋

1
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2
, 𝑋
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, and 𝑋
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represent

random variables, where 𝑋
1
, 𝑋
2
, and 𝑋

3
are root nodes and

𝑋
4
is a child node. The arcs between nodes describe the

condition dependence between random variables. Network
parameters mean each node in the network structure has a
conditional probability table (CPT). As shown in Figure 1,



The Scientific World Journal 3

X1 X2 X3

X4

𝜉1 𝜉2 𝜉3

∗

Figure 2: A diagram of independent influence.

the CPTs of root nodes 𝑋
1
, 𝑋
2
, and 𝑋

3
are their marginal

probability distributions 𝑃(𝑋
1
), 𝑃(𝑋

2
), and 𝑃(𝑋

3
), and the

CPT of the child node X
4
is its conditional probability

distribution𝑃(𝑋
4
| 𝑋
1
, 𝑋
2
, 𝑋
3
).With the specific conditional

independence of BN, the joint probability distribution can be
simplified as [21]

𝑃 (𝑋
1
, 𝑋
2
, 𝑋
3
, 𝑋
4
)

=

4

∏

𝑖=1

𝑃 (𝑋
𝑖
| 𝜋 (𝑋

𝑖
))

= 𝑃 (𝑋
1
) 𝑃 (𝑋

2
) 𝑃 (𝑋

3
) 𝑃 (𝑋

4
| 𝑋
1
, 𝑋
2
, 𝑋
3
) ,

(1)

wherein𝜋(𝑋
𝑖
) represents the parent node of𝑋

𝑖
(𝑖 = 1, 2,3, 4).

In Figure 1, the random variables are binary (0 or 1).Thus,
eight independent parameters are needed for the CPT of
node 𝑋

4
, and it is difficult if there is not enough data. In

practice, random variables may have more states. It means
more parameters are required to get the CPT, and therefore
the difficulty increases. In this case, it is often assumed
that the impact of each parent node on the child node is
independent. If𝑋
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Figure 3: A diagram of leaky noisy-or node.

the assumption of independent influence, the conditional
probability distribution 𝑃(𝑋

4
= 𝛼 | 𝑋
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) can be

obtained from the contribution probability distribution of
𝑋
1
, 𝑋
2
, and 𝑋

3
, and the number of necessary parameters

reduces greatly. Additionally, not all the causes of a child
node can be considered in its parent nodes in a BN, and
therefore a leaky node is usually used to represent the causes
not considered. For example, a leaky noisy-or node represents
when the values of all parent nodes are 0, its value is still
possible to be 1 [22]. As shown in Figure 3, 𝑋

𝐿
represents a

leaky node, and “V” represents the synthesis operator is “or.”
Leaky noisy-or node is a widely used method to simplify
parameters in Bayesian network.

The establishment of a Bayesian network first needs to
determine the study objects, namely, the random variables in
the network. And then based on the analysis of the causal
relationship between random variables, build the network
structure. Finally, introduce the network parameters by the
network structure. After the establishment of a Bayesian
network,many algorithms can be selected to do the diagnosis.
Joint tree algorithm is a commonly used inference method,
and there is muchmature software such as MATLAB toolbox
BNT. The details of calculation process can be found in [21].

4. Review of Our Previous Work

A three-layer BNmodel involving 10 common failure modes,
3 abnormal working conditions, and 9 failure symptoms
detected from diagnostic tests has been established in our
previous research work [15], as shown in Figure 4 and Table 1.
The failure modes and failure symptoms considered in this
model are common, and their relationship is also discussed
in some papers [12–14], but no influence factors have been
considered into the model yet. The main contribution of our
previous research work [15] is to add the influence factors
to the diagnosis model, and the validity of our model has
been verified. Compared with the existing models without
influence factors, our model usually can get a more accurate
diagnosis result.
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Table 1: Node description in Figure 4 [15].

Node description (symbol)
Abnormal
working
conditions (𝑐)

Abnormal overload (𝑐
1
)

External short circuit (𝑐
2
)

Lightening (𝑐
3
)

Failure
symptoms (𝑠)

Earthing current of core (𝑠
1
)

An overheating abnormal symptom
indicated by three-ratio-code (𝑠

2
)

Three-phase unbalanced factor of winding
DC resistance (𝑠

3
)

Water content in transformer oil (𝑠
4
)

A discharge abnormal symptom indicated
by three-ratio-code (𝑠

5
)

Deviation of winding ratio (𝑠
6
)

Partial discharge (𝑠
7
)

𝜑(co)/𝜑(co2)(𝑠8)
Absorption ratio or polarization index (𝑠

9
)

Failure
modes (𝑓)

Multipoint earthing of core (𝑓
1
)

Insulation aging (𝑓
2
)

Overheating with flux leakage (𝑓
3
)

Winding short circuited (𝑓
4
)

Insulation dampened (𝑓
5
)

Failure of tap-changer (𝑓
6
)

Suspended discharge (𝑓
7
)

Discharge in barrier (𝑓
8
)

Winding deformation (𝑓
9
)

Discharge in transformer oil (𝑓
10
)

c1 c2 c3

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

s1 s2 s3 s4 s5 s6 s7 s8 s9

Figure 4: The integrated diagnosis model in our previous research
work [15].

In Figure 4, abnormal working conditions, failure modes,
and abnormal symptoms are represented by nodes, and
their causal relationship is represented by directed arcs.
The graphical representation expresses the conditional inde-
pendence relationship between nodes, and the conditional
independent relationship decreases the parameters needed
for total probability. If all child nodes are considered as leaky
noisy-or nodes, only the prior probability of parent nodes and
the contribution probability of parent node to child nodes
are needed. The probability parameters are acquired from
transformer failure statistics and empirical approach.The rest
of the details can be found in [15].

The previous model also has some limitations, and it is
improved in the following sections.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

c1 s1 s2 c3 c2s3 s4 s5 s6 s7 s8 s9

Figure 5: Integrated fault diagnosis model proposed in this paper.

5. Dynamic Integrated Fault Diagnosis Method

5.1. Improvement of the Previous Integrated Fault Diagnosis
Model. It should be noted that only 3 abnormal working
conditions are considered in the model shown in Figure 4,
and other influence factors aremissed.There are two reasons.
On one hand, factors causing transformer failure are many,
and some failure theory is not clear enough to consider them
into the model reasonably. According to the transformer
failure statistics [23–25], lots of transformer failures result
from abnormalworking conditions, which primarily includes
abnormal overload, external short circuit, and lightening.
Therefore, these three types of abnormal working conditions
are included in the model. On the other hand, even though
the other influence factors are not considered in the model,
their damage to the transformer can be effectively detected
through certain diagnostic techniques. From this point of
view, missing them may not bring much error. Referring
to abnormal working conditions, the damage caused by
them generally has accumulated effect. The failure symp-
toms detected by diagnostic techniques may not be able
to accurately reflect the real condition of transformers.
In other words, it is difficult to measure and distinguish
different damage levels caused by different times of abnormal
working conditions that transformers are suffered. Hence, it
is necessary to incorporate them in the model. Based on the
two points, only abnormal overload, external short circuit,
and lightening seem as the influence factors in the IFDM.

The model in Figure 4 intuitively describes the causal
relationship between abnormal working conditions, failure
modes, and failure symptoms. However in [15], the model
is more accurate compared with the existing model without
influence factors. It is found that sometimes the direct
application of this model may bring diagnostic wrong result
due to the incomplete nodes. As to this limitation, this paper
improves themodel, as shown in Figure 5. Abnormalworking
conditions are changed into a special type of characterization
factors, and they are supporting evidence information of
failure symptoms. Thus, the error due to lack of influence
factors is improved, and also the effect of abnormal working
condition on transformer is considered. The probability
relationship in Figure 5 is obtained based on our previous
work [15] and fault statistics of CIGRE [25], as Table 2 shows.

The data in Table 2 means the probability of the occur-
rence of each failure symptom or the experience of each
abnormal working condition when a transformer is suffering
from a failure mode. These values are obtained based on a
lot of transformer failure data and experts’ experience and
are used to present DFDM method. The fault statistics of
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Table 2: Parameters of integrated fault diagnosis model.

Failure mode (prior probability (×10−2)) 𝑠
1
𝑠
2
𝑠
3
𝑠
4
𝑠
5
𝑠
6
𝑠
7
𝑠
8
𝑠
9
𝑐
1
𝑐
2
𝑐
3

𝑓
1
(0.45) 0.9 0.82 0.19 0.3 0.2
𝑓
2
(0.11) 0.22 0.27 0.82 0.02
𝑓
3
(0.13) 0.71 0.29 0.35
𝑓
4
(0.12) 0.52 0.8 0.9 0.68 0.55
𝑓
5
(0.10) 0.72 0.75
𝑓
6
(0.26) 0.67 0.87 0.23
𝑓
7
(0.16) 0.86 0.9
𝑓
8
(0.28) 0.42 0.88 0.9 0.76
𝑓
9
(0.24) 0.15 0.68 0.8 0.75 0.72 0.24
𝑓
10
(0.14) 0.2 0.6 0.7 0.9

Leaky node 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

CIGRE is chosen as a data resource because it is a global
and comprehensive investigation. It should be noted that the
values of Table 2 are variable since they primarily depend
on the fault data source, and they will be more accurate
if deducing them from the latest transformer fault data.
Furthermore, if the fault data that we are able to collect in
future is enough to be categorized into rated power, voltage
level, technology, and so forth with statistical significance,
it will be more invaluable, because the characteristics of a
transformer will affect the probability rates of Table 2.

After the integrated diagnosis model is established, given
the existing evidence, it can compute the posterior probability
of each failure mode. Generally, the failure mode with the
maximum probability is considered the one most likely to
occur. This inference rule is called maximum a posteriori
probability (MAP) estimation. MAP estimation is the main
estimation method in DFDM presented in next section.

5.2. Dynamic Fault Diagnosis Mechanism. In this section, a
dynamic fault diagnosis mechanism is presented to optimize
the actual process of fault diagnosis. In reality, evidence
information is generally acquired through different means
of detection, and therefore the evidence acquisition is a
continuous updating process. With the evidence updated,
fault diagnosis result is also constantly corrected, gradually
approaching the true condition of transformers.This gradual
correction process of fault diagnosis is called dynamic fault
diagnosis process. DFDM refers to the theoretical basis at
each step in this process, mainly including two aspects:
diagnosing the most possible failure mode in current step
and determining the evidence information needed in next
step. The first aspect is the traditional static fault diagnosis
mechanism. It can be seen that, compared to the static fault
diagnosis mechanism, a dynamic mechanism adds the part
of estimating the evidence information needed. This key
part can reduce the blindness of fault diagnosis process and
diagnose transformer condition more efficiently.

A generalized transformer fault diagnosis process
includes abnormality detection, fault diagnosis through
tests, and the final check by hanging core. From an economic
point of view, the most easily accessible evidence should
be collected firstly, usually including online monitoring

Table 3: Evidence division from an economic point of view.

Layer Types of evidence Diagnosis technologies

1

Abnormal working
conditions 𝑐

1
, 𝑐
2
, 𝑐
3

Online monitoring
information 𝑠

2
, 𝑠
5

Historical
maintenance records

Historical information
(𝑐
1
∼𝑐
3
, 𝑠
1
∼𝑠
9
)

2 Live tests 𝑠
1
, 𝑠
4
, 𝑠
7
, 𝑠
8

3 Outage tests 𝑠
3
, 𝑠
6
, 𝑠
9

information, operating experience, familial defective
information, and historical maintenance records. Then,
based on the information, preliminarily determine whether
the transformer is abnormal and whether offline diagnostic
tests are needed. If needed, priority should be given to live
tests without outage. Based on the test result, decide whether
to implement outage tests. Finally, perform the internal
check by hanging core, founding the true failure condition.
Dynamic fault diagnosis process in this paper includes all the
steps before the final one, and the hanging core inspection is
considered as a method to verify the diagnosis result.

Based on the obtained priority of evidence discussed
above, the evidence of the integrated model in Figure 5 is
divided into three layers, as shown in Table 3. The evidence
in the first layer is most easily accessible, including abnormal
working conditions, historical maintenance records, and
online monitoring information. The second layer includes
live tests, and outage tests compose the third layer. It is worth
mentioning that, in general, onlinemonitoring device has not
yet been widely used. In order to facilitate the description
of DFDM in this paper, an assumption is made that DGA
is an online monitoring approach, and the others are offline
monitoring methods.

Based on the integrated fault diagnosis model and evi-
dence division, DFDM is developed. As mentioned above,
DFDM can be attributed to two problems: (1) find the most
possible failure mode based on the existing evidence in
current step; (2) if the occurrence of this failure mode is not
fully determined, propose the diagnostic test to be performed
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in next step. These two problems can be typically solved by
the MAP inference of Bayesian network. Accordingly, the
full process of dynamic integrated fault diagnosis method is
presented as follows:

(1) Regard all available evidence in the first layer in
Table 3 as 𝐸.

(2) Put evidence 𝐸 into the integrated fault diagnosis
model in Figure 5 to find the failure mode 𝑓

𝑖
with

the maximum probability 𝑃. If 𝑃 > 𝑃set (𝑃set is a
probability threshold previously set), then go to (5);
else go to (3).

(3) Assume 𝑓
𝑖
has occurred; put [𝐸, 𝑓

𝑖
] into the inte-

grated fault diagnosis model in Figure 5 to find the
diagnostic test 𝑠

𝑖
with the maximum probability (the

diagnostic test obtained priority inTable 3 should also
be considered). Then, 𝑠

𝑖
is the test that should be

performed in next step.
(4) Perform test 𝑠

𝑖
to find whether there is abnormal or

not, and add the result into evidence 𝐸 = [𝐸, 𝑠
𝑖
] (𝑠
𝑖

means it is abnormal), or 𝐸 = [𝐸, 𝑠
𝑖
] (𝑠
𝑖
means it is

not abnormal). Then go to (2).
(5) 𝑓
𝑖
is the final failure mode.

6. Case Study

In this section, the dynamic integrated fault diagnosis
method is applied to two real cases. Case 1 refers to a diagnosis
problem only by means of diagnostic tests. In Case 2, the
transformer has experienced abnormal working conditions.
Thus, both abnormal working conditions and diagnostic
tests are treated as evidence to diagnose the transformer
failure condition. In order to better indicate the benefits of
DFDM, both DFDM and traditional SFDM are applied, and
a comparison between the results is made.

6.1. Case 1. Case 1 can be described as follows [14]: the oil
chromatographic analysis results of a transformer indicated
an overheating abnormal symptom; the tests results of water
content in transformer oil, partial discharge and earthing
current of core, 𝜑(co)/𝜑(co

2
) were all normal.

Based on the known conditions, the evidence can be
described as 𝐸 = (𝑠

2
, 𝑠
1
, 𝑠
4
, 𝑠
5
, 𝑠
7
, 𝑠
8
). In the following,

diagnosis processes based on SFDMandDFDMare analyzed.

Static Fault Diagnosis Mechanism. In this case, the evidence
without selection is 𝐸 = (𝑠

2
, 𝑠
1
, 𝑠
4
, 𝑠
5
, 𝑠
7
, 𝑠
8
). Put the evidence

directly into the model in Figure 5, and the posterior proba-
bility of each failure mode is obtained, as shown in Table 4.

It can be seen that failure mode 𝑓
6
is with the maximum

probability, so the diagnosis result is failure of tap-changer. It
agrees well with the hanging core inspection result.

Dynamic Fault Diagnosis Mechanism. The diagnosis process
of DFDM is described as follows (the probability threshold
𝑃set is assumed to be 0.8).

Step 1. The available evidence in the first layer 𝐸 = (𝑠
2
, 𝑠
5
).

Table 4:Diagnosis result of static fault diagnosismechanism inCase
1.

Symbol of
failure mode

Probability of
occurrence

Symbol of
failure mode

Probability of
occurrence

𝑓
1

0.0142 f6 0.1147
𝑓
2

0.0027 𝑓
7

0
𝑓
3

0.0348 𝑓
8

0
𝑓
4

0 𝑓
9

0.0007
𝑓
5

0.0003 𝑓
10

0.0003

Table 5: Diagnosis process comparison between SFDM and DFDM
in Case 1.

SFDM DFDM
Evidence amount 6 4
Diagnosis result
Failure mode 𝑓

6
𝑓
6

Posterior probability 0.1147 0.9134

Step 2. Put the evidence 𝐸 into the model in Figure 5 to
find the most possible failure mode 𝑓

1
with probability 𝑃 =

0.1965 < 𝑃set.

Step 3. Assume 𝑓
1
has occurred; put [𝐸, 𝑓

1
] into the model

in Figure 5 to obtain the diagnostic test s
1
with the maximum

probability.

Step 4. Perform the test of 𝑠
1
, and the result shows it is

normal; then 𝐸 = (𝑠
2
, 𝑠
5
, 𝑠
1
).

Step 5. Put the evidence E into the model in Figure 5 to
find the most possible failure mode 𝑓

6
with probability 𝑃 =

0.1081 < 𝑃set.

Step 6. Assume 𝑓
6
has occurred; put [𝐸, 𝑓

6
] into the model

in Figure 5 to obtain the diagnostic test s
3
with the maximum

probability.

Step 7. Put the evidence 𝐸 into the model in Figure 5 to
find the most possible failure mode 𝑓

6
with probability 𝑃 =

0.9134 > 𝑃set. Accordingly, the diagnosis process ends, and
the diagnosis result is also 𝑓

6
failure of tap-changer.

The comparison between SFDM and DFDM is listed in
Table 5. It can be seen that, in SFDM, 6 types of evidence
are needed to perform the diagnosis, and DFDM only needs
4. Additionally, though with less evidence, DFDM can get a
more reliable diagnosis result compared to SFDM (posterior
probability: 0.9134 versus 0.1147). It can be seen that DFDM
can provide the most possible failure mode and the most
effective diagnostic test should be done in next step (three-
phase unbalanced factor of winding DC resistance (𝑠

3
)),

which makes the diagnosis process more directional and
effective.

6.2. Case 2. Case 2 refers to a transformer that experiences
abnormal working conditions.Thus, both abnormal working
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Table 6: DGA result.

Gas CH4 C2H4 C2H6 C2H2 H2 CO CO2

Content (𝜇L/L) 6.99 10.87 0 3.72 13.57 229 2344

Table 7:Diagnosis result of static fault diagnosismechanism inCase
2.

Symbol of
failure mode

Probability of
occurrence

Symbol of
failure mode

Probability of
occurrence

𝑓
1

0.0088 𝑓
6

0.0018
𝑓
2

0.0002 𝑓
7

0.0905
𝑓
3

0.0071 𝑓
8

0.0396
f4 0.1475 𝑓

9
0.0039

𝑓
5

0.0003 𝑓
10

0.0530

conditions and diagnostic test are treated as evidence to
diagnose transformer failure condition.

This case can be described as follows: a transformer did
not experience external short circuit, and the arrester has
acted once. Its oil chromatographic analysis results are shown
in Table 6, and absorption ratio and polarization index,
three-phase unbalanced factor of winding DC resistance, and
deviation of winding ratio were all within normal range.

According to Table 6, the three-ratio-code of this trans-
former is 102, that is, discharge abnormal symptom. There-
fore, the evidence is known as 𝐸 = (𝑐

3
, 𝑠
5
, 𝑐
2
, 𝑠
2
, 𝑠
3
, 𝑠
6
, 𝑠
8
, 𝑠
9
).

In the following, diagnosis processes based on SFDM and
DFDM are analyzed.

Static Fault Diagnosis Mechanism. In this case, the evidence
without selection is 𝐸 = (𝑐

3
, 𝑠
5
, 𝑐
2
, 𝑠
2
, 𝑠
3
, 𝑠
6
, 𝑠
8
, 𝑠
9
). Put the

evidence directly into themodel in Figure 5, and the posterior
probability of each failure mode is obtained, as shown in
Table 7.

It can be seen that failure mode 𝑓
4
is with the maximum

probability, so the diagnosis result is winding short circuited.
The hanging core inspection found its insulation in medium-
voltage side is damaged and short circuited, which agrees well
with the diagnosis result.

Dynamic Fault Diagnosis Mechanism. The diagnosis process
of DFDM is described as follows (the probability threshold
𝑃set is assumed to be 0.8).

Step 1. The available evidence in the first layer 𝐸 = (𝑐
3
, 𝑠
5
,

𝑐
2
, 𝑠
2
).

Step 2. Put the evidence 𝐸 into the model in Figure 5 to
find the most possible failure mode 𝑓

4
with probability 𝑃 =

0.6879 < 𝑃set.

Step 3. Assume 𝑓
4
has occurred; put [𝐸, 𝑓

4
] into the model

in Figure 5 to obtain the diagnostic test s
7
with the maximum

probability.

Step 4. Perform the test of 𝑠
7
, and the result shows an

abnormal symptom exists; then 𝐸 = (𝑐
3
, 𝑠
5
, 𝑠
7
, 𝑐
2
, 𝑠
2
).

Table 8: Diagnosis process comparison between SFDM and DFDM
in Case 2.

SFDM DFDM
Evidence amount 8 5
Diagnosis result
Failure mode 𝑓

4
𝑓
4

Posterior probability 0.1475 0.8603

Step 5. Put the evidence 𝐸 into the model in Figure 5 to
find the most possible failure mode 𝑓

4
with probability 𝑃 =

0.8603 > 𝑃set. Accordingly, the diagnosis process ends, and
the diagnosis result is also 𝑓

4
winding short circuited.

The comparison between SFDM and DFDM is listed in
Table 8. From Table 8, the same conclusion as Case 1 can be
drawn.

7. Conclusion

A dynamic integrated fault diagnosis method based on
Bayesian network is proposed in this paper. Different from
the existing static fault diagnosis mechanism, it is a step by
step method. It can provide the most possible failure mode
and the most effective diagnostic test should be done in next
step.Therefore, it can reduce unnecessary diagnostic tests and
improve the accuracy and efficiency of diagnosis.
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