12,467 research outputs found

    An FSM Re-Engineering Approach to Sequential Circuit Synthesis by State Splitting

    Get PDF
    We propose Finite State Machine (FSM) re-engineering, a performance enhancement framework for FSM synthesis and optimization. It starts with the traditional FSM synthesis procedure, then proceeds to re-construct a functionally equivalent but topologically different FSM based on the optimization objective, and concludes with another round of FSM synthesis on the re-constructed FSM. This approach explores a larger solution space that consists of a set of FSMs functionally equivalent to the original one, making it possible to obtain better solutions than in the original FSM. Guided by the result from the #2;rst round of synthesis, the solution space exploration process can be rapid and cost-ef#2;cient. We apply this framework to FSM state encoding for power minimization and area minimization. The FSM is #2;rst minimized and encoded using existing state encoding algorithms. Then we develop both a heuristic algorithm and a genetic algorithm to re-construct the FSM. Finally, the FSM is reencoded by the same encoding algorithms. To demonstrate the effectiveness of this framework, we conduct experiments on MCNC91 sequential circuit benchmarks. The circuits are read in and synthesized in SIS environment. After FSM re-engineering are performed, we measure the power, area and delay in the newly synthesized circuits. In the powerdriven synthesis, we observe an average 5.5% of total power reduction with 1.3% area increase and 1.3% delay increase. This results are in general better than other low power state encoding techniques on comparable cases. In the area-driven synthesis, we observe an average 2.7% area reduction, 1.8% delay reduction, and 0.4% power increase. Finally, we use integer linear programming to obtain the optimal low power state encoding for benchmarks of small size. We #2;nd that the optimal solutions in the re- engineered FSMs are 1% to 8% better than the optimal solutions in the original FSMs in terms of power minimization

    Estimators for Logic Minimization and Implementation Selection of Finite State machines

    Get PDF
    This paper considers two estimation problems which occur during the implementation design for a finite state machine (FSM). The first is a precise estimation of the reduction of a programmed logic array implementation (PLA) for a FSM by logic minimization. The second concerns selection of implementation alternatives based on such estimations. Estimations give the designer a quick overview of the impact of an optimization method for FSM implementation without running the actual time-consuming algorithms. The method uses curve-fitting on results found in literature for logic minimization preceded by state-assignment. Our estimations correlate by 0.97 to those results. State-graph statistics can also be used for selection of the most profitable optimization from a set of alternatives. We tested selection between a counter based implementation, partial state coding, state-assignment and topological partitioning. The goal is selection of the alternative which has the highest probability to deliver the largest minimization of the FSM. This selection method is also empirically verified by comparing its results with results obtained by running specific optimization algorithms on machines of the MCNC benchmark set

    Custom Integrated Circuits

    Get PDF
    Contains reports on twelve research projects.Analog Devices, Inc.International Business Machines, Inc.Joint Services Electronics Program (Contract DAAL03-86-K-0002)Joint Services Electronics Program (Contract DAAL03-89-C-0001)U.S. Air Force - Office of Scientific Research (Grant AFOSR 86-0164)Rockwell International CorporationOKI Semiconductor, Inc.U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Charles Stark Draper LaboratoryNational Science Foundation (Grant MIP 84-07285)National Science Foundation (Grant MIP 87-14969)Battelle LaboratoriesNational Science Foundation (Grant MIP 88-14612)DuPont CorporationDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research (Contract N00014-87-K-0825)American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation (Grant MIP-88-58764

    Mascot: Microarchitecture Synthesis of Control Paths

    Get PDF
    This paper presents MASCOT (MicroArchitecture Synthesis of ConTrol paths). This synthesis system constructs the optimal microarchitecture for a control path of an instruction set processor. Input to the system is the behavioural specification of a control path. This specification is in finite state machine form which is mapped initially onto a single programmed logic array (PLA) microarchitecture. The synthesis strategy then applies a sequence of decompositions on this initial microarchitecture. This strategy follows a decision scheme until all design objectives are met. It transforms the initial microarchitecture into a complex microarchitecture of several PLAs and ROMs. Where it is impossible to meet the design objectives, the system constructs a microarchitecture which comes as close as possible to given design objectives. Design objectives are allowed on floorplan dimensions and delay. Our strategy integrates a number of known optimization methods for specific microarchitectures. Therefore this synthesis method explores a larger part of the design space than do other control path synthesis methods. Other methods are mostly bound to one microarchitecture which they optimize. Our system is not only very flexible in microarchitecture construction but also open for extension by other optimizations

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Custom Integrated Circuits

    Get PDF
    Contains reports on nine research projects.Analog Devices, Inc.International Business Machines CorporationJoint Services Electronics Program Contract DAAL03-89-C-0001U.S. Air Force - Office of Scientific Research Contract AFOSR 86-0164BDuPont CorporationNational Science Foundation Grant MIP 88-14612U.S. Navy - Office of Naval Research Contract N00014-87-K-0825American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    Practical advances in asynchronous design

    Get PDF
    Journal ArticleRecent practical advances in asynchronous circuit and system design have resulted in renewed interest by circuit designers. Asynchronous systems are being viewed as in increasingly viable alternative to globally synchronous system organization. This tutorial will present the current state of the art in asynchronous circuit and system design in three different areas. The first section details asynchronous control systems. The second describes a variety of approaches to asynchronous datapaths. The third section is on asynchronous and self-timed circuits applied to the design of general purpose processors

    Stepwise decomposition in controlpath synthesis

    Get PDF
    A method is presented for the synthesis of the microarchitecture of controlpaths. This method is called stepwise decomposition. It focuses primarily on controlpaths of instruction set processors, however it is also applicable for more general Finite State Machine synthesis. Many of the current controlpath synthesis algorithms are based on a fixed microarchitecture, and an optimization of that microarchitecture. This stepwise decomposition method is able to synthesize microarchitectures in a range from a single PLA to multiple PLA/ROM configurations and optionally further down to hardwired, which makes it more flexible and better suited to a wider range of controlpaths than current synthesis methods. A sequence of decomposition steps, from coarse to detailed, is performed on the design to move it to the area of the design space where all constraints on space, floorplan and delay are satisfied. The method is currently implemented in APL
    • …
    corecore