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Abstract

Recent practical advances in asynchronous circuit and 
system design have resulted in renewed interest by circuit 
designers. Asynchronous systems are being viewed as an 
increasingly viable alternative to globally synchronous sys­
tem organization. This tutorial will present the current state 
of the art in asynchronous circuit and system design in three 
different areas. The first section details asynchronous con­
trol systems. The second describes a variety of approaches 
to asynchronous datapaths. The third section is on asyn­
chronous and self-timed circuits applied to the design of 
general purpose processors

1. Asynchronous Control (S teven  N ow ick )

The earliest asynchronous state machine implementa­
tions were Huffman machines. These machines have combi­
national logic, primary inputs, primary outputs and fed-back 
state variables. There are no clocked latches or tlip-tlops. 
Instead, state is simply stored on feedback loops. Typically 
a fundamental mode assumption is required, to insure cor­
rect operation: once an input change occurs, no new inputs 
may arrive until the machine has stabilized. Much of the ba­
sic theory on asynchronous state machines was developed 
by Huffman, Unger, and McCluskey, and is described well 
in [59]. ”

Hazards, or the potential for glitches, are an important 
consideration in any asynchronous design [59]. Unlike syn­
chronous machines, asynchronous machines have 110 global 
clock to filter out the effect of glitches. Therefore, any glitch 
may be interpreted as a valid signal change, and may cause 
the machine to malfunction. The classic theory of combina­
tional hazards was developed by Huffman, Unger and Mc­
Cluskey for single-input change (SIC) state machines [59|, 
and was later extended to multiple-input change (M IC) ma­
chines [19, 5'|. In addition, critical, races and essential haz­
ards were identified, and techniques to eliminate them were 
proposed.

While this early work laid the foundations of asyn­
chronous controller synthesis, it had a number of limitations. 
First, many of these controllers had highly constrained be­
havior, and thus could not be used in concurrent environ­
ments. Second, a number of the controllers had poor per­
formance, due to the use of inertial delays to filter out haz­
ards [59]. Finally, little work was done on CAD optimiza­
tion algorithms and tools, which are needed for industrial ap­
plications.

Starting in the early and mid 1980’s, a number of con­
troller synthesis methods were introduced, to address these 
limitations. These methods fall roughly into 3 categories:
(i) state machines; (ii) Petri-net and graph-based methods; 
and (iii) translation methods.

1.1. Asynchronous State Machines.

Much of the recent work on asynchronous state machines 
is centered on burst-mode machines. These specifications 
were introduced to allow more more concurrency than tra­
ditional SIC and MIC machines. Burst-mode specifications 
grew out of early work by Davis [14], Davis developed ma­
chines which would wait for a collection of input changes 
(“input bursf’X and then respond with a collection o f out­
put changes (“output burst”). The key contribution is that, 
unlike classic MIC machines, inputs within a burst could be 
uncorrelated: arriving in any order and at any time. As a re­
sult, these machines could operate more flexibly in a concur­
rent environment. This work was later extended by Davis, 
Coates and Stevens [15].

Nowick and Dill [47, 45] formalized and modified the 
data-driven specifications into the final form called burst­
mode [47,45], They also proposed a new self-synchronized 
design style called a locally-clocked state machine [47,45], 
which was the first burst-mode synthesis method to guaran­
tee a hazard-free implementation. The synthesis method has 
been automated and applied to a number of designs: a high- 
performance second-level cache controller [46], a DRAM 
controller and a SCSI controller for example.

Yun and Dill [66] proposed an alternative implementa­
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tion style for burst-mode machines, called a 3D  machine. 
Unlike locally-clocked machines, these are Huffman ma­
chines, with no local clock or latches. The synthesis method 
has been automated and applied to several significant de­
signs, including an experimental SCSI controller at AMD 
Corporation [68]. Yun, Dill and Nowick [69, 67] later gen­
eralized burst-mode specifications into extended  burst-m ode  
specifications, to allow greater concurrency and flexibility. 
A novelty of Yun’s method is that it can be used to synthe­
size controllers for mixed synchronous/asynchronous sys­
tems, where the global clock is one of the controller inputs.

A number of burst-mode optimization algorithms and 
CAD tools have been developed, such as for: state as­
signment [20], hazard-free 2-level logic minimization [48, 
58], multi-level logic optimization [33, 36], and technol­
ogy mapping [55]. A high-level synthesis package, called 
A C K  [32], incorporates several burst-mode tools. Testabil­
ity techniques have also been developed [49].

Burst-mode tools have been applied to several industrial 
designs, including an experimental routing chip [15] and 
low-power infrared communications chip [37] at HP Lab­
oratories, and a high-performance experimental instruction 
decoder at Intel Corporation.

1.2. Petri-Net and Graph-Based Methods.

Petri nets and other graphical notations are a widely- 
used alternative to specify and synthesize asynchronous cir­
cuits. In this model, an asynchronous system is viewed not 
as state-based, but rather as a partially-ordered sequence of 
events. A Petri net is a directed bipartite graph which can 
describe both concurrency and choice. The net consists of 
two kinds of vertices: p la ce s  and tran sitions. Tokens are as­
signed to the various places in the net. An assignment of 
tokens is called a m arking, which captures the state of the 
concurrent system.

Several early synthesis methods use a constrained class 
of Petri net called a m arked graph , which can model con­
currency, but not choice. A more general class of Petri 
net, called a S ign al Transition G raph (STG ), was used by 
Chu [10] and Meng [42]. Alternatively, some researchers 
are using s ta te  graphs  for specifications, as an alternative to 
Petri nets [62,3,31]. State graphs allow the direct specifica­
tion of interleaved behavior, avoiding some of the structural 
complexity of Petri nets.

Many synthesis algorithms have been developed, for 
both STG and graph-based synthesis. Algorithms have been 
developed for state minimization and assignment [34], A  
comprehensive algorithm for hazard-free logic decomposi­
tion was introduced by Burns [8]. More recently, the theory  
o f  regions has been used as a powerful tool in developing 
efficient STG algorithms [13].

A number of CAD packages are now available. Lavagno

developed an influential CAD system for STG synthe­
sis, which has been incorporated into the Berkeley SIS 
tool package [35]. A synthesis method which focuses 
on tim ed  circuits, called ATACS, was introduced by My­
ers [44], Finally, several tools have been developed for 
speed-independen t circuits, which operate correctly regard­
less of the actual gate delays [62, 3, 31].

1.3. Translation Methods.

In a translation method, a system is specified as a pro­
gram in a high-level language of concurrency. Typically, the 
program is based on a variant of Hoare’s CSP, such as occam  
or trace  theory. The program is then transformed, by a se­
ries of steps, into a low-level program which maps directly 
to a circuit.1

Ebergen [18] introduced a synthesis method using spec­
ifications called com m ands. The command is then decom ­
p o se d  in a series of steps into an equivalent network of com­
ponents, using a “calculus of decomposition”. An alterna­
tive approach was proposed by Udding and Josephs [29].

While these methods use algebraic calculi to derive asyn­
chronous circuits, other methods rely on compiler-oriented 
techniques. Martin [38] specifies an asynchronous system 
as a set of concurrent processes which communicate on 
channels. His specification language uses communication 
constructs from Hoare’s CSP, and sequential constructs from 
Dijkstra’s guarded command language. The specification is 
then translated into a collection of gates and components 
which communicate on wires. The synthesis method was 
automated by Burns [9] and applied to many substantial ex­
amples. This work was extended by Akella and Gopalakr- 
ishnan [1] to allow global shared variables. Brunvand and 
Sproull [7] developed an alternative compiler based on Oc­
cam specifications.

A different approach was developed by van Berkel, Rem 
and others [60, 61], using the Tangram  language. A Tan- 
gram specification is compiled by syntax-directed transla­
tion into an intermediate representation called a handshake  
circuit, which is then mapped to a VLSI implementation. 
The Tangram compiler has been successfully used at Philips 
Research Laboratories for many experimental designs, in­
cluding an error corrector for a digital compact cassette 
player [61].

2. Datapath (Kenneth Yun)

This section describes some of the recent advances in 
self-timed datapath design. We begin by describing two 
of the most widely used datapath building blocks: adders 
and multipliers. Then we discuss self-timed memory ar­
chitecture. We conclude with our views on some of the

1 Some of these methods synthesize both datapath and control.
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advantages and disadvantages of applying self-timed tech­
niques to pipelined and non-pipelined datapaths. Although 
asynchronous circuits are used for many other reasons, in 
this section we will concentrate on pros and cons of asyn­
chronous circuits related to performance issues only.

2.1. Datapath building blocks

One feature that sets an asynchronous datapath element 
apart from its synchronous counterpart is its ability to report 
the completion of computation. rITiis completion reporting 
mechanism enables a sell-timed datapath to perform back- 
to-back operations without significant dead time between 
the operations. On the other hand, a synchronous datapath 
must reserve a sufficient amount of time to complete every 
operation in the worst-case scenario. Thus the performance 
of a synchronous circuit is limited by its worst-case behav­
ior, whereas that of an asynchronous circuit is governed by 
its average-case behavior.

The most conventional technique used to detect and re­
port the completion of computation is the use of a comple­
tion detection circuit based on dual-rail logic, as used in
[40]. An alternative approach to detect completion is based 
on current sensing [17,28], i.e., monitoring the current flow 
in the power supply line. Another interesting recent tech­
nique is speculative completion [50]: speculative reporting 
of early completion which can be aborted safely.

We describe below some of the recent techniques to im­
prove the average-case performance of self-timed datapath 
elements in the context of adder and multiplier designs.

2.1.1 Adders

It is well-known that the delay of a ripple carry addition cor­
responds to the length of the longest carry chain (carry prop­
agation). Von Neumann proved that for random  input statis­
tics the average length of the longest carry chain is log2 n for 
n-bit addition. Thus, for random inputs, the average delay 
of 32-bit addition is equal to the worst-case delay of 5-bit 
addition. It is an enormously difficult task to design a 32- 
bit adder with a worst-case delay that even approaches the 
worst-case delay of a 5-bit ripple carry adder. Hence, the 
use of the ripple carry scheme was justified for self-timed 
adders.

However, in most applications input statistics are not ran­
dom. In fact, a large fraction o f cany chains tends to be 
long in most applications, which makes the average-case de­
lay to be skewed much closer to the worst-case. The anal­
yses by Garside [26] and Kinnement [30] using the actual 
input operand statistics from an ARM-6 simulator demon­
strate that the average-case delay of self-timed ripple carry 
addition is worse than the worst-case delay of an adder with 
a simple mechanism to reduce the worst-case delay, such

as carry bypass or carry lookahead. Thus the recent high- 
performance self-timed designs incorporate worst-case de­
lay reduction features.

In adders, the order of sum bit generation cannot be 
known a priori; thus completion detection circuits must de­
tect the completion of every sum bit. If dual-rail logic is used 
to detect the completion of each bit, the completion of an 
n-bit addition requires an n-bit OR-AND function in gen­
eral. It is known that it is sufficient to detect the comple­
tion of carry bits because the delay- from a carry to the cor­
responding sum bit is always smaller than the minimum de­
lay through the completion logic in practical circuits. In or­
der to further minimize the completion sensing overhead for 
the worst-case computation, Yun et al. placed late arriving 
signals (for the worst-case computation) closer.to the output 
in the domino logic implementation of completion detection 
circuit [71]. Their techniques resulted in 2.8ns average-case 
delay for a 32-bit carry bypass adder fabricated in 0.6^m  
CMOS process, with only 20% completion sensing over­
head on average. .■■■■.. .

Nowick et al. used the speculative completion technique 
to speed-up the reporting of completion for Brent-Kung style 
binary carry lookahead adders [50]. This technique parti­
tions the delay of a datapath element in several regions. For 
example, the delay of an adder with 4ns worst-case delay 
may be discretized into 2 regions: less than 2ns and between 
2ns and 4ns. The circuit then reports that the delay is 2ns if 
the actual delay is less than 2ns, and 4ns if the actual delay is 
between 2ns and 4ns. This technique requires a special aux­
iliary circuit called “abort detection circuit”, which operates 
in parallel with the datapath element itself, to compute us­
ing data operands whether the actual delay may exceed die 
initial prediction. Therefore the circuit assumes that the de­
lay is less than 2ns initially. However, if the “abort detec­
tion circuit” computes that the actual delay may take longer 
than 2ns, then the reporting of early completion (2ns delay) 
is aborted and the circuit reports its completion at 4ns. The 
application of this technique to a 32-bit Brent-Kung adder 
resul ted in the simulated average-case delay to be less than 
2ns in 0.6/im CMOS process.

2.1.2 Multipliers and dividers ..

Perhaps the most significant advance in self-timed iterative 
structures is the development of zero-overhead self-timed 
ring technique by Williams [64]. Williams showed that a 
self-timed ring can be designed in dual-rail domino logic 
with essentially zero overhead. He applied this technique 
to a self-timed 160ns 54-bit mantissa divider [65] as a part 
of a floating-point divider. This design was incorporated in 
a commercial microprocessor design [63], It can be shown 
that this technique is generally applicable to: any iterative 
structure in which the latency needs to be optimized. Con­
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sequently, this technique has been applied to other academic 
and industrial designs, such as a division and square root unit 
design by Matsubara and Ide [41].

The self-timed dual-rail domino circuit technique can be 
applied to non-iterative structures to optimize the latency. 
This technique is used in many array multipliers (both syn­
chronous and self-timed) to speed up carry save addition. 
Yun et al. designed a 32-bit 8ns self-timed multiplier, which 
is optimized to produce the least significant 32 bits of the 
products fast, using this technique in [71],

2.1.3 Memory

Garside et al. demonstrated a self-timed cache system for 
AMULET2e which exhibits average-case delay [27]. Al­
though there are many interesting aspects of this design, the 
most important feature is its ability to exploit the sequential 
nature of memory references. For example, if  a cache read 
access is a hit and the data is from the same cache line as the 
previous cache access, then the data can be read out quickly 
without timing-consuming precharge-discharge cycle.

2.2. Pipelined and non-pipelined datapath

Datapaths are built by combining the elements described 
above. There are two types of datapaths: pipelined and 
non-pipelined. There has been a tremendous amount of 
work done in asynchronous pipelines, starting with the clas­
sical work by Sutherland [57]. There are micropipelines 
with two-phase control [70, 2] as well as with four-phase 
control [16, 25, 22], Micropipelines have been applied 
to many asynchronous system designs. The most famous 
ones are AMULET1 [21] and AMULET2e [24] by Furber’s 
Manchester group. All of these designs strive to obtain an 
average-case throughput that is superior to the worst-case 
throughput of comparable synchronous circuits. However, 
most have failed to show any real advantages. Our con­
jecture is that the average-case throughput (taking into ac­
count data dependency only, not operating conditions) of a 
d eep ly  p ip e lin ed  asynchronous circuit would be closer to the 
worst-case throughput, It is likely that shorter pipelines ex­
hibit much better average-case behavior.

Examples of non-pipelined datapaths are Yun et al.’s dif­
ferential equation solver [71], Williams’s divider ring [65], 
van Berkel et al.’s DCC error corrector [4], etc. The per­
formance advantage of asynchronous circuits is much more 
pronounced in non-pipelined datapaths because the latency 
is simply the sum of all datapath element delays in the 
critical path. Thus the average-case latency is determined 
roughly by the sum of the average-case delay of individual 
elements.

3. Asynchronous Processors (Erik Brunvand)

Although asynchronous techniques are applicable across 
a wide range of circuits, this section of this special session is 
dedicated to the design of asynchronous processors. Micro­
processors are, perhaps, the most highly developed digital 
circuits, and therefore the most demanding application for 
asynchronous techniques. Furthermore, the organizations 
used in modem microprocessors to achieve very high perfor­
mance are firmly rooted around synchronous pipelines, and 
many techniques do not transfer readily to the asynchronous 
domain. Therefore designers of asynchronous processors 
have to take a step back and view the problem from a differ­
ent perspective, often developing new techniques and some­
times finding approaches which benefit from the more flex­
ible design environment offered by asynchronous control.

There have been relatively few asynchronous processors 
reported in the literature. Early work in asynchronous com­
puter architecture includes the Macromodule project during 
the early 70’s at Washington University [11,12] and the self­
timed dataflow machines built at the University of Utah in 
the late 70’s [14],

Although these projects were successful in many ways, 
asynchronous processor design did not progress much in the 
following years, perhaps because the circuit concepts were 
a little too far ahead of the available technology. With the 
advent of easily available custom ASIC technology, either 
as VLSI or FPGAs, asynchronous processor design is be­
ginning to attract renewed attention. Some recent processor 
projects include the following:

3.1. The CalTech Asynchronous Micropro­
cessor

The first asynchronous VLSI processor was built by 
Alain Martin’s group at CalTech [39]. It is completely asyn­
chronous, using (mostly) delay-insensitive circuits and dual­
rail data encoding. The processor as implemented has a 
small 16-bit instruction set, uses a simple two-stage fetch- 
execute pipeline, is not decoupled, and does not handle ex­
ceptions. It has been fabricated both in CMOS and GaAs.

3.2. The NSR

The NSR (Non-Synchronous RISC) processor [6] is 
structured as a five-stage pipeline where each pipe stage op­
erates concurrently and communicates over self-timed data 
channels in the style of micropipelines. Branches, jumps, 
and memory accesses are also decoupled through the use 
of additional FIFO queues which can hide the execution la­
tency of these instructions. The NSR was built using FP­
GAs. It is pipelined and decoupled, but doesn’t handle ex­
ceptions. It is a simple 16-bit processor with only sixteen
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instructions, since it was built partially as an exercise in us­
ing FPGAs for rapid prototyping of self-timed circuits.

3.3. The Amulet

A group at Manchester has built a number of versions 
of a self-timed micropipelined VLSI implementation of the 
ARM processor [23, 24] which is an extremely power- 
efficient commercial microprocessor. The Amulet is a real 
processor in the sense that it mimics the behavior of an ex­
isting commercial processor and it handles simple excep­
tions. It is more deeply pipelined than the synchronous 
ARM, but it is not decoupled (although it does allow instruc­
tion prefetching), and its precise exception model is a sim­
ple one. The Amulet has been designed and fabricated. The 
performance of the first-generation design is within a factor 
of two of the commercial version [51]. Later generations of 
Amulet are closing this gap.

3.4. The Counterflow Pipeline Processor

This is an innovative architecture proposed by a group at 
Sun Microsystems Labs [56]. It derives its name from its 
fundamental feature, that instructions and results flow in op­
posite directions in a pipeline and interact as they pass. The 
nature of the Counterflow Pipeline is such that it supports 
in a very natural way a form of hardware register renaming, 
extensive data forwarding, and speculative execution across 
control flow changes. It should also be able to support ex­
ception processing.

A self-timed micropipeline-style implementation of the 
CFPP has been proposed. The CFPP is deeply pipelined and 
partially decoupled, with memory accesses launched and 
completed at different stages in the pipeline. It can handle 
exceptions, and a self-timed implementation which mimics 
a commercial RISC processor’s instruction set has been sim­
ulated. .

3.5. The Fred Architecture

Fred is a self-timed, decoupled, concurrent, pipelined 
computer architecture [54, 53]. It dynamically reorders in­
structions to issue out of order using an instruction window 
to organize the reordering, and allows out-of-order instruc­
tion completion: It handles exceptions and interrupts. Sev­
eral features of the Fred architecture are directly related to 
its self-timed design, such as the decoupled branch mecha­
nism and exception model.

The major innovation of the Fred architecture, which 
makes possible many additional features, is the functionally 
precise exception model [52]. A precise exception model al­
lows the programmer to view the processor state as though

the exception occurred at a point exactly between two in­
structions, such that all instructions before that point have 
completed while all those after have not yet started. Fred’s 
functionally precise model instead simply presents a snap­
shot of the current instruction stream, in which some in­
structions have faulted, some have not yet issued, and any 
nominally sequential instructions which are not present have 
completed successfully out of order.

3.6. Rotary Pipeline Processor

The rotary pipeline processor is an architecture for super­
scalar computing [43]. It is based on a simple and regular 
pipeline structure which can support several ALUs for ef­
ficient dispatching of multiple instructions. In its simplest 
conceptual form, a rotary pipeline circulates all of the pro­
cessor’s registers around a ring. As the register file flows 
around this ring, values are inspected by the various function 
units and results are inserted. Registers are not kept in lock 
step although they are prevented from lapping each other. 
During normal operation the control circuits are not on the 
critical path and performance is limited only by data rates.
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