
Practical Advances in Asynchronous Design

Erik Brunvand
Dept, of Computer Science

University of Utah
SLC, Utah 84112

Steven Nowick
Dept, of Computer Science

Columbia University
New York, NY 10027

Kenneth Yun
Department of ECE

University of California
San Diego, CA 92093

Abstract

Recent practical advances in asynchronous circuit and
system design have resulted in renewed interest by circuit
designers. Asynchronous systems are being viewed as an
increasingly viable alternative to globally synchronous sys­
tem organization. This tutorial will present the current state
of the art in asynchronous circuit and system design in three
different areas. The first section details asynchronous con­
trol systems. The second describes a variety of approaches
to asynchronous datapaths. The third section is on asyn­
chronous and self-timed circuits applied to the design of
general purpose processors

1. Asynchronous Control (S teven N ow ick)

The earliest asynchronous state machine implementa­
tions were Huffman machines. These machines have combi­
national logic, primary inputs, primary outputs and fed-back
state variables. There are no clocked latches or tlip-tlops.
Instead, state is simply stored on feedback loops. Typically
a fundamental mode assumption is required, to insure cor­
rect operation: once an input change occurs, no new inputs
may arrive until the machine has stabilized. Much of the ba­
sic theory on asynchronous state machines was developed
by Huffman, Unger, and McCluskey, and is described well
in [59]. ”

Hazards, or the potential for glitches, are an important
consideration in any asynchronous design [59]. Unlike syn­
chronous machines, asynchronous machines have 110 global
clock to filter out the effect of glitches. Therefore, any glitch
may be interpreted as a valid signal change, and may cause
the machine to malfunction. The classic theory of combina­
tional hazards was developed by Huffman, Unger and Mc­
Cluskey for single-input change (SIC) state machines [59|,
and was later extended to multiple-input change (M IC) ma­
chines [19, 5'|. In addition, critical, races and essential haz­
ards were identified, and techniques to eliminate them were
proposed.

While this early work laid the foundations of asyn­
chronous controller synthesis, it had a number of limitations.
First, many of these controllers had highly constrained be­
havior, and thus could not be used in concurrent environ­
ments. Second, a number of the controllers had poor per­
formance, due to the use of inertial delays to filter out haz­
ards [59]. Finally, little work was done on CAD optimiza­
tion algorithms and tools, which are needed for industrial ap­
plications.

Starting in the early and mid 1980’s, a number of con­
troller synthesis methods were introduced, to address these
limitations. These methods fall roughly into 3 categories:
(i) state machines; (ii) Petri-net and graph-based methods;
and (iii) translation methods.

1.1. Asynchronous State Machines.

Much of the recent work on asynchronous state machines
is centered on burst-mode machines. These specifications
were introduced to allow more more concurrency than tra­
ditional SIC and MIC machines. Burst-mode specifications
grew out of early work by Davis [14], Davis developed ma­
chines which would wait for a collection of input changes
(“input bursf’X and then respond with a collection o f out­
put changes (“output burst”). The key contribution is that,
unlike classic MIC machines, inputs within a burst could be
uncorrelated: arriving in any order and at any time. As a re­
sult, these machines could operate more flexibly in a concur­
rent environment. This work was later extended by Davis,
Coates and Stevens [15].

Nowick and Dill [47, 45] formalized and modified the
data-driven specifications into the final form called burst­
mode [47,45], They also proposed a new self-synchronized
design style called a locally-clocked state machine [47,45],
which was the first burst-mode synthesis method to guaran­
tee a hazard-free implementation. The synthesis method has
been automated and applied to a number of designs: a high-
performance second-level cache controller [46], a DRAM
controller and a SCSI controller for example.

Yun and Dill [66] proposed an alternative implementa­

1063*6404/97 $10.00 © 1997 IE E E
662

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tion style for burst-mode machines, called a 3D machine.
Unlike locally-clocked machines, these are Huffman ma­
chines, with no local clock or latches. The synthesis method
has been automated and applied to several significant de­
signs, including an experimental SCSI controller at AMD
Corporation [68]. Yun, Dill and Nowick [69, 67] later gen­
eralized burst-mode specifications into extended burst-m ode
specifications, to allow greater concurrency and flexibility.
A novelty of Yun’s method is that it can be used to synthe­
size controllers for mixed synchronous/asynchronous sys­
tems, where the global clock is one of the controller inputs.

A number of burst-mode optimization algorithms and
CAD tools have been developed, such as for: state as­
signment [20], hazard-free 2-level logic minimization [48,
58], multi-level logic optimization [33, 36], and technol­
ogy mapping [55]. A high-level synthesis package, called
A C K [32], incorporates several burst-mode tools. Testabil­
ity techniques have also been developed [49].

Burst-mode tools have been applied to several industrial
designs, including an experimental routing chip [15] and
low-power infrared communications chip [37] at HP Lab­
oratories, and a high-performance experimental instruction
decoder at Intel Corporation.

1.2. Petri-Net and Graph-Based Methods.

Petri nets and other graphical notations are a widely-
used alternative to specify and synthesize asynchronous cir­
cuits. In this model, an asynchronous system is viewed not
as state-based, but rather as a partially-ordered sequence of
events. A Petri net is a directed bipartite graph which can
describe both concurrency and choice. The net consists of
two kinds of vertices: p la ce s and tran sitions. Tokens are as­
signed to the various places in the net. An assignment of
tokens is called a m arking, which captures the state of the
concurrent system.

Several early synthesis methods use a constrained class
of Petri net called a m arked graph , which can model con­
currency, but not choice. A more general class of Petri
net, called a S ign al Transition G raph (STG), was used by
Chu [10] and Meng [42]. Alternatively, some researchers
are using s ta te graphs for specifications, as an alternative to
Petri nets [62,3,31]. State graphs allow the direct specifica­
tion of interleaved behavior, avoiding some of the structural
complexity of Petri nets.

Many synthesis algorithms have been developed, for
both STG and graph-based synthesis. Algorithms have been
developed for state minimization and assignment [34], A
comprehensive algorithm for hazard-free logic decomposi­
tion was introduced by Burns [8]. More recently, the theory
o f regions has been used as a powerful tool in developing
efficient STG algorithms [13].

A number of CAD packages are now available. Lavagno

developed an influential CAD system for STG synthe­
sis, which has been incorporated into the Berkeley SIS
tool package [35]. A synthesis method which focuses
on tim ed circuits, called ATACS, was introduced by My­
ers [44], Finally, several tools have been developed for
speed-independen t circuits, which operate correctly regard­
less of the actual gate delays [62, 3, 31].

1.3. Translation Methods.

In a translation method, a system is specified as a pro­
gram in a high-level language of concurrency. Typically, the
program is based on a variant of Hoare’s CSP, such as occam
or trace theory. The program is then transformed, by a se­
ries of steps, into a low-level program which maps directly
to a circuit.1

Ebergen [18] introduced a synthesis method using spec­
ifications called com m ands. The command is then decom ­
p o se d in a series of steps into an equivalent network of com­
ponents, using a “calculus of decomposition”. An alterna­
tive approach was proposed by Udding and Josephs [29].

While these methods use algebraic calculi to derive asyn­
chronous circuits, other methods rely on compiler-oriented
techniques. Martin [38] specifies an asynchronous system
as a set of concurrent processes which communicate on
channels. His specification language uses communication
constructs from Hoare’s CSP, and sequential constructs from
Dijkstra’s guarded command language. The specification is
then translated into a collection of gates and components
which communicate on wires. The synthesis method was
automated by Burns [9] and applied to many substantial ex­
amples. This work was extended by Akella and Gopalakr-
ishnan [1] to allow global shared variables. Brunvand and
Sproull [7] developed an alternative compiler based on Oc­
cam specifications.

A different approach was developed by van Berkel, Rem
and others [60, 61], using the Tangram language. A Tan-
gram specification is compiled by syntax-directed transla­
tion into an intermediate representation called a handshake
circuit, which is then mapped to a VLSI implementation.
The Tangram compiler has been successfully used at Philips
Research Laboratories for many experimental designs, in­
cluding an error corrector for a digital compact cassette
player [61].

2. Datapath (Kenneth Yun)

This section describes some of the recent advances in
self-timed datapath design. We begin by describing two
of the most widely used datapath building blocks: adders
and multipliers. Then we discuss self-timed memory ar­
chitecture. We conclude with our views on some of the

1 Some of these methods synthesize both datapath and control.

663

advantages and disadvantages of applying self-timed tech­
niques to pipelined and non-pipelined datapaths. Although
asynchronous circuits are used for many other reasons, in
this section we will concentrate on pros and cons of asyn­
chronous circuits related to performance issues only.

2.1. Datapath building blocks

One feature that sets an asynchronous datapath element
apart from its synchronous counterpart is its ability to report
the completion of computation. rITiis completion reporting
mechanism enables a sell-timed datapath to perform back-
to-back operations without significant dead time between
the operations. On the other hand, a synchronous datapath
must reserve a sufficient amount of time to complete every
operation in the worst-case scenario. Thus the performance
of a synchronous circuit is limited by its worst-case behav­
ior, whereas that of an asynchronous circuit is governed by
its average-case behavior.

The most conventional technique used to detect and re­
port the completion of computation is the use of a comple­
tion detection circuit based on dual-rail logic, as used in
[40]. An alternative approach to detect completion is based
on current sensing [17,28], i.e., monitoring the current flow
in the power supply line. Another interesting recent tech­
nique is speculative completion [50]: speculative reporting
of early completion which can be aborted safely.

We describe below some of the recent techniques to im­
prove the average-case performance of self-timed datapath
elements in the context of adder and multiplier designs.

2.1.1 Adders

It is well-known that the delay of a ripple carry addition cor­
responds to the length of the longest carry chain (carry prop­
agation). Von Neumann proved that for random input statis­
tics the average length of the longest carry chain is log2 n for
n-bit addition. Thus, for random inputs, the average delay
of 32-bit addition is equal to the worst-case delay of 5-bit
addition. It is an enormously difficult task to design a 32-
bit adder with a worst-case delay that even approaches the
worst-case delay of a 5-bit ripple carry adder. Hence, the
use of the ripple carry scheme was justified for self-timed
adders.

However, in most applications input statistics are not ran­
dom. In fact, a large fraction o f cany chains tends to be
long in most applications, which makes the average-case de­
lay to be skewed much closer to the worst-case. The anal­
yses by Garside [26] and Kinnement [30] using the actual
input operand statistics from an ARM-6 simulator demon­
strate that the average-case delay of self-timed ripple carry
addition is worse than the worst-case delay of an adder with
a simple mechanism to reduce the worst-case delay, such

as carry bypass or carry lookahead. Thus the recent high-
performance self-timed designs incorporate worst-case de­
lay reduction features.

In adders, the order of sum bit generation cannot be
known a priori; thus completion detection circuits must de­
tect the completion of every sum bit. If dual-rail logic is used
to detect the completion of each bit, the completion of an
n-bit addition requires an n-bit OR-AND function in gen­
eral. It is known that it is sufficient to detect the comple­
tion of carry bits because the delay- from a carry to the cor­
responding sum bit is always smaller than the minimum de­
lay through the completion logic in practical circuits. In or­
der to further minimize the completion sensing overhead for
the worst-case computation, Yun et al. placed late arriving
signals (for the worst-case computation) closer.to the output
in the domino logic implementation of completion detection
circuit [71]. Their techniques resulted in 2.8ns average-case
delay for a 32-bit carry bypass adder fabricated in 0.6^m
CMOS process, with only 20% completion sensing over­
head on average. .■■■■.. .

Nowick et al. used the speculative completion technique
to speed-up the reporting of completion for Brent-Kung style
binary carry lookahead adders [50]. This technique parti­
tions the delay of a datapath element in several regions. For
example, the delay of an adder with 4ns worst-case delay
may be discretized into 2 regions: less than 2ns and between
2ns and 4ns. The circuit then reports that the delay is 2ns if
the actual delay is less than 2ns, and 4ns if the actual delay is
between 2ns and 4ns. This technique requires a special aux­
iliary circuit called “abort detection circuit”, which operates
in parallel with the datapath element itself, to compute us­
ing data operands whether the actual delay may exceed die
initial prediction. Therefore the circuit assumes that the de­
lay is less than 2ns initially. However, if the “abort detec­
tion circuit” computes that the actual delay may take longer
than 2ns, then the reporting of early completion (2ns delay)
is aborted and the circuit reports its completion at 4ns. The
application of this technique to a 32-bit Brent-Kung adder
resul ted in the simulated average-case delay to be less than
2ns in 0.6/im CMOS process.

2.1.2 Multipliers and dividers ..

Perhaps the most significant advance in self-timed iterative
structures is the development of zero-overhead self-timed
ring technique by Williams [64]. Williams showed that a
self-timed ring can be designed in dual-rail domino logic
with essentially zero overhead. He applied this technique
to a self-timed 160ns 54-bit mantissa divider [65] as a part
of a floating-point divider. This design was incorporated in
a commercial microprocessor design [63], It can be shown
that this technique is generally applicable to: any iterative
structure in which the latency needs to be optimized. Con­

664

sequently, this technique has been applied to other academic
and industrial designs, such as a division and square root unit
design by Matsubara and Ide [41].

The self-timed dual-rail domino circuit technique can be
applied to non-iterative structures to optimize the latency.
This technique is used in many array multipliers (both syn­
chronous and self-timed) to speed up carry save addition.
Yun et al. designed a 32-bit 8ns self-timed multiplier, which
is optimized to produce the least significant 32 bits of the
products fast, using this technique in [71],

2.1.3 Memory

Garside et al. demonstrated a self-timed cache system for
AMULET2e which exhibits average-case delay [27]. Al­
though there are many interesting aspects of this design, the
most important feature is its ability to exploit the sequential
nature of memory references. For example, if a cache read
access is a hit and the data is from the same cache line as the
previous cache access, then the data can be read out quickly
without timing-consuming precharge-discharge cycle.

2.2. Pipelined and non-pipelined datapath

Datapaths are built by combining the elements described
above. There are two types of datapaths: pipelined and
non-pipelined. There has been a tremendous amount of
work done in asynchronous pipelines, starting with the clas­
sical work by Sutherland [57]. There are micropipelines
with two-phase control [70, 2] as well as with four-phase
control [16, 25, 22], Micropipelines have been applied
to many asynchronous system designs. The most famous
ones are AMULET1 [21] and AMULET2e [24] by Furber’s
Manchester group. All of these designs strive to obtain an
average-case throughput that is superior to the worst-case
throughput of comparable synchronous circuits. However,
most have failed to show any real advantages. Our con­
jecture is that the average-case throughput (taking into ac­
count data dependency only, not operating conditions) of a
d eep ly p ip e lin ed asynchronous circuit would be closer to the
worst-case throughput, It is likely that shorter pipelines ex­
hibit much better average-case behavior.

Examples of non-pipelined datapaths are Yun et al.’s dif­
ferential equation solver [71], Williams’s divider ring [65],
van Berkel et al.’s DCC error corrector [4], etc. The per­
formance advantage of asynchronous circuits is much more
pronounced in non-pipelined datapaths because the latency
is simply the sum of all datapath element delays in the
critical path. Thus the average-case latency is determined
roughly by the sum of the average-case delay of individual
elements.

3. Asynchronous Processors (Erik Brunvand)

Although asynchronous techniques are applicable across
a wide range of circuits, this section of this special session is
dedicated to the design of asynchronous processors. Micro­
processors are, perhaps, the most highly developed digital
circuits, and therefore the most demanding application for
asynchronous techniques. Furthermore, the organizations
used in modem microprocessors to achieve very high perfor­
mance are firmly rooted around synchronous pipelines, and
many techniques do not transfer readily to the asynchronous
domain. Therefore designers of asynchronous processors
have to take a step back and view the problem from a differ­
ent perspective, often developing new techniques and some­
times finding approaches which benefit from the more flex­
ible design environment offered by asynchronous control.

There have been relatively few asynchronous processors
reported in the literature. Early work in asynchronous com­
puter architecture includes the Macromodule project during
the early 70’s at Washington University [11,12] and the self­
timed dataflow machines built at the University of Utah in
the late 70’s [14],

Although these projects were successful in many ways,
asynchronous processor design did not progress much in the
following years, perhaps because the circuit concepts were
a little too far ahead of the available technology. With the
advent of easily available custom ASIC technology, either
as VLSI or FPGAs, asynchronous processor design is be­
ginning to attract renewed attention. Some recent processor
projects include the following:

3.1. The CalTech Asynchronous Micropro­
cessor

The first asynchronous VLSI processor was built by
Alain Martin’s group at CalTech [39]. It is completely asyn­
chronous, using (mostly) delay-insensitive circuits and dual­
rail data encoding. The processor as implemented has a
small 16-bit instruction set, uses a simple two-stage fetch-
execute pipeline, is not decoupled, and does not handle ex­
ceptions. It has been fabricated both in CMOS and GaAs.

3.2. The NSR

The NSR (Non-Synchronous RISC) processor [6] is
structured as a five-stage pipeline where each pipe stage op­
erates concurrently and communicates over self-timed data
channels in the style of micropipelines. Branches, jumps,
and memory accesses are also decoupled through the use
of additional FIFO queues which can hide the execution la­
tency of these instructions. The NSR was built using FP­
GAs. It is pipelined and decoupled, but doesn’t handle ex­
ceptions. It is a simple 16-bit processor with only sixteen

665

instructions, since it was built partially as an exercise in us­
ing FPGAs for rapid prototyping of self-timed circuits.

3.3. The Amulet

A group at Manchester has built a number of versions
of a self-timed micropipelined VLSI implementation of the
ARM processor [23, 24] which is an extremely power-
efficient commercial microprocessor. The Amulet is a real
processor in the sense that it mimics the behavior of an ex­
isting commercial processor and it handles simple excep­
tions. It is more deeply pipelined than the synchronous
ARM, but it is not decoupled (although it does allow instruc­
tion prefetching), and its precise exception model is a sim­
ple one. The Amulet has been designed and fabricated. The
performance of the first-generation design is within a factor
of two of the commercial version [51]. Later generations of
Amulet are closing this gap.

3.4. The Counterflow Pipeline Processor

This is an innovative architecture proposed by a group at
Sun Microsystems Labs [56]. It derives its name from its
fundamental feature, that instructions and results flow in op­
posite directions in a pipeline and interact as they pass. The
nature of the Counterflow Pipeline is such that it supports
in a very natural way a form of hardware register renaming,
extensive data forwarding, and speculative execution across
control flow changes. It should also be able to support ex­
ception processing.

A self-timed micropipeline-style implementation of the
CFPP has been proposed. The CFPP is deeply pipelined and
partially decoupled, with memory accesses launched and
completed at different stages in the pipeline. It can handle
exceptions, and a self-timed implementation which mimics
a commercial RISC processor’s instruction set has been sim­
ulated. .

3.5. The Fred Architecture

Fred is a self-timed, decoupled, concurrent, pipelined
computer architecture [54, 53]. It dynamically reorders in­
structions to issue out of order using an instruction window
to organize the reordering, and allows out-of-order instruc­
tion completion: It handles exceptions and interrupts. Sev­
eral features of the Fred architecture are directly related to
its self-timed design, such as the decoupled branch mecha­
nism and exception model.

The major innovation of the Fred architecture, which
makes possible many additional features, is the functionally
precise exception model [52]. A precise exception model al­
lows the programmer to view the processor state as though

the exception occurred at a point exactly between two in­
structions, such that all instructions before that point have
completed while all those after have not yet started. Fred’s
functionally precise model instead simply presents a snap­
shot of the current instruction stream, in which some in­
structions have faulted, some have not yet issued, and any
nominally sequential instructions which are not present have
completed successfully out of order.

3.6. Rotary Pipeline Processor

The rotary pipeline processor is an architecture for super­
scalar computing [43]. It is based on a simple and regular
pipeline structure which can support several ALUs for ef­
ficient dispatching of multiple instructions. In its simplest
conceptual form, a rotary pipeline circulates all of the pro­
cessor’s registers around a ring. As the register file flows
around this ring, values are inspected by the various function
units and results are inserted. Registers are not kept in lock
step although they are prevented from lapping each other.
During normal operation the control circuits are not on the
critical path and performance is limited only by data rates.

References

[1] V. Akella and G. Gopalakrishnan. SHILPA: a high-level
synthesis system for self-timed circuits. In Proceedings
o f the IEEE/ACM International Conference on.Computer-
Aided Design, pages 587-91. IEEE Computer Society Press,
November 1992.

[2] S. S. Appleton, S. V. Morton, and M. J. Liebelt. A new
method for asynchronous pipeline control. In 7th Great Lakes
Symposium on VLSI, 1997.

[3] P. Beerel and T. Meng. Automatic gate-level synthesis of
speed-independentcircuits. In Proceedings o f the IEEE/ACM
International Conference on Computer-Aided Design, pages
581-586. IEEE Computer Society Press, November 1992.

[4] K. v. Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken,
and F. Schalij. A fully-asynchronous low-power error correc­
tor for the DCC player. IEEE Journal o f Solid-State Circuits,
29(12): 1429-1439, Dec. 1994.

[5] Bredeson andP. Hulina. Elimination of static and dynamic
. hazards for multiple input changes in combinational switch­

ing circuits. Information and Control, 20:114—224,1972.
[6] E. Brunvand. The NSR processor. In Proceedings o f the 26th

International Conference on System Sciences, Maui, Hawaii,
January 1993.

[7] E. Branvand and R. E, Sprpull. Translatingic6neun'ent pro­
grams into delay-insensitive circuits. In Proceedings o f the
IEEE International Conference on Computer-Aided Design,
pages 262-265. IEEE Computer Society Press, November
1989. - j '

[8] S. Bums. General condition for the decomposition of state1
holding elements. In Proceedings o f the International Sym-

■ posium on Advanced Research in Asynchronous Circuits and
Systems (Async96):ipages 48-57*: IEEE:Computer Society
Press, November 1996.

666

[9] S. Bums and A. Martin. Syntax-directed translation of con­
current programs into self-timed circuits. In J. Allen and
T. Leighton, editors, Advanced Research in VLSI: Proceed­
ings o f the Fifth MIT Conference, pages 35-50. MIT Press,
Cambridge, MA, 1988.

[10] T.-A. Chu. Synthesis of self-timed vlsi circuits from graph-
theoretic specifications. Technical Report MIT-LCS-TR-393,
Massachusetts Institute of Technology, 1987. Ph.D. Thesis.

[11] W. A. Clark. Macromodular computer systems. In Spring
Joint Computer Conference. AFIPS, April 1967.

[12] W. A. Clark and C. A. Molnar. Macromodular system de­
sign. Technical Report 23, Computer Systems Laboratory,
Washington University, April 1973.

[13] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Methodology and tools for state encoding
in asynchronous circuit synthesis. In 33rdACM/IEEE Design
Automation Conference, June 1996.

[14] A. Davis. The architecture and system method for DDM1:
A recursively structured data-driven machine. In 5th Annual
Symp. on Computer Architecture, April 1978.

[15] A. Davis, B. Coates, and K. Stevens. Automatic synthesis
of fast compact self-timed control circuits. In 1993 IFIP
Working Conference on Asynchronous Design Methodolo­
gies (Manchester, England), 1993.

[16] P. Day and J. V. Woods. Investigation into micropipeline latch
design styles. IEEE Transactions on VLSI Systems, 3(2):264-
272, June 1995.

[17] M. E. Dean, D. L. Dill, and M. Horowitz. Self-timed logic
using current-sensing completion detection (CSCD). Journal
o f VLSI Signal Processing, 7(l/2):7—16, Feb. 1994.

[18] J. Ebergen. A formal approach to designing delay-insensitive
circuits. Distributed Computing, 5(3): 107—119,1991.

[19] E. Eichelberger. Hazard detection in combinational and se­
quential switching circuits. IBM Journal ofResearch and D e­
velopment, 9(2):90-99, 1965.

[20] R. Fuhrer, B. Lin, and S. Nowick. Symbolic hazard-
free minimization and encoding of asynchronous finite state
machines. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 604-611, Novem­
ber 1995.

[21] S. Furber. Computing without clocks: Micropipelining the
ARM processor. In G. Birtwistle and A. Davis, editors, Asyn­
chronous Digital Circuit Design, Workshops in Computing,
pages 211-262. Springer-Verlag, 1995.

[22] S. B. Furber and P. Day. Four-phase micropipeline latch con­
trol circuits. IEEE Transactions on VLSI Systems, 4(2):247-
253, June 1996.

[23] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V.
Woods. A micropipelined ARM. In Proceedings o f VLSI93,
Grenoble, France, 1993.

[24] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and
N. Paver. AMULET2e: An asynchronous embedded con­
troller. In Proc. International Symposium on Advanced Re­
search in Asynchronous Circuits and Systems. IEEE Com­
puter Society Press, Apr. 1997.

[25] S. B. Furber and J. Liu. Dynamic logic in four-phase mi­
cropipelines. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems. IEEE Com­
puter Society Press, Mar. 1996.

[26] J. D. Garside. A CMOS VLSI implementation of an asyn­
chronous ALU. In S. Furber and M. Edwards, editors,
Asynchronous Design Methodologies, volume A-28 of IFIP

Transactions, pages 181-207. Elsevier Science Publishers,
1993.

[27] J. D. Garside, S. Temple, and R. Mehra. The AMULET2e
cache systems. In Proc. International Symposium on Ad­
vanced Research in Asynchronous Circuits and Systems.
IEEE Computer Society Press, Mar. 1996.

[28] E. Grass, R. C. S. Morling, and I. Kale. Activity monitoring
completion detection (AMCD): A new single rail approach
to achieve self-timing. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems.
IEEE Computer Society Press, Mar. 1996.

[29] M. Josephs and J. Udding. An overview of D-I algebra.
In Proceedings ofthe Twenty-Sixth Annual Hawaii Interna­
tional Conference on System Sciences, volume I, pages 329­
338. IEEE Computer Society Press, January 1993.

[30] D. J. Kinnement. An evaluation of asynchronous addi­
tion. IEEE Transactions on VLSI Systems, 4(1):137-140,
Mar. 1996.

[31] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen,
and A. Yakovlev. Basic gate implementation of speed-
independent circuits. In Proceedings o f the 31st ACM/IEEE
Design Automation Conference, pages 56-62. ACM, June
1994.

[32] P. Kudva, G. Gopalakrishnan, and H. Jacobson. A tech­
nique for synthesizing distributed burst-mode circuits. In
33rdACM/lEEE Design Automation Conference, June 1996.

[33] D. Kung. Hazard-non-increasing gate-level optimization
algorithms. In Proceedings o f the IEEE/ACM Interna­
tional Conference on Computer-Aided Design, pages 631­
634. IEEE Computer Society Press, November 1992.

[34] L. Lavagno, C. Moon, R. Brayton, and A. Sangiovanni-
Vincentelli. Solving the state assignment problem for sig­
nal transition graphs. In Proceedings o f the 29th IEEE/ACM
Design Automation Conference, pages 568-572. IEEE Com­
puter Society Press, June 1992.

[35] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms fo r
synthesis and testing o f asynchronous circuits. Kluwer Aca­
demic, 1993.

[36] B. Lin and S. Devadas. Synthesis of hazard-free multi-level
logic under multiple-input changes from binary decision dia­
grams. In Proceedings o f the IEEE/ACM International Con­
ference on Computer-Aided Design, pages 542-549. IEEE
Computer Society Press, November 1994.

[37] A. Marshall, B. Coates, and P. Siegel. The design of an
asynchronous communications chip. IEEE Design and Test,
11(2):8-21, Summer 1994.

[38] A. Martin. Programming in VLSI: From communicating pro­
cesses to delay-insensitive circuits. In C. Hoare, editor, De­
velopments in Concurrency and Communication, UT Year of
Programming Institute on Concurrent Programming, pages
1-64. Addison-Wesley, Reading, MA, 1990.

[39] A. Martin, S. Bums, T. Lee, D. Borkovic, and P. Hazewindus.
The design of an asynchronous microprocessor. In Proc. Cal
Tech Conference on VLSI, 1989.

[40] A. J. Martin. Asynchronous datapaths and the design of
an asynchronous adder. Formal Methods in System Design,
1(1):119-137, July 1992.

[41] G. Matsubara and N. Ide. A low power zero-overhead self­
timed division and square root unit combining a single-rail
static circuit with a dual-rail dynamic circuit. In Proc. Inter­
national Symposium on AdvancedResearch in Asynchronous

667

Circuits and Systems. IEEE Computer Society Press, Apr.
1997. :

[42] T. H.-Y. Meng, R. Brodersen, and D. Messerschmitt. Au­
: tomatic synthesis of asynchronous circuits from high-level
: : - specifications. IEEE Transactions on Computer-Aided D e­

sign o f Integrated Circuits and Systems, 8(11.1:1185-1205.
- November 1989. y ’y c - r j'?”;
1431 S. Moore. P. Robinson, ami S. Wilcox. Rotary pipeline pro­

.. eessors. ME Proceedings, Computers and Digital Tech­
niques. 14.ii.51, September 1996. • . . •.. .

[44J C. Myers and T. Meng. Synthesis of Timed Asynchronous
Circuits. IEEE Transactions on VLSI Systems, 11 2): 106—119.
June 1993. . . - : . . . : ; > ..

(45] S. Nov. iek. Automatic synthesisof burst-mode asynchronous
controllers. Technical report, Stanford University, March:

. 1993. Ph.D. Thesis (available as Stanford University Corn-,
puter Systems Laboratory technical report. CSL-TR-95-686.
Dec. 95). ‘ " '' - ; ."r'v .. v -

1461 S. Nowick. M. Dean. D. Dill, and M. Horowitz.,, Thede-'
' sign of a high-performance cache controller: a ease study in

asynchronous synthesis. INTEGRATION, the VLSI journal,
15(3):241-262, October 1993. .- , . .

|47J S. Nowick arid D.4Bill.'‘S}Tnii&si:r̂
chines using a local clock. In Proceedings o f the IEEE Inter­

. national Con ference on Computer Design, pages 192- 197..
IEEE Computer Society Press. October 1991. : . :

[48] S. Nowick and D. Dill:1 Exact- two-level ‘minimization of
hazard-free logic with multiple-input changes? IEEE Trans­
actions on Computer-Aided Design o f Integrated Circuits

. and Systems. 14(S):9.S6- 997, August 1995. , .

[49] S. Nowick, N. Jha, and R-C. Cheng. Synthesis of asyn­
chronous circuits for stuck-at and robust path delay fault
testability. In Proceedings o f the Eighth International Con­
ference on VLSI Design (VLSI Design 95). IEEE Computer
Society Press, January 1995. ' ,

[50] S. M. Nowick. K. Y. Yun. and P. A. Beerel. Specula-
\ ” tive completion for the design of high-performance as> n-
s ^ ; chronous dynamic adders. In Proc. Internatioiud Sym/io-

sium on Advanced Research in Asynchronous Circuits and
Systems. IEEE Computer Society Press, Apr. l l>97.

|511 > N. C. Paver. The Design and Implementation o f an Asyn
chronous Microprocessor. PhD thesis. University of Manch­
ester. I(>94. '

[52] W. R Richardson and E. Brunvand. Precise exception han­
: v -1- dling for a self-timed processor. In 1995 Internatioiud Con­

ference on C.omputer Desiyh: VLSI in ('omputcrs <fc Proces­
sors, pages 32-37, Los Alamitos, CA, October 1995. IEEE

:J iiCoTnputerS.ocietyPress’. -
[53] W. 1-. Richardson and Ii. Brunvand. Architectural cotisidera-
: tions fora self-timed decoupled processor. IEE Proceedings,

‘ (U/tnpitte.i s and Digital 7t:thiutjm:.\. 14.V5), .Se.|>u:nibei I99f>.
1541 W. F. Richardson and E. Brunvand. Ired: An architcc-

.: lure for a self-timed decoupled computer. In Advanced Rc-
r i search■ in Asynchronous ('ircuits and Systems !ASY.\’C96>,

Aizu-Wakamatsu, Japan, 1996. - .
[551 P. Siegel, (i. De Miclieli, and D. Dill. Technology mapping
• „. for getierali/.ed fundanicntal-mode asynchronous designs. In

Proceedings o f the 30th ACM/IEEE Design Automation Con­
ference. pages 61-67. ACM, June 1 *)93. ^ ■ : ;

1561 R. E. Sproull. 1. E. Sutherland, and C. Ii. Moltiar. Ihe coun-
terlhm pipeline processor architecture. IEEE Design and
Test o f Computers, III' I. 1994. v: :y-..y-y..y?..

1571 I. E. Sutherland. Micropipelines.; Communications o f the
ACM. 32(6):720-738. June 1989. - .

[58] M. Theobald, S. Nowick, and T. Wu. Espresso-HF: a
. heuristic hazard-free minimi/.er for two-level logic. In 33rd

AC.WIEEE Design Automation Conference, pages 71-76.
June 1996.

[59] S. II. Unger. Asynchronous Sequential Switching Circuits.
Wiley-Interscience, 1969.

[60]. C. van.Berkel and R, Saeijs. Compilatiom:Of eommuni:cat-;
ing processes into delay-insensitive circuits. In Proceedings

‘■".y o f the IEEE International Conference on Computer Design.
■ . pages 157-162. IEEE Computer Society Press, 1988.

[61] K. van Berkel, R. Burgess, J. Kessels, A. Peelers. M. Ron-
eken, and F. Sehalij. Asynchronous Circuits for Low Power:
a DCC Error Corrector. IEEE Design & Test, 1J (2):22—32,

■A-,;;.- June 1994. r .:
[62] V. Varshavsky, .Mv, Kishinevsky. V. Marakhovsky,

'■ys.Zfc Peschansky, L. Rosenblum. A. Taubin, and B. Tzir-
’ lit). Self-timed Control, o f Concurrent Processes. Kluver

Academic l>ublisher.s, 1990. Russian edition: 1986.
[63] T. Williams, N. Patkar, and G. Shcn. SPARC64: A 64-

b 64-active-instruction out-of-order-e.\ecution MCM proces­
sor. Circuits-. 3<)i 11): 1215-1226.

. . Nov. 1995. :
[6 11 T. E. Williams. Self- Timed Rings and their Application lo Di­

vision. PhD thesis, Stanford University, June 1991.
[65] T. E. Williams and M. A. Horowitz. A zero-overhead self­

timed 160ns 54b CMOS divider. IEEE Journal o f Solid-State
Circuits, 26(11):1651-1661, Nov. 1991. ':

[66] K. Yun and D. Dill. Automatic synthesis of 3D asynchronous
:: : finite slate machines. In Proceedings o f the ll'EE/ACM Inter­

national Conference on Computer-Aided Design. IEEE Com­
puter Society Press. November 1992.

[67] K. Yun and D. Dill. Unifying synchronous/asynchronous
. State machine synthesis. In Proceedings o f the IEEE/ACM

Internatumal Conference on Computer-Aided Design, pages
255-260. IEEE Computer Society Press, November 1993.

168] K. Yun and D. Dill. A high-performance asynchronous SCSI
■ controller. In Proceedinvs o f the IEEE International Confer­

- ence on Computer Design, pages 44-49. IEEE Computer So­
ciety Press, October 1995.

[691 K. Yun, D. Dill, and S. Nowick. Practical generalizations of
j ’ asynchronous state machines. In 77i<-1993 EuropeanConfer-

ence on Design Automation, pages 525 530. IEEE Computer
Society Press. February 1993. . : J

|70| K. Y. Yun, P. A. Beerel. and J. Arceo. I ligh-performance two­
. , phase micropipeline building blocks: double edge-triggered

latches and burst-mode select and toggle circuits. IEE Pro­
feedings, Circuits. Devices and Systems. 143i5i:282-288.
Oct. 1996. : :

[71] K. Y. Yun, A. E. Dooply, J. Arceo, P. A. Beerel, and V. Vakilo-
tojar. I he design and veritication of a high-performance low-

v :control overhead asynchronous differential equation solver.
in Proc. Inti rnalional Symposium on Advanced Research in

, Asynchronous Circuits and Systems. IEEE Computer Society
Press. Apr. 1997. \ \ .j.

668 ;

