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Stepwise Decomposition in Controlpath Synthesis 
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Department of Computer Science, University of Twente, 
P.O. Box 217, 7500 AE Enschede, The Netherlands 

A method is presented for the synthesis of the microarchitecture of controlpaths. This method is called 
stepwise decomposition. It focuses primarily on eontrolpaths of instruction set processors, however it is 
also applicable for more general Finite State Machine synthesis. Many of the current controlpath 
synthesis algorithms are based on a fixed microarchitecturc, and an optimization of that 
microarchitecture. This stcpwise decomposition method is able to synthesize microarchitectures in a 
range from a single PLA to multiple PLA/ROM configurations and optionally further down to hardwired, 
which makes it more flexible and better suited to a wider range of controlpaths than current synthesis 
methods. A sequence of decomposition steps, from coarse to detailed, is performed on the design to 
move it to the area of the design space where all constraints on space, floorplan and delay are satisfied. 
The method is currently implemented in APL. 

1. Introduction 

Many of todays high level controlpath synthesis systems 
are restricted to a fixed target microarchitecture, mostly a 
PLA configuration or a microprogrammed ROM. 
Furthermore, in most systems only the size parameter of 
the design is minimized, as in logic synthesis [1] and in 
state-assignment algorithms [2,3]. Comparisons based on 
benchmarks stress often only the number of literals or 
productterms. Therefore the generated designs will not 
always satisfy all the constraints which do exist in a 'real' 
design environment. Especially the floorplun related 
design parameters and delay are not taken into account in 
those synthesis systems. Controlpath synthesis by stepwise 
decomposition is developed for application in a 'real' 
design environment, with fioorplan and delay design 
consu'aints. It is directed specifically to the design of 
controlpaths for instruction set processors. In that 
application the complexity of control spans a wide range, 
from very limited in RISC, up to very complicated for 
CISC processors. For this wide range current synthesis 
methods are of limited use. The stepwise decomposition 
method however is able to generate different 
microarchitecmres to cover this wide range of controlpath 
complexities. This is realized by a sequence of 
decomposition steps, together with floorplan directed 
synthesis. The microarchitecturc is determined by the 
design constraints. Furthermore this method assures 
inherently the highest possible design regularity, which 
design parameter is recogniz~ important [4] for the 
design quality. First, the limits adopted are discussed in 
section 2, then the method itself is considered in section 3, 
followed by a description of the most important 
decomposition steps currently implemented in section 4. 
The last sections contain the results and conclusions. 

2. Design model 

First, a framework of constraints and assumptions within 
which the synthesis performs its task is to be def'med. This 
framework is called a design model. This design model 
limits the large number of freedom degrees in the design 
while retaining a high design flexibility. Thus, the 
computational complexity is kept manageable. The 
general part is discussed in this section, parts specific for 
one decomposition step arc found throughout the other 
sections. 
First some definitions. A microword is the word available 
at one address in the microprogrammed ROM. This 
microword is divided into control fields. Each control field 
corresponds with exactly one functional unit in the 
datapath as shown in figure 1. A control field contains 
microoperations for its particular datapath functional unit 
only. 

microword[f'ieldl I field2 I f~eu3 

datapath[,, unit 1 . . . .  

I . . I  .. ] 

t 
Figure 1. Control fields related to datapath units. 

The wiring area in the controlpath is kept minimal by 
ordering the control fields in the microword equal to the 
ordering of the datapath functional units in the layout. 
Especially for complex datapaths with a large number of 
control lines, this saves much wiring area. This ordering 



118 A.J.W.M. ten Berg / Stepwise decomposition in controlpath synthesis 

can also be applied for the individual control lines within 
each control field. However, in case of encoded control 
fields the ordering of control variables within a control 
field is hidden by the decoders and thus irrelevant. But, 
because our synthesizer is able to generate horizontal as 
well as encoded implementations, the ordering of all 
control variables in the microword is kept equal to the 
layout ordering of control terminals. 
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Figure 2. Typical state-graph for instruction set processor. 

Furthermore a general structure is assumed for the state- 
graph of control function which is shown in figure 2. This 
structure is typical for instruction set processors [5]. The 
figure shows that state sequences are shared among 
instructions in principle [5,6]. For example state sequences 
needed for operand addressing are shared among 
instructions. Another typical structure in the state-graph 
are the few large 'fork' constructions, where selections are 
made between the different operations or address modes. 
The implications of this transition structure for the 
micmarchitecture are made clear in the following sections. 

decomposition step (figure 3). This separation of design 
analysis phases and decomposition steps contributes to a 
structured and comprehensive design method. 
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Figure 3. Decomposition decision flow. 

Another advantage of stepwise decomposition is the 
inherent high regularity of the generated designs. When a 
design fits its constraints it is not decomposed needlessly 
into smaller components. The importance of a high design 
regularity was recognized already in [4]. The fewer 
different designed components and the larger the 
repetition of each of those, the more regular a design is 
called. A high design regularity improves the 
predictability of the final layout parameters in the 
synthesis phase. At last, by stepwise decomposition the 
computational complexity of the synthesis is kept limited, 
for each individual decomposition step does not have to 
consider the complete bulk of design details. 

3. Design refinement by stepwise decomposition 

The principle of design refinement by a sequence of 
decomposition steps is feasible from several points of 
view. In contrast with previous decomposition methods it 
incorporates several decomposition levels or decision 
levels as shown in figure 3. This prevents that all design 
parameters have to be considered together at one decision 
level. By stepwise decomposition each design parameter is 
considered at the decomposition or decision level were it 
has most impact. A selection between alternatives in each 
decomposition step makes it possible to generate different 
microarchitecmres to adhere the design to its constraints. 
This in contrast with other synthesis methods, which are 
mostly bound to one freed microarchitecture. Such 
methods are not very flexible towards for example the 
floorplan area constraints. The decision whether or not to 
perform a next decomposition step is made before and 
independent of the comparison of the alternatives in the 

3.1. Behavioural description transformation 

The first action of the synthesizer is to compile a 
behavioural description of the controlpath into a transition 
table. This behaviour can be specified in either a 
gateprogram format [7] or in a PLA format. The behaviour 
compiler replaces the control constructs in the 
gateprogram, typical for sequential programming, by 
completely specified conditional transitions. Initially a 
Moore machine type transition table is constructed. But 
the Mealy representation of the controlpath Finite State 
Machine is also generated and used together with the 
Moore representation throughout the decomposition 
process. The Moore state codes are applied as unique 
labels for the Mealy machine's transitions, which are 
required for the decomposition of Mealy machines. 
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4. Decomposition decision sequence 

In this section the individual decomposition steps are 
discussed together with the algorithms involved. First we 
give a short overview of the decomposition steps 
incorporated in the current implementation of the method. 
Then, in the next sub-sections the individual steps are 
explained into. detail. The stepwise decomposition 
principle implies a simple root configuration. The simplest 
configuration possible is a PLA with state feedback 
register. This configuration is then analysed with regard to 
the design constralms. If these constraints are not satisfied 
the root configuration is decomposed into a two PLA 
configuration to which a counter is added ff useful. One 
PLA implements the F'mite State Machine's (FSM) 
transition function and the other PLA implements the 
FSM's output function. Again the configuration is 
analysed on fulfilling the design constraints. If not, then 
floorplan driven decomposition steps are applied in which 
both PLA's of the configuration are independently 
decomposed into smaller PLA' s and/or ROM' s. 

4.1. Root implementation 

The least complex implementation contains one PLA with 
a state feedback register (figure 4). The alternatives at this 
level are a Mealy or Moore type FSM implementation. For 
several reasons the Mealy implementation is selected. In 
the first place, it is due to the large 'join'/'fork' constructs 
found in direct sequence in the control flow graphs typical 
for instruction set processors (figure 2). Therefore, the 
number of Mealy transitions, and thus the number of PLA 
product-terms, is much smaller than the number of Moore 
transitions. Secondly, the conceptual input-to-output delay 
is twice as large for a Moore single PLA as for the Mealy 
single PLA. By this, the Mealy implementation is 
favoured. 

inputs l PLA 

- - g  
outputs 

Figure 4. The root implementation. 

This implementation is then checked with the floorplan, in 
aspect ratio as well as total size. Also the estimated PLA 
delay is compared with the desired delay. In both 
comparisons an estimated minimization impact of state- 
assignment optimization is taken into account. If one of 
these checks fail, the synthesizer decides to decompose. 
Otherwise state-assignment [3] is performed followed by 
logic minimization which completes the design. 

4.2. Function separation 

In case the single PLA implementation does not fit the 
design constraints, the fwst analysis phase decides to 
perform the first decomposition step. At this level we can 
apply several types of decomposition. The selection is 
based on estimations of the alternatives. Two alternatives 
are possible, in the first place a functional decomposition 
in which the two FSM functions are separated and 
implemented in separate PLA's as found in for example 
[2,8] (figure 5). The second alternative is a decomposition 
in parallel [9] or cascade connected FSM's (figure 6). The 
parallel decomposition or segmentation is based on 
separating the output variables into groups in such a way 
that each group has fewer product-term as the original 
PLA. However this will only provide optimization in case 
several independent groups of output variables (for 
example caused by different datapaths) exist. The 
decomposition into cascade FSM's is shown to be difficult 
[10] and furthermore we view this stage in the synthesis 
not as the appropriate one to perform this type of 
decomposition. Instead the FSM hierarchy should already 
be apparent in the behaviooral description, which is the 
correct place for it. This because information is lost when 
a hierarchy is flattened and thus it is difficult and from a 
methodical point of view incorrect to try to recognize and 
build the FSM hierarchy up out of a fa t  description. 
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Figure 5. Functional decomposed Moore machine. 
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Figure 6. Parallel and cascade decomposition. 

The functional decomposition on the other hand, provides 
a separation into PLA's which have a different structure. 
For example the output function has a much larger number 
of output variables than the transition function, and the 
reverse is true for the number of input variables. 
Therefore, by implementing both FSM functions in 
separate PLA's, each individual PLA can be minimized 
with its own strategy. This provides a larger optimization 
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potential than the previous decomposition alternatives at 
this decision level. However, functional decomposition 
applied without additional optimization does not always 
minimize the configuration. That is caused by the area of 
the input decoder plane of the output PLA. However, due 
to optimization methods discussed in following sections, 
the functional decomposition will nearly always be 
smaller as the single PLA configuration. 

The selection of segmentation or functional decomposition 
is now based on the aspect ratio of the floorplan compared 
to that of the single PLA. If it differs, and the floorplan 
area is larger than the single PLA, segmentation [9] is 
performed. Otherwise the functional decomposition is 
performed. For instruction set processor control, 
segmentation often occurs in case of RISC machines. For 
those machines a single PLA implementation is in general 
acceptable, from a size point of view. 

~ r a n s # ~  -2 
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Figure 7. Functional decomposed Mealy machine. 

Figure 7. shows the Mealy functional decomposition. The 
left PLA takes the inputs and the Mealy state codes and 
generates (Moore) transition codes which are input for the 
right PLA which generates the appropriate output and the 
Mealy feedback state code. Note that the transition codes 
arc equal to Moore state codes. Another functional 
decomposition of the Mealy FSM is possible, which is 
equal to the Moore decomposition of figure 5, extended 
with the inputs also supplied to the output PLA. This 
ahemative is much larger due to the presence of an extra 
input decoder in the output PLA. For that reason it is not 
considered. The next decision to be made is again a Moore 
or Mealy decision. Did the input to output delay differ for 
the single PLA, the functional decomposed machines have 
equal input-to-output delays in terms of clockphases 
(figures 5,7). But the Mealy machine has the smaller 
number of transitions which result in the smaller mmsition 
PLA. Therefore the Mealy machine prevails again. 

The decomposed configuration is again analysed on its 
suitability to implemem the control function. If the design 
constraints, e.g. floorplan and delay, are not fulfilled then 
floorplan driven decomposition steps are applied on both 
individual PLA's of this configuration. 

4.3. Floor#an driven decomposition steps 

This section discusses the decomposition steps applied on 
a functional decomposed FSM. In this stage it becomes 

necessary, not only to check the configuration against the 
floorplan, but also to let the floorplan drive the 
decomposition. Floorplauning, formerly mostly treated as 
a part of placement and routing, is becoming more and 
more incorporated in synthesis. Floorplanuing within 
synthesis reduces the placement and routing problem 
significantly. The transition and output function PLA's are 
decomposed separately with different algorithms because 
the functions they implement have different parameters. 

The decomposition is based on a few standard floorplans, 
which are designed such that they contain minimal wiring 
area. The basic floorplan area is divided into two sections 
as shown in figure 8. The output function PLA/ROM is 
always positioned vertically, so that the often very wide 
control line bus is kept as short as possible. This 
contributes to a minimal area consumption for wiring. 

output function transition function 

............ . . '1 ............... i ............ 

datapath 

Figure 8. Global floorplan. 

The last question is whether to decompose the output 
function or the transition function fLrSt. This is decided by 
checking which of both PLA's is the largest. The function 
belonging to that PLA is decomposed f'LrSt. This is mostly 
the output function. After this decomposition it is checked 
if a decomposition of the other FSM function is still 
needed. 

4.4. Output function decomposition 

A number of design ahematives are possible for the output 
function implementation. Among them are ROM or PLA 
structures to implement the output function in. Also a 
decision must be taken on encoding alternatives for the 
output variables (datapath control variables). The decision 
whether to apply a ROM or PLA structure depends on the 
parameters of the output function of the FSM. The most 
important difference between a ROM and a PLA is the 
complete decoder found in the ROM. This implies that the 
state code must be regular in case of a ROM. That reduces 
the freedom for state-assignment methods. Due to this 
regularity column multiplexers can be applied in a ROM 
structure, while the number of columns in a PLA is bound 
to one. 

Therefore the decision to apply a PLA or ROM structure 
is strictly based on the floorplan dimensions. In case the 
number of Mealy transitions (is Moore states) causes the 
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output PLA not to fit in the floorplan in the defined 
vertical way, the ROM structure is selected, for more than 
one column is needed to fit the structure into the fioorplan. 
Otherwise a PLA structure is selected to keep a larger 
freedom for state-assignment algorithms. On the other 
hand also segmentation [9] of the output function may 
result in a PLA configuration which fits the floorplan. But 
output function segmentation is not considered to be more 
effective than segmentation of the single PLA (section 
4.2) and therefore not incorporated at this design stage. 

4.4.1. Output encoding 

The encoding problem is to fred an optimum encoding 
level between a horizontal and a completely vertical 
encoding. A systematic way to find this optimum, based 
on the increase of delays and decrease of size is 
incorporated [11]. Omently this method is open towards 
state-assignments. Therefore only ROM column counts 
are allowed which are a power of 2. Other numbers of 
ROM columns would cause missing state codes in the 
address range and thus restrict the state encoding. Thus, 
the aspect ratio of the ROM is variable with a stepsize of 
4. For most technologies optimal aspect-ratio's for size 
and delay are found for aspect ratio's near one. Here the 
optimal aspect ratio of the ROM is defined as the one 
which fits best to the fioorplan area reserved for the output 
function. This fit is defined in terms of the absolute 
measures (1). 

(1) Floorplan-fit = I Yrom - Yflp I + t Xro m - Xfip I 

Another aspect concerns the different fioorplan variants 
for the ROM/PLA with output decoders. This because not 
every feasible floorplan leads to a near minimal wiring 
area. The floorplans incorporated are shown in figure 9. 
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Figure 9. Floorplans for large and small decoders. 

These two floorplans are in principle sufficient to allow a 
complete encoding range from horizontal to vertical. For 
low encoding levels small decoders are generated, which 
can be positioned in the area left free between the ROM 
and the datapath. Higher levels of encoding prohibit this 
positioning, because the decoders are large. For vertical 
encoding, the size of the decoder (nano-ROM) is in the 
order of magnitude as the micro-ROM itself. Therefore the 
second configuration in figure 9. is introduced. In this 
configuration the full height of the controlpath floorplan is 

available for the decoder(s). Different complexities of 
decoders are possible within both configurations. Due to 
the regularity of the codes used for encoding, the output 
decoding can also be performed by small ROM's with 
multiple columns instead of PLA's. That makes it possible 
to fit decoder ROM's of different word counts within one 
Y-dimension value. 

The algorithm [ 11] generates an encoding level for each of 
the decoder size levels. The task of the algorithm is to 
generate encoding levels, which fit to the fioorplan with a 
minimum of area loss and a maximum of size 
minimization. The encoding levels are created by a 
heuristic search for optimal combinations or clusters of 
control field decoders. The In'st encoding level above the 
horizontal encoding is the control field level. First the 
design parameters are computed for each control-field 
decoder. Then all other encoding levels are generated. A 
cluster is accepted by the algorithm ff the size gain of the 
cluster decoder is larger than the sum of the size gains of 
the individual field deoodcrs contained in the cluster. The 
optimal encoding level is then determined by the delay 
constraint. 

4.5. Transition function decomposition 

In case the transition PLA, after minimization, does not fit 
in the area reserved for it in the basic floorplan, it is 
decomposed. This section describes the decomposition of 
the transition function PLA. But first a minimization is 
discussed based on countable transitions. 

4.5.1. Countable transitions 

The application of a counter in functional decomposed 
FSM is studied extensively in [2]. However, Amarm's 
study is based largely on Moore type FSM's. For Mealy 
type FSM's he applied a local Mealy/Moore 
transformation. Thus, each Mealy state is expanded with 
local bits to address the output productterms in the output 
PLA from the different transitions. This transformation, 
however, is inefficient with respect to the number of 
countable transitions. That is due to the state locality of 
the Meaiy/Moore transformation performed, which keeps 
the number of countable codes limited to countable Mealy 
state codes. Due to the complete Mealy/Moore 
transformation performed in our system, we are not 
limited to countable Mealy state codes, but have countable 
Mealy transition codes which are equivalent to Moore 
state codes. Thus, the number of countable transitions is as 
high as the number of countable state codes in the 
equivalent Moore machine, while the number of 
transitions is significantly smaller. 

The minimization occurs because the countable transitions 
are removed from the transition PLA at the cost of one 
extra state-code to activate the counter. This code is 
generated by the PLA as default, in case no productterms 
are matched. The detection of the optimal collection of 
countable transitions is performed differently for both 
types of behavioural input. With the gateprogram type of 
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input selected, no special algorithm is needed, because the 
gateProgram is imperative and thus, when concise 
programmed without redundant branches, it specifies 
countable chains of Moore states. This makes detection of 
countable transition chains trivial. For the PLA type of 
input however, the numbering of states is undefined and 
therefore must be assumed 'random-like' and thus not 
optimal. State-chain detection algorithms as developed in 
[8] arc needed in this case. Currently a simple state-chain 
detection algorithm is implemented for this type of input. 

4.5.2. State distribution 

The need for decomposition of the transition function is 
also derived from the floorplan. First, a check is 
performed whether the transition PLA, already optimized 
for countable transitions, fits into the area reserved for the 
transition function in the floorplan. If it does, no 
decomposition is performed, and the final synthesis steps 
as state-assignment followed by logic minimization 
conclude the synthesis process. Otherwise, the transition 
PLA is split up into smaller PLA's, which are multiplexed 
to the next-address register (figure 10). Therefore the 
Mealy state code feedback from the output ROM/PLA is 
recoded by splitting it up in two separate codes as is 
shown in figure 10. The fn'st feedback controls the 
transition PLA multiplexer and the second feedback is 
used for transition selection within the PLA's. Together 
both codes represent the Mealy state code. The advantage 
of this is twofold, the delay of the transition function 
decreases and a better fit to the floorplan is derived. 

tr PLA2 ~i ~i Control 
- R O M  
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- i l l  
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Figure 10. Transition PLA decomposition. 

By widening the multiplexer more smaller transition 
PLA's occur, and in this way the transition PLA 
configuration is adapted to the floorplan area aspect-ratio. 
A constraint is that all transitions starting from a state 
must be kept together in one of the PLA's. This limits the 
widening of the multiplexer. In practice, however, this 
limit has no impact for the floorplan. 

Furthermore, this decomposition saves space in case that 
not all input variables are relevant to the transitions 
captured in a transition PLA. For instruction set processors 
this is the case if, for example, the address modes and the 
opcodes are coded in separate fields of the instruction 
format. Then for decoding the operation from the opcode 
(in case no address dependency exists) no other input 

variables are relevant. Thus, when the start transitions of 
the operations are collected in one PLA, without other 
transitions (a transition PLA with one Mealy state), other 
input variables can be removed from this transition PLA. 
This reduces the total AND-plane area. 

The actual decomposition is performed by a state 
distribution algorithm. This algorithm is incorporated to 
keep the numbers of productterms in the diverse transition 
PLA's about equal. This, because the numbers of 
transitions can differ largely between states. For example 
the state in which the operation selection or address mode 
selection is performed will be quite large (figure 2). It is 
evident that when a transition PLA contains transitions 
from just one state, it does not need feedback information 
to select the correct transition. The selection function is 
then performed completely by the multiplexer steered by 
the output PLA/ROM. Such transition PLA's without 
feedback inputs are called decoders. 

output p. output p. transition pad 

I ' I 1 
transition part 

Horizontal PLA's I Vertical PLA's 

Figure 11. Transition function floorp]ans. 

This algorithm performs the state distribution for each of 
both floorplans shown in figure 11, these differ in the 
direction of the PLA's. The distribution which has the best 
fit to its floorplan area is selected. First the algorithm 
estimates the number of transition PLA's based on the 
best fit in both dimensions. This estimation is based on the 
average number of productterms that the transition PLA's 
will contain. Hereafter the algorithm distributes the states 
over the transition PLA's in which it tries to keep the 
lengths of the PLA's about equal while it minimizes the 
AND-planes, by optimizing to the total area involved. The 
algorithm applies a greedy method which sorts the states 
according decreasing numbers of productterms. States 
which have a number of productterms nearly equal to that 
of the computed average number of productterms in one 
transition PLA are put aside. These states are implemented 
in separate transition PLA's. As mentioned 'single state' 
PLA's do not require feedback input which also saves 
area. Furthermore they axe also open for pipelining, which 
can be realized by addition of a register between the PLA 
and the multiplexer. After the state distribution is made for 
both floorplans, the configuration which fits its floorplan 
the best is selected and actually generated. 

4.6. Preview 

A preview utility is incorporated to trace and estimate 
possible floorplan aspect ratio's with the amounts of 
empty space contained in them. The goal of this preview is 
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to supply the user with information of what he can expect 
from the first two decomposition phases in terms of aspect 
ratio's and sizes. This is useful because these first 
decomposition phases have the largest impact on the 
design. The user can detect if these steps are sufficient to 
fulfil the design constraints. Then he can choose the 
solution closest to the design constraints and put the 
decomposition to work. The decomposition result may, of 
corse, differ from the preview. The preview utility takes a 
range of feasible ROM column numbers into account and 
computes also a feasible range of transition PLA numbers. 
The transition PLA range is limited by the state with the 
largest number of transitions leaving it. The area savings 
due to input saving on transition PLA's are not estimated. 
Also the impact of output encoding levels is not included. 
Currently the preview utility is being expanded with the 
estimation of delay's involved in both clock phases. The 
decision whether the floorplan aspect-ratio or the delay is 
most important for the design is left to the user. 

5. Results 

In this section the results are given for some example 
machines implemented with this method. Table 1 shows 
the parameters of the three example machines. Machine 1 
is a RISC-like instruction set processor with 5 address 
modes and 14 operations. Table 1 shows that the 
difference between the Mealy and Moore transition count 
is large, due to the 'fork' constructs. Machines 2 and 3 are 
more general FSM's. At this moment the delay parameter 
is implemented in the output encoding only and therefore 
left out of this comparison. The optimization is performed 
towards the floorplan and size. First a preview was 
performed. The preview data are found in table 2. These 
data are based on a given floorplan aspect ratio range 
between 2.0 and 0.2, with a maximum empty space of 
10% for machines 2 and 3 and 20% for machine 1. Based 
on this data the designer took a choice for the floorplan. 
The aspect ratio in the second column of each machine in 
table 2 was chosen as target for the synthesizer. The 
parameters of the single PLA configuration are included in 
table 2 for comparison. 

Moore Mealy Moore Mealy 
tm. tm. ~. ~. ins outs 

exam1 281 91 67 50 12 25 
exarn2 226 115 96 48 7 19 
exam3 185 166 139 121 27 56 

Table 1. Parameters of example machines. 

X 
Y 

as,r 
emp 
col 
tr 
dir 

exam1 

1 2 

115 66 
41 82 
.36 1.2 
183 880 

2 1 
1 2 
V H 

exam2 

s 1 2 s 

65 128 76 51 
91 55 99 115 
1A .43 1.3 2.3 

161 645 
2 1 
2 3 
V H 

exam3 

1 2 3 s 

155 292 144 131 
139 72 152 161 
.90 .25 1.1 1.2 
684 163 1027 

1 2 1 
1 2 2 
V V H 

X = x-dimension of floorplan in PLA cells 
Y = y-dimension of floorplan in PLA cells 
as.r = aspect ratio of floorplan 
emp = empty space in floorplan 
col = columns of ROM 
tr = number of transition PLA's 
dir = direction of transition PLA's H(orizontal) or 

V(ertical) 

Table 2. Preview results and single PLA data. 

X 
Y 

as.r 
emp 
col 
tr 
dir 
ins 

exam1 exam;?, exam3 

70 
70 
1.0 
316 

1 
2 
H 

8/8 

79 
96 
1.2 
161 

1 
3 
H 

6/7/6 

264 
72 
.27 
764 

2 
2 
V 

18/16 

ins = number of input variables for each transition 
PLA 

Table 3. Synthesis results. 

Table 3 shows the actual implementation data, all 
machines were functionally decomposed and a counter 
was included. These results are without logic 
minimization. Also the number of inputs is shown for each 
transition PLA. For all three machines the synthesis 
generated the number of transition PLA's as estimated by 
the preview utility. In all cases the synthesizer did manage 
to reduce the amount of empty space within the floorplan. 
This is caused mainly by the reduction of the inputs for 
each of the separate transition PLA's. Especially for 
machine 3, the result of this input separation over the 
transition PLA's is large, from the total 27 inputs just 16 
inputs for PLA1 and 18 for PLA2 are needed. Also for 
machine 1 only 8 out of the 11 inputs are needed for each 
separate PLA. 
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6. Comparison to other systems 

Many controlpath synthesis methods are found in 
literature, but they are all restricted to the size 
minimization problem. The first methods are the 
microprogram development methods [12,13,14]. Those 
methods are based on a fixed the microarehitecture and 
focus completely on the problem of generating an optimal 
microprogram, which problem is quite different from the 
problem of generating the optimal microarchitecture. 
Comparison of different microarchitectures is not 
incorporated in those methods. The comparison of 
microarchitectures was done in [4] and proven to be 
useful, but no synthesis method was presented. 

A number of systems are based on PLA synthesis, with 
minimization techniques varying from state-assignment, 
PLA folding and PLA segmentation [2,3,8,9]. Floorplan or 
delay considerations are again not included. In [8] a 
system is described in which the state-assignment of [2] is 
combined with a method for minimizing the number of 
states by identifying state-sequences of which the 
differences in outputs can be decoded straight from the 
instruction code. In this system, however, the flexibility of 
the PLA configuration is determined completely by this 
size minimization and not on floorplan considerations. 

The current synthesis methods do perform useful 
opfimizations, but are not suited to generate the wide 
range of microarchitectures of todays microprocessors. Its 
ability to generate a wide range of microarchitectures 
together with the integration of floorplanning into the 
synthesis make stepwise decomposition suited to 
controlpath design. But stepwise decomposition inherits 
current optimization algorithms at those stages in the 
design were they do contribute to the design quality. 

7. Conclusions 

The stepwise decomposition method is more flexible 
towards floorplan and delay constraints than current 
controlpath synthesis methods. It is able to generate a 
range of microarchitectures determined by floorplan and 
delay constraints, beside the size minimization. The user is 
able to preview implementation estimations for the f'urst 
decomposition steps. This supplies information on the 
design space available for the controlpath under synthesis. 
The method is currently able to synthesize PLA or ROM 
based output functions, combined with an optimal 
encoding in the range of horizontal to vertical encoding 
[11]. Also the transition function is decomposed to fit the 
floorplan and reduce delay. At this moment not any 
desired floorplan aspect ratio can be generated. Also the 
forward estimation of minimization results, of 
minimizations performed after decomposition of the 
components, needs more attention. Therefore research is 
planned on enhancement of the decomposition steps. Also 
methods for state-minimization by static instruction 
decoding as described in [4,8] are being developed. These 

developments will enhance the flexibility of the synthesis 
and enlarge the design space for the processed 
controlpaths. 
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