
North-Holland
Microprocessing and Microprogrammlng 30 (1990) 117-124 117

Stepwise Decomposition in Controlpath Synthesis

A.J.W.M. ten Berg

Department of Computer Science, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

A method is presented for the synthesis of the microarchitecture of controlpaths. This method is called
stepwise decomposition. It focuses primarily on eontrolpaths of instruction set processors, however it is
also applicable for more general Finite State Machine synthesis. Many of the current controlpath
synthesis algorithms are based on a fixed microarchitecturc, and an optimization of that
microarchitecture. This stcpwise decomposition method is able to synthesize microarchitectures in a
range from a single PLA to multiple PLA/ROM configurations and optionally further down to hardwired,
which makes it more flexible and better suited to a wider range of controlpaths than current synthesis
methods. A sequence of decomposition steps, from coarse to detailed, is performed on the design to
move it to the area of the design space where all constraints on space, floorplan and delay are satisfied.
The method is currently implemented in APL.

1. Introduction

Many of todays high level controlpath synthesis systems
are restricted to a fixed target microarchitecture, mostly a
PLA configuration or a microprogrammed ROM.
Furthermore, in most systems only the size parameter of
the design is minimized, as in logic synthesis [1] and in
state-assignment algorithms [2,3]. Comparisons based on
benchmarks stress often only the number of literals or
productterms. Therefore the generated designs will not
always satisfy all the constraints which do exist in a 'real'
design environment. Especially the floorplun related
design parameters and delay are not taken into account in
those synthesis systems. Controlpath synthesis by stepwise
decomposition is developed for application in a 'real'
design environment, with fioorplan and delay design
consu'aints. It is directed specifically to the design of
controlpaths for instruction set processors. In that
application the complexity of control spans a wide range,
from very limited in RISC, up to very complicated for
CISC processors. For this wide range current synthesis
methods are of limited use. The stepwise decomposition
method however is able to generate different
microarchitecmres to cover this wide range of controlpath
complexities. This is realized by a sequence of
decomposition steps, together with floorplan directed
synthesis. The microarchitecturc is determined by the
design constraints. Furthermore this method assures
inherently the highest possible design regularity, which
design parameter is recogniz~ important [4] for the
design quality. First, the limits adopted are discussed in
section 2, then the method itself is considered in section 3,
followed by a description of the most important
decomposition steps currently implemented in section 4.
The last sections contain the results and conclusions.

2. Design model

First, a framework of constraints and assumptions within
which the synthesis performs its task is to be def'med. This
framework is called a design model. This design model
limits the large number of freedom degrees in the design
while retaining a high design flexibility. Thus, the
computational complexity is kept manageable. The
general part is discussed in this section, parts specific for
one decomposition step arc found throughout the other
sections.
First some definitions. A microword is the word available
at one address in the microprogrammed ROM. This
microword is divided into control fields. Each control field
corresponds with exactly one functional unit in the
datapath as shown in figure 1. A control field contains
microoperations for its particular datapath functional unit
only.

microword[f'ieldl I field2 I f~eu3

datapath[,, unit 1

I . . I ..]

t
Figure 1. Control fields related to datapath units.

The wiring area in the controlpath is kept minimal by
ordering the control fields in the microword equal to the
ordering of the datapath functional units in the layout.
Especially for complex datapaths with a large number of
control lines, this saves much wiring area. This ordering

118 A.J.W.M. ten Berg / Stepwise decomposition in controlpath synthesis

can also be applied for the individual control lines within
each control field. However, in case of encoded control
fields the ordering of control variables within a control
field is hidden by the decoders and thus irrelevant. But,
because our synthesizer is able to generate horizontal as
well as encoded implementations, the ordering of all
control variables in the microword is kept equal to the
layout ordering of control terminals.

I
interrupt I
handling

_ _ J

I
I

immed.
instructions

b r ~

instn

I I
handlinghalt I instruction I fetch & decode

I

I I

I I I

fetch

I I io..oo H execute 1 execute n
I I

Figure 2. Typical state-graph for instruction set processor.

Furthermore a general structure is assumed for the state-
graph of control function which is shown in figure 2. This
structure is typical for instruction set processors [5]. The
figure shows that state sequences are shared among
instructions in principle [5,6]. For example state sequences
needed for operand addressing are shared among
instructions. Another typical structure in the state-graph
are the few large 'fork' constructions, where selections are
made between the different operations or address modes.
The implications of this transition structure for the
micmarchitecture are made clear in the following sections.

decomposition step (figure 3). This separation of design
analysis phases and decomposition steps contributes to a
structured and comprehensive design method.

behaviour
transform 1

. ready

decomposition~ iI level 1
level I J alternatives

: ready

d e c o m p o s i t i o n ~ level 2
level 2) I altematives

1
[

decomposed RTL description

Figure 3. Decomposition decision flow.

Another advantage of stepwise decomposition is the
inherent high regularity of the generated designs. When a
design fits its constraints it is not decomposed needlessly
into smaller components. The importance of a high design
regularity was recognized already in [4]. The fewer
different designed components and the larger the
repetition of each of those, the more regular a design is
called. A high design regularity improves the
predictability of the final layout parameters in the
synthesis phase. At last, by stepwise decomposition the
computational complexity of the synthesis is kept limited,
for each individual decomposition step does not have to
consider the complete bulk of design details.

3. Design refinement by stepwise decomposition

The principle of design refinement by a sequence of
decomposition steps is feasible from several points of
view. In contrast with previous decomposition methods it
incorporates several decomposition levels or decision
levels as shown in figure 3. This prevents that all design
parameters have to be considered together at one decision
level. By stepwise decomposition each design parameter is
considered at the decomposition or decision level were it
has most impact. A selection between alternatives in each
decomposition step makes it possible to generate different
microarchitecmres to adhere the design to its constraints.
This in contrast with other synthesis methods, which are
mostly bound to one freed microarchitecture. Such
methods are not very flexible towards for example the
floorplan area constraints. The decision whether or not to
perform a next decomposition step is made before and
independent of the comparison of the alternatives in the

3.1. Behavioural description transformation

The first action of the synthesizer is to compile a
behavioural description of the controlpath into a transition
table. This behaviour can be specified in either a
gateprogram format [7] or in a PLA format. The behaviour
compiler replaces the control constructs in the
gateprogram, typical for sequential programming, by
completely specified conditional transitions. Initially a
Moore machine type transition table is constructed. But
the Mealy representation of the controlpath Finite State
Machine is also generated and used together with the
Moore representation throughout the decomposition
process. The Moore state codes are applied as unique
labels for the Mealy machine's transitions, which are
required for the decomposition of Mealy machines.

AJ.W.M. ten Berg / Stepwlse decomposition in controlpath synthesis 119

4. Decomposition decision sequence

In this section the individual decomposition steps are
discussed together with the algorithms involved. First we
give a short overview of the decomposition steps
incorporated in the current implementation of the method.
Then, in the next sub-sections the individual steps are
explained into. detail. The stepwise decomposition
principle implies a simple root configuration. The simplest
configuration possible is a PLA with state feedback
register. This configuration is then analysed with regard to
the design constralms. If these constraints are not satisfied
the root configuration is decomposed into a two PLA
configuration to which a counter is added ff useful. One
PLA implements the F'mite State Machine's (FSM)
transition function and the other PLA implements the
FSM's output function. Again the configuration is
analysed on fulfilling the design constraints. If not, then
floorplan driven decomposition steps are applied in which
both PLA's of the configuration are independently
decomposed into smaller PLA' s and/or ROM' s.

4.1. Root implementation

The least complex implementation contains one PLA with
a state feedback register (figure 4). The alternatives at this
level are a Mealy or Moore type FSM implementation. For
several reasons the Mealy implementation is selected. In
the first place, it is due to the large 'join'/'fork' constructs
found in direct sequence in the control flow graphs typical
for instruction set processors (figure 2). Therefore, the
number of Mealy transitions, and thus the number of PLA
product-terms, is much smaller than the number of Moore
transitions. Secondly, the conceptual input-to-output delay
is twice as large for a Moore single PLA as for the Mealy
single PLA. By this, the Mealy implementation is
favoured.

inputs l PLA

- - g
outputs

Figure 4. The root implementation.

This implementation is then checked with the floorplan, in
aspect ratio as well as total size. Also the estimated PLA
delay is compared with the desired delay. In both
comparisons an estimated minimization impact of state-
assignment optimization is taken into account. If one of
these checks fail, the synthesizer decides to decompose.
Otherwise state-assignment [3] is performed followed by
logic minimization which completes the design.

4.2. Function separation

In case the single PLA implementation does not fit the
design constraints, the fwst analysis phase decides to
perform the first decomposition step. At this level we can
apply several types of decomposition. The selection is
based on estimations of the alternatives. Two alternatives
are possible, in the first place a functional decomposition
in which the two FSM functions are separated and
implemented in separate PLA's as found in for example
[2,8] (figure 5). The second alternative is a decomposition
in parallel [9] or cascade connected FSM's (figure 6). The
parallel decomposition or segmentation is based on
separating the output variables into groups in such a way
that each group has fewer product-term as the original
PLA. However this will only provide optimization in case
several independent groups of output variables (for
example caused by different datapaths) exist. The
decomposition into cascade FSM's is shown to be difficult
[10] and furthermore we view this stage in the synthesis
not as the appropriate one to perform this type of
decomposition. Instead the FSM hierarchy should already
be apparent in the behaviooral description, which is the
correct place for it. This because information is lost when
a hierarchy is flattened and thus it is difficult and from a
methodical point of view incorrect to try to recognize and
build the FSM hierarchy up out of a fa t description.

inl~JtS I next s t a t ~ L ~

o t ~ Pt~

tst=er- ::=~-' ~ " ~ s -'

Figure 5. Functional decomposed Moore machine.

FSM 1 FSM 1

in l ~utputs

FSM 2 FSM 2

cascade parallel

Figure 6. Parallel and cascade decomposition.

The functional decomposition on the other hand, provides
a separation into PLA's which have a different structure.
For example the output function has a much larger number
of output variables than the transition function, and the
reverse is true for the number of input variables.
Therefore, by implementing both FSM functions in
separate PLA's, each individual PLA can be minimized
with its own strategy. This provides a larger optimization

120 AJ.W.M. ten Berg / Stepwise decomposition in controlpath synthesis

potential than the previous decomposition alternatives at
this decision level. However, functional decomposition
applied without additional optimization does not always
minimize the configuration. That is caused by the area of
the input decoder plane of the output PLA. However, due
to optimization methods discussed in following sections,
the functional decomposition will nearly always be
smaller as the single PLA configuration.

The selection of segmentation or functional decomposition
is now based on the aspect ratio of the floorplan compared
to that of the single PLA. If it differs, and the floorplan
area is larger than the single PLA, segmentation [9] is
performed. Otherwise the functional decomposition is
performed. For instruction set processor control,
segmentation often occurs in case of RISC machines. For
those machines a single PLA implementation is in general
acceptable, from a size point of view.

~ r a n s # ~ -2

t state I I ~outputs

Figure 7. Functional decomposed Mealy machine.

Figure 7. shows the Mealy functional decomposition. The
left PLA takes the inputs and the Mealy state codes and
generates (Moore) transition codes which are input for the
right PLA which generates the appropriate output and the
Mealy feedback state code. Note that the transition codes
arc equal to Moore state codes. Another functional
decomposition of the Mealy FSM is possible, which is
equal to the Moore decomposition of figure 5, extended
with the inputs also supplied to the output PLA. This
ahemative is much larger due to the presence of an extra
input decoder in the output PLA. For that reason it is not
considered. The next decision to be made is again a Moore
or Mealy decision. Did the input to output delay differ for
the single PLA, the functional decomposed machines have
equal input-to-output delays in terms of clockphases
(figures 5,7). But the Mealy machine has the smaller
number of transitions which result in the smaller mmsition
PLA. Therefore the Mealy machine prevails again.

The decomposed configuration is again analysed on its
suitability to implemem the control function. If the design
constraints, e.g. floorplan and delay, are not fulfilled then
floorplan driven decomposition steps are applied on both
individual PLA's of this configuration.

4.3. Floor#an driven decomposition steps

This section discusses the decomposition steps applied on
a functional decomposed FSM. In this stage it becomes

necessary, not only to check the configuration against the
floorplan, but also to let the floorplan drive the
decomposition. Floorplauning, formerly mostly treated as
a part of placement and routing, is becoming more and
more incorporated in synthesis. Floorplanuing within
synthesis reduces the placement and routing problem
significantly. The transition and output function PLA's are
decomposed separately with different algorithms because
the functions they implement have different parameters.

The decomposition is based on a few standard floorplans,
which are designed such that they contain minimal wiring
area. The basic floorplan area is divided into two sections
as shown in figure 8. The output function PLA/ROM is
always positioned vertically, so that the often very wide
control line bus is kept as short as possible. This
contributes to a minimal area consumption for wiring.

output function transition function

............ . . '1 i

datapath

Figure 8. Global floorplan.

The last question is whether to decompose the output
function or the transition function fLrSt. This is decided by
checking which of both PLA's is the largest. The function
belonging to that PLA is decomposed f'LrSt. This is mostly
the output function. After this decomposition it is checked
if a decomposition of the other FSM function is still
needed.

4.4. Output function decomposition

A number of design ahematives are possible for the output
function implementation. Among them are ROM or PLA
structures to implement the output function in. Also a
decision must be taken on encoding alternatives for the
output variables (datapath control variables). The decision
whether to apply a ROM or PLA structure depends on the
parameters of the output function of the FSM. The most
important difference between a ROM and a PLA is the
complete decoder found in the ROM. This implies that the
state code must be regular in case of a ROM. That reduces
the freedom for state-assignment methods. Due to this
regularity column multiplexers can be applied in a ROM
structure, while the number of columns in a PLA is bound
to one.

Therefore the decision to apply a PLA or ROM structure
is strictly based on the floorplan dimensions. In case the
number of Mealy transitions (is Moore states) causes the

Ad.W.M. ten Berg / Stepwise decomposition in controlpath synthesis 121

output PLA not to fit in the floorplan in the defined
vertical way, the ROM structure is selected, for more than
one column is needed to fit the structure into the fioorplan.
Otherwise a PLA structure is selected to keep a larger
freedom for state-assignment algorithms. On the other
hand also segmentation [9] of the output function may
result in a PLA configuration which fits the floorplan. But
output function segmentation is not considered to be more
effective than segmentation of the single PLA (section
4.2) and therefore not incorporated at this design stage.

4.4.1. Output encoding

The encoding problem is to fred an optimum encoding
level between a horizontal and a completely vertical
encoding. A systematic way to find this optimum, based
on the increase of delays and decrease of size is
incorporated [11]. Omently this method is open towards
state-assignments. Therefore only ROM column counts
are allowed which are a power of 2. Other numbers of
ROM columns would cause missing state codes in the
address range and thus restrict the state encoding. Thus,
the aspect ratio of the ROM is variable with a stepsize of
4. For most technologies optimal aspect-ratio's for size
and delay are found for aspect ratio's near one. Here the
optimal aspect ratio of the ROM is defined as the one
which fits best to the fioorplan area reserved for the output
function. This fit is defined in terms of the absolute
measures (1).

(1) Floorplan-fit = I Yrom - Yflp I + t Xro m - Xfip I

Another aspect concerns the different fioorplan variants
for the ROM/PLA with output decoders. This because not
every feasible floorplan leads to a near minimal wiring
area. The floorplans incorporated are shown in figure 9.

 n,,o'i.J I
rom l ' l

| 1

datapath

........................ i .

datapath

Figure 9. Floorplans for large and small decoders.

These two floorplans are in principle sufficient to allow a
complete encoding range from horizontal to vertical. For
low encoding levels small decoders are generated, which
can be positioned in the area left free between the ROM
and the datapath. Higher levels of encoding prohibit this
positioning, because the decoders are large. For vertical
encoding, the size of the decoder (nano-ROM) is in the
order of magnitude as the micro-ROM itself. Therefore the
second configuration in figure 9. is introduced. In this
configuration the full height of the controlpath floorplan is

available for the decoder(s). Different complexities of
decoders are possible within both configurations. Due to
the regularity of the codes used for encoding, the output
decoding can also be performed by small ROM's with
multiple columns instead of PLA's. That makes it possible
to fit decoder ROM's of different word counts within one
Y-dimension value.

The algorithm [11] generates an encoding level for each of
the decoder size levels. The task of the algorithm is to
generate encoding levels, which fit to the fioorplan with a
minimum of area loss and a maximum of size
minimization. The encoding levels are created by a
heuristic search for optimal combinations or clusters of
control field decoders. The In'st encoding level above the
horizontal encoding is the control field level. First the
design parameters are computed for each control-field
decoder. Then all other encoding levels are generated. A
cluster is accepted by the algorithm ff the size gain of the
cluster decoder is larger than the sum of the size gains of
the individual field deoodcrs contained in the cluster. The
optimal encoding level is then determined by the delay
constraint.

4.5. Transition function decomposition

In case the transition PLA, after minimization, does not fit
in the area reserved for it in the basic floorplan, it is
decomposed. This section describes the decomposition of
the transition function PLA. But first a minimization is
discussed based on countable transitions.

4.5.1. Countable transitions

The application of a counter in functional decomposed
FSM is studied extensively in [2]. However, Amarm's
study is based largely on Moore type FSM's. For Mealy
type FSM's he applied a local Mealy/Moore
transformation. Thus, each Mealy state is expanded with
local bits to address the output productterms in the output
PLA from the different transitions. This transformation,
however, is inefficient with respect to the number of
countable transitions. That is due to the state locality of
the Meaiy/Moore transformation performed, which keeps
the number of countable codes limited to countable Mealy
state codes. Due to the complete Mealy/Moore
transformation performed in our system, we are not
limited to countable Mealy state codes, but have countable
Mealy transition codes which are equivalent to Moore
state codes. Thus, the number of countable transitions is as
high as the number of countable state codes in the
equivalent Moore machine, while the number of
transitions is significantly smaller.

The minimization occurs because the countable transitions
are removed from the transition PLA at the cost of one
extra state-code to activate the counter. This code is
generated by the PLA as default, in case no productterms
are matched. The detection of the optimal collection of
countable transitions is performed differently for both
types of behavioural input. With the gateprogram type of

122 A.J.W.M. ten Berg / Stepwise decomposition in controlpath synthesis

input selected, no special algorithm is needed, because the
gateProgram is imperative and thus, when concise
programmed without redundant branches, it specifies
countable chains of Moore states. This makes detection of
countable transition chains trivial. For the PLA type of
input however, the numbering of states is undefined and
therefore must be assumed 'random-like' and thus not
optimal. State-chain detection algorithms as developed in
[8] arc needed in this case. Currently a simple state-chain
detection algorithm is implemented for this type of input.

4.5.2. State distribution

The need for decomposition of the transition function is
also derived from the floorplan. First, a check is
performed whether the transition PLA, already optimized
for countable transitions, fits into the area reserved for the
transition function in the floorplan. If it does, no
decomposition is performed, and the final synthesis steps
as state-assignment followed by logic minimization
conclude the synthesis process. Otherwise, the transition
PLA is split up into smaller PLA's, which are multiplexed
to the next-address register (figure 10). Therefore the
Mealy state code feedback from the output ROM/PLA is
recoded by splitting it up in two separate codes as is
shown in figure 10. The fn'st feedback controls the
transition PLA multiplexer and the second feedback is
used for transition selection within the PLA's. Together
both codes represent the Mealy state code. The advantage
of this is twofold, the delay of the transition function
decreases and a better fit to the floorplan is derived.

tr PLA2 ~i ~i Control
- R O M

i . i
tr PLA3 i ! i

- i l l
outputs

Figure 10. Transition PLA decomposition.

By widening the multiplexer more smaller transition
PLA's occur, and in this way the transition PLA
configuration is adapted to the floorplan area aspect-ratio.
A constraint is that all transitions starting from a state
must be kept together in one of the PLA's. This limits the
widening of the multiplexer. In practice, however, this
limit has no impact for the floorplan.

Furthermore, this decomposition saves space in case that
not all input variables are relevant to the transitions
captured in a transition PLA. For instruction set processors
this is the case if, for example, the address modes and the
opcodes are coded in separate fields of the instruction
format. Then for decoding the operation from the opcode
(in case no address dependency exists) no other input

variables are relevant. Thus, when the start transitions of
the operations are collected in one PLA, without other
transitions (a transition PLA with one Mealy state), other
input variables can be removed from this transition PLA.
This reduces the total AND-plane area.

The actual decomposition is performed by a state
distribution algorithm. This algorithm is incorporated to
keep the numbers of productterms in the diverse transition
PLA's about equal. This, because the numbers of
transitions can differ largely between states. For example
the state in which the operation selection or address mode
selection is performed will be quite large (figure 2). It is
evident that when a transition PLA contains transitions
from just one state, it does not need feedback information
to select the correct transition. The selection function is
then performed completely by the multiplexer steered by
the output PLA/ROM. Such transition PLA's without
feedback inputs are called decoders.

output p. output p. transition pad

I ' I 1
transition part

Horizontal PLA's I Vertical PLA's

Figure 11. Transition function floorp]ans.

This algorithm performs the state distribution for each of
both floorplans shown in figure 11, these differ in the
direction of the PLA's. The distribution which has the best
fit to its floorplan area is selected. First the algorithm
estimates the number of transition PLA's based on the
best fit in both dimensions. This estimation is based on the
average number of productterms that the transition PLA's
will contain. Hereafter the algorithm distributes the states
over the transition PLA's in which it tries to keep the
lengths of the PLA's about equal while it minimizes the
AND-planes, by optimizing to the total area involved. The
algorithm applies a greedy method which sorts the states
according decreasing numbers of productterms. States
which have a number of productterms nearly equal to that
of the computed average number of productterms in one
transition PLA are put aside. These states are implemented
in separate transition PLA's. As mentioned 'single state'
PLA's do not require feedback input which also saves
area. Furthermore they axe also open for pipelining, which
can be realized by addition of a register between the PLA
and the multiplexer. After the state distribution is made for
both floorplans, the configuration which fits its floorplan
the best is selected and actually generated.

4.6. Preview

A preview utility is incorporated to trace and estimate
possible floorplan aspect ratio's with the amounts of
empty space contained in them. The goal of this preview is

A.J.W.M. ten Berg / Stepwise decomposition in controlpath synthesis 123

to supply the user with information of what he can expect
from the first two decomposition phases in terms of aspect
ratio's and sizes. This is useful because these first
decomposition phases have the largest impact on the
design. The user can detect if these steps are sufficient to
fulfil the design constraints. Then he can choose the
solution closest to the design constraints and put the
decomposition to work. The decomposition result may, of
corse, differ from the preview. The preview utility takes a
range of feasible ROM column numbers into account and
computes also a feasible range of transition PLA numbers.
The transition PLA range is limited by the state with the
largest number of transitions leaving it. The area savings
due to input saving on transition PLA's are not estimated.
Also the impact of output encoding levels is not included.
Currently the preview utility is being expanded with the
estimation of delay's involved in both clock phases. The
decision whether the floorplan aspect-ratio or the delay is
most important for the design is left to the user.

5. Results

In this section the results are given for some example
machines implemented with this method. Table 1 shows
the parameters of the three example machines. Machine 1
is a RISC-like instruction set processor with 5 address
modes and 14 operations. Table 1 shows that the
difference between the Mealy and Moore transition count
is large, due to the 'fork' constructs. Machines 2 and 3 are
more general FSM's. At this moment the delay parameter
is implemented in the output encoding only and therefore
left out of this comparison. The optimization is performed
towards the floorplan and size. First a preview was
performed. The preview data are found in table 2. These
data are based on a given floorplan aspect ratio range
between 2.0 and 0.2, with a maximum empty space of
10% for machines 2 and 3 and 20% for machine 1. Based
on this data the designer took a choice for the floorplan.
The aspect ratio in the second column of each machine in
table 2 was chosen as target for the synthesizer. The
parameters of the single PLA configuration are included in
table 2 for comparison.

Moore Mealy Moore Mealy
tm. tm. ~. ~. ins outs

exam1 281 91 67 50 12 25
exarn2 226 115 96 48 7 19
exam3 185 166 139 121 27 56

Table 1. Parameters of example machines.

X
Y

as,r
emp
col
tr
dir

exam1

1 2

115 66
41 82
.36 1.2
183 880

2 1
1 2
V H

exam2

s 1 2 s

65 128 76 51
91 55 99 115
1A .43 1.3 2.3

161 645
2 1
2 3
V H

exam3

1 2 3 s

155 292 144 131
139 72 152 161
.90 .25 1.1 1.2
684 163 1027

1 2 1
1 2 2
V V H

X = x-dimension of floorplan in PLA cells
Y = y-dimension of floorplan in PLA cells
as.r = aspect ratio of floorplan
emp = empty space in floorplan
col = columns of ROM
tr = number of transition PLA's
dir = direction of transition PLA's H(orizontal) or

V(ertical)

Table 2. Preview results and single PLA data.

X
Y

as.r
emp
col
tr
dir
ins

exam1 exam;?, exam3

70
70
1.0
316

1
2
H

8/8

79
96
1.2
161

1
3
H

6/7/6

264
72
.27
764

2
2
V

18/16

ins = number of input variables for each transition
PLA

Table 3. Synthesis results.

Table 3 shows the actual implementation data, all
machines were functionally decomposed and a counter
was included. These results are without logic
minimization. Also the number of inputs is shown for each
transition PLA. For all three machines the synthesis
generated the number of transition PLA's as estimated by
the preview utility. In all cases the synthesizer did manage
to reduce the amount of empty space within the floorplan.
This is caused mainly by the reduction of the inputs for
each of the separate transition PLA's. Especially for
machine 3, the result of this input separation over the
transition PLA's is large, from the total 27 inputs just 16
inputs for PLA1 and 18 for PLA2 are needed. Also for
machine 1 only 8 out of the 11 inputs are needed for each
separate PLA.

124 A.J.W.M. ten Berg / Stepwise decomposition in controlpath synthesis

6. Comparison to other systems

Many controlpath synthesis methods are found in
literature, but they are all restricted to the size
minimization problem. The first methods are the
microprogram development methods [12,13,14]. Those
methods are based on a fixed the microarehitecture and
focus completely on the problem of generating an optimal
microprogram, which problem is quite different from the
problem of generating the optimal microarchitecture.
Comparison of different microarchitectures is not
incorporated in those methods. The comparison of
microarchitectures was done in [4] and proven to be
useful, but no synthesis method was presented.

A number of systems are based on PLA synthesis, with
minimization techniques varying from state-assignment,
PLA folding and PLA segmentation [2,3,8,9]. Floorplan or
delay considerations are again not included. In [8] a
system is described in which the state-assignment of [2] is
combined with a method for minimizing the number of
states by identifying state-sequences of which the
differences in outputs can be decoded straight from the
instruction code. In this system, however, the flexibility of
the PLA configuration is determined completely by this
size minimization and not on floorplan considerations.

The current synthesis methods do perform useful
opfimizations, but are not suited to generate the wide
range of microarchitectures of todays microprocessors. Its
ability to generate a wide range of microarchitectures
together with the integration of floorplanning into the
synthesis make stepwise decomposition suited to
controlpath design. But stepwise decomposition inherits
current optimization algorithms at those stages in the
design were they do contribute to the design quality.

7. Conclusions

The stepwise decomposition method is more flexible
towards floorplan and delay constraints than current
controlpath synthesis methods. It is able to generate a
range of microarchitectures determined by floorplan and
delay constraints, beside the size minimization. The user is
able to preview implementation estimations for the f'urst
decomposition steps. This supplies information on the
design space available for the controlpath under synthesis.
The method is currently able to synthesize PLA or ROM
based output functions, combined with an optimal
encoding in the range of horizontal to vertical encoding
[11]. Also the transition function is decomposed to fit the
floorplan and reduce delay. At this moment not any
desired floorplan aspect ratio can be generated. Also the
forward estimation of minimization results, of
minimizations performed after decomposition of the
components, needs more attention. Therefore research is
planned on enhancement of the decomposition steps. Also
methods for state-minimization by static instruction
decoding as described in [4,8] are being developed. These

developments will enhance the flexibility of the synthesis
and enlarge the design space for the processed
controlpaths.

References

[1] Brayton, R.K., Algorithms for multi-level logic
synthesis and optimization, in: DeMicheli, G. and
Sangiovanni-Vincentelli, A. (Eds.), Design Systems
for VLSI circuits (Nyhoff, 1987) pp. 197-248.

[2] Amann, R., Algorithmische entwurfsverfahren fuer
kombinierte pla/rom-steuerwerke unter verwendung
van zaehlern, Dissertation, (VDI Verlag,
Duesseldorf, 1987).

[3] DeMicheli, G., Optimal State Assignment for Finite
State Machines, IEEE Trans. Comp. Aided Design,
vol. CAD-4, (1985) pp. 269-284.

[4] Obrebska, M., Efficiency and Performance
Comparison of Different Design Methodologies for
Control Parts of Microprocessors, Microprocessing
and Microprogramming 10, (1982) pp.163-178.

[5[Leveugle, R. and Soueidan, M., Design of an
Appplication specific Microprocessor, in: Saucier,
G. and McLcllan, P.M. (Eds.), Logic and
Architecture Synthesis for Silicon Compilers (North-
Holland, Amsterdam, 1989), pp.255-268.

[6] Stfitter, S. and Tredennick, N., Microprogrammed
Implementation of a Single Chip Microprocessor,
Proceedings of the 1 lth Annual Micropmgramming
Workshop., (1978), pp. 8-16.

[7] Blaauw, G.A., Digital System Implementation,
(Prentice-Hall, 1976).

[8] Mahler, H. et. al., Processor Control Part Synthesis
Using Effective Partitioning Algorithms,
Microprocessing and Microprogramming 23 (1988)
pp. 33-36.

[9] Grass, W., A Synthesis System for PLA-Based
Programmable Hardware, Microprocessing and
Microprogramming 12 (1983) pp. 15-31.

[10] Hartmanis, J. and Stearns, R.E., Algebraic Structure
Theory of Seqential Machines, (Prentice Hall, 1966).

[11] Berg, A.J.W.M. ten, Floorplan driven Controlpath
Synthesis, in: Veen, J.P. (ed.), Proceedings of the
second Symposium on Design Methodology,
(ProRisc (STW), Dalfsen, april 1990), pp. 67-70.

[12] Gessner, J. et. al., Synthesis of Control Units in a
Design Environment for Chip Architecture,
Microprocessing and Microprogramming 27 (1989)
pp. 465-472.

[13] Sheraga, R.J. and Gieser, J.L., Experiments in
Automatic Microcode Generation, IEEE Trans. on
Computers (vol c-32, no.6, 1983) pp. 557-569.

[14] Davidson, S. et. al., Some Experiments in Local
Microcode Compaction for Horizontal Machines,
IEEE Trans. on Computers (vol. c-30 no.7 1981) pp.
460-477.

