
MASCOT: Microarchitecture 
synthesis of control paths 

A J W M ten Berg 

This paper presents MASCOT (MicroArchitecture Synthesis of 
ConTrol paths). This synthesis system constructs the optimal 
microarchitecture for a control path of an instruction set processor. 
Input to the system is the behavioural specification of a control 
path. This specification is in finite state machine form which is 
mapped initially onto a single programmed logic array (PLA) 
microarchitecture. The synthesis strategy then applies a sequence 
of decompositions on this initial microarchitecture. This strategy 
follows a decision scheme until all design objectives are met. It 
transforms the initial microarchitecture into a complex micro- 
architecture of several PLAs and ROMs. Where it is impossible to 
meet the design objectives, the system constructs a micro- 
architecture which comes as close as possible to given design 
objectives. Design objectives are allowed on floorplan dimensions 
'and delay. Our strategy integrates a number of known optimiza- 
tion methods for specific microarchitectures. Therefore this synth- 
esis method explores a larger part of the design space than do 
other control path synthesis methods. Other methods are mostly 
bound to one microarchitecture which they optimize. Our system 
is not only very flexible in microarchitecture construction but also 
open for extension by other optimizations. 

Keywords: control structures, control design styles, logic design 

Most of today's control path synthesis systems are restricted 
to one target microarchitecture, mostly a programmed logic 
array (PLA) or microprogrammed microarchitecture. This 
application of standard microarchitectures, with only minor 
variations allowed, leaves large parts of the design space 
for control path implementations unexplored. Furthermore, 
most automated systems optimize the design with one 
objective only, mostly the design size. Logic synthesis 
systems 1'2 and systems for state-assignment 3-5 are exam- 
ples of such systems. Some systems 6 take delay into 
account, but a floorplanning objective is in general not 
included. A partial cause for such one-parameter optimi- 
zations may be found in the extensive use of benchmarks 
for comparison, as for example in Reference 7. For ease 
and clarity of comparison the competition stresses just one 
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design parameter, for example on the number of literals or 
product terms. For design methods which optimize to a 
collection of design parameters, however, such compar- 
isons are far more difficult to perform. This is because the 
user determines to which combination of design parameter 
values the system must optimize, instead of to a fixed entity 
as minimal size. Because industry does not need systems 
which are highly optimal for one design parameter, but 
requires a design balanced to a set of design parameters we 
developed a system which explores the design space for 
control paths and also incorporates several well known 
optimizations. Our system accepts floorplan and delay 
objectives and is optimized for the design of control paths 
of instruction set processors (ISP). Instruction set processors 
contain control functions which are largely independent of 
the data processing, as opposed to digital signal processors 
(DSP) where the data flow determines the control function. 
For the DSP data processing part a wide variety of synthesis 
methods already exists 8'9. MASCOT accepts a behavioural 
description which must be of the finite state machine (FSM) 
type and delivers a control path microarchitecture in a 
netlist type description with additional specifications for the 
personality matrices of the PLAs. MASCOT's strategy is a 
decomposition sequence, which is guided by floor- 
planning, delay and size evaluation. It starts with coarse 
grain decompositions which have an overall impact and 
ends up with fine grain decompositions which have an 
impact on details. This ensures the highest possible design 
regularity, a parameter recognized earlier 1° as an important 
measure for design quality. 

CONTROL PATH SYNTHESIS AND 
DECOMPOSITION 

In control path synthesis a number of design levels can be 
distinguished. Each has its specific function with respect to 
functionality and structure. These levels are: 

• FSM synthesis level 
• Microarchitecture or structure level 
• Logic level 
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Each level concentrates on different design aspects of 
control path implementation. The FSM level synthesis deals 
with the specification of minimal finite state machines out 
of the behavioural specification of the processor given in 
for example VHDL. This level includes decisions on 
whether or not to apply more interacting FSMs instead of a 
single FSM. Multiple FSM control can be profitable in cases 
of semi-distributed data processing. The FSM specification 
has a strong interaction with design choices for the data 
path implementation. The design at this level abstracts from 
the implementation structures available for FSMs. These are 
constructed at the next level of design, which we call the 
microarchitecture or structure level. This level does the 
design of an optimal configuration of PLAs, registers and 
multiplexers which implements the FSM specified at the 
previous level. Analysis of the functional structure in the 
FSM, expressed by for example the state-graph and the 
output variable interdependency, provides a basis for deci- 
sions on microarchitecture alternatives. This micro- 
architecture level is analogous to the register transfer level 
(RTL) in data path synthesis. The RTL level describes the 
network of combinatorial blocks connected by buses, 
registers and multiplexers which implement the data 
processing. The last level in Figure I, the logic level, 
implements the Boolean equations contained in each 
combinatorial function. The main question at this level is 
whether standard-cell based multi-level logic implementa- 
tions should be preferred over the more general PLA based 
implementations. 

C VHDL (Behaviour) 

FSM synthesis 

C- FSM 

The option to implement the combinatorial part of the 
FSM initially in one PLA allows decomposition as a method 
for synthesis. Our view on the synthesis process is that of 
stepwise refinement of the microarchitecture. Decoml,)osi- 
tion gradually works rnore details from the FSM function 
into the FSM microarchitecture. Initially the micro- 
architecture shows no details of the FSM function as it 
consists of a single PLA. Only some coarse parameters of 
the FSM such as the number of product terms or number of 
output variables are visible in the PLA dimensions. The 
initial single PLA hides both the FSM state-transition struc- 
ture and the logic structure completely. On the other hand, 
the ultimate form of decomposition, a multi-level logic 
implementation, shows the exact structure of the logic, 
because all elementary logic functions and their relations 
are visible as cells and wiring. The rnicroarchitecture 
resembles the FSM functional structure better after each 
decomposition. Decomposition stops when the imple- 
mentation structure fulfils the design objectives given, if 
possible. This principle of microarchitecture refinement by 
a sequence of decompositions is also feasible from another 
point of view. There is no need to consider all design 
details or primitives together at one decision level. This 
reduces the computational complexity of synthesis. 

This synthesis strategy results in a high regularity factor of 
the microarchitecture 1°. The lower the number of indivi- 
dually designed components and the higher the repetition 
factor for each of them, the more regular the micro- 
architecture. A high design regularity improves the predict- 
ability of layout parameters during microarchitecture 
synthesis. One of the main reasons for the difficult estima- 
tion of the area of microarchitectures with a low regularity 
is the large amount of interconnect found in them. Inter- 
connect area is difficult to estimate. Also delay is harder to 
estimate in an irregular microarchitecture, because the 
critical path is harder to identify. MASCOT's synthesis 
strategy also allows incorporation of known optimization 
algorithms~,S, i1 dedicated to specific microarchitectures. 
All decompositions defined in our synthesizer inherit the 
floorplanning aspect lx'1~. Floorplanning, formerly part of 
the placement and routing design phases, is integrating 
more and more into high level synthesis methods. This 
significantly reduces the placement and routing problem 
which follows microarchitecture synthesis, because the 
parts of the microarchitecture will better fit together. 

Structure synthesis (RTL) Related work 

RTL structure 

Logic synthesis 

Figure 1 Design flow 

Microprogram development methods 14-1~ have a special 
position in the synthesis process, as was recognized first in 
Reference 17. These methods are based on a fixed micro- 
architecture and focus completely on the problem of 
generating an optimal microprogram to cooperate with the 
data path. These methods therefore specify the behaviour 
of the control path based on knowledge of one default 
microarchitecture. This problem is quite different from the 
synthesis problem tackled here, which concerns construc- 
tion of the optimal microarchitecture for a previously 
defined control path behaviour. Therefore microprogram- 
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ming methods can be regarded as FSM synthesis methods 
(Figure 1) for dedicated microarchitectures. 

At the microarchitecture level a large number of mini- 
mization methods exist. Some systems focus on PLA 
implementations, with minimization techniques varying 
from state-assignment, PLA folding and PLA partition- 
ing :~'5'11'18 Based on this, Reference 19 describes a 
system which combines the state-assignment of Reference 
3 with a method for minimizing the number of transition 
related product terms in a partitioned FSM. No system 
incorporates both delay and floorplan considerations. The 
target of these methods is to obtain maximal size reduc- 
tions for a specific microarchitecture to which they are 
dedicated. However, some of the microarchitectures 
covered are also useful alternatives for MASCOT. There- 
fore, MASCOT incorporates several of the more general 
types among these optimization algorithms. Other recent 
synthesis methods 2°'21 perform useful decompositions or 
optimizations related to the previous methods but suffer 
from equal limitations. The first extensive comparison 
between control path microarchitectures was made 1° by 
means of reverse engineering. This comparison showed 
large differences in delay and size between the different 
microarchitectures. However, no synthesis method was 
included to generate efficient microarchitectures. At the 
logic level there are many successful systems 1. We refer 
the reader to the literature. Several systems at this level are 
able to handle a delay parameter 6. 

To conclude, microprogramming methods are outside 
the scope of control path microarchitecture synthesis. A 
number of FSM synthesis methods have been developed 
over the years. However, these are restricted to specific 
microarchitectures and focus only on the size minimiza- 
tion problem, which limits their applicability. At the logic 
level, current systems can handle delay parameters. 
Unfortunately, these systems do not incorporate floor- 
planning. 

m~,owor"l"' 1'~2 1 ~ 3  I"'1 " I 

I\III 
datapath, uni t  1 . . . . . .  unit i 

X 
I | 

Controlpath 

Figure 2 Control fields and general floorplan 

I = { i l  ..ik} 

0={01..0n,} 

S={S~..S;} 
O := OUT (5, I) 
O := OUT (5) 
S := TRS (S, I) 

Input alphabet where ix is a binary 
coded symbol 
Output alphabet where Ox is a binary 
coded symbol 
State alphabet 
Mealy output function 
Moore output function 
Transition function 

A second specification of a FSM is given by a set 
PTS = {ptl ..ptn } of four tuples <input word, state, next state, 
output word> denoted by pt = < i ,s,s' ,o > which are 
called product terms. A subset of PTS is the set of transitions 
TRS ={trs l  ..trs,} formed by the tuples t rs= < s, s' >. This trs 
denotes one edge in the state graph spanned by TRS. 
Therefore #TRS < #PTS; because of the binary coded input 
word more product terms pt may be needed to implement 
one transition trs. In addition to this we can write the 
transition function as TRS---- {ptrsl ..ptrSn} where 
ptrs = < i, s, s' > and the output function as 
OUT = {poutl..pOUtn} where pou t=  < s, o >. This is the 
Moore type definition; for Mealy pou t=  < i, s, o >. 

The output vector is divided into fields o i= < fl ... fd >. 
Each field corresponds with exactly one functional unit in 
the data path as shown in Figure 2. A control field contains 
the operational commands to control its data path func- 
tional unit. This ordering ensures a minimal wiring area for 
command lines in the control path. 

DESIGN DOMAIN 

Before we discuss the MASCOT details, we define a frame 
of constraints and assumptions for the synthesis. In fact, this 
frame represents domain specific heuristic knowledge to 
limit the design space by cutting off the less feasible 
microarchitectures. This keeps the computational 
complexity manageable. The general part of the domain 
knowledge is discussed in this section. Details of specific 
decomposition phases are found throughout the remaining 
sections. 

Finite state machine 

Design objectives 

To allow incorporation of a floorplan design objective in 
the microarchitecture synthesis we define a global floor- 
plan. The global control path floorplan has a length X equal 
to that of the data path. Its desired height Y relates to the 
control path area Ar by Ar = X ,  Y. Thus, the floorplan 
dimensions X and Y define the control path bounding box 
by its shape AsR = Y/X and total size Ar. For the delay 
specification we take a specification for the control 
throughput. The delay parameter specifies the period of 
time D = t(oi) - t(oi 1) between successive output words. 
The control synthesis is then free to select any clock 
scheme and this definition also hides, and therefore allows, 
internal pipelining of the control path. 

The cardinality of a set of elements is denoted by a #. For 
example; #1 is the number of symbols in the input alphabet. 
A binary coded symbol is called a word. A finite state 
machine is defined by the quintuplet FSM = <1, O, S, OUT, 
TRS> given by: 

Microarchitecture optimality 

Finally we define the notion of optimality of a micro- 
architecture as the distance of the X, Yand D parameters of 
the microarchitecture to the X, Y and D goals defined by 
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/ 
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Input Encoding Topoi. Partitioning 
(TPo) 

Figure 3 Decomposition decision scheme 

the user. If these goals cannot be met with the design 
actions incorporated, the microarchitecture with para- 
meters closest to the goal parameters is the most optimal 
one. This is not necessarily identical with the smallest or 
fastest microarchitecture. 

DECOMPOSITION PROCESS 

This section discusses the design space with the micro- 
architecture alternatives considered by MASCOT. We 
developed the decomposition decision scheme of Figure 3. 
This scheme shows the search order for feasible decom- 
positions. It will be explained in detail in the following 
sections. The philosophy underlying this scheme is that of 
gradual decomposition as discussed above. Thus, coarse 
decompositions such as topological or functional partition- 
ing are closer to the root than the fine grain methods such 
as partial addressing or output encoding. The scheme is 
travelled from root to leaves and from left to right. 
MASCOT follows this scheme as far as needed to fulfil the 
design objectives, as far as possible. Where these objec- 
tives are not fulfilled after the scheme has been fully 
executed, a warning message is returned to the designer. 
MASCOT decides on microarchitecture alternatives by 
both analysis of the FSM structure and the order of alter- 
natives in the scheme. This analysis concerns the transition 
or state graph structure, the cardinality of input alphabet #1, 
output alphabet #O, state set #S, transitions #TRS and 
product terms #PTS. The exact descriptions of the analysis 
are found throughout the remaining sections. 

PLA 

I i 
register ] 

I 
outputs 

Figure 4 Single PLA microarchitecture 

are constructed. For future versions we plan a compiler for 
the translation of processor architectures described in 
VHDL to FSM descriptions. 

Initial configuration 

The simplest possible microarchitecture (Sp) contains one 
PLA and a state register (Figure 4). The alternatives at this 
point in synthesis are either a Mealy type or Moore type of 
specification. These differ in the size of the combinatoric. 
For several reasons the Mealy specification was selected. It 
contains in the first place the lowest number of product 
terms (#PTSMealy<#PTSMoore) as shown in Figure 5. Because 
#TRSMealy=#SMoore, each transition can generate a unique 
output vector (thus :#TRS=#O ), whereas in the Moore type 
a complete state is needed for each unique output vector. 
Hence, the Moore specification contains more states 
( #S=#O ) and therefore more transitions and product terms. 
This difference is related strongly to the degree of connec- 
tion of states in the state graph. This number is high for 
typical ISP processor state graphs. Secondly, the concep- 
tual input-to-output delay is twice as large for Moore PLA 
combinatoric as for the Mealy PLA combinatoric. Therefore 
the Mealy specification is the default for the single PLA. 
Note that, due to the register on the output variables, the 
external behaviour is of the Moore type. 

The system then checks the single PLA parameters with 
the floorplan and delay objectives. Before this check is 
performed, the size reduction caused by state-assignment 
and logic minimization is estimated. This estimation 22 is 
based on a polynomial curve fit on recent results of state- 
assignment algorithms 23. The parameters in this curve are 
the number of output variables and the average number of 
product terms/state of the FSM. If the single PLA does not 

Behavioural  description 

The first action of the synthesizer is to compile a descrip- 
tion of the control path behaviour into a FSM transition 
table. This behaviour can be specified in either a micro- 
program format or a PLA format by means of the set PTS of 
four tuples pt. The behaviour compiler replaces branch 
constructs in the microprogram, which are typical for 
sequential programming, by completely specified transition 
sets. Both a Moore type and a Mealy type transition table 

_ 

Mealy : #trs=5,  #s=2 Moore : #trs=8,  #s=5 

Figure 5 Mealy and Moore FSM specifications 
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fulfil the design objectives, the s~,nthesizer goes to the next 
phase in the design path according to Figure 3. Otherwise it 
actually performs state-assignment 23 followed by logic 
minimization 2, which finishes the synthesis. 

First level decomposition alternatives 

This point in the scheme contains two decomposition 
alternatives: topological partitioning (TPc) and functional 
partitioning (FP). TPc selects strongly related input/output 
subsets and implements their subfunction in separate 
PLAs 1~'18. This may require duplicate input/output vari- 
ables or product terms, but reduces delay and area. The 
other alternative, FP, separates both functions of the FSM 
and implements them in separate PLAs 3'19'2°. One PLA 
implements the transition function and the other PLA 
implements the output function. By this, minimization of 
both functions becomes independent. Therefore we can 
apply methods dedicated to either the transition or the 
output function, which gives more flexibil ity for micro- 
architecture optimization. This is expressed in Figure 3 by 
the two independent subgraphs under the FP node. 

The selection between the partitioning alternatives is 
based on the distance between the PLA size and delay 
parameters and the required design objectives on delay and 
floorplan. In general, if size is no problem or in the case of 
relatively small machines, TPc is sufficient to correct a too 
large delay or a floorplan misfit. Therefore TPc is executed 
first by default. If the results are not accepted by the user 
the system proceeds with FP. A previously generated 
microarchitecture is not discarded by the system until a 
better one is generated. This guarantees that the optimal 
solution remains available in case later design actions do 
not deliver more optimal microarchitectures. 

Topological partit ioning 

Several types of topological partitioning have been distin- 
guished 11. These differ in the way they allow multiple 
occurrence of input and output variables in the partitioned 
PLAs. We briefly describe the properties for this input and 
output augmentation of each type. A more detailed discus- 
sion is found elsewhere 11. The TP types are: 

• input partitioning 
• output partitioning 
• parallel partitioning. 

Presume n sets of variables (PLAs) after partitioning and 
SUMn(Xi) is the cumulative sum of a certain entity Xi over 
i = 1 .. .  n. Then input partitioning (TPi) partitions the PLA 
AND-plane and creates duplicate inputs. It disregards the 
output variables and is therefore applied best to the transi- 
tion function of a functional partitioned FSM. The total 
number of inputs #1 and product terms #PTS of the PLA 
collection are described by: #1<=SUMn(#1i) and 
#PTS = SUMn(#PTSi). 

Output partitioning (TPo) partitions the PLA OR-plane 
and allows product term and/or output duplication. With 

product term duplication, this type provides only optimi- 
zation for the single PLA microarchitecture if independent 
groups of output variables exist (for example outputs to 
different data paths). We do not apply the output duplica- 
tion variant because it increases the output interconnect. 
The TPo variant is applied best on the output function 
after functional partitioning. Its characteristics are: 
#O = SUMn(#Oi) and #PTS <= SUM,,(#PTSi). 

Parallel partitioning (TPc) allows both input and output 
duplicates and no product term duplicates. Because it 
regards inputs as well as outputs, this partitioning type is 
applied only on the initial single PLA. Its characteristics are: 
#1<= SUMn(#1i) and #O <= SUMn(#Oi) and #PT = 
SUMn(#PTi). 

We have previously presented 24 topological partitioning 
with constraints on floorplan and/or delay. In its original 
form 11'~8, TP optimizes only to a minimal cumulative area 
of the PLAs. Our version, called TPc, searches a solution in 
which a maximum to the number of product terms in a PLA 
exists, while retaining a maximal area reduction profit. This 
method therefore does not use the product term counts as a 
pure limit, but anticipates it by performing clustering of 
state-PLAs in two phases, both with different targets. The 
first phase concentrates on pure size optimization until the 
largest PLA grows to more than 80-90% of the product 
term limit. The second phase then clusters with respect to 
size equality of the PLAs. In fact, it tries to reduce the empty 
area in the circumscribing rectangle of the partitioned PLA 
collection. 

At this first level of decomposition the parallel variant of 
TP is applied because it delivers the largest optimization to 
size and floorplan flexibility. Both other variants of TP are 
found in later stages of the design process. 

Functional partitioning 

Functional partitioning (FP) provides a separate PLA imple- 
mentation for the transition and the output function. 
Therefore each PLA contains a different logic structure. The 
output function PLA has, for typical ISP control paths, a 
much higher number of output variables than the transition 
function PLA, because #O > 2log #TRS. The reverse state- 
ment holds for the number of input variables, 2log 
#TRS<#1. Thus, as stated before, each of both PLAs 
requires its own specific minimization methods. This 
provides for some FSMs a larger optimization potential than 
application of topological partitioning. There is a difference 
in area between an FP configuration and a single PLA. The 
number of output vectors is in the single PLA equal to the 
number of product terms and in the FP configuration equal 
to the number of transitions. This saves area in FP because 
#PTS/#TRS >~ 1. Furthermore, FP changes the floorplan fit 
problem and it enlarges the floorplanning flexibility of the 
configuration. However, FP does not always minimize the 
area of the configuration. The cause is the extra area 
needed for the input plane of the output function PLA. 

Two alternatives to FP exist, one which has only a state 
code (Figure 6), and the other which has separate state and 
transition codes (Figure 7). 
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Figure 7 Funct ional  par t i t ion ing w i th  doub le  code  

Single code: p t r s=  < i, s, s' > and p o u t =  <, s, o > 
/ 

Double code: ptrs = < i, s, trs > and p o u t =  < trs, s,  o > 

Figure 7 illustrates the double code FP microarchitecture. 
The left PLA takes the inputs and the state codes and 
generates transition codes. The state code is input to the 
transition PLA. In the single code version, this state code is 
also input to the right PLA which generates the appropriate 
output vector. In the case of the double coded machine the 
right PLA generates the next state code and the transition 
PLA generates a transition code which selects the output 
vector. Note that the number of transition codes in the 
double code version is equivalent to the number of state 
codes in the single code version. Thus #TRSdouble z 
#Ssingle=#SMoore . This is also equivalent to the state set 
cardinality in the Moore type specification. Also, #Sdouble-- 
#SMealy. The double coded FP microarchitecture has for this 
reason the smallest transition PLA and is the default. 

O p t i m i z a t i o n s  f o r  t h e  FP  m i c r o a r c h i t e c t u r e  

We implemented three optimizations for the FP micro- 
architecture, two relating to the transition function and the 
third to the output function: 

• application of a counter 
• application of partial addressing 
• output encoding (per field or complete). 

The incorporation of a counter removes the countable 
transitions from the transition function PLA, as explained in 
the next subsection. Partial addressing splits the next state 
code into two sections, by which the largest part is 

common to all next states for a state. This reduces the 
number of output variables of the transition PLA. Further- 
more, equal 'forks' of transitions merge and reduce the 
number of product terms as explained below. Output 
encoding can reduce the area of the output function PLA 
by replacing sparse codes by more dense codes followed 
by a decoder. This is also explained briefly below. Input 
encoding adds an encoder before the PLA to reduce the 
width of its AND-plane. This is presently not implemented 
because it is in general not very effective for instruction set 
processor control paths, due to the usually very dense 
encoding of instructions. 

I m p a c t  o f  a c o u n t e r  

The application of a counter in a functional decomposed 
FSM has been studied extensively ~. The counter imple- 
ments the countable transitions, which makes these transi- 
tions redundant in the transition PLA and therefore 
removable. The PLA generates the signal for counter acti- 
vation by default in case an input pattern does not match 
any of its product terms. The counter must be Ioadable to 
accept codes generated by the PLA in case of non-count- 
able transitions. The counter is implemented on the transi- 
tion function output, and thus for the double code FP 
microarchitecture only the TRS code is affected. There are 
no side effects for the state or S code. 

The optimization coupled to this implementation is the 
coding of transitions such that the countable transitions 
cover the highest possible number of product terms (PT). 
Thus, the algorithm must identify a collection of transition 
chains which cover the maximum number of product 
terms. Such an algorithm is given in Reference 3. This 
algorithm is dedicated to Moore type single coded 
machines and also incorporates other constraints for the 
code assignment, which make it less suitable for our 
purpose. Therefore we developed our own algorithm. 

Countable transition chain Ct,: 

Cti - trst..trSk l Code(trsi ~ ~) = Code(trsi) + 1 
where 1 ~< i~<k 

The total number of product terms implemented by a 
counter is then: 

PTSC = ~ #pt(Ct,) 
i 1 

where n is the number of countable chains. 
The objective of the algorithm is to code TRS such that 

PTSC is maximal. Therefore all transitions have a weight 
assigned representing their number of product terms: wi = 
#pt(trsi). The algorithm first removes all transitions whose 
start state is equal to the next state, because transition 
cycles are not countable. Then the transitions are sorted 
according to decreasing weight. The algorithm then builds 
chains of transitions by taking the first unmarked transition 
and scanning the list for follow-up transitions from the 
head. Thus the transitions with the highest weight are 
selected first. This process proceeds until a cycle is met or 
no follow-up transition exists. The state which is the head 
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of the chain is marked. With this way of marking a state 
may occur in more than one chain, but occurs only once as 
the head of a chain. This redundancy avoids local optima. 
New chains are generated as long as there are unmarked 
states which have unmarked successors. Then the chains 
are sorted according to their cumulative weights, in 
decreasing order. To get the final collection of countable 
chains, the algorithm takes chains from the head of the list. 
Chains containing states that also occur in already selected 
chains are rejected. 

The algorithm codes the states according to the chains 
selected. The algorithm is restarted and iterates until no 
improvement occurs in the PTSC. Table 1 shows the results 
for this algorithm on the MCNC FSM benchmark set. 
Column d.Cntrl shows the number of countable product 
terms before optimization, and d.Cntr2 after optimization. 

Partial state codes 

Partial state codes or addressing is not a common optimi- 
zation type in control path synthesis systems. Many manual 
designs of processor control paths 2s, however, apply this 
method to implement state transitions. It reduces the 

Table 1 Improvements in countable transitions 

PT d.Cntrl d.Cntr2 

bbara 60 11 15 
bbsse 56 8 11 
bbtas 24 10 11 
beect 28 4 7 
cse 91 4 14 
dk14 56 5 7 
dk15 32 3 5 
dkl 6 108 11 26 
dk17 32 7 9 
dk27 14 3 5 
dk512 30 7 12 
donfl 96 7 13 
exl 138 3 21 
ex2 72 6 18 
ex3 36 3 9 
ex4 21 11 13 
ex5 32 4 8 
ex6 34 3 9 
ex7 36 6 10 
keyb 170 12 44 
lion 11 3 3 
lion9 25 6 6 
plan 115 6 50 
sl 107 6 23 
sand 184 2 82 
scf ] 66 31 120 
shift 16 4 8 
styr 166 8 56 
tav 49 2 23 
tra04 14 5 6 
tral 1 25 1 8 

00 

Example 1 Local code difference for next states 

number of product terms in case a number of states have 
identical transition structures. The transition function 
generates just a part of the next address (state code), often 
only the two least significant bits (LSB). The output function 
generates the other bits (MSB) of the next address. By this, 
these most significant bits (MSB) must be identical in all the 
next states of a certain state. This state code generation is 
feasible because states usually have only a small number of 
next states, as shown in Figure 8. This makes it possible to 
code the local selection of the next state in a few bits. Then 
the MSB bits of the state code can be equal among all the 
next states of a state. This makes it possible to generate the 
MSB part from the output function. If several states have 
identical sets of input vectors and transitions, they can 
share a set of product terms in the transition function. This 
reduces the number of product terms and output variables 
in the transition PLA. Note the cost of additional output 
variables for the MSB bits in the output function. The opti- 
mization problem is to find the maximal number of 
compatible transition sets. Transition sets are compatible 
when all inputs are identical and the sets of next states 
contain equal subsets of states. Furthermore these sets must 
contain each state only once to prevent multiple codes for 
a state. Note that when not all states are partially codable, 
the transition function decomposes into two PLAs (Figure 
8), of which one generates the normal complete next state 
code for all state transitions which cannot be implemented 
by partial addressing. 

In Example 2 the transition set of state 7 is not identical 

inputs 

J transition 

multiplexer I ~ Isb~ 
PL 
kS 

state 

113.1 

1 8 c d ~  
I 

111  
re,qister 

'11 
Figure 8 Partial address configuration 
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Trs state 1: 
002 sl s2 
212 sl s2 
100 sl s3 
101 sl s4 

Trs state 5 : 
002 s5 s8 
212 s5 s8 
100 s5 sl l  
101 s5 s12 

State coding : 
s2=00/01 
s3=00/10 
s4=00/11 
s8=10/01 

sl 1 =1 0/10 
s12=10/11 

Transition fu. : 
002 xx 01 
212 xx 01 
100 xx 10 
101 xx 11 

Example 2 Product term reduction by partial codes 

ii~iii~i ~ ........................... =="~ii~ 

~i~: !!;=!!!i 

I Output fu. 
& sl .-~ O0 

s5.,~ 10 

with the other two sets because its next state structure has a 
different pattern. Both the input word set and the transitions 
must be identical as is the case for states 1 and 5 in 
Example 2. The state coding shows the reduction in 
product terms of the transition function; the transitions of 
states 1 and 5 are merged. Note that the transitions from 
state 7 cannot be implemented in the same PLA as the 
merged set of states 1 and 5 (Figure 8). The output function 
generates the static code part; in the case of state 1 it 
generates 00, of state 5:10, and for state 7 this code is don't 
care: 22. 

the physical terminal ordering in the data path. The second 
encoding type is vertical encoding, which encodes the 
complete output variable set. Note that the field encoding 
algorithm can also come up with the vertical coding solu- 
tion. Both encoding types are executed and the one which 
gives microarchitecture results closest to the design objec- 
tives is selected. In the next section we present further 
decomposition of the optimized and functional partitioned 
microarchitecture. 

Decomposition of the FP configuration 

In case the optimized functional partitioned micro- 
architecture does not fulfil all design objectives on floor- 
plan and delay, MASCOT continues with further 
decompositions. Now MASCOT applies the input and 
output partitioning variants of the TP algorithm 24 on the 
transition PLA or output PLA. The function with the largest 
area is partitioned first. This is mostly the output function. 
In case the output function fulfils the delay requirement, the 
system checks if the floorplan misfit (if any) can be 
removed by application of a ROM instead of the PLA. If this 
is not possible, TPo is applied. 

Output PLA partitioning 

State detection 

The next algorithm detects the number of redundant 
product terms in a FSM for a d bits wide LSB part of the 
state code. First it removes all transitions starting from states 
which have more than 2**d bits of next states. Then it 
generates maximal clusters of states with identical input 
vectors. From these clusters the algorithm makes new ones 
which contain the next state collections in a matrix form 
with one row of next states for each state. For partial 
addressing a cluster should contain only unique states. If 
not, a maximal unique sub-matrix must be searched. The 
algorithm performs this search by discarding non-unique 
states one by one until a unique cluster remains. The 
reduction in transitions is then obtained by counting the 
number of states in the unique submatrix minus one row, 
because one row is actually implemented. From this 
follows the number of redundant product terms. 

This method is best suited for control functions with a 
few transitions per state and disjoint next-state sets. Micro- 
programming methods 25 use that. knowledge extensively to 
generate the control path function which can be imple- 
mented efficiently with this technique. 

Output encoding 

Encoding reduces the width of the output PLA in the case of 
sparse output codes 25' 26. Two types of output encoding are 
incorporated. The first is field encoding, an algorithm to 
detect groups of output variables for which encoding gives 
a maximal reduction of size. To prevent area losses by extra 
wiring, the output variables remain ordered according to 

All forms of topological partitioning in this and the next 
subsection are of both the floorplan and delay constrained 
type. Only two variants of topological partitioning are 
useful for the output function. The input partitioning variant 
is not suitable because of the few input variables to the 
output function (only the transition code). We then have to 
select between either an increase in the number of product 
terms, without output augmentation, or extra interconnect 
where output augmentation is allowed. The product term 
augmentation variant of TP (TPo) is the most effective here, 
because the number of input variables is small. 

But before TPo is applied and only where there is no 
delay problem, MASCOT tries to meet the floorplan 
requirement by checking a ROM structure. The ROM is 
more flexible in its aspect ratio than a PLA because it can 
contain more columns of output words due to its regular 
input decoder. The system finds the optimal aspect ratio of 
the ROM by enumeration. Currently, this aspect ratio is 
open towards state-assignment. Therefore the enumeration 
includes only ROM column numbers which are a power of 
2. Other column numbers cause missing state codes in the 
ROM address range, and thus give restrictions on the state 
codes. The aspect ratio of the ROM is thus variable with a 
factor of 4. Also, in the case of vertical output encoding, the 
system enumerates all aspect ratios of the ROM pair. The 
pair of ROMs always has such a topology that the decoder 
ROM borders the data path. 

Transition PLA partitioning 

If, after output PLA partitioning, the floorplan and/or delay 
objectives are still not fulfilled, the system also partitions 
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Figure 9 Partitioning for floorplan aspect ratio 
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the transition PLA. The transition PLA is split by TPt into 
smaller PLAs, which are multiplexed to the next-address 
register (Figure 9). The multiplexer takes a part of the state 
code input from the transition PLAs. To realize this, the 
state code feedback from the output ROM/PLA is split into 
two separate codes (Figure 9). One code controls the tran- 
sition PLA multiplexer and the other is input to the transi- 
tion PLAs. Together, both codes represent the original state 
code. The advantage of this is twofold: the delay of the 
transition function decreases and it gives a better fit to the 
floorplan. The number of transition PLAs determines the 
width of both codes. Thus, the floorplan shape has an 
impact on these codes and therefore on the state coding. 
The only logic constraint is that all transitions from one 
state have to be implemented in one PLA. This limits the 
maximal multiplexer width to the state set cardinality. 

For this partitioning we use TP input partitioning with 
floorplan and delay constraints (TPt) 24. This algorithm has 
the option to cluster transition sets of all states with equal 
input sets. This clustering reduces computation time, 
therefore it is the default. If the floorplan fit is not improved 
by clustered TPt, the system performs the next run without 
this clustering. This partitioning is likely to save area 
because the input set of an instruction set processor control 
path usually contains several input variable groups. For 
example, the instruction fields are such groups. These 
occur when, for example, the address modes and the 
opcodes are coded in separate fields or several instruction 
formats exist. 

FLOORPLAN 

The selection of FP decomposition influences the floorplan 
aspect. The combination of both PLAs has to meet the 
floorplan requirement. Therefore the initial FP floorplan 
area is divided simply in two sections as shown in Figure 
10. Furthermore, the output function PLA/ROM is always 
positioned vertically, so that the often large number of 
control lines to the datapath are as short as possible. This 
minimizes the area needed for wiring. The floorplan is 
obtained by generation of a binary tree with the PLAs as 
leaves. This slicing tree leads to a shape function t2' 1~ of the 

output function 

L,. 

transition function 

, I  I 

datapath 

Figure 10 FP floorplan 

floorplan, from which the point closest to the goal X, Y is 
taken. The floorplan subdivision of Figure 10 is then repre- 
sented by generation of two independent binary trees, 
which are clustered at the highest level. 

The dimensions and delay of PLAs and ROM were 
obtained from PLA and ROM generator data sheets 27 for a 
1.0#m process. By changing these functions, the system 
can easily be adapted to emerging technologies. 

RESULTS 

This section gives the results for some of the larger 
machines of the MCNC FSM benchmark set 7 and two 
in-house control paths. Their data is listed in Table 2. The 
complexity of eul or s80 is comparable with that of the 
Intel 8080 control path, from which the latter is derived. 
The results of this system can be expressed in several ways. 
Note that area or delay minimization is not a target of the 
system itself. The user determines the goal X, Y and delay 
values, and thereby if area minimization is needed. The 
target of the system is to generate a microarchitecture with 
X, Y and delay parameters as close as possible to the given 
goal parameters. 

Therefore the flexibil ity of MASCOT's strategy can be 
best shown by defining different goals for one of the 
machines. This is done for machine scf in Table 3. This 
table contains eight different goals characterized by aspect 
ratio (=X/Y), denoted as AsR, and area (=X * Y), denoted 
as Ar, of the floorplan; also the delay value (D) is varied. 
This leads to the eight rows in Table 3. For the first two 
rows area and delay are equal to the initial configuration, 
and only the aspect ratio of the floorplan is varied. Then, 
the delay is reduced to 50% and enlarged to 200% of the 

Table 2 Machine data 

Machine scf exl  planet sand bbsse eul s80 

#Inputs 27 9 7 ~ 1 7 11 17 
#Outputs 56 19 19 9 7 25 40 
#Products 166 138 115 184 56 91 210 
#States 121 20 48 32 16 50 62 
X initial 766 318 313 280 210 391 546 
Y initial 1379 1178 987 1541 467 791 1766 
D initial 39 32 28 39 1 7 24 45 
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original, again for both aspect ratios. At last the area is 
reduced to about 66% of the original, again for both aspect 
ratios. 

Table 3 shows, besides the X/Y /D  triple obtained, the 
number of PLAs in the microarchitecture. The / denotes 
separation of the count for transition PLAs from the output 
PLAs. The design actions are also given in the shorthand 
notation of Figure 3. From Table 3 we conclude that TPc is 
a rather powerful tool, because it adapts wel l  to different 
aspect ratios. More complex microarchitectures are gener- 
ated when delay must be reduced or size reduction is 
wanted. This is shown by the 4th, 7th and 8th rows in the 
table. Except for delay, MASCOT reached the goal in all 
cases. Apparent ly a delay reduction of 50% cannot be 
obtained for this machine wi th in  the init ial area. 

Table 4 shows microarchitecture X/Y/D triples for several 
points in the decision scheme. In this case the synthesis 
was forced to scan the complete scheme. The goals were 
defined so that minimizat ions were needed. The different 
columns give results for different positions in the decision 
scheme. The column denoted by +TPt includes the FP and 
counter (cntr) design actions; this occurs also for +TPo 
which includes TPt. The last two columns show which 
microarchitecture was considered optimal. OptKol gives 
the design actions or the position of the optimal micro- 
architecture in the scheme and #PLA again gives the 
number of PLAs for the microarchitecture. One can see that 
for the larger machines more complex microarchitectures 
are found. This is due to the relatively low impact of PLA 
control and power overhead area on the total area in the 
case of large machines. For small machines this overhead 
area prevents solutions wi th many PLAs. 

Table 3 Different goals for machine scf 

AsR, D, Ar X/Y/Dgoal X/Y/D obtained #PLA Des.Actions 

1.0, lx, lx  1028/1028/39 990/1010/27 2 TP 
0.2, lx, lx  2298/460/39 1710/450/27 15 TP 
1.0, 0.5x, lx  1028/1028/20 1030/1020/27 3 TP 
0.2, 0.5x, lx  2298/460/20 2280/460/24 15/16 FP/TPt/Eo/TPo 
1.0, 2x, lx  1028/1028/80 990/1010/27 2 TP 
0.2, 2x, lx  2298/460/80 1710/450/27 15 TP 
1.0, 1 x, 2/3x 840/840/39 780/830/38 3 Eo/TPo 
0.2, lx, 2/3x 1877/376/39 1870/380/27 1/15 FP/CNTR/TPo 

X, Y in izm, D in ns 

C O N C L U S I O N S  

The MASCOT control path synthesis system has great flex- 
ibi l i ty in f loorplan and delay constraints in comparison with 
other control path synthesis methods. Different goals in the 
design space for a machine can be met wi th this synthesis 
strategy. For rnicroarchitecture opt imizat ion it includes a 
number of known methods from both FSM synthesis and 
microprogramming. The floorplan and delay requirements 
determine the decomposit ion. The user defines the goal 
and is therefore able to explore the design space of the 
control path. 

Currently, MASCOT is able to synthesize PLA or ROM 
microarchitectures. In future versions we plan to incorpo- 
rate cell based implementations as wel l .  The greatest 
problem with such implementations is the estimation of the 
interconnect area. Also the translation of processor archi- 
tectures described in VHDL to minimal control path finite 
state automata or machines requires further research. 
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