1,047 research outputs found

    ChatGPT in the Classroom:A Preliminary Exploration on the Feasibility of Adapting ChatGPT to Support Children's Information Discovery

    Get PDF
    The influence of ChatGPT and similar models on education is being increasingly discussed. With the current level of enthusiasm among users, ChatGPT is envisioned as having great potential. As generative models are unpredictable in terms of producing biased, harmful, and unsafe content, we argue that they should be comprehensively tested for more vulnerable groups, such as children, to understand what role they can play and what training and supervision are necessary. Here, we present the results of a preliminary exploration aiming to understand whether ChatGPT can adapt to support children in completing information discovery tasks in the education context. We analyze ChatGPT responses to search prompts related to the 4th grade classroom curriculum using a variety of lenses (e.g., readability and language) to identify open challenges and limitations that must be addressed by interdisciplinary communities. Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Web Information System

    Proceedings of the 18th Irish Conference on Artificial Intelligence and Cognitive Science

    Get PDF
    These proceedings contain the papers that were accepted for publication at AICS-2007, the 18th Annual Conference on Artificial Intelligence and Cognitive Science, which was held in the Technological University Dublin; Dublin, Ireland; on the 29th to the 31st August 2007. AICS is the annual conference of the Artificial Intelligence Association of Ireland (AIAI)

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas

    Polyflow: a Polystore-compliant mechanism to provide interoperability to heterogeneous provenance graphs

    Get PDF
    Many scientific experiments are modeled as workflows. Workflows usually output massive amounts of data. To guarantee the reproducibility of workflows, they are usually orchestrated by Workflow Management Systems (WfMS), that capture provenance data. Provenance represents the lineage of a data fragment throughout its transformations by activities in a workflow. Provenance traces are usually represented as graphs. These graphs allows scientists to analyze and evaluate results produced by a workflow. However, each WfMS has a proprietary format for provenance and do it in different granularity levels. Therefore, in more complex scenarios in which the scientist needs to interpret provenance graphs generated by multiple WfMSs and workflows, a challenge arises. To first understand the research landscape, we conduct a Systematic Literature Mapping, assessing existing solutions under several different lenses. With a clearer understanding of the state of the art, we propose a tool called Polyflow, which is based on the concept of Polystore systems, integrating several databases of heterogeneous origin by adopting a global ProvONE schema. Polyflow allows scientists to query multiple provenance graphs in an integrated way. Polyflow was evaluated by experts using provenance data collected from real experiments that generate phylogenetic trees through workflows. The experiment results suggest that Polyflow is a viable solution for interoperating heterogeneous provenance data generated by different WfMSs, from both a usability and performance standpoint.Muitos experimentos científicos são modelados como workflows (fluxos de trabalho). Workflows produzem comumente um grande volume de dados. De forma a garantir a reprodutibilidade desses workflows, estes geralmente são orquestrados por Sistemas de Gerência de Workflows (SGWfs), garantindo que dados de proveniência sejam capturados. Dados de proveniência representam o histórico de derivação de um dado ao longo da execução do workflow. Assim, o histórico de derivação dos dados pode ser representado por meio de um grafo de proveniência. Este grafo possibilita aos cientistas analisarem e avaliarem resultados produzidos por um workflow. Todavia, cada SGWf tem seu formato proprietário de representação para dados de proveniência, e os armazenam em diferentes granularidades. Consequentemente, em cenários mais complexos em que um cientista precisa analisar de forma integrada grafos de proveniência gerados por múltiplos workflows, isso se torna desafiador. Primeiramente, para entender o campo de pesquisa, realizamos um Mapeamento Sistemático da Literatura, avaliando soluções existentes sob diferentes lentes. Com uma compreensão mais clara do atual estado da arte, propomos uma ferramenta chamada Polyflow, inspirada em conceitos de sistemas Polystore, possibilitando a integração de várias bases de dados heterogêneas por meio de uma interface de consulta única que utiliza o ProvONE como schema global. Polyflow permite que cientistas submetam consultas em múltiplos grafos de proveniência de maneira integrada. Polyflow foi avaliado em conjunto com especialistas usando dados de proveniência coletados de workflows reais que apoiam o estudo de geração de árvores filogenéticas. O resultado da avaliação mostrou a viabilidade do Polyflow para interoperar semanticamente dados de proveniência gerado por distintos SGWfs, tanto do ponto de vista de desempenho quanto de usabilidade

    RDF Querying

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion
    corecore