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RESUMO

Muitos experimentos científicos são modelados como workflows (fluxos de trabalho).

Workflows produzem comumente um grande volume de dados. De forma a garantir a

reprodutibilidade desses workflows, estes geralmente são orquestrados por Sistemas de

Gerência de Workflows (SGWfs), garantindo que dados de proveniência sejam capturados.

Dados de proveniência representam o histórico de derivação de um dado ao longo da

execução do workflow. Assim, o histórico de derivação dos dados pode ser representado

por meio de um grafo de proveniência. Este grafo possibilita aos cientistas analisarem

e avaliarem resultados produzidos por um workflow. Todavia, cada SGWf tem seu

formato proprietário de representação para dados de proveniência, e os armazenam em

diferentes granularidades. Consequentemente, em cenários mais complexos em que um

cientista precisa analisar de forma integrada grafos de proveniência gerados por múltiplos

workflows, isso se torna desafiador. Primeiramente, para entender o campo de pesquisa,

realizamos um Mapeamento Sistemático da Literatura, avaliando soluções existentes sob

diferentes lentes. Com uma compreensão mais clara do atual estado da arte, propomos uma

ferramenta chamada Polyflow, inspirada em conceitos de sistemas Polystore, possibilitando

a integração de várias bases de dados heterogêneas por meio de uma interface de consulta

única que utiliza o ProvONE como schema global. Polyflow permite que cientistas

submetam consultas em múltiplos grafos de proveniência de maneira integrada. Polyflow

foi avaliado em conjunto com especialistas usando dados de proveniência coletados de

workflows reais que apoiam o estudo de geração de árvores filogenéticas. O resultado da

avaliação mostrou a viabilidade do Polyflow para interoperar semanticamente dados de

proveniência gerado por distintos SGWfs, tanto do ponto de vista de desempenho quanto

de usabilidade.

Palavras-chave: Polystore, Interoperabilidade sintática, Interoperabilidade semântica.



ABSTRACT

Many scientific experiments are modeled as workflows. Workflows usually output mas-

sive amounts of data. To guarantee the reproducibility of workflows, they are usually

orchestrated by Workflow Management Systems (WfMS), that capture provenance data.

Provenance represents the lineage of a data fragment throughout its transformations by

activities in a workflow. Provenance traces are usually represented as graphs. These

graphs allows scientists to analyze and evaluate results produced by a workflow. However,

each WfMS has a proprietary format for provenance and do it in different granularity

levels. Therefore, in more complex scenarios in which the scientist needs to interpret

provenance graphs generated by multiple WfMSs and workflows, a challenge arises. To

first understand the research landscape, we conduct a Systematic Literature Mapping,

assessing existing solutions under several different lenses. With a clearer understanding of

the state of the art, we propose a tool called Polyflow, which is based on the concept of

Polystore systems, integrating several databases of heterogeneous origin by adopting a

global ProvONE schema. Polyflow allows scientists to query multiple provenance graphs

in an integrated way. Polyflow was evaluated by experts using provenance data collected

from real experiments that generate phylogenetic trees through workflows. The experi-

ment results suggest that Polyflow is a viable solution for interoperating heterogeneous

provenance data generated by different WfMSs, from both a usability and performance

standpoint.

Keywords: Polystore, Syntactic interoperability, Semantic interoperability.
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1 INTRODUCTION

Over the last decade, the (big) data-driven science paradigm became a reality

(HEY et al., 2009; OLIVEIRA; LIU; PACITTI, 2019). As discussed by Abbasi, Sarker

and Chiang (2016) and Jagadish et al. (2014), there has been an increasing number of

efforts by the industry to create more efficient and accurate applications and information

systems (e.g., new view on Business Intelligence and Analytics) to adhere to this new

paradigm (ABADI et al., 2016; ABADI et al., 2019). However, some challenges must still

be overcome, such as the dependency on data quality (HAZEN et al., 2014) and the lack of

reproducibility of the results (PENG, 2015; SCHWAB; KARRENBACH; CLAERBOUT,

2000; FREIRE; CHIRIGATI, 2018; CHIRIGATI; FREIRE, 2018). In order to foster

reproducibility (OLIVEIRA; OLIVEIRA; MATTOSO, 2017), historical information such

as all generated data, the used software and the settings of the execution environment

must be made available to different researchers. This metadata is called Provenance

(FREIRE et al., 2008). Provenance can be classified as Prospective (or simply p-prov),

which is associated to the specification of an experiment, and Retrospective (or simply

r-prov), which is associated to the execution of an experiment. Since provenance represents

generated data and the processes that transformed it, provenance can be represented in

a graph, called a provenance graph, whose nodes represent the artifacts/influences and

whose edges their relations with one another (HUYNH et al., 2018).

The lack of provenance data can be especially hindering for researchers that use

computational models to conduct experiments (MATTOSO et al., 2010). The use of

computational simulations to support experiments in various fields of science has become a

reality in the last 10 years (MATTOSO et al., 2010; ATKINSON et al., 2017; DEELMAN et

al., 2018). These experiments follow a well-defined life cycle (with composition, execution,

and analysis steps (MATTOSO et al., 2010)), and they are commonly composed by the

invocation of several applications in a specific order, according to their production and

consumption of data, thus creating a Scientific Workflow (henceforth named as Workflow)

(ATKINSON et al., 2017). There are several information systems that already support

the composition and execution of such workflows, e.g., Workflow Management Systems

(WfMS) and Science Gateways. There is a plethora of WfMSs, such as Kepler (ALTINTAS

et al., 2004), Taverna (WOLSTENCROFT et al., 2013), Chiron (OGASAWARA et al.,

2013), Swift/T (WOZNIAK et al., 2013), Pegasus (DEELMAN et al., 2015), eScience

Central (WATSON; HIDEN; WOODMAN, 2010), VisTrails (BAVOIL et al., 2005), and

SciCumulus (OLIVEIRA et al., 2010; OLIVEIRA et al., 2013). Each of these WfMS

manage the execution of the workflow and capture provenance data from the workflow

execution automatically.

Science Gateways (GESING et al., 2018) are complex information systems that aim

at integrating several existing approaches that support the composition and execution of
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workflows in distributed environments, such as clouds, grids, and clusters, by integrating

many existing WfMSs (GLATARD et al., 2017). Although such gateways represent a

step forward, they follow a tight integration, where the underlying WfMSs share software

components with the gateway, but not their provenance databases and repositories. In

this way, it is extremely difficult to query all provenance databases in an integrated form

since most solutions adopted proprietary data models. Thus, interoperating provenance

data captured by underlying WfMSs remains an issue (OLIVEIRA et al., 2016).

In theory, it should be possible for scientists to query both provenance databases

transparently. However, the heterogeneity in the data models and implementations makes

it difficult to query them in an integrated way, requiring researchers to be aware of both

database schemas and their associations. Ultimately, this lessens the role of provenance in

fostering interoperability. This way, one can reduce this scenario to two fundamental issues:

(i) the heterogeneity of storage methods and (ii) the heterogeneity of data models. These

issues lead to two types of interoperability issues in provenance databases: (i) syntactic

and (ii) semantic (LITWIN; ABDELLATIF, 1986).

Recently, new approaches such as Polystore systems (BEGOLI; KISTLER; BATES,

2016; HAMADOU; GALLINUCCI; GOLFARELLI, 2019; KHAN et al., 2019b) started

being discussed very intensively across the research community as a solution for integrating

multiple heterogeneous databases. According to (DUGGAN et al., 2015), a Polystore

system is built on top of multiple, heterogeneous, integrated storage engines. Differently

from their predecessors Federated Databases, they integrate several heterogeneous databases

engines while accessing them separately through their own query engine (DUGGAN et al.,

2015). Polystore databases support multiple query languages and data models, as opposed

to traditional federated systems that support a single one. The rationale behind Polystore

systems suits well for the problem of querying heterogeneous provenance databases.

Nevertheless, the semantic interoperability problem is still an open issue since

one needs to be aware of the underlying provenance database schemas. This way, in

this dissertation, we propose Polyflow, a Polystore-compliant mechanism that provides

semantic interoperability for heterogeneous provenance graphs. By assuming that all

data models are associated with the same domain (i.e., provenance), we can leverage a

Conceptual Canonical Model (CCM) (e.g., ProvONE (CUEVAS-VICENTTÍN et al., 2015))

that can represent all concepts involved, even if they present different granularity. Polyflow

uses a mediation approach, i.e., when connected to a Data Source (e.g., a provenance

database), users can create Entity Mappers between elements in the CCM and elements

in the original data models (COULOURIS; DOLLIMORE; KINDBERG, 2005) that are

used to rewrite, at runtime, the submitted queries. Thus, queries submitted to Polyflow

refer to ProvONE entities and then are rewritten to be submitted to the underlying

provenance databases with their respective local schemas. Polyflow supports distributed
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environments, empowering geographically scattered researchers, since different researchers

commonly use different WfMSs (and consequently different provenance databases).

The contributions of this dissertation are summarized as follows:

• An overview of the research topic using a Systematic Literature Mapping (SLM).

The objective of the SLM is comparing state-of-the-art approaches, identifying the

current limitations of these solutions.

• With a better an understanding the research landscape, we propose Polyflow,

an approach to handle the syntactic and semantic interoperability in provenance

databases using polystore paradigm.

• A series of experiments to evaluate Polyflow with domain experts.

The remainder of this dissertation is organized as follows. Chapter 2 briefly provides

the background knowledge that supports this work. Chapter 3 showcases related work,

granting an overview of the research topic. Chapter 4 details the proposed approach.

Chapter 5 showcases two evaluations of Polyflow. Finally, Chapter 6 concludes the

dissertation.
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2 BACKGROUND

In this chapter, we introduce the main concepts and techniques adopted in this

dissertation. Firstly, we formalize scientific workflows and provenance concepts. Next, we

discuss Polystore systems and databases.

2.1 WORKFLOWS AND PROVENANCE

Over the last few years, workflows have become a de facto standard to represent

scientific experiments based on computational simulations (OLIVEIRA; LIU; PACITTI,

2019). A workflow is an abstraction capable of representing a logical sequence of programs

and/or services invocations (i.e., activities) and their data dependencies (MATTOSO

et al., 2010). Thus, a workflow can be formally defined as an “automation of scientific

processes in which tasks are structured based on their control and data dependencies”

(YU; BUYYA, 2005). In other words, it can be seen as the formalization of a pipeline of

computational tasks with their respective inputs and outputs. According to Oliveira et al.

(2012), a workflow can be formalized as follows: a graph W (A, φ), where A is the set of

activities in W and φ is the set of data dependencies. Thus, A = {a1, a2, . . . , an} and each

activity ai can be represented as ai(I, P ), ai : {I, P} → O, where I is the input dataset, P

the parameters and O the data generated by activity ai. Hence, I = {i1, i2, . . . , id}, where

id is an input file for activity ai, O = {o1, o2, . . . , ok}, where each ok is an output file for

ai and P = {p1, p2, . . . , pm}, where each pm is a parameter of activity ai. Each execution

of ai is associated to a tuple of m parameters < p1, p2, . . . , pm >, where the value vm of

each parameter pm is defined by a function ζm(pm) = vm. Thereafter, we can describe a

data dependency set as φ = {ϕ1,2, . . . , ϕi,j}, where each ϕi,j = 〈id, ai, aj〉, input(ai) ∈ I,

id Ó= ∅ and output(ai) ∈ O. Thus, ϕi,j ↔ ∃ok ∈ input(aj)|Ok ∈ output(ai).

In order to evaluate and reproduce workflows, provenance data must be gathered,

stored and analyzed. Provenance or data lineage is a metadata associated with a data

product that describes its derivation path. More formally, it describes a data fragment,

and all processes and transformations applied to it (BUNEMAN; KHANNA; WANG-

CHIEW, 2001). These metadata bring transparency to a data product, enabling its reuse

(SIMMHAN; PLALE; GANNON, 2005). Moreover, it also helps data interpretability and

audition (GROTH; MOREAU, 2009). There are two types of provenance: prospective (p-

prov) and retrospective (r-prov) (DAVIDSON; FREIRE, 2008). P-prov aims at capturing

the specification of a computational task (e.g., a workflow), expressing the steps that

need to be followed to generate a set of data products. On the other hand, r-prov

captures the steps executed and information about the execution derives a data product.

Although evolution provenance is not formally defined in the literature, it is present in

several works (PRABHUNE et al., 2018a; PIMENTEL et al., 2016; PRABHUNE et al.,
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2018). It aims to capture the evolution of the workflow definition throughout its versions

(CUEVAS-VICENTTÍN et al., 2015).

In the context of this dissertation, we use ProvONE (CUEVAS-VICENTTÍN et

al., 2015) as a CCM capable of integrating provenance graphs of multiple workflows

and produced by different WfMSs. ProvONE extends the W3C PROV recommendation

(MOREAU et al., 2015) and is composed of several classes and relationships. The reasons

why we chose ProvONE are two-fold: (i) it is currently being evaluated as a W3C, to

become a recommendation for workflow provenance representation possibly; (ii) it has

been widely adopted by related literature, as we will show in Chapter 3. You can refer for

more information in (PRABHUNE et al., 2016).

ProvONE’s data model is represented in Fig. 1. In ProvONE, a p-prov graph is

described by the following entities: Programs represents an activity that consumes and

generates data through its Ports. Program instances can be atomic or composite, i.e.,

they can have SubPrograms. A Port enables a Program to send and receive data and

parameters. Data dependencies across programs are identified by the class Channels that

connect two or more Programs through their Ports. The class Workflow represents a

special kind of Program that is the root of a recursive composition of Programs. Finally,

the class Entity represents the information units consumed or generated by a Program.

On the other hand, a r-prov graph Gp is generated by the Execution of W . It

is defined as Gp = (Vp, Ep, Ap, Tp), where each vertex Vp represents either programs or

data artifacts and the edges Ep represent its lineage. An attribute type ∈ Ap should

exist for every vertex and edge. If a node vpi represents a program associated with an

activity ai, then V alue(vpi, type) = program. On the other hand, if it represents a data

artifact, V alue(vpi, type) = data. The set Tp represents edge types that can be: WasGen-

eratedBy, Used, WasInformedBy, WasDerivedFrom, WasAttributedTo, WasAssociatedWith,

ActedOnBehalfOf, according to the PROV recommendation (MOREAU et al., 2015) and

ProvONE data model (Fig 1). The Users entity and its relations, identify workflow’s

invocations. For a complete understanding of the ProvONE, refer to their complete

specification1

2.2 POLYSTORE SYSTEMS

According to Wegner (1996), the term “Interoperability” can be defined as “the

ability of two or more software components to cooperate despite differences in language,

interface, and execution platform”. Although this can be considered an outdated defi-

nition for interoperability (TOLK; MUGUIRA, 2003), it represents what is known as

syntactic interoperability. However, syntactic interoperability is just one existing type
1 <http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/

ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html>
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Figure 1 – ProvONE model adapted from (VíCTOR LUDäSCHER BERTRAM, 2016)

of interoperability. In this dissertation’s context, the main challenge is how to provide

semantic interoperability of provenance databases. We assume that software components

are the heterogeneous sources (e.g., provenance databases managed by existing Database

Management Systems (DBMSs)) that provide access to provenance data generated by

WfMSs. As hinted in Chapter 1, the approach proposed in this dissertation is built on top

of a Polystore system. Polystore systems can be seen as a new type of data federation, i.e.,

a meta-database management system that provides a centralized and transparent interface

to underlying database engines (GADEPALLY et al., 2016).

Differently from their predecessors (Federated Systems) that support a single query

language and data model, Polystore systems support multiple query languages and data

models. Polystore systems aim at mitigating usability issues by providing users a wide

array of storage solutions and query languages. This new paradigm offers an alternative

to the traditional “one size fits all” approach (STONEBRAKER, 2015), storing and

processing fragments of the dataset in the engine that provides the best performance

to operation at hand (e.g., insertion, queries) (GADEPALLY et al., 2016). BigDAWG2

(GADEPALLY et al., 2016) is a pioneer Polystore system and is the engine responsible for

the syntactic interoperability layer of the proposed solution. BigDAWG’s architecture is

presented in Fig. 2.

The middleware layer is responsible for orchestrating incoming user queries, plan

its submission to the underlying islands, and integrating intermediate responses. In other

words, the middleware is responsible for identifying which islands a query target, break it

down into island-specific queries, and then integrating partial responses that are returned
2 <https://bigdawg.mit.edu>
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Figure 2 – BigDAWG’s architectural design. Inspired in (DUGGAN et al., 2015)

by each DBMS. The middleware also maintains a record of previous query performance

for optimization’s purpose.

An island is the definition of a data model and a query language that represents

a data type. For instance, you would use SQL to submit queries to the relational island

because it is the query language defined by it. Since the data model or query language

defined by an island might be different from the one implemented in an underlying DBMS,

Gadepally et al. (2016) introduces the concept of shims.

The shim operator is responsible for translating the data model and query constructs

defined by an island to the model and constructs supported by the underlying DBMS.

Furthermore, shims may navigate across different islands, i.e., users may recover data

using query constructs from different islands than the database that belongs.

Finally, the cast operator is responsible for migrating data between engines. It is

very useful for boosting the performance of queries. For example, suppose the users would

like to analyze data stored in a relational database that is very computationally expensive

to conduct on an RDBMS. In that case, they can move it to a different engine that better

supports the operation. You can picture it as an Extraction-Transformation-Loading

(ETL) process across database engines.

We chose to adopt BigDAWG as the Polystore layer of this work because, to the

best of the authors’ knowledge, at the time in which this work began to unfold, it was

the only existing Polystore implementation that was open source and had a license that

allowed us to use it for free. It is important to highlight that Polyflow does not follow a

tight integration, and the underlying polystore system can be easily changed by creating a

new querying interface.

As discussed by Tolk and Muguira (2003), interoperability goes beyond the imple-
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mentation itself. The last layer of conceptual interoperability proposed by the authors

is named “Harmonized data”, where “applications can comprehend the data, both struc-

turally and semantically”. In this dissertation, semantic interoperability is the ability

to bridge granularity and representation differences in provenance data captured and

stored by WfMSs with different data models.. It comes down to the database integration

problem with a bottom-up approach (COULOURIS; DOLLIMORE; KINDBERG, 2005),

i.e., seamlessly integrating several different databases into one.

The first step of the process proposed in Coulouris, Dollimore and Kindberg (2005)

is to define conceptual schemas. Local Schemas (LSs) are schemas that describe data from

a specific database. Since we aim to integrate several heterogeneous data sources into a

single one, a Conceptual Global Schema (CGS) is required. The second step is to define the

integration strategy to allow data to flow between the schemas. It can be either physically

or logically (JHINGRAN; MATTOS; PIRAHESH, 2002).

The physical approach (Fig. 3(a)) materializes the results of the mapping using the

CGS, which speeds up querying. However, this approach has an availability problem, since

it requires constant extraction of data from underlying databases to keep data up to date.

On the other hand, the logical approach (Fig. 3(b)) transforms, at runtime, queries using

entities and relations of CGS to constructs of underlying databases. This approach does

not have any availability issues since the original data is being queried. However, speed

may become an issue for two reasons: (i) the overhead added by the translation operation;

and (ii) queries may not be as optimal because there is a layer that is abstracted from the

end-user.

Figure 3 – (a) Physical approach to database integration. (b) Logical approach to database
integration. Both figures adapted from (COULOURIS; DOLLIMORE; KIND-
BERG, 2005)
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2.3 FINAL REMARKS

In this chapter, the background knowledge required to understand this work was laid

out. Firstly, the domain in which this work was built around, workflows and provenance,

are introduced. Then, we go over syntactic and semantic interoperability, the two research

problems we aim to provide support for. We leverage the usage of Polystore systems, a

novel approach to federated systems, to provide support to syntactic interoperability. In

section 2.2, we explain its architecture and fundamentals. Finally, we highlight the two

approaches to provide support to semantic interoperability, namely physical and logic,

explaining their trade-offs and justifying our choice to go for a logic integration approach.
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3 RELATED WORK

In this Chapter, we report a Systematic Literature Mapping (SLM) conducted in

August, 2018 and an ad hoc complementary study to discuss works published between

August, 2018 and October, 2020.

3.1 SYSTEMATIC LITERATURE MAPPING

The goal of the SLM is to identify and discuss interoperability solutions for

heterogeneous provenance data, qualitatively assessing them by the following perspectives:

(i) Completeness: the ability to capture p-prov, r-prov and evolutionary provenance, (ii)

User Adaptability: how big is the learning curve for new users and (iii) Extensibility: how

hard it is to extend the proposed solution. Thus, the contributions are twofold: (i) it

provides an overview of the research area, identifying the most used provenance models

and query languages; (ii) each work is individually presented and discussed, providing

qualitative analysis of these solutions based on aforementioned metrics, guiding future

research efforts.

As discussed by Pérez, Rubio and Sáenz-Adán (2018), there are numerous sur-

veys regarding provenance and WfMSs (e.g., (SIMMHAN; PLALE; GANNON, 2005;

DAVIDSON; FREIRE, 2008; BOSE; FREW, 2005)). However, to the best of the authors’

knowledge, there are no secondary studies or surveys that tackle interoperability of prove-

nance data generated by WfMSs, thus justifying this study. This SLM is structured based

on the guidelines on established by Budgen et al. (2008) and Kitchenham (2004). Section

3.1.1 discusses the planning of this SLM; Section 3.1.2 presents the execution procedure;

Section 3.1.3 reports the findings; showcasing and discussing related literature. Finally,

Section 3.4 exposes threats to this study’s validity.

3.1.1 Planning

We identified the goals during the planning process and defined a protocol, following

the guidelines described in Kitchenham (2004). The protocol specifies the method to be

used in the SLM in order to reduce researcher bias (STEINMACHER; CHAVES; GEROSA,

2013). Moreover, an SLM must be reproducible and the protocol is the document that

empowers it. The main goal of this study is the identification of the current state-

of-the-art in provenance data interoperability. As a secondary goal, we aim at

evaluating these solutions under three different aspects: completeness, usability, and

extensibility, identifying possible improvements to those. We hereby define provenance

data interoperability as any effort that allows users to store and query heterogeneous

provenance traces of workflows, i.e., provenance data described by different formats and/or

generated by different WfMSs. Finally, we restrict this dissertation’s scope to assess only
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papers that propose a solution that supports interoperability to provenance data generated

by WfMSs.

Regarding the Protocol definition, the first step is to define the Population, In-

tervention, Comparison, Outcome and Context, according to the PICOC procedure

(KITCHENHAM, 2004). This is done to formalize the scope of the study as following: (i)

Population: Heterogeneous provenance data, (ii) Intervention: Support interoperability,

(iii) Comparison: -, (iv) Outcome: Solutions (frameworks, tools, models, architectures,

etc), and (v) Context: Scientific experimentation.

Since the terms used in the PICOC may have multiple synonyms, we have to define

keywords and synonyms (Table 1) that will compose the search string. The second step is to

define Mapping Questions (MQ) that the SLM looks for answers to, namely: (MQ1) What

is the current state of the art of heterogeneous provenance data interoperability? (MQ2)

What query languages are the most used in solutions that support interoperability across

heterogeneous provenance graphs? (MQ3) What models are the most used to represent

provenance data?, and (MQ4) What are the existing gaps that justify the improvement of

the current state of the art?

Table 1 – Keywords and synonyms derived from PICOC.

Keyword Synonyms Related to

Heterogeneous provenance data

Heterogeneous lineage data
Heterogeneous pedigree data
Heterogeneous provenance graphs
Heterogeneous tracking data
Provenance graphs

Population

Interoperability
Interoperable
Interoperate

Intervention

Scientific experimentation
e-Science
Scientific Workflows

Context

Collaborative experiments
Collaborative research
Collaborative workflows

Context

In order to evaluate the latter more objectively, three aspects of the solution are

considered: completeness, usability, and extensibility. To assess completeness, we analyze

its ability to capture p-prov, r-prov, and evolution provenance. We also evaluate the

querying interface, more specifically, if it supports query languages that their prospective

users are already familiar with. Finally, to assess extensibility, we consider the used model

- if it is already defined in the literature or if it is a novel approach. All aspects mentioned

above are evaluated using the following annotation:

(i) ≡ - The solution fully satisfies the assessed metric,

(ii) ≃ - The solution partly satisfies the assessed metric, and
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(iii)� - The solution does not satisfy the assessed metric.

Due to the vast number of papers returned during the search process, we had to

define a Filtering Process to guarantee the reproducibility of the SLM. The first filtering

was performed by reading the title of the paper. At this stage, only the papers in which

the title clearly indicated that the paper did not propose a solution towards supporting

interoperability between multiple scientific workflows (e.g. A scripting approach for

integrating software packages and geoprocessing services into scientific workflows) or that

indicated that the paper was not a primary study (e.g. A systematic review of provenance

systems) were removed. Since a large volume of papers were evaluated in this first phase,

to minimize human bias and error, this process was revisited on two distinct occasions.

The second filtering was performed by assessing the papers’ title, abstract, intro-

duction, and conclusion when they were available. Finally, the last filtering was performed

by reading the entire paper. To mitigate threats to this study regarding papers that share

the same scope as this SLM but were either not in any of the knowledge bases used in this

research, or not captured by the search string, we conducted one iteration of backward and

forward snowballing (WOHLIN, 2014). We chose the following Knowledge Bases according

to criteria proposed by Costa and Murta (2013): (i) They are capable of using logical

expressions or a similar mechanism; (ii) They allow full-length searches or searches only in

specific fields of the works; (iii) They are available in the researcher’s institution; and (iv)

They cover the research area of interest in this mapping: computer science.

This way, the search was done using the following knowledge bases: (i) ACM

Digital Library1, (ii) El Compendex2, (iii) IEEE Digital Library3, (iv) Scopus4, and (v)

Springer Link5. Even though Springer does not provide a refined search (e.g., search

indexed metadata terms) as other knowledge bases, it is important to the present context

since many papers in the area, e.g., (OLIVEIRA et al., 2016; PRABHUNE et al., 2016;

PRABHUNE et al., 2018b), are only available in this knowledge base.

To create the Search String, we used the terms defined in PICOC. Iteratively, the

knowledge bases were queried, and some papers were read, enriching the Keywords and

synonyms (Table 1). This process culminated in the following search string, validated by

co-authors and researchers in this domain: (“Collaborative experiments” OR “Collabora-

tive research” OR “Collaborative workflows” OR “Heterogeneous provenance data” OR

“heterogeneous lineage data” OR “heterogeneous pedigree data” OR “heterogeneous prove-

nance graphs” OR “heterogeneous tracking data” OR “provenance graphs” OR “scientific

workflow” OR “e-science”) AND (“interoperability” OR “interoperable” OR “interoperate”)

1 <http://portal.acm.org>
2 <http://www.engineeringvillage.com>
3 <http://ieeexplore.ieee.org>
4 <http://www.scopus.com>
5 <http://link.springer.com>
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The decision on whether or not to discard a paper is based on the following Inclusion

Criteria (IC) and Exclusion Criteria (EC): (IC1) The work proposes an interoperability

solution on storing and querying heterogeneous provenance metadata; (EC1) Deprecated,

i.e., a more recent follow-up study was found; (EC2) Duplicated, i.e., the work was already

recovered in another knowledge base; (EC3) The paper does not have an abstract; (EC4)

The paper is not a primary study; (EC5) The paper is not available to download using

the university’s credentials; (EC6) The study was published as a short paper; (EC7) The

study is not written in English; (EC8) The study was not published in a conference or

journal related to Computer Science; (EC9) The study was not published in a peer-review

vehicle; (EC10) The study was published before 2008; (EC11) The study does not propose

a solution that supports interoperability across heterogeneous provenance datasets; and

(EC12) The proposed solution is not able to capture generic provenance metadata - i.e., it

was designed for a domain-specific solution.

Exclusion criteria from 1 through 9 are self-explanatory and exist to guarantee the

quality of the papers assessed in this SLM. EC10 was included because 2008 is when the

first standard provenance recommendation - Open Provenance Model (OPM) (MOREAU

et al., 2008) - was published. EC11 and EC12 were taken into account to filter papers that

did not attend this SLM scope but were returned by the knowledge bases’ query engines.

It is worth mentioning that some of these criteria (EC7, EC8, EC10) were applied during

the search process in the knowledge bases.

3.1.2 Execution

We executed the search string in the knowledge bases previously presented. The

results (available as BibTeX entries at <https://bit.ly/37ROdvv>) gathered from all

knowledge bases were organized in Parsifal6. Table 2 synthesizes the results of each filtering

strategy based on ICs and ECs previously discussed. We then conducted one iteration of

backward and forward snowballing on this set of papers, following the guidelines established

by Wohlin (2014), applying the same inclusion and exclusion criteria defined before.

Knowledge
Base

# papers
returned

After duplicates
removal

After reading
title

After reading
abstract, introduction

and conclusion

After reading
full paper

ACM 95 75 8 0 0
Compendex 144 82 31 5 4
IEEE 81 48 12 5 3
Scopus 168 108 26 2 1
Springer 747 727 58 7 3
Total 1235 1040 135 19 11

Table 2 – SLM filtering processes and the results of each step.

6 <http://parsif.al>
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3.1.3 Results

In this Section, we briefly discuss the proposed solutions and assess them under

the qualitative attributes defined in Section 3.1.1. Finally, we compare the works and

synthesize their evaluation regarding this SLM’s questions.

Ellqvist et al. (2009) propose a mediator-based architecture that is able to interop-

erate provenance data derived from different data sources. The architecture has two main

components: a global schema that is general and able to represent provenance information

expressed by other models and a system-independent query API that is able to retrieve

answers from distinct data sources. The authors propose a data model, the Scientific

Workflow Provenance Data Model (SWPDM), to represent their global schema, since the

reference provenance data model available at the time (OPM (MOREAU et al., 2008)) is

unable to capture p-prov. However, it is unable to capture evolution provenance. The

querying layer is implemented as independent APIs for each implemented wrapper. To

evaluate their proposal, the authors conducted a case study with three different WfMSs,

creating wrappers that transform data generated by them to SWDPM, querying the

integrated knowledge base in a illustrative fashion.

Chebotko et al. (2010) propose an integration approach that takes advantage of

provenance models described by ontologies. They designed a storing solution, RDFProv,

that transparently works as an RDF store, even though they use a relational storage.

The authors used domain-specific constraints,e.g., low frequency on update and deletion

operations, to boost performance. The proposed architecture is organized in three layers:

firstly, the provenance model layer is responsible for managing provenance ontologies

and execute inferences rules on the knowledge-base to generate new triples, enriching the

dataset. The mapping layer provides three functionalities: (i) Schema Mapping: responsible

for generating a relational schema based on the ontology; (ii) Data Mapping: responsible

for mapping RDF triples to relational tuples and (iii) Query Mapping: responsible for

translating SPARQL queries to SQL. Finally, the relational model layer is responsible

for storing the data in a relational fashion. It requires domain-specialists to interoperate

datasets represented in different models. Moreover, the solution is restricted to models

that have an ontology representation, which several WfMSs do not. RDFProv is model-

dependent, hence, the ability to capture evolution, p-prov and r-prov provenance cannot

be assessed in a general manner. Users are restricted to SPARQL queries when using

RDFProv.

Missier et al. (2010), along with integrating heterogeneous provenance data, also

propose a solution to keep the provenance trace alive between workflows executions,

i.e., identify that a resource generated by a given workflow execution is the same as

consumed by another. For the integration solution, the authors propose an extension

of OPM (MOREAU et al., 2008), since it is unable to capture p-prov in its original
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form, as discussed previously. The proposed model, however, lacks support to evolution

provenance. As a proof of concept, the authors implement mapping algorithms that

transforms provenance data from two different WfMSs, namely Taverna and Kepler, into

the proposed model. (MISSIER et al., 2010) use a relational format to store data and the

solution only supports SQL constructs. However, it can be a challenge to users of WfMSs

that do not support this querying format. For the tracing problem, the authors define the

copy(r, S, S ′) operation where: r is a reference to the resource - e.g. an Uniform Resource

Identifier (URI) -; S is the origin storage (i.e., where r is being copied from); and S ′ is the

destination storage (i.e., where r is being copied to), thus guaranteeing the provenance

trace connectivity between workflows.

Anand et al. (2010) propose a tool that supports users in the access and exploration

of provenance metadata by providing a browsing and querying interface. To achieve that,

they use a novel provenance model that is able to express provenance traces, however, it is

unable to describe p-prov and capture the workflow’s evolution. They show that the model

has a correspondence to the OPM and that the proposed architecture can accommodate

the latter. Finally, they introduce the Query Language for Provenance (QLP), a query

language based on path expressions, having a similar syntax to graph-based languages.

Even though in their implementation the authors use a relational database, conceptually,

the proposed architecture can support different storage solutions by interfacing them to

the proposed query language, namely, QLP.

In (ALTINTAS et al., 2010), an extension of the QLP (ANAND et al., 2009)

is proposed to capture implicit user collaborations, i.e., relations between agents that,

directly or indirectly, influenced a data product generation. Moreover, the authors also

establish a mapping between QLP and OPM (MOREAU et al., 2008), enabling their

solution to be utilized on any data described by the latter. The proposed architecture

consists of heterogeneous data stores (e.g., Relational Database Management Systems

(RDBMS), XML and RDF files), a query engine that is responsible for translating QLP

queries to the respective storage query language and a query interface that works as the

user’s endpoint. From a usability stand point, this is an advancement when compared to

the previous analyzed works, since the solution exempts the user’s need to understand the

storage solution, providing a single query interface that is able retrieve information stored

in different formats.

In (LIM et al., 2011), the authors formally define a relational OPM-compliant

(MOREAU et al., 2008) model, named OPMProv. To evaluate it, the authors use the

relational model to answer a set of queries defined in the Third Provenance Challenge (PC3)

(THE. . . , 2009), an effort to promote studies regarding WfMSs interoperability. (GASPAR;

BRAGA; CAMPOS, 2011) propose a generic architecture that can be coupled to WfMSs

and is responsible for collecting and managing provenance information generated by the
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workflow execution. The authors use OPM as a canonical model to represent data and a

relational storage solution to persist it. To foster the semantic approach of the proposal,

the authors also provide an SPARQL querying interface through the representation of the

provenance graph in RDF format associated with the OPM ontology, enabling the usage

of reasoners to make inferences in these knowledge bases. To illustrate their proposal, the

authors conduct some case studies to evaluate their architecture suitability to collect and

manage provenance metadata.

Ding et al. (2011) assessed shortcomings of solutions proposed at the PC3, eliciting

requirements and developing a solution with web-semantic components. It extends the

OPM ontology specification and, given a OPM-compliant RDF provenance trace, users

can query the knowledge base via SPARQL constructs. The proposed data model lacks

p-prov and evolution provenance support. Moreover, their architecture only supports RDF

stores and users are restricted to SPARQL constructs. Regarding extensibility, a mapping

between the proposed model or OPM ontology is required to support data described by

different formats.

In (CUEVAS-VICENTTIN et al., 2012), the authors propose an extension of

the OPM (MOREAU et al., 2008), namely D-OPM, that is able to capture p-prov, r-

prov and evolution provenance. To evaluate their model, the authors implement it in a

RDBMS and provide a querying mechanism based on Regular Path Queries (RPQ): graph

paths expressed as regular expressions, to ease querying since provenance trace resembles

graphs. Finally, they conduct a performance evaluation of their architecture utilizing a

generic graph testbed dataset. Since their proposal provide a standard canonical data

representation and storage solution, to integrate data derived from different WfMSs, all

one must do is create wrappers to transform the data and store it.

Oliveira et al. (2016) propose an integration architecture that has two layers: the

first (namely, Cartridges - a wrapper abstraction -) is responsible for transforming WfMSs’

traces into Prolog facts described by the ProvONE model; the second, a shared knowledge

base where the facts are stored and can be accessed via Prolog queries. The authors

evaluate their approach using real workflow traces generated by two research groups

that share the same research domain. From a extensibility standpoint, since all data is

represented by the ProvONE model and integrated in the shared knowledge base layer, all

one must do is implement a new Cartridge to support a new WfMS. On the other hand,

to access the knowledge base, users must write Prolog queries (a query language that is

not supported by most WfMSs), which may hamper the usability of the approach.

Jabal and Bertino (2016) propose a data model focused on access control over

provenance data that is unable to capture both p-prov and evolution provenance. Moreover,

they also implement algorithms that map data described in their model to OPM (MOREAU

et al., 2008) and PROV (PROV-OVERVIEW, 2013). The solution supports RDBMS and
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a graph store (Neo4j7) as storage solutions for their framework.

Differently from Jabal and Bertino (2016), Prabhune et al. (2018) proposes a more

generic framework that aims to support any kind of metadata, not only provenance. They

accomplish that by providing support to multiple data models and tools to handle metadata

from different domains. As for provenance metadata, they support two models, namely

ProvONE a PREMIS (LI; SUGIMOTO, 2014), storing data in a RDF solution (Apache

Jena TDB8). Along with providing a SPARQL endpoint, the authors also implement an

API with various query patterns already implemented that retrieve useful provenance

information.

Prabhune et al. (2018b) propose a framework that aids researchers in analyzing

heterogeneous provenance metadata. To accomplish that, they use a similar approach

to (PRABHUNE et al., 2018) to handle provenance: a RDF storage solution where data

is represented by the ProvONE model. In this work, they implement three mapping

algorithms that transforms data described by other formats into ProvONE-compliant data.

To evaluate their framework, the authors illustrate its functionality by interoperating data

generated by different WfMSs.

3.2 AD-HOC COMPLEMENTARY LITERATURE REVIEW

Since some time has elapsed since the SLM execution and elaborating this disserta-

tion, we need to complement it with published works since then. Since the SLM process

is time-consuming, we have opted to cover works published in the last 2 years with an

ad-hoc search. We used Google Scholar as the search engine and issued the following query:

“Heterogeneous "provenance data" interoperability”. From the results, we filtered the papers

based on their titles and abstracts. We present the results following.

Parciak et al. (2019) consider different research groups, in the medical domain,

sharing research topics that have difficulty assessing concluding results created by het-

erogeneous software. The authors propose an implementation roadmap of a system that

captures provenance, using the PROV data model, so these heterogeneous processes are

comparable. Souza et al. (2019) propose a distributed system that can capture heteroge-

neous workflows provenance data at runtime with small overhead. Even though the authors

do not propose a solution that integrates heterogeneous provenance data, they still propose

a workflow-agnostic solution that could be plugged into any WfMS. They an extension of

PROV as their lingua franca to capture provenance from the external workflows. Khan

et al. (2019a) collect a comprehensive summary of recommendations by the community

regarding workflow design and resource sharing and leverage that knowledge to define a

hierarchical provenance framework. The goal is to achieve homogeneity in the granularity
7 <https://neo4j.com/>
8 https://jena.apache.org/documentation/tdb
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of the information shared, with each level addressing specific provenance recommendations.

Based on that, they also define a standardized format, namely CWLProv.

3.3 DISCUSSION

All the papers evaluated in this SLM propose either a storage solution and/or

an architecture that supports interoperability of heterogeneous provenance graphs. A

timeline of the publications is presented in Fig. 4. Fig. 5 illustrates vehicle types in which

the papers have been published and Fig. 6 shows the number of citations of each paper.

Following we discuss each of the questions.

Figure 4 – Timeline of publications. Edges connecting two papers represent a citation.
Works in red are the product of snowballing; the ones in blue were found
in the knowledge bases and the yellow ones were derived from the ad-hoc
complimentary search.

(MQ1) What is the current state of the art of heterogeneous provenance data

interoperability?

Many solutions were assessed in this SLM. Some aim to be WfMS-agnostic and

others that impose a less harsh learning curve on prospect users, using storage solutions,

data models, and query languages that they are already familiar with. However, none of

those fully satisfies all these criteria. All the evaluations of the solutions are synthesized in

Table 3. The rows are shortened due to space restrictions and are described following: (i)

p-prov: The solution is able to capture prospective provenance; (ii) r-prov: The solution is
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vehicle type.png

Figure 5 – Vehicle type in which the pa-
pers were published.

x Paper.png

Figure 6 – Number of citations each pa-
per has on July, 2020.

able to capture retrospective provenance; (iii) Evolution: The solution is able to capture

evolution provenance; (iv) Query: The solution supports a query language that users

are already familiar with. A full score is given if the authors propose at least SPARQL

and SQL constructs. In case they support only one of those or propose another querying

solution that aims to attenuate the users’ learning curve, a half score is given; and (v)

Model: The solution uses a data model already defined in the literature. In case it extends

one, a half score is given.

Table 3 – Comparative table that synthesizes all aspects assessed in this SLM.
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p-prov. ≡ ≃ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡
r-prov. ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡
Evolution ≃ ≡ ≡ ≡ ≡
Query ≃ ≃ ≃ ≃ ≃ ≃ ≡ ≃ ≃ ≃ ≃ ≃ ≃
Model ≃ ≡ ≡ ≡ ≃ ≃ ≡ ≡ ≡ ≡ ≃ ≡

(MQ2) What query languages are the most used in solutions that support interoper-

ability across heterogeneous provenance graphs?

This mapping question aim to assess the most used query languages in this context,

guiding future research efforts. The results are synthesized in Table 4. There is a clear

preference for SQL and SPARQL (query languages that most WfMSs natively support).

Besides those who propose their own querying infrastructure (ELLQVIST et al., 2009;

ALTINTAS et al., 2010; ANAND et al., 2010; CUEVAS-VICENTTIN et al., 2012). Oliveira
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et al. (2016) use Prolog constructs to query the data and Jabal and Bertino (2016) use

Cypher, Neo4j’s query language. Given the natural representation of provenance metadata

as a graph, the latter may be a viable alternative solution to the more traditional relational

and RDF stores.

Table 4 – Query languages supported by each solution.
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SPARQL ≡ ≡ ≡ ≡ ≡ ≡
SQL ≡ ≡ ≡ ≡
API ≡ ≡ ≡
QLP ≡ ≡
RPQ ≡
Prolog ≡
Cypher ≡ ≡

(MQ3) What models are the most used to represent provenance data?

This mapping question aims to assess the most used models in this context, guiding

future research efforts. The results are synthesized in Table 5. The ≃ sign indicates an

extension of the model. Even though OPM and PROV are the more frequent used models,

more recent works use the ProvONE data model, since it was specifically designed to

attend WfMSs demands. It is worth mentioning that Chebotko et al. (2010) propose a

storage solution that is not constrained by any model and, therefore, its column in Table

5 is empty.

(MQ4) What are the existing gaps that justify the improvement of the current state

of the art?

None of the proposed approaches fully satisfy the criteria analyzed in this SLM. Even

though all of those support interoperability across heterogeneous provenance metadata,

very few of those regard for usability. The recent work of Souza et al. (2019) leverages a

Polystore approach, using multiple storage solutions and query languages through a single

interface, granting a wider array of options to users, however they opted for the PROV

data model, constraining the solution to r-prov queries.
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Table 5 – Provenance model used by each solution.
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OPM ≃ ≡ ≡ ≡ ≃ ≃
PROV ≡ ≡ ≡
ProvONE ≡ ≡ ≡
Original ≡ ≡ ≡

3.4 THREATS TO VALIDITY

Many papers excluded in the filtering process proposed a solution to support

interoperability between WfMSs executions since the scope of this SLM is defined to be a

subset of this area, i.e., interoperability between provenance data generated by any WfMSs.

Since there is a strong intersection between these two research topics, there is the chance

of existing a WfMSs interoperability solution that can also support interoperability to the

provenance data generated. The inability to identify these solutions is the first threat to

this work. Moreover, some papers were not available using the university’s credentials in

the knowledge bases. The authors of those papers were contacted, but not all of them

answered, so some papers were left unchecked. Even though other researchers evaluated

the search string and keywords table, they may not contemplate all the works in the area.

Furthermore, only one researcher conducted the filtering process. The bias would have

been reduced if this process was done by a group. Finally, Google Scholar usage to bridge

the gap between when the SLM was initially conducted and when this work was published

is the final identified threat.

3.5 FINAL REMARKS

In this chapter, we report an SLM conducted to have a better understanding

of the research landscape and the current state of the art, integrated analysis over

heterogeneous provenance data, qualitatively assessing them by the following perspectives:

(i) Completeness, (ii) User Adaptability and (iii) Extensibility. Its contributions are twofold:

(i) it provides an overview of the research area, identifying the most used provenance models

and query languages; (ii) each work is individually presented and discussed, providing

qualitative analysis of these solutions based on metrics mentioned above, guiding future

research efforts.
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4 POLYFLOW: INTEGRATING HETEROGENEOUS PROVENANCE

GRAPHS

The proposed approach, named Polyflow, was developed to integrate heterogeneous

databases that represent heterogeneous provenance graphs of workflow executions. In this

section, we present an extension of the formalism initially presented in Section 2, the data

mapping process and the proposed architecture of Polyflow.

4.1 FORMALISM

Polyflow enables the user to submit integrated queries across multiple provenance

graphs. Thus, in the context of this dissertation, it is important to formalize the concept

of Provenance Database. A provenance database ℑ can be defined as a set of θ provenance

graphs Gp, where ℑ = {Gp1, Gp2, . . . , Gpθ}. For each Gpθ ∈ ℑ, Polyflow must be able

to perform queries over these graphs. Thus, a query based on parameters’ values over

multiple provenance graphs can be defined as QM(S, ℑ) ⇔ {Gpθ ∈ ℑ|∃pm ∈ Gpθ ∧

λ(⋆, ζm(Gpθ.pm), vm) ∧ (pm, vm) ∈ S}, where:

(i) QM is a set of pairs S = {(p1, v1), (p2, v2), . . . , (pm, vm)}, where pm is the queried

parameter and vm is the reference value; and

(ii) λ is the function that compares the value vm of a parameter pm to its value on

the graph Gpθ through ζm(Gpθ.pm), using any relational algebra operator ⋆ (e.g., σ, Π, ⊲⊳,

etc.).

Consider two provenance graphs Gp1, Gp2 ∈ ℑ that present semantically equiv-

alent parameters pm and p′

m (pm ≡ p′

m), but with different names. Thus, given a set

Pα = {p1, p2, . . . , pµ} ∈ Gp1 and Pβ = {p1, p2, . . . , pν} ∈ Gp2 and a transformation

language Υ, we should be able to find a mapping υ ∈ Υ where each pµ ∈ Pα and

pν ∈ Pβ, τ(pµ) = pν . Hence, in heterogeneous provenance databases, the most com-

plex task is implementing queries for parameters’ values QM(Γ, ℑ) (where Γ = Sα ∪ Sβ,

Sα = {(p1, v1), (p2, v2), . . . , (pµ, vµ)} e Sβ = {(p1, v1), (p2, v2), . . . , (pν , vν)}), considering

the mapping τ between parameters of workflow traces represented in different graphs.

4.2 MAPPING LOCAL SCHEMAS TO PROVONE

As aforementioned in Section 4.1, a challenge to provide integrated provenance

analysis is to define the mapping τ between the parameters in workflow traces represented

in heterogeneous graphs. This dissertation proposes an approach to query these graphs in

an integrated manner from heterogeneous databases. The adopted strategy is based on

mediation (ÖZSU; VALDURIEZ, 2011), which is the reconciliation made to enable the

translation of the data described by local schemas to a global schema. Polyflow adopts
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the ProvONE model as CGS (or CCM). Thus, the strategy adopted in this dissertation is

to map schemas from different sources to the ProvONE model.

Such mappings are used by the components of Polyflow (Query Resolvers and

Entity Mappers, explained in Section 4.3) to execute the queries, whether in a single or

multiple provenance graphs. In Polyflow there are two types of possible mappings: (i)

1-1: where two entities present equivalent granularity; (ii) 1-N: when an entity of the

Global Schema is associated with the composition of several entities of the Local Schema,

i.e., the granularity level is different. An entity that is represented by a join between two

tables in a RDBMS would be an example of a 1 − 2 relation. Polyflow supports other

integration operations such as Union for the relational island.

Note that N-1 and N-M can be written as N 1-1 and 1-M mappings, respectively.

Fig. 7(a) shows a fragment of the Local Schema of Swift/T (WOZNIAK et al., 2013)

provenance database and its mapping to ProvONE. The dashed arrows show the mappings

between the two schemas. Since the granularity between the models is different, only

ProvONE entities involved in the mapping were represented. Mappings are represented by

JSON objects (i.e., Entity Mappers, explained in the following Section). Fig. 7(b) shows

the Mapper of the APP_EXEC entity (Swift/T) to ProvONE’s Execution.

Figure 7 – (a) Mapping Swift/T schema to ProvONE; (b) Mapper of the APP_EXEC
entity to Execution entity.

4.3 ARCHITECTURE OVERVIEW

Polyflow was designed to support provenance interoperability, based on the concept

of Polystore systems that provide logical data interoperability. In this way, Polyflow’s

architecture follows the recommendations of Polystore architectures. In a Polystore

approach, the various storage mechanisms are distinct and accessed in an isolated way

using their own query mechanisms and a common interface. An overview of the architecture

is presented in Fig. 8. The Polyflow architecture is composed of four layers: (i) Query

Interface, (ii) Data Source, (iii) Mediation Layer and (iv) Query Processing Layer. The
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source code of the Polyflow and all the mappings performed in the experiments presented

in this dissertation are available at <https://github.com/yanmendes/polyflow>.

The Data Source layer represents the data sources that contain the multiple

provenance databases ℑ1, ℑ2, . . . , ℑf , each of which is represented in different formats.

All provenance data is collected by WfMS during (or after) a wokflow execution (step [1]

in Fig. 8) and is stored in a provenance database (step [2] in Fig. 8). Each provenance

database is related to a island of the Polystore model (e.g., relational, JSON, XML).

Polyflow currently supports PostgreSQL, MySQL, and BigDAWG data sources. This

way, a data source is a PSQL/MySQL URL or a BigDAWG endpoint. In a more general

manner, it is a URI to resources across the web (e.g., databases, files) that are mediated

by Polyflow.

The Mediation layer is the core of Polyflow. In this layer, all mappings between

the multiple islands are defined. The Mediation layer has three main components: (i)

Global Schema, (ii) Local Schema and (iii) Entity Mappers. Local Schemas are data

models associated with each provenance database in the data source layer. The Global

Schema is the canonical model used to perform queries in the Polyflow. Although the

architecture allows the usage of multiple Global Schemas, at the moment we only consider

ProvONE. Finally, Entity Mappers are software modules that exploits encoded knowledge

about certain sets or subsets of data to create information for a higher layer of applications

(WIEDERHOLD, 1992). Entity Mappers perform mappings between the Local Schema

and the Global Schema. Note that the Entity Mappers have to be implemented by users

who are aware of the data models. Entity Mappers are consumed by Query Resolvers

(explained next) when processing provenance queries. It is important to emphasize that

implementing Entity Mappers may be an arduous task. All Entity Mappers are persisted

in JSON format in Polyflow’s internal catalog. The JSON format was chosen for its

popularity and simplicity, mitigating the learning curve that other more semantic formats

(e.g., RDF).

The Query Processing layer is responsible for receiving a query from the user and,

based on the Entity Mappers. The Query Resolver is responsible for expanding queries

based on a Global Schema (i.e., ProvONE) into valid queries in the Local Schemas (step

[5] in Fig. 8). The Query Resolver works similarly to the shim operator of the PolyStore

architecture. Polyflow is also capable of resolving aggregations between pairs of entities

of the Local Schema recursively, i.e., a Entity Mapper can be composed of pairs of Entity

Mappers. In its current version, Polyflow supports Query Resolvers for PostgreSQL,

MySQL, and BigDAWG. Since Polyflow aims to be technology-agnostic, different data

sources can be added by implementing new interfaces and Query Resolvers. Due to

space restrictions, refer to the project’s Github repository for more details.

The Query Interface is the area where the user (or groups of users) submits queries



36

using the provided Polyflow endpoint (step [4] in Fig. 8). It is important to highlight

that the queries submitted to the interface follow the Polyflow standard. The queries

are SQL-like and must follow the syntax mediator-name[entity-to-be-mediated]. Queries

are expanded at runtime by replacing mediators referenced in the query with a subquery

using the elements present in the associated Entity Mapper.

Figure 8 – Polyflow architecture.

4.4 POLYFLOW IN ACTION

In this section, we briefly expand formalism described in this chapter into use

scenarios to illustrate the solution’s proposal more clearly.
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Polyflow was implemented in Node.js for it’s innate capability of dealing with I/O

and HTTP requests asynchronously and popularity. This feature enables a looser coupling

between Polyflow and the underlying data sources, making it possible to return partial

results as queries finish processing. We’ve implemented a distributed-compliant software

by providing a network interface as its only entry-point. This layer was implemented using

GraphQL, an open-source interface that works on top of TCP/UDP that describes itself

as "a query language for APIs." The main feature that compelled us to make this choice is

its self-documenting capabilities, making consumption and discoverability of endpoints

easier. It also provides a playground where users can explore the schema we’ve been

using as our User Interface (UI). Polyflow has an internal catalog powered by a RDBS

where Data Sources, Mediators and Entity Mappers are stored. Its schema is illustrated in

Fig 9. The slug dimension present in all tables are the keys used in submitted queries

to Polyflow that identify the Mediator and Entity that are being used (e.g. swift and

provoneexecution in the example showcased in Fig. 10). Slugs are normalized strings

that don’t contain special characters and spaces. All transactions are negotiated with

Polyflow through the GraphQL API - readers can refer to our Github repository1 for the

exact signatures of our APIs).

Figure 9 – Polyflow relational schema

Assuming an established connection with our Swift/T Data Source and existence

of a Mediator, also named Swift, Fig. 10(a) illustrates how the Entity Mapper would look

like for the Execution ProvONE entity.

When querying for all Executions, users submit the query to a GraphQL endpoint,

illustrated in Fig 11 (step [4] in Fig. 8). Fig. 10(b) illustrates the query expansion

performed by Polyflow (step [5] in Fig. 8).

Fig 10 showcases a 1-1 granularity, i.e., the Execution entity’s projection on the

Data Source accesses just one entity (app_exec). Polyflow also supports 1-N mappings,

where an Entity Mapper is recursively composed by relations in the Data Source. Fig.

12(a) illustrates how ProvONE’s Program Entity Mapper for Kepler’s Data Source would

be defined:
1 <https://github.com/yanmendes/polyflow>
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{
"name" : " app_exec " ,
" columns " : [

{
" a l i a s " : " execut ion_id " ,
" p r o j e c t i o n " : " app_exec_id "

} ,
{

" a l i a s " : " prov_startedAtTime " ,
" p r o j e c t i o n " : " start_time "

} ,
{

" a l i a s " : " provone_hadPlan " ,
" p r o j e c t i o n " : " scr ipt_run_id "

} ,
{ " p r o j e c t i o n " : " durat ion " }

]
}

SELECT

*
FROM swift[ provone_execution ]

<=>

SELECT * FROM (
SELECT

app_exec_id AS execution_id ,
start_time AS prov_startedAtTime ,
script_run_id AS provone_hadPlan ,
duration

FROM app_exec
) AS table_0

Figure 10 – (a) Entity Mapper for the Execution ProvONE entity in Swift/T’s database; (b)
Expansion for the query over all ProvONE Executions in Swift/T’s database.

Figure 11 – Querying the Execution ProvONE entity in Swift/T’s database.
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{
" e n t i t y 1 " : {

"name" : " ac to r " ,
" a l i a s " : " a " ,
" columns " : [ {

" a l i a s " : " program_id " ,
" p r o j e c t i o n " : " a . id "

} ]
} ,
" e n t i t y 2 " : {

"name" : " e n t i t y " ,
" a l i a s " : " e " ,
" columns " : [ {

" a l i a s " : " l a b e l " ,
" p r o j e c t i o n " : " e . name"

} ]
} ,
" columns " : [

{
" a l i a s " : " program_id " ,
" p r o j e c t i o n " : " a . id "

} ,
{

" a l i a s " : " l a b e l " ,
" p r o j e c t i o n " : " e . name"

}
] ,
" type " : "INNER" ,
" params " : [ " a . id " , " e . id " ]

}

SELECT

*
FROM kepler [ provone_program ]

<=>

SELECT * FROM (
SELECT

a.id AS program_id ,
e.NAME AS label

FROM actor AS a
INNER JOIN entity AS e

ON a.id = e.id
) AS table_0

Figure 12 – (a) Entity Mapper for the Program ProvONE entity in Kepler’s database; (b)
Expansion for the query over all ProvONE Programs in Kepler’s database.

Even though we have one level of recursion in this example, Polyflow supports as

many as needed. Fig. 12(b) showcases how Polyflow expands a query over all Kepler’s

Programs.

4.5 FINAL REMARKS

In this chapter, we introduce Polyflow, a tool built on top of a polystore system

that aims to provide support to syntactic and semantic interoperability. Polyflow mediates

incoming queries described by a Global Schema (e.g. ProvONE), and rewrites them, during

run time, making them processable by underlying engines that have data described by

other schemas in the same domain (e.g. provenance).
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5 EVALUATION AND RESULTS

In this Chapter, we evaluate Polyflow in two different ways. We firstly assess the

technical implementation in two dimensions: (a) Completeness and (b) Efficiency. In terms

of Completeness, we show that Polyflow can query all provenance graphs across distributed

databases. This evaluation aims to showcase its feasibility, i.e., that the architecture

proposed in this work is a good solution for the problem. In terms of Efficiency, we

investigate if Polyflow adds an acceptable overhead to query the provenance databases,

i.e., that the architecture could be used in a production environment.

Later, we conduct a usability evaluation with researchers that are either experts

or are knowledgeable in provenance. In the experiment, subjects are asked to write

provenance queries using Polyflow and compare with the current state of practice, i.e.,

integrating the data and querying the integrated database. This study’s objective is to

assess whether or not the solution is practical enough to be a viable state of practice.

Both of these assessments are made using real workflows used by researchers from

the Rede Avançada em Biologia Computacional, a Brazilian network of geographically

distributed researchers that work on similar topics and want to compare their results.

5.1 EVALUATION CONTEXT

In the experimental evaluation, we used the Rede Avançada em Biologia Computa-

cional (Rabicó)1, a Brazilian network whose primary goal is to develop the computational

apparatus to support data analysis of biological models. The network has members of

multiple institutions and universities such as LNCC, COPPE/UFRJ, and UFRGS. In this

project, two or more geographically distributed teams may work on similar research topics

such as phylogenetic analysis (OCAÑA et al., 2011). Each team adopts slightly different

approaches, resulting in different workflows that can be potentially managed by different

WfMSs. However, they maintain common goals and, therefore, their results should be

comparable.

In order to evaluate Polyflow, we have chosen the phylogenetic analysis experiment.

A phylogenetic analysis experiment receives as input a dataset composed of DNA, RNA,

and protein sequences to generate a phylogenetic tree that represents the evolutionary

relationship between the organisms (illustrated in Fig. 13). It has seven well-defined

steps (Fig. 14): (i) Import Datasets: data is collected from different biological repositories,

such as RefSeq2; (ii) Enumerate Sequences: The obtained sequences are identified and

enumerated (it is an optional step); (iii) Multiple Sequence Alignment: sequences are

aligned (by programs such as MAFFT, Kalign, ClustalW, Muscle or ProbCons), i.e.,
1 <https://www.labinfo.lncc.br/rabico/>
2 <https://www.ncbi.nlm.nih.gov/refseq/>
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Figure 13 – Illustration of a phylogenetic tree. Credit: <https://ksuweb.kennesaw.edu/
~jdirnber/Bio2108/Lecture/LecPhylogeny/LecPhylogeny.html>

identify similar regions that may be consequence of functional, structural or evolutionary

relations; (iv) Sequence Conversion: the aligned sequences are converted to the PHYLIP

format; (v): Elect Evolutionary Model: the best evolutionary model for the aligned

sequences is elected (this is the most compute-intensive step of the experiment); (vi):

Filter Sequences: sequences can be filtered or trimmed to reduce the complexity of the

generated phylogenetic tree (it is an optional step); and (vii): Phylogenetic Tree Generation:

the phylogenetic tree is finally generated, representing evolutionary relations between the

organisms.

Although the Phylogenetic Analysis experiment can be implemented in many ways,

in this dissertation, we consider two implementations named SciPhy (OCAÑA et al., 2011)

and SwiftPhylo (MONDELLI et al., 2018). Both workflows are variations of the same

experiment in which results must be analyzed jointly. SwiftPhylo implements all activities,

except for Import Datasets because it assumes that data is already available for processing.

On the other hand, SciPhy does not implement any optional activity, i.e., it has five steps.

Moreover, SwiftPhylo uses MAFFT as the alignment program while SciPhy executes all

aforementioned sequence alignment programs and chooses the one that produces results

with the best quality. Finally, SciPhy was implemented in Kepler WfMS while SwiftPhylo

in Swift/T WfMS.

5.2 FEASIBILITY STUDY

Considering the scenarios shown in the previous Section, we assume that a feasibility

study’s expected outcome would be to allow researchers to query integrated provenance

data generated by SciPhy and SwiftPhylo workflows. We use ProvONE as Global Schema

because:
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Figure 14 – Specification of the phylogenetic analysis experiment (represented using
Apache Taverna notation)

• it is able to capture p-prov, r-prov and evolution provenance;

• it is an extension of Prov-DM W3C standard for r-prov representation; and

• it is becoming a de facto standard for representing workflow provenance, as we show

in the next section.

In the work of (OLIVEIRA et al., 2016), the authors use a Venn Diagram (illustrated

in Fig. 15) to showcase every possible querying scenario using two provenance graphs.

Next, we showcase one query for each class Q to demonstrate the feasibility of

Polyflow. You can refer to our Github repository3 on instructions how to run them and

reproduce the experiments we run in this Chapter.

• Q1 - Retrieve all ports in Sciphy’s Provenance Graph (connection between programs

and their input/output parameters)

bdrel(select * from kepler[provone_port])

• Q2 - Retrieve all activity executions with their generated data for SwiftPhylo’s

provenance graph:
3 <https://github.com/yanmendes/Polyflow/tree/master/examples/BigDAWG>
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Figure 15 – Query classes for two provenance graphs. Inspired by (OLIVEIRA et al.,
2016))

bdrel(select * from swift[provone_execution] as e

join swift[prov_wasGeneratedBy] as wgb

on e.swift_execution_id = wgb.swift_execution_id)

• Q3 - Retrieve data used in an workflow enactment and their corresponding port for

Sciphy’s workflow.

bdrel(select * from kepler[prov_usage] as u

inner join kepler[provone_port] as p

on u.kepler_provone_hadInPort = p.kepler_port_id)

• Q4- Connect Sciphy’s ports to SwiftPhylo’s programs.

bdrel(select * from kepler[provone_port]

left join (select * from swift[provone_program]) on 1=1)

• Q5- Fetch all program’s execution duration from both datasets*

bdrel(select * from

(select duration from swift[provone_execution]) as t1

left join (select EXTRACT(SECOND FROM

kepler_prov_endedAtTime - kepler_prov_startedAtTime

) from kepler[provone_execution]) as t2 on 1=1)

• Q6- Fetch all programs and executions from both workflows*
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bdrel(select * from kepler[provone_execution] as e

inner join kepler[provone_program] as p

on p.kepler_program_id = e.kepler_provone_hadPlan

left join swift[provone_program] as sp on 1=1

left join swift[provone_execution] as se

on se.swift_provone_hadPlan = sp.swift_program_id)

One point worth mentioning for clarity’s sake is the addition of the token bdrel to

the submitted queries. As we mentioned throughout this dissertation, BigDAWG utilizes

the concept of islands that defines a data model and query language. BigDAWG’s query

interpreter (step [6] in 8) needs the island of destination of a query to properly assign

them. Therefore, all queries are wrapped around bdrel so BigDAWGs targets them to the

relational island.

In terms of Completeness, we have assessed the results for each query in every

configuration: (Swift/T) using only Swift/T provenance database in the underlying DBMS,

(ScyPhy) using only Kepler provenance database in the underlying DBMS, (BigDAWG)

using only BigDAWG and using Polyflow. The results are synthesized in Table 6, where

the number of returned tuples for each query and configuration are presented. Moreover,

we have showcased the ability to perform the queries described in the work of (OLIVEIRA

et al., 2016).

Table 6 – Tuple count at every touch point through the architecture.

Query Swift/T ScyPhy BigDAWG Polyflow

Q1 0 11 11 11
Q2 3000 0 3000 3000
Q3 0 5 5 5
Q4 2 11 22 22
Q5 1200 6 7200 7200
Q6 1200 6 7200 7200

As explained in Chapter 4, when a query is submitted, Polyflow retrieves the

entity mappers and performs a query expansion using entities and relationships from the

LS. These operations (e.g., Entity Mapper fetch and query expansion) add an overhead. To

evaluate the added overhead, we calculate the total request time and the query execution

time in the underlying DBMS. All implementation is containerized and connected via

a Docker network, hosted by a 2,4 GHz Quad-Core Intel Core i5, 16GB RAM macOS

Catalina 10.15.4 machine.

Each query was performed 10 times, and the first execution was discarded (cold

start). All requests were sequentially submitted. One can note in Table 7 that most of

the request processing time is consumed by BigDAWG, with a negligible overhead added
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by Polyflow (3.8% in the worst case). Another tendency that one can see is that the

more complex the query (i.e., more resource-consuming on BigDAWG’s side), the more

negligible is the overhead added by Polyflow (3.8% for a simple projection versus a 1.2%

for a cross-database query Q3). It’s also important to highlight that in a distributed

environment, network traffic would add a delay between Polyflow and the data sources,

further decreasing the processing overhead relevance in the total request duration. In

an ideal scenario, Polyflow should be physically located as near as possible to the data

sources.

It is important to emphasize that these results were obtained from common

consultations in the data provenance area, as defined by (OLIVEIRA et al., 2016).

However, more complex queries involving domain-specific data, and not just provenance

data, can be considered, which would increase the complexity of Polyflow. It is also

important to mention that BigDAWG (which is why we represented queries followed by ∗

in that way) presents some limitations that impairs some use cases, such as being unable

to process queries that have projections, inconsistent results for queries that use the union

operator and an inability to distinguish join types. A complete list of issues can be tracked

in their Github repository4. Polyflow also has two limitations: the inability to process

table and column aliases without the AS keyword and the lack of support of group by and

order by statements in entity mappers. Polyflow also has two limitations: the inability

to process table and column aliases without the AS keyword and the lack of support of

group by and order by statements in Entity Mappers.

Table 7 – Polyflow Overhead Analysis

Request Time (ms) Query Execution Time (ms) Overhead (ms)
min max avg stdev min max avg stdev min max avg stdev avg%

Q1 109.0 387.0 182.0 254.3 103.0 380.0 176.9 251.6 3.0 7.0 5.1 4.1 2.9
Q2 618.0 1496.0 1001.0 673.7 608.0 1484.0 982.9 670.0 7.0 36.0 18.1 28.4 1.8
Q3 130.0 384.0 215.6 241.6 127.0 370.0 209.3 233.4 2.0 14.0 6.2 11.3 3.0
Q4 319.0 461.0 359.2 118.3 314.0 457.0 354.4 118.8 3.0 10.0 4.8 6.6 1.4
Q5 386.0 731.0 571.8 366.4 380.0 684.0 560.9 347.1 4.0 47.0 10.9 38.7 1.9
Q6 1091.0 3668.0 1889.9 2171.5 1076.0 3569.0 1854.7 2114.3 5.0 99.0 32.5 92.5 1.9

5.3 USABILITY EVALUATION

In this experiment, we aimed to assess, primarily, the usability of the proposed

solution. Since usability is a very broad term that contemplates everything under "user-

friendliness" (BEVANA; KIRAKOWSKIB; MAISSELA, 1991), we hereby restrict its

scope to autonomy, clarity and ease of use. For the first two, we want to make sure

that prospective users of Polyflow can understand the documentation and start using it

themselves. The overall experiment’s steps are described below.
4 <https://github.com/bigdawg-istc/bigdawg/issues>
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Firstly, we presented the documentation on the problem and the proposed solution

described in our Github repository5. Once participants understood the problem and the

solution, we moved on to the installation of Polyflow and the setup of the BigDAWG

integration that consists of three steps: (i) Installation of Polyflow itself - described on

the link above; (ii) Installation of BigDAWG and (iii) Insertion of Kepler and Swift/T

entity mappers on Polyflow’s catalog. Instructions to both of these actions are described

on the examples folder of the same repository6.

On the pilot version, we had fewer queries as we wanted to validate the process.

In the experiment itself, participants were asked to assemble queries Q1-Q6 (described

in Section 5.2) from their specifications. The responsible for the experiment conducting

informed them of the relations and dimensions necessary for creating the query. Then,

participants were asked to compare queries submitted to Polyflow to the expanded

ones submitted to BigDAWG. Finally, the participants were asked to fill a questionnaire

(available in the appendix) to review Polyflow under a few different optics: (i) problem

statement and documentation clarity; (ii) Polyflow’s functionality. We used a mix of

ranking (1-5) and multiple-choice questions with open ones so participants could dive in

into any issues they faced. The list of closed questions were:

• EQ1) After reading the documentation, what’s your level of clarity on the problem

statement and Polyflow as a solution?

• EQ2) How hard did you find the installation process?

• EQ3) Given the complexity of creating and executing queries on the source databases,

do you think Polyflow facilitates the process?

• EQ4) Given the problem we aim to solve and your experience during the experiment,

do you think Polyflow is a viable solution?

• EQ5) From a usability standpoint, how do you rank Polyflow? - Added on the

second iteration.

Questions 1-2 hope to assess the level autonomy that the documentation would

provide to prospect users of Polyflow. Questions 3-5 aims to assess, objectively, the

perception of the respondent regarding Polyflow, i.e., how do they evaluate the experience

when compared to the current state of practice.

The usability evaluation was carried out with an expert and with people knowl-

edgeable in the application domain. The execution and results are described in the next

sections.
5 <https://github.com/yanmendes/polyflow>
6 <https://github.com/yanmendes/polyflow/tree/master/examples/BigDAWG>
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5.3.1 Domain Expert Execution and Results

Besides the feasibility study, we also carried out an evaluation with an expert in

the bioinformatics domain, named here as Expert Researcher. This pilot experiment aimed

to assess the viability of Polyflow from the perspective of an expert user, i.e., researchers.

The Expert Researcher is a member of RABICÓ project and a researcher at LNCC.

She was asked to read the documentation, install Polyflow by herself, and execute the

queries Q1 − Q6 by herself. The participant struggled to figure out by herself if she had a

working version of Polyflow running because of error logs that were false alarms. Once

we stepped in and clarified that those didn’t affect Polyflow, she was able to perform all

the queries mentioned above. Fig. 16 illustrates the subject’s experience when issuing

Query 1.

Figure 16 – Illustration of subject issuing Q1 to Polyflow

The Expert Researcher answered a questionnaire on March 12th, 2020, to collect

her point of view, through which it was possible to identify issues that needed to be

improved in Polyflow. All answers are available, in Portuguese, at this link7. Below, we

highlight some of them.

Problem statement and documentation clarity

EQ1: The Expert Researcher assessed the documentation and problem statement

as Clear. As we will discuss ahead, the installation process had several convoluted log

messages and the documentation did not prepare her for it;
7 <https://bit.ly/2OEo4bw>
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EQ2: The participant rated the difficulty of installation as Neutral. At this

point, we had a several levels of logs being exposed to the end user, which made things

unnecessarily confusing. Even though the participant had a working version of Polyflow

and BigDAWG running, she did not realize it because of it.

Polyflow’s functionality

EQ3: The subject expressed a positive perception over Polyflow’s core function-

ality, i.e., using a mediator to handle complex queries instead of manually aggregating

and querying over the integrated data.

EQ4: The Expert Researcher agrees that Polyflow is a viable solution for the

problem we’re proposing to solve.

All issues reported by the subject were resolved, and we developed a more robust

version of the experiment with more participants, which is described in Section 5.3.2.

5.3.2 Domain Knowledge Execution and Results

Since this work happened in a particular domain (provenance) that required some

degree of knowledge on relational database querying syntax (SQL), it was difficult to recruit

participants that attended to both these criteria. We managed to get three volunteers

who shared the same profile: postgraduate (Ph.D. and MSc) students and researchers in

the provenance domain with some degree of knowledge of SQL syntax.

Differently from the pilot version, this was a fully supervised experiment, i.e. the

authors were present during all sections of the experiment. Firstly, participants were asked

to read the documentation and install Polyflow. The authors tried to help them only

when absolutely necessary to gauge prospective users’ autonomy. Once they had a working

version of Polyflow and BigDAWG running, the authors helped them build Q1. From

this point on, participants were given the specification of a query written in plain English

(e.g., Retrieve all ports in Kepler’s Provenance Graph) and the name of the table and

columns pertinent to it. With that information, they were asked to assemble the query

by themselves, and, again, the authors tried to intervene only when necessary. Finally,

participants were shown the expanded version of Q1 − Q6 and asked to compare, in terms

of complexity, to the query they submitted to Polyflow. Fig. 17 illustrates a participant

issuing Q6 to Polyflow.

Due to a closer proximity to the participants this time around, we could interact

with them and write notes based on observation. Therefore, the discussion we showcase

is primarily based on the questionnaire’s results, but they are not limited to it. The

questionnaire and its results can be found here8.
8 <https://bit.ly/2GH68fP>
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Figure 17 – Illustration of participant issuing Q6 to Polyflow

Moreover, after revisiting the experiment’s process and objective, we understood

that we were only gauging usability indirectly throughout multiple questions, which was

useful to identify problems throughout different steps of the process (awareness of the

problem, solution, installation, and execution). However, we also wanted to measure how

they rate Polyflow, from a usability standpoint, as a whole, and not from individual

components and therefore added EQ5 (described below).

Problem statement and documentation clarity

EQ1: All participants ranked the documentation and the problem statement as

Very clear. One constructive criticism pointed by a participant is that could "sell" Polyflow

a little more by comparing simple queries mediated by Polyflow to the ones it expands.

EQ2: Two participants rated it as Easy while the other one rated as Very hard.

The three installation steps are indeed confusing and scattered around two repositories.

We already leverage the usage of a containerized infrastructure for these three pieces of

software. An actionable that would improve the user’s perception on this front would be

to orchestrate all of these services and jobs through Docker compose.

Polyflow’s functionality

EQ3: All participants expressed a positive perception over Polyflow’s core func-

tionality, i.e., using a mediator to handle complex queries instead of manually aggregating

and querying over the integrated data.

EQ4: All users agree that Polyflow is a viable solution for the problem we’re

proposing to solve, which is an incredibly rewarding result that validates, to an extent,
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our work.

EQ5: From a usability standpoint, results were scattered between neutral and

very positive. We are using Apollo GraphQL’s playground9 as our interface, which isn’t

very user-friendly. A clear limitation is the inability of using multiple lines in a query.

Creating our own interface should also facilitate user’s interaction.

5.3.3 Discussion

After analysis and deliberation over the results, we synthesized the following

summary of the results:

• Messy and convoluted logs and warning messages: On the pilot versio. the subject

had a working version of Polyflow and BigDAWG running on her machine, but she

did not realize it, because there were several unnecessary logs and warning messages

(e.g., BigDAWG failed attempt to connect to a SciDB instance, which was not used

at all). Such messages confused and jeopardized the experience. This feedback was

incorporated and the logs were hidden in the actual experiment;

• Complicated installation process: One subject found unnecessarily challenging the

process of installation, which we agree as it is spread across different repositories and

folders. We can leverage the usage of a containerized infrastructure for all services

to create a single installation point through composition of containers;

• Subjects longed for a friendlier UI : Both on the pilot and actual experiment, subjects

reported that the UI was not very friendly for long queries since Apollo’s GraphQL

playground doesn’t support queries with multiple lines. Polyflow was designed

with an API-first mentality, being able to seamlessly integrate with APIs and UIs.

Unfortunately, we did not have enough time to create a friendlier UI by the time of

this dissertation’s completion, but we plan on doing it as future work;

• A viable and easy solution to perform integrated queries over provenance graphs:

This was a consistent feedback throughout both phases of the experiment, where

subjects evaluated the solution as both viable and simpler than manually integrating

the data.

5.4 FINAL REMARKS

In this Chapter, we evaluated Polyflow in two different ways. We firstly assess

it in terms of feasibility and show that Polyflow is capable of interoperating p-prov and

r-prov provenance queries over distributed provenance databases with negligible overhead.
9 <https://www.apollographql.com/docs/apollo-server/testing/graphql-playground/>
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As for usability, we assess autonomy, clarity and ease of use by conducting an

experiment with a domain expert and post-graduate candidates that research provenance.

They were asked to read the documentation, install and submit several provenance queries

to Polyflow, and asked to compare to the current state of practicei.e., how they currently

conduct integrated analysis over heterogeneous and distributed provenance databases.

Results show that, even though improvements could be made, Polyflow is a viable and

easy solution to perform integrated queries over provenance graphs.
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6 FINAL REMARKS

This dissertation showcases Polyflow, a polystore-compliant approach that enables

integrated analysis of heterogeneous provenance graphs distributed across distributed and

heterogeneous databases. It is a problem faced continuously by distributed research teams

such as the members of Rabicó, a Brazilian network of researchers that use computational

simulations to investigate similar research topics and want to compare their data, workflows,

and results.

The integrated analysis can be broken down to two problems: (i) syntactic interop-

erability and (ii) semantic interoperability. In this work’s context, the first is the ability

of two or more database engines to be queried jointly despite differences in language,

interface, and format. The second is the ability to integrate datasets belonging to the

same domain (e.g. provenance) that are expressed using different models and granularity.

This work’s contributions are threefold:

Firstly, the authors conducted an SLM to understand the existing gaps in the

state of the art of provenance data syntactic and semantic interoperability. With its

results, they were able to identify that no solutions in the state of art satisfy the criteria

used to evaluated them, namely: (i) Completeness, (ii) User Adaptability and (iii)

Extensibility.

With a clearer understanding of how state of the art could be improved, the authors

propose a solution named Polyflow that provides support to semantic interoperability

by using ProvONE as a Canonical Conceptual Model/Global Schema. It is built upon a

polystore database that provides support to syntactic interoperability. The ProvONE

data model guarantees (i) Completeness due to its ability to represent p-prov, r-prov

and evolution provenance and (ii) Extensibility because it is built on top of a W3C

recommendation and its recent popularity and traction in related literature.

Finally, we assess Polyflow’s capabilities under two perspectives (i) Feasibility and

(ii) Usability. In terms of feasibility, we show that Polyflow is capable of interoperating

p-prov and r-prov provenance queries over distributed provenance databases with negligible

overhead. Users submit queries using ProvONE as a lingua franca for provenance and

Polyflow rewrites them, during run time, to the underlying databases’ schemas. As for

usability, we assess autonomy, clarity and ease of use by conducting an experiment

with a domain expert and post-graduate candidates that research provenance. They

were asked to read the documentation, install and submit several provenance queries to

Polyflow and asked to compare to the current state of practicei.e., how they currently

conduct integrate analysis over heterogeneous and distributed provenance databases.

As for future work, creating a custom UI and simplifying the installation process

are two very straight-forward improvements regarding usability. As depicted in Chapter
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4, Polyflow is domain-agnostic and able to provide semantic interoperability based on

mappings present in its catalog. With that in mind, we plan on expanding the scope of

this work and show that Polyflow can be used to tackle the semantic interoperability

problem more broadly, considering another application domain.

In this sense, we also intend to enable a more flexible global scheme definition,

allowing users to define more than one global scheme and use the Polyflow with greater

flexibility. Thus, we intend that the Polyflow meets the demand of different users

simultaneously through the parameterization of the global scheme.

We adopted BigDAWG as the only Polystore implementation at the time. Meantime,

BigDAWG impaired some querying scenarios due to its relational island inability to process

some SQL statements (e.g., union). We also plan on providing new query interfaces that

connect to other polystore systems to enable these queries. Thus, we intend to evaluate

the flexibility of the Polyflow when integrating with other polystore systems.

In this work, we do not consider security issues in the polystore database. For the

Polyflow to be deployed and made available, it is crucial to develop a security layer.
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7.2 APPENDIX B - QUESTIONNAIRE USED USABILITY ASSESSMENT

10/22/2020 Clareza do problema e documentação

https://docs.google.com/forms/d/1c4HywSdhErFdUKO_vGiv8zuMbIE0rHaw0wXd4cynILw/edit 1/3

1.

Marcar apenas uma oval.

Nada claro

1 2 3 4 5

Muito claro

2.

3.

Marcar apenas uma oval.

Muito difícil

1 2 3 4 5

Muito fácil

Clareza do problema e documentação
Formulário de avaliação da ferramenta Polyflow

*Obrigatório

Após a leitura da documentação, ficou clara a proposta da ferramenta e o

problema que ela se compromete a resolver? *

Caso tenha algum feedback sobre a documentação, utilize o espaço abaixo (ex: o

tópico X poderia estar mais claro)

Qual o grau de dificuldade percebido durante a instalação da ferramenta? *



10/22/2020 Clareza do problema e documentação

https://docs.google.com/forms/d/1c4HywSdhErFdUKO_vGiv8zuMbIE0rHaw0wXd4cynILw/edit 2/3

4.

Solução

5.

Marcar apenas uma oval.

Não, prefiro executar consultas em SGBDs e integrar os esquemas manualmente

Sim, a sintaxe SQL-like ameniza a curva de aprendizado

6.

7.

Marcar apenas uma oval.

Nada intuitivo

1 2 3 4 5

Extremamente amigável

Caso tenha algum feedback sobre o processo de instalação, utilize este espaço

(ex: encontrei um erro inesperado na seção Y)

Sobre a complexidade de construção e execução de consultas, você entende que

polyflow auxilia o processo? *

Caso possua algum feedback sobre o processo de construção e execução de

consultas, descreva-o abaixo

Do ponto de vista de usabilidade, como você avaliaria o Polyflow? *



10/22/2020 Clareza do problema e documentação

https://docs.google.com/forms/d/1c4HywSdhErFdUKO_vGiv8zuMbIE0rHaw0wXd4cynILw/edit 3/3

8.

Marcar apenas uma oval.

Sim

Não

9.

Este conteúdo não foi criado nem aprovado pelo Google.

Dado o problema que Polyflow visa resolver e sua experiência no experimento,

você entende que a ferramenta é uma solução viável? *

Caso queira dar mais algum feedback sobre o experimento, a ferramenta ou o

processo, utilize o espaço abaixo

Formulários



59

REFERENCES

ABADI, Daniel; AGRAWAL, Rakesh; AILAMAKI, Anastasia; BALAZINSKA, Magdalena;
BERNSTEIN, Philip A.; CAREY, Michael J.; CHAUDHURI, Surajit; DEAN, Jeffrey;
DOAN, AnHai; FRANKLIN, Michael J.; GEHRKE, Johannes; HAAS, Laura M.; HALEVY,
Alon Y.; HELLERSTEIN, Joseph M.; IOANNIDIS, Yannis E.; JAGADISH, H. V.; KOSS-
MANN, Donald; MADDEN, Samuel; MEHROTRA, Sharad; MILO, Tova; NAUGHTON,
Jeffrey F.; RAMAKRISHNAN, Raghu; MARKL, Volker; OLSTON, Christopher; OOI,
Beng Chin; RÉ, Christopher; SUCIU, Dan; STONEBRAKER, Michael; WALTER, Todd;
WIDOM, Jennifer. The beckman report on database research. Commun. ACM, v. 59,
n. 2, p. 92–99, 2016. Available from Internet: <<https://doi.org/10.1145/2845915>>.

ABADI, Daniel; AILAMAKI, Anastasia; ANDERSEN, David; BAILIS, Peter; BALAZIN-
SKA, Magdalena; BERNSTEIN, Philip A.; BONCZ, Peter A.; CHAUDHURI, Surajit;
CHEUNG, Alvin; DOAN, AnHai; DONG, Luna; FRANKLIN, Michael J.; FREIRE,
Juliana; HALEVY, Alon Y.; HELLERSTEIN, Joseph M.; IDREOS, Stratos; KOSS-
MANN, Donald; KRASKA, Tim; KRISHNAMURTHY, Sailesh; MARKL, Volker; MEL-
NIK, Sergey; MILO, Tova; MOHAN, C.; NEUMANN, Thomas; OOI, Beng Chin; OZ-
CAN, Fatma; PATEL, Jignesh; PAVLO, Andrew; POPA, Raluca A.; RAMAKRISHNAN,
Raghu; RÉ, Christopher; STONEBRAKER, Michael; SUCIU, Dan. The seattle report on
database research. SIGMOD Rec., v. 48, n. 4, p. 44–53, 2019. Available from Internet:
<<https://doi.org/10.1145/3385658.3385668>>.

ABBASI, Ahmed; SARKER, Suprateek; CHIANG, Roger HL. Big data research in
information systems: Toward an inclusive research agenda. Journal of the Association
for Information Systems, v. 17, n. 2, 2016.

ALTINTAS, Ilkay; ANAND, Manish Kumar; CRAWL, Daniel; BOWERS, Shawn; BEL-
LOUM, Adam; MISSIER, Paolo; LUDÄSCHER, Bertram; GOBLE, Carole A; SLOOT,
Peter MA. Understanding collaborative studies through interoperable workflow provenance.
In: SPRINGER. IPAW. [S.l.], 2010. p. 42–58.

ALTINTAS, Ilkay; BERKLEY, Chad; JAEGER, Efrat; JONES, Matthew B.;
LUDÄSCHER, Bertram; MOCK, Steve. Kepler: An extensible system for design and
execution of scientific workflows. In: Proceedings of the 16th International Con-
ference on Scientific and Statistical Database Management (SSDBM 2004),
21-23 June 2004, Santorini Island, Greece. [s.n.], 2004. p. 423–424. Available from
Internet: <<https://doi.org/10.1109/SSDM.2004.1311241>>.

ANAND, Manish Kumar; BOWERS, Shawn; ALTINTAS, Ilkay; LUDÄSCHER, Bertram.
Approaches for exploring and querying scientific workflow provenance graphs. In:
SPRINGER. International Provenance and Annotation Workshop. [S.l.], 2010.
p. 17–26.

ANAND, Manish Kumar; BOWERS, Shawn; MCPHILLIPS, Timothy; LUDÄSCHER,
Bertram. Exploring scientific workflow provenance using hybrid queries over nested data
and lineage graphs. In: SPRINGER. SSDBM. [S.l.], 2009. p. 237–254.

ATKINSON, Malcolm P.; GESING, Sandra; MONTAGNAT, Johan; TAYLOR, Ian J.
Scientific workflows: Past, present and future. FGCS, v. 75, p. 216–227, 2017. Available
from Internet: <<https://doi.org/10.1016/j.future.2017.05.041>>.



60

BAVOIL, Louis; CALLAHAN, Steven P.; SCHEIDEGGER, Carlos Eduardo; VO, Huy T.;
CROSSNO, Patricia; SILVA, Cláudio T.; FREIRE, Juliana. Vistrails: Enabling interactive
multiple-view visualizations. In: 16th IEEE Visualization Conference, VIS 2005,
Minneapolis, MN, USA, October 23-28, 2005. IEEE Computer Society, 2005. p.
135–142. Available from Internet: <<https://doi.org/10.1109/VISUAL.2005.1532788>>.

BEGOLI, Edmon; KISTLER, Derek; BATES, Jack. Towards a heterogeneous, polystore-
like data architecture for the US department of veteran affairs (VA) enterprise analytics.
In: BigData 2016. [s.n.], 2016. p. 2550–2554. Available from Internet: <<https://doi.
org/10.1109/BigData.2016.7840896>>.

BEVANA, Nigel; KIRAKOWSKIB, Jurek; MAISSELA, Jonathan. What is usability. In:
CITESEER. Proceedings of the 4th International Conference on HCI. [S.l.], 1991.

BOSE, Rajendra; FREW, James. Lineage retrieval for scientific data processing: a survey.
ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 37, n. 1, p. 1–28,
2005.

BUDGEN, David; TURNER, Mark; BRERETON, Pearl; KITCHENHAM, Barbara A.
Using mapping studies in software engineering. In: PPIG. [S.l.: s.n.], 2008. v. 8, p.
195–204.

BUNEMAN, Peter; KHANNA, Sanjeev; WANG-CHIEW, Tan. Why and where: A
characterization of data provenance. In: SPRINGER. ICDT. [S.l.], 2001. p. 316–330.

CHEBOTKO, Artem; LU, Shiyong; FEI, Xubo; FOTOUHI, Farshad. Rdfprov: A relational
rdf store for querying and managing scientific workflow provenance. Data & Knowledge
Engineering, Elsevier, v. 69, n. 8, p. 836–865, 2010.

CHIRIGATI, Fernando; FREIRE, Juliana. Provenance and reproducibility. In: LIU,
Ling; ÖZSU, M. Tamer (Ed.). Encyclopedia of Database Systems, Second Edition.
Springer, 2018. Available from Internet: <<https://doi.org/10.1007/978-1-4614-8265-9_
80747>>.

COSTA, Catarina; MURTA, Leonardo. Version control in distributed software development:
A systematic mapping study. In: IEEE. 2013 ICGSE. [S.l.], 2013. p. 90–99.

COULOURIS, George F; DOLLIMORE, Jean; KINDBERG, Tim. Distributed systems:
concepts and design. [S.l.]: pearson education, 2005.

CUEVAS-VICENTTIN, Victor; DEY, Saumen; WANG, Michael Li Yuan; SONG, Tian-
hong; LUDASCHER, Bertram. Modeling and querying scientific workflow provenance
in the d-opm. In: IEEE. 2012 SC Companion: High-Performance Computing,
Networking, Storage and Analysis (SCC). [S.l.], 2012. p. 119–128.

CUEVAS-VICENTTÍN, Víctor; LUDÄSCHER, B; MISSIER, P; BELHAJJAME, K;
CHIRIGATI, F; WEI, Y; LEINFELDER, B. Provone: A prov extension data model
for scientific workflow provenance. [S.l.]: Tech. Rep. DataOne, 2015.

DAVIDSON, Susan B; FREIRE, Juliana. Provenance and scientific workflows: challenges
and opportunities. In: ACM. 2008 ACM SIGMOD. [S.l.], 2008. p. 1345–1350.



61

DEELMAN, Ewa; PETERKA, Tom; ALTINTAS, Ilkay; CAROTHERS, Christopher D.;
DAM, Kerstin Kleese van; MORELAND, Kenneth; PARASHAR, Manish; RAMAKRISH-
NAN, Lavanya; TAUFER, Michela; VETTER, Jeffrey S. The future of scientific workflows.
Int. J. High Perform. Comput. Appl., v. 32, n. 1, p. 159–175, 2018. Available from
Internet: <<https://doi.org/10.1177/1094342017704893>>.

DEELMAN, Ewa; VAHI, Karan; JUVE, Gideon; RYNGE, Mats; CALLAGHAN, Scott;
MAECHLING, Philip; MAYANI, Rajiv; CHEN, Weiwei; SILVA, Rafael Ferreira da;
LIVNY, Miron; WENGER, R. Kent. Pegasus, a workflow management system for science
automation. Future Generation Comp. Syst., v. 46, p. 17–35, 2015. Available from
Internet: <<https://doi.org/10.1016/j.future.2014.10.008>>.

DING, Li; MICHAELIS, James; MCCUSKER, Jim; MCGUINNESS, Deborah L. Linked
provenance data: A semantic web-based approach to interoperable workflow traces. Future
Generation Computer Systems, Elsevier, v. 27, n. 6, p. 797–805, 2011.

DUGGAN, Jennie; ELMORE, Aaron J; STONEBRAKER, Michael; BALAZINSKA,
Magda; HOWE, Bill; KEPNER, Jeremy; MADDEN, Sam; MAIER, David; MATTSON,
Tim; ZDONIK, Stan. The bigdawg polystore system. ACM Sigmod Record, ACM,
v. 44, n. 2, p. 11–16, 2015.

ELLQVIST, Tommy; KOOP, David; FREIRE, Juliana; SILVA, Cláudio; STRÖMBÄCK,
Lena. Using mediation to achieve provenance interoperability. In: IEEE. Services-I, 2009
World Conference on. [S.l.], 2009. p. 291–298.

FREIRE, Juliana; CHIRIGATI, Fernando Seabra. Provenance and the different flavors
of reproducibility. IEEE Data Eng. Bull., v. 41, n. 1, p. 15–26, 2018. Available from
Internet: <<http://sites.computer.org/debull/A18mar/p15.pdf>>.

FREIRE, Juliana; KOOP, David; SANTOS, Emanuele; SILVA, Cláudio T. Provenance for
computational tasks: A survey. CS & E, IEEE, v. 10, n. 3, 2008.

GADEPALLY, Vijay; CHEN, Peinan; DUGGAN, Jennie; ELMORE, Aaron; HAYNES,
Brandon; KEPNER, Jeremy; MADDEN, Samuel; MATTSON, Tim; STONEBRAKER,
Michael. The bigdawg polystore system and architecture. In: IEEE. High Performance
Extreme Computing Conference (HPEC), 2016 IEEE. [S.l.], 2016. p. 1–6.

GASPAR, Wander; BRAGA, Regina; CAMPOS, Fernanda. Sciprov: an architecture for
semantic query in provenance metadata on e-science context. In: SPRINGER. Interna-
tional Conference on Information Technology in Bio-and Medical Informatics.
[S.l.], 2011. p. 68–81.

GESING, Sandra; DOOLEY, Rion; PIERCE, Marlon E.; KRÜGER, Jens; GRUNZKE,
Richard; HERRES-PAWLIS, Sonja; HOFFMANN, Alexander. Gathering requirements for
advancing simulations in HPC infrastructures via science gateways. FGCS, v. 82, p. 544–
554, 2018. Available from Internet: <<https://doi.org/10.1016/j.future.2017.02.042>>.

GLATARD, Tristan; ROUSSEAU, Marc Étienne; CAMARASU-POP, Sorina; ADALAT,
Reza; BECK, Natacha; DAS, Samir; SILVA, Rafael Ferreira da; KHALILI-MAHANI,
Najmeh; KORKHOV, Vladimir; QUIRION, Pierre-Olivier; RIOUX, Pierre; OLABAR-
RIAGA, Sílvia D.; BELLEC, Pierre; EVANS, Alan C. Software architectures to in-
tegrate workflow engines in science gateways. Future Generation Computer Sys-



62

tems, v. 75, p. 239 – 255, 2017. ISSN 0167-739X. Available from Internet: <<http:
//www.sciencedirect.com/science/article/pii/S0167739X17300249>>.

GROTH, Paul; MOREAU, Luc. Recording process documentation for provenance. IEEE
TPDS, IEEE, v. 20, n. 9, p. 1246–1259, 2009.

HAMADOU, Hamdi Ben; GALLINUCCI, Enrico; GOLFARELLI, Matteo. Answering
GPSJ queries in a polystore: A dataspace-based approach. In: LAENDER, Alberto H. F.;
PERNICI, Barbara; LIM, Ee-Peng; OLIVEIRA, José Palazzo M. de (Ed.). Concep-
tual Modeling - 38th International Conference, ER 2019, Salvador, Brazil,
November 4-7, 2019, Proceedings. Springer, 2019. (Lecture Notes in Computer
Science, v. 11788), p. 189–203. Available from Internet: <<https://doi.org/10.1007/
978-3-030-33223-5_16>>.

HAZEN, Benjamin T; BOONE, Christopher A; EZELL, Jeremy D; JONES-FARMER,
L Allison. Data quality for data science, predictive analytics, and big data in supply
chain management: An introduction to the problem and suggestions for research and
applications. International Journal of Production Economics, Elsevier, v. 154, p.
72–80, 2014.

HEY, Tony; TANSLEY, Stewart; TOLLE, Kristin M et al. The fourth paradigm:
data-intensive scientific discovery. [S.l.]: Microsoft research Redmond, WA, 2009.

HUYNH, Trung Dong; EBDEN, Mark; FISCHER, Joel E.; ROBERTS, Stephen J.;
MOREAU, Luc. Provenance network analytics - an approach to data analytics using data
provenance. Data Min. Knowl. Discov., v. 32, n. 3, p. 708–735, 2018. Available from
Internet: <<https://doi.org/10.1007/s10618-017-0549-3>>.

JABAL, Amani Abu; BERTINO, Elisa. Simp: Secure interoperable multi-granular prove-
nance framework. In: IEEE. IEEE e-Science 2016. [S.l.], 2016. p. 270–275.

JAGADISH, H. V.; GEHRKE, Johannes; LABRINIDIS, Alexandros; PAPAKONSTANTI-
NOU, Yannis; PATEL, Jignesh M.; RAMAKRISHNAN, Raghu; SHAHABI, Cyrus. Big
data and its technical challenges. Commun. ACM, v. 57, n. 7, p. 86–94, 2014. Available
from Internet: <<https://doi.org/10.1145/2611567>>.

JHINGRAN, AD; MATTOS, Nelson; PIRAHESH, Hamid. Information integration: A
research agenda. IBM systems Journal, IBM, v. 41, n. 4, p. 555–562, 2002.

KHAN, Farah Zaib; SOILAND-REYES, Stian; SINNOTT, Richard O; LONIE, Andrew;
GOBLE, Carole; CRUSOE, Michael R. Sharing interoperable workflow provenance: A
review of best practices and their practical application in cwlprov. GigaScience, Oxford
University Press, v. 8, n. 11, p. giz095, 2019.

KHAN, Yasar; ZIMMERMANN, Antoine; JHA, Alokkumar; GADEPALLY, Vijay;
D’AQUIN, Mathieu; SAHAY, Ratnesh. One size does not fit all: Querying web poly-
stores. IEEE Access, v. 7, p. 9598–9617, 2019. Available from Internet: <<https:
//doi.org/10.1109/ACCESS.2018.2888601>>.

KITCHENHAM, Barbara. Procedures for performing systematic reviews. Keele, UK,
Keele University, v. 33, n. 2004, p. 1–26, 2004.



63

LI, Chunqiu; SUGIMOTO, Shigeo. Provenance description of metadata using prov with
premis for long-term use of metadata. In: International Conference on Dublin Core
and Metadata Applications. [S.l.: s.n.], 2014. p. 147–156.

LIM, Chunhyeok; LU, Shiyong; CHEBOTKO, Artem; FOTOUHI, Farshad. Storing,
reasoning, and querying opm-compliant scientific workflow provenance using relational
databases. FGCS, Elsevier, v. 27, n. 6, p. 781–789, 2011.

LITWIN, Witold; ABDELLATIF, Abdelaziz. Multidatabase interoperability. Computer,
IEEE, n. 12, p. 10–18, 1986.

MATTOSO, Marta; WERNER, Cláudia; TRAVASSOS, Guilherme Horta; BRAGAN-
HOLO, Vanessa; OGASAWARA, Eduardo S.; OLIVEIRA, Daniel de; CRUZ, Sérgio
Manuel Serra da; MARTINHO, Wallace; MURTA, Leonardo. Towards supporting the life
cycle of large scale scientific experiments. IJBPIM, v. 5, n. 1, p. 79–92, 2010. Available
from Internet: <<https://doi.org/10.1504/IJBPIM.2010.033176>>.

MISSIER, Paolo; LUDÄSCHER, Bertram; BOWERS, Shawn; DEY, Saumen; SARKAR,
Anandarup; SHRESTHA, Biva; ALTINTAS, Ilkay; ANAND, Manish Kumar; GOBLE,
Carole. Linking multiple workflow provenance traces for interoperable collaborative science.
In: IEEE. WORKS 2010. [S.l.], 2010. p. 1–8.

MONDELLI, Maria Luiza; MAGALHÃES, Thiago; LOSS, Guilherme; WILDE, Michael;
FOSTER, Ian T.; MATTOSO, Marta; KATZ, Daniel S.; BARBOSA, Helio J. C.;
VASCONCELOS, Ana Tereza Ribeiro de; OCAÑA, Kary A. C. S.; JR., Luiz M.
R. Gadelha. Bioworkbench: A high-performance framework for managing and analyz-
ing bioinformatics experiments. CoRR, abs/1801.03915, 2018. Available from Internet:
<<http://arxiv.org/abs/1801.03915>>.

MOREAU, Luc; FREIRE, Juliana; FUTRELLE, Joe; MCGRATH, Robert E; MYERS,
Jim; PAULSON, Patrick. The open provenance model: An overview. In: SPRINGER.
International Provenance and Annotation Workshop. [S.l.], 2008. p. 323–326.

MOREAU, Luc; GROTH, Paul T.; CHENEY, James; LEBO, Timothy; MILES, Simon.
The rationale of PROV. J. Web Semant., v. 35, p. 235–257, 2015. Available from Internet:
<<https://doi.org/10.1016/j.websem.2015.04.001>>.

OCAÑA, Kary ACS; OLIVEIRA, Daniel de; OGASAWARA, Eduardo; DÁVILA, Al-
berto MR; LIMA, Alexandre AB; MATTOSO, Marta. Sciphy: a cloud-based workflow
for phylogenetic analysis of drug targets in protozoan genomes. In: SPRINGER. BSB11.
[S.l.], 2011. p. 66–70.

OGASAWARA, Eduardo S.; DIAS, Jonas; SOUSA, Vítor Silva; CHIRIGATI, Fer-
nando Seabra; OLIVEIRA, Daniel de; PORTO, Fábio; VALDURIEZ, Patrick; MAT-
TOSO, Marta. Chiron: a parallel engine for algebraic scientific workflows. Concurr.
Comput. Pract. Exp., v. 25, n. 16, p. 2327–2341, 2013. Available from Internet:
<<https://doi.org/10.1002/cpe.3032>>.

OLIVEIRA, Ary Henrique M. de; OLIVEIRA, Daniel de; MATTOSO, Marta. Clouds
and reproducibility: A way to go to scientific experiments? In: ANTONOPOULOS, Nick;
GILLAM, Lee (Ed.). Cloud Computing - Principles, Systems and Applications,
Second Edition. Springer, 2017, (Computer Communications and Networks). p. 127–151.
Available from Internet: <<https://doi.org/10.1007/978-3-319-54645-2_5>>.



64

OLIVEIRA, Daniel de; LIU, Ji; PACITTI, Esther. Data-Intensive Workflow Man-
agement: For Clouds and Data-Intensive and Scalable Computing Envi-
ronments. Morgan & Claypool Publishers, 2019. (Synthesis Lectures on Data Man-
agement). Available from Internet: <<https://www.morganclaypool.com/doi/10.2200/
S00915ED1V01Y201904DTM060>>.

OLIVEIRA, Daniel de; OCAÑA, Kary A. C. S.; BAIÃO, Fernanda Araujo; MATTOSO,
Marta. A provenance-based adaptive scheduling heuristic for parallel scientific workflows
in clouds. J. Grid Comput., v. 10, n. 3, p. 521–552, 2012. Available from Internet:
<<https://doi.org/10.1007/s10723-012-9227-2>>.

OLIVEIRA, Daniel de; OCAÑA, Kary A. C. S.; OGASAWARA, Eduardo S.; DIAS, Jonas;
GONÇALVES, João Carlos de A. R.; BAIÃO, Fernanda Araujo; MATTOSO, Marta.
Performance evaluation of parallel strategies in public clouds: A study with phylogenomic
workflows. Future Gener. Comput. Syst., v. 29, n. 7, p. 1816–1825, 2013. Available
from Internet: <<https://doi.org/10.1016/j.future.2012.12.019>>.

OLIVEIRA, Daniel de; OGASAWARA, Eduardo S.; BAIÃO, Fernanda Araujo; MAT-
TOSO, Marta. Scicumulus: A lightweight cloud middleware to explore many task comput-
ing paradigm in scientific workflows. In: IEEE International Conference on Cloud
Computing, CLOUD 2010, Miami, FL, USA, 5-10 July, 2010. [s.n.], 2010. p.
378–385. Available from Internet: <<https://doi.org/10.1109/CLOUD.2010.64>>.

OLIVEIRA, Wellington; MISSIER, Paolo; OCAÑA, Kary; OLIVEIRA, Daniel de; BRA-
GANHOLO, Vanessa. Analyzing provenance across heterogeneous provenance graphs. In:
SPRINGER. IPAW. [S.l.], 2016. p. 57–70.

ÖZSU, M Tamer; VALDURIEZ, Patrick. Principles of distributed database systems.
[S.l.]: Springer Science & Business Media, 2011.

PARCIAK, M; BAUER, C; BENDER, T; LODAHL, R; SCHREIWEIS, B; TUTE, E;
SAX, U. Provenance solutions for medical research in heterogeneous it-infrastructure: An
implementation roadmap. Studies in health technology and informatics, v. 264, p.
298–302, 2019.

PENG, Roger. The reproducibility crisis in science: A statistical counterattack. Signifi-
cance, Wiley Online Library, v. 12, n. 3, p. 30–32, 2015.

PÉREZ, Beatriz; RUBIO, Julio; SÁENZ-ADÁN, Carlos. A systematic review of provenance
systems. Knowledge and Information Systems, Springer, p. 1–49, 2018.

PIMENTEL, João Felipe; FREIRE, Juliana; BRAGANHOLO, Vanessa; MURTA,
Leonardo. Tracking and analyzing the evolution of provenance from scripts. In: SPRINGER.
International Provenance and Annotation Workshop. [S.l.], 2016. p. 16–28.

PRABHUNE, Ajinkya; STOTZKA, Rainer; SAKHARKAR, Vaibhav; HESSER, Jür-
gen; GERTZ, Michael. Metastore: an adaptive metadata management framework for
heterogeneous metadata models. DPD, Springer, v. 36, n. 1, p. 153–194, 2018.

PRABHUNE, Ajinkya; ZWEIG, Aaron; STOTZKA, Rainer; GERTZ, Michael; HESSER,
Juergen. Prov2one: an algorithm for automatically constructing provone provenance
graphs. In: SPRINGER. IPAW. [S.l.], 2016. p. 204–208.



65

PRABHUNE, Ajinkya; ZWEIG, Aaron; STOTZKA, Rainer; HESSER, Jürgen; GERTZ,
Michael. P-PIF: a provone provenance interoperability framework for analyzing het-
erogeneous workflow specifications and provenance traces. Distributed and Paral-
lel Databases, v. 36, n. 1, p. 219–264, 2018. Available from Internet: <<https:
//doi.org/10.1007/s10619-017-7216-y>>.

PRABHUNE, Ajinkya; ZWEIG, Aaron; STOTZKA, Rainer; HESSER, Jürgen; GERTZ,
Michael. P-pif: a provone provenance interoperability framework for analyzing hetero-
geneous workflow specifications and provenance traces. DPD, Springer, v. 36, n. 1, p.
219–264, 2018.

PROV-OVERVIEW. 2013. <https://www.w3.org/TR/prov-overview/>. [Online; accessed
24-August-2018].

SCHWAB, Matthias; KARRENBACH, N; CLAERBOUT, Jon. Making scientific compu-
tations reproducible. CS & E, IEEE, v. 2, n. 6, p. 61–67, 2000.

SIMMHAN, Yogesh L; PLALE, Beth; GANNON, Dennis. A survey of data provenance in
e-science. ACM Sigmod Record, ACM, v. 34, n. 3, p. 31–36, 2005.

SOUZA, Renan; AZEVEDO, Leonardo; THIAGO, Raphael; SOARES, Elton; NERY,
Marcelo; NETTO, Marco; BRAZIL, Emilio Vital; CERQUEIRA, Renato; VALDURIEZ,
Patrick; MATTOSO, Marta. Efficient runtime capture of multiworkflow data using prove-
nance. In: . [S.l.: s.n.], 2019.

STEINMACHER, Igor; CHAVES, Ana Paula; GEROSA, Marco Aurélio. Awareness
support in distributed software development: A systematic review and mapping of the
literature. CSCW, Springer, v. 22, n. 2-3, p. 113–158, 2013.

STONEBRAKER, Michael. The case for polystores. ACM SIGMOD Blog, 2015.

THE third provenance challenge. 2009. <https://openprovenance.org/
provenance-challenge/ThirdProvenanceChallenge.html>. [Online; accessed 24-August-
2018].

TOLK, Andreas; MUGUIRA, James A. The levels of conceptual interoperability model. In:
CITESEER. Proceedings of the 2003 fall simulation interoperability workshop.
[S.l.], 2003. v. 7, p. 1–11.

VíCTOR LUDäSCHER BERTRAM, Missier Paolo Belhajjame Khalid Chiri-
gati Fernando Wei Yaxing Dey Saumen Kianmajd Parisa Koop David Bow-
ers Shawn Altintas Ilkay Jones Christopher B. Jones Matthew Walker Lauren
Slaughter Peter Leinfelder Ben Cao Yang Cuevas-Vicenttín. ProvONE Data
Model. 2016. <http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/
job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html>. [On-
line; accessed 19-July-2020].

WATSON, Paul; HIDEN, Hugo; WOODMAN, Simon. e-science central for CARMEN:
science as a service. Concurrency and Computation: Practice and Experience,
v. 22, n. 17, p. 2369–2380, 2010. Available from Internet: <<https://doi.org/10.1002/cpe.
1611>>.



66

WEGNER, Peter. Interoperability. ACM Computing Surveys (CSUR), ACM New
York, NY, USA, v. 28, n. 1, p. 285–287, 1996.

WIEDERHOLD, Gio. Mediators in the architecture of future information systems. Com-
puter, IEEE, v. 25, n. 3, p. 38–49, 1992.

WOHLIN, Claes. Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: ACM. Proceedings of the 18th international
conference on evaluation and assessment in software engineering. [S.l.], 2014.
p. 38.

WOLSTENCROFT, Katherine; HAINES, Robert; FELLOWS, Donal; WILLIAMS,
Alan R.; WITHERS, David; OWEN, Stuart; SOILAND-REYES, Stian; DUNLOP, Ian;
NENADIC, Aleksandra; FISHER, Paul; BHAGAT, Jiten; BELHAJJAME, Khalid; BA-
CALL, Finn; HARDISTY, Alex; HIDALGA, Abraham Nieva de la; VARGAS, Maria
P. Balcazar; SUFI, Shoaib; GOBLE, Carole A. The taverna workflow suite: designing
and executing workflows of web services on the desktop, web or in the cloud. Nucleic
Acids Research, v. 41, n. Webserver-Issue, p. 557–561, 2013. Available from Internet:
<<https://doi.org/10.1093/nar/gkt328>>.

WOZNIAK, Justin M.; ARMSTRONG, Timothy G.; WILDE, Michael; KATZ, Daniel S.;
LUSK, Ewing L.; FOSTER, Ian T. Swift/t: Large-scale application composition via
distributed-memory dataflow processing. In: 13th IEEE/ACM International Sympo-
sium on Cluster, Cloud, and Grid Computing, CCGrid 2013, Delft, Nether-
lands, May 13-16, 2013. [s.n.], 2013. p. 95–102. Available from Internet: <<https:
//doi.org/10.1109/CCGrid.2013.99>>.

YU, Jia; BUYYA, Rajkumar. A taxonomy of scientific workflow systems for grid computing.
ACM Sigmod Record, ACM, v. 34, n. 3, p. 44–49, 2005.


