
I4-D1

Survey over Existing Query and Transformation

Languages

Project number: IST-2004-506779
Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Document type: D (deliverable)
Nature of document R (report)
Dissemination level: PU (public)
Document number: IST506779/Munich/I4-D1/D/PU/a1
Responsible editor(s): Tim Furche
Reviewer(s): Wolfgang May
Contributing participants: Hannover, Heraklion, Manchester, Munich, Nancy,

Venice, webXcerpt
Contributing workpackages: I4
Contractual date of delivery: 31 August 2004

Abstract
A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability
of many current Semantic Web approaches to cope with data available in such diverging
representation formalisms as XML, RDF, or Topic Maps. A common query language is the first
step to allow transparent access to data in any of these formats. To further the understanding
of the requirements and approaches proposed for query languages in the conventional as well
as the Semantic Web, this report surveys a large number of query languages for accessing
XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from
all these areas. From the detailed survey of these query languages, a common classification
scheme is derived that is useful for understanding and differentiating languages within and
among all three areas.

Keyword List
reasoning, query language, XML, RDF, Topic Maps, OWL, classification, Semantic Web

c© REWERSE 2004.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12175078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Survey over Existing Query and Transformation

Languages

Tim Furche1, François Bry2, Sebastian Schaffert3, Renzo Orsini4, Ian Horrocks5, Michael
Kraus 6, and Oliver Bolzer7

1 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Tim.Furche@ifi.lmu.de

2 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Francois.Bry@ifi.lmu.de

3 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Sebastian.Schaffert@ifi.lmu.de

4 Dipartimento di Informatica, Università Ca’ Foscari Venezia
Email: orsini@dsi.unive.it

5 Department of Computer Science, University of Manchester
Email: horrocks@cs.man.ac.uk

6 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Michael.Kraus@ifi.lmu.de

7 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Oliver.Bolzer@stud.ifi.lmu.de

8 September 2004

Abstract
A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability
of many current Semantic Web approaches to cope with data available in such diverging
representation formalisms as XML, RDF, or Topic Maps. A common query language is the first
step to allow transparent access to data in any of these formats. To further the understanding
of the requirements and approaches proposed for query languages in the conventional as well
as the Semantic Web, this report surveys a large number of query languages for accessing
XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from
all these areas. From the detailed survey of these query languages, a common classification
scheme is derived that is useful for understanding and differentiating languages within and
among all three areas.

Keyword List
reasoning, query language, XML, RDF, Topic Maps, OWL, classification, Semantic Web

Contents

1 Introduction 1
1.1 Selection of Evaluation Criteria . 2
1.2 Selection of Surveyed Query Languages . 4

2 Preliminaries 7
2.1 Collection of Sample Data . 9

3 Evaluation Criteria 15
3.1 Ease of Use . 15
3.2 Functionality . 18

3.2.1 Supported Query Types . 18
3.2.2 Adequacy . 24
3.2.3 Evolution and Reactivity . 30

3.3 Semantics . 30
3.4 Formal Properties and Implementation . 31
3.5 Reasoning . 32
3.6 Ontology Awareness . 34

3.6.1 Type system . 35

4 Query Languages for the Web: An Overview 37
4.1 XML Query Languages . 37
4.2 Textual XML Query Languages . 37

4.2.1 Navigational Languages . 37
4.2.1.1 Lorel . 37
4.2.1.2 XPath . 38
4.2.1.3 XQL . 39
4.2.1.4 XSLT . 39
4.2.1.5 XQuery/Quilt . 40
4.2.1.6 FXT . 41
4.2.1.7 XPathLog . 41
4.2.1.8 CXQuery . 42

4.2.2 Positional Languages . 42
4.2.2.1 XML-QL . 42
4.2.2.2 UnQL . 42
4.2.2.3 XML-RL . 43
4.2.2.4 XMAS . 43

iii

4.2.2.5 XET/XDD . 44
4.2.2.6 Xcerpt . 44

4.3 RDF Query Languages . 46
4.3.1 SquishQL-family . 46

4.3.1.1 SquishQL . 46
4.3.1.2 rdfDB Query Language . 46
4.3.1.3 RDQL . 47
4.3.1.4 BRQL . 50
4.3.1.5 TriQL . 51

4.3.2 Query Languages influenced by XPath, XSLT or XQuery 52
4.3.2.1 XQuery for RDF: “The Syntactic Web” Approach 52
4.3.2.2 XsRQL: An XQuery-style RDF Query Language 54
4.3.2.3 XSLT for RDF: TreeHugger and RDF Twig 54
4.3.2.4 RDFT and Nexus Query Language: XSLT-style RDF Query Languages 56
4.3.2.5 XPath-syle Access to RDF: RDF Path, RPath and RxPath 58
4.3.2.6 Versa . 61

4.3.3 RQL-family . 65
4.3.3.1 RQL . 65
4.3.3.2 SeRQL . 71
4.3.3.3 eRQL . 74

4.3.4 Query Languages using a Controlled Natural Language 75
4.3.4.1 Metalog . 75

4.3.5 Others . 77
4.3.5.1 Algae . 77
4.3.5.2 iTQL . 80
4.3.5.3 N3QL . 80
4.3.5.4 PerlRDF Query Language . 82
4.3.5.5 R-DEVICE Deductive Language . 82
4.3.5.6 RDF-QBE . 83
4.3.5.7 RDFQL . 84
4.3.5.8 TRIPLE . 86
4.3.5.9 WQL . 89

4.4 Topic Maps Query Languages . 90
4.4.1 tolog: Logic Programming for Topic Maps . 90
4.4.2 AsTMA?: Functional-style Querying of Topic Maps? 94
4.4.3 Toma: Querying Topic Maps inspired by SQL 95
4.4.4 Path-based Access to Topic Maps . 96

4.4.4.1 XTMPath . 96
4.4.4.2 TMPath . 97

4.5 OWL Query Languages . 98
4.5.1 OWL-QL . 98

5 Evaluation Results 101
5.1 A Classification Scheme for Web Query Languages . 101
5.2 Observations on the State of the Art of Web Query Languages 104

6 Conclusion and Outlook 107

iv

A A Brief History of RDF Serialization Formats 109
A.1 Introduction . 109
A.2 RDF/XML: The W3C Recommendation . 109
A.3 Simplified Syntaxes for RDF/XML . 112

A.3.1 Unstriped Syntax . 112
A.3.2 Simplified Syntax . 113
A.3.3 XMP . 113
A.3.4 Normalized RDF . 113
A.3.5 RxML . 114

A.4 Plain-Text Formats . 115
A.4.1 Notation 3 . 115
A.4.2 N-Triples . 116
A.4.3 Quads . 116
A.4.4 Turtle . 116
A.4.5 TriG . 117

A.5 Triple-based XML Formats . 117
A.5.1 RPV . 118
A.5.2 TriX . 119
A.5.3 RXR . 120

A.6 Features Overview . 121
A.7 Genealogy . 121
A.8 Conclusions . 122

B Evaluation Tables 123

v

Chapter 1

Introduction

The “Semantic Web” is an endeavor which Tim Berners-Lee, the father of HTML and of HTTP,
James Hendler, and Ora Lassila initiated in 2001 with an article in the Scientific American
[37]. The “Semantic Web” vision is that of the current Web which consists of (X)HTML and
documents in other XML formats being extended with meta-data specifying the meaning of
these documents in forms usable by both, human beings and computers:

The Semantic Web will bring structure to the meaningful content of Web pages,
creating an environment where software agents roaming from page to page can
readily carry out sophisticated tasks for users. [37]

One might see the Semantic Web meta-data added to today’s Web as semantic indices sim-
ilar to encyclopedias. A considerable advantage over conventional encyclopedias printed on
paper is that the relationships expressed by Semantic Web meta-data can be followed by com-
puters, very much like hyperlinks can be followed by programs, and be used for drawing con-
clusion using automated reasoning methods.

For the Semantic Web to function, computers must have access to structured
collections of information and sets of inference rules that they can use to conduct
automated reasoning. [37]

A number of formalisms have been proposed in recent years for representing Semantic
Web meta-data, e.g., RDF [197], Topic Maps [144], and OWL [24]. Whereas RDF and Topic Maps
provide merely a syntax for representing assertions on relationships like “a text is authored
by some person”, schema or ontology languages such as RDFS [54] and DAML+OIL [140] allow
to state properties of the terms used in such assertions, e.g., that no “person” can be a “text”.
Building upon descriptions of resources and their schemata (as detailed in the architectural
road map for the Semantic Web [34]), rules expressed in, e.g., SWRL [138] or RuleML [44], allow
the specification of actions to be taken, knowledge to be derived, or constraints to be enforced.

Essential for realizing this vision is the integrated access to all kinds of data represented in
any of these representation formalisms or even in standard Web languages such as (X)HTML,
SVG, or any other XML format. Considering the large amount and the distributed storage of
data available already on the Web, the efficient and convenient access to such data becomes the
enabling requirement for the Semantic Web vision. It has been recognized that a reasonably

1

high-level, declarative query language is needed for such efficient and convenient access, as
it allows to separate the actual data storage from the view of the data a query programmer
operates on.

Therefore, the aim of this survey is to provide an overview over the languages considered
for each of the major representation formalisms used in the nowadays Web, viz., for XML, RDF,
Topic Maps, and OWL. This overview is intended to be valuable for comparing, e.g., RDF query
languages among themselves, but to also provide insight on the question, whether a common
query language for these representation formalisms is reasonable. Therefore, the following
three questions stand at the heart of this survey

• What are the capabilities of a query language considered essential for the different ar-
eas? Is it possible to identify common shortcomings of existing approaches in an area,
in particular by means of a comparison of the issues addressed in that particular area
with the other areas investigated?

• Enabling reasoning, i.e., the ability to derive new knowledge from existing knowledge
in a systematic way, is perhaps the most distinguishing feature of the “Semantic Web”
vision. Convenient and effective querying in such a setting is likely to require at least
some degree of reasoning abilities (e.g., for mediation of data described with differing
but convertible vocabularies). Therefore this survey closely investigates, what reasoning
abilities the query languages offer and how these reasoning abilities are realized.

• Indeed, the extent and realization of reasoning abilities proves to be a crucial differen-
tial for answering the question, how to classify the query languages surveyed in this
work. In Section 5.1 a common classification scheme for Web query and transformation
languages oriented on their Semantic Web “fitness” is proposed and its usefulness for
understanding the differences among the query languages is demonstrated.

To this end, this survey starts in Chapter 2 with a concise introduction into the three rep-
resentation formalisms considered here, viz. XML, RDF, and Topic Maps. Note, that for most
of the discussion OWL is not considered separately, but rather in conjunction with RDF, since
there is a number of query languages for RDF that use information represented in (some subset
of) OWL for querying. However, in Section 4.5 an approach for querying ontologies represented
in OWL is discussed to illustrate the challenges one faces when more powerful ontology lan-
guages are considered. Chapter 2 also introduces the scenario used in most of the query
language descriptions. A small collection of data about books and their classification is intro-
duced on an abstract level and carefully crafted representations in XML, RDF, and Topic Maps
are proposed and discussed.

1.1 Selection of Evaluation Criteria:
How to evaluate a Web Query Language?

Based upon this collection of sample data, Chapter 3 proposes (a) an exhaustive set of evalu-
ation criteria based on requirements and use cases for Web query languages previously iden-
tified in [176, 203, 69, 115, 19, 81, 62] and extended by additional criteria for investigating the
Semantic Web “fitness” of the query languages in question. As a means for better illustrating
the capabilities of the query languages, the taxonomy of queries proposed in [176] is adapted

2

to the Semantic Web setting and (b) a small set of queries covering each of the classes in the
query taxonomy is proposed. To compare query languages among different representation
formalisms, the queries are presented on a rather abstract level, allowing them to be applied
on XML, RDF, or Topic Maps data.

This combined approach has a number of merits compared to previous surveys of Web
query languages, cf. [4, 101, 48, 46, 173] (surveys of XML query languages) and [56, 174, 219, 82,
131, 221] (surveys and comparisons of RDF query languages), that have mostly been based on
a set of exemplary queries and limited to a small number of evaluation criteria (represented in
these queries). However, the crucial aspect of the “user experience” of a language, i.e., how con-
venient and effective the use of a query language is for solving practical problems, is not fully
covered by this approach, since this aspect is hard to measure without extensive experimental
studies involving users with varying background and expertise. Another noteworthy limitation
of this survey is that, for time and space reasons, not all languages could be covered in the
same detail. Instead, quite a number of languages judged particularly interesting or innovative
by the authors of this survey are discussed in more detail, whereas other languages presented
highlighting only the most interesting features. However, for all 73 languages the full set of
111 criteria have been evaluated and gathered in tabular form in Appendix B. This limitation
is rooted partially in the fact, that there has been a virtual surge of new Web query languages,
in particular of Semantic Web query languages (i.e., so far mostly RDF and Topic Maps query
languages) in the last two years. Since the beginning of 2004, a dozen new languages have
been proposed or existing proposals have been significantly altered. This demonstrates both
the high relevance and the relative immaturity of the area of (Semantic) Web query languages.
Another area where this survey might be further improved in the future is on the theoretical
foundations of the languages considered. Regarding, e.g., formal semantics and data model,
only rather general statements are noted here. This is motivated by the lack of consideration
of such issues in the majority of the language proposals forming the base of this survey.

Despite these shortcomings the approach taken in this survey also exhibits a number of
advantages in contrast to previous surveys of Web query languages:

• considering both query languages for standard and Semantic Web allows a better under-
standing of what the crucial aspects of Semantic Web query languages might be;

• the far larger number of approaches considered gives the results a broader foundation
and applicability;

• the evaluation criteria are, where possible, restricted to easily verifiable properties of the
query languages;

• focusing the discussion on a selected set of languages allows more details and a better
understanding for that languages.

Finally it should be noted that, as with any such survey, the selection of both criteria and
sample queries is certainly subjective and might be biased towards a certain result or language,
although the authors of this survey tried carefully to eliminate such bias as far as possible.

3

1.2 Selection of Surveyed Query Languages:
What is a Web query language?

Chapter 4 presents the query languages surveyed in this paper grouped by the underlying
representation formalism and, where possible, language “family” (i.e., closely related languages
are discussed together to ease the understanding of commonalities and differences).

The selection of languages requires some justification. One basic premise guided this se-
lection: Although the distinction is not always clear, the survey should focus on languages
designed primarily for providing efficient and effective access to data. This rather narrow
basic premise excludes in particular three types of languages that are also sometimes consid-
ered query languages or at least related to query languages:

• Full programming languages and libraries or APIs for accessing XML. Quite a number of
general-purpose programming languages with focus or at least direct support for XML
data have been proposed recently, e.g., XMLambda [190], CDuce [29], XDuce [141], Xtatic
(http://www.cis.upenn.edu/~bcpierce/xtatic/), Scriptol (http://www.scriptol.
com/), Cω (http://research.microsoft.com/Comega/, [189]), and with special focus
on Web services and composition XL [104, 105], Scala [199], Water [214]. All of these lan-
guages provide some form of specialized data structures for representing and accessing
XML data. For existing programming languages, convenient access to XML data can be
achieved using some API such as DOM1, SAX2, or XmlPull3 or by means of a language
extension, e.g., HaXML [256] for Haskell, XMerL [258] for Erlang, or XJ [132] for Java.

However, when considering reasoning-aware query languages, the distinction between
general-purpose programming languages and query languages becomes blurred, as such
query languages are often computationally complete (cf. 5). For the purpose of this sur-
vey, a pragmatic approach has been chosen: a language is included, if querying is a core
aspect of the language design or the approach to accessing Web data is unique and not
covered by other proposals.

• Evolution and reactivity. A reactive system allows the specification of the dynamic as-
pects of a data storage system, i.e., (a) what changes are allowed (b) how to react when
a certain event, such as the insertion or deletion of some data occurs. Several proposals
for adopting previous approaches such as ECA rules to a Web setting have been pub-
lished recently. Obviously, there is a close relation between languages for specifying the
reactive behavior of a system and those for querying the current state as provided by
conventional query languages: reactive languages often employ some query language for
evaluating whether (a) the current event matches any of the reactive rules and (b) for con-
ditional rules whether the data is currently in a status matching that condition. However,
for this survey only reactive languages that also provide interesting querying abilities are
considered. For a survey of reactive languages for the Web, refer to [10].

• “Rule languages”. Transformations, queries, derivations and reactive behavior can often
conveniently expressed in rules. Recently, considerable interest in formalizing the rules
guiding business decisions in such a way that they can be (a) understood and possibly
even managed without learning a complicated rule syntax, (b) changed rapidly without
refactoring existing programs, and (c) used directly to automate or support business

1 http://www.w3.org/DOM/ 2 http://www.saxproject.org/ 3 http://www.xmlpull.org

4

decisions such as whether a certain customer may receive a loan or which supplier to
use for a certain part. This interest has also triggered the development of numerous,
often proprietary languages for “rule engines”, i.e., systems that allow the specification
and evaluation of such rules often as part of so-called expert systems. Examples for
languages often used in this context include Prolog, F-Logic, and various extensions of
these languages. In the Web context, the serialization and exchange of rules is particularly
interesting as demonstrated by, e.g., the RuleML [44] initiative.

Again where to draw a line between query languages and general rule languages is not
obvious. As in the cases above, in this survey only languages focusing on the efficient
and effective querying of data are considered with exceptions for approaches that provide
interesting insight for querying.

In the future, it might be interesting to extend the languages covered, e.g., to investigate
differences and similarities with respect to requirements, principles, and realization of query
languages and reactive, general rule, or programming languages in the Web context.

As stated in the introduction, this survey focuses on the language aspect of querying the
Web. Therefore, (a) authoring tools such as visual editors are only considered in the context
of the query language they are based upon and (b) issues related to storing and indexing Web
data are not addressed (for a survey on storage system for RDF refer to [174]).

Despite all these conscious limitations in the kind of languages to be considered, the num-
ber of languages still remaining is still surprisingly large. This demonstrates the increasing in-
terest in the area of Web query languages, in particular in RDF and Topic Maps query languages
for which the respective standardization bodies have recently started the standardization pro-
cess for (in the case of RDF, low-level) query languages. However, in neither case the aim to
develop a common query language supporting the representation formalisms expected to be
at the core of a future Semantic Web has received sufficient priority.

Following the overview of the languages considered, a concise summary of the evaluation
results is given in Chapter 5, the details of which are given in Appendix B. From the evaluation
results, a classification scheme for Web query languages is derived and briefly discussed by
comparing it to previous approaches for classifying (Web) query languages and by demonstrat-
ing the ability to provide an insightful view on the languages surveyed here.

The paper is concluded by Chapter 6 with an outlook on possible improvements of this
comparison and suggestions on interesting research directions derived from the evaluation.

Two appendices give (a) an overview of different serialization formats for RDF (Appendix A)
and (b) the detailed results of the evaluation in tabular format (Appendix B).

5

6

Chapter 2

Preliminaries

In this chapter, a concise overview of the three representation formalisms that form the bases
for the query languages investigated in this work is given. In particular, a small collection of
sample data is described against which queries for assessing the functionality of the query
languages considered are evaluated.

The “Extensible Markup Language (XML) is a simple, very flexible text format derived from
SGML [. . .]. Originally designed to meet the challenges of large-scale electronic publishing, XML
is also playing an increasingly important role in the exchange of a wide variety of data on the
Web and elsewhere.”1 XML [52] The previous quote hints at the dual role that XML is currently
performing in the Web context: First and foremost, XML provides means for defining the syntax
of new languages simplifying specification and deployment considerable, as common issues
such as character encoding, markup syntax, linking (ID/IDREF, XLink [93]), mixing markup
from different languages, splitting and reassembly of data fragments (XInclude [184]), etc. are
handled uniformly at the level of XML.

However, this is not the only reason for using XML: More and more XML, and the underlying
semi-structured data model, is recognized as a flexible means for representing, exchanging,
and processing heterogeneous data originating from different sources. In this sense, an XML
document can be interpreted as a rooted, directed, non-ranked, ordered graph. For many
applications one does not consider the various reference or linking mechanisms defined for
XML as part of the data model, thus reducing the interpretation of an XML document to a non-
ranked, ordered tree. Although this is the data model adopted by the W3C (cf. XML Infoset [86]
and XQuery 1.0 and XPath 2.0 data model [100]) and the majority of XML query languages, it is
nevertheless recognized that providing means for traversing relations beyond the parent-child
and sibling relation conveyed in the tree. Examples for such relations are links established by
common keys in ID and IDREF attributes, XLink relations that can also be typed just as in RDF
(cf. [87] for a more detailed analysis of the commonalities of RDF and XLink), or application-
dependent relations.

As XML has been designed with focus on the first role, some peculiarities such as attributes
or the lack of a standardized means, to express that the order of the children of some element
is irrelevant and does not be preserved, make processing XML not always as convenient as
one might hope, nevertheless XML is and most likely will remain the foundation for most Web
application that require the exchange of data and increasingly also for applications where such

1 http://www.w3.org/XML/

7

exchange is not needed.

Basically, an RDF [156, 27] model can be seen as an oriented graph whose nodes are labeled
by either URIs, which describe (Web) resources, or literals (elementary data such as strings
or numbers), or are unlabeled (the so called anonymous or “blank nodes”). The nodes are
connected by arcs, also labeled by URIs, which are intended to represent “properties” of nodes
(so blank nodes can be used to “aggregate” properties). A common alternative view of such
a graph is a set of triples, called “statements”, of the form (Subject, Property, Object), where
Subject and Object are graph nodes, and Property is an arc. While this model accounts for the
use of RDF as a very general description framework of Web resources, properties with special
meanings are predefined in the RDF [135] and RDFS [135] specifications [179, 156, 135, 54] to
describe, for instance, that a node is the “type” (rdf:type)2 of another one, or is sub-class
(rdfs:subClassOf) or sub-property (rdfs:subPropertyOf), etc. RDFS also defines a number
of meta-classes, such as rdfs:Class, the class of all classes, or rdfs:Property, the class of
all properties. The inheritance model exhibits some peculiarities, viz., (a) that resources can
be classified in different classes that are not related in the subsumption hierarchy, (b) that
the subsumption hierarchy can be cyclic (so that all classes on the cycle are equivalent), (c)
that properties are first class objects and, in contrast to most object-oriented subsumption
hierarchies, one does not describe which properties can be associated with a class but rather
can specify the domain and range of properties. Based upon the information provided by an
RDFS schema (or, to use another termed used almost equivalently in this case, ontology) certain
inference rules can be specified, e.g., for inferring the transitive closure of the subsumption
hierarchy or the type of an untyped resource that has a property associated for which the
domain is known. OWL [188, 238, 24] extends the means provided by RDFS for defining the
vocabulary used in describing resources.

RDF is designed for the exchange of meta-data represented as resource descriptions in an
RDF graph. Therefore, a syntax for serializing and transferring RDF data is required. How-
ever, early approaches for an XML syntax of RDF have raised considerable critique, mostly for
being overly complex to understand and process. Therefore, a large number of alternative
serialization formats have been proposed. Appendix A presents a detailed overview of these
serialization formats.

The last representation formalism that forms the basis of some of the query languages
investigated in this survey is the ISO Topic Maps standard [144]. Inspired by previous work in
the library sciences and on knowledge indexing, the Topic Maps standard [144] defines a data
model consisting in a rich set of modeling primitives for representing, structuring, indexing,
and relating knowledge. As the previously discussed representation formalisms at the core a
topic map is a unranked graph with labeled edges and nodes. The most notable differences to
RDF are the richer modeling primitives, that include, e.g., the ability to scope any information
provided about a topic and to provide multiple facets of information. Also instead of binary
associations, Topic Maps provides n-ary associations with roles for distinguishing the members
of an association (rather similar to the XLink model for extended links). Topic Maps provides
a basic ontology language for specifying a hierarchy of types of topics and associations.

The similarity of Topic Maps and RDF has been recognized and first efforts for integrating
the two formalisms are presented in [160, 116].

From the perspective of this survey, all three representation formalisms can be used to

2 Here and in the rest of this paper, common prefixes such as rdf, rdfs, owl, xsd, or xtm are assumed to be
associated with the appropriate namespace.

8

Figure 2.1 Sample Data: Graphical representation of an RDF/S graph

The First Man
in Rome

Julius Caesar

Colleen
McCullough

J. M. Carter

Aulus Hirtius

translator

author

Writing

NovelEssay

Historical
Novel

Historical
Essay

foaf:Person
rdfs:domain

rdfs:domain rdfs:range

rdfs:range

author

author

translator foaf:name

author

title

foaf:name

foaf:name

foaf:name

1990

year

Bellum Civile

title

Class

Property (gregorian) Year Literal “is-a” Relation (rdf:type)

“is-a-kind-of” Relation
(rdfs:subClassOf)

String LiteralResource

represent the sample data discussed below varying mostly in the degree to which standard
vocabulary is provided for defining the ontology part of the sample data.

2.1 Collection of Sample Data

For reasons of brevity and consistency, all queries operate on the same data, a collection of
information on books. Figure 2.1 shows a graphical representation of an RDF/S graph. For
more details see [156, 167, 54]. Note, that some of the RDF statements are represented in a
more compact form, e.g., all resources with type rdfs:Class are depicted as special nodes
instead of explicitly showing the rdf:type relation. Also, special arrows are used for the
rdf:type and rdfs:subClassOf relations. Resources are identified with temporary IDs in the
fashion of N3 [32], e.g., _:b1. Note also that the graphical notation used does not make explicit
the connection between the property nodes translator and author (depicted by blue ellipses)
and the instances of this property.

9

The sample data contains a small ontology using only the subsumption (or “is-a-kind-of”)
relation rdfs:subClassOf and the instance (or “is-a”) relation rdf:type. This ontology is
used to illustrate some of the specific requirements for a Semantic Web query language. We
believe, that it is sufficient to show the most interesting issues involved in ontology querying
without adding unnecessary complexity. Note, however that both the following discussion and
the criteria for the evaluation are for general Web query languages including languages for the
standard Web only, i.e., where such ontology information can not be represented in a standard-
ized way but rather using an application dependent vocabulary. Furthermore, several aspects
of the underlying data representation formalisms, such as RDF and Topic Maps, influence the
desiderata for a Semantic Web query language even when no ontology is involved.

Since all three representation formalisms use the XML Schema simple datatypes defined in
[38] for typing scalar data. The book titles and the names of the authors are string literals
(either untyped or typed as xsd:string). The publication year of a book is typed as Gregorian
year (xsd:gYear).

The sample data is assumed to be stored at the URL http://example.org/books#3. Where
useful, this URL is associated with the prefix books, e.g., for referencing the vocabulary defined
in the ontology part of the data.

Appropriate (textual) representation of this data in the different representation for-
malisms are chosen as basis for the actual queries. Note, that, since the issue of this survey is
not to compare the different representation formalisms, we deliberately chose data and queries
that can be handily represented in any of the formalisms.

Sample data in RDF. As the graphical representation is based on the RDF version of the data,
this is shown first using the Turtle serialization syntax proposed in [26], a subset of N3 [32]
(for more details on the syntax used, cf. Appendix A and the citations).

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix foaf: <http://xmlns.org/foaf/0.1/> .
:Writing a rdfs:Class ;

rdfs:label "Novel" .
:Novel a rdfs:Class ;

rdfs:label "Novel" ;
rdfs:subClassOf :Writing .

:Essay a rdfs:Class ;
rdfs:label "Essay" ;
rdfs:subClassOf :Writing .

:Historical_Essay a rdfs:Class ;
rdfs:label "Historical Essay" ;
rdfs:subClassOf :Essay .

:Historical_Novel a rdfs:Class ;
rdfs:label "Historical Novel" ;
rdfs:subClassOf :Novel ;
rdfs:subClassOf :Essay .

:author a rdfs:Property ;
rdfs:domain :Writing ;
rdfs:range foaf:Person .

:translator a rdfs:Property ;
rdfs:domain :Writing ;
rdfs:range foaf:Person .

_:b1 a :Historical_Novel ;

3 The URL is chosen in accordance to RFC 2606[97] on the use of URLs in sample data.

10

:title "The First Man in Rome" ;
:year "1990"^^xsd:gYear ;
:author [foaf:name "Colleen McCullough"] .

_:b1 a :Historical_Essay ;
:title "Bellum Civile" ;
:author [foaf:name "Julius Caesar"] ;
:author [foaf:name "Aulus Hirtius"] ;
:translator [foaf:name "J. M. Carter"] .

The RDF serialization is, as expected, rather straightforward. Note that both the books and
their authors and translators are represented by anonymous nodes (either without identifier or
with a temporary identifier indicated by the _: prefix.

Sample data in Topic Maps. For the Topic Maps version of the data, the rather compact
and readable Linear Topic Maps syntax [110] is used. The subclass-superclass associations
are identified using the published subject identifiers defined in XTM [212]. For illustrative
purposes the title of a book is represented as an occurrence of that topic. Finally, it is worth
mentioning that this representation has been chosen more to demonstrate different features
of the query languages surveyed than as a natural expression of the data in Topic Maps. One
might, e.g., prefer to use a publication association that connects a book with its publisher,
the year of publication, and the edition. Also, instead of separate associations for author and
translator one could also provide a generic association between persons and books and use
appropriate roles for differentiation.

/* Association and topic types for subclass-superclass hierarchy */
[superclass-subclass = "Superclass-Subclass Association Type"

@ "http://www.topicmaps.org/xtm/1.0/core.xtm#superclass-subclass"]
[superclass = "Superclass Role Type"

@ "http://www.topicmaps.org/xtm/1.0/core.xtm#superclass"]
[subclass = "Subclass Role Type"

@ "http://www.topicmaps.org/xtm/1.0/core.xtm#subclass"]
/* Topic types */
[Writing = "Writing Topic Type"

@ "http://example.org/books#Writing"]
[Novel = "Novel Topic Type"

@ "http://example.org/books#Novel"]
[Essay = "Essay Topic Type"

@ "http://example.org/books#Essay"]
[Historical_Essay = "Historical Essay Topic Type"

@ "http://example.org/books#Historical_Essay"]
[Historical_Novel = "Historical Novel Topic Type"

@ "http://example.org/books#Historical_Novel"]
[year = "Topic Type for a gregorian year following ISO 8601"

@ "http://www.w3.org/2001/XMLSchema#gYear"]
[Person = "Person Topic Type"

@ "http://xmlns.org/foaf/0.1/Person"]
[Author

@ "http://example.org/books#author"]
[Translator

@ "http://example.org/books#translator"]
/* Associations among the topic types */
superclass-subclass(Writing: superclass, Novel: subclass)
superclass-subclass(Writing: superclass, Essay: subclass)
superclass-subclass(Novel: superclass, Historical_Novel: subclass)
superclass-subclass(Essay: superclass, Historical_Essay: subclass)
superclass-subclass(Essay: superclass, Historical_Novel: subclass)
superclass-subclass(Person: superclass, Author: subclass)

11

superclass-subclass(Person: superclass, Translator: subclass)
/* Occurrence types */
[title = "Occurrence Type for Titles"

@ "http://example.org/books#title"]
/* Association types */
[author-for-book = "Association Type associating authors to books"]
[translator-for-book = "Association Type associating translators to books"]
[publication-year-for-book = "Association Type associating translators to books"]
/* Topics, associations, and occurrences */
[p1: Person = "Colleen McCullough"]
[p2: Person = "Julius Caesar"]
[p3: Person = "Aulus Hiritus"]
[p4: Person = "J. M. Carter"]
[b1: Historical_Essay = "Topic representing the book ’The First Man in Rome’"]
author-for-book(b1, p1: author)
publication-year-for-book(b1, y1990)
{b1, title, [[The First Man in Rome]]}
[b2: Historical_Novel = "Topic representing the book ’Bellum Civile’"]
author-for-book(b2, p2: author)
author-for-book(b2, p3: author)
translator-for-book(b2, p4: translator)
{b2, title, [[Bellum Civile]]}

Sample data in XML. Here one of many possible XML representations of the sample format
is shown. For brevity, the information that authors and translators are persons is not repre-
sented. Also, note the use of ID/IDREF links for representing the subsumption data.

<bookdata xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<book type="Historical_Novel">

<title>The First Man in Rome</title>
<year type="xsd:gYear">1990</year>
<author>

<name>Colleen McCullough</name>
</author>

</book>
<book type="Historical_Essay">

<title>Bellum Civile</title>
<author>

<name>Julius Caesar</name>
</author>
<author>

<name>Aulus Hirtius</name>
</author>
<translator>

<name>J. M. Carter</name>
</translator>

</book>
<category id="Writing">

<label>Writing</label>
<category id="Novel">

<label>Novel</label>
<category id="Historical_Novel">

<label>Historical Novel</label>
</category>

</category>
<category id="Essay">

<label>Essay</label>
<category id="Historical_Essay">

<label>Historical Essay</label>
</category>
<category idref="Historical_Novel" />

12

</category>
</category>
</bookdata>

Alternatively, an XML serialization of the Topic Maps or RDF data shown above could be used.
However, the serializations of both RDF and Topic Maps in XML are rather awkward and would
only complicate the understanding of the issues involved in querying XML.

13

14

Chapter 3

Evaluation Criteria

This survey is guided by a number of evaluation criteria divided roughly in five areas: ease of
use, functionality, semantics, formal properties and implementation, ontology awareness, and
reasoning abilities. The evaluation criteria have been derived (1) from a number of relevant
use cases and requirements specifications for web query languages [176, 203, 255, 81, 19, 115,
69, 68], (2) from a close look at the capabilities and intended scenarios for deployment for
the query languages considered here, and (3) from the design principles and guidelines for the
development of a standard and Semantic web query language described in [60].

As discussed in the introduction, this survey is focused on the suitability of the considered
approaches for querying the Semantic Web. This emphasis is reflected in many of the following
criteria, in particular in the areas of ontology awareness and reasoning abilities.

In this section, the evaluation criteria are introduced, described and an attempt is made
to provide a justification for the selection of these evaluation criteria. In Chapter 4, a large
number of XML and Semantic Web query languages are closely investigated along the criteria
established here. From this investigation, one can easily observe that the proposed criteria
allow the identification of several interesting classes of query languages reflecting different
approaches, philosophies and requirements for querying the (Semantic) web.

3.1 Ease of Use

It has been previously mentioned that one of the most important aspects when designing
a query language (or in fact any language to be used, at least partially, by human beings)
is the “feeling” of the language or, in other words, how easy it is to use the language for a
given (reasonable) task. Obviously, this is a highly subjective question and hard to measure
without empiric studies. Therefore, in Chapter 4 the design philosophy and rational of several
query languages are illustrated in more detail and a set of queries is used to give a concrete
impression of the languages and their differences and similarities.

Aside of these restrictions, the following aspects of a query language are investigated to
give some impression of how convenient the use of the language is:

Syntax. Query languages are often tailored to a specific perception as to who will author
queries: whereas expert users usually prefer a human-readable textual syntax (C 1.1.), for be-

15

ginners or casual users even a simple textual syntax might already be too intimidating, however
an appropriate visual syntax (C 1.2) or a natural language interface (C 1.3) can often make a
language accessible to such users. Some query languages, e.g., [196], are designed for auto-
matic generation by programs, therefore automatic query manipulation, e.g., by means of an
XML syntax (C 1.4), is essential. Furthermore, in particular in the semantic web context, the
automatic adaptation of queries, e.g., based on ontological data, is an essential issue. In such
cases, meta circularity (C 1.5) is a desirable language feature, as it allows the adaptation of
queries without involving learning and maintaining an additional programming language and
environment.

1.1 Human-readable textual syntax. Does the query language provide a human-readable tex-
tual syntax.

1.2 Visual syntax. Is there a graphical editor or visual syntax for the query language?

1.3 Natural language syntax or interface. Is it possible to express queries in some kind of
(usually restricted) natural language, e.g., in a variant of ACE [108].

1.4 XML syntax. Has an XML1 syntax been specified for the query language.

1.5 Meta circularity. Is the query language capable of processing queries written in (at least)
one of its syntactic forms.

Extensibility and Modularity. To be able to support a wide range of users with different de-
gree of knowledge and expertise, leads to a set of interesting properties of a query language.
Above the use of different syntactical representations of a query for different usage scenarios
of the query language has been discussed. Furthermore, many languages provide some mech-
anism to allow queries to be written in a modular (C 1.6) fashion. E.g., views or rules can be
provided by more experienced users, if necessary, and used by beginners transparently.

A similar aspect is that of extensibility (C 1.7): Different users requires often different func-
tionalities and it is neither desirable, nor in all cases possible to provide all functionality within
a single query language or processor. Furthermore, an extensible query language will be better
equipped to adapt to emerging use cases in the future.

1.6 Query modularity. What kind of constructs for writing modular queries does the language
support? Such constructs can be views (cf. [175]), rules (cf. [230, 237]), functions (cf.
[41]), etc.

1.7 Extensibility. Does the language have a well-defined extension mechanism? Is it possible
to detect from within the language what extensions are available in a given environment?

Adherence to Conventions. Both a shallow learning curve and the reuse of previously ob-
tained expertise are supported if a query language uses established conventions where pos-
sible. Since this survey considers query languages not only for a single data representation
formalism, such as XML, Topic Maps, and RDF, an important criterion for the evaluation is
which data representation formalisms (C 1.8) are supported by a query language. Although

1 For this survey, the only syntax considered particularly convenient for automatic processing of queries is XML, as
this is the only syntax used for this particular purpose by the surveyed languages.

16

both OWL and RDFS are based on RDF, they are considered separate for this survey, as query
languages are likely (and in fact do, cf. OWL-QL) to use the abstract model of OWL rather than
query the concrete RDF serialization. Furthermore, both OWL and RDFS introduce constructs
(e.g., rdfs:subClassOf or owl:TransitiveProperty) with a specific semantic that should be
supported by a query language.

Related but separate from the issue of the supported data representation formalism is the
data model (C 1.9) used by the query language. The use of a familiar and appropriate data
model will certainly reduce the time a user requires to become acquaint himself with the query
language. Although at first glance one might suspect that all languages for each of the above
data representation formalisms use a uniform data model, this is not the case. E.g., some XML
query languages consider the data to be strictly hierarchical, i.e., a tree, others offer support
for ID/IDREF or similar linking mechanisms, hence use a graph data model. Similarly, some
RDF query languages consider RDF data as mere triples, i.e., relational tuples with fixed arity 3
(e.g., [232, 194]), some as arbitrary graph (e.g., [148]), some restrict the graph to be acyclic or
rooted (e.g., [208]).

Aside of the data model, also a syntactical similarity (C 1.10) with an existing language
might be helpful for a novice user. However, often such similarities are merely superficial and
can actually impede the understanding of a query language as the intuition from the existing
language might not apply or at least not apply in all cases. Therefore, the question, on which
programming paradigm (C 1.11) a query language is based upon, is often more illustrative of
the abilities and general “feeling” of a query language.

Finally, all of the representation formalisms for the Web considered here are based on a
graph or tree data model, therefore requiring some accessor constructs (C 1.12) that allow the
access to specific nodes in the graph or tree based on their position (or relation) to other nodes.
Query languages for structured data can be roughly classified by the accessor constructs they
provide: Pattern-based query languages allow access to several parts of the graph at once spec-
ifying the relations among the accessed nodes by tree or graph patterns. Path-based query
languages use constructs similar to file-system paths to access (usually) a single set of nodes
based on any number of relations with other nodes in the graph specified in the path expres-
sion. Path-based languages can be further divided in languages that provide only true paths
as accessors and languages where it is possible to describe tree-like queries (cf. [78]). Finally,
step-based query languages provide only constructs for querying the relation of two (sets of)
nodes. If it is to be queried whether more than a single relation holds for a certain set of nodes,
the multiple relations have to be queried separately and joined via variables. A typical example
for a step-based query language is RDQL [232], examples for path-based query languages are
XPath [78], RQL [148], and RDFPath [208], Xcerpt [230] is a pattern-based query language.

1.8 Data representation formalisms. Which of the data representation formalisms (viz. XML,
RDF, RDFS, OWL, Topic Maps) are supported by the query language?

1.9 Data model. What data model is used by the query language?

1.10 Syntactical similarity. Is there a strong syntactical similarity to other query languages,
e.g., SQL, XQuery, or XPath?

1.11 Programming paradigm. What programming paradigm is the query language based
upon?

1.12 Accessor constructs. Is the language based on single steps, paths, or patterns for specify-
ing which nodes in a graph or tree structure to access.

17

3.2 Functionality

Complementary to the ease of using a query language is its functionality. This survey focuses
on three aspects for measuring the functionality provided by a query language: What kind of
queries can be expressed in the query language? For which of the concepts of the underlying
representation formalism(s) are adequate query constructs provided? Are issues like updates,
integrity constraints and active rules considered?

The emphasis on evolution and reactivity might be considered odd, and, indeed, almost
none of the languages and systems analyzed in Chapter 4 does provide an update language,
let alone means for specifying reactive behavior. Nevertheless, for the Web in general and even
more for the Semantic Web, there is a clear need for sophisticated reactive components that
allow the fast propagation of and reaction on changes in the (possibly remote) data and other
events. Therefore, although support for evolution and reactivity is hardly a very discriminating
criterion for the query languages considered in this survey, it is included to illustrate that a
strong integration of query languages and reactive behavior is essential for the Semantic Web.

The following discussion details each of these points in order and proposes a set of evalua-
tion criteria that are deemed to be useful for judging what functionality is provided by a query
language.

3.2.1 Supported Query Types

For the purpose of this survey five classes of queries have been identified based upon previous
work on classifying query languages by the provided functionality, most notably [176, 81]. To
illustrate these queries and for later reference, some exemplary queries on the book data from
Figure 2.1 are given both in natural language and in an easy-to-understand graphical notation
based on the data graph.

• Selection and Extraction Queries: (C 2.1.1) The most basic type of query is to ask for
some of the information represented in the data, usually based on its content, structure
or position within the entire data.

Query 1. “Select all essays together with their authors and the names of their authors.”

??

Essay

author ? foaf:name

Class “is-a” Relation (rdf:type)

? ?Requested resource Requested (String) Literal

Even such basic queries already raise a number of interesting issues with respect to the
capabilities of a query language:

18

– Supported result formats (C 2.1.2). The query languages considered in this survey
differ quite notably in this respect. One of the reasons is the different data repre-
sentation: Is the data represented in XML, one could, e.g., return a set or sequence
of all book elements (possibly already containing the authors and their names) or
construct new elements grouping the authors under the related books. However
some XML query languages, most notably XPath, do not support the construction
of new elements, but always return a set or sequence of the selected elements. For
RDF data, one might expect that the statements relating books and authors and the
ones associating names to the authors will be returned. However, several query lan-
guages for RDF [LIST] do not return triples, but rather a table with one column per
variable in the query and one row for each result. Similar considerations apply to
Topic Maps.

– Selection of related information (C 2.1.3). As in the sample query, one is often not
only interested in one piece of information (e.g., the books), but also in related
information (e.g., the authors and their names). Usually, it should be possible to
obtain the relations from the result, e.g. in the above case one would usually like to
know which book relates to which author.

Again, there are a number of path-based query languages, such as XQL [227], XPath
1.0 [78] or RDFPath [208] that do not provide the ability to select related information.

But there are also cases where one is simply interested in the information itself
without the relations among them. Since representing the relations among the in-
formation pieces in the result is expensive, it is desirable to allow both forms of
returning result. Whereas XML query languages usually allow the author of a query
to make this distinction, most RDF query languages do not provide this possibility.

– Should only books directly classified as “essay” be returned or also ones that are
classified in one of its subclasses, e.g., as “historical essay”? In this case, the query
actually involves inference, see below.

Another flavor of selection queries that is particularly relevant in a Semantic Web context
for collection all information about a particular resource or topic are queries that extract
entire substructures (C 2.1.4) from the data, e.g., a subgraph of an RDF graph.

Query 2. “Select everything related to the book with title ‘Bellum Civile’.”

19

The First Man
in Rome

Julius Caesar

Colleen
McCullough

J. M. Carter

Aulus Hirtius

_:b1

translator

author

Historical
Novel

rdfs:domain

rdfs:domain rdfs:range

rdfs:range

_:b2 author

author

translator foaf:name

author

title

_:p1

_:p2

_:p3

_:p4

foaf:name

foaf:name

foaf:name

1990

year

Bellum Civile

title

Class

Property (gregorian) Year Literal “is-a” Relation (rdf:type)

“is-a-kind-of” Relation
(rdfs:subClassOf)String LiteralResource

Essay

Historical
Essay

Novel

Writing foaf:Person

• Reduction Queries: (C 2.1.5) In some cases, instead of specifying precisely what to return,
it is easier to specify what should not be returned as result. One might, e.g., not be
interested in any ontology information or in translators of books for a certain application.
The ability to specify what is not to be returned, is required, e.g., if the schema of the
data to be retrieved is not known in advance, but the schema of the data to be left out is
(at least to some extend).

Unless some specific support for reduction queries is offered by a query language, the
specification of what should not be returned often requires some form of negation (C
2.1.6).

Query 3. “Select everything except all ontology information and any translators.”

20

The First Man
in Rome

Julius Caesar

Colleen
McCullough

J. M. Carter

Aulus Hirtius

_:b1

translator

author

Writing

NovelEssay

Historical
Novel

Historical
Essay

foaf:Person
rdfs:domain

rdfs:domain rdfs:range

rdfs:range

_:b2 author

author

translator foaf:name

author

title

_:p1

_:p2

_:p3

_:p4

foaf:name

foaf:name

foaf:name

1990

year

Bellum Civiletitle

Class

Property (gregorian) Year Literal “is-a” Relation (rdf:type)

“is-a-kind-of” Relation
(rdfs:subClassOf)String LiteralResource

In the context of the Semantic Web, reduction queries become even more relevant, e.g.,
for combining information from different sources or for handling trust issues.

• Restructuring Queries: (C 2.1.7) Whenever structured data is to be queried, it is impera-
tive to be able to change not only the value of the data but also its structure.

Query 4. “Invert the relation ‘author’ from a book to an author to ‘authored’.”

Essay

author

Class “is-a” Relation (rdf:type)

foaf:Person Essay

authored

foaf:Person

Resource

21

In RDF, restructuring of data is used to express statements about statements: A state-
ment that is to be used as subject of another statement is “reified” by assigning an iden-
tifier I (i.e., an URI) to the statement and transforming the original statement into three
statements for specifying subject, predicate and object of the statement.

• Aggregation Queries: A simple form of derivation of new knowledge, and hence linked
to inference, is the aggregation of data. When structured information is considered, one
can not only aggregate on data values (C 2.1.8) , cf. Query 5 but also on information
about the structure (C 2.1.9), as shown in Query 6.

Query 5. “Return the latest year (the maximum of all years) in which an author with name
‘Julius Caesar’ published anything (i.e., any ‘Writing’).”

Query 6. “Return each of the subclasses of ‘Writing’ together with the average number of
authors per publication of that type.”

Related to aggregation are the concept of grouping (C 2.1.10) and sorting (C 2.1.11) of
the result returned. Note, that grouping and sorting is not meaningful for all of the
representation formalisms that form the basis of the query languages discussed here,
e.g., in RDF statements do not have any intrinsic order, however sequence container allow
the specification of sequences.

• Combination and Inference Queries: Often it is necessary to combine (C 2.1.12) existing
but not explicitly connected information, e.g., from different sources or represented in
varying structures. Many ontologies specify, e.g., which names or identifiers are synony-
mous, i.e., refer to the same entity.

Query 7. “Combine all information about a book named ‘The Civil War’ and authored by
‘Julius Caesar’ with the information about the book with identifier bellum_civile.”

Combination of existing information often allows the inference (C 2.1.13) of additional
data: if the two books named “Bellum Civile” and “The Civil War” are the same book and
“Julius Caesar” is an other of “Bellum Civile” then he is also an other of “The Civil War”.

Another important form of inference queries are queries or views that compute the tran-
sitive closure of relations such as the subClassOf relation used in RDF for defining a
subsumption hierarchy.

Query 8. “Return the transitive closure for subClassOf relation.”

Writing

NovelEssay

Historical
Novel

Historical
Essay

Class

“is-a-kind-of” Relation
(rdfs:subClassOf)

additional tuples for
transitive closure of
“is-a-kind-of” Relation

Not all inference queries are combination queries, as the following example illustrates,
where a new relation is (intensionally) defined based on existing data about books:

22

Query 9. “Return the co-author relation between two persons that stand in author rela-
tion with the same book.”

? author

author

?

?

co-author

? Requested resource

co-author Infered co-author tuples

Whereas some query languages provide special closure operators for specifying which
relations are transitive, others limit queries on the transitive closure to a fixed set of
relations, e.g., the subClassOf relation from RDFS. Finally, some query languages provide
a general recursion mechanism, that allows among others to query the transitive closure
of arbitrary relations, even those defined intensionally as above.

2.1.1 Selection queries. Does the query language support selection queries?

2.1.2 Supported result formats. In what serialization or representation formalism can the result
be returned? Possible values are, e.g., input subset (only a subset of the input can be
returned), arbitrary XML, restricted XML (with an explanation of the restriction), one of the
RDF serializations (cf. Appendix A, one of the Topic Map serializations, table (usually with
one column for each variable to be included in the result and one row for each match),
set or sequence (for query languages lacking the ability to select related information).

2.1.3 Selection of related information. Is it possible to return related information within the
same query?

2.1.4 Substructure extraction. Are the means provided to select an entire substructure (e.g.,
a subtree or subgraph), in particular if the extent of the substructure is not known in
advance?

2.1.5 Reduction queries. Does the query language support reduction queries?

2.1.6 Negation. Is it possible to express negation in the query language, e.g., to test the non-
existence of data or to specify reduction queries.

2.1.7 Restructuring queries. Is it possible to rearrange the structure of the input or to create
an entirely new structure?

2.1.8 Aggregation on data values. Can data values be aggregated in the query language?

2.1.9 Aggregation on structure. Is it possible to aggregate over the structure of the date, e.g.,
to determine the maximum number of authors for a book?

2.1.10 Grouping. Does the query language support grouping?

2.1.11 Sorting. Does the query language support sorting?

2.1.12 Combination queries. Is it possible to combine information that is not directly connected
by the structure, e.g., by means of a join over some identifier?

23

2.1.13 Inference queries. What means for inference queries are provided by the query language?
Possible values are, e.g., closure on predefined relations, closure on arbitrary structural
relations (e.g., parent-child and sibling relation in XML or any property in an RDF graph),
general recursion.

3.2.2 Adequacy

Considering the often still immature and evolving nature of the current representation for-
malisms for the Web and the often frustrating lake of a common and formal understanding of
the underlying data models, it is not surprising that there is a great variability among the sup-
ported features and interpretations of the underlying representation formalisms among the
query languages discussed here: Exemplary issues are, e.g., whether to consider an XML docu-
ment with ID/IDREF links as graph or tree data or whether to support the more controversial
features in RDF, e.g., reification and containers.

Therefore, we consider for each of the representation formalisms separately a number of
criteria to given an impression of what a query languages supports. These criteria are based
on observing where the surveyed query languages differ and not meant to be a comprehensive
list of features of the representation formalisms.

• XML: The XML data model (as defined in [86]) is an ordered tree and therefore provides
two basic structural relations among nodes (representing elements in the document) in
a tree: the parent-child (C 2.2.1) and the sibling (C 2.2.2) relation. XML query languages
should support queries involving either relation and their closures (C 2.2.3), i.e., ancestor-
descendant and preceding-following relations. Note, that XML languages that employ
paths for accessing nodes often allow such relations to be queried in both directions,
e.g., from the parent to the children as well as from a child to its parent. However, in
[207] it has been shown that a restriction to queries where the relations are followed in
“forward” direction (w.r.t. the order in which nodes are visited) is reasonable. A third
relation particular to the XML data model is provided via ID/IDREF links (C 2.2.4). If these
relations are handled transparently, an XML document actually has to be represented as
a graph (cf. C 1.8).

Support for the intrinsic order of an XML document often goes beyond merely providing
constructs for querying the sibling relation: many XML query languages allow to access
nodes by their position (C 2.2.5) within some sequence of related nodes, e.g., the second
title of each book. Some query languages also allow unordered matching (C 2.2.6), where
the order among siblings is ignored. Finally, all XML query languages preserve the order
(C 2.2.7) when returning some part of the input unless the result is reordered specifically.

One particular important aspect when considering XML data is that the data often lacks
a fixed schema or the schema allows for a certain amount of flexibility. Therefore any
XML query language should be able to specify both partial queries (C 2.2.8), i.e., queries
where only some constraints on the data are specified and the existence of additional
nodes in the data does not affect the matching, and total queries (C 2.2.9), i.e., queries
that only match if there is no more data than specified in the query. Also often desirable
is the ability to specify optional (C 2.2.10) parts of a query: if there is some data matching
an optional sub-query it will be returned, but if no data matches the query other related
items are still returned: E.g., one might want to select all books together with their trans-

24

lators but still return the books if there is no translator for it. Such optional sub-queries
resemble outer or inner joins in relational databases.

Another important distinction among XML query languages is the support for construc-
tion of new elements (C 2.2.11). It is prerequisite for supporting restructuring queries.

Finally, there are some issues concerning the alignment of an XML query language
with the emerging standards defined for XML: support for XML Schema [98, 250, 38]
(C 2.2.12)—more details on typing are discussed below in Section 3.6.1—, support for
namespaces (C 2.2.13), support for advanced linking using XLink [93] and XPointer
[125, 124, 91, 92] (C 2.2.14), and construction of compound documents specified with
XInclude [184] (C 2.2.15).

• RDF: Beyond simple triple statements that associate two resources (called subject and
object) via a certain property (or predicate), the RDF data model has some peculiarities
that require special attention when discussing a query language for RDF. Even more than
in the case of XML, RDF has been design under the assumption that in a global Seman-
tic Web fixed schema information is often unattainable. Therefore, all properties in RDF
are optional (C 2.2.10) and multi-valued (C 2.3.1), e.g., a book described in RDF can have
any number of authors including none. A query language should provide suitable con-
structs for optional sub-queries as in the case of XML. Furthermore, properties are, as
any resource, identified by an URI and can therefore be the subject of other statements.
In this case, it is required that a query language is able to query (the identifiers) of prop-
erties (C 2.3.2), and not only those of subjects and objects. Another aspect of this are
containers and collections in RDF: containers (C 2.3.3) provide the means for expression
sets, sequences and alternatives of resources, e.g., to express that a committee has voted
in a certain way without implying that every single member actually voted in that way.
Within sequences access by position (C 2.2.5) is often useful, e.g., to obtain the first in the
sequence of chapters for a book. Alternatives also have to be handled differently from
sets or sequences since it can only be derived that at least one of the objects is actually
related to the subject (by the given predicate). Collections (C 2.3.4), introduced only re-
cently during the revision [27] of the original RDF proposal [167], differ from containers
in their semantics: collections can be “closed” in the sense that no further elements can
be included in the collection (for example when consulting additional descriptions on
the same resource). This is not the case for RDF containers. Note, that both contain-
ers and collections can be reduced to triples (i.e., binary relations), however requiring
considerable effort by the user. Therefore, specific support for these constructs takes a
considerable burden from the query programmer.

A similar consideration applies to one of the more controversial abilities of RDF, viz. to
be able to express statements about statements via reification (C 2.3.5). As stated above,
A statement that is to be used as subject of another statement is “reified” by assigning
an identifier I (i.e., an URI) to the statement and transforming the original statement
into three statements for specifying subject, predicate and object of the statement. An
RDF query language should provide at least support for the transparent access to reified
statements, i.e., the query programmer should not have to specify whether a statement
is reified or not.

E.g., for the attribution of what the source of a statement is, a statement is often associ-
ated with additional information about its context. Although such context informations

25

are often useful and desirable [127, 154], this can only be realized in RDF using reification.
Therefore, the Jena Toolkit [126], one of the syntactical forms for RDF [229] discussed in
Appendix A and a recent query language [220] all use the concept of “quads” (C 2.3.6),
i.e., triples enriched with an additional context or source information. This allows not
only a more compact formulation of queries but can also be used for improved storage
of such statements (cf. [95]).

As mentioned in Chapter 2 and discussed in further detail in Appendix A, there is a
plethora of different serialization formats for RDF. Therefore, it is interesting to note,
which serializations (C 2.3.7) can be used for input and for the result of a query.

Issues related to typing and classification of resources are considered when discussing
RDFS, OWL and the ontology awareness

• Topic Maps: Topic Maps [144], as discussed, are an ISO standard for representing “in-
formation about the structure of information resources”. As such, they have several
commonalities with RDF, but are separated in a clearer focus on the application area in
which they are intended to be used. In [19] and [115] use cases and requirements for
a upcoming Topic Map query language have been detailed. A large number of these re-
quirements are covered by criteria discussed in other sections of this survey. However,
from previous approaches for the conceptualization of information, Topic Maps inherit a
number of rich modeling concepts that should be supported by a Topic Maps query lan-
guage: In contrast to the binary relations of RDF, Topic Maps provide n-ary associations
(C 2.4.1) with labeled roles (C 2.4.2) identifying the associated data. As in RDF, associ-
ation can be further described by other associations, requiring that the query language
supports the querying of association names (C 2.3.2). Also similar to RDF and XML, which
associations can be used for a certain topic type is not fixed, thus optional sub-queries (C
2.2.10) are often helpful. There is a number of predefined associations (C 2.4.3), e.g., for
defining a sub-class hierarchy similar to RDFS, some of them with special semantics (e.g.,
transitivity). Also query languages should support some of the more advanced concepts
of Topic Maps, such as scopes (C 2.4.4), that allow to limit the validity of an association
and facets (C 2.4.5) used to create filters.

Within Topic Maps, subject identity can be established by the use of subject indicators
(also known subject descriptors). A query language should be able to connect informa-
tion on the same topic provided, e.g., from different sources, by querying these subject
indicators (C 2.4.6).

As with RDF, there is a number of different proposals for serializing Topic Maps (C 2.4.7),
e.g., XTM [212], LTM [110], and AsTMa= [16], and it should be noted which of these are
supported by a Topic Maps query language.

One of the most prominent differences between Topic Maps and RDF is that essentially in
Topic Maps all “statements” are already reified, i.e., for each association there is a node
representing that association (for more details, [244]. Therefore, no special treatment of
reified “statements” is necessary in Topic Maps.

Aside of the concrete aspects of the different representation formalisms, there is a number
of features for a query language that are provided by languages specifically designed to be
used in a Web context. Such query languages have to deal with inherent heterogeneity in a
global distributed system. Querying multiple data sources (C 2.5.1) and providing multiple

26

(often different) answers to multiple outputs (C 2.5.2) is just the basis to such querying. The
query language should also provide means to reduce the amount of data being transfered
between Web sites, e.g. by limiting the result size (C 2.5.3), support for reduction queries (C
2.1.5) limiting the answers to what is actually of interest to the user and by supporting for
easy distribution of sub-queries (C 2.5.4) based on the data sources accessed, e.g., by clearly
identifying which parts of a query deal with what data. This relates to the composability of
queries (C 2.5.5): Often the result of one query is to be further refined, possibly at another
Web site. To maximize interoperability, the query language should support different output
serializations (C 2.5.6) and provide some mechanism for the user to specify (C 2.5.7) which
serialization to choose.

Since data sources are heterogeneous (e.g., w.r.t. the level of structure in the data provided)
and may, in general, contain erroneous or contradicting data, means for vague or approximate
query answering (C 2.6.1) and relevance ranking (C 2.6.2) of query answers are often necessary
to deal with Web data sources. Approximation should be possible not only as in classical in-
formation retrieval on the text content of the data but also on its structure. To some extent,
this is already covered by the above discussion, e.g., through constructs expressing optional
sub-queries that allow for certain variation in the data to be matched. However, some query
languages might provide additional constructs for approximate structure matching (C 2.6.3).
Due to the varying level of structure provided by the data sources, some kind of text process-
ing can often not be avoided. Therefore, Web query languages might also include classical
information retrieval features as proposed for querying XML data, e.g., in [109] and in the re-
cent extensions of XQuery and XPath [12]. Such features include full-text queries (C 2.6.4) such
as single word-search, phrase search, ordered multi-word search, and proximity search based
on word distance or structure, and word normalization (C 2.6.5), e.g., stemming, stop-word
handling, suffix and prefix removal, or the use of thesauri, dictionaries or taxonomies.

Data sources are heterogeneous not only with respect to the data representation, but also
in their communication abilities. E.g., some data sources might provide data rather slowly,
therefore making it undesirable to wait with processing that data until all necessary data has
actually arrived. In such a case, an implementation providing progressive processing (C 4.12)
of the data can often provide answers long before all data has arrived. The dual case are data
sources that provide data so rapidly that conventional techniques for parsing and storing that
data (either in memory or in a database) are infeasible. A streamed (C 4.11) implementation
of a query language evaluates queries directly against the stream of incoming data without
requiring expensive data structures to be built.

2.2.1 xml Parent-child relation. Does the query language provide access to the parent-child
relation?

2.2.2 xml Sibling relation. Is it possible to query the siblings of a node?

2.2.3 xml Closure relation. Are there means to query the closure of the two base relations
parent-child and sibling.

2.2.4 xml ID/IDREF. Does the query language support the explicit or transparent dereferenc-
ing of ID/IDREF (or similar) linking mechanisms? Possible values for this criterion are:
transparent (i.e., links are automatically resolved and can be queries like parent-child re-
lations), explicit (i.e., there is some specific construct to be used for following ID/IDREF
links), indirectly (i.e., it is possible to dereference ID/IDREF links but only by querying the
actual XML attributes—no specific constructs are provided) and none.

27

2.2.5 xml,rdf Access by position. Is it possible to access nodes in the structure based upon their
absolute or relative position within the structure? In RDF, this only applies for (sequence)
containers.

2.2.6 xml Unordered matching. Is it possible to specify several children for the same node in
the XML structure such that the order among the children is not relevant for finding a
match?

2.2.7 xml Order-preserving result. If the result of a query is a part of the input, is it possible to
preserve the order?

2.2.8 xml Partial queries. Is it possible to specify only partial constraints on the data to be
matched by a query, e.g., allowing for additional children of a node to exist?

2.2.9 xml Total queries. Is it possible to specify that a match must fulfill exactly the constraint
given in the query, disallowing the existence of additional data.

2.2.10 xml,rdf,tm Optionality. Is it possible to express that certain sub-queries are optional, i.e.,
that their result should be included in the total result if they match anything, but if they
do not match, the remainder of the query may still yield result?

2.2.11 xml Construction. Does the query language provide means for constructing new elements
and attributes?

2.2.12 xml XML Schema. Does the query language make use of XML Schema [98, 250, 38] or
a similar schema language such as RELAX NG [79, 80], e.g., for typed queries or type
checking of programs or validation of result?

2.2.13 xml Namespaces. Does the query language support XML namespaces as defined in [50,
51]?

2.2.14 xml XLink and XPointer. Is there some specific support for extended linking mechanisms
as provided by XLink [93] and XPointer [125, 124, 91, 92]?

2.2.15 xml XInclude. Does the query language allow the construction of compound documents
using, e.g., XInclude[184]?

2.3.1 rdf Multi-valued properties. Is it possible to query and return properties with multiple
values?

2.3.2 rdf,tm Querying property or association identifiers.. Is it possible to query the identifiers
of properties or associations, e.g., for finding properties of properties?

2.3.3 rdf Containers. Does the query language have some provisions for container support, e.g.,
for construction of containers, querying a sequence?

2.3.4 rdf Collections. Are there some specific constructs for querying and returning collections
(defined in [135])?

2.3.5 rdf Reification. Is there some specific support for reification in the query language? Such
support can be, e.g., the transparent querying of reified statements or an easy notion for
querying and constructing reified statements.

28

2.3.6 rdf Quads. Does the query language offer specific support for context or source informa-
tion associated with a statement (often represented as “quads” [229])?

2.3.7 rdf RDF serializations. Which of the different RDF serializations discussed in Appendix A
are supported by the query language and its implementations?

2.4.1 tm Querying n-ary associations. Is it possible to query relations of arbitrary arity?

2.4.2 tm Labeled roles. Is it possible to use roles for querying and construction and to query
the role labels?

2.4.3 tm Predefined associations. Does the query language support predefined associations such
as subclass-superclass relationship and their special semantics?

2.4.4 tm Scopes. Is their explicit support for scopes in the query language?

2.4.5 tm Facets. Is their explicit support for facets in the query language?

2.4.6 tm Subject indicators. Are (published) subject indicators supported for connecting infor-
mation from different data sources?

2.4.7 tm Topic Maps serializations. Which of the Topic Maps serialization formats are supported
by the query language and its implementations?

2.5.1 Multiple data sources. Is it possible to query multiple data sources?

2.5.2 Multiple outputs. Is it possible to generate different answers for sending to multiple Web
sites?

2.5.3 Limiting result size. Is there some mechanism for limiting the size of the result retrieved
(possibly in conjunction with an SQL-like offset construct for paged answer retrieval)?

2.5.4 Sub-query distribution. Does the query language provide convenient means for identify-
ing reasonable sub-queries for distribution to the data sources, if these provide such a
capability?

2.5.5 Composability of queries. Is it possible to compose queries?

2.5.6 Output serializations. Which output serializations are supported by the query language?
Here, only general values such as RDF, XML or Topic Maps are given. The different serial-
izations for RDF and Topic Maps are investigated as criterion C 2.34 and C 2.41.

2.5.7 User-specified serializations. If there are different serializations provided, can the user
choose the serialization (either implicitly by constructing the appropriate serialization
directly or by selecting explicitly the desired output serialization)?

2.6.1 Approximate query answering. Is there a provision in the query language for answering
vague or approximate queries?

2.6.2 Relevance ranking. Does the query language automatically rank answers by their rele-
vance or provide some means for explicit ranking or scoring of answers?

2.6.3 Approximate structure matching. Does the query language support approximate match-
ing only on the content or also on the structure of the data?

29

2.6.4 Full-text queries. Are there means for processing full-text content of the structural data
to support, e.g., word or phrase queries?

2.6.5 Word normalization. If there is some support for full-text and word queries, is it possible
to apply some word normalization such as stemming or normalization based on thesauri
before matching?

3.2.3 Evolution and Reactivity

As discussed above, evolution and reactivity are important concepts linked to a query language
that become even more important in the context of the Semantic Web. Three aspects of evolu-
tion and reactivity are particularly related to query languages (for a more detailed survey, cf.
[10]):

2.7.1 Update language. Does the language provide updates or has a related update language
been defined?

2.7.2 Integrity constraints. Is there some mechanism provided to define and enforce rules that
specify restrictions on how the data can be changed?

2.7.3 Event handling. Is it possible to specify that certain actions should be performed if an
event, such as an update, occurs?

3.3 Semantics

A clear and well-understood formal semantics (C 3.1) enables not only a better understanding
of the workings of a query language, but also a certain independence from the actual imple-
mentation as queries written for one implementation of the language should be usable with
any other implementation that follows the semantics. Furthermore, a formal semantics also
proved to be very fertile for the development of various kinds of implementation-independent
optimizations ranging from source-to-source transformations to operator reordering in logical
query plans. These optimizations have, in contrast to optimizations on the level of the physical
query plan, the advantage that they usually are usually not specific to a single implementations,
but rather can be applied to a number of implementations (e.g., with similar characteristics).
Such optimizations often benefit from two characteristics of a formal semantics: composition-
ality (C 3.2) and referential transparency (C 3.3), as these enable “local” optimizations where
the context in which a sub-query occurs does not have to considered. Finally, for any kind of re-
liable reasoning (e.g., where also proof traces are to be delivered), a formal and well-understood
semantics is indispensable.

As a reference for implementations and as basis for cost estimations used in query opti-
mization, an operational semantics (C 3.4) with a rigid mapping into the formal semantics is
often desirable. Such an operational semantics can, e.g., be provided by means of an abstract
machine (C 3.5) together with a translation from the formal semantics into instructions of that
abstract machine.

3.1 Formal semantics. Has a (well-understood) formal semantics been established for the
query language?

30

3.2 Compositionality. Is the semantics of the language compositional, i.e., defined in such a
way that the semantics of a compound construct is based on the semantics of its parts?

3.3 Referential transparency. Is the semantics of the query language constructs referentially
transparent, i.e., not depending on the context?

3.4 Operational semantics. Has an operational semantics (together with a mapping from the
formal into the operational semantics) been defined?

3.5 Abstract machine. Has an abstract machine for the query language been defined?

3.4 Formal Properties and Implementation

Aside of a formal semantics, also the status and properties of implementations for a query
language is worth noting. This gives some impression on the capabilities of the query language
that are also related to formal properties such as complexity and completeness.

In the past, in particular for relational databases, two properties have often be touted to
be distinguished features of query languages in contrast to general purpose programming lan-
guages: declarativness (C 4.1), i.e., that a query language describes what should be result and
not how that result can be obtained, and no computational (Turing) completeness (C 4.2).

[228] defines a declarative language as a language where each operation is declarative, i.e.,
“independent (does not depend on any execution state outside of itself), stateless (has no inter-
nal execution state that is remembered between calls), and deterministic (always gives the same
results when given the same arguments)” [228]. This definition is adopted for the purpose of
this survey.

Historically the lack of computational completeness found in many relational query lan-
guages such SQL has been perceived as an advantage both for query writing and query exe-
cution and optimization. Where computational completeness has been required either stored
procedures written in some general-purpose programming language or the embedding of a
query language into a host programming language have been used. However, in the last decade
it has been recognized (e.g., during the development of the latest SQL standard—sometimes
collectively referred to as “SQL3”) that computational completeness actually provides benefits
in many cases: Embedding in a host language and stored procedures have both proven to be
troublesome with respect to interoperability, performance (in particular for embedding in a
host language) and authoring of queries. In this survey, we therefore also note whether a query
language is computationally complete or not.

In particular for expressive (or even computationally complete) query languages, the is-
sue of scalability w.r.t. efficiency is crucial: It should be possible to characterize interesting
sub-languages (C 4.3) that can be evaluated with different complexity, such that simple and
frequent queries can be evaluated rather quickly, but queries using more expressive features
of the query language might actually take longer. In particular, it should be noted, whether
a polynomial core (C 4.4) has been identified for the query language, i.e., a sub-language such
that all queries written in that language can be evaluated in polynomial (combined) complexity.
Often the evaluation strategies for such sub-languages differ, therefore an efficient automatic
classification (C 4.5) of queries in terms of their computational cost is highly desirable.

Additional to the formal properties discussed, this survey also includes a brief overview
over the implementations provided for a query language. The following issues are investi-

31

gated: number (C 4.6) of different implementations, status (C 4.7) of the implementation (e.g.,
prototype, internal production use, external production use), and support (C 4.8) by major
database or Web technology vendors such as Oracle, IBM, HP, Microsoft, or large open-source
projects such as Apache.

As discussed above, different kinds of implementations of a query language are very desir-
able in a Web context with varying application requirements and capabilities of data sources.
Therefore we note for each query language whether it has been implementation on top of a
database (C 4.9) (i.e., for querying persistent data where updates are rare and queries are fre-
quent), in an in-memory query processor (C 4.10) (i.e., where both query and data are used once
only), and in a streamed (C 4.11) fashion (i.e., where persistent or continuous queries are eval-
uated against volatile data). In each of these cases, answers might be provided once all data
has been processed or in a progressive (C 4.12) manner, i.e., as soon as possible.

4.1 Declarativeness. Can the query language be considered declarative following the defini-
tion from [228]?

4.2 Computational completeness. Is the query language computationally complete?

4.3 Interesting sub-languages. Have interesting sub-languages been defined, e.g., with differ-
ent complexity characteristics?

4.4 Polynomial core. Has a sub-language with polynomial complexity been proposed?

4.5 Automatic classification. If there are sub-languages with different complexity characteris-
tics, has a method been proposed to automatically classify queries?

4.6 Number of implementations. How many different implementation have been developed
for the query language?

4.7 Status of implementations. What is the status of these implementations?

4.8 Support. Is there support for the query language by major database or Web technology
vendors or large open-source projects.

4.9 Database implementation. Has the query language been implemented on top of a
database?

4.10 In-memory implementation. Has an in-memory processor for the query language been
developed?

4.11 Streamed implementation. Has a streamed implementation been provided or considered?

4.12 Progressive implementation. Has a progressive implementation been provided or consid-
ered?

3.5 Reasoning

Reasoning or the ability to derive additional data based upon the actual data stored in the
database has been an important ability of deductive or logic databases [252, 67] and reflected
in query languages such as Datalog. Since reasoning is to be considered a defining element

32

in the Semantic Web vision, it is suitable to ask what kind of reasoning mechanisms query
languages to be used in this context provide.

The first step to reasoning support is the ability to intentionally specify (C 5.1) data, e.g.,
by means of rules, views or functions. Although this has already been considered under C 1.6
(‘query modularity’), it will be noted here again to illustrate where simple derivations of new
data are possible. To specify such a derivation, boolean operators or equivalent constructs are
often used: conjunction (C 5.2, realized, e.g., by set intersection), disjunction (C 5.3, realized,
e.g., by set union), negation (C 5.4, realized, e.g., by set difference), and quantification (C 5.5, re-
alized, e.g., by relational division). Also being able to specify optional sub-queries (as discussed
in C 2.2.10 (‘optionality’) can ease the specification of derivations.

Based upon derivations as described in the previous paragraph, more powerful reasoning
abilities can be provided. Recursion, in particular, allows the specification of complex deriva-
tions such as, e.g., the transitive closure of relations or associations. Several forms of recur-
sions are provided by query languages: general recursion (C 5.6) where rules, views, functions
or similar intentional data specifications can be recursive, structural recursion (C 5.7) where
some means (e.g., a special operator for computing the transitive closure of a relation) for
recursion along the structure of the data is possible, and transitive closure only over some
predefined relations with special semantics (C 5.8).

Together with how to specify inference, it is also necessary to note what inference theory
(C 5.9) is used by a query language (in other words, what kind of reasoning is actually pro-
vided). Since the Web is constantly evolving and the appropriate reasoning may differ between
different domains, some query languages provide theory extensibility (C 5.10), i.e., provide a
well-defined interface for adding new reasoners that either implement a different inference
theory or provide additional reasoning abilities for specific domains (e.g., ontology reasoning
by a description logics reasoner or temporal reasoning).

5.1 Intensional data specification. Does the query language support the intensional specifica-
tion of data, e.g., by means of views?

5.2 Support for conjunctions. Does the query language support the use of conjunctions or
similar operations?

5.3 Support for disjunctions. Does the query language support the use of disjunctions or
similar operations?

5.4 Support for negation. Does the query language support the use of negations or similar
operations?

5.5 Support for quantification. Does the query language support the use of quantification or
similar operations?

5.6 General recursion. Is it possible to use general recursion in the query language?

5.7 Structural recursion. Is it possible to traverse the structure of the data recursively (e.g.,
by means of a recursive relation descendant in XPath [78])?

5.8 Closure on predefined relations. Are there some predefined relations that can be traversed
recursively for accessing the transitive closure (e.g., rdfs:subClassOf in RQL [148])?

5.9 Inference theory. What inference theory is used by the query language, if any?

33

5.10 Theory extensibility. Is it possible to use different inference theories or to add reasoning
abilities for specific domains?

3.6 Ontology Awareness

A query language to be used in a Semantic Web context should be able to incorporate on-
tologies: Ontologies can be used to query across data sources with different vocabularies for
describing the data by providing a mediation between these vocabularies. They can also help to
improve the recall of a query by extending the actual queried terms with semantic information
(e.g., related terms, contextual information).

To leverage ontologies for querying, the ontologies and the semantic relations described
within have to be queried. Although recent ontology languages such as RDFS [54] and OWL
[188, 238, 24, 210] are building upon RDF (in that they provide a defined set of terms for
RDF that allows the definition of new vocabularies), merely support for RDF is not sufficient
to be able to access the knowledge contained in the ontologies appropriately. Rather, a query
language has to be aware of the semantics of the terms provided by RDFS or OWL, e.g., the “is-a”
relation (subClassOf relation in RDFS). Thus, the query language can use the ontology to derive
new knowledge about the described instances, e.g., through property propagation. Therefore,
the querying the data described by the ontology and the ontology (C 6.1.1) itself should be
possible within the same language. The following issues are investigated to classify the level
of support for ontology languages (for this purpose, only RDFS and OWL are considered, since
these are the considered by some of the surveyed query languages):

• RDFS: RDFS [54] provides only a small set of terms for describing vocabularies in RDF.
The semantics of these terms is defined in [135]. Some of these terms have specific
properties, e.g., rdfs:subClassOf and rdfs:subPropertyOf are both transitive, others
allow a limited form of reasoning, e.g., if a class C is the range (i.e., the set of possible
values) of some property p, written as an RDF triple (p, rdfs:range, C), and (x, p, y)
(some x has the property p with value y , then one can infer that y is an element of class
C , i.e., (y, rdf:type, C).

The query languages surveyed here show different support for RDFS (C 6.2.1): Most lan-
guages treat RDFS terms as any other RDF term, i.e., without special consideration. Some
languages support querying the transitive closure (C 6.2.2) of rdfs:subClassOf
and rdfs:subPropertyOf, of which some provide transparent support, others require
the explicit specification of the transitive closure (e.g., by means of a recursive rule, view
or function or using a special closure operator). Only a small number of languages also
use RDFS for typing (C 6.2.3), thus providing special constructs, e.g., to query the extent
of a class, and static type checking.

• OWL: Based on previous ontology languages such as DAML+OIL, the recently specified
Web Ontology Language (OWL) [188, 238, 24, 210] is starting to see wide-spread accep-
tance in academia and also for certain industrial applications. OWL supports a much
larger set of terms for defining and constraining vocabularies. Since the support for OWL
is still rather limited (with the notable exception of OWL-QL [103]), this survey only ad-
dresses some general issues related to support for OWL (C 6.3.1): support for special prop-
erty classes (C 6.3.2) such as owl:TransitiveProperty or owl:SymmetricProperty

34

(e.g., when querying properties that are classified as owl:TransitiveProperty the tran-
sitive closure of the property should be used), information propagation (C 6.3.3) for
classes in the subsumption hierarchy (defined by rdfs:subClassOf) and for class equiv-
alence, intersection, etc., and information propagation (C 6.3.4) for individuals (e.g., when
using owl:sameAs).

As in the case of RDFS, also OWL can be used for typing (C 6.3.5) the described data.

6.1.1 Querying both ontology data and instance data. Does the query language support query-
ing the ontology data together with the data described by the ontology?

6.2.1 rdfs Support for RDFS. Does the query language support RDFS?

6.2.2 rdfs Transitive closure for subsumption hierarchy. Is it possible to query the transi-
tive closure for the RDFS subsumption hierarchy (created using rdfs:subClassOf and
rdfs:subPropertyOf)?

6.2.3 rdfs Use of RDFS for typing. Is the type system of the query language (at least partially
based) on RDFS and the rdf:type relation?

6.3.1 owl Support for OWL. Does the query language support OWL?

6.3.2 owl Special property classes. Are the classifications of properties w.r.t., e.g., transitivity
and symmetry, used for querying?

6.3.3 owl Information propagation for classes. Is information about classes (based on the sub-
sumption hierarchy and class equivalence etc.) propagated for querying?

6.3.4 owl Information propagation for individuals. Is information about individuals propagated
for querying?

6.3.5 owl Use of OWL for typing. Is the type system of the query language (at least partially
based) on OWL and the rdf:type relation?

3.6.1 Type system

Related to ontologies and schema languages is the issue of typing in Web query languages. For
the purpose of this survey, we have already introduced two criteria related to typing, viz. the
use of ontologies specified in RDFS or OWL for typing information. For XML, type information
can obviously also be provided by XML schema languages such as XML Schema [98, 250, 38] or
RELAX NG [79, 80]. This survey only gives a brief overview of typing related questions in query
languages (following [64]):

6.4.1 Typing. Have typing issues at all been considered for the query language?

6.4.2 Static vs. dynamic typing. Does the query language support static or dynamic typing.

6.4.3 Explicit vs. implicit typing. Is data typed by explicit type declarations or implicitly
(e.g., by type inference as in the statically-typed Haskell or by type inspection as in the
dynamically-typed Smalltalk).

6.4.4 Type inference. Does the query language provide type inference, e.g., to avoid explicit
type declarations.

35

6.4.5 Type coercion. Is it possible to change the type of an expression, either automatically or
using, e.g., a cast operator?

6.4.6 Support for XML Schema simple data types. Both RDF and XML Schema use the same
set of “simple” data types defined in [38]. Therefore, this criterion notes whether these
simple data types are supported by the query language?

Based upon these 111 evaluation criteria, the following section presents an overview of the
evaluation followed by a short description of the evaluated languages.

36

Chapter 4

Query Languages for the Web: An
Overview

4.1 XML Query Languages

In this chapter, a very brief overview of some XML query languages is provided. For reasons of
space and time, only some of the vast number of XML query languages proposed are consid-
ered. In particular, no visual query are left out for they are hard to evaluate by the evaluation
criteria discussed here. Recently, there has been a number of proposals for combining full-text
querying capabilities provided in information retrieval systems with structured access to XML
data. Again, for reasons of space and time, these languages have not been considered.

4.2 Textual XML Query Languages

4.2.1 Navigational Languages

4.2.1.1 Lorel

Lorel [5] is a query language originally designed for semistructured data (more specifically, the
language OEM [209, 118]) that was later adapted to XML data. Its syntax strongly resembles
SQL and OQL, but it is capable of navigating graph structures in a path-like fashion.

Query 10 (Lorel). Select all authors and titles of books written after 1991 and return them in
result elements contained within a results element.

select xml(results:
(select xml(result:

(select X.author, X.title
from bib.book X
where X.@year > 1991))

))

Lorel is a navigational language with rule-like select-from-where queries. It is capa-
ble of querying several documents and evaluating joins, but order is not considered when
querying, as semistructured data is usually always unordered. Multiple data items can be

37

retrieved by assembling several path selections. Although the result of a query is a set of
object identifiers (OIDs), XML elements can be constructed using expressions of the form
xml(tagname:subexpression). As it descends from OQL, it is capable of grouping and sup-
ports aggregations. Queries can be nested, in which case query and construction are not sep-
arated. Lorel supports a basic type system but is not aware of XML schema information and
does not use type inference.

4.2.1.2 XPath

The XML Path Language (XPath) [78] is a W3C recommendation for a selection language whose
primary purpose is to address parts of an XML document. Since it lacks construction and
reassembling aspects, it cannot be considered a full-fledged query language and is thus called
a selection language in this thesis. Many other XML query languages build upon XPath, most
prominently XQuery and XSLT.

XPath expressions specify navigation steps within the data tree represented by a document,
relative to a so-called context node (which is initially the root node of the document). An XPath
expression consists of several location steps separated by /, each specifying how to reach a
node relative to the previous node’s position. XPath can thus be considered as a navigational
language.

Query 11 (XPath). The following XPath expression selects titles of books with author Dan
Suciu and year attribute with a value greater than 1991:

/bib/book[@year > 1991][author = "Dan Suciu"]/title

Literally, this expression reads: from the root, go to bib elements, from there to book elements
for which holds that the attribute year is greater than 1991 and that contain an author element
as child node with a text value of Dan Suciu, and select all title child nodes.

XPath differentiates axes like child, descendant, parent, ancestor or sibling. These
axes can be classified into forward axes, which contain all such navigations that only move
forward in the document tree and backward axes, which contain all such navigations that only
move backward in the document tree [207]. Since XPath allows both forward and backward
axes, evaluation can be very complex and a node might be visited several times during a selec-
tion. However, [207] shows that arbitrary XPath expressions without variables can be rewritten
into equivalent XPath expressions containing only forward axes.

Forward XPath expressions resemble positional pattern, as they no longer specify arbitrary
navigations through the document tree, with the minor exception that a pattern usually does
not allow to match the same node in the document by two different nodes of the pattern:

Query 12 (XPath Forward). In the forward XPath expression

/a[child::b]/*[att="some value"]

the selection * and the child::b might match the same node in the database:

<a>
<b att="some value"/>

38

4.2.1.3 XQL

XQL [227, 225] is a variant of XPath that has been proposed and implemented by Microsoft and
others in lieu of XPath becoming a completed recommendation. It differs from XPath only in
minor points that are not relevant to this comparison.

4.2.1.4 XSLT

XSLT, the Extensible Stylesheet Language [77], is a language for transforming XML documents.
Originally intended as a powerful style-sheet language, it is often considered as a query lan-
guage as well, and the existence and development of two independent W3C XML query lan-
guages is often criticized. As it was the first available query language for XML, XSLT is very
widespread and understood by many programmers. A multitude of implementations exist (e.g.
as part of a standard library for XML processing in Java).

An XSLT style-sheet is composed of one or more transformation rules (called templates) that
recursively operate on a single input document. Transformation rules are guarded by patterns,
which are expressed in terms of XPath expressions. The first rule whose pattern matches is
evaluated, all other rules are ignored. In contrast to most other query languages, XSLT uses an
XML-only syntax:

Query 13 (XSL). Select all authors and titles of books written after 1991 and return them in
result elements contained within a results element.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/bib">
<results>

<xsl:apply-templates/>
</results>

</xsl:template>
<xsl:template match="book[@year > 1991]">

<result>
<xsl:apply-templates select="title"/>
<xsl:apply-templates select="author"/>

</result>
</xsl:template>
<xsl:template match="title|author">

<xsl:copy-of select="."/>
</xsl:template>

</xsl:stylesheet>

This stylesheet is interpreted as follows:

• try to match the root node with the templates in the style-sheets (only first template
matches)

• create a <results> element and within it try to recursively apply the templates to all
child nodes of <bib>

• for each child node, if the year is greater than 1991, create a <result> element and
recursively apply the rules to the <title> and author children of the context node

• for each <title> and <author> element, copy the complete input to the result.

39

Like XQuery, XSLT is based on the selection language XPath and thus a navigational lan-
guage. Since a template always operates on a single node, neither retrieval of multiple data
items nor joins are directly supported. It is, however, possible to assemble several XPath ex-
pressions within a construction pattern. XSLT always operates on a single input document
and is not capable of retrieving data from more than one resource. It partly supports or-
dered/unordered data by using XPath. XSLT allows to construct new data and grouping, but
aggregations are limited to those supported by XPath. Although XSLT is a rule-based language,
it does not really support the separation of construction and querying, as each rule only ap-
plies to a single node. Rules may be called explicitly to form sub-queries, and such calls may
be recursive (i.e. XSLT is Turing complete [151]). XSLT is an untyped language that is unaware
of any available schema or type information.

4.2.1.5 XQuery/Quilt

XQuery [41] can be considered the “state-of-the-art” XML Query language as it is the current
W3C recommendation for XML querying and therefore very widespread. XQuery has several
predecessors, of which it resembles most the language Quilt [70], but influences from other
languages (like XQL and XML-QL) are reflected in many constructs.

XQuery queries consist of so called FLWOR (FOR-LET-WHERE-ORDER BY-RETURN) expres-
sions and use XPath (described above) for the selection of data items. FOR and LET serve to
bind variables to values selected by XPath expressions. Whereas LET binds a variable to a set
of data items, FOR iterates over the different data items in a set. The WHERE part may be used
to specify conditions for the selected data items. ORDER BY has only been introduced recently
and allows to order the results in a certain sequence. RETURN marks the beginning of a result
pattern, which may contain additional XPath selections. XQuery expressions are enclosed in
curly braces and embedded in the construction pattern.

Query 14 (XQuery). Select all authors and titles of books written after 1991:

<results>
{

FOR $book in document("bib.xml")//book
WHERE $book/@year > 1992
RETURN <result>

{ $book/title }
{ $book/author }

</result>
}
</results>

This query iteratively binds the variable $book to all book elements occurring in the document
in the FOR part. The WHERE part ensures that only such books are selected that have an attribute
year with a value larger than 1991. The RETURN part gives a construction pattern that itself
again contains subqueries for selecting the title and authors of the book.

Being based on XPath, XQuery classifies as a navigational query language. Multiple data
items can be selected only by using multiple XPath expressions. XQuery supports arbitrary
nesting of queries as well as the definition of external functions that may contain frequently
used subqueries. XQuery is aware of both schema information and basic types and some im-
plementations support static type checking (e.g. Galax1). XQuery is not rule-based and heavily
mixes querying and construction, making more complex queries difficult to read.

1 http://db.bell-labs.com/galax/

40

4.2.1.6 FXT

The language fxt [31], the functional XML transformer, is a transformation language which is
similar to XSLT in that it uses the same kind of pattern-guarded rules to recurse over the
input document. However, fxt aims at optimal performance and thus puts certain limits on
patterns and path expressions. Most importantly, fxt neither supports explicit calling of rules
(thus no recursion other than over the document tree) nor iteration constructs like XSLT’s
for-each. However, allows to perform auxiliary computations by embedding SML expressions
in transformation rules.

Query 15 (fxt). Select all authors and titles of books written after 1991 and return them in
result elements contained within a results element.

<fxt:spec>
<fxt:pat>/bib</fxt:pat>

<results>
<fxt:apply/>

</result>
<fxt:pat>//book</fxt:pat>

<fxt:if test=’fromString(Vector2String(getAttribute (String2Vector "year") current))
> 1991’>

<result>
<fxt:apply select="/author"/>
<fxt:apply select="/title"/>

</result>
</fxt:if>

<fxt:pat>//author</fxt:pat>
<fxt:copyContent/>

<fxt:pat>//title</fxt:pat>
<fxt:copyContent/>

</fxt:spec>

fxt is based on the path language fxgrep and thus classifies as a navigational language.
Interestingly, it allows to select (at most) two data items at once by using so-called binary
patterns. The restricted path language allows neither joins nor to differentiate between ordered
and unordered queries, and a transformation always operates on a single input document. fxt
allows to construct new elements, but aggregations and grouping can only be performed by
reverting to the underlying functional language SML. fxt is rule-based but neither allows rule
chaining nor separates construction from querying. It supports basic types but does not take
advantage of schema information and performs no type inference outside SML expressions.

4.2.1.7 XPathLog

LoPiX [186] is an implementation of the XML querying and data manipulation language
XPathLog [187]. XPathLog aims at integrating F-Logic with path-based selection in XML doc-
uments. Queries in XPathLog are specified as conjunctions of path expressions in which vari-
ables may occur at multiple positions. It is thus possible to select several nodes in a single
selection step. Further queries may refer to variable bindings. Two elements can be merged by
so-called object fusion, which appears to be a mechanism similar to feature unification. This
mechanism can also be used to group elements.

Instead of the transformation approach taken by most other query languages, where an in-
put document is transformed into a new output document, XPathLog allows to update existing
documents. Updates are specified by Prolog-like rules where the right-hand part consists of a
query and the left-hand part specifies how to modify the document.

41

4.2.1.8 CXQuery

CXQuery, the Constraint XML Query Language [73], is an effort to create a declarative query
language with support for schema information. It uses rules similar to Datalog and can use
XPath to navigate the document tree as well as term-based patterns, but apparently, no deep
structures are possible (as in Datalog). Construction is specified by term structures in the head
of a rule. Again, nesting does not appear to be possible.

4.2.2 Positional Languages

4.2.2.1 XML-QL

XML-QL [94] is a positional, rule-based query language for XML and was designed at AT&T Labs.
It uses an XML-based pattern language where variables may occur at arbitrary positions. An
XML-QL query consists of a single CONSTRUCT-WHERE rule which may be divided into several
subqueries.

Query 16 (XML-QL). Select all authors and titles of books written after 1991 and return them
in result elements contained within a results element.

WHERE
<bib>

$book
</> IN "bib.xml"

CONSTRUCT <results>
WHERE <book year=$y>

<title>$t</>
<author>$a</>

</book> IN $book, y > 1991
CONSTRUCT <result>

<title>$t</>
WHERE $a2 IN $a
CONSTRUCT <author>$a</>

</result>
</results>

XML-QL patterns are positional, are capable of retrieving multiple data items at once from
multiple sources and evaluate joins over variable name equality. XML-QL does not differentiate
between ordered and unordered queries (everything is matched in any order). XML-QL can
construct new data, but grouping can only be achieved by using nested sub-queries (as in
the example above). XML-QL supports aggregations. Queries are rule-based, and sub-queries
can be nested into the query rules (as above). Construction and querying are separated, but
this separation is abandoned when using nested sub-queries. XML-QL is not aware of type
information.

4.2.2.2 UnQL

UnQL [61], the Unstructured Query Language is a query language originally developed for
querying semistructured data. UnQL uses a positional, pattern-based selection and a query
consists of a single select ...where ... rule which separates construction from querying.
Queries may also be nested, in which case the separation of querying and construction is aban-
doned. UnQL uses its own, non-XML syntax for representing and querying graph-structured
data.

42

Query 17 (XML-QL). Select all authors and titles of books written after 1991 and return them
in result elements contained within a results element.

select { results: (
select { result: { title: T,

(select { author: A }
where { author: A } in Book)

}
}

where { book: Book } in Bib,
{ year: Y, title: T } in Book) },
Y > 1991

where { bib: Bib } in db

In terms of properties, UnQL is very similar to XML-QL: it uses positional patterns, can
retrieve multiple data items at once and from multiple sources, joins are possible over vari-
able name equality. However, UnQL can respect the order of data, if desired. Like in XML-QL,
construction is possible, but grouping can only be achieved by using nested sub-queries. Ag-
gregations are supported. Queries are rule-based, and sub-queries can be nested into the query
rules (as in the example above). Construction and querying are separated, but this separa-
tion is abandoned when using nested sub-queries. Like XML-QL, UnQL is not aware of type
information.

4.2.2.3 XML-RL

XML-RL [170] is a proposal for a pattern-based query language based on logic programming.
Patterns are expressed by terms that may contain logic variables and may be partly abbreviated
with a path syntax similar to XPath. An XML-RL query program consists of several rules denoted
by A ⇐ L1, . . . , Ln where A is used for construction and L1, . . . , Ln are query patterns. Rules
may interact via rule chaining and it is possible to use recursion.

Query 18 (XML-RL). Select all authors and titles of books written after 1991 and return them
in result elements contained within a results element.

(file:result.xml)
/results/result: (title: $t, {author: $a})
⇐
(file:bib.xml)
/bib/book: (@year: $y, title: $t, author: $a), $y > 1991

XML-RL is a positional language, but allows path expressions as abbreviations. It can re-
trieve multiple data items from multiple sources and supports joins via variable name equality,
as XML-QL and UnQL. It is not possible to query based on order. XML-RL can construct new
data items. Grouping is possible by means of a special construct {.} and aggregations are
supported. Queries programs can be structured by using more than one rule, and rules may
interact via rule chaining. Querying and construction are always separated. However, compu-
tations are usually performed in the query part. XML-RL does not support type information.

4.2.2.4 XMAS

XMAS [172] part of MIX [21], the XML Matching And Structuring language, is a declarative,
rule-based query language for XML. Rules are of the form CONSTRUCT ...WHERE ... and
resemble XML-QL rules very closely. However, XMAS provides more powerful constructs for
grouping/collection and aggregation, in a similar way to the grouping construct {.} of XML-RL.

43

Query 19 (XMAS). Select all authors and titles of books written after 1991 and return them in
result elements contained within a results element.

CONSTRUCT
<results>

<result>
$T
$A {$A}

</result> {$T}
<results>

WHERE
<bib>

<book year=$Y>
$T: <title/>
$A: <author/>

</>
</> IN "bib.xml"
AND $Y > 1991

Note the grouping expressed by enclosing the collected variables in curly braces. For every
instance of $T, a result element is created. Within every such result element, all authors are
collected.

Like XML-QL, XMAS employs positional, rule-based selection, can query multiple data items
at once and from multiple sources. In contrast to XML-QL, joins have to be expressed using
an explicit join operator. XMAS is not capable of querying the order of elements, and does
not support incompleteness in depth. New data can be constructed in rule heads using so-
phisticated grouping constructs that avoid nested subqueries. Apparently, aggregations and
subqueries are not supported. Construction and querying is therefore always separated. XMAS
is not aware of type information.

4.2.2.5 XET/XDD

XET [13], XML Equivalent Transformations, is a pattern-based, rule-based query language for
XML aiming primarily at Semantic Web applications, but also capable of querying generic XML
data. XET employs XML-based patterns enriched with variables for retrieving data items in XML
documents. XET rules are similar to rules in logic programming and support rule chaining. A
formal semantics is provided in form of XDD (XML Declarative Description) and ET (Equivalent
Transformations). Unfortunately, there is not enough information available to express the
running example in XET.

4.2.2.6 Xcerpt

Xcerpt [230] is a pattern-based query language for XML inspired by logic programming. It is
further extended in the REWERSE I4 working group following the design principles detailed in
[60]. An Xcerpt program consists of at least one goal and some (possibly zero) rules. Rules
and goals contain query and construction patterns, called terms. Terms represent tree-like
(or graph-like) structures. The children of a node may either be ordered, i.e. the order of
occurrence is relevant (e.g. in an XML document representing a book), or unordered, i.e. the
order of occurrence is irrelevant and may be chosen by the storage system (as is common
in database systems). In the term syntax, an ordered term specification is denoted by square
brackets [], an unordered term specification by curly braces { }.

44

Likewise, terms may use partial term specifications for representing incomplete query pat-
terns and total term specifications for representing complete query patterns (or data items). A
term t using a partial term specification for its subterms matches with all such terms that (1)
contain matching subterms for all subterms of t and that (2) might contain further subterms
without corresponding subterms in t. Partial term specification is denoted by double square
brackets [[]] or curly braces {{ }}. In contrast, a term t using a total term specification does
not match with terms that contain additional subterms without corresponding subterms in t.
Total term specification is expressed using single square brackets [] or curly braces { }.

Data Terms represent XML documents and the data items of a semistructured database,
and may thus only contain total term specifications (i.e. single square brackets or curly braces).
They are similar to ground functional programming expressions and logical atoms. A database
is a (multi-)set of data terms (e.g. the Web). A non-XML syntax has been chosen for Xcerpt to
improve readability, but there is a one-to-one correspondence between an XML document and
a data term.

Query Terms are (possibly incomplete) patterns matched against Web resources repre-
sented by data terms. They are similar to the latter, but may contain partial as well as total
term specifications, are augmented by variables for selecting data items, possibly with vari-
able restrictions using the � construct (read as), which restricts the admissible bindings to
those subterms that are matched by the restriction pattern, and may contain additional query
constructs like position matching (keyword position), subterm negation (keyword without),
optional subterm specification (keyword optional), and descendant (keyword desc).

Query terms are “matched” with data or construct terms by a non-standard unification
method called simulation unification that is based on a relation called simulation. In contrast to
Robinson’s unification (as e.g. used in Prolog), simulation unification is capable of determining
substitutions also for incomplete and unordered query terms. Since incompleteness usually
allows many different alternative bindings for the variables, the result of simulation unification
is not only a single substitution, but a (finite) set of substitutions, each of which yielding ground
instances of the unified terms such that the one ground term matches with the other.

Construct Terms serve to reassemble variables (the bindings of which are specified in query
terms) so as to construct new data terms. Again, they are similar to the latter, but augmented by
variables (acting as place holders for data selected in a query) and the grouping construct all
(which serves to collect all instances that result from different variable bindings). Occurrences
of all may be accompanied by an optional sorting specification.

Example. Left: A query term retrieving departure and arrival stations for a train in the
train document. Partial term specifications (partial curly braces) are used since the train
document might contain additional information irrelevant to the query. Right: A con-
struct term creating a summarised representation of trains grouped inside a trains term.
Note the use of the all construct to collect all instances of the train subterm that can
be created from substitutions in the substitution set resulting from the query on the left.

travel {{
train {{

departure {{
station { var From } }},

arrival {{
station { var To } }}

}}
}}

trains {
all train {

from { var From },
to { var To }

}
}

45

Xcerpt also provides means for defining (possibly recursive) rules. Based upon these ability,
an library of view definitions for convenient querying of RDF (and Topic Maps) is currently in
development.

4.3 RDF Query Languages

4.3.1 SquishQL-family

4.3.1.1 SquishQL

SquishQL [194, 193] is an RDF query language that has been developed with ease-of-use and
similarity to SQL as main principles. It has been implemented in at least three different proces-
sors, most notably in a slightly modified and further refined version, named RDQL, in the Jena
Toolkit [126].

Essentially, SquishQL aims at a more intuitive, easy-to-use and fast-to-learn means for ac-
cessing RDF triples than provided by general-purpose RDF APIs. This aim also leads to a certain
restriction with respect to the supported features.

The SquishQL query model is influenced by [129] and uses so-called “triple patterns” and
conjunctions of these “triple patterns” to specify the structure of the RDF graph to be matched
by the query. As stated in [194] “this results in quite a weak pattern language but it does ensure
that in a result all variables are bound.”

To give an impression of the syntax used by SquishQL, the following example shows Query 1
formulated in SquishQL:

SELECT ?essay, ?author, ?authorName
FROM http://example.org/books
WHERE (?essay, <rdf:type>, <books:Essay>),

(?essay, <books:author>, ?author),
(?author, <books:name>, ?authorName)

USING books FOR http://example.org/books#,
rdf FOR http://www.w3.org/1999/02/22-rdf-syntax-ns#

Since RDQL is based on and mostly identical to SquishQL, refer to Section 4.3.1.3 for more
information on this language family.

Project page:
– (Inkling: http://swordfish.rdfweb.org/rdfquery/, RDFStore: http://rdfstore.
sourceforge.net/)

Implementation(s):
Inkling [193], Jena Toolkit—RDQL [233, 232, 231], RDFStore [222]

Online demonstration:
http://demo.asemantics.com/rdfstore/www2003/

4.3.1.2 rdfDB Query Language

rdfDB [128] is an early proposals for an RDF data base that influenced the design of, among
others, SquishQL and RDQL (cf. Section 4.3.1.3). [96] gives an introduction into rdfDB, more
details on the query language can be found in [128].

46

The syntax of rdfDB is SQL-like and as in SQL several different database commands can
be executed in a single session, although no transactions management is provided. Aside of
commands for creating databases, inserting and deleting triples, and defining namespaces, the
core element of the rdfDB syntax is the select-from-where clause. As all database commands
such a clause is delimited by a </> and returns bindings for any number of variables specified
after the select such that the pattern specified in the where clause matches in the database
given in the from part.

For illustration of rdfDB consider again Query 1 and a possible implementation of that
query in the rdfDB query language (assuming the content of http://example.org/books has
been stored in a database called booksdata):

enter namespace xmlns:books http://example.org/books# </>
enter namespace xmlns:rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# </>
select ?essay, ?author, ?authorName from booksdata
where (rdf:type ?essay books:Essay), (books:author ?essay ?author),

(books:name ?author ?authorName) </>

rdfDB is considered influential on the design of SquishQL and RDQL discussed in this sec-
tion, but the development seems to have been halted. Nevertheless, an early implementation
of rdfDB is still available from the project page.

Project page:
http://www.guha.com/rdfdb/

Implementation(s):
prototype available from the project page

Online demonstration:
none

4.3.1.3 RDQL

RDQL, RDF Data Query Language, is a query language for RDF models developed by Andy
Seaborne at HP and recently submitted to the W3C as candidate for standardization [232, 194,
233, 231]. It is an evolution from several languages, inspired by the work in [129]: rdfDB [128],
SquishQL [194], and Inkling [193].

As SquishQL RDQL does not support the special meaning provided by the RDF schema level,
although at least one of its implementations (viz. in the Jena Toolkit [126]) provide a transpar-
ent transitive closure over the subsumption hierarchies defined in RDFS using rdfs:subClassOf
or rdfs:subPropertyOf.

A typical RDQL query has a syntax which is reminiscent of SQL, but which is built around
a set of conjuncted triple patterns, i.e. triples of constants or variables, which are resolved on
the graph. Such a process binds the variables to node or property labels, which are URIs and
constants, and the result of the query is a subset of those bindings. Additional constraints on
variable values can be used to filter the result. For instance, the query:

SELECT ?person
FROM http://somewhere.org/some-rdf-model-of-people
WHERE (?person, <http://example.org/peopleInfo#age>, ?age)
AND ?age > 24

47

returns the URIs of persons whose age is greater than 24.
SELECT is the only language statement, and its syntax is easily described:

SELECT variables (identifies the variables whose bindings are returned)
FROM model URI
WHERE list of triple patterns
AND boolean expression (the filter to be applied to the result)
USING name FOR uri, ...

The last clause allows the simplification of queries by introducing names for long URIs. For
instance, the previous query can be rewritten as:

SELECT ?person
FROM http://somewhere.org/some-rdf-model-of-people
WHERE (?person, info:age, ?age)
AND ?age > 24
USING info FOR <http://example.org/peopleInfo#>

The language is maintained intentionally simple, operating only on the “data” level of RDF,
so that it could be easily amenable to standardization as a “low-level” RDF language, which re-
lies on higher level services to make use of rules or inference facilities. As the author explicitly
states, “if a graph implementation provides inferencing to appear as ‘virtual triples’ (i.e. triples
that appear in the graph but are not in the ground facts), then an RDQL will include those
triples as possible matches in triple patterns”, so that no distinction is made between inferred
triples and ground triples [232].

This language philosophy, moreover, has the effect that the predefined properties which
describe semantic oriented or “schema” aspects of a model, like type, set or class relations, are
treated as ordinary properties, leading to cumbersome complex queries when those aspects
are involved (like, for instance, a query to return all the elements of a container). This problem,
too, could be solved by using other specialized wrappers around a model.

In the following, we will consider the main aspects of the language according to the classi-
fication criteria previously shown.

Easy of use The queries are fairly simple to write and understand, although the language has
no visual syntax. Its support of the “natural” graph RDF model, with the simple triple patterns,
and a SQL-like syntax, make the language easy to grasp, even for persons non experts of all
the intricacies of the semantic web languages and models. Due to the language simplicity, no
modularization or extension mechanisms exist for writing complex queries, but the language
can be used inside the Java programming language, even mixing it, at a certain extent, with
low-level calls to the model’s API.

Functionality—Query Types The language supports only selection and extraction, since the
result of a query is a set of bindings based on triple patterns matching and filtering: no kind of
“data restructuring” is possible, nor the building of new data. Only the basic data level of RDF
is supported, and the programmer must cope with the specialized constructs of the framework
like containers, reification, optional properties, as they were ordinary properties. For instance,
the following query extracts all the elements from the bag (a kind of container) identified by
http://somewhere.org/bag1.

48

SELECT ?y
WHERE (<http://somewhere.org/bag1>, ?x, ?y)
AND ! (?x eq rdf:type && ?y eq rdf:Bag)

The filter part is necessary to eliminate from the result the triple which simple states that
the resource is a bag (i.e. has the property rdf:type equal to rdf:Bag). Queries cannot be
compound, and have a single input and output. The filtering part allows the use of simple
types URIs, strings, numbers, booleans and the null value, with the corresponding operators.
The negation can be used (like in the previous example). On the other hand, the list of triples
are only positively conjuncted: no disjunction, negation or optional matching is allowed. This,
while severely limiting the expressive power of the languages, has the consequence that a query
result is always a set of bindings of values to variables (and not, for instance, subgraphs).
Another important limitation is that, although a variable can be bound to a blank node, there is
no way to specify in a triple that a node is a blank one, neither with a literal nor with a variable.
So, for instance, it is not possible to ask a query which returns all the blank nodes of a graph.
No form of recursion or iteration is allowed: only paths of definite lengths can be queried by
listing explicitly all the triples forming the path. Finally, no modification to the data can be
carried through the language.

Considering the sample queries from Section 3.2, only the first two queries can be expressed
in RDQL. Query 1 could be formulated (exactly as in SquishQL above) as

SELECT ?essay, ?author, ?authorName
FROM http://example.org/books
WHERE (?essay, <books:author>, ?author),

(?author, <books:authorName>, ?authorName)
USING books FOR http://example.org/books#,

rdf FOR http://www.w3.org/1999/02/22-rdf-syntax-ns#

Note that everything with an author is considered to be an essay. Otherwise we should add
a triple pattern like the following: (?essay, rdf:type, books:Essay) if each book is clas-
sified as an element of books:Essay. Since RDQL is not ontology-aware and no recursion or
other mechanism for computing the transitive closure of the subsumption hierarchy is avail-
able, it is not possible to select all resources classified as an element of some class that is a
sub-class of books:Essay.

For Query 2 a similar problem arises. A first version in RDQL could be

SELECT ?property, ?propertyValue
FROM http://example.org/books
WHERE (?essay, <books:book-title>, "Bellum Civile")

(?essay, ?property, ?propertyValue),
USING books FOR http://example.org/books#

Note that a property value could be a node with other properties: however, since no recursive
mechanism is available in the language, we cannot express a transitive closure of all such
properties.

As part of the RDQLPlus (http://rdqlplus.sourceforge.net/) implementation of RDQL,
an language extension called RIDIQL [259] is defined providing both updates and transparent
use of the inference abilities of the underlying Jena Toolkit [126].

Semantics No formal semantics has been published for RDQL.

49

Complexity and implementation The RDQL has several implementations, of which a well
known one is that found in the comprehensive Jena package for semantic web developed in
Java at HP Labs [126]. It can work both with an in-memory representation of an RDF model,
as well as, for high scalability, with a database based one (currently for MySql, Oracle E, Post-
gres). The database representation allows for efficient retrieval of triples by storing them in
denormalized tables. The table fields are indexed so that the pattern matching engine can re-
trieve the triples by using the constants as keys for the search. On the other hand, the filtering
part of the query is evaluated in memory on the resulting tuples. Such an approach, while not
maximizing the performances of the system, allows the query engine to be implemented with
limited complexity.

No formal complexity study of the language has been published so far.

Reasoning No reasoning mechanism is present in the language.

Ontology awareness As already specified, the language ignores every kind of ontological
aspect, including typing mechanisms. If such aspects must be considered, they must be treated
like all the user-defined data.

Project page:
http://www.hpl.hp.com/semweb/rdql.htm

Implementation(s):
Jena Toolkit [126], RAP (RDF API for PHP) [202], PHP XML Classes (http://
phpxmlclasses.sourceforge.net/), RDFStore [222], Rasqal RDF Query Library (http:
//www.redland.opensource.ac.uk/rasqal/), Sesame (http://www.openrdf.org/
index.jsp), 3store (http://sourceforge.net/projects/threestore/, cf. [133]),
RDQLPlus (http://rdqlplus.sourceforge.net/)

Online demonstration:
using Sesame: http://www.openrdf.org/demo.jsp
using RAP: http://www3.wiwiss.fu-berlin.de/rdfapi-php/test/custom_rdql_
test.php
using RDFStore: http://demo.asemantics.com/rdfstore/www2003/

4.3.1.4 BRQL

BRQL [220] has been recently developed by members of the W3C “RDF Data Access” Working
Group as an extension of RDQL [232] aligned with the requirements and use cases detailed in
[81]. It is still a very early draft and constantly being improved, therefore this evaluation can
only give an impression of the current status.

Several features missing from RDQL but identified as interesting or necessary for an RDF
query language in [81] are added, most notably:

• The ability to construct a (single) new RDF graph using the CONSTRUCT keyword. The new
graph can be specified with RDQL triple or graph “patterns”.

• A query using the DESCRIBE clause returns the “description” of resources matched by
the query part of the expression. The exact meaning of “description” is not yet defined.

50

• In contrast to RDQL, BRQL supports convenient querying for “quads”, i.e., triples with
context information such as source attribution.

• BRQL provides the keyword OPTIONAL to specify triple or graph “patterns” that should
be attempted to match but where failure to match does not cause a query solution to be
rejected.

• Finally, also a means for testing the non-existence of tuples is added to the language.

For illustrating the capabilities of BRQL, consider again Query 1. But additionally we also
would like to return any translator of book, if there is any. This can be expressed in BRQL as

SELECT ?essay, ?author, ?authorName, ?translator
FROM http://example.org/books
WHERE (?essay books:author ?author),

(?author books:authorName ?authorName)
OPTIONAL (?essay books:translator ?translator)
USING books FOR http://example.org/books#,

rdf FOR http://www.w3.org/1999/02/22-rdf-syntax-ns#

Thanks to the addition of the CONSTRUCT clause, also restructuring and non-recursive in-
ference queries can be expressed. Query 4 can be implemented by the following expression

CONSTRUCT (?y books:authored ?x)
FROM http://example.org/books
WHERE (?x books:author ?y)
USING books FOR http://example.org/books#

and Query 9 by

CONSTRUCT (?x books:co-author ?y)
FROM http://example.org/books
WHERE (?book books:author ?x)

(?book books:author ?y)
AND (?x neq ?y)
USING books FOR http://example.org/books#,

Project page:
http://www.w3.org/2004/07/08-BRQL/

Implementation(s):
none

Online demonstration:
none

4.3.1.5 TriQL

TriQL [40] is under development at the Freie Universität Berlin, German, and aims to extend
RDQL to query named graph as introduced in TriG [39] by the authors of TriQL. The reasoning
for introducing named graphs in the RDF data model is given in [65].

The use of named graphs allows, e.g., the grouping of assertions by source or author. Then
a query such as “Get all books with rating above a threshold of 5. Use only information, that
has been asserted by Marcus Tullius Cicero.” can be formulated as

51

SELECT ?books
WHERE ?graph (?books books:rating ?rating)

(?graph swp:assertedBy ?warrant)
(?warrant swp:authority <http://people.net/cicero>)

USING books FOR http://example.org/books#,
swp FOR <http://www.w3.org/2004/03/trix/swp-1/>

Project page:
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQL/

Implementation(s):
none

Online demonstration:
none

4.3.2 Query Languages influenced by XPath, XSLT or XQuery

In this section, a number of query languages are discussed that have been influenced or are
extensions of existing XML query languages developed by the W3C. Some of these approaches
(viz. [226, 245, 257]) can be implemented directly on top of theses languages merely defining
some extension functions and data normalization to be applied before querying. The others
propose query languages for RDF that are in spirit and syntax similar to the XML query lan-
guages mentioned above.

4.3.2.1 XQuery for RDF: “The Syntactic Web” Approach

During the initial development on XQuery 1.0 [41], Jonathan Robie et al. proposed in a series of
articles [224, 226] the use of XQuery for processing RDF. The issue of normalizing RDF before
querying is discussed in detail (cf. Section A.3.4). Based on a suitable normal form (essentially
statements are considered as triples but statements with same subject are grouped), it is shown
how XQuery can be used to query such normalized RDF.

Support for the special semantics of the properties defined in RDFS is added by means of
several functions. E.g., the function rdf:instance-of-class computes the sequence of all
resources (represented by their description element) that are an instance of a given class or
any of its sub-classes. This is achieved by the following recursive function definition (the first
parameter is the set of resources on which to operate):

define function
rdf:instance-of-class($t as element(description)*,

$base-name as xs:string)
as element(description)*

{
$t[rdf:type = $base-name],
for $i in $t[rdfs:subClassOf = $base-name]
return rdf:instance-of-class($t, string($i/@rdf:about))

}

Using this function, Query 1 could be formulated (assuming an appropriate normalization
has been applied to the RDF data) as:

52

let $t := document("http://example.org/books")//description
for $essay in rdf:instance-of-class($t, "books:Essay"),

$author in $t[rdf:about = $essay/books:author]
return

<result>
{$essay, $author}

</result>

The result of such a query is a sequence of result elements containing an essay and one of its
author. The name of the author does not need to be queried specifically, since that information
is already provided as part of the description of the author selected in the $author variable.
The query also illustrates that the approach of implementing RDF querying on top of an XML
query language has the virtue of being able to return the result of an RDF query in an arbitrary
XML format.

The approach also covers the normalization and querying of Topic Maps. Similar to RDF
specialized functions are defined to support the specificities of the Topic Maps data model,
e.g., the following function computes all derived classes defined in a Topic Maps:

define function tm:get-derived-classes($topics as element(topics)*,
$derivations as element(associations)*, $base as element(topic))

as element(topics)*
{

let $a := tm:get-association-by-topic-role($topics,
$derivations, $base, "superclass")

for $subclass in tm:get-topic-playing-role($topics,
$a, "subclass", ())

return (
$subclass,
tm:get-derived-classes($topics, $derivations, $subclass)

)
}

Project page:
none

Implementation(s):
can use any XQuery implementation, however function library has not been made avail-
able, some functions are given in [226].

Online demonstration:
none

In [211] it is strongly argued that a unified model of RDF and XML data and a query lan-
guage based upon such a model is essential for the success of the Semantic Web vision. It is
demonstrated, that although the RDF and XML data models differ in some points, a common
model theoretic interpretation of RDF and XML data is possible. However, no query language
has been proposed based upon this work.

Recently, some information about another approach for extending XQuery for RDF query-
ing, called REX “RDF Extensions to XQuery”, has been discussed in the W3C Data Access Work-
ing Group (cf. [234]). This approach seems to be similar to the one discussed above, however
RDF statements are generated on-demand by a specific function related(subject, predicate,
object). Also no support for RDFS seems to be provided yet. Due to lack of information this
extension is not considered further in this survey.

53

4.3.2.2 XsRQL: An XQuery-style RDF Query Language

XsRQL (XQuery-style RDF Query Language) [149] is a very recent proposal for a RDF query
language that borrows from XQuery 1.0 [41], both with respect to the syntax and the design
approach. The main objectives of the language design are simplicity and flexibility. In particu-
lar, the language aims at providing a syntax flexible enough to allow both the writing of rather
simple, concise and more complex but also more expressive queries.

At the core of the proposal are two main differences from XQuery:

• The data model should be adapted to the specificities of RDF. The current draft is rather
vague on this point. Some issues can be inferred from the examples given.

• The path language used for accessing and selecting nodes in the data structure has been
adapted to the RDF data model: Essentially the same syntax as for XPath is used, however
only the child axis is supported. Properties are separated from subjects and objects by
using the attribute indicator @ from XPath. However, in contrast to XML attributes, the
values (i.e., objects of statements) of RDF properties are not simple, but rather structured
values. Therefore after an property further steps may follow in a path expression.

Consider once again Query 1. In XsRQL that query could be stated as

declare prefix books: = <http://example.org/books#>;
declare prefix rdf: = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>;
for $essay in datasource(<http://example.org/books>)//*[@rdf:type/books:Essay],

$author in $essay/@books:author/*
return

$essay, $author, $author/@books:authorName/*

As XsRQL currently neither supports a closure operation, a descendant-like operator or
some other means of traversing an arbitrary-length path in the data structure, it is not possible
to return also resources classified by any sub-class of books:Essay.

Project page:
http://www.fatdog.com/xsrql.html

Implementation(s):
none

Online demonstration:
none

4.3.2.3 XSLT for RDF: TreeHugger and RDF Twig

Similar in spirit to the approaches discussed in Section 4.3.2.1, TreeHugger [245] allows the
querying and transformation of RDF data in XSLT. However, in contrast to [226] (and due to
limitations of XSTL 1.0), the normalization is performed by means of XSLT extension functions
and not by an XSLT program. Also the normal form of RDF used for querying is based on the
RDF striped syntax [53], but properties are represented both as XML elements and as attributes
(raising some problems for multi-valued properties). Three extension functions are provided,
one for loading an mere RDF document, one for loading an RDF document and handling the
special vocabulary defined by RDFS, and one for loading an RDF document and handling the
vocabulary of both RDFS and OWL.

54

For accessing nodes in an RDF document XPath is used with a special prefix inv that allows
querying the inverse of a property.

Query 1 could be expressed by the following XSLT stylesheet with TreeHugger extensions:

<results xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:books="http://example.org/books#"
xmlns:th="http://rootdev.net/net.rootdev.treehugger.TreeHugger"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xsl:version="1.0">
<!-- Load RDF document -->
<xsl:variable name="doc"

select="th:documentRDFS(’http://example.org/books’)" />
<xsl:for-each select="$doc/books:Essay">

<xsl:for-each select="books:author/*">
<result>

<xsl:value-of select="inv:books:author" />
<xsl:value-of select="." />
<authorName>

<xsl:value-of select="books:authorName/*" />
</authorName>

</result>
</xsl:for-each>

</xsl:for-each>
</results>

Project page:
http://rdfweb.org/people/damian/treehugger/

Implementation(s):
available from the project page

Online demonstration:
http://swordfish.rdfweb.org/discovery/2003/09/treehugger/

In [257], another approach of extending XSLT 1.0 with functions for querying RDF, called
RDF Twig, is described. In contrast to the previously discussed proposals, it provides different
views on the RDF data corresponding to redundant or non-redundant (i.e., where nodes that are
reachable by various paths are repeated, resp. not repeated) depth or breadth first traversals
of the RDF graph. Furthermore, two query mechanisms are provided: A small set of logical
operations on the RDF graph (also used in the example below) and an interface to the RDQL
query engine provided by the Jena Toolkit [126] used for implementing RDF Twig.

To give a feeling for the language, we consider once more Query 1 and how it can be realized
in this query language:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0"
xmlns:rt="http://nwalsh.com/xslt/ext/com.nwalsh.xslt.saxon.RDFTwig"
xmlns:twig="http://nwalsh.com/xmlns/rdftwig#"
xmlns:books="http://example.org/books#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<xsl:template match="/">
<xsl:variable name="model"

select="rt:load(’http://example.org/books’)"/>
<!-- this is used as default model from now on-->
<xsl:variable name="pType"

select="rt:property(’http://www.w3.org/1999/02/22-rdf-syntax-ns#’,’type’)"/>
<xsl:variable name="essays"

55

select="rt:find($label, ’books:Essay’)"/>
<xsl:variable name="tree"

select="rt:twig($essays)/twig:result"/>
<results>

<xsl:for-each select="rt:find($label, ’books:Essay’)">
<result>

<xsl:value-of select="rt:twig(.)" />
<xsl:value-of select="rt:twig(.)/twig:result/books:author" />

</result>
</xsl:for-each>

</results>
</xsl:template>

For simplicity, only essays and authors are considered, the names of the authors will be re-
turned as well, as they are reachable from the associated essay and rt:twig(.) returns all
information reachable from the current essay (in this case). RDF Twig does not support RDFS
or OWL, therefore only resources classified directly as books:Essay will be considered by this
query.

Project page:
http://rdftwig.sourceforge.net/

Implementation(s):
available from the project page

Online demonstration:
none

4.3.2.4 RDFT and Nexus Query Language: XSLT-style RDF Query Languages

RDFT As XsRQL is modeled after XQuery, RDFT [88] is a draft proposal closely related to
XSLT 1.0. As XSLT 1.0 it uses templates that are matched recursively against the data structure.
Naturally, the structural recursion is performed against an RDF graph, raising issues with cyclic
graph structure that are still open issues in the development of RDFT.

RDFT uses an adaptation of XPath for querying RDF graphs, called NodePath. As in most of
the other approaches oriented on XML query languages, a striped view of RDF [53] is adapted
where properties and other resources alternate. No provision for querying data described with
RDFS or OWL is made.

Only a subset of XSLT elements is supported, but a macro mechanism is introduced as
illustrated in the following implementation of Query 1 in RDFT:

<rt:stylesheet rt:version="1.0" xmlns:rt="http://purl.org/vocab/2003/rdft/">
<rt:macro-set rt:prefix="rdf">

<rt:macro name="type"
value="resource(’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’)/resource()"/>

</rt:macro-set>
<rt:root-template>

<rt:apply-templates
rt:select="/resource()[rdf:type = resource("http://example.org/books#Essay")/>

</rt:root-template>
<!-- Template for the Essay
<rt:template pattern="resource()[rdf:type =

resource(’http://example.org/books#Essay’)" />
<xsl:value-of select="." />
<rt:apply-templates

56

rt:select="resource(’http://example.org/books#author’)/resource()/>
</rt:template>
<!-- Template for the author -->
<rt:template

pattern="resource(’http://example.org/books#author’)/resource()">
<xsl:value-of select="." />

</rt:template>
</rdft:stylesheet>

Again, for simplicity, only books and their authors are returned without considering the names
of the authors. Also note, that the specification is not really clear what the result of such a
query will be: an XML tree or some form of an RDF graph. The description of rt:element
seems to indicate the former, the description of rt:value-of the latter.

Project page:
http://www.semanticplanet.com/2003/08/rdft/spec

Implementation(s):
none

Online demonstration:
none

Nexus Query Language In [85] another approach for querying RDF (and some form of XML)
using an XSLT-like language is sketched. The basic idea is to translate both RDF/XML and also
some non-RDF XML documents into a hierarchy of elements (that also carry some attributes)
based upon the relations between the elements. The result of a query is then some (also
hierarchical) view over this element tree. [85] gives no consideration w.r.t. cyclic relations
among elements but the language used seems to indicate that only proper hierarchies can be
represented.

RDF statements are mapped to nodes in the data model in the following way: nodes in
the graph represent RDF properties; an RDF statement (S, P, O) is represented by edges from
all nodes representing some property with the value S to a node representing the property P
with value O. A resource that never occurs as object is assigned as value to a special property
called query:seed. [85] seems to indicate that there can be only one such query:seed node,
an assumption that is clearly invalid for general RDF graphs.

The query language provides means for matching such property nodes based on the iden-
tifier (represented as URI or XML QName) of the property and the type (as determined by an
rdf:type statement) of the value of the property.

Consider again Query 1 and the following Nexus query that implements the query:

<query:plan>
<query:template match="query:seed" type="books:Essay">

<query:call name="query:insert" rename="book">
<query:call name="query:format" rename="title"

value="book:title" />
<query:call name="query:traverse" />

</query:call>
</query:template>
<query:template match="book:author">

<query:call name="query:insert" rename="author">
<query:call name="query:format" rename="name"

value="book:authorName" />

57

</query:call>
</query:template>

</query:plan>

An excerpt of the result of this query on the sample data from Figure 2.1 would be:

...
<book title="Bellum Civile">

<author name="Julius Caesar" />
<author name="Aulus Hirtius" />

</book>...

Obviously, the syntax is rather verbose and does not inherit the ability of XSLT to write
arbitrary XML as content of an element. Furthermore, the development of the language seems
to be stalled as the only information available on this language is the rather short and often
vague report cited above [85].

Project page:
none

Implementation(s):
not publicly available, no report on any implementation

Online demonstration:
none

4.3.2.5 XPath-syle Access to RDF: RDF Path, RPath and RxPath

Several mostly sketchy proposals [247, 89, 208, 185]for adapting the XPath-style navigational
access to RDF graphs have been published in recent years. For this survey, two representative
ones have been selected, viz. “Pondering RDF Path” by Sean Palmer and RPath [185], a language
designed in the context of device independence and content adaptation.

RDF Path In [208], a sketch of an RDF Path language is proposed that is closely aligned with
XPath. The aim of this language is to provide clear equivalents for the XPath facilities such as
selection of context nodes, filtering and location steps, but operating on RDF data. The syntax
is similar to XPath but extended by special node-tests for RDF, such as arc() and subj()
for selecting all arcs, resp. all subjects in the RDF data. Several aspects of XPath not relevant
for RDF are dropped. Only basic navigational features are provided, functions and testing of
values is mostly not considered in this early draft. Finally, as in most of the approaches based
on XML query languages, the fact that, in contrast to XML trees, RDF graphs are not rooted is
not considered.

As XPath, this language is not capable to select related information as in Query 1. Therefore
a slightly variation of Query 2 is used to illustrates its abilities: “Select the names of all authors
of historical essays with the title ‘Bellum Civile’.”. This query can be realized by the path
expression

*[rdf:type/books:Historical_Essay books:title/"Bellum Civile"]/
books:author/*/books:authorName

58

Appropriate mappings for the prefixes used in the query have to be established before evalu-
ating the query (this is also the case in XPath). Also note that due to the lack of support for
the special semantics of the vocabulary provided by RDFS, this query will only return resources
directly classified as books:Historical_Essay.

Project page:
http://infomesh.net/2003/rdfpath/

Implementation(s):
none

Online demonstration:
none

RPath [185] is a new RDF query language which is based on the path navigation principle
known from XPath. In fact, the major design idea behind RPath is to provide XPath for RDF.
In its current state, however, it focuses strongly on CC/PP and UAProf, two RDF applications
for describing device characteristics like color capable, color depth, or screen resolution. CC/PP
is the general framework for those device profiles, whereas UAProf is a specific vocabulary
focused on (but not limited to) mobile devices.

As RPath navigates through RDF data using paths, it views this data as graph, not as triples.
The concepts of the language resemble very much that of XPath, that is, location steps, vertex-
edge-tests (corresponding to node-tests in XPath), and predicates. Differences to XPath are due
to the differences between the data models of XML and RDF, for example: The axes can follow
a path along vertices (RDF predicates) and edges (RDF subjects and objects). The adaptation of
most XPath concepts to the RDF data model is straightforward. One major difference, however,
is the absence of a root node in the RDF graph, and the question of finding a start point for the
path expression remains an open topic.

On the other hand, the (current) focus of RPath lies on CC/PP and UAProf, which limit
RDF graphs to rooted two-level trees. The language itself does not offer any CC/PP-specific or
UAProf-specific features, all of it can be used to query generic RDF graphs. The implementation
of the prototype, however, is capable of handling the protocol specified by CC/PP, including
default profiles and profile diffs, as well as the data types defined by UAProf.

The authors of RPath claim its ease of use as the main advantage. As XPath already enjoys
widespread use in the XML world, the learning curve for RPath should be shallower than that
for other RDF query languages for potential users. Another advantage is the tight coupling
with CC/PP and UAProf, which should make RPath suitable to be used in device independence-
applications.

RPath has been developed at Keio University, Japan, by Keita Matsuyama, Michael Kraus,
Kazuhiro Kitagawa (Activity lead for the W3C Device Independence), and Nobuo Saito. Cur-
rently, development has been halted.

To convey an impression of the languages capabilities and syntax, the same variation of
Query 2 as above is used: “Select the names of all authors of historical essays with the title
‘Bellum Civile’.”.

/@vertex()[
rdf:type/@books:Historical_Essay and

59

books:title/@vertex()[equals(‘Bellum Civile’)]
]/books:author/books:authorName

Note, that in contrast to most other path-based approaches to querying RDF data, RPath does
not require the user to write paths where expressions matching vertices (i.e., classes) and edges
(i.e., properties) alternate (similar as in striped RDF [53]). This is possible, as all steps begin
with an axis specification and different axes for vertices and edges are provided. To illustrate
this point the same query shown above could be written using non-abbreviated RPath syntax
as:

outerVertex::vertex()[
outEdge::rdf:type/outVertex::books:Historical_Essay and
outEdge::books:title/outVertex::vertex()[equals(‘Bellum Civile’)]

]/outEdge::books:author/outEdge::books:authorName

Project page:
none

Implementation(s):
prototype in Java, based on a CC/PP engine from Sun

Online demonstration:
none

RxPath As part of the Rx4RDF project http://rx4rdf.liminalzone.org/rx4rdf that aims
at improving the accessibility of RDF for non-experts another adaption of XPath for querying
RDF data has been defined.

In contrast to the approaches discussed above and somewhat related to TreeHugger and
RDF Twig, RxPath is essentially “ a mapping between the RDF Abstract Syntax to the XPath
Data Model” [241]. The mapping consists in four steps:

• One top-level element in the XML document is created for every resource in the RDF
model with the type of the resource as element label.

• “Each root element has a child element for each statement the resource is the subject of.
The name of each child is [the] name of the property in the statement.” [240]

• “Each of these children have [a] child text node if the object of the statement is a literal
or a child element if the object is a resource.” [240]

• “Object elements have the same name and children as the equivalent root element for the
resource, thus defining a potentially infinitely recursive tree.” [240]

As stated, such a mapping might lead to infinite trees, in particular when evaluating any
of the closure axes of XPath (descendant, following, preceding, etc.) the number of nodes
selected in the tree is no longer finite. RxPath proposes a circularity-test for the evaluation
of such axes, such that whenever an element with the same URI reference as an anchestor is
encountered that element is skipped in the evaluation. (One consequence of this approach is
that blank nodes need to be assigned a unique URI reference.)

Furthermore, RxPath changes the semantics of the closure axes to only consider elements
representing RDF properties in the original RDF model (this is easy as the mapping from RDF

60

into an XML document discussed above uses a striped representation of RDF statements [53]).
Furthermore, an expression such as descendant::rdf:type only matches an element repre-
senting an rdf:type property where all elements representing an RDF property actually rep-
resent an rdf:type property. In other words, descendant::rdf:type is more similar to the
regular tree expression (rdf:type)* than to the XPath expression descendant::rdf:type.

Once more we use the same variation of Query 2 as above to illustrate the language syntax:
“Select the names of all authors of historical essays with the title ‘Bellum Civile’.” (assuming
the books prefix is bound to http://example.org/books-rdfs#):

/books:Historical_Essay[books:title = ‘Bellum Civile’]/
books:author/*/books:authorName

Based on RxPath two more languages have been defined: RxSLT [242]is “syntactically iden-
tical to XSLT 1.0” [242], but uses RxPath instead of XPath 1.0. RxUpdate [243] is syntactically
very similar to XUpdate [168], but again uses RxPath instead of XPath to update RDF models.

Project page:
http://rx4rdf.liminalzone.org/rx4rdf

Implementation(s):
prototype in Python, available from project page

Online demonstration:
none

4.3.2.6 Versa

Conceived as query language for the Python-based 4Suite2 toolkit for XML and RDF application
development, Versa3 is a query language for RDF inspired by XPath that can be used as a
replacement of XPath for pattern matching in XSLT. Although inspired by XPath it is sufficiently
different to deserve a discussion separate of the languages shown in the previous section.

The details of Versa are described in [204], [201] and [200] present gentle introductions
into the language. The core design principles of Versa, as stated on http://uche.ogbuji.
net/tech/rdf/versa/, are:

• “Strong alignment with XML.” As the 4Suite toolkit provides access to both XML and RDF
data and technologies, the use of Versa to access RDF, e.g., when constructing an XML
document with XSLT is an obvious choice. However, it has not been attempted to provide
a single query language for both XML and RDF data, rather a set of query languages such
as XPath and Versa are provided, each specialized for a certain data formalism.

• “XPath-like idiom.” The approach taken in the 4Suite toolkit, viz. not to provide an
integrated query language for different data formats but rather to use a set of specialized
query languages is all the more viable the more these query languages have in common.
Therefore, Versa has been designed with a syntax inspired by XPath, although it arguably
deviates quite notably, even more so than the query languages discussed in the previous
section.

2 http://4suite.org/ 3 http://uche.ogbuji.net/tech/rdf/versa/

61

• “Extensibility.” Just as XPath, Versa is designed to be extensible in the same way as
XPath, i.e., using externally defined extension functions. However, the current version of
the specification [204] is not very clear on this point.

• “Ease of learning.” The authors claim that “many users have reported that they become
proficient very quickly with Versa.” Justifiably, they argue that the superficial similarity
some of the other RDF query languages share with SQL is not actually helpful in many
cases as there is considerable mismatch with regard to the data model used by the lan-
guages. Although the traversal constructs of Versa are designed to be easy to recognize
and remember, they are considerable different to the traversal expressions in XPath (i.e.,
XPath axes and node-tests) or similar path-based query languages.

• “Expressiveness.” The set of query constructs provided by Versa covers a, for a path-
based language to be used within, e.g., XSLT, surprisingly large set of the functionalities
discussed in Section 3.2, lacking most notably means for defining views, functions, and
other forms of construction. This lack can be justified to some extent by the intended
use of Versa within some host language that might provide these means.

At the core of the Versa query language are the assorted traversal and filter expressions.

• Forward traversal. Versa allows the traversal of one or more properties starting from a
list of subjects to select the objects that are reachable via the given properties. E.g., the
expression all() - books:author -> * selects all resources that are author of another
resource. The objects can also be restricted, e.g., to those containing a certain string.
Here * indicates a wildcard, i.e., no further restriction on the objects. Such traversal
expressions can be chained.

The following Versa query uses forward traversal operators to implement Query 1 (in the
following discussion of Versa, the namespaces are assumed to be set up externally):

distribute(type(books:Essay),
".",
"distribute(.-books:author->*,

".", ".-books:authorName->*)")

The distribute() function returns a list of lists containing the result of the second,
third, . . . argument evaluated starting from each of the resources selected by the first
argument. As in XPath, . denotes the current node in such a context. Here, the first
argument selects all resources classified as books:Essay and evaluates starting with
these resources the remaining two arguments: The former returns all those books, the
second uses distribute() again to select the authors together with their name.

• Forward filter. Just like a traversal, where the object of the traversed statement is select,
one can use a forward filter to select the subject of a statement. E.g., the Versa query
type(books:Essay) |- books:title -> eq("Bellum Gallicum") selects all essays
with a title “Bellum Civile”.

• Backward traversal. Sometimes, one would like to navigate from the objects of a state-
ment to the subjects. Therefore, Versa offers also a backward traversal (although, so far
no backward filter is provided, it can however, be implemented with the general filter ex-
pression discussed below). E.g., the query above selecting all essays with a title “Bellum
Gallicum” can also be written as

62

(books:Essay <- rdf:type - *) |- books:title -> eq("Bellum Gallicum")

• General traversal. Whereas the traversal operators discussed so far only allow the traver-
sals of paths with fixed length, Versa also offers a function for general traversals, both
forward and backward. This function, called traverse, can also be used to traverse paths
of arbitrary length. E.g., the following query obtains all sub-classes of books:Writing:

traverse(books:Writing, rdf:subClassOf, vtrav:inverse, vtrav:transitive)

• General filter. Similarly, the filter function provides a general filter, where the result
of evaluating the first argument is filtered by the remaining arguments evaluated in the
context of the elements selected by the first one. E.g., to select all essays with title
“Bellum Gallicum” and a translator with name “J. M. Carter” could be implemented by the
following query:

filter(books:Essay <- rdf:type - *,
". - books:title -> eq(’Bellum Gallicum’)",
". - books:translator -> books:translatorName -> eq(’J. M. Carter’)"

Following this short overview over the core traversal and filtering functions of Versa, the
language is further investigated following the criteria proposed in Section 3.2.

Easy of use. Although designed to be closely aligned with XPath, the traversal operators
shown above and the use of functions instead of specific syntactical constructs such as pred-
icates in XPath gives Versa a rather unfamiliar feeling compared to other XPath-oriented lan-
guages.

Functionality—Query Types. Selection and extraction queries can be easily implemented in
Versa, although as demonstrated by the above implementation of Query 1, the selection of
multiple related items is not very convenient. In contrast to most other RDF query languages,
Versa allows the extraction of arbitrary size graphs, as required by Query 2. Also reduction
queries can be expressed, e.g., using negation or set difference. Query 3 can be implemented
in Versa by the following query

difference(all(),
union(type(rdfs:Class),

union(type(rdfs:Property,
all() <- books:translator - *))

)
)

This query selects all resources except for those that are either (a) a rdfs:Class, (b) a
rdfs:Property, or (c) occur as object in a statement with predicate books:translator.

Neither restructuring nor combination or inference queries can be directly expressed in
Versa, as the result of a Versa query is always a list (or possibly a list of lists). However, queries
such as Query 4 and 9 can be approximated, e.g., by returning all the tuples of co-authors of a
book:

63

distribute(all(), ". - books:author -> *", ". - books:author -> *")

However, this query will also include that, e.g., "Julius Caesar" is a co-author of himself. It does
not seem possible to avoid this in Versa, as the later arguments of distribute are evaluated
independently.

Versa also provides a large set of aggregation functions. Query 5 can be implemented by
the following program

max(filter(all(),
". - books:author -> books:authorName -> eq(’Julius Caesar’)"
)

- books:year -> *)

Starting from the filtered books, the year of publication of those books is selected and the
maximum of these years calculated.

Also Query 6 can be implemented in Versa using the length function for calculating the
number of authors per book:

distribute(traverse(books:Writing, rdf:subClassOf,
vtrav:inverse,vtrav:transitive),

".",
"max(length((. <- rdf:type *) - books:author -> *))"

)

Semantics. No formal semantics has been provided so far.

Complexity and implementation. No formal complexity study of the language has been pub-
lished so far. Only a single implementations by the authors of the language is available.

Reasoning. No reasoning abilities are provided.

Ontology awareness. Versa provides a RDFS-aware type() function that returns all resources
that are classified under the given RDFS class or one of its sub-classes. The transitive seman-
tics of rdfs:subClassOf and rdfs:subPropertyOf are not provided by default but can be
implemented by the general traversal function traverse.

Project page:
http://uche.ogbuji.net/tech/rdf/versa/

Implementation(s):
available as part of 4Suite from http://4suite.org/

Online demonstration:
none

64

4.3.3 RQL-family

4.3.3.1 RQL

RQL [76, 146, 145, 147, 148], the RDF Query Language, has been developed at the ICS-
FORTH and influenced several later proposals for RDF query languages such as SeRQL (cf.
Section 4.3.3.2, eRQL (cf. Section 4.3.3.3, and BRQL (cf. Section 4.3.1.4). The reference imple-
mentation of RQL has been developed as part of the RDFSuite [9], a collection of tools that
provide efficient access to increasingly large RDF stores drawing on established database tech-
nology provided by an ORDBMS. The architecture of RDFSuite is shown in Figure 4.1 identifying
the three main components of RDFSuite:

• the Validating RDF Parser (VRP), a high-performance, RDFS-aware RDF parser that also
allows the user to specify semantic constraints against which a document should be
validated,

• the RDF Schema-Specific Data Base (RSSDB), a persistent RDF store based upon the OR-
DBMS PostgreSQL (http://www.postgresql.org) that stores RDF data based on its
(RDFS) schema, and

• an interpreter for RQL, implemented on top of the RSSDB.

Figure 4.1 RDFSuite Architecture
(from [8], c© ERCIM News)

RQL has also been used in the ICS-FORTH Semantic Web Integration Middleware (SWIM) [75],
where it is used to query data represented as RDF but integrated from different data sources,
e.g., XML documents or relational databases.

In contrast to RDF query languages such as RDQL, that are tailored to be easy to use by pro-
viding only a small set of (often used) query constructs excluding, e.g., the direct exploitation
of RDFS or direct support for more complex aspects of RDF such as containers or reification,
RQL also has the ability to combine schema and data querying and allows the specification of
complex graph patterns.

At the core of RQL is a formal data model for RDF graph data (deviating slightly from stan-
dard RDF/S semantics by disallowing cycles in the subsumption hierarchy and requiring that
for each property both domain and range are defined for (a) simplification and (b) alignment

65

with underlying type systems) based upon typing information provided by an RDFS schema.
The salient features of this data model are

• a clear separation between the different RDF/S abstraction layers: (1) data, i.e., descrip-
tion of resources such as persons, XML documents, etc., (2) schemas, i.e., classifica-
tions for such resources, and (3) metaschemas containing the metaclasses (i.e., classes
of classes or properties) rdfs:Class and rdfs:Property and their refinements)

• flexible type system tailored to the specificities of RDF/S by allowing (a) optional and
multi-valued properties, (b) superimposed descriptions of the same resources (i.e., re-
sources can be classified under different classes not related in the subsumption hierar-
chy) and (c) the flexible refinement of schemas.

Based upon this data model, RQL provide a number of novel query constructs for querying
the type information associated with the RDF data. In the following a condensed overview
of the most prominent query constructs provided in RQL given, more details can be found in
[76, 146, 145, 147, 148].

Basic schema queries. As stated above, one of the salient features of RQL is the use of
type information derived from an RDFS schema. The subsumption hierarchy defined by
rdfs:subClassOf and rdfs:subPropertyOf can be accessed in different manners:

• Querying the sub-classes of a class: E.g., subClassOf(books:Writing) returns all sub-
classes of books:Writing (assuming the namespace books is set up properly using
USING NAMESPACE books = &http://example.org/books-rdfs#).

• Querying the sub-properties of a property using subPropertyOf.

• Querying the domain and range of a property. E.g., the following query obtains instances
of which classes can be combined with books:author:

SELECT $C1, $C2
FROM {$C1}books:author{$C2}
USING NAMESPACE books = &http://example.org/books#

The $ prefix of a variable indicates a “class variable”, i.e., a variable ranging on schema
classes, in other words, resources with rdf:type rdfs:Class. Therefore, $C1 selects all
classes that are in the domain of books:author and $C2 those in its range.

More explicitly, the query can be stated as (however, since subClassOf is not reflexive, the
direct domain and range are left out):

SELECT C1, C2
FROM subClassOf(domain(book:author)){C1}, subClassOf(range(books:author)){C2}
USING NAMESPACE books = &http://example.org/books#

Note, that here the query variables are not prefixed by $, therefore the values (and not
their type) returned by the subClassOf expressions are used. This is the intended result,
as the values returned by subClassOf are already the classes searched for.

Finally, the query could also be formulated using a type constraint:

66

SELECT C1, C2
FROM Class{C1}, Class{C2}, {;C1}books:author{;C2}
USING NAMESPACE books = &http://example.org/books#

The first part of the FROM clause (ClassC1, ClassC2) selects all pairs of classes defined
in the schema. These pairs are further constrained by the second part, that stipulates
that only such pairs are to be retained where the first class can occur as domain and
the second as range of books:author. This restriction is expressed by a type constraint,
written (in general) {X;Y}, where X is bound to the concrete values (here, e.g., “Julius
Caesar”) and Y to the type of the value (here, e.g., Literal, i.e., the class of all RDF
literals.

• Querying tops and leafs of the subsumption hierarchy. E.g.,
topclass(books:Historical_Essay) returns books:Writing on the data from
Figure 2.1. Furthermore, it is possible to query the nearest common ancestor of
two classes, e.g., nca(books:Historical_Essay, books:Historical_Novel) is
books:Essay.

• Querying meta-schema information. Meta-classes, such as Class, and Property (the
class of all classes, all RDF literals, all properties, resp.) can be queried just as any other
class. Obviously, the extent of a meta-class is a set of classes, as demonstrated above.

• Querying RDF properties. Just as classes can be queried using class variables indicated
by a $-prefix, RDF properties are selected by “property variables” prefixed by @. E.g., the
following query selects all properties together with their range that can be attached to
resources classified as books:Writing:

SELECT @P, $V
FROM {;books:Writing}@P{$V}
USING NAMESPACE books = &http://example.org/books#

Combining these facilities, one can easily implement Query 8 in RQL:

SELECT X, Y
FROM Class{X}, subClassOf(X){Y}

This query returns pairs of all classes such that the first class is a super-class of the second
one.

Data queries. Obviously, RQL also provides access to the actual resource descriptions. One
can access resources by their type and by navigating to their position in the RDF graph, and
further restrictions to the data to be selected can be specified by filters:

• Querying the extent of classes and properties. Both classes and properties can be queried
for their (direct and indirect) extent:

books:Writing

returns all resources classified as books:Writing or one of its sub-classes. This is equiv-
alent to

67

SELECT X
FROM books:Writing{X}

If only those resources X shall be returned that are directly classified as books:Writing,
i.e., where an RDF tuple (X, rdf:type, books:Writing) exists, the name of the class must
be prefixed by ^.

Similarly, one can query the extent of a property, e.g.,

^books:author

returns pairs of all resources X, Y that stand in the books:author relation, i.e., where an
RDF tuple (X, books:author, Y) exists.

• Querying by navigation using generalized path epressions [74]. RQL uses generalized
path expressions known from, e.g., OQL and Lorel, to allow navigation both in the data
and in the schema graph.

This allows for an easy traversal of relations convenient for implementing Query 1:

SELECT X, Y, Z
FROM {X;books:Essay}books:author{Y}.books:authorName{Z}
USING NAMESPACE books = &http://example.org/books#

• Filtering the result. The result of a query can be further restricted by a WHERE clause. E.g.,
to select only books and the names of their authors if the title of the book is "Bellum
Civile", one could add a WHERE clause as in the following query:

SELECT X, Y
FROM {X;books:Essay}books:author.books:authorName{Y}, {X}books:title{T}
WHERE T = "Bellum Civile"
USING NAMESPACE books = &http://example.org/books#

Mixing schema and data queries. Querying data and schema can be intertwined in any way.
In particular, as shown above, data can be selected based on its type, by providing filter expres-
sions for the variable selecting the data. E.g., the expression X;books:Essay restricts bindings
for variable X to resources with type books:Essay.

Often interesting queries not only require the use of type information for filtering, but
also benefit from providing type information in the result. Query 2, that asks for a kind of
description of the book with title “Bellum Civile”, could be implemented in RQL in the following
way (interpreting “description” as the schema of a resource):

SELECT $C, (SELECT @P, Y
FROM {Z ; ^$D} ^@P {Y}
WHERE Z = X and $D = $C)

FROM ^$C {X}, {X}books:title{T}
WHERE T = "Bellum Civile"
USING NAMESPACE books = &http://example.org/books#

This query returns all classes under which the resource with title “Bellum Civile” is directly
classified (^$C{X} selects all values in the direct extent of any class). Grouped by these classes,

68

all properties and classes that can be used as values for the respective property are queried by
a nested RQL query and returned.

Several of the features of RQL are not discussed in length here, such as support for con-
tainers, aggregation, schema discovery, etc.

Although the original proposal of RQL does not include view definition constructs, RVL
[175] provides such an extension. Using this language, one could, e.g., define the inverse rela-
tion of books:author as a view by the following program:

CREATE NAMESPACE mybooks = &http://example.org/books-rdfs-extension#
VIEW authored(Y, X)
FROM {X}books:author{Y}
USING NAMESPACE books = &http://example.org/books#

Such a view can be queried just like any other data, e.g., to select all authors that authored
a book translated by someone called “Carter” together with these books:

SELECT X, Y
FROM {X}mybooks:authored{Y}books:translator{T}
WHERE T like "*Carter*"
USING NAMESPACE books = &http://example.org/books#
USING NAMESPACE mybooks = &http://example.org/books-rdfs-extension#

Concluding this overview of RQL is a short discussion of the query language under the
evaluation criteria proposed in Chapter 3.

Easy of use. The comparatively large and diverse set of features offered by RQL, naturally
lead to a somewhat more complicated syntax and semantics if compared to basic query lan-
guages such as RDQL (cf. Section 4.3.1.3. One critique voiced when considering RQL is that the
typing features of the language, although useful for some scenarios, actually complicate the
expression of simple queries and are hard to implement. Therefore, both of the proposals for
simplifying RQL, viz. SeRQL and eRQL, do not provide the same level of type information as
RQL.

Also the use (and representation) of a number of syntactic constructs, e.g., for distinguish-
ing class (using $-prefix), property (using @-prefix), and data variables (using no prefix) or for
separating direct (^-prefix) and full extent (no prefix) of a class, is neither intuitive nor based
on established conventions. Providing also a more verbose version of such constructs, might
improve readability and ease the familiarization with the language.

Functionality—Query Types. As stated already, RQL is far more expressive than basic RDF
query languages such as the SquishQL family. Actually, most of the queries discussed in Sec-
tion 3.2 can be easily expressed in RQL (here, we also include the view definitions provided
by RVL) with the notable exception of those queries requiring means for traversing the tran-
sitive closure of arbitrary relations, instead of only the two relations rdfs:subClassOf and
rdfs:subPropertyOf that constitute the subsumption hierarchy.

An implementation of Query 1 has already been given above. Query 2 can not be expressed
in RQL exactly, as there is no means to select “everything related to some resource”. However,
in the above discussion a modified version of this query, where a resource is described by its
schema, is shown. Reduction queries such as Query 3 can often concisely be expressed in RQL,
in particular, if the reduction query is, as in this case, based on type information:

69

SELECT S, @P, O
FROM (Resources minus (SELECT T FROM {B}books:translator{T})){S},

(Resources minus (SELECT T FROM {B}books:translator{T})){S},
{S}@P{O}

USING NAMESPACE books = &http://example.org/books#

This query returns all triples where both the subject and the predicate of the triple is some
Resource that does not occur as object in a statement with predicate books:translator.
Note, that Resource is the top-level schema class, but does not include resources classified
as rdfs:Class or rdfs:Property as these are considered schema objects and therefore con-
tained in a meta-schema class.

An implementation of Query 4 is given above using RVL.
Aggregation queries are also supported by RQL, e.g., consider Query 5 and a possible im-

plementation in RQL shown below:

max(SELECT Y
FROM {B;books:Writing}books:author.books:authorName{A},

{B}books:pubYear{Y}
WHERE A = "Julius Caesar")

Inference and combination queries often require traversing the transitive closure of arbi-
trary relations or even general recursion, that can both not be expressed in RQL. However,
when the inference does not need recursion, as in Query 9, the query can be expressed in RQL

SELECT A1, A2
FROM {Z}books:author{A1}, {Z}books:author{A2}
WHERE A1 != A2
USING NAMESPACE books = &http://example.org/books#

or in RVL (allowing the results to be queried as any relation in the original data)

CREATE NAMESPACE mybooks = &http://example.org/books-rdfs-extension#
VIEW mybooks:co-author(A1, A2)
FROM {Z}books:author{A1}, {Z}books:author{A2}
WHERE A1 != A2
USING NAMESPACE books = &http://example.org/books#

Semantics. RQL has been designed around a formal data model for RDF. Based upon this data
model, both typing rules and formal interpretations of RQL queries have been specified [148].
As discussed above, the data model slightly deviates from a standard RDF interpretation (as
specified in [167]).

Complexity and implementation. No formal complexity study of the language has been pub-
lished so far. Aside of the implementation provided by the authors of the language as part of
the ICS-FORTH RDFSuite, the only other implementation of RQL the authors of this survey are
aware of is as part of Sesame [59]. However, for Sesame the typing features of RQL have been
disregarded for the most part and a new RDF query language, called SeRQL, that is based upon
RQL has been specified. It is discussed in the following section.

70

Reasoning. No specific reasoning abilities are provided. In particular, the only form of re-
cursion is the ability to navigate the transitive closure of certain predefined schema relations.
However, some non-recursive inference queries can be realized as shown above. In particular,
RQL supports a rich set of boolean expressions including negation and quantification.

Ontology awareness. RQL strongly relies on RDFS for providing type information on the data
to be queried. (An extension to) OWL has not been considered so far.

Project page:
http://139.91.183.30:9090/RDF/RQL/

Implementation(s):
RDFSuite (http://139.91.183.30:9090/RDF/index.html), Sesame (http://www.
openrdf.org/) without type system

Online demonstration:
http://139.91.183.30:8999/RQLdemo/, based on Sesame: http://www.openrdf.
org/demo.jsp

4.3.3.2 SeRQL

As part of the EU research project On-To-Knowledge (http://www.ontoknowledge.org/),
the Sesame [59] RDF database has been developed. An initial review of query languages for
semi-structured data and RDF [56] suggested the use of RQL as query language for the On-To-
Knowledge project. In [57], this choice is detailed by defining the query language to be used
in the On-To-Knowledge project, tentatively called OTK-RQL. This language is still syntactically
nearly identical to RQL, but leaves out in particular RQL’s entire type system. The current
version of Sesame still supports RQL (without typing of queries), but also provides a novel
RDF/RDFS query language claiming to “combine the best features of other (query) languages
(RQL, RDQL, N-Triples, N3)” [63] into a “second generation RDF query language” [58].

SeRQL is described in detail in [63] and [58]. Here, we focus on the differences to previous
RDF query languages, in particular to RQL.

The most striking differences between RQL and SeRQL are:

• SeRQL does not provide any form of typing for RDF resources, only typed literals as pro-
vided by the recent revision of RDF [197] are considered. One reasons the others of SeRQL
offer for avoiding to provide typing in the query language (aside of the increase complex-
ity of both implementation and language) is that RDF schema languages are designed to
be extensible and a typed query language therefore needs to provide some mechanism
for integrating such extensions (as provided, e.g., by OWL), making an implementation of
such a query language even harder.

• In an effort to simplify common queries, SeRQL modifies and extends the gen-
eral path expressions used in RQL: Basic path expressions use a syntax simi-
lar to RQL, e.g., {X} <rdf:type> {<books:Essay>} is the SeRQL notation for a
path expression that returns all resources classified under books:Essay as bind-
ings for the variable X. Compound path expressions, e.g., for selecting a book to-
gether with the names of its authors, use an “empty node”, denoted as {}, in-
stead of the path concatenation . commonly used for combining path expressions.

71

The RQL path expression {X}books:author.books:authorName{Y} becomes in SeRQL
{X}<books:author>{}<books:authorName>{Y}. Furthermore, a number of short cuts
addressing common queries are provided:

– Querying multi-valued properties. Properties in RDF can have multiple values and
SeRQL provides a short cut to query several of these values in a single path ex-
pression. This allows for an easy formulation of Query 9 (note, the use of <! and
> for enclosing a URI in contrast to the use of simple angle brackets (without the
exclamation mark) for enclosing QNames)

CONSTRUCT {X} <mybooks:co-author> {Y}
FROM {Book} <books:author> {X, Y}
WHERE X != Y
USING NAMESPACE books = <!http://example.org/books#>

mybooks = <!http://example.org/books-rdfs-extension#>

This query is equivalent to

CONSTRUCT {X} <mybooks:co-author> {Y}
FROM {Book} <books:author> {X},

{Book} <books:author> {Y}
WHERE X != Y
USING NAMESPACE books = <!http://example.org/books#>

mybooks = <!http://example.org/books-rdfs-extension#>

– Querying multiple properties of the same resource. Often one is interested not only
in a single, but rather in multiple properties of a resource. The following query
illustrates the syntactic short hand provided by SeRQL for this case: It selects the
authors of all books with title “Bellum Civile” and a translator with name “J. M.
Carter”.

SELECT Author
FROM {Book} <books:title> {"Bellum Gallicum"};

<books:translator> {} <books:translatorName> {"J. M. Carter"};
<books:author> {Author}

USING NAMESPACE books = <!http://example.org/books#>

Note, the use of the semicolon for separating expressions with the same subject.

– Querying reified statements. A reified expression can be queried by explicitly asking
for the four triples associating the statement with its type (rdf:Statement), subject,
predicate, and object. As this is often bothersome, SeRQL allows reified statements
to be queried by enclosing the non-reified version of the statement in curly brackets.

• As all properties in RDF are essentially optional (unless considering schema languages
such as OWL), queries where some information is retrieved if it is available without mak-
ing the query fail if the information misses are a natural requirement for an RDF query
language. SeRQL provides optional path expressions by enclosing an arbitrary path ex-
pressions (including those using the short hand constructs described above) in square
brackets. E.g., the following query retrieves books together with their title and optionally
their translators. If there is a translator and an age for that translator is specified, that
information should also be returned.

SELECT *
FROM {Book} <books:title> {Title};

[<books:translator> {Translator}

72

[<books:age> {Age}]]
USING NAMESPACE books = <!http://example.org/books#>

Note, the nesting of the optional expressions and the use of * to include bindings for all
variables from the query in the result.

Aside of these issues, it should be noted that the access to schema information has been
reduced to the provision of both the original and the intransitive view of the two RDFS relations
defining the subsumption hierarchy.

Easy of use. The expressed goal of the SeRQL authors has been a simplification of previous
approaches such as RQL while retaining the, from the point of view of the SeRQL authors,
most useful features that distinguish RQL from basic RDF query languages such as RDQL.
Arguably, simply by reducing the number of language constructs, SeRQL is easier to grasp and
use than RQL. Also, the syntactic short hands are, where possible, aligned with constructs from
established RDF syntaxes such as N3 or N-Triples.

However, this is obviously paid for by reducing the expressiveness of the language in com-
parison to RQL, therefore requiring more effort for writing complex queries that could benefit
from the more expressive features of RQL.

Functionality—Query Types. As expected, SeRQL can not express all of the queries from
Section 3.2 that could be expressed in RQL but still provides more functionality than RDQL.
Selection and extraction queries can be easily expressed in SeRQL with the same limitation as
in the case of RQL, viz. that it is not possible to navigate arbitrary length paths in the graph,
e.g., for returning all statements related to a resource or a “concise bounded description” as
defined in [246].

In contrast to RQL, SeRQL currently neither provides set operations nor existential or all
quantifiers. Therefore, Query 3 can not be expressed in SeRQL.

Thanks to the ability to construct new statements using the CONSTRUCT clause, SeRQL can
express restructuring and simple inference queries as shown above. The restructuring Query 4
can be expressed as

CONSTRUCT {Author} <mybooks:authored> {Book}
FROM {Book} <books:author> {Author}
USING NAMESPACE books = <!http://example.org/books#>

mybooks = <!http://example.org/books-rdfs-extension#>

Aggregation queries can not be expressed, although [63] states that the addition of aggre-
gation queries to SeRQL is planned.

As shown above, some simple inference queries such as Query 9 can actually be imple-
mented in SeRQL and thanks to the RDFS-aware storage in Sesame the transitive closure of
rdfs:subClassOf is provided in SeRQL. However, neither the transitive closure of arbitrary
relations nor general recursion can be expressed.

Semantics. No formal semantics has been provided so far, however a formal algebraic model
is being planned according to [63].

73

Complexity and implementation. No formal complexity study of the language has been pub-
lished so far. There are currently two independent implementations of the language.

Reasoning. Again, only limited reasoning abilities are provided. Using the CONSTRUCT clause
one can implement basic derivations as demonstrated above, however no recursion is provided.

Ontology awareness. SeRQL is RDFS aware in that it provides the ability to query both the
explicitly stored subsumption relations and their transitive closure.

Project page:
Sesame http://www.openrdf.org/

Implementation(s):
available from the Sesame project page, an implementation in Prolog using the SWI-
Prolog4 Semantic Web library is provided at http://gollem.swi.psy.uva.nl/twiki/
pl/bin/view/Library/SeRQL

Online demonstration:
several ones (featuring not only SeRQL as query language, but also RDQL and RQL) acces-
sible at http://www.openrdf.org/demo.jsp

4.3.3.3 eRQL

In contrast to SeRQL, which aims at providing a language more balanced between expressive-
ness and ease-of-use than RQL, eRQL [251] proposes a radical simplification using essentially
a keyword-based interface similar to popular information retrieval systems. It is the expressed
goal of the eRQL authors, to provide a “Google-like query language but also with the capacity
to profit of the additional information given by the RDF data”5.

eRQL only provides three query constructs:

• One-word queries. Single keywords are valid eRQL queries. E.g., the query CAESAR returns
all statements such that the string “CAESAR” occurs in their URI or literal value of the
subject, predicate, or object of the statement using case-insensitive matching. Surpris-
ingly, phrase queries (e.g., the phrase “Bellum civile”) do not seem to be expressible in
eRQL.

• Neighborhood queries. Instead of returning only the statements directly containing a key-
word as in the first case, neighborhood queries allow the user to also select all statements
related to (i.e., “in the neighborhood of”) a such a statement. E.g., the query {{CAESAR}}
returns all statements connected by at most two edges in the RDF graph to a node con-
taining “CAESAR”. On the data from Figure 2.1, the following triples are returned:

_:1 books:author _:2.
_:1 books:authorName "Julius Caesar".
_:1 books:author _:3.
_:1 books:title ‘‘Bellum Civile’’.
_:1 books:translator _:4.

4 http://www.swi-prolog.org/ 5 http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/

74

Using {{{CAESAR}}} would also include the names of the other others and the translator,
as well as the triple classifying the book as books:Historical_Essay. eRQL allows any
(finite) number of such brackets to select a neighborhood of the specified size around the
base triples.

• Conjunctive and disjunctive queries. Both, neighborhood and one-word queries can be
combined using the boolean operators AND and OR. No negation is provided, however.

eRQL does not allow the expression of most of the queries given in Section 3.2, since the
abilities of eRQL are more akin to an information retrieval language than a conventional query
language. However, to some extent Query 2 can be expressed simply by the query

{{"Bellum" AND "Civile"}}

This query returns all statements containing both the string “Bellum” and the string “Civile” in
the URI or literal value of the subject, predicate, or object together with all statements reachable
from these within two steps. However, this is only a vague approximation of the actual intent
of the query. In particular, eRQL does not allow the selection of a neighborhood with previously
unknown size around a resource (e.g., for obtaining a “concise-bounded descriptions” [246]).
In contrast to the claims of the authors of eRQL, such limited neighborhood queries require
a-priori knowledge of the schema of the data to be queried.

Nevertheless, eRQL is one of the few approaches aiming at a combination of information
retrieval features and RDF querying, the need for which is evident when considering the use of
RDF for improving searching in the (Semantic) Web.

Project page:
http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/

Implementation(s):
eRQLEngine, available from http://www.dbis.informatik.uni-frankfurt.de/
~tolle/RDF/eRQL/

Online demonstration:
none

4.3.4 Query Languages using a Controlled Natural Language

4.3.4.1 Metalog

Metalog [182, 183, 181] is a system for querying and reasoning with Semantic Web data. It has
been introduced around 1998 in [182] leading to the claim of the project page that “Metalog has
been the first semantic web system to be designed, introducing reasoning within the Semantic
Web infrastructure by adding the query/logical layer on top of RDF” [http://www.w3.org/
RDF/Metalog/].

For two reasons, Metalog is notably different from most of the other RDF query languages
discussed in this chapter:

• It combines querying with reasoning abilities such as implications and explicit represen-
tation of negative information.

75

• The language syntax is similar to a restricted form of natural language, where only certain
keywords (and their order) is relevant and all other words are discarded. This allows for
easy understanding of queries, although authoring still requires knowledge about the
exact keywords and how to use them.

Metalog’s syntax uses (English) sentences to describe a query. Within a sentence only three
kinds of tokens are actually meaningful for the Metalog processor: variables (or “representa-
tions”) are written in capital letters only, any quote-delimited string is recognized as a “name”
and interpreted either as an RDF literal or a URI, and keywords connect variables and names
to queries. The list of keywords available includes of statements, logical implication expressed
by then, imply, or implies, definition of variables using represents, order for building RDF
sequence containers, and various keywords for arithmetic expressions.

Metalog also provides a natural-language-like syntax for stating RDF triples.

The following Metalog program implements Query 1:

comment: some definitions of variables (or representations)
ESSAY represents the term "Essay"

from the ontology "http://example.org/books#".
AUTHORED-BY represents the verb "author"

from the ontology "http://example.org/books#".
IS represents the verb "rdf:type"

from RDF "http://www.w3.org/1999/02/22-rdf-syntax-ns#".
BELLUM_CIVILE represents the book "Bellum_Civile"

from the collection of books "http://example.org/books#".
comment: RDF triples written as Metalog statements.
BELLUM_CIVILE IS an ESSAY.
BELLUM_CIVILE is AUTHORED-BY "Julius Caesar".
BELLUM_CIVILE is AUTHORED-BY "Aulus Hirtius".
comment: a Metalog query
do you know SOMETHING that IS an ESSAY and that is AUTHORED-BY SOMEONE?

As answer to the query shown in the last line of the Metalog program, the interpreter
answers with all definitions and the first two RDF triples as first result, the first and the last
RDF triple as second result.

An interesting observation about Metalog can be drawn from [180]: A natural-language
layer on top of the textual or XML syntax of any RDF query language might help, in particular
non-experts, to quickly grasp the meaning of queries and what result to expect. In this sense,
a translation of Metalog or a similar restricted form of natural language into some of the more
traditional and, in many cases, better performing approaches discussed in this survey might
be worth investigating.

Project page:
http://www.w3.org/RDF/Metalog/

Implementation(s):
prototype, available from the project page

Online demonstration:
none

76

4.3.5 Others

4.3.5.1 Algae

Algae6 [215, 217] is an RDF query language developed as part of the W3C Annotea project
(http://www.w3.org/2001/Annotea/). The Annotea project provides a research platform for
novel collaborative applications based on shared metadata such as Web annotations, book-
marks, comments, explanations, etc. When users access a Web site with an Annotea-enabled
browser (such as Amaya (http://www.w3.org/Amaya/), Mozilla or Internet Explorer, the latter
two require extensions for using Annotea), one or several annotation servers are contacted to
deliver annotations for the currently visited Web site or to provide a classification of that Web
site based on previously stored bookmarks.

The efficient retrieval of the related information from the annotation server is clearly of
high relevance in such a setting. As the annotations are stored in RDF, an RDF query language,
called Algae, has been developed to address the special needs of this application including the
need for updates and simple reactive rules. In [217], Algae is described in more detail and
proposed as a general-purpose RDF query language.

Algae is centered around two concepts:

• “Actions” are the directives ask, assert, and fwrule that determine whether an expres-
sion is used to query the RDF data, insert data into the graph, or to specify ECA-like rules.
Only the first of these is mandatory for an Algae processor, the two others are defined in
an extension module described in [216].

• Algae queries produce result sets containing not only bindings for query variables (as,
e.g., RDQL [232]) does, but also triples from the RDF graph that constitute “proofs” for
the solution, i.e., that are required to justify that a certain combination of bindings for
the query variables is actually a match for the query. It is possible to combine several
sub-queries in a single Algae expression in which case the results of each sub-query are
combined into a single result set.

Syntactically Algae is based on N-triples (described in [123]) for representing and querying
RDF triples. This simple triple syntax is extended by the above mentioned action directives
and so-called “constraints”, written between curly brackets, that specify further arithmetic or
string comparisons that must be fulfilled by a selected tuple.

To illustrate the abilities of Algae, consider Query 1. This query could be realized by the
following Algae expression:

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ns books = <http://example.org/books#>
read <http://example.org/books> ()
ask (?essay rdf:type <http://example.org/books#Essay> .

?essay books:author ?author .
?author books:authorName ?authorName)

collect(?essay, ?author, ?authorName)

This query becomes more interesting, if we are only interested in the titles of essays written by
“Julius Caesar” but also want the translators of such books returned, if there are any:

6 The current version is sometimes also referred to as Algae2, since there has been an earlier incarnation with more
limited querying abilities. In this survey, we follow [217] in referring to the language as simply “Algae”.

77

Table 4.1 Algae result set

?title ?translator Proof
“Bellum Civile” “J. M. Carter”

_:1 rdf:type <http://exam...ks-rdfs#Essay>.
_:1 books:author _:2.
_:2 books:authorName ‘‘Julius Caesar’’.
_:1 books:title ‘‘Bellum Civile’’.
_:1 books:translator ‘‘J. M. Carter’’.

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ns books = <http://example.org/books#>
read <http://example.org/books> ()
ask (?essay rdf:type <http://example.org/books#Essay> .

?essay books:author ?author .
?author books:authorName ‘‘Julius Caesar’’ .
?essay books:title ?title .
~?essay books:translator ?translator .

)
collect(?title, ?translatorName)

Note the use of ~ to declare the translator an optional triple in the query.
Such a query executed against the sample data shown in Figure 2.1, would return the fol-

lowing result set shown in Table 4.1.

Easy of use Although neither a visual syntax nor a natural language interface is provided,
Algae queries are easy to write and comprehend, although the syntax does not reminiscent of
any particular other query language. In particular, the choice of N-triples (described in [123])
for representing triples is helpful for easy query formulation. Some of the syntactic short
hands, such as ~ require some getting used to, but offer the advantage of a concise query
formulation.

Algae offers an extension mechanism that allows the basic functionality of the language,
i.e. the ask action directive, to be separated from more advanced features such as updates and
rules (with the action directives assert and fwrule) and sorting. A query can state which of
the language extensions are required to evaluate a query.

Functionality—Query Types From the queries discussed in Section 3.2, Query 2 can not be
expressed due to the lack of some form of closure or recursion. For the same reasons and
additionally the lack of negation, Query 4 can not be expressed. The support for Queries 5 and
6 falls short due to the lack of aggregation operators. All other queries can be expressed in
Algae, albeit most of them require the extended action directives discussed in [216].

For Query 4 one could use the following Algae query:

ns books = <http://example.org/books#>
read <http://example.org/books> ()
fwrule ask(?book books:author ?author)

assert (?author books:authored ?book)

Note, however that this query actually becomes an inference rule, as there are no means de-
scribed to retract the old books:author relation.

78

Hence, this realization of Query 4 is more akin to a inference query such as Query 9 that
could actually be implemented as

ns books = <http://example.org/books#>
read <http://example.org/books> ()
fwrule ask (?book books:author ?author1 .

?book books:author ?author2 { ?author1 != ?author2 }
)

assert(?author1 books:co-author ?author2)

Semantics No formal semantics has been published for Algae.

Complexity and implementation Algae has been implemented in the W3C Annotation Server
as part of the Annotea Project. The data can be stored in-memory, in a relational database,
as described in [218], or directly generated from application data. As discussed above, Algae
provides extensions for updating and

No formal complexity study of the language has been published so far.

Reasoning In [216], an extension for Algae is described that allows the statement of rules for
intensional data specification: If a given query succeeds, new data is added to the data store
possible drawing data from the result of the query. These rules are more similar to ECA-rules,
albeit with an action part limited to inserting new data, than to view definitions. No further
description of reasoning mechanisms in Algae is provided.

Ontology awareness As already specified, the language ignores every kind of ontological
aspect, including typing mechanisms. If such aspects must be considered, they must be treated
like all the user-defined data.

It is, however, possible to implement the special semantics of RDFS relations such as
rdfs:subClassOf using Algae rule notation. The following is an implementation of Query 8
in Algae, in that it adds the transitive closure over rdfs:subClassOf to the data store.

ns rdfs = <http://www.w3.org/2000/01/rdf-schema#>
read <http://example.org/books> ()
fwrule ask (?X rdfs:subClassOf ?Z.

?Z rdfs:subClassOf ?Y
)

assert (?X rdfs:subClassOf ?Y)

Project page:
http://www.w3.org/2004/05/06-Algae/ and for the Annotea project http://www.
w3.org/2001/Annotea/

Implementation(s):
W3C Annotation Server http://annotest.w3.org/annotations

Online demonstration:
Query interface to the W3C Annotation Server using Algae as query language: http:
//annotest.w3.org/annotations?explain=false

79

4.3.5.2 iTQL

For the Kowari Metastore, an open source, scalable, transaction safe database for the storage of
metadata, an RDF query language called iTQL [1] has been defined. iTQL provides commands
not only for querying (select), but also for updates (delete, insert) and transaction man-
agement (commit, rollback). The syntax of iTQL is similar to SQL and therefore also reminds
of RDQL. As for RDQL, the querying abilities of the language are rather limited, mostly simple
selection is supported.

To illustrate the abilities of the query language, consider again Query 1 and a possible
realization in iTQL:

alias <http://example.org/books#> as books;
alias <http://www.w3.org/2000/01/rdf-schema#> as rdfs;
alias <http://www.w3.org/1999/02/22-rdf-syntax-ns#> as rdf;
select $essay, $author, $authorName
where $essay <books:author> $author
and $author <books:authorName> $authorName
and $essay <rdf:type> $type
and (trans($type <rdfs:subClassOf> <books:Essay>)

or $type <tks:is> <books:Essay>)

As illustrated in the query, iTQL provides the function trans as means for computing transitive
closure of a relation (such as rdfs:subClassOf) and therefore also resources not directly
classified as books:Essay but rather as one of its subclasses are returned. Paths of arbitrary
length in the graph can be traversed using another special function called walk. The above
query could also be expressed using walk.

Worth mentioning is the ability to sort the resulting answers and to provide access to an-
swers in a paged mode using limit and offset as in SQL.

Also, in contrast to the SquishQL-family of query languages discussed in Section 4.3.1, iTQL
allows the specification of nested queries.

Project page:
http://www.kowari.org

Implementation(s):
production use implementation as part of the Kowari Metastore and used in the commer-
cial product Tucana Knowledge Server

Online demonstration:
none

4.3.5.3 N3QL

A restricted subset of Notation 3 [32] (short N3), an alternative syntax and extension for RDF
that introduces rules, variables, and quoting for easy expression of statements about state-
ments.

Although, as noted in [36], the rules mechanism provided in N3 allows for similar capa-
bilities as those expected from a query language, [36] proposes a syntax for a query language
using more conventional means such as select-where clauses.

The essential difference between N3QL and most of the other query languages for RDF
discussed in this survey, is that a query is an N3 expression and all “keywords” in the query

80

are actually RDF properties of an RDF node representing the query (usually a blank node, but it
is also allowed to assign identifiers to queries). To illustrate this difference, consider Query 1
and its realization in N3QL:

@prefix books: <http://example.org/books#>.
@prefix n3ql: <http://www.w3.org/2004/ql#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
[] n3ql:select { n3ql:result n3ql:is (?book ?author ?authorName) };

n3ql:where { ?book rdf:type books:Essay;
?book books:author ?author;
?author books:authorName ?authorName }.

The result of such a query is the RDF graph specified in the n3ql:select clause, in this
case a set of RDF collections (indicated by the collection constructor ()) containing a binding
for each of the three selected variables.

[36] seems to indicate that the semantics of such a query is equivalent to the semantics of
a rule where the where part of the query is the premise of the rule and the select part the
implication. However, N3 rules can be used to implement, e.g., the transitive closure of an RDF
property:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
{?x rdfs:subClassOf ?z; ?z rdfs:subClassOf ?y}

=> {?x rdfs:subClassOf ?y}

Such an ability is not attributed to queries written in the above syntax.
Since the description of N3QL is very sketchy, it is hard to evaluate its expressive power:

In particular, it is not clear which of the syntactic constructs of N3 can be used in N3QL. [36]
states that N3QL is a restricted form of N3 where formulae cannot be nested and literals cannot
be subjects of statements.

In particular, the N3 syntax for anonymous nodes, for navigating in the RDF graph using
path expressions, and for quantifying variables is assumed to be available in N3QL too. This
allows for very concise formulation of queries such as “Return all books written by an author
with name ‘Julius Caesar’.”:

@prefix books: <http://example.org/books#>.
@prefix n3ql: <http://www.w3.org/2004/ql#>.
[] n3ql:select { n3ql:result n3ql:is (?book) };

n3ql:where { ?book!books:author!books:authorName ‘‘Julius Caesar’’ }.

Project page:
http://www.w3.org/DesignIssues/N3QL.html

Implementation(s):
prototype, CWM http://www.w3.org/2000/10/swap/doc/cwm.html, EulerSharp http:
//eulersharp.sourceforge.net/2003/03swap/

Online demonstration:
none

81

4.3.5.4 PerlRDF Query Language

PerlRDF7 is a collection of APIs for parsing, storing, and querying RDF developed by Ginger
Alliance8. As part of this project, also an RDF query language has been specified. The details
of this language are described in [11].

The query language provides path expressions similar to RQL’s general path expression
and uses a familiar Select. . . From. . . Where syntax. An implementation of Query 1 modified to
return only those books with a translator named “J. M. Carter” in this query language is shown
in the following:

Select ?book, ?author, ?author->books:authorName
From books:Essay::?book->books:author{?author}
Where ?book->books:translator->books:translatorName=>’J. M. Carter’
Use books For [http://example.org/books#]

The query has deliberately written to demonstrate different features of the query language,
e.g., the ability to use path expression not only in the From-clause (as, e.g., in RQL), but also in
the Where- and even in the Select-clause of the query. Furthermore, syntactic short hands for
specifying the type of the ?book variable and the constraint on the literal value selected by the
path in the Where clause are used. This query is equivalent to the following one, that does not
use any of these advanced constructs

Select ?book, ?author, ?authorName
From ?book->books:author{?author}->books:authorName{?authorName},

?book->rdf:type{books:Essay},
?book->books:translator->books:translatorName{?translatorName}

Where ?translatorName = ’J. M. Carter’
Use books For [http://example.org/books#]

rdf For [http://www.w3.org/1999/02/22-rdf-syntax-ns#]

The most interesting syntactic short hands are the use of books:Essay::?book to type the
?book variable using a syntax reminiscent of the underlying Perl language and the use of the
=> operator to mark the so-called “target element” of a path and place a restriction on the
(literal) value of that element.

Project page:
http://www.gingerall.com/charlie/ga/xml/p_rdf.xml

Implementation(s):
available from the project page

Online demonstration:
http://rdf-demo.gingerall.cz/charlie/rdf/act/rdf_demo.act

4.3.5.5 R-DEVICE Deductive Language

The R-DEVICE system, presented in [23], is a “deductive object-oriented knowledge-base sys-
tem for querying and reasoning about RDF metadata” [http://lpis.csd.auth.gr/systems/
r-device.html]. It is a reimplementation of the X-DEVICE language [22] in the C Language In-
tegrated Production System (CLIPS, see http://www.ghg.net/clips/CLIPS.html) using the
CLIPS Object-Oriented Language (COOL).

The mapping from RDF triples to objects is achieved in the following way:

7 http://www.gingerall.com/charlie/ga/xml/p_rdf.xml 8 http://www.gingerall.com/

82

• All resources are represented as objects where the type is determined by the rdf:type
property of the resource. For resources that are classified in multiple classes a dummy
class represents a common subclass of all the classes the resource is classified in.

• Properties are realized as multi-slots (slots with multiple values) in the class that is the
domain of the property. If no domain is given the property can be applied to any re-
sources, therefore is added as a slot to the class representing rdfs:Resource (the top of
the resource object hierarchy).

New assertions (generated, e.g., through rules) can require dynamic class and/or object re-
definitions.

To illustrate the syntax of R-DEVICE consider the following implementation of Query 1:

(deductiverule q1
?book <- (? (rdf:type books:Essay) (books:author ?author))
?author <- (? (books:authorName ?authorName))

=>
(result (book ?book) (author ?author) (authorName ?authorName))

)

Note, the production-rule like syntax of R-DEVICE. R-DEVICE also provides constructs for
traversing arbitrary length paths of slots and objects (properties and resources) both with and
without restriction on the type of slot that may be traversed. This allows to implement both
Query 2, where we want to collect all things related to the book with title “Bellum Civile” (this
is indicated in R-DEVICE by an unconstrained path of arbitrary length from the book ?book to
the related resources ?related),

(deductive rule q2
?book <- (? (rdf:type books:Essay) (books:title ‘‘Bellum Civile’’) (($?p) ?related)

=>
(result (book ?book) (related ?related))

)

and Query 8, where the transitive closure of the rdfs:subClassOf relation is to be computed.
The latter query can be expressed using a recursive sub-path rdfs:subClassOf.

Project page:
http://lpis.csd.auth.gr/systems/r-device.html

Implementation(s):
available from project page

Online demonstration:
none

4.3.5.6 RDF-QBE

In [223] a language for querying RDF graphs following the well-established “query by example”
paradigm [260, 261] is proposed. Essentially, an RDF graph (described in Notation 3 syntax
[32]) is used to describe the query pattern that should be found in the data. Variables in the
pattern are expressed as blank nodes without explicit node identifiers as described in [156].

83

This leads to a major restriction of the approach: query patterns may only form a tree not a
graph.9

Query 1 can be expressed in RDF-QBE as

[] a books:Essay; books:author [books:authorName []].

When considering what this query should return, the problem of handling blank (or anony-
mous) nodes in RDF must be addressed. Either some identifier (scoped only within the col-
lection of data considered at the moment, for more details see [156]) is assigned to the blank
node or the blank node is represented as the collection of its properties. This issue actually has
to be considered by all RDF query languages, in particular as assigning an identifier to blank
nodes does not mean that blank nodes can be treated as a node with explicit identifier.

In general, RDF-QBE provides a very convenient, easy to read syntax, but the trade-off
(acknowledged in [223]) is the rather low expressiveness of the language, as detailed in Ap-
pendix B.

Project page:
none

Implementation(s):
described in [223], but not publicly available

Online demonstration:
none

4.3.5.7 RDFQL

RDF Gateway [2] is a platform for developing and deploying Semantic Web applications com-
bining a “native” RDF database engine with a Web server and a server-side scripting language.
The RDF database engine allows for the integration of standard and Semantic Web using so-
called “virtual tables” and inference rules for deductive reasoning (so far, libraries for OWL and
RDFS are provided). A graphical editor for RDF graphs statements is provided for easy creation
of new data. To enable basic interoperability with different Semantic Web tools, several RDF
serialization formats are supported, viz. RDF/XML, N3 and NTriples (cf. Appendix A).

The RDF Gateway uses a proprietary query language, referred to as RDFQL, described in [3].
Although in many ways similar to RDQL there are several noteworthy differences:

• Transaction management is realized in RDFQL by database commands for starting and
committing or undoing (rollback) of a transaction.

• SQL-like update commands are provided, including a full data definition language.

• Data can be stored in data sources (often referred to as “tables”, although they differ
from tables in SQL database by having a fixed schema as they are only meant to store
RDF triples or quads) that can be either disk-based, in-memory or external data sources
identified, e.g., by an URI.

9 Contrary to the claim in [223], this does however not reduce the problem to tree matching, as the data is still
graph shaped.

84

• Using the command INFER, deductive rules can be defined as part of a RULEBASE to be
used when querying. This allows, e.g., to specify the semantics of RDFS in the following
way (note, that an RDF statement with subject S, predicate P , and object O is written in
RDFQL as {?P ?S ?O}, i.e., in prefix notation; note also the use of uri(?u)=?u to detect
whether the object of an RDF statement is a resource (in which case it has an URI and
that URI is equal to the “value” of the resource itself) or a literal):

RULEBASE rdfs
{

INFER {[rdf:type] ?a [rdf:Property]} from {?a ?x ?y};
INFER {[rdf:type] ?x ?z} from {[rdfs:domain] ?a ?z} and {?a ?x ?y};
INFER {[rdf:type] ?u ?z} from {[rdfs:range] ?a ?z}

and {?a ?x ?u} and uri(?u)=?u;
INFER {[rdf:type] ?x [rdfs:Resource]} from {?a ?x ?y};
INFER {[rdf:type] ?u [rdfs:Resource]} from {?a ?x ?u} and uri(?u)=?u
INFER {[rdfs:subPropertyOf] ?a ?c}

from {[rdfs:subPropertyOf] ?a ?b} and {[rdfs:subPropertyOf] ?b ?c}
INFER {?b ?x ?y} from {[rdfs:subPropertyOf] ?a ?b}

and {?a ?x ?y}
INFER {[rdfs:subClassOf] ?x [rdfs:Resource]}

from {[rdf:type] ?x [rdfs:Class]}
INFER {[rdfs:subClassOf] ?x ?z} from {[rdfs:subClassOf] ?x ?y}

and {[rdfs:subClassOf] ?y ?z}
INFER {[rdf:type] ?a ?y} from {[rdfs:subClassOf] ?x ?y}

and {[rdf:type] ?a ?x}
}

Query 1 can be implemented in RDFQL by the following program:

session.namespaces["books"] = "http://example.org/books#";
var booksdata = new DataSource("http://example.org/books");
SELECT ?essay, ?author, ?authorName USING booksdata WHERE

{[rdf:type] ?essay [books:Essay]}
and {[books:author] ?essay ?author}
and {[books:authorName] ?author ?authorName}

ORDER BY ?authorName DESC;

Note again the (in the RDF context) uncommon notation of statements with predicate first.
For illustration of the ability of RDFQL to return ordered result, an ORDER BY clause is added to
the query that orders the result by the name of the author. Using a rule base as the one shown
above for RDFS, even resources classified by a sub-class of books:Essay will be returned.

Project page:
http://www.intellidimension.com/

Implementation(s):
within the RDF Gateway, personal edition (limited to non-commercial use and the number
of connections allowed) available from project page

Online demonstration:
none (however, the project page can serve as a show case as it is implemented using RDF
Gateway)

85

4.3.5.8 TRIPLE

TRIPLE [236, 237, 134] is a rule-based query, inference, and transformation language for RDF
data based upon ideas published in [90] and with a syntax close to F-Logic [152]. The use of F-
Logic for querying semi-structured data such as XML or RDF is natural, as one of the strengths
of F-Logic approaches is the ability to handle data without a fixed schema demonstrated, e.g.,
in [171]. Other F-Logic based approaches are, e.g., XPathLog (see Section 4.2.1.7) and the com-
mercial ontology management platform Ontobroker10.

TRIPLE has been designed to address in particular two weaknesses of previous approaches
for RDF query languages:

• Most previous proposals provide a number of predefined constructs implementing the
specific semantics of, e.g., RDFS or OWL. The disadvantage of such an approach is the lack
of extensibility, although extensibility is a crucial feature of the underlying representation
formalism RDF. In contrast, TRIPLE only offers a basic, rule-based language for Horn logic,
that is in large parts identical to F-Logic [152]. This language can be used, where possible,
to implement the semantics of, e.g., RDFS. Where Horn logic is not sufficient, as, e.g., in
the case of OWL, TRIPLE is designed to be extended by external modules implementing,
e.g., an OWL reasoner.

Building upon [159, 160] for expressing Topic Maps in RDF and [192] for representing
UML in RDF, the authors argue in [237] that TRIPLE could also be used to query other
representation formalisms for metadata other than RDF.

However, this claim is not demonstrated and, although recent work [116] gives some
impression of an integrated query language for RDF and Topic Maps, the adequacy of
TRIPLE for querying Topic Maps is questionable in light of the rather awkward mappings
from Topic Maps to RDF proposed so far (e.g., many of these approaches result almost
exclusively in reified statements).

• Due to the foundation in Horn logic, TRIPLE provides not only a well-defined semantics
but also fairly powerful reasoning capabilities (that can be further enhanced by extension
modules), both in contrast to previous approaches. In particular, the use of a rule lan-
guage for both querying and reasoning about the queried data is a natural choice, even
more so in the context of the Semantic Web.

Following [237] one can identify a number of areas where TRIPLE differs from basic Horn
logic (and logic programming languages such as Prolog). Most of these differences are either
related to specificities of the RDF data model or the choice of representing properties similar
to slots in F-Logic:

• Identifying resources: Resources are identified in RDF by URIs. TRIPLE supports both
namespaces and general resources abbreviations (e.g., isa := rdfs:subClassOf to sim-
plify the notation of URIs. TRIPLE assumes that all resources are identified properly by
an URI, anonymous resources are not considered so far (there is some indication that this
will change in the future in [134]).

• Representing and querying statements: RDF statements are represented as slots and
slot values of the subject in a statement, i.e., subject[predicate -> object]. This

10 http://www.ontoprise.de/products/ontobroker

86

allows for easy grouping and nesting of statements. As in F-Logic, Path expressions
inspired by [107] can be used to traverse several predicates at once.

• Reification: In contrast to many other RDF query languages, TRIPLE provides concise
support for reified statements by enclosing such statements in angle brackets, e.g.,
Julius_Caesar[believes-><Junius_Brutus[friend-of -> Julius_Caesar]>].

• Explicit model specification: Similar to the module syntax in some F-Logic systems,
TRIPLE allows the explicit specification of the model in which a statement or atom is
true. The model is again identified by an URI and appended to the statement or atom by
@.

Finally, one should note that TRIPLE differs from common logic programming languages
such as Prolog in requiring all variable to be explicitly quantified.

With this syntax RDF statements and queries can be expressed in TRIPLE. Assuming the data
from Figure 2.1 has been loaded as part of a model identified by http://example.org/books
the following TRIPLE program implements Query 1:

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
books := ’http://example.org/books#’.
booksModel := ’http://example.org/books’.
FORALL B, A, AN result(B, A, AN) <-

B[rdf:type -> books:Essay;
books:author -> A[books:authorName -> AN]]@booksModel.

Note, the use of both nesting and grouping of statements for this query. In this formulation,
this query selects only resources directly classified as books:Essay, below it is discussed how
this query can be modified to properly select all resources classified as books:Essay or any of
its sub-classes in the RDFS subsumption hierarchy.

As discussed above, the specific semantics of different RDF vocabularies such as RDFS or
OWL is provided on top of the basic language layer, either as external modules or implemented
using the Horn logic reasoning provided by TRIPLE. In [237] the following implementation of
RDFS in TRIPLE is given:

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
rdfs := ’http://www.w3.org/2000/01/rdf-schema#’.
type := rdf:type.
subPropertyOf := rdfs:subPropertyOf.
subClassOf := rdfs:subClassOf.
FORALL Mdl @rdfschema(Mdl) {

transitive(subPropertyOf).
transitive(subClassOf).
FORALL O,P,V O[P->V] <-

O[P->V]@Mdl.
FORALL O,P,V O[P->V] <-

EXISTS S S[subPropertyOf->P] AND O[S->V].
FORALL O,P,V O[P->V] <-

transitive(P) AND EXISTS W (O[P->W] AND W[P->V]).
FORALL O,T O[type->T] <-

EXISTS S (S[subClassOf->T] AND O[type->S]).
}

Note, that this implements only part of the RDFS semantics, e.g., inference from range and
domain restrictions of properties is not provided. However, this is not due to a a limitation of
TRIPLE, as adding the following two rules completes the implementation of RDFS in TRIPLE.

87

FORALL S,T S[type->T] <-
EXISTS P, O (S[P->O] AND P[rdfs:domain->T]).

FORALL O,T O[type->T] <-
EXISTS P, S (S[P->O] AND P[rdfs:range->T]).

With these rules, the implementation of Query 1 in TRIPLE shown above only needs to
be modified with respect to the model it is evaluated against: instead of @booksModel,
@rdfschema(booksModel) is used, that is the original model “expanded” with the above rules
implementing RDFS semantics.

In [237], not only the textual syntax for TRIPLE discussed so far is proposed but also an
RDF (and therefore) XML representation of the language itself (more precisely, for the basic
language layer).

Easy of use. Although TRIPLE employs a syntax less familiar to the average query program-
mer than languages inspired by main-stream query languages such as SQL or XPath, the close
alignment with F-Logic allows users knowledgeable in logic programming languages to become
acquainted with the language quickly. However, the lack of a visual syntax or a natural lan-
guage interface makes it hard for non-experts to formulate. An RDF (and therefore XML) syntax
is provided that can indeed be queried by TRIPLE itself.

As discussed above, TRIPLE allows the explicit specification of the model(s) for which a
statement or formula should hold. Even more, reasoning methods beyond the Horn logic for-
mulae provided by the basic TRIPLE language can be implemented by external modules.

The most striking weakness of the TRIPLE language is a direct consequence of the generality
claimed in [237]. Although data represented in very different formalisms such as RDF, Topic
Maps, or UML can be queried in TRIPLE (e.g., by translating the data to RDF), this leads to rather
awkward representations of many language features. Even for RDF there are certain aspects of
RDF, viz. containers, collections, and anonymous nodes, that are not considered by TRIPLE and
can not easily be added to the language.

Functionality—Query Types. As just discussed, TRIPLE’s generality is in some cases paid
for by a lack of adequacy for the data representation formalisms claimed to be supported.
Regarding the different query classes discussed in Section 3.2, one can observe, that most of
them can be expressed in TRIPLE as already demonstrated for Query 1 and 8. However, the
language does not support aggregation.

Semantics. In [237] the semantics of TRIPLE is given by a mapping of the TRIPLE-specific
features to standard Horn logic expressions.

Complexity and implementation. No formal complexity study of the language has been pub-
lished. So far, only a single prototype implementation of TRIPLE is available.

Reasoning. As discussed above, TRIPLE not only offers full Horn logic reasoning as part of
the basic language but is designed to allow the extensions with specific reasoners, e.g., for
handling OWL ontologies.

88

Ontology awareness. Although the basic language does not provide any ontology-specific
abilities, ontology awareness can be obtained either by implementing the semantics of the
ontology language in the basic TRIPLE Horn logic (as demonstrated for RDFS above) or by
extending the language with specific reasoners tailored for the needs of the ontology language
such as OWL.

Project page:
http://triple.semanticweb.org/

Implementation(s):
available from the project page

Online demonstration:
http://ontoagents.stanford.edu:8080/triple/ (not functional at the time of writ-
ing), some information about projects realized with TRIPLE demonstrating its abilities
are available from the project page

4.3.5.9 WQL

Ivanhoe [164] is a frame-based API following ideas from [142, 161] for the Nokia Wilbur Toolkit
[166], a collection of APIs for processing XML, RDF, and DAML written in CLOS (Common Lisp
Object System) and introduced in [162]. In Ivanhoe, resources described using RDF and/or
DAML are represented as frames with a slot for each property of the resource. The (possibly
multiple) values of a slot correspond to objects of RDF statements with the resources repre-
sented by the frame as subjects. In [165], a comparison of a subset of the Ivanhoe API, referred
to as Wilbur Query Language or WQL, is described along the criteria from [131]: Three variants
of WQL are discussed:

• the basic path-based query language that allows the selection of some resource reachable
by a path via value, the selection of all resources reachable by a path via all-values,
and the test whether two resources are connected by a certain path using relatedp;

• the embedding of that query language into Common Lisp (abbreviated as WQL+CL). It
is not clear, if there is a restriction on the allowed Common Lisp expressions for this
language layer.

• based upon the “transparent” (or “hidden”) inference extensions for Wilbur presented in
[163], the final layer, abbreviated WQL+CL+inference, uses WQL+CL as query language
but assumes a data store providing inferencing, e.g., for implementing RDFS.

For this survey we concentrate on the first query language WQL only, as WQL+CL is more
akin to a programming language than a query language. However, where appropriate the “trans-
parent inferencing” provided by Wilbur is considered when evaluating WQL.

Consider a query that returns the labels of all classes the book with identified by http:
//example.org/books#Bellum_Civile is classified under on the data from Figure 2.1:

(setf *db* (make-instance ’db))
(load-db (make-url "http://example.org/books")

:locator "http://example.org/books")
(add-namespace "books" "http://example.org/books#")
(all-values !"http://example.org/books#Bellum_Civile"

’(:seq !rdf:type (:seq (:rep* !rdfs:subClassOf) !rdfs:label)))

89

Note, the use of the :seq operator for constructing a sequence of slots (or relations in RDF
terms) to be traversed by the query and of the :rep* operator for traversing the transitive
closure of a slot/relation. all-values returns all resources (represented as frames) reachable
by the specified path from the source frame, i.e., the frame identified by http://example.
org/books#Bellum_Civile.

Project page:
Wilbur Toolkit: http://wilbur-rdf.sourceforge.net/

Implementation(s):
available from the project page

Online demonstration:
none

4.4 Topic Maps Query Languages

4.4.1 tolog: Logic Programming for Topic Maps

tolog [113] has been developed as part of the Ontopia Knowledge Suite11, providing access to
the core query engine (cf. Figure 4.2). It has also recently (April 2004) been selected as an initial
straw-man for the ISO Topic Maps Query Language currently under development. The language
is specified in [113] (incomplete), a gentle introduction is presented in the tolog tutorial [114],
and in [111, 112] language design and evolution are addressed.

The design is most notably influenced by logic programming languages such as Prolog and
logic-based query languages such as Datalog. Some of the more common syntactic constructs
have been adapted to an SQL-like feeling to appeal to query authors without background in
logic programming. The influence from logic programming is obvious when considering the
basic query constructs used in tolog (here and in the following, this discussion of tolog is
mostly oriented at [114], since the specification is in many points still unfinished; where possi-
ble, extensions described in [112] have been considered):

• Identifiers. tolog provides several means for identifying a Topic Maps construct, most
notably based on the (internal) ID of a topic and its subject indicator. E.g. the topic (type)
“Novel” in the sample data could be addressed either using its ID, i.e., Novel, or its subject
indicator i"http://example.org/books#Novel". Note the i prefix in the latter case to
distinguish between different identifiers used in a topic map. As usual, URI prefixes can
be used to abbreviate such expressions, e.g., under the prefix definition using books
for i"http://example.org/books#" one can write simply books:Novel to address
that topic by its subject indicator. Note, that these prefixes are not equivalent to (XML)
namespaces, as also the indicator which of the topic identifiers to use is included.

• Variables. In contrast to Datalog or Prolog, variables are prefixed with a $ wherever
they are referenced (this is both for simplicity and to be able to allow uppercase topic
IDs). Per default all variables occurring in a query are returned, however using select
$var1, $var2, ... from query a projection on the variables $var1, $var2, ...
can be obtained.

11 http://www.ontopia.net/solutions/products.html

90

Figure 4.2 Overview of the Ontopia Knowledge Suite
(from http://www.ontopia.net/solutions/products.html, c© Ontopia)

91

• Predicates. The original tolog proposal (cf. [113]) provides for two kinds of predicates:
built-in and dynamic association predicates. For each association type occurring in a topic
map, there is a so-called dynamic association predicate that allows querying the extent of
the association type. E.g., to query the authors of book b1 in the sample topic map shown
in Chapter 2, one can write authors-for-book(b1, $AUTHOR: author). Note, the use
of the association role to identify which of the two associated topic is the author. In this
case, the query processor might be able to infer the type of $AUTHOR from the type of b1
and the fact that there are only two topics involved in an authors-for-book association.
However, in a query such as authors-for-book($BOOK, $AUTHOR) the need for specify-
ing the association roles is obvious. Analogously to dynamic association predicates there
are also dynamic occurrence predicates.

The only two built-in predicates are instance-of($INSTANCE, $CLASS) and
direct-instance-of($INSTANCE, $CLASS), i.e., predicates that implement the special
semantics of the subsumption hierarchy.

Although the dynamic association and occurrence predicates allow for easy authoring of
queries, they require that the query author is aware of the ontology of the data to be
queried. This disadvantage has been addressed in a recent proposal on extending tolog
[112] and already incorporated into the language tutorial [114]: a number of additional
built-in predicates for enumerating the associations, association roles, occurrences, and
topics are provided, that allow querying arbitrary topic maps without a-priori knowledge
of the types used in the topic maps. E.g., Query 2 can only be implemented using these
predicates:

select $RELATED from
title($BOOK, "Bellum Civile"),
related($BOOK, $RELATED)?

related($X, $Y) :- {
role-player($R1, $X), association-role($A, $R1),
association-role($A, $R2), role-player($R2, $Y) |
related($X, $Z), related($Z, $Y)

}.

This query also demonstrates the use of conjunctions (denoted by a comma as in prolog),
disjunctions (denoted by an expression parenthesized with curly brackets in which the
disjuncts are separated by |), and inference rules discussed below in detail. Note, the use
of the built-in predicates role-player and association-role that related association
roles with topics, respectively associations with association rules.

Using the notation for disjunctions, one can also specify optional queries.

• Inference. As tolog is based on Datalog, it uses a similar syntax for inference rules.
E.g., the build-in predicates instance-of and direct-instance-of can indeed be im-
plemented using only dynamic association predicates and inference rules as follows (cf.
[113]):

direct-instance-of($INSTANCE, $CLASS) :-
i"http://psi.topicmaps.org/sam/1.0/#type-instance"(

$INSTANCE : i"http://psi.topicmaps.org/sam/1.0/#instance",
$CLASS : i"http://psi.topicmaps.org/sam/1.0/#class").

super-sub($SUB, $SUPER) :-
i"http://www.topicmaps.org/xtm/1.0/core.xtm#superclass-subclass"(

92

$SUB : i"http://www.topicmaps.org/xtm/1.0/core.xtm#subclass",
$SUPER : i"http://www.topicmaps.org/xtm/1.0/core.xtm#superclass").

descendant-of($DESC, $ANC) :- {
super-sub($DESC, $ANC) |
super-sub($DESC, $INT), descendant-of($INT, $ANC)

}.
instance-of($INSTANCE, $CLASS) :- {

direct-instance-of($INSTANCE, $CLASS) |
direct-instance-of($INSTANCE, $DCLASS), descendant-of($DCLASS, $CLASS)

}.

Note, the use of the subject indicator to access the standardized type-instance and
superclass-subclass associations.

Inference rules can also use negation, however according to [112] the semantics of nega-
tion in tolog is not yet fully specified.

Aside of these central concepts, tolog also provides constructs for aggregation and sorting
([112] mentions the need for additional aggregation functions), paged queries using limit and
offset clauses similar to SQL, and means for defining and using modules of, e.g., inference
rules. Furthermore, recent versions of tolog offer initial support for function libraries on simple
data types similar to [178].

Easy of use. The textual syntax of tolog is closely aligned with logic programming languages
in the style of Prolog or Datalog. Most of the Topic Maps extensions are rather straight-forward.
However, neither a visual syntax nor a natural language interface are provided.

Functionality—Query Types.

Semantics. No formal semantics has been published.

Complexity and implementation. No formal complexity study of the language has been pub-
lished. Tolog has been implemented in the Ontopia Knowledge Suite12 and in the open source
Topic Maps toolkit TM4J13. With tolog selected as initial straw-man for the upcoming ISO Topic
Maps Query Language, a more wide-spread adoption of the language is to be expected.

Reasoning. Roughly the same reasoning abilities as in Prolog are provided, although the han-
dling of negation is unclear in the current documents describing tolog.

Ontology awareness. tolog can access and query type information included in a topic map.
In particular, the special semantics of the associations defining the subsumption hierarchy is
considered. No further support for ontology languages is provided. However, it is likely that
the ISO Topic Maps Constraint Language14 currently under development will be supported in
the future.

Project page:
http://www.ontopia.net/omnigator/docs/query/tutorial.html (language tuto-
rial)

12 http://www.ontopia.net/solutions/products.html 13 http://tm4j.org/
14 http://www.isotopicmaps.org/tmcl/

93

Implementation(s):
as part of the Ontopia Knowledge Suite (http://www.ontopia.net/solutions/
products.html) and the open source Topic Maps toolkit TM4J (http://tm4j.org/).

Online demonstration:
Omnigator is a show-case application implemented using the Ontopia Knowledge suite.
It is available from http://www.ontopia.net/ and an online demonstration can be
accessed at http://www.ontopia.net/omnigator/models/index.jsp (however, there
seems to be no way to directly test tolog queries in the online demonstrator).

4.4.2 AsTMA?: Functional-style Querying of Topic Maps?

AsTMa? is an “experimental” Topic Maps query language integrated with the rest of the AsTMa
language family developed at the Australian Bond University. It is defined in [16]. A language
tutorial is also provided [17].

AsTMa? has a rather different flavor compared to other Topic Maps languages as it is
most similar to functional XML query languages in the style of XQuery [41]. It specifies several
different path languages than can be used for accessing data in topic maps. These data can than
be further processed by various query constructs, in particular for constructing XML output.

Query 1 can be implemented by the following AsTMa? query:

<books>
{

forall [$book (Writing)] in http://example.org/books
return
<book>

{$book,
forall $author in ($book -> author / author-for-book) return
<author>

{$author}
<name>{$author/bn}</name>

</author>
</book>

}
</books>

Note the almost identical syntax in comparison to XQuery. The query first selects all topics
with topic type Writing in http://example.org/books. For each of these books, the author
is queried by traversing the author-for-book association and selecting the topics with author
role. Finally, the basename of each author is returned by the expression $author/bn.

One of the interesting features of AsTMa? is the great variety offered for accessing topics
and associations: based on a path expression in one of the path languages or on a constraint
written in the AsTMa!. This allows the above query to be formulated as

<books>
{

forall [$book (Writing)] in http://example.org/books
return
<book>

{$book,
forall [(author-for-book)

Writing : $book
author: $author]

in http://example.org/books return
<author>

{$author}

94

<name>{$author/bn}</name>
</author>

</book>
}
</books>

Here the association is not queried by a path expression, but rather by a constraint in
AsTMa! syntax.

Project page:
http://astma.it.bond.edu.au/querying.xsp

Implementation(s):
as part of the Perl XTM module, available via CPAN

Online demonstration:
http://astma.it.bond.edu.au/query/

4.4.3 Toma: Querying Topic Maps inspired by SQL

Due to its wide-spread acceptance, designing a query language with syntax and features similar
to SQL is a natural choice. A first proposal for a Topic Maps query language inspired by SQL
can be found in [158], that allows to query topics, topic-types, and associations using a mixture
of SQL syntax and path expressions. E.g., the following query selects all books (i.e., topics
classified as Writing) together with their authors:

select topic[book], topic[author]
from topic-type["Writing"].topic[book],

topic[book]..assoc[a]..topic[author],
assoc-type["author-for-book"].assoc[a]

[158] also points out that a close alignment of query language and representation formalism
is desirable, e.g., to allow the user to author a query with (nearly) the same tools used for
authoring the topic maps itself.

Developed at Space Application Services15 in a project for the European Space Agency, Toma
[213] is a more elaborate proposal for a Topic Maps query language along the lines of SQL and
path expressions known from object-oriented query languages. It provides access to all Topic
Maps concepts, including an implementation of the special semantics of the subsumption hier-
archy. Information about a topic such as topic ID, basename, or subject identifier are accessed
using a . notation as in object-oriented languages. E.g., $topic.bn = ’Julius Caesar’
compares the basename of all topics selected by $topic with the string “Julius Caesar”. As-
sociations can be traversed using ->, however only the associations with special semantics
such as the instance-of or superclass-subclass association can also be traversed transitively,
i.e., without knowing the length of the path to be traversed a-priori. Indeed, for traversing
the subsumption hierarchy Toma provides the notation $start.super(1..*) that selects all
super-classes of the current one. Instead of 1..* one can specify any interval or single number
to indicate how many superclass-subclass associations shall be traversed. A similar notation is
available for instance-of associations.

A Toma expression implementing Query 1 is shown in the following:

15 http://www.spaceapplications.com/

95

select $book, $author, $author.bn
where $book.type(1..*).id = ’Writing’

and author-for-book%a->Writing = $book
and author-for-book%a->author = $author

This query selects all topics classified as Writing or one of its subtypes together with their
authors and the basenames of the authors. The link between the book and the author is
established by the author-for-book associating: a topic x is the author of another topic y ,
if x occurs in role author and y in role Writing in the same association (the use of %a in the
query ensures that the same association is used).

Using the above mentioned constructs for querying the type hierarchy, Query 3 can be
implemented easily: The following Toma query selects all topics that are neither used as type
of another topic (i.e., part of the “ontology”) nor typed as Translator:

select $topic
where $topic.type(1..*).si.sir != ’http://example.org/books#Translator’

and not exists ($t.type(1) = $topic)
and not exists ($t.type(1..*) = $x and $topic.super(1..*) = $x)

In this query all topics are selected that neither (a) have the subject identifier
http://example.org/books#Translator nor (b) are the type of some topic nor (c) are a
sub-class of topic that is the type of some topic.

Project page:
http://www.spaceapplications.com/toma/

Implementation(s):
implementation not freely available

Online demonstration:
none

4.4.4 Path-based Access to Topic Maps

As for RDF and XML query languages, following the success of XPath great interest in path-
based query languages for Topic Maps has been triggered (cf. [18] for an overview of such
languages and a plea for inclusion of path navigation in the upcoming ISO Topic Maps query
language). Actually, most of the current proposals for Topic Maps query languages use some
form of path expressions with the notable exception of tolog (see Section 4.4.1). In the fol-
lowing, two languages focusing on providing navigational path expressions for accessing Topic
Maps languages are investigated. Further proposals for path expressions as basis for querying
Topic Maps are discussed in Section 4.4.2 and 4.4.3.

4.4.4.1 XTMPath

XTMPath [20] is an approach to define an easy-to-use language for accessing data stored in
topic maps using XPath-like path expressions. The language is defined in [20] as part of the
Perl XTM toolkit, [130] presents an easy overview. The core principle of the language is to
use the way Topic Maps are serialized as XML documents in XTM [212] as orientation on how

96

to address parts of a topic map. E.g., the expression topic[instanceOf/topicRef/@href =
"#Historical_Novel"] finds all topics that are (directly) typed as a Historical_Novel. The
path expression results from the way this information is represented in XTM:

<topic id="b1">
<instanceOf>

<topicRef xlink:href="#Historical_Novel"/>
</instanceOf>

</topic>

So, given an XTM serialization of a topic maps finding the correct paths for addressing a
part of that topic map is fairly easy.

However, one has to be aware of certain peculiarities of XTMPath:

• Only a very small subset of the language constructs provided in XPath is currently sup-
ported by XTMPath, mostly abbreviated syntax for child and descendant axis and some
simple predicates.

• [20] argues that, in contrast to XPath, the XTMPath processor essentially operates on data
conforming to a single DTD (viz., the XTM DTD). This observation leads to treating the
child axis in most cases as equivalent to the descendant axis. Only in some rare cases
(e.g., for instanceOf) a difference between child and descendant is made.

Project page:
http://cpan.uwinnipeg.ca/htdocs/XTM/XTM/Path.html

Implementation(s):
as part of the XTM toolkit available from CPAN

Online demonstration:
none

4.4.4.2 TMPath

TMPath [42, 43] is an “experimental” language for accessing parts of a topic maps in a style
similar to XPath. It has been developed by Dimitry Bogachev, partly as input to the ISO Topic
Maps Query Language working group.

Just as XPath, it is designed to be used as embedded language that implements the selection
of (or access to) parts of the topic maps, that can be used by the host language for further
processing.

The latest version of TMPath [43] provides a large number of constructs for this task. In
contrast to the strict syntax of compound steps in XPath consisting in axis and node-test with
an optional predicate, TMPath mixes different styles of steps. E.g., the following TMPath ex-
pression returns the basename of all authors, i.e., all topics that occur in the author role in a
author-for-book association:

/topic[*;roleOf::author[is-author-of]/role::Writing]/bn::*[1]

The syntax *;... is one of the many shortcuts in TMPath specifying a type condition before
the semicolon and arbitrary further conditions after it.

TMPath also provides means for binding variables using for clauses familiar from XPath.
This allows, e.g., to return a list of all Writings together with their authors:

97

for $book in /topic[subjectIdentifier = "http://example.org/books#Writing"]
for $author in /topic[*;roleOf::author[is-author-of]/role::Writing = $book]

return list{$book/bn::*[1],$author/bn::*[1]}

Although obivously inspired by XPath, the lack of strict rules for representing the various
TMPath step and predicate expressions leads to a rather complicated and hard to read syntax.

Project page:
http://homepage.mac.com/dmitryv/TopicMaps/TMPath/TMPathRevisited.html

Implementation(s):
unclear, not freely available

Online demonstration:
none

4.5 OWL Query Languages

4.5.1 OWL-QL

OWL Query Language (OWL-QL) combines a formal language for querying OWL ontologies with
a protocol designed to support a dialogue between a querying agent and an answering agent
[103]. It is based on the earlier DAML Query Language (DQL) developed by the Joint US/EU ad
hoc Agent Markup Language Committee [102]. Although based on OWL and RDF, the language
is quite generic and could easily be adapted to other logic based knowledge representation
formalisms such as SWRL [137] or SCL16.

Query Language In OWL-QL, the query language itself is based on the standard notion of
language statements (in this case OWL statements) in which some terms are replaced by vari-
ables [83]. Queries will often resemble standard conjunctive queries with the predicates being
OWL classes and properties, and constants being OWL individuals [139]. An answer to a query
consists of a binding for some or all of the variables in the query, i.e., a set of individual names
from the ontology(ies) which, when substituted for the corresponding variables, give a set of
statements that are entailed by the ontology(ies) being queried. E.g., a query of the form

Person(?x) worksFor(?x, W3C)

asks for persons who work for W3C, and if the ontology contains the statements Person(Jane)
and worksFor(Jane, W3C), then binding Jane to ?x answers the query as under this binding the
statements in the query are entailed by the ontology.

As usual, there are different kinds of variable: must-bind variables are those which must
be be bound to some individual name (in conjunctive queries, these are usually called dis-
tinguished variables); don’t-bind variables are those for which no explicit binding is required
(in conjunctive queries, these are usually called non-distinguished variables); and may-bind
variables are those which may optionally bound to an individual name. The addition of may-
bind variables doesn’t increase the expressive power of the language (the same result could be

16 Common Logic Standard, http://cl.tamu.edu.

98

achieved by combining the results of queries using only must-bind and don’t-bind variables),
but may be convenient in some applications. Variables that are not bound to individual names
in a query answer are treated as existentially quantified. For full details of the semantics of
OWL-QL, the reader is again referred to [103].

In OWL-QL, standard taxonomic queries, e.g., retrieving all the super-classes of a given class,
can be answered by using RDF properties in query atoms. For example, the query

subClassOf(Person, ?x)

would return all the super-classes of Person.
Given that the semantics of OWL-QL are based on entailment, answering OWL-QL requires,

in general, the use of a theorem prover. One possible technique is to transform both query and
ontologies into First Order Logic and use a FOL order theorem prover; details of an implemen-
tation based on this idea can be found at the DQL project for the Stanford Knowledge Systems
Laboratory (http://ksl.stanford.edu/projects/dql/). Another technique is to reduce the
conjunctive queries to standard retrieval queries that can be answered using a Description
Logic (DL) reasoner [139, 249, 136]; details of an implementation based on this technique can
be found at [117]. Details of a Jess based implementation can be found at [235].

Query Answering Protocol The OWL-QL query answering protocol is designed to cope with
the wide variety of situations that might arise in a heterogeneous web environment:

• there may be many different kinds of server (a query answering service) with access to
different kinds of information represented in many different formats;

• servers may have only partial information and may have limitations with respect to
their performance (speed and/or completeness), the language they can handle (e.g., OWL
Lite/DL/Full) and the kinds of query they are able to answer;

• the querying agent may or may not want or be able to specify all of the ontologies that
should be used in answering a query;

• the querying agent may need only one answer, all possible answers, or something in
between;

• the querying agent may consider some parts of the answer to be more important than
others;

• and querying agents and servers may use different forms of surface syntax, e.g., RDF or
XML.

In order to address these requirements, a query answer can be returned in one or more
bundles, the query agent can specify an upper limit on the size of answer bundles, and a server
can indicate the characteristics of its answer with respect to completeness and duplication.
The query agent can also specify zero or more ontologies and (optionally) additional OWL
statements that are to be used in computing the query answer. Moreover, the query language
is specified using an abstract syntax for which many different serialisations are possible (e.g.,
an XML serialisation has been defined at the DQL project for the Stanford Knowledge Systems
Laboratory, http://ksl.stanford.edu/projects/dql/).

99

When the query agent specifies one or more ontology, then only these ontologies can be
used to compute answers.17 Alternatively, the query agent may specify a variable instead of an
ontology. In this case the server is free to use any ontology it chooses to answer the query (the
idea here is that the server can use arbitrary web accessible resources in order to find answers
to such queries); the actual ontology used to answer the query may be returned as a binding
for the variable, depending on whether it is a must-bind or may-bind variable.

If the query agent specifies an upper limit on the size of the answer bundle, then the size
of an answer bundle returned by the server may range from zero up to this limit. An answer
bundle from the server also includes either a process handle or a termination token. In case a
process handle is returned, this can be used by a query agent (not necessarily the same agent)
to continue the dialogue by requesting more answers to the query; a query agent can also
terminate the dialogue at this point by sending the server the process handle with a termination
request. A dialogue can be ended by the server using one of three different types of termination
tokens: end simply indicates that no more answers will be provided; none explicitly asserts
that all possible answers have been returned (i.e., the union of the answer sets in this and any
preceding bundles constitute a complete answer to the query); and “rejected” indicates that the
server is unable to answer the query. This last case covers a range of possibilities, including
queries being outside the scope of a particular server (e.g., an OWL DL query sent to an OWL
Lite server), or simply ill formed.

The specification of OWL-QL envisages servers with different kinds of behaviour regard-
ing the generation of duplicate answers (although it does not specify a language mechanism
whereby this information could be communicated to a query agent). A non-repeating server is
one which guarantees not to duplicate answers during the course of a dialogue; a terse server
is one that will not return redundant answers, where an answer is considered redundant if it is
less specific than another answer (i.e., it has the same bindings for must-bind variables and a
subset of the bindings for may-bind variables); a serially-terse server is one that will not return
answers that are redundant with respect to already returned answers (but answers could be
rendered redundant by a subsequent answer).

Project page:
http://ksl.stanford.edu/projects/owl-ql/

Implementation(s):
available from the project page

Online demonstration:
http://onto.stanford.edu:8080/

17 Note that these ontologies may import others using OWL’s import mechanism.

100

Chapter 5

Evaluation Results

In Appendix B, the detailed evaluation of the query languages discussed above is shown. Here,
some of the most striking results are highlighted.

The first and most obvious observation that can be derived from the discussion of the query
languages in Chapter 4 and the feature evaluation from Appendix B is the great variety of pro-
posed Web query languages ranging from path languages providing only the most basic means
for data access (XTMPath, Section 4.4.4.1; RDFPath, Section 4.3.2.5) over similarly basic lan-
guages for extracting multiple data items at once (RDQL, Section 4.3.1.3; XQL, Section 4.2.1.3),
languages with and without ontology support to computationally complete languages with gen-
eral recursion that are able to query data in any of the representation formalisms considered
here (Xcerpt, Section 4.2.2.6; XQuery, Section 4.2.1.5; TRIPLE, Section 4.3.5.8) or constrained
natural language for querying Semantic Web data (Metalog, Section 4.3.4.1). This variety is also
reflected in the ability of the different query languages to infer data: some languages do not
consider inference, most provide at least some restricted form of inference, e.g., means for
computing the transitive closure of a relation, some allow for a Datalog-like specification of
intensional data.

Also rather obvious from the results, although not commonly acknowledge is that similar
approaches occur for XML, RDF, and Topic Maps querying, e.g., basic path-based languages are
proposed for all cases and query languages inspired by logic programming languages such as
Prolog or Datalog are often the ones providing the riches expressiveness in each area. This
is particularly true when considering the reasoning abilities of the surveyed languages: in all
areas languages with no actual reasoning at all, with very limited reasoning abilities for imple-
menting specificities of the underlying representation formalism, and with strong reasoning
support, e.g., by means of general recursion and Horn logic clauses, can be found.

This points to a common classification scheme for the query languages surveyed so far
using the reasoning abilities of a language as distinguishing property. Such a classification
scheme is proposed and discussed in the following section.

5.1 A Classification Scheme for Web Query Languages

In the tradition of the seminal papers by Codd [84] and later by Chandra and Harel [71, 72],
query languages for (relational) data base have often been characterized by their expressive-

101

ness (or completeness under the relational algebra) and evaluation complexity. However, many
recent proposals for Web query languages have acknowledge previous results (e.g., in [6]) sug-
gesting that such classification schemes have to be altered for a Web context by providing
computationally complete languages (e.g., XQuery [41], XSLT 2.0 [150], Xcerpt [230], XPathLog
[187], TRIPLE [237], tolog [112]).

For Edutella [195], an RDF-based peer-to-peer (P2P) infrastructure, a language for exchang-
ing queries, dubbed RDF-QEL, among the nodes in the P2P system has been developed. This
language is based on Datalog but to support a wide range of devices and implementations with
differing capabilities, five language layers are proposed distinguished by increasing complexity:

• Rule-less queries are queries without rules (or equivalent constructs).

• Conjunctive queries allow only a single, non-recursive rule per predicate.

• Disjunctive queries can use several rules for defining a predicate but may not be recursive
in any way.

• Linear recursive queries may contain predicates defined by linear recursion.

• General recursive queries may contain arbitrary Datalog predicates.

This classification scheme is very useful to estimate the processing capabilities required
for evaluating a query. However, considering the results of this survey, as the traditional
classifications based on query complexity, it proves not to deliver an interesting and revealing
classification of the languages. This can be attributed to the fact that the RDF-QEL classification
has been defined for queries not for languages. E.g., the class of linear recursive queries is
certainly interesting, however among the languages surveyed here there is no language that
supports only linear recursion.

Therefore, a novel classification scheme for Web query languages is proposed here. The
core classification feature used in this scheme is the Semantic Web “fitness”, the reasoning
abilities of a language. Four classes of languages are proposed, the third one divided into two
subclasses, yielding the hierarchy depicted in Figure 5.1:

Class 1: Selection-Only Languages. The main characteristic of these languages, a typical ex-
ample of which is XPath [78], is the lack of construction abilities, i.e., they are only able
to specify which part of the input to be selected by the query. A direct consequence of
this restriction is the missing of means for construction of intermediate results such as
views, rules or functions. Also most of these languages operate on a single document (or
similar collection of data given by the context).

Although these restrictions limit the expressiveness severely, they also allow for an easy
implementation and, at least in some cases, efficient evaluation of the languages. Further-
more, these languages are often used as part of other technologies or even other query
languages, hence allowing the use of the same basic access functionality and syntax over
a wide range of technologies.

Class 2: Non-recursive Languages. In contrast to the selection-only languages, these class of
languages provides some means of construction, often realized by nested queries. How-
ever, recursion as needed for inference queries and the traversal of arbitrary-length paths
in a structure are either missing entirely or only available on some predefined relations

102

(e.g., parent-child relation in XML, but no traversal of arbitrary-length ID/IDREF or XLink
relations).

Also, these languages do not specifically support the extended semantics provided by
ontology languages such as RDFS or OWL, although in some cases (e.g., RDQL) certain
implementations provide very limited ontology support as part of the storage model.

Such languages can express not only selection, extraction, restructuring, and often also
reduction queries, but also some inference and combination queries, where a fixed upper
bound on the size of the inferred data exists.

Typical examples of this class are, e.g., RDQL [232] and XML-QL [94].

Class 3a: Ontology-aware non-recursive languages. These languages specifically support the
use of ontology information for querying, but do not allow the use of general recursion.
A well-known example for such a language is RQL [148], which employs ontologies for
typing and querying but limits the traversal of arbitrary-length paths to the subsumption
hierarchy defined in the ontology.

Class 3b: Recursive languages without specific ontology support. A large number of query
languages, in particular for querying XML (e.g., XSLT, XQuery), falls into this class: they
provide the ability to express recursive queries on top of the capabilities of Class 2 lan-
guages. However, no specific support for ontology reasoning is given. This is not so much
a limitation on the expressiveness of the query languages (most of the languages in this
class are computationally complete anyway), as on the convenience (and potentially ef-
ficiency) for expressing queries relying on ontology information. The mechanisms for
inferring knowledge from an ontology describing the queried data have to be explicitly
stated in a query.

Often such languages are the basis of extensions (in form of libraries or true language
extensions) for supporting ontology reasoning, i.e., the basis of Class 4 languages.

Class 4: Ontology-aware recursive languages. Only languages that support both general re-
cursion (or equivalent operations) and the specificities of some ontology languages such
as RDFS or OWL are included in this class. Representative languages are, e.g., Xcerpt,
TRIPLE, or tolog.

This comparison scheme is obviously tailored to querying the kind of data envisioned to
be predominant in a Semantic Web setting: Heterogeneous, highly, but often inconsistently
structured. Flexible means for programmatic manipulation of such data are called for. This
entails, in particular, the ability to query and traverse arbitrary-length paths of related items
in the data, both if the relation is expressed in the structure (e.g., parent-child relationship in
XML) or established by other means (e.g., ID/IDREF, XLink, based on foreign keys such as URIs).

Traversing arbitrary-length paths of related items is one of the most basic inference query
that is required by many use cases proposed for the Semantic vision. Also central to the idea
of the Semantic Web is the use of formally defined vocabularies that allow a more precise
automated “understanding” of the data described.

The classification scheme proposed in this section uses these two observations for provid-
ing an structured view on the languages considered in this survey.

103

Figure 5.1 Excerpt of the Sureveyed Languages in Classification Scheme

5.2 Observations on the State of the Art of Web Query Lan-
guages

Aside of the classification proposed in the previous section, there are a few additional obser-
vations on the status of Web query languages that can be derived from the above comparison:

• Varying Maturity Level: The query languages surveyed in this report vary noticeably
in the level of maturity. As to be expected, query languages for RDF and Topic Maps
are in general less evolved than XML query languages that have been investigated in
academia and industry for several years. But also, e.g., the proposed RDF query languages
differ quite noticeably in their maturity level, some still barely more than quickly drafted
proposals, some already in production use.

• Intense and Early Standardization Activity: In all three areas, but particularly for XML
and Topic Maps query languages standardization activity from various organizations
such as W3C or ISO precedes or runs parallel to early implementations and research ac-
tivity. This can lead to a premature focus on alignment with use cases and requirements
proposed by the standardization bodies.

• Layering of Query Languages: A possible explanation in the variety observed in the
query languages proposals surveyed here is that some of the query languages are limited
to a specific task such as the selection of data in a XML, RDF, or Topic Maps structure.
Often such limited query languages are than used as a separate access layer in full trans-
formation and query languages. The typical example for such layering is the use of XPath
for accessing nodes in an XML document in XSLT, which provides more advanced restruc-
turing and transformation capabilities.

• Approximation and Reasoning as an Emerging Issue: At least two issues are receiving
increasing interest recently, both motivated by the characteristics of data observed or
expected in the (Semantic) Web:

104

(1) Not all data is structured properly, quite a lot of interesting information can only
be deduced from full-text processing, and there is (not yet) a common understanding
of how to structure data properly. This leads to the desire for features in the style of
information retrieval systems that (a) allow the processing of full-text data included in
the structure and (b) can be extended to allow queries where the structure of the data
is only approximately known (e.g., whether a data item is represented as element or
attribute).

(2) Combining such issues with formal vocabularies (from simple thesauri to ontologies
described, e.g., in OWL full) requires some ability to reason about the provided data, e.g.,
for discovering relations between data items not explicitly represented in the structure.

Finally, one should note the similarity of common issues found to be interesting for query
languages from all three areas. E.g., in all cases, one has to consider traversing arbitrary-length
paths in the relations provided by the representation formalism. Also in all cases, ontology
information and similar reasoning techniques can increase the recall of a query in face of
heterogeneous descriptions of the data.

105

106

Chapter 6

Conclusion and Outlook

This survey presents a unique look on query languages based upon the diverse formats for data
representation already used or expected to be used in the (Semantic) Web. It is illustrated that
there is a large number of issues common to query languages in each of these areas that goes
well beyond general design considerations of query languages but is routed in the character-
istics of the Web context. The most prominent issues are the ability to handle heterogeneous
data both in structure and content, to support description of the same or similar informa-
tion types using different vocabularies, to allow incomplete or approximate specifications of
queries, and the consideration of reasoning abilities to be able to integrate, mediate, and enrich
the data provided.

The results of the evaluation show that a unified classification scheme for XML, RDF, and
Topic Maps can be derived that is both meaningful and interesting for understanding the dif-
ferent proposals and their intended usage scenarios. Such a classification scheme together
with the detailed results presented in this report can help identifying interesting languages
for varying requirements and provides a better insight in the state of the art of Web query
languages.

In the perception of the authors, these results stress the need for a query language that is
able to handle all these representation formalisms and the plethora of serialization formats
proposed for them.

To understand further the requirements for such a language, the REWERSE I4 working group
is investigating design principles (a preliminary report can be found in [60]) and use cases for
such a query language. Xcerpt [230] represents a first proposal for a language targeted at the
flexibility and reasoning capabilities required in this setting.

Acknowledgements. We would like to thank Wolfgang May for reviewing a draft of this
deliverable and providing numerous invaluable comments on how to improve both its presen-
tation and content.

This research has been funded by the European Commission and by the Swiss Federal Office
for Education and Science within the 6th Framework Programme project REWERSE number
506779 (cf. http://rewerse.net).

107

108

Appendix A

A Brief History of RDF Serialization
Formats

A.1 Introduction

The Resource Description Framework (RDF) is a language for making simple statements about
resources on the World Wide Web in form of a graph of nodes and edges representing the
resources, their properties and values. A standard XML syntax for serializing RDF graphs,
RDF/XML, exists. Yet, in the five years after the initial release of RDF, numerous alternative
serialization formats have been proposed. This report attempts to present an overview of the
different proposals and the motivations behind their creation.

The serialization formats presented here can be categorized into three general classes,
depending on the use of XML and how a RDF graph is seen: either as fully connected graph or
as collection of subject-property-object triples. RDF/XML and it’s simplification attempts try
to map the nodes and edges of a RDF graph directly to elements in a XML tree. The plain-text
formats deriving from N3 concentrate on the individual triples that make up the graph and
record them in a non-XML form. The newest generation of serialization formats, TriX and RXR
also focus on the triples, but use XML to specify them. A forth class of formats, specially
designed for embedding RDF data into XHTML and other XML languages are not considered in
this report.

The RDF graph presented in Figure A.1 will be used throughout this report, serialized into
each format. It describes this report and it’s author using the Friend-Of-A-Friend [55] and
Dublin Core [143] vocabularies.

A.2 RDF/XML: The W3C Recommendation

When RDF became a W3C Recommendation for the first time in 1999, [167] defined together
with the formal RDF model a XML based syntax for serializing RDF graphs: RDF/XML. Because
of the differences in the underlying information models of RDF and XML, one being an edge-
and-node-labeled directed graph of resources and properties identified by URIs and the other
being a node-labeled tree of elements and attributes identified by the combination of names-

109

Figure A.1 A sample RDF Graph

pace and tag name, the specification proposed a mapping where both resources and properties
where converted to XML elements and nested into each other. By using the XML namespace
mechanism, it was possible to split an URI into two parts and form an XML element name. The
main concept behind RDF/XML later became to be known as striping [53], as resources and
properties alternate in the nested XML structure.

Query 20. RDF/XML describing this report and it’s author.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/" >
<rdf:Description rdf:about="http://www.fakeroot.net/sw/rdf-formats/">

<rdf:type>
<rdf:Description rdf:about="http://xmlns.com/foaf/0.1/Document" />

</rdf:type>
<dc:title>A Brief History of RDF Serialization Formats</dc:title>
<foaf:maker>

<rdf:Description>
<foaf:name>Oliver M. Bolzer</foaf:name>
<foaf:weblog>

<rdf:Description rdf:about="http://slashdot.jp/~Oliver/journal/" />
</foaf:weblog>

</rdf:Description>
</foaf:maker>

</rdf:Description>
</rdf:RDF>

Example 20 is a RDF/XML document for the RDF graph from Figure A.1. rdf:Description
elements represents the resource identified by the URI in it’s rdf:about attribute. Blank nodes
do not have a rdf:about attribute, but can optionally have a rdf:nodeID attribute to distin-
guish them from other blank nodes in the same graph. Direct children of a rdf:Description
elements are the properties describing the resource. For these, the URI identifying the prop-
erty is used as the element name, by splitting the URI into a prefix and a suffix, used as XML
namespace and local part.

RDF/XML allows to shorten the serialization using various abbreviations. For instance, a
property with a literal as object can be expressed using a XML attribute. Also the resource that
is the object of an statement can be named in the rdf:resource attribute of the element for

110

the property, instead of an rdf:Description child element. Also the value of a resource’s
rdf:type property can be used as the resouce’s element name instead of rdf:Description.
Example 21 is also a RDF/XML document for Figure A.1, but much shorter then the previous
example, through the use of abbreviations.

Query 21. RDF/XML with abbreviations.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/" >
<foaf:Document rdf:about="http://www.fakeroot.net/sw/rdf-formats/"

dc:title="A Brief History of RDF Serialization Formats" >
<foaf:maker>

<rdf:Description foaf:name="Oliver M. Bolzer">
<foaf:weblog rdf:resource="http://slashdot.jp/~Oliver/journal/" />

</rdf:Description>
</foaf:maker>

</rdf:Description>
</rdf:RDF>

Many more possibilities to serialize the same graph using RDF/XML exist, because
the aggregation of multiple statements about a single resource into children of a single
rdf:Description element are not mandatory. Also, instead of deeply nesting resources and
properties, it is possible to create a shallow structure with all rdf:Description elements di-
rectly under the root. Example 22 is another serialization of Figure A.1, this time in a very
verbose way.

Query 22. Very verbose RDF/XML.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/" >
<rdf:Description rdf:about="http://www.fakeroot.net/sw/rdf-formats/">

<dc:title>A Brief History of RDF Serialization Formats/<dc:title>
</rdf:Description>
<foaf:Document rdf:about="http://www.fakeroot.net/sw/rdf-formats/">

<foaf:maker rdf:nodeID="oliver">
</rdf:Description>
<rdf:Description rdf:nodeID="oliver">

<foaf:name>Oliver M. Bolzer</foaf:name>
</rdf:Description>
<rdf:Description rdf:nodeID="oliver">

<foaf:weblog rdf:resource="http://slashdot.jp/~Oliver/journal/" />
</rdf:Description>

</rdf:RDF>

Examples 20-22 all represent the exact same RDF graph. After being processed by a
RDF/XML parser, there should be no difference between them. But from the view point of
XML tools, each one is a completely different XML document. Because of this syntactic vari-
ability, it is very difficult to use standard XML tools like XPath, XSLT and XQuery with arbitrary
RDF/XML documents.

Furthermore, several other problems have been identified with RDF/XML, which all led to
the development of the subsequent serialization formats. The following are among the most
notable:

111

• It is impossible to distinguish an XML element for a RDF node from one for a property
without knowledge about the striping.

• The triples that make up the RDF graph are hard to make out.

• Many different things are used to to represent URIs: element names, attribute names and
attribute values.

• It is impossible to specify a single DTD or XML Schema that validates all RDF/XML docu-
ments.

• Difficult to read for humans.

In 2001, the RDF Core Working Group was created, partly to fix the RDF/XML syntax and
clean up the whole specification. This effort led to the revised RDF/XML Syntax Specification
[27], which became a W3C Recommendation in early 2004. However, tough the specification has
undergone a major clean up and the syntax is now specified in a cleaner and much more concise
manner, the basics have not changed and the problems arising from RDF/XML’s structure have
not been solved. [25] gives an overview of the problems of the first RDF/XML specification as
well as the issues identified during the revision process.

A.3 Simplified Syntaxes for RDF/XML

A.3.1 Unstriped Syntax

Only few month after the publication of [167], Tim Berners-Lee started experimenting with
simplifications of RDF/XML. In [35] he considered a modification of RDF/XML without the
node/property striping, named “Unstriped Syntax”. In it, XML elements are only used for the
edges in the RDF graph, with the subjects specified using the newly introduced rdf:for at-
tribute.

Query 23. Single Statement using the Unstriped RDF/XML Syntax.

<dc:title rdf:for="http://www.fakeroot.net/sw/rdf-formats/">A Brief History of RDF
Serialization Formats</dc:title>

Alternately, a default subject for all nested elements can be be given using a rdf:about
attribute on the parent element, similar to RDF/XML. Blank nodes and deep nesting of elements
are handled as in RDF/XML.

Query 24. Figure A.1 serialized using the Unstriped Syntax.

<someelement rdf:about="http://www.fakeroot.net/sw/rdf-formats/">
<rdf:type rdf:about="http://xmlns.com/foaf/0.1/Document" />
<dc:title>A Brief History of RDF Serialization Formats</dc:title>
<foaf:maker>

<foaf:weblog rdf:about="http://slashdot.jp/~oliver/journal/" />
<foaf:name>Oliver M. Bolzer</foaf:name>

</foaf:maker>
</someelement>

112

However, lacking a suitable parent element (somelement in the above example), use of
the rdf:Description element is recommended, undermining the Unstriped Syntax’s basic
principle that elements are only to be used for properties.

Because it addresses only the striping issue and none of the other problems with RDF/XML,
the Unstriped Syntax has not been pursued further than it’s “strawman draft” status.

A.3.2 Simplified Syntax

Inspired by the Unstriped Syntax, Sergey Melnik followed up with another simplified RDF/XML
syntax [191], in which each element’s type, whether it is a node or an edge of the RDF graph,
can be determined by looking at it’s attributes. As with the Unstriped Syntax, each XML element
by default denotes an edge of the graph. The subject is specified in a rdf:for attribute and it’s
object in a rdf:resource attribute or in case of a blank node, using child elements. In absence
of a rdf:for attribute, the subject is defined to be the parent element’s object, instead of an
explicitly set “default subject”, removing the need to use an extra element to denote a resource.

Query 25. Figure A.1 serialized using the Simplified Syntax.

<rdf:type rdf:for="http://www.fakeroot.net/sw/rdf-formats/" rdf:resource="http://xmlns.com/foaf/0.1/Document">
<dc:title rdf:for="http://www.fakeroot.net/sw/rdf-formats/">A Brief History of RDF Serialization Formats</dc:title>
<foaf:maker rdf:for="http://www.fakeroot.net/sw/rdf-formats/">

<foaf:name>Oliver M. Bolzer</foaf:name>
<foaf:weblog rdf:resource="http://slashdot.jp/~Oliver/journal/" />

</foaf:maker>

Only when an element has a rdf:instance attribute, does it denote a node identified by the
URI in the attribute’s value. In such a case, the element’s name is taken to be the node’s
rdf:type. Though this feature reintroduces striping, it is explicit and easily detectable. Example
26 shows parts of our example RDF graph utilizing this feature.

Query 26. Simplified Syntax using rdf:instance.

<foaf:Document rdf:instance="http://www.fakeroot.net/sw/rdf-formats/">
<dc:title>A Brief History of RDF Serialization Formats</dc:title>
<foaf:maker>...</foaf:maker>
</foaf:Document>

A.3.3 XMP

Faced with the need to embed meta-data into the various media formats produced by it’s tools,
Adobe decided to adopt RDF as the core of it’s “Extensible Metadata Platform” [7]. Instead of
going for the full RDF/XML format, Adobe uses only a proper subset, disallowing XML literals
and reification in order to simplify processing and reduce the complexity of the expressible RDF
graphs. As these removed features are rarely used, it is likely that the majority of RDF/XML
documents on the Internet are also valid XMP data.

A.3.4 Normalized RDF

In 2001, Jonathan Robie demonstrated that a “normalized” form of RDF/XML could be effec-
tively queried using XQuery, an XML query language without any knowledge about RDF. In [224]

113

he argued, that by standardizing on one of the many possible syntactic variants of RDF/XML,
it would be possible to use standard XML tools to effectively query, transform and otherwise
process RDF/XML documents.

Going through several refining steps in his paper, Robie arrived at a flat form, where all
statements about a single resource are grouped together and all groups put under a common
parent, thus avoiding deep nesting of statements.

Query 27. Figure A.1 in “normalized” RDF/XML.

<rdf:Description about="http://www.fakeroot.net/sw/rdf-formats/">
<rdf:type>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</rdf:type>
<dc:title>A Brief History of RDF Serialization Formats</dc:title>
<foaf:maker>http://fakeroot.net/staff/Oliver</foaf:maker>

</rdf:Description>
<rdf:Description about="http://fakeroot.net/staff/Oliver">

<foaf:name>Oliver M. Bolzer</foaf:name>
<foaf:weblog>http://slashdot.jp/~Oliver/journal/</foaf:weblog>

</rdf:Description>

Being only a technical demonstration for the possibility of querying RDF using XQuery,
details like the difference between resources and literals as objects or blank nodes are not
addressed. In Example 27 a new URI had to be assigned to identify the maker of the document.

A.3.5 RxML

RxML [239] is a serialization format by Adam Souzis created as component of his Rx4RDF
suite of RDF-related technologies. It is unique in it’s consistent use of XML element names to
encode all URIs extending the way properties are handled in RDF/XML to subjects and objects.
Each child of the root rx:rx element specifies a resource describe in the RxML document. It’s
children are in turn the properties and the grandchildren are objects: either text children for
literals or empty elements for resources. Nesting is not allowed, limiting the maximum depth
of the XML tree to 3. Blank nodes are identified by resources who’s URIs begin with ‘bnode:’.

Query 28. Figure A.1 in RxML

<rx:rx xmlns:rx=’http://rx4rdf.sf.net/ns/rxml#’
xmlns:bnode=’bnode:’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:fakeroot=’http://www.fakeroot.net/sw/’
xmlns:dc=’http://purl.org/dc/elements/1.1/’
xmlns:foaf=’http://xmlns.com/foaf/0.1/’ >

<fakeroot:rdf-formats>
<rdf:type><foaf:Document /></rdf:type>
<dc:title>A Brief History of RDF Serialization Formats</dc:title>
<foaf:maker><bnode:Oliver /></foaf:maker>

</fakeroot:rdf-formats>
<bnode:Oliver>

<foaf:name>Oliver M. Bolzer</foaf:name>
<foaf:weblog><journal xmlns="http://slashdot.jp/~Oliver/" /></foaf:weblog>

</bnode:Oliver>
</rx:rx>

114

While the consistent use of XML element names for URIs seems an elegant solution,
it is accompanied by a fatal problem: some URIs can’t be expressed due to restrictions
in the characters allowed for element names in XML. In Example 28, the document’s URI
(http://www.fakeroot.net/sw/rdf-formats/) can’t be turned into a XML element name because
of the trailing ’/’ that had to be omitted.

A.4 Plain-Text Formats

A.4.1 Notation 3

Meanwhile, giving up on a usable XML syntax for RDF, Tim Berners-Lee proposed Notation 3,
also known as N3 [32]. Contrary to previous serialization formats, N3 is not a XML based
format. Born out of a pseudo-syntax people started using in various discussion forums instead
of RDF/XML, N3 focuses on the triples that make up a RDF graph and writes them down in a
straight manner: subject, property, object .

Query 29. A single Statement in N3.

<http://www.fakeroot.net/sw/rdf-formats/> <http://purl.org/dc/elements/1.1/title>
"A Brief History of RDF Serialization Formats" .

Two shortcuts are provided to combine several statements. A semicolon introduces an-
other property about the same subject and a comma introduces another object with the same
property and subject. Blank nodes are identified by using square brackets as objects, putting
the statements about that blank node inside the brackets. Additionally, N3 allows the use of
short prefixes to abbreviate long URIs, similar to the namespace prefixing mechanism in XML.
Also the very common rdf:type predicate can be abreviated to just an a. [33] gives an excellent
introduction to the basics of N3.

Query 30. Figure A.1 in N3.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.org/foaf/0.1/> .
<http://www.fakeroot.net/sw/rdf-formats/> a foaf:Document;

dc:title "A Brief History of RDF Serialization ...";
foaf:maker [

foaf:weblog <http://slashdot.jp/~Oliver/journal>;
foaf:name "Oliver M. Bolzer"] .

N3 supports reification by quoting statements within curly braces. A quoted statement can
then be used as subject for another statement.

Query 31. Reification in N3.

{ ex:Moby_Dick foaf:maker ex:Oliver .} ex:trustable ex:false .

N3 is also not just an serialization format for RDF graphs. It has additional support beyond
RDF, allowing whole graphs to be quoted as well as formulation of rules and queries using
variables and quantification. While most people only think of N3 as a serialization format,
some people think of N3 as a rule language, while others consider it a query language. To

115

avoid confusion, attempts have been made to define subsets of N3 according to capability: N3
RDF, N3 Rules and full N3.

Being easy to read for both humans and machines, N3 was quickly adopted by the Semantic
Web community as the format used for online discussions about RDF. Today, various tools and
query language implementations for RDF accept N3 as input and output format together with
RDF/XML.

A.4.2 N-Triples

N-Triples is a minimalist subset of N3, only allowing one triple per line without any abbrevi-
ations. Designed for RDF Test Cases [123], it is intended to be extremely easy to parse and
generate by scripts. To avoiding any nesting, Blank nodes need to be identified by a temporary
identifier starting with _:. N-Triples neither supports URI abbreviation, nor reification.

Query 32. Figure A.1 in N-Triples.

<http://www.fakeroot.net/sw/rdf-formats/> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.org/foaf/0.1/Document> .
<http://www.fakeroot.net/sw/rdf-formats/> <http://purl.org/dc/elements/1.1/title>
"A Brief History of RDF Serialization Formats" .
<http://www.fakeroot.net/sw/rdf-formats/> <http://xmlns.org/foaf/0.1/maker> _:a .
_:a <http://xmlns.org/foaf/0.1/weblog> <http://slashdot.jp/~Oliver/journal> .
_:a <http://xmlns.org/foaf/0.1/name> "Oliver M. Bolzer" .

Because of it’s precise and simple syntax and straight accordance with the RDF’s concept
of triples ([155]), N-Triples is often encountered in introductory documents about RDF, such as
[179].

A.4.3 Quads

When aggregating RDF statements from multiple sources and saving them locally, tracking the
origin, or context, of each statement becomes more and more important. Some storage systems
store the URI of origin together with each triple, forming a “quad". Quads [229] is an extention
of N-Triples, adding an optional forth element for such context information.

Query 33. A single statement that originated at http://www.fakeroot.net/sw/SampleG.rdf, in
Quads

<http://www.fakeroot.net/sw/rdf-formats> <http://purl.org/dc/elements/1.1/title>
"A Brief History of RDF ..." <http://www.fakeroot.net/sw/SampleG.rdf> .

The specification of Quads includes further extentions such as “compound names” and
statement terminators other than the dot, but the semantics of them are not further explained.

A.4.4 Turtle

While more and more RDF-related tools adopted N3 in addition to RDF/XML, most of them
implemented only a ad-hoc subset of N3, leaving out some of the more complex features that go
beyond the RDF model. In light of such development, Dave Beckett proposed in the end of 2003
a new plain-text format Turtle ([14],[26]), extending N-Triples with some of the commonly used

116

and well understood features of N3, while staying within the RDF model. Turtle deliberately
skips support for reification.

Among the features taken from N3 are short prefixes for long URIs and the abbreviations
using commas and semicolons, as well as blank node creation using square brackets and col-
lections. Also the default character encoding has been changed from US-ASCII to UTF-8.

Query 34. Figure A.1 in Turtle.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.org/foaf/0.1/> .
<http://www.fakeroot.net/sw/rdf-formats/> a foaf:Document;

dc:title "A Brief History of RDF Serialization ...";
foaf:maker [

foaf:weblog <http://slashdot.jp/~Oliver/journal>;
foaf:name "Oliver M. Bolzer"] .

Example 34 is identical to Example 30 given above for N3 above, due to Turtle being mostly
a subset of N3.

A.4.5 TriG

TriG [39] is the newest in the plain-text line of formats descending from N3, proposed by Chris
Bizer. Dubbed as “a compact and readable alternative to the XML-based TriX” [39], TriG extends
Turtle beyond theb RDF model by adding support for serializing multiple graphs in one file,
with the ability to give each a distinct name [65].

Query 35. Figure A.1 with additional name in TriG.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.org/foaf/0.1/> .
@prefix fakeroot: <http://www.fakeroot.net/sw/> .
fakeroot:SampleG { fakeroot:rdf-formats/ a foaf:Document;

dc:title "A Brief History of RDF Serialization ...";
foaf:maker [

foaf:weblog <http://slashdot.jp/~Oliver/journal>;
foaf:name "Oliver M. Bolzer"] .

}

Example 35 shows the graph from Figure A.1, given the name
http://www.fakeroot.net/sw/SampleG . It’s triples are grouped together using curly braces,
with the name prepended.

A.5 Triple-based XML Formats

During 2003, while completing the revision of RDF/XML, Dave Beckett summarized the inherent
problems of RDF/XML and collected requirements and ideas for new serializations formats in
[25]. Based on the experiences with N3 and RPV (see below), Beckett argued, that such a formats
should be closely based on the RDF graph via the terminology in [155] and be minimal in the
number of alternate forms for the same RDF graph.

Though not a format proposal, [25] defines the up-to-date most extensive list of require-
ments for a new XML format.

117

A.5.1 RPV

In 2002, despite the increasing popularity of N3, Tim Bray still felt the need for a XML based
format and created RPV [49] in order to leverage XML’s diverse assets, such as support for
Internationalization and widely-deployed base of software. The goals was to create a format
that was entirely unambiguous and highly human-readable, by emphasizing the triples that
make up a RDF graph.

RPV takes a subject centric view on triples, collecting statements about a single resource
together, similar to the Normalized RDF approach by Robie. Instead of using property names
as element names, RPV utilizes only two tags: R (as in resource) and PV (as in property/value).
URIs are specified using the attributes r, p and v for resource, property and value, respectively.
Blank nodes are emulated by giving a R element an id attribute but no r attribute.

Query 36. Figure A.1 in RPV.

<R r="http://www.fakeroot.net/sw/rdf-formats/">
<PV p="http://www.w3.org/1999/02/22-rdf-syntax-ns#type" v="http://xmlns.org/foaf/0.1/Document" />
<PV p="http://purl.org/dc/elements/1.1/title">A Brief History of RDF ...</PV>
<PV p="http://xmlns.org/foaf/0.1/maker" v="#oliver" />

</R>
<R id="oliver">

<PV p="http://xmlns.org/foaf/0.1/weblog" v="http://slashdot.jp/~Oliver/journal" />
<PV p="http://xmlns.org/foaf/0.1/name">Oliver M. Bolzer</PV>

</R>

In order to abbreviate long URIs, RPV allows the use of the attributes rBase, pBase, and
vBase, providing base URIs similar to xml:base for resource, property and value, respectively.
These bases apply to the element and all contained elements. As only one such base is allowed
for each type, the usability is very limited in situations using vocabularies with varying prefixes.

Query 37. RPV with abbreviated URIs.

<R r="http://www.fakeroot.net/sw/rdf-formats/"
pBase="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
vBase="http://xmlns.org/foaf/0.1/" >

<PV p="type" v="Document" />
<PV p="http://purl.org/dc/elements/1.1/title">A Brief History of RDF ...</PV>
<PV p="http://xmlns.org/foaf/0.1/maker" v="#oliver" />

</R>

RPV supports reification using the rpv attribute on a R element, pointing to another R ele-
ment’s id. In Example 37, in the first R element, identified as foo by the id attribute, statements
are made about Mobuy_Dick. Then in the second R element, pointing to the first R element using
the rpv attribute, the statements are stated to be not trustable.

Query 38. Reification in RPV.

<R id="foo" r="http://example.org/Moby_Dick">
<PV p="http://xmlns.com/foaf/0.1/maker" v="http://example.org/Oliver" />

</R>
<R rpv="#foo">

<PV p="http://example.org/trustable" v="http://example.org/false" />
</R>

Though never actually used in any implementation, RPV animated others to pursue the
goal of a XML-based format that emphasizes the triples instead of trying to somehow map RDF
graphs to XML trees.

118

A.5.2 TriX

Following up on the requirements proposed by Beckett, Jeremy J. Carroll and Patrick Stickler
in [66] designed the XML-based format TriX. The authors take an unique approach by first
defining an absolutely minimal base format without any abbreviations and then using XSLT for
syntactic extentions, together with stylesheets that convert to the base format. In addition,
TriX goes beyond the original RDF model by supporting Named Graphs [65] and literals as
subjects.

A TriX document contains one or more graphs, each optionally with a name. Each graph
consists of one or more triples. The triple element is the core of TriX, containing three
children. The position of each child determines whether the child is the subject, the property
or the object of the triple. The element used identifies it’s type.The uri element is used for
unabbreviated URIs, while the id element is used for identifying blank nodes. plainLiteral is
used for String literals, while typedLiteral is used for any other type of literal in combination
with a datatype attribute.

Query 39. Figure A.1 in TriX.

<TriX xmlns="http://www.w3.org/2004/03/trix/trix-1/">
<graph>

<uri>http://www.fakeroot.net/sw/SampleG</uri>
<triple>

<uri>http://www.fakeroot.net/sw/rdf-formats/</uri>
<uri>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</uri>
<uri>http://xmlns.org/foaf/0.1/Document</uri>

</triple>
<triple>

<uri>http://www.fakeroot.net/sw/rdf-formats/</uri>
<uri>http://purl.org/dc/elements/1.1/title</uri>
<plainLiteral>A Brief History of RDF Serialization Formats</plainLiteral>

</triple>
<triple>

<uri>http://www.fakeroot.net/sw/rdf-formats/</uri>
<uri>http://xmlns.org/foaf/0.1/maker</uri>
<id>x</id>

</triple>
<triple>

<id>x</id>
<uri>http://xmlns.org/foaf/0.1/weblog</uri>
<uri>http://slashdot.jp/~Oliver/journal/</uri>

</triple>
<triple>

<id>x</id>
<uri>http://xmlns.org/foaf/0.1/name</uri>
<plainLiteral>Oliver M. Bolzer</plainLiteral>

</triple>
</graph>

</TriX>

Example 39 is the sample RDF graph serialized using the basic TriX format. The name
http://www.fakeroot.net/ sw/SampleG is attached to it via the uri element directly under graph.
Though being very verbose, the triples are clearly identifiable.

TriX allows syntactic extentions that make the syntax more human-friendly through the
use of XSLT. One popular trick to increase readability of RDF serializations is to allow a XML
QName-like abbreviation for URIs. By declaring an appropriate stylesheet processing instruc-
tion, TriX allows such syntactic sugar. Example 40 is one triple from the graph serialized in

119

TriX, using the qname element to abbreviate long URIs.

Query 40. Syntactic Extentions in TriX using XSLT.

<?xml-stylesheet type="text/xml"
href="http://www.w3.org/2004/03/trix/all.xsl" ?>

<TriX xmlns="http://www.w3.org/2004/03/trix/trix-1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.org/foaf/0.1/" >

<graph>
<triple>

<uri>http://www.fakeroot.net/sw/rdf-formats/</uri>
<qname>rdf:type</qname>
<qname>foaf:Document</qname>

</triple>
</graph>

</TriX>

Other syntactic sugars demonstrated by the authors of TriX include the use of xml:base
as another method for URI-abbreviation, tags for specific typed literals and collections. The
authors even go as far as suggesting RDF/XML as an TriX extention, based on the possibility of
writing an RDF/XML parser in XSLT.

A.5.3 RXR

Discontent with TriX’s decision to support features beyond the original RDF model, it’s depen-
dency on XSLT and the risk of ad-hoc extentions, Dave Beckett continued with the work he had
began in [25] and formulated in [15] another proposal for a triple-centric XML-based format,
RXR (Regular XML RDF).

Similar to TriX, the triple element, containing three children, is at the heart of RXR. But,
instead of relying on the position, the children’s roles are unambiguously identified by the
elements subject, predicate and object. URIs are then given as value to the uri attribute,
while literals are given as element content, with an optional datatype attribute. Blank nodes
are specified with the blank attribute.

Query 41. Figure A.1 in RXR.

<graph xmlns="http://ilrt.org/discovery/2004/03/rxr/">
<triple>

<subject uri="http://www.fakeroot.net/sw/rdf-formats/" />
<predicate uri="http://www.w3.org/1999/02/22-rdf-syntax-ns#type" />
<object uri="http://xmlns.org/foaf/0.1/Document" />

</triple>
<triple>

<subject uri="http://www.fakeroot.net/sw/rdf-formats/" />
<predicate uri="http://purl.org/dc/elements/1.1/title />
<object>A Brief History of RDF Serialization Formats</object>

</triple>
<triple>

<subject uri="http://www.fakeroot.net/sw/rdf-formats/" />
<predicate uri="http://xmlns.org/foaf/0.1/maker" />
<object blank="x" />

</triple>
<triple>

<subject blank="x" />
<predicate uri="http://xmlns.org/foaf/0.1/weblog" />
<object uri="http://slashdot.jp/~Oliver/journal/" />

120

</triple>
<triple>

<subject blank="x" />
<predicate uri="http://xmlns.org/foaf/0.1/name" />
<object>Oliver M. Bolzer</object>

</triple>
</graph>

Example 41 shows again the RDF graph from Figure 1, this time serialized using RXR. De-
spite it’s verbosity, the triples are clearly recognizable.

RXR does not allow any abbreviations of URIs or other complexities such as XML literals.
One notable exception are collections, supported by RXR through the collection element.
Multiple statements with the same subject and predicate can be aggregated using this facility.

Query 42. Collections in RXR.

<graph xmlns="http://ilrt.org/discovery/2004/03/rxr/">
<triple>

<subject uri="http://example.org/box" />
<predicate uri="http://example.org/contains" />
<collection>

<object>apple</object>
<object>pear</object>
<object>potato</object>

</collection>
</triple>

</graph>

Three tripled are contained in Example 42. The same triples could also have been written
separately, using three triple elements.

A.6 Features Overview

Feature\Format RDF/XML XMP N3 N-Triples Turtle TriG RPV TriX basic TriX ext. RXR

XML X X X X X X
URI abbreviation X X X X X X X

Statement Aggregation X X X X X X
Deep Nesting X X X X X
Blank Nodes X X X X X X X X X X
Collections X X X X X X X

Typed Literals X X X X X X X X X
Reification X X X* X X* X*

Features beyond RDF X X X X
*: Reification using Named Graphs

Normalized RDF, the Unstriped Syntax and Simplified Syntaxe are not listed, as they were
only incomplete sketches and not concrete format proposals.

A.7 Genealogy

Figure A.2 is an attempt at portraying the genealogy of the formats described in this document.
The newer formats were obviously influenced by most if not all preceding formats. Yet some

121

had a stronger influence, others less. The depicted affinities are based on citations by the
proposals and statements made by the respective authors.

Figure A.2 Genealogy of RDF serialization formats
(“Beckett, 2003” refers to [25]. Though not a concrete format proposal itself, it is included here as a
major source of inspiration and guidance for the subsequent format proposals.)

Successor or Revision

Textual non-XML FormatXML Format

RDF/XML

N3

Unstriped
Syntax

Simplified
Syntax XMP

Normalized
RDF RPV

Beckett, 2003

RXR

TriX

RDF/XML
(revised)

N-Triples Turtle
TriG

1999 2000 2001 2002 2003 2004

Extension Simplification/Restriction Notable Influence

A.8 Conclusions

The challenge of serializing RDF graphs and the dissatisfaction of the Semantic Web community
with RDF/XML has brought forward numerous proposals for alterternate serialization formats,
most of which have been described here. After various early attempts to simplify RDF/XML
failed to gain support, the idea of directly mapping RDF nodes and edges to XML elements
appears to have been abandoned in favor of a more triple-centric view of RDF graphs.

N3 has seen wide adoption by the Semantic Web community as a triple-centric and human-
friendly format. However actual implementations vary greatly in the supported features of N3.
Current developments indicate a high chance that future implementations will standardize on
Turtle as an adequate common denominator of the N3-based proposals.

Still, many in the community feel the need for a triple-centric XML-based format, in order to
facilitate interchange between heterogenous systems leveraging existing XML tools. TriX and
RXR are the current contestants for such a format, but it is still too early to speculate on which
will prevail.

Considering the disputes concerning support for new features like graph naming and liter-
als as subjects, it is likely that the world will see yet more format proposals in the near future.
Until some consensus is reached, RDF/XML remains the only formally standartized format all
implementations must support.

122

Appendix B

Evaluation Tables

For space reasons, the detailed evaluation results are given for only a limited selection of languages. The full details
can be obtained from the authors and will soon be available on the working group page: http://rewerse.net/I4.

Table B.1: Evaluation Table: Ease of Use

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12
XQL • –
XPath 1.0
[78]

• –
1

– – – –2 ◦3 XML single
tree4

regular path
expressions,
Unix-like paths

– paths5

XSLT 1.0
[77]

◦6 –
7

– • ◦8 module-like
inclusion mech-
anism, tem-
plates9

◦ XML,
[RDF10]

single
tree4

stylesheet lan-
guages

functional paths11

XPath 2.0
[30]

• – – –12 – –2 ◦3 XML single
tree13

regular path
expressions,
Unix-like paths

– paths5

XSLT 2.0
[150]

◦6 – – • ◦8 module-like in-
clusion mecha-
nism, templates

• XML multiple
trees13

stylesheet lan-
guages

functional paths14

1 There are a number of tools providing visual support for authoring XPath queries. 2 As XPathis first and
foremost intended to be used within a host language, it makes provisions for functions externally defined in the
host language. 3 The evaluation context of an XPath expression can contain a library of arbitrary externally
defined functions. 4 By means of the id function graph-like navigation is supported. 5 XPath predicates enable
the specification of tree-like queries. 6 XSLT itself is specified using XML, leading to a rather verbose syntax
but uses XPath for pattern specifications, thereby allowing programs to remain at least somewhat readable for
humans. 7 There are a number of tools providing visual support for authoring XSLT programs. 8 As XSLT uses
XPath for node access in various places, considerable effort is required to manipulate XSLT programs within XSLT.
9 Templates are limited in XSLT 1.0 w.r.t. to modularity, as any constructed XML data (i.e., that is not entirely
extracted from the source document) has a special type that can not be queried further (cf. [169] and [150] where
this problem has been addressed). 10 Using some form of extension functions as provided, e.g., by TreeHugger
[245]. 11 Uses XPath 1.0 for node access. 12 A subset of the syntax for XQuery 1.0 specified in [177] could be
used as an XML syntax for XPath 2.0 13 By means of the fn:id and fn:idref functions graph-like navigation is
supported. 14 Uses XPath 2.0 for node access.

123

Table B.1: Evaluation Table: Ease of Use

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12

XQuery 1.0
[41]

• – – •15 •16 (optional) sup-
port for mod-
ules, functions

• XML,
[RDF,
Topic
Maps17]

multiple
trees13

SQL, iterations
in imperative
languages

functional paths

SquishQL
[194]

• – – – – – – RDF triple SQL – steps

rdfDB
[128]
RDQL
[232]

• – – – – – – RDF,
RDFS18

triple SQL – steps

BRQL [220] • – – – – – ◦19 RDF triple SQL – steps
TriQL [40] • – – – – – – RDF triple20 SQL – steps

“Syntactic
Web” [226]

• – – ◦15 •16 (optional) sup-
port for mod-
ules, functions

• XML,
RDF,
Topic
Maps

multiple
trees13

SQL, iterations
in imperative
languages

functional paths

XsRQL
[149]

• – – – – –21 –
21

RDF graph22 XQuery functional paths

TreeHugger
[245]

◦ – – • ◦ see XSLT 1.0 ◦ RDF,
XML

unclear,
likely
mul-
tiple
trees

see XSLT 1.0 functional paths

RDF Twig
[257]

◦ – – • ◦ see XSLT 1.0 ◦ RDF,
XML

multiple
trees

see XSLT 1.0 functional paths

RDFT [88] ◦ – – • ◦ see XSLT 1.0 ◦ RDF unclear see XSLT 1.0 functional paths
Nexus [85]
RDFPath
[208]

• – – – – – – RDF single
graph

XPath – paths23

RPath
[185]

• – – – – – – RDF single
acyclic
graph

XPath – paths23

Table B.2: Evaluation Table: Functionality—Supported Query Types

2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8 2.1.9 2.1.10 2.1.11 2.1.12 2.1.13

XPath 1.0
[78]

◦ set – • – • – • • – – ◦24 ◦

XSLT 1.0
[77]

• arbitrary XML
or text

• • • • • • • ◦25 • • ◦

15 [177] specifies an XML syntax for XQuery 1.0 including path expressions. 16 However, XQueryX [177] is far
from easy to process and there is a considerable conceptual gap for the programmer between the two syntactical
forms, in particular where path expressions are concerned. 17 [224] proposes a canonical form for RDF and how
to query that form using XQuery 1.0. 18 The implementation of RDQL in the Jena Toolkit [126] provides limited
support for RDFS: the subsumption relations for classes and properties are treated (transparently) as transitive
relations. 19 Additional functions on data values can be provided by an BRQL processor. However, no clear
extension mechanism including the test whether some extension is supported has been defined so far. 20 TriQL
allows named graphs to be queried (cf. [65]). 21 User defined functions are planned to be added to the language.
22 The current draft is a bit unclear in this point. It only states that XsRQL builds upon an “RDF-oriented” data
model. However the lack of closure and other recursive operations in XsRQL makes the issue of graph vs. tree data
less critical. 23 Predicates enable the specification of tree-like queries. 24 Due to the lack of variables not all
joins can be expressed. 25 Some grouping queries can be expressed in XSLT 1.0, however more complex groupings
tend to become extremely difficult to express.

124

Table B.2: Evaluation Table: Functionality—Supported Query Types

2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8 2.1.9 2.1.10 2.1.11 2.1.12 2.1.13

XPath 2.0
[30]

◦ sequence ◦26 • – • – • • – – • ◦

XSLT 2.0
[150]

• arbitrary XML
or text

• • • • • • • • • • •

XQuery 1.0
[41]

• arbitrary XML
or text

• • ◦27 • • • • • • • •

SquishQL
[194]

• [table] • ◦28 ◦28 – – – – – – – –

RDQL
[232]

• [table] • ◦28 ◦28 – – – – – – – –29

BRQL [220] • [table, RDF
triples]

• ◦28 ◦28 • ◦ – – – – • ◦30

TriQL [40] • [table] • ◦28 ◦28 – – – – – – – –

“Syntactic
Web” [226]

• arbitrary XML
or text

• • ◦27 • • • • • • • •

XsRQL
[149]

• any text,
[triples]

• • –31 ◦32 –33 – ◦34 – ◦35 ◦

TreeHugger
[245]

• arbitrary XML
or text

• • • • • • • ◦25 • • ◦

RDF Twig
[257]

• arbitrary XML
or text

• • • • • • • ◦25 • • ◦

RDFT [88] ◦ ? ◦36 • • – ? – – – – ◦ –
RDFPath
[208]

◦ [sets (of
nodes or
edges in the
RDF graph)]

– – – – – – – – – – –

RPath
[185]

◦ [sets (of
nodes or
edges in the
RDF graph)]

–37 ◦ – – – – – – – – –

26 Due to the lack of construction and the fact, that XPath 2.0 always returns a single (flat) sequence, the selection of
related information is limited to simple cases or use within a larger query. 27 Early drafts of XQuery 1.0 contained
a specialized function called filter() that allowed the reduction of the input structure to interesting elements
while retaining their structural relations where possible. This function has been dropped, as similar functionality
can be achieved by writing a recursive function as described in Appendix G.4 of [41]. 28 Only substructures of
previously known extent can be extracted or left out during reduction. 29 The implementation of RDQL in the Jena
Toolkit [126] provides limited support for inference: the RDFS subsumption relations for classes and properties are
treated (transparently) as transitive relations. 30 Only non-recursive inference is supported. 31 User defined
and possibly recursive functions for structure traversal are planned to be added to the language. 32 Only test for
not-equality is supported, but no general negation, e.g., for testing the non-existence of a property. 33 Output
format seems to be text-only in the current draft. 34 An XPath-like count() function is provided, that counts
the number of elements in a sequence, but no aggregation over the resulting values (such as in “return the book
with the largest amount of authors”) is possible yet. 35 Only sorting on the values of a sequence, no multi-key
sorting. 36 No support for variables in the current draft. 37 [185] is unclear on the use of path expressions
inside predicates. Only with paths expressions inside predicates related information can be queried.

125

Table B.3: Evaluation Table: Adequacy—XML

2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 2.2.10 2.2.11 2.2.12 2.2.13 2.2.14 2.2.15

Table B.3: Evaluation Table: Adequacy—XML

2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 2.2.10 2.2.11 2.2.12 2.2.13 2.2.14 2.2.15

XPath 1.0
[78]

• • • explicit • ◦38 • • –39 –40 – – ◦41 – –

XSLT 1.0
[77]

• • • explicit • ◦38 • • –39 –40 • – • –42 –43

XPath 2.0
[30]

• • • explicit • ◦38 • • –39 –40 ◦44 • ◦41 – –

XSLT 2.0
[150]

• • • explicit • ◦38 • • –39 –40 • • • – –

XQuery 1.0
[41]

• • • explicit • ◦38 • • –39 –40 • • • – –

“Syntactic
Web” [226]

see XQuery 1.0

TreeHugger
[245]

see XSLT 1.0

RDF Twig
[257]

see XSLT 1.0

Table B.4: Evaluation Table: Adequacy—RDF

2.2.5 2.2.10 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7
XSLT 1.0 [77] see TreeHugger and RDF Twig
XQuery 1.0 [41] see “Syntactic Web”

SquishQL [194] – – • • – – – – –
RDQL [232] – – • • – – – – –
BRQL [220] – – • • – – ◦45 • –
TriQL [40] – – • • – – ◦46 – –

“Syntactic Web”
[226]

• –40 • • – – – – any

XsRQL [149] – – • • – – ◦47 ◦ any text, [triples]

38 Predicates allow the specification of several children of a single node in the XML structure without giving
their order amongst each other. However, enforcing that these children are different requires the use of vari-
ables and complicates the query noticeably. 39 By a combination of the XPath constructs following-sibling,
preceding-sibling and count() it is possible to simulate total queries. However, authoring such queries is very
cumbersome. 40 Using if-then-else or union constructs allows the specification of alternative queries of which
one includes the optional part and the other omits it, therefore ensuring (baring duplicate removal) that the op-
tional part is returned where possible. 41 XPath can query the namespace of an element, however namespaces
prefixes have to be set-up outside of XPath. 42 Some XSLT processors provide extension functions for evaluating
an XPath expression contained in a string (e.g., from an attribute value). But none of these extensions considers the
extended functionality of XPointer. 43 Some XSLT processors provide extension functions for outputting multiple
documents, thus enabling the treatment of compound result documents. 44 Construction in XPath 2.0 is limited
to constructing flat sequences. 45 Support for “quads” is provided, hence sometimes querying the reified form of
a statement is unnecessary. 46 TriQL supports the use of “named graphs” as described in [65]. Named graphs can
be seen as a form of reification. Only this form of reification is supported in TriQL, statements reified by the usual
RDF convention are not treated specifically. 47 XsRQL provides some special functions for treating quads.

126

Table B.4: Evaluation Table: Adequacy—RDF

2.2.5 2.2.10 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7

TreeHugger
[245]

• –40 • • ◦48 – – – any

RDF Twig [257] • –40 • • – – – – any
RDFT [88] – – • • – – – – ?
RDFPath [208] – – • – – – – – [sets (of nodes or edges in the

RDF graph)]
RPath [185] ◦49 – • – • – – – [sets (of nodes or edges in the

RDF graph)]

Table B.5: Evaluation Table: Adequacy—Topic Maps

2.2.10 2.3.2 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7
XQuery
1.0 [41]

see “Syntactic Web”

“Syntactic
Web”
[226]

–40 • • • • ◦ – – any

Table B.6: Evaluation Table: Adequacy—Web

2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6 2.5.7
XPath 1.0 [78] – – – – ◦ special –
XSLT 1.0 [77] –50 –51 – – ◦52 text, XML, [RDF, Topic Maps] •
XPath 2.0 [30] • – – ◦53 ◦ special –
XSLT 2.0 [150] • • – ◦53 ◦54 text, XML, [RDF, Topic Maps] •
XQuery 1.0 [41] • • – ◦53 ◦55 text, XML, [RDF, Topic Maps] •
SquishQL [194] • – – – – [variable bindings] –
RDQL [232] • – – – – [variable bindings] –
BRQL [220] • – • – – [variable bindings, RDF triples] –
TriQL [40] • – – – – [variable bindings] –
“Syntactic Web”
[226]

see XQuery 1.0

XsRQL [149] – – – – ◦56 any text, [triples] ◦
TreeHugger
[245]

see XSLT 1.0

RDF Twig [257] see XSLT 1.0
RDFT [88] – – – – ? ? –
RDFPath [208] – – – – – [sets (of nodes or edges in the

RDF graph)]
–

48 Based upon the XML document order, elements of a container can be conveniently queried. However, it is unclear
from the specification, whether this covers all cases, e.g., when containers are stated explicitly using rdf:_1, etc.
49 A function for accessing the i-th item in a sequence container is provided. 50 Some XSLT 1.0 processors
provide extension functions for accessing multiple source documents. 51 Some XSLT 1.0 processors provide
extension functions for outputting to multiple targets. 52 If the output is XML, queries can be composed, otherwise
not. 53 Multiple documents are queried through the use of the fn:doc() function. It is possible to identify which
queries are to be evaluated on which source, but the query language allows a close intertwining of queries to different
documents. 54 If the output is XML, queries can be composed, otherwise not. 55 If the output is XML, queries
can be composed, otherwise not. 56 If the output are triples or quads, it can be further processed by other XsRQL
queries.

127

Table B.6: Evaluation Table: Adequacy—Web

2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6 2.5.7
RPath [185] – – – – – [sets (of nodes or edges in the

RDF graph)]
–

Table B.7: Evaluation Table: Adequacy—Approximate Answering and Full-text
Processing

2.6.1 2.6.2 2.6.3 2.6.4 2.6.5

XPath 1.0 [78] – – ◦57 ◦58 –
XSLT 1.0 [77] – – ◦57 ◦58 –
XPath 2.0 [30]59 • • • • •
XSLT 2.0 [150] • ◦60 • • •
XQuery 1.0 [41]59 • • • • •
SquishQL [194] – – – – –
RDQL [232] – – – – –
BRQL [220] – – – ◦61 –
TriQL [40] – – – – –
“Syntactic Web” [226] see XQuery 1.0
XsRQL [149] – – – – –
TreeHugger [245] see XSLT 1.0
RDF Twig [257] see XSLT 1.0
RDFT [88] – – – – –
RDFPath [208] – – – – –
RPath [185] – – – – –

Table B.8: Evaluation Table: Functionality—Evolution and Reactivity

2.7.1 2.7.2 2.7.3
XPath 1.0 [78] – – –
XSLT 1.0 [77] ◦62 – ◦62

XPath 2.0 [30] – – –
XSLT 2.0 [150] ◦62 – ◦62

XQuery 1.0 [41] ◦63 – ◦64

SquishQL [194] – – –
RDQL [232] ◦65 – –
BRQL [220] – – –
TriQL [40] – – –
“Syntactic Web” [226] see XQuery 1.0
XsRQL [149] – – –
TreeHugger [245] see XSLT 1.0

57 Partial queries can be seen as some form of approximate structure matching. 58 It is possible to test, whether
a word occurs inside an element. 59 This applies only, if [12] is in use. Otherwise, the evaluation becomes similar
to the one for XPath 1.0. 60 Although the XPath 2.0 full-text extension [12] provide scoring of results there is
no support for this on the level of XSLT, e.g., for constructing several ranked variants. 61 Through the use of
functions on data values some kind of full-text processing could be provided. No such provision has been made so
far. 62 Standard XSLT does not support updates or reactivity, however [47] proposes a reactive extension for XSLT
(and Lorel). 63 Several extensions for XQuery have been proposed that provide update capabilities, e.g., XUpdate
[168] and [248]. 64 Several extensions for XQuery have been proposed that provide reactive behavior, e.g., [45].
65 RIDIQL [259] extends RDQL by simple update commands.

128

Table B.8: Evaluation Table: Functionality—Evolution and Reactivity

2.7.1 2.7.2 2.7.3
RDF Twig [257] see XSLT 1.0
RDFT [88] – – –
RDFPath [208] – – –
RPath [185] – – –

Table B.9: Evaluation Table: Semantics

3.1 3.2 3.3 3.4 3.5

XPath 1.0 [78] ◦66 • • ◦67 –
XSLT 1.0 [77] ◦68 • • ◦69 •70

XPath 2.0 [30] • • • • –
XSLT 2.0 [150] – N/A • – –
XQuery 1.0 [41] • • • • –

SquishQL [194] – N/A • – –
RDQL [232] – N/A • – –
BRQL [220] – N/A • – –
TriQL [40] – N/A • – –
“Syntactic Web” [226] see XQuery 1.0
XsRQL [149]
TreeHugger [245] – N/A • – –
RDF Twig [257] – N/A • – –
RDFT [88] – N/A • – –
RDFPath [208] – N/A • – –
RPath [185] – N/A • – –

Table B.10: Evaluation Table: Formal Properties and Implementation

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12

XPath 1.0 [78] • – •71 •72 ◦73 numerous production
use

full • • •74 •74

XSLT 1.0 [77] • •75 ◦76 – – numerous production
use

full – • ◦ •77

XPath 2.0 [30] • – ◦78 •78 ◦78 numerous79 wide-spread full79 • •79 •79

XSLT 2.0 [150] • •75 ◦76 – – few prototype few – • – •80

XQuery 1.0 [41] • •75 ◦78 •78 – numerous prototype to
production
use

full • • •81 •82

SquishQL [194] • no – – – 883 production
use

wide-
spread

• • – –

66 Although no formal semantics for XPath 1.0 has been published by the W3C, there are several proposals for a
formal semantics [253, 254, 207] that cover a large subset of XPath 1.0. 67 Both [254, 207] propose formal seman-
tics that can also be seen as operational semantics for a (naive) functional implementation. 68 Although no formal
semantics for XSLT 1.0 has been published by the W3C, there are several proposals for formal semantics of language
subsets [253, 153], the most complete being [153]. 69 Where a formal semantics for XSLT 1.0 has been proposed, it
can be easily used as basis for an implementation, as demonstrated in [153]. 70 An abstract (or “virtual”) machine
for XSLT has been described in [198]. 71 See [121, 28]. 72 See [119, 122, 120, 121]. 73 See [28]. 74 See, e.g.,
[205, 206]. 75 See [151]. 76 E.g., “core XSLT” in [153]. 77 E.g., Saxon http://saxon.sourceforge.net/
78 The properties of XPath 1.0 can be inherited here. 79 Via XQuery 1.0 implementations. 80 E.g., Saxon
http://saxon.sourceforge.net/ 81 See [99, 106, 157]. 82 See [99, 106, 157]. 83 However, 6 of these
actually implement RDQL.

129

Table B.10: Evaluation Table: Formal Properties and Implementation

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12
RDQL [232] • no – – – 6 production

use
wide-
spread

• • – –

BRQL [220] • no – – – 0 N/A N/A – – – –
TriQL [40] • no – – – 0 N/A N/A – – – –

“Syntactic Web”
[226]

• • – –84 – 085 N/A N/A N/A N/A N/A N/A

XsRQL [149] • unclear,
but
un-
likely

– – – 0 N/A N/A N/A N/A N/A N/A

TreeHugger
[245]

• • – – – 1 prototype – – • – –

RDF Twig [257] • • – – – 1 prototype – – • – –
RDFT [88] • unclear,

but
un-
likely

– – – 0 N/A N/A N/A N/A N/A N/A

RDFPath [208] • – – – – 0 N/A N/A N/A N/A N/A N/A
RPath [185] • – – – – 1 prototype – – • – –

Table B.11: Evaluation Table: Reasoning

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10

XPath 1.0 [78] – • • • ◦86 – • – – –
XSLT 1.0 [77] ◦87 • • • ◦86 • • – – –
XPath 2.0 [30] – • • • • – • – – –
XSLT 2.0 [150] • • • • • • • – – –
XQuery 1.0 [41] • • • • • • • – – –

SquishQL [194] – • • ◦88 – – – – N/A N/A
RDQL [232] – • • ◦88 – – – ◦89 N/A N/A
BRQL [220] – • • • – – – – N/A N/A
TriQL [40] – • • ◦88 – – – – N/A N/A
“Syntactic Web” [226] see XQuery 1.0
XsRQL [149] – • • – ◦90 – – – – –
TreeHugger [245] see XSLT 1.0
RDF Twig [257] see XSLT 1.0
RDFT [88] – – – – – – – – – –
RDFPath [208] – • • – – – – – – –
RPath [185] – – – – – – • – – –

84 The polynomial core for XPath (and therefore for XQuery) does naturally not contain function definitions, let
alone recursive ones as used by this proposal. 85 But could be implemented on most of the numerous XQuery
implementations. 86 Through the use of the XPath count() function it is possible to emulate all quantification.
87 XSLT 1.0 templates can provide views on the data, however limited by the inability to query any structure con-
structed (and not extracted from the input). 88 No test whether a tuple does not exist. 89 The Jena Toolkit [95]
implementation of RDQL provides the transitive closure over the RDFS sub-class and sub-property relations. The
RDF extension RIDIQL [259] provides means to use different reasoners for extending a bare RDF graph based on the
semantics for RDFS or OWL. 90 XsRQL provides a XPath-style count() function that can be used to implement
all-quantification.

130

Table B.12: Evaluation Table: Ontology Awareness

6.1.1 6.2.1 6.2.2 6.2.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5
XPath 1.0 [78] – – N/A N/A – N/A N/A N/A N/A
XSLT 1.0 [77] see TreeHuger and RDF Twig
XPath 2.0 [30] – – N/A N/A – N/A N/A N/A N/A
XSLT 2.0 [150] see TreeHuger and RDF Twig
XQuery 1.0 [41] see “Syntactic Web”

SquishQL [194] – – N/A N/A – N/A N/A N/A N/A
RDQL [232] ◦89 ◦89 ◦89 – ◦89 ◦89 ◦89 ◦89 –
BRQL [220] – – N/A N/A – N/A N/A N/A N/A
TriQL [40] – – N/A N/A – N/A N/A N/A N/A
“Syntactic Web” [226] ◦ ◦ explicit – – N/A N/A N/A N/A

XsRQL [149] – – N/A N/A – N/A N/A N/A N/A
TreeHugger [245] ◦ ◦ • ◦91 ◦ • unclear unclear
RDF Twig [257] – – N/A N/A – N/A N/A N/A N/A
RDFT [88] ◦ ◦ transparent – – N/A N/A N/A N/A
RDFPath [208] – – N/A N/A – N/A N/A N/A N/A
RPath [185] – – N/A N/A – N/A N/A N/A N/A

Table B.13: Evaluation Table: Ontology Awareness—Typing

6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6
XPath 1.0 [78] untyped N/A N/A N/A N/A –
XSLT 1.0 [77] untyped N/A N/A N/A N/A –
XPath 2.0 [30] • dynamic both – • •
XSLT 2.0 [150] • dynamic both – • •
XQuery 1.0 [41] • static both ◦ • •
SquishQL [194] untyped N/A N/A N/A N/A –
RDQL [232] untyped N/A N/A N/A N/A ◦92

BRQL [220] ◦ dynamic explicit – – •
TriQL [40] ◦ dynamic explicit – – •
“Syntactic Web” [226] • static both ◦ • •
XsRQL [149] ◦ dynamic unclear – – •
TreeHugger [245] untyped N/A N/A N/A N/A –
RDF Twig [257] untyped N/A N/A N/A N/A –
RDFT [88] untyped N/A N/A N/A N/A –
RDFPath [208] untyped N/A N/A N/A N/A –
RPath [185] untyped N/A N/A N/A N/A –

91 It is possible to query the extent of a class, however no static typing is provided. 92 Newer implementations
support the use of XML Schema Datatypes in RDF.

131

132

Bibliography

[1] iTQL Commands (online, retrieved at 2004-07-17). Available from: http://www.kowari.
org/271.htm.

[2] RDF Gateway (online, retrieved at 2004-07-17). Available from: http://www.
intellidimension.com/default.rsp?topic=/pages/rdfgateway/reference/
db/default.rsp.

[3] RDFQL Database Command Reference (online, retrieved at 2004-07-17). Available from:
http://www.intellidimension.com/default.rsp?topic=/pages/rdfgateway/
reference/db/default.rsp.

[4] S. Abiteboul. Querying Semi-Structured Data. In Proc. International Conference on
Database Theory, 1997.

[5] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query Lan-
guage for Semistructured Data. International Journal on Digital Libraries1(1):68-88, April
1997., 1(1):68–88, 1997. Available from: http://www-db.stanford.edu/lore/pubs/
lorel96.pdf.

[6] S. Abiteboul and V. Vianu. Queries and Computation on the Web. In Proc. International
Conference on Database Theory, pages 262–275, 1997. Available from: http://dbpubs.
stanford.edu:8090/pub/1996-20.

[7] Adobe Extensible Metadata Platform (XMP), 2001, Adobe Systems Inc. Available from:
http://www.adobe.com/products/xmp/.

[8] S. Alexaki, N. Athanasis, V. Christophides, G. Karvounarakis, A. Maganaraki, D. Plex-
ousakis, and K. Toll. The ICS-FORTH RDFSuite: High-level Scalable Tools for the Seman-
tic Web. ERCIM News, (51 (Special Issue on the Semantic Web)), 2002. Available from:
http://www.ercim.org/publication/Ercim_News/enw51/alexaki.html.

[9] S. Alexaki, V. Christophides, G. Karvounarakis, and D. Plexousakis. The ICS-FORTH
RDFSuite: Managing Voluminous RDF Description Bases. In Proc. International Work-
shop on the Semantic Web, 2001. Available from: http://athena.ics.forth.gr:
9090/RDF/publications/semweb2001.pdf.

[10] J. Alferes, W. May, and P. Patranjan. State of the Art on Evolution and Reactivity, 2004,
Deliverable.

133

[11] G. Alliance. RDF::Core::Query—Implementation of Query Language (online). 2004 (re-
trieved at 2004-08-19). Available from: http://www.gingerall.com/charlie/ga/
html/rdf-core/RDF/Core/Query.pm.html.

[12] S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre, D. McBeath, M. Rys, and J. Shanmu-
gasundaram, editors. XQuery and XPath Full-Text, 2004, W3C, Working Draft. Available
from: http://www.w3.org/TR/xquery-full-text-requirements/.

[13] C. Anutariya, V. Wuwongse, and V. Wattanapailin. An Equivalent-Transformation-Based
XML Rule Language. In Proc. International Workshop on Rule Markup Languages for
Business Rules in the Semantic Web, 2002. Available from: http://kr.cs.ait.ac.th/
old/publications/XETruleml.pdf.

[14] D. Backett. New Syntaxes for RDF (online). November 2003 (retrieved at
2004-07-09). Available from: http://www.ilrt.bris.ac.uk/discovery/2003/11/
new-syntaxes-rdf/.

[15] D. Backett. Modernising Semantic Web Markup. In Proc. XML Europe, April 2004. Avail-
able from: http://www.idealliance.org/papers/dx_xmle04/papers/03-08-03/
03-08-03.html.

[16] R. Barta. AsTMa= Language Definition (online, retrieved at 2007-07-18). Available from:
http://astma.it.bond.edu.au/astma=-spec-xtm.dbk.

[17] R. Barta. AsTMa? Tutorial. Technical report, Bond University, 2003. Available from:
http://astma.it.bond.edu.au/astma%3F-tutorial.dbk.

[18] R. Barta. Path Language for Topic Maps: Full speed ahead? (online). 2004 (retrieved at
2004-08-19). Available from: http://topicmaps.it.bond.edu.au/docs/30.

[19] R. Barta and L. Garshol, editors. Topic Map Query Language, Use Cases, December 2003,
ISO/IEC, Technical document. Available from: http://www.y12.doe.gov/sgml/sc34/
document/0449.htm.

[20] R. Barta and J. Gylta. XTM::Path, 2002. Available from: http://cpan.uwinnipeg.ca/
htdocs/XTM/XTM/Path.html.

[21] C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou, and P. Velikhov.
XML-Based Information Mediation with MIX. In Proc. ACM SIGMOD International Con-
ference on Management of Data, 1999. Available from: http://www.db.ucsd.edu/
publications/vamp.pdf.

[22] N. Bassiliades and I. Vlahavas. Intelligent Querying of Web Documents Using a Deductive
XML Repository. In Proc. Hellenic Conference on Artificial Intelligence, April 2002. Avail-
able from: http://lpis.csd.auth.gr/publications/setn02-bassiliades.pdf.

[23] N. Bassiliades and I. Vlahavas. Capturing RDF Descriptive Semantics in an Object
Oriented Knowledge Base System. In Proc. International Word Wide Web Confer-
ence, May 2003. Available from: http://www2003.org/cdrom/papers/poster/p277/
p277-nbassili.html.

134

[24] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-Schneider,
and L. Stein. OWL Web Ontology Language—Reference, 2004, W3C, Recommendation.
Available from: http://www.w3.org/TR/owl-ref/.

[25] D. Beckett. A retrospective on the development of the RDF/XML Revised Syntax (online).
June 2003 (retrieved at 2004-07-09). Available from: http://www.ilrt.bris.ac.uk/
publications/researchreport/rr1017/report_html.

[26] D. Beckett. Turtle - Terse RDF Triple Language, February 2004.

[27] D. Beckett and B. McBride, editors. RDF/XML Syntax Specification (Revised), 2004, W3C,
Recommendation. Available from: http://www.w3.org/TR/rdf-syntax-grammar/.

[28] M. Benedikt, W. Fan, and G. Kuper. Structural Properties of XPath Fragments. In Proc. In-
ternational Conference on Database Theory, 2003. Available from: http://homepages.
inf.ed.ac.uk/wenfei/papers/icdt03.pdf.

[29] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-Centric General-Purpose Lan-
guage. In Proc. International Conference on Functional Programming, 2003.

[30] A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay, J. Robie, and J. Simeon,
editors. XML Path Language (XPath) 2.0, 2003, W3C, Working Draft. Available from:
http://www.w3.org/TR/xpath20/.

[31] A. Berlea and H. Seidl. fxt—A Transformation Language for XML Documents. Journal
of Computing and Information Technology, Special Issue on Domain-Specific Languages,
2001.

[32] T. Berners-Lee. Notation 3, an RDF language for the Semantic Web (online, retrieved at
2004-07-09). Available from: http://www.w3.org/DesignIssues/Notation3.

[33] T. Berners-Lee. Primer: Getting into RDF and Semantic Web using N3 (online, retrieved at
2004-07-09). Available from: http://www.w3.org/2000/10/swap/Primer.html.

[34] T. Berners-Lee. Semantic Web Road Map (online, retrieved at 2004-08-09). Available from:
http://www.w3.org/DesignIssues/Semantic.html.

[35] T. Berners-Lee. A strawman Unstriped syntax for RDF in XML (online). May 1999 (re-
trieved at 2004-07-09). Available from: http://www.w3.org/DesignIssues/Syntax.
html.

[36] T. Berners-Lee. N3QL—RDF Data Query Language (online). 2004 (retrieved at 2004-07-17).
Available from: http://www.w3.org/DesignIssues/N3QL.html.

[37] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web—A new form of Web content
that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American, 2001.

[38] P. Biron and A. Malhotra, editors. XML Schema Part 2: Datatypes, 2001, W3C, Recommen-
dation. Available from: http://www.w3.org/TR/xmlschema-2/.

[39] C. Bizer. The TriG Syntax (online). April 2004 (retrieved at 2004-07-09). Available from:
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriG/.

135

[40] C. Bizer. TriQL—A Query Language for Named Graphs (online). 2004 (retrieved
at 2004-07-20). Available from: http://www.wiwiss.fu-berlin.de/suhl/bizer/
TriQL/Spec/.

[41] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, and J. Simeon, editors.
XQuery 1.0: An XML Query Language, 2003, W3C, Working Draft. Available from:
http://www.w3.org/TR/xquery/.

[42] D. Bogachev. TMPath – Introduction (online). 2003 (retrieved at 2004-04-
27). Available from: http://homepage.mac.com/dmitryv/TopicMaps/TMPath/
TMPathIntroduction.html.

[43] D. Bogachev. TMPath – Revisited (online). 2004 (retrieved at 2004-04-27). Available from:
http://homepage.mac.com/dmitryv/TopicMaps/TMPath/TMPathRevisited.html.

[44] H. Boley, B. Grosof, M. Sintek, S. Tabet, and G. Wagner. RuleML Design (online). 2002
(retrieved at 2004-08-09). Available from: http://www.ruleml.org/indesign.html.

[45] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proc. International Con-
ference on Data Engineering, 2002. Available from: http://nike.psu.edu/classes/
ist597/2003-fall/papers/ICDE02.pdf.

[46] A. Bonifati and S. Ceri. Comparative Analysis of Five XML Query Languages. ACM SIGMOD
Record, 2000. Available from: http://portal.acm.org/citation.cfm?id=344822.

[47] A. Bonifati, S. Ceri, and S. Paraboschi. Active Rules for XML: A New Paradigm for E-
Services. VLDB Journal, 2001. Available from: http://portal.acm.org/citation.
cfm?id=767136&dl=ACM&coll=portal&CFID=11111111&CFTOKEN=2222222.

[48] A. Bonifati and D. Lee. Technical Survey of XML Schema and Query Languages. Technical
report, University of California, Los Angeles, Computer Science Dept., 2001.

[49] T. Bray. RPV: Triples Made Plain (online). 2002 (retrieved at 2004-07-09). Available from:
http://www.textuality.com/xml/RPV.html.

[50] T. Bray, D. Hollander, and A. Layman, editors. Namespaces in XML, 1999, W3C, Recom-
mendation. Available from: http://www.w3.org/TR/REC-xml-names/.

[51] T. Bray, D. Hollander, A. Layman, and R. Tobin, editors. Namespaces in XML 1.1, 2004,
W3C, Recommendation. Available from: http://www.w3.org/TR/xml-names11/.

[52] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, editors. Extensible
Markup Language (XML) 1.0 (Third Edition), 2004, W3C, Recommendation. Available
from: http://www.w3.org/TR/REC-xml/.

[53] D. Brickley. RDF: Understanding the Striped RDF/XML Syntax (online). October 2001
(retrieved at 2004-07-09). Available from: http://www.w3.org/2001/10/stripes/.

[54] D. Brickley, R. Guha, and B. McBride, editors. RDF Vocabulary Description Language 1.0:
RDF Schema, 2004, W3C, Recommendation. Available from: http://www.w3.org/TR/
rdf-schema/.

136

[55] D. Brickley and L. Miller. FOAF Vocabulary Specification, May 2004. Available from:
http://xmlns.com/foaf/0.1/.

[56] J. Broekstra, C. Fluit, and F. van Harmelen. The State of the Art on Represenation
and Query Languages for Semistructured Data. On-To-Knowledge EU-IST-1999-10132
Deliverable 8, Aidministrator Nederland b.v., 2000. Available from: http://www.
ontoknowledge.org/countd/countdown.cgi?del8.pdf.

[57] J. Broekstra and A. Kampman. Query Language Definition. On-To-Knowledge EU-IST-
1999-10132 Deliverable 9, Aidministrator Nederland b.v., 2001. Available from: http:
//www.ontoknowledge.org/countd/countdown.cgi?del9.pdf.

[58] J. Broekstra and A. Kampman. SeRQL: A Second Generation RDF Query Language.
In Proc. SWAD-Europe Workshop on Semantic Web Storage and Retrieval, 2003.
Available from: http://www.w3.org/2001/sw/Europe/events/20031113-storage/
positions/aduna.pdf.

[59] J. Broekstra, A. Kampman, and F. Harmelen. Sesame: A Generic Architecture for Storing
and Querying RDF and RDF Schema. In Proc. International Semantic Web Conference,
2002. Available from: http://www.cs.vu.nl/~frankh/postscript/ISWC02.pdf.

[60] F. Bry, T. Furche, L. Badea, C. Koch, S. Schaffert, and S. Berger. Identification of De-
sign Principles for a (Semantic) Web Query Language. Deliverable I4-D1, REWERSE, 2004.
Available from: http://rewerse.net/I4/.

[61] P. Buneman, M. Fernandez, and D. Suciu. UnQL: A Query Language and Algebra for
Semistructured Data Based on Structural Recursion. VLDB Journal, 9(1):76–110, 2000.
Available from: http://portal.acm.org/citation.cfm?id=765224&jmp=cit&coll=
GUIDE&dl=ACM.

[62] S. Buxton and M. Rys, editors. XQuery and XPath Full-Text—Requirements,
2004, W3C, Working Draft. Available from: http://www.w3.org/TR/
xquery-full-text-requirements/.

[63] A. b.v. and S. A. Ltd. The SeRQL query language, chapter 5. Aduna b.v., Sirma AI Ltd.,
2002. Available from: http://www.openrdf.org/doc/users/ch05.html.

[64] L. Cardelli. Type systems, chapter 103, pages 2208–2236. ACM Press, 1996. Available
from: http://research.microsoft.com/Users/luca/Papers/TypeSystems.pdf.

[65] J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named Graphs, Provenance and Trust.
Technical Report HPL-2004-57, HP Labs, 2004. Available from: http://www.hpl.hp.
com/techreports/2004/HPL-2004-57.

[66] J. Carroll and P. Stickler. TriX: RDF Triples in XML (online). May 2004 (retrieved at 2004-
07-09). Available from: http://www.hpl.hp.com/techreports/2004/HPL-2004-56.

[67] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer Verlag,
1990.

137

[68] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie, editors. XML
Query Use Cases, 2003, W3C, Working Draft. Available from: http://www.w3.org/TR/
xquery-use-cases/.

[69] D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie, editors. XML Query (XQuery)
Requirements, 2003, W3C, Working Draft. Available from: http://www.w3.org/TR/
xquery-requirements/.

[70] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Language for Heteroge-
neous Data Sources. In Proc. Workshop on Web and Databases, 2000.

[71] A. Chandra and D. Harel. Computable queries for relational data bases (Preliminary
Report). Journal of Computer Systems and Sciences, 21:156–178, 1980. Available from:
http://portal.acm.org/citation.cfm?id=804423.

[72] A. Chandra and D. Harel. Structure and Complexity of Relational Queries. Journal of Com-
puter Systems and Sciences, 25(1):99–128, 1982. Available from: http://www.wisdom.
weizmann.ac.il/~dharel/SCANNED.PAPERS/RelationalQueries.pdf.

[73] Y. Chen and P. Revesz. CXQuery: A Novel XML Query Language. In Proc.
International Conference on Advances in Infrastructure for Electronic Busi-
ness, Science, and Medicine on the Internet, 2002. Available from: http:
//citeseer.ist.psu.edu/rd/22271714%2C539624%2C1%2C0.25%2CDownload/http:
//citeseer.ist.psu.edu/cache/papers/cs/26473/http:zSzzSzwww.ssgrr.
itzSzenzSzssgrr2002wzSzpaperszSz216.pdf/chen02cxquery.pdf.

[74] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating Queries with Generalized
Path Expressions. In Proc. ACM SIGMOD International Conference on Management
of Data, pages 413–422, 1996. Available from: http://citeseer.ist.psu.edu/
rd/22271714%2C52273%2C1%2C0.25%2CDownload/http://citeseer.ist.psu.edu/
cache/papers/cs/4384/http:zSzzSzwww-rocq.inria.frzSzwhozSzVassilis.
ChristophideszSzsigmod96.pdf/christophides96evaluating.pdf.

[75] V. Christophides, G. Karvounarakis, I. Koffina, G. Kokkinidis, A. Magkanaraki, D. Plex-
ousakis, G. Serfiotis, and V. Tannen. The ICS-FORTH SWIM: A Powerful Seman-
tic Web Integration Middleware. In Proc. International Workshop on Semantic Web
and Databases, 2003. Available from: http://athena.ics.forth.gr:9090/RDF/
publications/swdb2003.pdf.

[76] V. Christophides, D. Plexousakis, G. Karvounarakis, and S. Alexaki. Declarative Languages
for Querying Portal Catalogs. In Proc. DELOS Workshop: Information Seeking, Searching
and Querying in Digital Libraries, 2000. Available from: http://athena.ics.forth.
gr:9090/RDF/publications/delos2000.pdf.

[77] J. Clark, editor. XSL Transformations (XSLT) Version 1.0, 1999, W3C, Recommendation.
Available from: http://www.w3.org/TR/xslt/.

[78] J. Clark and S. DeRose, editors. XML Path Language (XPath) Version 1.0, 1999, W3C,
Recommendation. Available from: http://www.w3.org/TR/xpath/.

138

[79] J. Clark and M. Makoto, editors. RELAX NG Specification, 2001, OASIS, Committee Speci-
fication. Available from: http://www.relaxng.org/spec-20011203.html.

[80] J. Clark and M. Makoto, editors. Regular-grammar-based validation—RELAX NG, 2002,
International Organisation for Standardization, Draft International Standard. Available
from: http://www.y12.doe.gov/sgml/sc34/document/0362_files/relaxng-is.
pdf.

[81] K. Clark, editor. RDF Data Access Use Cases and Requirements, 2004, W3C, Working
Draft. Available from: http://www.w3.org/TR/rdf-dawg-uc/.

[82] K. Clark and D. Connolly. RDF Data Access Design Evaluations (online). 2004 (re-
trieved at 2004-08-09). Available from: http://www.w3.org/2001/sw/DataAccess/
DesignEvaluations.

[83] E. Codd. A Relational Model of Data for Large Shared Data Banks. Communications of the
ACM, 13(6):377–387, 1970. Available from: http://www.acm.org/classics/nov95/
toc.html.

[84] E. Codd. Relational Completeness of Data Base Sublanguages. In R. Rustin, editor,
Database Systems: Courant Computer Science Symposia 6. Prentice-Hall, 1972.

[85] L. Consultants. Nexus Query Language (online). 2000 (retrieved at 2004-04-26). Available
from: http://www.langdale.com.au/RDF/NexusQueryLanguage.html.

[86] J. Cowan and R. Tobin, editors. XML Information Set (Second Edition),
2004, W3C, Recommendation. Available from: http://www.w3.org/TR/2004/
REC-xml-infoset-20040204/.

[87] R. Daniel, editor. Harvesting RDF Statements from XLinks, 2000, W3C, Note. Available
from: http://www.w3.org/TR/xlink2rdf/.

[88] I. Davis. RDF Template Language 1.0 (online). September 2003 (retrieved at 2004-04-26).
Available from: http://www.semanticplanet.com/2003/08/rdft/spec.

[89] N. Deakin. ReoPath (online). 2003 (retrieved at 2004-07-18). Available from: http:
//www.xulplanet.com/ndeakin/arts/rpath-fns.txt.

[90] S. Decker, D. Brickley, J. Saarela, and J. Angele. A Query and Inference Service for RDF.
In Proc. W3C QL’98 – Query Languages 1998, December 1998. Available from: http:
//www.w3.org/TandS/QL/QL98/pp/queryservice.html.

[91] S. DeRose, R. Daniel, E. Maier, and J. Marsh, editors. XPointer xmlns() Scheme, 2003, W3C,
Recommendation. Available from: http://www.w3.org/TR/xptr-xmlns/.

[92] S. DeRose, E. Maier, and R. Daniel, editors. XPointer xpointer() Scheme, 2002, W3C, Work-
ing Draft. Available from: http://www.w3.org/TR/xptr-xpointer/.

[93] S. DeRose, E. Maier, and D. Orchard, editors. XML Linking Language (XLink) Version 1.0,
2001, W3C, Recommendation. Available from: http://www.w3.org/TR/xlink/.

139

[94] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query Lan-
guage for XML, 1998, W3C, Note. Available from: http://www.w3.org/TR/1998/
NOTE-xml-ql-19980819/.

[95] C. Dollin. Jena Toolkit—Reification Howto (online). 2003 (retrieved at 2004-07-20). Avail-
able from: http://jena.sourceforge.net/how-to/reification.html.

[96] E. Dumbill. Putting RDF to Work (online). 2000 (retrieved at 2004-07-17). Available from:
http://www.xml.com/pub/a/2000/08/09/rdfdb/.

[97] D. Eastlake and A. Panitz. Reserved Top Level DNS Names. RFC 2606, IETF, 1999. Avail-
able from: http://www.rfc-editor.org/rfc/rfc2606.txt.

[98] D. Fallside, editor. XML Schema Part 0: Primer, 2001, W3C, Recommendation. Available
from: http://www.w3.org/TR/xmlschema-0/.

[99] L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi. Query Processing of Streamed XML
Data. In Proc. International Conference on Information and Knowledge Management,
2002. Available from: http://lambda.uta.edu/cikm02.pdf.

[100] M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh, editors. XQuery 1.0 and
XPath 2.0 Data Model, 2004, W3C, Working Draft. Available from: http://www.w3.org/
TR/xpath-datamodel/.

[101] M. Fernandez, J. Simeon, and P. Wadler, editors. XML Query Languages: Experiences
and Exemplars, 1999, Draft. Available from: http://www.w3.org/1999/09/ql/docs/
xquery.html.

[102] R. Fikes, P. Hayes, and I. Horrocks, editors. DAML Query Language (DQL): Abstract Spec-
ification, 2002, DAML Joint Committee. Available from: http://www.daml.org/dql/.

[103] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL – A Language for Deductive Query Answering
on the Semantic Web. Journal of Web Semantics, To appear. Available from: http:
//ksl.stanford.edu/projects/owl-ql/.

[104] D. Florescu, A. Grünhagen, and D. Kossmann. XL: An XML Programming Language for
Web Service Specification and Composition. In Proc. International World Wide Web Con-
ference, May 2002. Available from: http://xl.in.tum.de/publ/www2002.html.

[105] D. Florescu, A. Grünhagen, and D. Kossmann. XL: An XML Programming Language for
Web Service Specification and Composition. Computer Networks, 42(5), 2003. Available
from: http://xl.informatik.uni-heidelberg.de/publ/comnet.pdf.

[106] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. Westmann, M. Carey,
A. Sundararajan, and G. Agrawal. The BEA/XQRL Streaming XQuery Processor. In
Proc. International Conference on Very Large Databases, 2003. Available from: http:
//www.vldb.org/conf/2003/papers/S30P01.pdf.

[107] J. Frohn, G. Lausen, and H. Uphoff. Access to Objects by Path Expressions and Rules. In
Proc. International Conference on Very Large Databases, 1994.

140

[108] N. Fuchs, U. Schwertel, and R. Schwitter. Attempto Controlled English (ACE) Lan-
guage Manual, Version 3.0. Technical Report 99.03, Department of Computer Science,
University of Zurich, 1999. Available from: http://www.ifi.unizh.ch/attempto/
publications/papers/ace3manual.pdf.

[109] N. Fuhr and K. Gross. XIRQL: a Query Language for Information Retrieval in XML
Documents. In Proc. ACM Conference on Research and Development in Informa-
tion Retrieval, 2001. Available from: http://portal.acm.org/citation.cfm?id=
383985&dl=ACM&coll=portal.

[110] L. Garshol. The Linear Topic Map Notation (online, retrieved at 2007-07-18). Available
from: http://www.ontopia.net/download/ltm.html.

[111] L. Garshol. tolog—A topic map query language. In Proc. XML Europe, 2001. Available
from: http://www.ontopia.net/topicmaps/materials/tolog.html.

[112] L. Garshol. Extending tolog—Proposal for tolog 1.0. In Proc. Extreme Markup Lan-
guages, 2003. Available from: http://www.ontopia.net/topicmaps/materials/
extending-tolog.html.

[113] L. Garshol. tolog 0.1. Technical report, Ontopia, 2003. Available from: http://www.
ontopia.net/topicmaps/materials/tolog-spec.html.

[114] L. Garshol. tolog–Language tutorial (online). 2004 (retrieved at 2004-04-27). Available
from: http://www.ontopia.net/omnigator/docs/query/tutorial.htmhl.

[115] L. Garshol and R. Barta, editors. Topic Map Query Language, Requirements, Novem-
ber 2003, ISO/IEC, Draft. Available from: http://www.y12.doe.gov/sgml/sc34/
document/0448.htm.

[116] L. M. Garshol. Living with Topic Maps and RDF (online). 2003 (retrieved at 2004-08-19).
Available from: http://www.ontopia.net/topicmaps/materials/tmrdf.html.

[117] B. Glimm. A Query Language for Web Ontologies. Bachelor thesis, Hamburg University
of Applied Sciences, University of Manchester, 2004. Available from: http://www2.cs.
man.ac.uk/~glimmbx/download/report.pdf.

[118] R. Goldman, S. Chawathe, A. Crespo, and J. McHugh. A Standard Textual Interchange
Format for the Object Exchange Model (OEM). Technical report, Database Group, Stan-
ford University, 1996. Available from: http://www-db.stanford.edu/~mchughj/
oemsyntax/oemsyntax.html.

[119] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath Queries.
In Proc. International Conference on Very Large Databases, 2002. Available from: http:
//www.dbai.tuwien.ac.at/staff/koch/download/vldb2002.pdf.

[120] G. Gottlob, C. Koch, and R. Pichler. The Complexity of XPath Query Evaluation. In Proc.
ACM Symposium on Principles of Database Systems, 2003. Available from: http://www.
dbai.tuwien.ac.at/staff/koch/download/pods2003.pdf.

141

[121] G. Gottlob, C. Koch, and R. Pichler. XPath Processing in a Nutshell. SIGMOD
Record, 32(2), 2003. Available from: http://www.dbai.tuwien.ac.at/staff/koch/
download/xpnut.pdf.

[122] G. Gottlob, C. Koch, and R. Pichler. XPath Query Evaluation: Improving Time and Space
Efficiency. In Proc. International Conference on Data Engineering, 2003. Available from:
http://www.dbai.tuwien.ac.at/staff/koch/download/icde2003.pdf.

[123] J. Grant and D. Backett, editors. RDF Test Cases, February 2004, W3C. Available from:
http://www.w3.org/TR/rdf-testcases/.

[124] P. Grosso, E. Maier, J. Marsh, and N. Walsh, editors. XPointer element() Scheme, 2003,
W3C, Recommendation. Available from: http://www.w3.org/TR/xptr-element/.

[125] P. Grosso, E. Maier, J. Marsh, and N. Walsh, editors. XPointer Framework, 2003, W3C,
Recommendation. Available from: http://www.w3.org/TR/xptr-framework/.

[126] H. L. S. W. R. Group. Jena – A Semantic Web Framework for Java (online, retrieved at
2004-07-08). Available from: http://jena.sourceforge.net/.

[127] R. Guha. Contexts: A Formalization and Some Applications. PhD thesis, Stanford Univer-
sity, 1995.

[128] R. Guha. rdfDB Query Language (online). 2000 (retrieved at 2004-04-26). Available from:
http://www.guha.com/rdfdb/query.html.

[129] R. Guha, O. Lassila, E. Miller, and D. Brickley. Enabling Inferencing. In Proc. W3C QL’98 –
Query Languages 1998, December 1998.

[130] J. Gylta. XTMPath, Manipulating Topic Map Data Structures (online). 2002 (retrieved at
2004-08-19). Available from: http://topicmaps.it.bond.edu.au/docs/13.

[131] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A Comparison of RDF Query Languages.
In Proc. International Semantic Web Conference, 2004. Available from: http://www.
aifb.uni-karlsruhe.de/WBS/pha/rdf-query/rdfquery.pdf.

[132] M. Harren, M. Raghavachari, O. Shmueli, M. Burke, V. Sarkar, and R. Bordawekar. XJ: In-
tegration of XML Processing into Java. In Proc. International World Wide Web Conference,
2004. Available from: http://www2004.org/proceedings/docs/2p340.pdf.

[133] S. Harris and N. Gibbins. 3store: Efficient Bulk RDF Storage. In Proc. International
Workshop on Practical and Scalable Semantic Systems, 2003. Available from: http:
//km.aifb.uni-karlsruhe.de/ws/psss03/proceedings/harris-et-al.pdf.

[134] A. Harth. Triple Tutorial (online). 2004 (retrieved at 2004-08-01). Available from: http:
//triple.semanticweb.org/doc/tutorial.html.

[135] P. Hayes and B. McBride, editors. RDF Semantics, 2004, W3C, Recommendation. Available
from: http://www.w3.org/TR/rdf-mt/.

142

[136] I. Horrocks and P. Patel-Schneider. Reducing OWL Entailment to Description Logic Satis-
fiability. In Proc. International Semantic Web Conference, pages 17–29. Springer-Verlag,
2003. Available from: http://www.cs.man.ac.uk/~horrocks/ISWC2003/HoPa03b.
html.

[137] I. Horrocks and P. Patel-Schneider. A Proposal for an OWL Rules Language. In Proc.
International World Wide Web Conference, pages 723–731. ACM, 2004. Available from:
http://www.cs.man.ac.uk/~horrocks/DAML/Rules/.

[138] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A Seman-
tic Web Rule Language—Combining OWL and RuleML, 2004, W3C, Member submission.
Available from: http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[139] I. Horrocks and S. Tessaris. A Conjunctive Query Language for Description Logic ABoxes.
In Proc. National Conference on Artificial Intelligence, 2000. Available from: http://
www.cs.man.ac.uk/~tessaris/papers/aaai00.pdf.

[140] I. Horrocks, F. van Harmelen, and P. Patel-Schneider, editors. DAML+OIL, 2001, Joint
US/EU ad hoc Agent Markup Language Committee, Revised Language Specification. Avail-
able from: http://www.daml.org/2001/03/daml+oil-index.html.

[141] H. Hosoya and B. Pierce. XDuce: A Typed XML Processing Language. ACM Transactions
on Internet Technology, 3(2):117–148, 2003.

[142] J. Hynynen and O. Lassila. On the Use of Object-Oriented Paradigm in a Distributed
Problem Solver. AI Communications, 2(3):142–151, 1989.

[143] T. D. C. M. Initiative. DCMI term declarations represented in RDF schema language (on-
line). March 2003 (retrieved at 2004-07-09). Available from: http://dublincore.org/
schemas/rdfs/.

[144] ISO/IEC 13250 Topic Maps, International Organization for Standardization, Interna-
tional Standard. Available from: http://www.y12.doe.gov/sgml/sc34/document/
0322_files/iso13250-2nd-ed-v2.pdf.

[145] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A
Declarative Query Language for RDF. In Proc. International World Wide Web Conference,
May 2002. Available from: http://athena.ics.forth.gr:9090/RDF/publications/
www2002/www2002.html.

[146] G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki. Querying RDF De-
scriptions for Community Web Portals. In Proc. Journees Bases de Donnees Avancees,
2001. Available from: http://athena.ics.forth.gr:9090/RDF/publications/
bda2001.pdf.

[147] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl,
and K. Tolle. Querying the Semantic Web with RQL. Computer Networks and ISDN Systems
Journal, 42(5):617–640, August 2003. Available from: http://athena.ics.forth.gr:
9090/RDF/publications/comp-networks2003.pdf.

143

[148] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl,
and K. Tolle. RQL: A Functional Query Language for RDF. In P. Gray, P. King, and
A. Poulovassilis, editors, The Functional Approach to Data Management, chapter 18,
pages 435–465. Springer-Verlag, 2004. Available from: http://athena.ics.forth.gr:
9090/RDF/publications/FuncBook.pdf.

[149] H. Katz. XsRQL: an XQuery-style Query Language for RDF (online). 2004 (retrieved at
2004-07-21). Available from: http://www.fatdog.com/xsrql.html.

[150] M. Kay, editor. XSL Transformations (XSLT) Version 2.0, 2003, W3C, Working Draft. Avail-
able from: http://www.w3.org/TR/xslt20/.

[151] S. Kepser. A Simple Proof of the Turing-Completeness of XSLT and XQuery. In Proc.
Extreme Markup Languages, 2004. Available from: http://tcl.sfs.uni-tuebingen.
de/~kepser/papers/xsltxq.pdf.

[152] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object Oriented and Frame Based
Languages. Journal of ACM, 42:741–843, 1995.

[153] C. Kirchner, Z. Oian, P. Singh, and J. Stuber. Xemantics: a Rewrit-
ing Calculus-Based Semantics of XSLT. Technical Report A01-R-386, LO-
RIA, 2001. Available from: http://www.loria.fr/~stuber/publications/
KirchnerQianSinghStuber2001LORIA.html.

[154] G. Klyne. Contexts for RDF Information Modelling (online). 2000 (retrieved at 2004-07-
16). Available from: http://www.ninebynine.org/RDFNotes/RDFContexts.html.

[155] G. Klyne and J. Carroll, editors. Resource Description Framework (RDF): Concepts and
Abstract Syntax, February 2004, W3C. Available from: http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/.

[156] G. Klyne, J. Carroll, and B. McBride, editors. Resource Description Framework (RDF):
Concepts and Abstract Syntax, 2004, W3C, Recommendation. Available from: http:
//www.w3.org/TR/rdf-concepts/.

[157] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. FluXQuery: An Optimiz-
ing XQuery Processor for Streaming XML Data. In Proc. International Conference on
Very Large Databases, 2004. Available from: http://www.dbai.tuwien.ac.at/staff/
koch/download/vldb2004_demo.pdf.

[158] R. Ksiezyk. Answer is just a question [of matching Topic Maps]. In Proc. XML Eu-
rope, 2000. Available from: http://www.gca.org/papers/xmleurope2000/papers/
s22-03.html.

[159] M. Lacher and S. Decker. On the Integration of Topic Maps and RDF Data. In Proc. Ex-
treme Markup Languages, 2001. Available from: http://www.semanticweb.org/SWWS/
program/full/paper53.pdf.

[160] M. Lacher and S. Decker. RDF, Topic Maps, and the Semantic Web. Markup Languages:
Theory and Practice, 3(3):313–331, December 2001. Available from: https://206.191.
28.118/docushare/dsweb/GetRepr/Document-1157/html.

144

[161] O. Lassila. BEEF Reference Manual—A Programmer’s Guide to the BEEF Frame System,
Second Version. Technical Report HTKK-TKO-C46, Department of Computer Science,
Helsinki University of Technology, 1991.

[162] O. Lassila. Enabling Semantic Web Programming by Integrating RDF and Common Lisp.
In Proc. Semantic Web Working Symposium, july 2001. Available from: http://www.
lassila.org/publications/2001/swws-01-abstract.shtml.

[163] O. Lassila. Taking the RDF Model Theory Out for a Spin. In Proc. Semantic Web Work-
ing Symposium, June 2002. Available from: http://www.lassila.org/publications/
2002/lassila-iswc2002-abstract.shtml.

[164] O. Lassila. Ivanhoe: an RDF-Based Frame System (online). 2004 (retrieved at 2004-07-17).
Available from: http://wilbur-rdf.sourceforge.net/docs/ivanhoe.html.

[165] O. Lassila. Wilbur Query Language Comparison (online). 2004 (retrieved at 2004-07-17).
Available from: http://wilbur-rdf.sourceforge.net/2004/05/11-comparison.
shtml.

[166] O. Lassila. Wilbur Semantic Web Toolkit (online). 2004 (retrieved at 2004-07-17). Avail-
able from: http://wilbur-rdf.sourceforge.net/docs/.

[167] O. Lassila and R. Swick, editors. Resource Description Framework (RDF) Model and Syntax
Specification, 1999, W3C, Recommendation. Available from: http://www.w3.org/TR/
1999/REC-rdf-syntax-19990222/.

[168] A. Laux and L. Martin. XUpdate—XML Update Language, 2000, XML:DB Initiative, Working
Draft. Available from: http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.
html.

[169] E. Lenz. What’s New in XSLT 2.0 (online). 2002 (retrieved at 2004-07-08). Available from:
http://www.xml.com/pub/a/2002/04/10/xslt2.html.

[170] M. Liu. A Logical Foundation for XML. In Proc. International Conference on Ad-
vanced Information Systems Engineering. Springer-Verlag, 2002. Available from:
http://springerlink.metapress.com/app/home/contribution.asp?wasp=
2pw78ah4fg7xrjbd41vm&referrer=parent&backto=issue,39,69;journal,764,
1660;linkingpublicationresults,1:105633,1.

[171] B. Ludäscher, R. Himmeroeder, G. Lausen, W. May, and C. Schlepphorst. Managing
Semistructured Data with FLORID: A Deductive Object-oriented Perspective. Information
Systems, 23(8):1–25, 1998.

[172] B. Ludäscher, Y. Papakonstantinou, and P. Velikhov. A Brief Introduction to XMAs, 1999,
Database Group, University of California, San Diego. Available from: http://www.db.
ucsd.edu/Projects/MIX/docs/XMAS-intro.pdf.

[173] R. Luk, H. Leong, T. Dillon, A. Chan, W. B. Croft, and J. Allan. A Survey in Indexing and
Searching XML Documents. Journal of the American Society for Information Science and
Technology, 53(6):415–437, 2002.

145

[174] A. Magkanaraki, G. Karvounarakis, V. Christophides, D. Plexousakis, and T. Anh. On-
tology Storage and Querying. Technical Report 308, Foundation for Research and
Technology Hellas, April 2002. Available from: http://139.91.183.30:9090/RDF/
publications/tr308.pdf.

[175] A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing the Seman-
tic Web Through RVL Lenses. In Proc. International Semantic Web Conference, Octo-
ber 2003. Available from: http://athena.ics.forth.gr:9090/RDF/publications/
iswc03.pdf.

[176] D. Maier. Database Desiderata for an XML Query Language. In Proc. W3C QL’98 – Query
Languages 1998, December 1998. Available from: http://www.w3.org/TandS/QL/
QL98/pp/maier.html.

[177] A. Malhotra, J. Melton, J. Robie, and M. Rys, editors. XML Syntax for XQuery 1.0 (XQueryX),
2003, W3C, Working Draft. Available from: http://www.w3.org/TR/xqueryx/.

[178] A. Malhotra, J. Melton, and N. Walsh, editors. XQuery 1.0 and XPath 2.0 Functions
and Operators, 2004, W3C, Working Draft. Available from: http://www.w3.org/TR/
xpath-functions/.

[179] F. Manola, E. Miller, and B. McBride, editors. RDF Primer, 2004, W3C, Recommendation.
Available from: http://www.w3.org/TR/rdf-primer/.

[180] M. Marchiori. The Pseudo Natural Language Interface (online, retrieved at 2004-07-17).
Available from: http://www.w3.org/RDF/Metalog/docs/pnl.html.

[181] M. Marchiori, A. Epifani, and S. Trevisan. Metalog v2.0: Quick User Guide. Technical
report, W3C, 2004. Available from: http://www.w3.org/RDF/Metalog/.

[182] M. Marchiori and J. Saarela. Query + Metadata + Logic = Metalog. In Proc. W3C QL’98 –
Query Languages 1998, December 1998. Available from: http://www.w3.org/TandS/
QL/QL98/pp/metalog.html.

[183] M. Marchiori and J. Saarela. Towards the Semantic Web: Metalog (online). 1999 (retrieved
at 2004-04-26). Available from: http://www.w3.org/RDF/Metalog/CIKM-050299.
html.

[184] J. Marsh and D. Orchard, editors. XML Inclusions (XInclude) Version 1.0, 2004, W3C,
Candidate Recommendation. Available from: http://www.w3.org/TR/xinclude/.

[185] K. Matsuyama, M. Kraus, K. Kitagawa, and N. Saito. A Path-Based RDF Query Language
for CC/PP and UAProf. In Proc. IEEE Conference on Pervasive Computing and Communi-
cations Workshops, 2004.

[186] W. May. LoPiX: a System for XML data Integration and Manipulation. In Proc. International
Conference on Very Large Databases, 2001.

[187] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML Data Manipulation
Language. Theory and Practice of Logic Programming, 3(4):499–526, 2004. Available
from: http://dbis.informatik.uni-goettingen.de/Publics/04/TPLP04.html.

146

[188] D. McGuinness and F. van Harmelen, editors. OWL Web Ontology Language—
Overview, 2004, W3C, Recommendation. Available from: http://www.w3.org/TR/
owl-features/.

[189] E. Meijer, W. Schulte, and G. Bierman. Programming with Circles, Triangles and Rectan-
gles. In Proc. XML Conference and Exhibition, 2003.

[190] E. Meijer and M. Shields. XMLambda: A functional language for constructing and ma-
nipulating XML documents (online). 1999 (retrieved at 2004-08-09). Available from:
http://www.cse.ogi.edu/~mbs/pub/xmlambda/.

[191] S. Melnik. Simplified Syntax for RDF (online). December 1999 (retrieved at 2004-07-09).
Available from: http://www-db.stanford.edu/~melnik/rdf/syntax.html.

[192] S. Melnik. Representing UML in RDF (online). 2000 (retrieved at 2004-08-19). Available
from: http://www-db.stanford.edu/~melnik/rdf/uml/.

[193] L. Miller. Inkling: RDF query using SquishQL (online, retrieved at 2004-07-08). Available
from: http://sw1.ilrt.org/rdfquery/.

[194] L. Miller, A. Seaborne, and A. Reggiori. Three Implementations of SquishQL, a Sim-
ple RDF Query Language. In Proc. International Semantic Web Conference, June
2002. Available from: http://rdfstore.sourceforge.net/documentation/papers/
HPL-2002-110.pdf.

[195] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer, and T. Risch.
Edutella: A P2P Networking Infrastructure Based on RDF. In Proc. International World
Wide Web Conference, May 2002. Available from: http://www.kbs.uni-hannover.de/
Arbeiten/Publikationen/2002/p597-nejdl.pdf.

[196] M. Nilsson and W. Siberski. RDF Query Exchange Language (QEL): Concepts, Semantics
and RDF Syntax (online). February 2004 (retrieved at 2004-04-26). Available from: http:
//edutella.jxta.org/spec/qel.html.

[197] M. Nilsson, W. Siberski, and J. Tane. Edutella Retrieval Service: Concepts and RDF Syntax
(online). June 2004 (retrieved at 2004-04-26). Available from: http://edutella.jxta.
org/spec/retrieval.html.

[198] A. Novoselsky and K. Karun. XSLTVM—an XSLT Virtual Machine. In Proc. XML Eu-
rope, 2000. Available from: http://www.gca.org/papers/xmleurope2000/papers/
s35-03.html.

[199] M. Odersky. Report on the Programming Language Scala. Technical report, Ecole
Polytechnique Federale de Lausanne, 2002. Available from: http://lamp.epfl.ch/
~odersky/scala/.

[200] U. Ogbuji. Versa by example (online, retrieved at 2004-04-26). Available from: http:
//uche.ogbuji.net/tech/rdf/versa/versa-by-example.txt.

[201] U. Ogbuji. Thinking XML: Basic XML and RDF techniques for knowledge management:
Part 6: RDF Query using Versa (online). April 2002 (retrieved at 2004-04-26). Available
from: http://www-106.ibm.com/developerworks/xml/library/x-think10/.

147

[202] R. Oldakowski and C. Bizer. RAP: RDF API for PHP. In Proc. International Workshop
on Interpreted Languages, 2004. Available from: http://www.wiwiss.fu-berlin.de/
suhl/radek/pub/rap-oldakowski.pdf.

[203] F. Olken and J. McCarthy. Requirements and Desiderata for an XML Query Language. In
Proc. W3C QL’98 – Query Languages 1998, December 1998.

[204] M. Olson and U. Ogbuji. Versa Specification (online). 2003 (retrieved at 2004-04-
26). Available from: http://uche.ogbuji.net/tech/rdf/versa/versa.doc?xslt=
/ftss/data/docbook_html1.xslt.

[205] D. Olteanu, T. Furche, and F. Bry. An Efficient Single-Pass Query Evaluator for XML Data
Streams. In Proc. ACM Symposium on Applied Computing, 2004. Available from: http:
//www.pms.ifi.lmu.de/publikationen#PMS-FB-2004-1.

[206] D. Olteanu, T. Furche, and F. Bry. Evaluating Complex Queries against XML
streams with Polynomial Combined Complexity. In Proc. British National Con-
ference on Databases, 2004. Available from: http://www.pms.ifi.lmu.de/
publikationen#PMS-FB-2003-15.

[207] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking Forward. In Proc. EDBT
Workshop on XML Data Management, LNCS 2490. Springer Verlag, 2002. Available from:
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2002-4.

[208] S. Palmer. Pondering RDF Path (online). 2003 (retrieved at 2004-04-26). Available from:
http://infomesh.net/2003/rdfpath/.

[209] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange across Heteroge-
neous Information Sources. In Proc. International Conference on Data Engineering, pages
251–260, 1995.

[210] P. Patel-Schneider, P. Hayes, and I. Horrocks, editors. OWL Web Ontology Language—
Semantics and Abstract Syntax, 2004, W3C, Recommendation. Available from: http:
//www.w3.org/TR/owl-semantics/.

[211] P. Patel-Schneider and J. Simeon. The Yin/Yang Web: XML Syntax and RDF Semantics. In
Proc. International World Wide Web Conference, May 2002.

[212] S. Pepper and G. Moore, editors. XML Topic Maps (XTM) 1.0, 2001, TopicMaps.org, Speci-
fication. Available from: http://www.topicmaps.org/xtm/index.html.

[213] R. Pinchuk. Toma - Topic Map Query Language (online). 2004 (retrieved at 2004-04-27).
Available from: http://www.spaceapplications.com/toma/.

[214] M. Plusch. Water: Simplified Web Services and XML Programming. Wiley, 2002. Available
from: http://waterlanguage.org/water_book_2002/.

[215] E. Prud’hommeaux. Algae2 HOTWO (online). 2003 (retrieved at 2004-04-26). Available
from: http://www.w3.org/2004/05/06-Algae/.

[216] E. Prud’hommeaux. Algae Extension for Rules (online). 2004 (retrieved at 2004-07-18).
Available from: http://www.w3.org/2004/06/20-rules/.

148

[217] E. Prud’hommeaux. Algae RDF Query Language (online). 2004 (retrieved at 2004-07-18).
Available from: http://www.w3.org/2004/05/06-Algae/.

[218] E. Prud’hommeaux. Optimized RDF Access to Relational Databases (online).
2004 (retrieved at 2004-07-18). Available from: http://www.w3.org/2004/04/
30-RDF-RDB-access/.

[219] E. Prud’hommeaux and B. Grosof. RDF Query Survey (online). 2004 (retrieved at 2004-
04-26). Available from: http://www.w3.org/2001/11/13-RDF-Query-Rules/.

[220] E. Prud’hommeaux and A. Seaborne. BRQL – A Query Language for RDF (online, retrieved
at 2004-07-20). Available from: http://www.w3.org/2004/07/08-BRQL/.

[221] A. Reggiori and A. Seaborne. RDF Query and Rule languages: Use Cases and Examples (on-
line). 2004 (retrieved at 2004-04-26). Available from: http://rdfstore.sourceforge.
net/2002/06/24/rdf-query/query-use-cases.html.

[222] A. Reggiori and D.-W. van Gulik. RDFStore—Perl API for RDF Storage (online, retrieved at
2004-07-18). Available from: http://rdfstore.sourceforge.net/.

[223] D. Reynolds. RDF-QBE: a Semantic Web Building Block. Technical Report HPL-2002-
327, HP Labs, 2002. Available from: http://www.hpl.hp.com/techreports/2002/
HPL-2002-327.html.

[224] J. Robie. The Syntactic Web: Syntax and Semantics on the Web. In Proc. XML Confer-
ence and Exposition, December 2001. Available from: http://www.idealliance.org/
papers/xml2001/papers/html/03-01-04.html.

[225] J. Robie, E. Derksen, P. Frankhauser, E. Howland, G. Huck, I. Macherius, M. Murata,
M. Resnick, and H. Schöning. XQL (XML Query Language) (online). 1999 (retrieved at
2004-06-05). Available from: http://www.ibiblio.org/xql/xql-proposal.html.

[226] J. Robie, L. M. Garshol, S. Newcomb, M. Fuchs, L. Miller, D. Brickley, V. Christophides,
and G. Karvounarakis. The Syntactic Web: Syntax and Semantics on the Web. Markup
Languages: Theory and Practice, 3(4):411–440, 2001. Available from: http://www.w3.
org/XML/2002/08/robie.syntacticweb.html.

[227] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). In Proc. W3C QL’98 –
Query Languages 1998, December 1998. Available from: http://www.w3.org/TandS/
QL/QL98/pp/xql.html.

[228] P. V. Roy and S. Haridi. Concepts, Techniques, and Models of Computer Programming.
MIT Press, 2004.

[229] S. Russell and S. Palmer. Quads (online). 2002 (retrieved at 2004-07-20). Available from:
http://robustai.net/sailor/grammar/Quads.html.

[230] S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction to
Xcerpt. In Proc. Extreme Markup Languages, August 2004. Available from: http://www.
pms.informatik.uni-muenchen.de/publikationen/PMS-FB/PMS-FB-2004-7.pdf.

149

[231] A. Seaborne. RDQL – RDF Data Query Language (online, retrieved at 2004-07-08). Avail-
able from: http://www.hpl.hp.com/semweb/rdql.htm.

[232] A. Seaborne. RDQL – A Query Language for RDF (online). January 2004 (re-
trieved at 2004-04-26). Available from: http://www.w3.org/Submission/2004/
SUBM-RDQL-20040109/.

[233] A. Seaborne. A Programmer’s Introduction to RDQL (online). 2002 April (retrieved at
2004-04-26). Available from: http://www.hpl.hp.com/semweb/doc/tutorial/RDQL/.

[234] R. Shearer. REX evaluation (online, retrieved at 2004-07-18). Available from: http:
//lists.w3.org/Archives/Public/public-rdf-dawg/2004AprJun/0572.html.

[235] M. Sheshagiri and A. Kunjithapatham. A FIPA Compliant Query Mechanism Using DAML
Query Language (DQL) (online, retrieved at 2004-07-27). Available from: http://www.
cs.umbc.edu/~finin//papers/dqlFIPA.html.

[236] M. Sintek and S. Decker. TRIPLE—An RDF Query, Inference, and Transformation Lan-
guage. In Proc. Deductive Database and Knowledge Management, October 2001. Available
from: http://triple.semanticweb.org/.

[237] M. Sintek and S. Decker. TRIPLE—A Query, Inference, and Transformation Language for
the Semantic Web. In Proc. International Semantic Web Conference, June 2002. Available
from: http://triple.semanticweb.org/.

[238] M. Smith, C. Welty, and D. McGuinness, editors. OWL Web Ontology Language—Guide,
2004, W3C, Recommendation. Available from: http://www.w3.org/TR/owl-guide/.

[239] A. Souzis. RxML 1.0 Specification (online). 2004 (retrieved at 2004-04-17). Available from:
http://rx4rdf.liminalzone.org/RxMLSpecification.

[240] A. Souzis. RxPath (online). 2004 (retrieved at 2004-04-17). Available from: http://
rx4rdf.liminalzone.org/RxPath.

[241] A. Souzis. RxPath Specification Proposal (online). 2004 (retrieved at 2004-04-17). Avail-
able from: http://rx4rdf.liminalzone.org/RxPathSpec.

[242] A. Souzis. RxSLT (online). 2004 (retrieved at 2004-04-17). Available from: http://
rx4rdf.liminalzone.org/RxSLT.

[243] A. Souzis. RxUpdate (online). 2004 (retrieved at 2004-04-17). Available from: http:
//rx4rdf.liminalzone.org/RxUpdate.

[244] M. Sperberg-McQueen. How can Tom butter his bread with a knife, if there is a
dearth of bread in the larder?, 2001. Available from: http://xml.coverpages.org/
RDF-TopicMaps-LateLazyVersusEarlyPreemptiveReification.html.

[245] D. Steer. TreeHugger 1.0 Introduction (online). 2003 (retrieved at 2004-04-26). Available
from: http://www.semanticplanet.com/2003/08/rdft/spec.

[246] P. Stickler. CBD—Concise Bounded Description (online). 2004 (retrieved at 2004-08-20).
Available from: http://swdev.nokia.com/uriqa/CBD.html.

150

[247] A. Swartz. RDFPath Proposal (online). 2001 (retrieved at 2004-07-18). Available from:
http://logicerror.com/RDFPathProposal.

[248] I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updating XML. In Proc. ACM SIGMOD, 2001.
Available from: http://www.cis.upenn.edu/~zives/research/updatingXML.pdf.

[249] S. Tessaris. Questions and Answers: Reasoning and Querying in Description Logic. PhD
thesis, University of Manchester, Department of Computer Science, April 2001.

[250] H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, editors. XML Schema Part
1: Structures, 2001, W3C, Recommendation. Available from: http://www.w3.org/TR/
xmlschema-1/.

[251] K. Tolle and F. Wleklinski. easy RDF Query Language (eRQL) (online, retrieved at 2004-
07-08). Available from: http://www.dbis.informatik.uni-frankfurt.de/~tolle/
RDF/eRQL/.

[252] J. Ullman. Principles of Database and Knowledge-Base Systems. W. H. Freeman, 1990.

[253] P. Wadler. A formal semantics of patterns in XSLT (online). 2000 (retrieved at
2004-07-18). Available from: http://homepages.inf.ed.ac.uk/wadler/papers/
xsl-semantics/xsl-semantics.pdf.

[254] P. Wadler. Two semantics for XPath (online). 2000 (retrieved at 2004-07-18). Avail-
able from: http://homepages.inf.ed.ac.uk/wadler/papers/xpath-semantics/
xpath-semantics.pdf.

[255] G. Wagner. Seven Golden Rules for a Web Rule Language. IEEE Intelligent Systems, 18(5),
2003.

[256] M. Wallace and C. Runciman. Haskell and XML: Generic Combinators or Type-Based
Translation. In Proc. International Conference on Functional Programming, 1999. Avail-
able from: http://www.cs.york.ac.uk/fp/HaXml/icfp99.html.

[257] N. Walsh. RDF Twig: accessing RDF graphs in XSLT. In Proc. Extreme Markup Languages,
2003. Available from: http://www.mulberrytech.com/Extreme/Proceedings/
xslfo-pdf/2003/Walsh01/EML2003Walsh01.pdf.

[258] U. Wiger. XMErl—Interfacing XML and Erlang. In Proc. International Erlang User Confer-
ence, 2000.

[259] C. Wilper. RIDIQL Reference (online). 2004 (retrieved at 2004-04-17). Available from:
http://rdqlplus.sourceforge.net/doc/ridiql.html.

[260] M. Zoof. Query By Example. In Proc. AFIPS National Computer Conference, 1975.

[261] M. Zoof. Query By Example: A Data Base Language. IBM Systems Journal,
16(4):324–343, 1977. Available from: http://www.research.ibm.com/journal/sj/
164/ibmsj1604C.pdf.

151

