3,958 research outputs found

    Computational representation and discovery of transcription factor binding sites

    Get PDF
    Tesi per compendi de publicacions.The information about how, when, and where are produced the proteins has been one of the major challenge in molecular biology. The studies about the control of the gene expression are essential in order to have a better knowledge about the protein synthesis. The gene regulation is a highly controlled process that starts with the DNA transcription. This process operates at the gene level, hereditary basic units, which will be copied into primary ribonucleic acid (RNA). This first step is controlled by the binding of specific proteins, called as Transcription Factors (TF), with a sequence of the DNA (Deoxyribonucleic Acid) in the regulatory region of the gene. These DNA sequences are known as binding sites (BS). The binding sites motifs are usually very short (5 to 20 bp long) and highly degenerate. These sequences are expected to occur at random every few hundred base pairs. Besides, a TF can bind among different sites. Due to its highly variability, it is difficult to establish a consensus sequence. The study and identification binding sites is important to clarify the control of the gene expression. Due to the importance of identifying binding sites sequences, projects such as ENCODE (Encyclopedia of DNA elements), have dedicated efforts to map binding sites for large set of transcription factor to identify regulatory regions. In this thesis, we have approached the problem of the binding site detection from another angle. We have developed a set of toolkit for motif binding detection based on linear and non-linear models. First of all, we have been able to characterize binding sites using different approaches. The first one is based on the information that there is in each binding sites position. The second one is based on the covariance model of an aligned set of binding sites sequences. From these motif characterizations, we have proposed a new set of computational methods to detect binding sites. First, it was developed a new method based on parametric uncertainty measurement (Rényi entropy). This detection algorithm evaluates the variation on the total Rényi entropy of a set of sequences when a candidate sequence is assumed to be a true binding site belonging to the set. This method was found to perform especially well on transcription factors that the correlation among binding sites was null. The correlation among binding sites positions was considered through linear, Q-residuals, and non-linear models, alpha-Divergence and SIGMA. Q-residuals is a novel motif finding method which constructs a subspace based on the covariance of numerical DNA sequences. When the number of available sequences was small, The Q-residuals performance was significantly better and faster than all the others methodologies. Alpha-Divergence was based on the variation of the total parametric divergence in a set of aligned sequenced with binding evidence when a candidate sequence is added. Given an optimal q-value, the alpha-Divergence performance had a better behavior than the others methodologies in most of the studied transcription factor binding sites. And finally, a new computational tool, SIGMA, was developed as a trade-off between the good generalisation properties of pure entropy methods and the ability of position-dependency metrics to improve detection power. In approximately 70% of the cases considered, SIGMA exhibited better performance properties, at comparable levels of computational resources, than the methods which it was compared. This set of toolkits and the models for the detection of a set of transcription factor binding sites (TFBS) has been included in an R-package called MEET.La informació sobre com, quan i on es produeixen les proteïnes ha estat un dels majors reptes en la biologia molecular. Els estudis sobre el control de l'expressió gènica són essencials per conèixer millor el procés de síntesis d'una proteïna. La regulació gènica és un procés altament controlat que s'inicia amb la transcripció de l'ADN. En aquest procés, els gens, unitat bàsica d'herència, són copiats a àcid ribonucleic (RNA). El primer pas és controlat per la unió de proteïnes, anomenades factors de transcripció (TF), amb una seqüència d'ADN (àcid desoxiribonucleic) en la regió reguladora del gen. Aquestes seqüències s'anomenen punts d'unió i són específiques de cada proteïna. La unió dels factors de transcripció amb el seu corresponent punt d'unió és l'inici de la transcripció. Els punts d'unió són seqüències molt curtes (5 a 20 parells de bases de llargada) i altament degenerades. Aquestes seqüències poden succeir de forma aleatòria cada centenar de parells de bases. A més a més, un factor de transcripció pot unir-se a diferents punts. A conseqüència de l'alta variabilitat, és difícil establir una seqüència consensus. Per tant, l'estudi i la identificació del punts d'unió és important per entendre el control de l'expressió gènica. La importància d'identificar seqüències reguladores ha portat a projectes com l'ENCODE (Encyclopedia of DNA Elements) a dedicar grans esforços a mapejar les seqüències d'unió d'un gran conjunt de factors de transcripció per identificar regions reguladores. L'accés a seqüències genòmiques i els avanços en les tecnologies d'anàlisi de l'expressió gènica han permès també el desenvolupament dels mètodes computacionals per la recerca de motius. Gràcies aquests avenços, en els últims anys, un gran nombre de algorismes han sigut aplicats en la recerca de motius en organismes procariotes i eucariotes simples. Tot i la simplicitat dels organismes, l'índex de falsos positius és alt respecte als veritables positius. Per tant, per estudiar organismes més complexes és necessari mètodes amb més sensibilitat. En aquesta tesi ens hem apropat al problema de la detecció de les seqüències d'unió des de diferents angles. Concretament, hem desenvolupat un conjunt d'eines per la detecció de motius basats en models lineals i no-lineals. Les seqüències d'unió dels factors de transcripció han sigut caracteritzades mitjançant dues aproximacions. La primera està basada en la informació inherent continguda en cada posició de les seqüències d'unió. En canvi, la segona aproximació caracteritza la seqüència d'unió mitjançant un model de covariància. A partir d'ambdues caracteritzacions, hem proposat un nou conjunt de mètodes computacionals per la detecció de seqüències d'unió. Primer, es va desenvolupar un nou mètode basat en la mesura paramètrica de la incertesa (entropia de Rényi). Aquest algorisme de detecció avalua la variació total de l'entropia de Rényi d'un conjunt de seqüències d'unió quan una seqüència candidata és afegida al conjunt. Aquest mètode va obtenir un bon rendiment per aquells seqüències d'unió amb poca o nul.la correlació entre posicions. La correlació entre posicions fou considerada a través d'un model lineal, Qresiduals, i dos models no-lineals, alpha-Divergence i SIGMA. Q-residuals és una nova metodologia per la recerca de motius basada en la construcció d'un subespai a partir de la covariància de les seqüències d'ADN numèriques. Quan el nombre de seqüències disponible és petit, el rendiment de Q-residuals fou significant millor i més ràpid que en les metodologies comparades. Alpha-Divergence avalua la variació total de la divergència paramètrica en un conjunt de seqüències d'unió quan una seqüència candidata és afegida. Donat un q-valor òptim, alpha-Divergence va tenir un millor rendiment que les metodologies comparades en la majoria de seqüències d'unió dels factors de transcripció considerats. Finalment, un nou mètode computacional, SIGMA, va ser desenvolupat per tal millorar la potència de deteccióPostprint (published version

    Formal methods applied to the analysis of phylogenies: Phylogenetic model checking

    Get PDF
    Los árboles filogenéticos son abstracciones útiles para modelar y caracterizar la evolución de un conjunto de especies o poblaciones respecto del tiempo. La proposición, verificación y generalización de hipótesis sobre un árbol filogenético inferido juegan un papel importante en el estudio y comprensión de las relaciones evolutivas. Actualmente, uno de los principales objetivos científicos es extraer o descubrir los mensajes biológicos implícitos y las propiedades estructurales subyacentes en la filogenia. Por ejemplo, la integración de información genética en una filogenia ayuda al descubrimiento de genes conservados en todo o parte del árbol, la identificación de posiciones covariantes en el ADN o la estimación de las fechas de divergencia entre especies. Consecuentemente, los árboles ayudan a comprender el mecanismo que gobierna la deriva evolutiva. Hoy en día, el amplio espectro de métodos y herramientas heterogéneas para el análisis de filogenias enturbia y dificulta su utilización, además del fuerte acoplamiento entre la especificación de propiedades y los algoritmos utilizados para su evaluación (principalmente scripts ad hoc). Este problema es el punto de arranque de esta tesis, donde se analiza como solución la posibilidad de introducir un entorno formal de verificación de hipótesis que, de manera automática y modular, estudie la veracidad de dichas propiedades definidas en un lenguaje genérico e independiente (en una lógica formal asociada) sobre uno de los múltiples softwares preparados para ello. La contribución principal de la tesis es la propuesta de un marco formal para la descripción, verificación y manipulación de relaciones causales entre especies de forma independiente del código utilizado para su valoración. Para ello, exploramos las características de las técnicas de model checking, un paradigma en el que una especificación expresada en lógica temporal se verifica con respecto a un modelo del sistema que representa una implementación a un cierto nivel de detalle. Se ha aplicado satisfactoriamente en la industria para el modelado de sistemas y su verificación, emergiendo del ámbito de las ciencias de la computación. Las contribuciones concretas de la tesis han sido: A) La identificación e interpretación de los árboles filogeneticos como modelos de la evolución, adaptados al entorno de las técnicas de model checking. B) La definición de una lógica temporal que captura las propiedades filogenéticas habituales junto con un método de construcción de propiedades. C) La clasificación de propiedades filogenéticas, identificando categorías de propiedades según estén centradas en la estructura del árbol, en las secuencias o sean híbridas. D) La extensión de las lógicas y modelos para contemplar propiedades cuantitativas de tiempo, probabilidad y de distancias. E) El desarrollo de un entorno para la verificación de propiedades booleanas, cuantitativas y paramétricas. F) El establecimiento de los principios para la manipulación simbolica de objetos filogenéticos, p. ej., clados. G) La explotación de las herramientas de model checking existentes, detectando sus problemas y carencias en el campo de filogenia y proponiendo mejoras. H) El desarrollo de técnicas "ad hoc" para obtener ganancia de complejidad alrededor de dos frentes: distribución de los cálculos y datos, y el uso de sistemas de información. Los puntos A-F se centran en las aportaciones conceptuales de nuestra aproximación, mientras que los puntos G-H enfatizan la parte de herramientas e implementación. Los contenidos de la tesis están contrastados por la comunidad científica mediante las siguientes publicaciones en conferencias y revistas internacionales. La introducción de model checking como entorno formal para analizar propiedades biológicas (puntos A-C) ha llevado a la publicación de nuestro primer artículo de congreso [1]. En [2], desarrollamos la verificación de hipótesis filogenéticas sobre un árbol de ejemplo construido a partir de las relaciones impuestas por un conjunto de proteínas codificadas por el ADN mitocondrial humano (ADNmt). En ese ejemplo, usamos una herramienta automática y genérica de model checking (punto G). El artículo de revista [7] resume lo básico de los artículos de congreso previos y extiende la aplicación de lógicas temporales a propiedades filogenéticas no consideradas hasta ahora. Los artículos citados aquí engloban los contenidos presentados en las Parte I--II de la tesis. El enorme tamaño de los árboles y la considerable cantidad de información asociada a los estados (p.ej., la cadena de ADN) obligan a la introducción de adaptaciones especiales en las herramientas de model checking para mantener un rendimiento razonable en la verificación de propiedades y aliviar también el problema de la explosión de estados (puntos G-H). El artículo de congreso [3] presenta las ventajas de rebanar el ADN asociado a los estados, la partición de la filogenia en pequeños subárboles y su distribución entre varias máquinas. Además, la idea original del model checking rebanado se complementa con la inclusión de una base de datos externa para el almacenamiento de secuencias. El artículo de revista [4] reúne las nociones introducidas en [3] junto con la implementación y resultados preliminares presentados [5]. Este tema se corresponde con lo presentado en la Parte III de la tesis. Para terminar, la tesis reaprovecha las extensiones de las lógicas temporales con tiempo explícito y probabilidades a fin de manipular e interrogar al árbol sobre información cuantitativa. El artículo de congreso [6] ejemplifica la necesidad de introducir probabilidades y tiempo discreto para el análisis filogenético de un fenotipo real, en este caso, el ratio de distribución de la intolerancia a la lactosa entre diversas poblaciones arraigadas en las hojas de la filogenia. Esto se corresponde con el Capítulo 13, que queda englobado dentro de las Partes IV--V. Las Partes IV--V completan los conceptos presentados en ese artículo de conferencia hacia otros dominios de aplicación, como la puntuación de árboles, y tiempo continuo (puntos E-F). La introducción de parámetros en las hipótesis filogenéticas se plantea como trabajo futuro. Referencias [1] Roberto Blanco, Gregorio de Miguel Casado, José Ignacio Requeno, and José Manuel Colom. Temporal logics for phylogenetic analysis via model checking. In Proceedings IEEE International Workshop on Mining and Management of Biological and Health Data, pages 152-157. IEEE, 2010. [2] José Ignacio Requeno, Roberto Blanco, Gregorio de Miguel Casado, and José Manuel Colom. Phylogenetic analysis using an SMV tool. In Miguel P. Rocha, Juan M. Corchado Rodríguez, Florentino Fdez-Riverola, and Alfonso Valencia, editors, Proceedings 5th International Conference on Practical Applications of Computational Biology and Bioinformatics, volume 93 of Advances in Intelligent and Soft Computing, pages 167-174. Springer, Berlin, 2011. [3] José Ignacio Requeno, Roberto Blanco, Gregorio de Miguel Casado, and José Manuel Colom. Sliced model checking for phylogenetic analysis. In Miguel P. Rocha, Nicholas Luscombe, Florentino Fdez-Riverola, and Juan M. Corchado Rodríguez, editors, Proocedings 6th International Conference on Practical Applications of Computational Biology and Bioinformatics, volume 154 of Advances in Intelligent and Soft Computing, pages 95-103. Springer, Berlin, 2012. [4] José Ignacio Requeno and José Manuel Colom. Model checking software for phylogenetic trees using distribution and database methods. Journal of Integrative Bioinformatics, 10(3):229-233, 2013. [5] José Ignacio Requeno and José Manuel Colom. Speeding up phylogenetic model checking. In Mohd Saberi Mohamad, Loris Nanni, Miguel P. Rocha, and Florentino Fdez-Riverola, editors, Proceedings 7th International Conference on Practical Applications of Computational Biology and Bioinformatics, volume 222 of Advances in Intelligent Systems and Computing, pages 119-126. Springer, Berlin, 2013. [6] José Ignacio Requeno and José Manuel Colom. Timed and probabilistic model checking over phylogenetic trees. In Miguel P. Rocha et al., editors, Proceedings 8th International Conference on Practical Applications of Computational Biology and Bioinformatics, Advances in Intelligent and Soft Computing. Springer, Berlin, 2014. [7] José Ignacio Requeno, Gregorio de Miguel Casado, Roberto Blanco, and José Manuel Colom. Temporal logics for phylogenetic analysis via model checking. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(4):1058-1070, 2013

    GTO : A toolkit to unify pipelines in genomic and proteomic research

    Get PDF
    Next-generation sequencing triggered the production of a massive volume of publicly available data and the development of new specialised tools. These tools are dispersed over different frameworks, making the management and analyses of the data a challenging task. Additionally, new targeted tools are needed, given the dynamics and specificities of the field. We present GTO, a comprehensive toolkit designed to unify pipelines in genomic and proteomic research, which combines specialised tools for analysis, simulation, compression, development, visualisation, and transformation of the data. This toolkit combines novel tools with a modular architecture, being an excellent platform for experimental scientists, as well as a useful resource for teaching bioinformatics enquiry to students in life sciences. GTO is implemented in C language and is available, under the MIT license, at https://bioinformatics.ua.pt/gto. (C) 2020 The Authors. Published by Elsevier B.V.Peer reviewe

    Human Promoter Prediction Using DNA Numerical Representation

    Get PDF
    With the emergence of genomic signal processing, numerical representation techniques for DNA alphabet set {A, G, C, T} play a key role in applying digital signal processing and machine learning techniques for processing and analysis of DNA sequences. The choice of the numerical representation of a DNA sequence affects how well the biological properties can be reflected in the numerical domain for the detection and identification of the characteristics of special regions of interest within the DNA sequence. This dissertation presents a comprehensive study of various DNA numerical and graphical representation methods and their applications in processing and analyzing long DNA sequences. Discussions on the relative merits and demerits of the various methods, experimental results and possible future developments have also been included. Another area of the research focus is on promoter prediction in human (Homo Sapiens) DNA sequences with neural network based multi classifier system using DNA numerical representation methods. In spite of the recent development of several computational methods for human promoter prediction, there is a need for performance improvement. In particular, the high false positive rate of the feature-based approaches decreases the prediction reliability and leads to erroneous results in gene annotation.To improve the prediction accuracy and reliability, DigiPromPred a numerical representation based promoter prediction system is proposed to characterize DNA alphabets in different regions of a DNA sequence.The DigiPromPred system is found to be able to predict promoters with a sensitivity of 90.8% while reducing false prediction rate for non-promoter sequences with a specificity of 90.4%. The comparative study with state-of-the-art promoter prediction systems for human chromosome 22 shows that our proposed system maintains a good balance between prediction accuracy and reliability. To reduce the system architecture and computational complexity compared to the existing system, a simple feed forward neural network classifier known as SDigiPromPred is proposed. The SDigiPromPred system is found to be able to predict promoters with a sensitivity of 87%, 87%, 99% while reducing false prediction rate for non-promoter sequences with a specificity of 92%, 94%, 99% for Human, Drosophila, and Arabidopsis sequences respectively with reconfigurable capability compared to existing system

    Information analysis of DNA sequences

    Get PDF
    The problem of differentiating the informational content of coding (exons) and non-coding (introns) regions of a DNA sequence is one of the central problems of genomics. The introns are estimated to be nearly 95% of the DNA and since they do not seem to participate in the process of transcription of amino-acids, they have been termed “junk DNA.” Although it is believed that the non-coding regions in genomes have no role in cell growth and evolution, demonstration that these regions carry useful information would tend to falsify this belief. In this thesis, we consider entropy as a measure of information by modifying the entropy expression to take into account the varying length of these sequences. Exons are usually much shorter in length than introns; therefore the comparison of the entropy values needs to be normalized. A length correction strategy was employed using randomly generated nucleonic base strings built out of the alphabet of the same size as the exons under question. The distance between exons and introns is calculated based on their probability distributions. We found that Zipf’s distribution was not followed by the n-tuples in DNA sequences, and a newly modified power distribution derived from the Zipf’s distribution was found by trial and error that closely modeled the codon frequencies. Correlation and divergence tests were performed. Our analysis shows that introns carry nearly as much of information as exons, disproving the notion that they do not carry any information. The entropy findings of this thesis are likely to be of use in further study of other challenging works like the analysis of symmetry models of the genetic code
    corecore