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a b s t r a c t

Next-generation sequencing triggered the production of a massive volume of publicly available data
and the development of new specialised tools. These tools are dispersed over different frameworks,
making the management and analyses of the data a challenging task. Additionally, new targeted tools
are needed, given the dynamics and specificities of the field. We present GTO, a comprehensive
toolkit designed to unify pipelines in genomic and proteomic research, which combines specialised
tools for analysis, simulation, compression, development, visualisation, and transformation of the
data. This toolkit combines novel tools with a modular architecture, being an excellent platform for
experimental scientists, as well as a useful resource for teaching bioinformatics enquiry to students
in life sciences. GTO is implemented in C language and is available, under the MIT license, at https:
//bioinformatics.ua.pt/gto.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Next-generation sequencing (NGS) has become an essential
ool in genetic and genomic analysis with a substantial impact
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in the fields of biomedicine and anthropology. The advantages of

NGS over traditional methods include its multiplex capability and

analytical resolution, making it a time and cost-efficient approach

for fast clinical and forensic screening [1]. The development of

efficient bioinformatics tools is essential to assess and analyse the

large volumes of sequencing data produced by next-generation
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sequencers. However, more important than that are the compu-
tational methods that unify the existing tools, given the notable
pace at which these tools become available.

Toolkits are sets of tools that combine multiple features in
a custom-based manner as some examples show, both in ge-
nomics [2] and proteomics [3]. Developing a toolkit requires a
specific architecture, namely, taking into account the purpose
and technologies, accessibility, compatibility, portability, inter-
operability, and usability. Moreover, implementation needs to
consider efficiency, while maintaining affordable computational
resources and the absence of dependencies (standalone use).

We contribute with GTO (Genomic Toolkit), a set of tools
to unify pipelines operating both at genomic and proteomic
levels, with an open licence and free of any dependency. This
toolkit includes information theory-based tools for reference-free
and reference-based data compression applied to data analy-
sis. Among many applications, this toolkit supports the creation
of workflows for identification of metagenomic composition in
FASTQ reads, detection and visualisation of genomic rearrange-
ments, mapping and visualisation of variation, localisation of
low complexity regions, or simulation of sequences with specific
SNP and structural variant rates. The toolkit was designed for
Unix/Linux-based systems, built for ultra-fast computations. It
supports pipes for easy integration with the sub-programmes as
well as external tools. GTO works as LEGOsTM, since it allows the
construction of multiple pipelines with many combinations. We
support the toolkit with a detailed manual and a website with
several examples, including an online manual for fast learning.

Due to the variety and distribution of the given tools and
their tight interconnection using the command line with pipes,
the toolkit is an excellent platform for scientists as well as for
empowering students to progress to the scientific aspects of
bioinformatics analysis efficiently. Therefore, without the need
to install multiple programmes, dependencies, and read different
manuals or licences, it is possible to maintain an easy-to-follow
connection with all the phases of each pipeline application.

2. Software description

GTO is a powerful toolkit composed of more than 75 tools
with particular focus on genomics and proteomics, following an
integrative and flexible design between the tools. GTO includes
tools for information display, randomisation, edition, conversion,
extraction, search, calculation, compression, simulation and visu-
alisation. The toolkit can be used in common Linux distributions.
We have been using GTO in common personal computers (e.g. a
laptop with 8 GB RAM, 128 GB of SSD and an intel-i3 CPU from
the 5th generation), but these characteristics can vary according
to the data size and the execution requirements.

2.1. Software architecture

The tools composing this toolkit aim for key features such as
being easy to use, compile and improve and specially designed
for work in Unix/Linux command line. These tools can be used
in isolation, or combined as one, forming execution workflows.
This is technically possible due to the two streams used for the
computation, namely the standard input and output. Further-
more, the tools’ aggregation is possible with mechanisms for
inter-process communication using message passing, provided by
the Unix operating system. This creates a chain of processes in
which the output of each process is passed directly as input to
the subsequent one, as shown in the following example:

gto_tool_1 < input | gto_tool_2 | gto_tool_3 > output

In addition to the input/output standard streams, some of
the tools accept parameterisation through the definition of ar-
guments when executed. There is also a small set of tools in
which the input or output does not make sense to be the standard
streams and for those the argument definition is considered.

2.2. Software functionalities

The toolkit contains three main groups of tools according to its
characteristic: Genomics, Proteomics, and General purpose. The
genomics group is subdivided in: FASTQ, FASTA, SEQ (genomic
sequences); while the proteomics contains AA (amino acid); the
general-purpose tools can be applied to any format sequence.

2.2.1. Genomics
The toolkit allows data conversion between different formats

namely FASTQ, FASTA and SEQ. It also provides features for fil-
tering and randomising DNA sequences, as well as for analytic
purposes followed by simulations of a generation and alteration
nature. The SEQ cluster works directly with the DNA sequences
without any standard format. These tools allow data extraction,
summary, classification and mathematical operations in the field
of information theory. Among many examples, which are better
described in the supporting website and manual, the toolkit al-
lows preparations of the reads, namely filtering and trimming,
the automatic construction of nucleotide reference databases, and
comparative genomics.

2.2.2. Proteomics
The toolkit has a specific cluster of tools designed to group,

compress, and analyse amino acid sequences. These tools al-
low proteomic analysis based on the amino acids properties,
such as electric charge (positive and negative), uncharged side
chains, hydrophobic side chains and special cases. The toolkit
allows translation of codons into amino acids, permits finding
approximate amino acid sequences and performing comparative
proteomics analysis.

2.2.3. General purpose
This set of tools is complementary to the genomics and pro-

teomics tools, not being designed to work in a specific field,
but to assist the pipelines composed of the previously described
subsets. These tools provide operations in the symbolical domain,
including reversion, segmentation, and permutation; while in
the numerical domain they contain tools with low-pass filters
(with multiple window types), sum, min and max operations over
streams.

2.2.4. External tools
External top-performing tools have been integrated in or-

der to increase the variety of functionalities available. The tools
integrated are the following:

• fastp [4]: enables ultra-fast preprocessing and quality con-
trol of FASTQ files.

• bfMEM [5]: detects maximal exact matches between a pair
of genomes based on bloom filters and rolling hashs.

• copMEM [6]: another tool for computing maximal exact
matches in a pair of genomes.

• qvz [7]: implements a lossy compression algorithm for stor-
ing quality scores associated with DNA sequencing.

• minicom [8]: a compressor for short reads in FASTQ files that
uses large k-minimisers to index the reads.

• SPRING [9]: which is reference-free compression tool for
FASTQ files.
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Fig. 1. Bi-directional complexity profiles of four types of human Herpesvirus (HHV2, HHV3, HHV4 and HHV7) generated with GTO using the pipeline:
gto_complexity_profile_regions.sh. Complexity values below one are highlighted with blue colour while the others with green. Bps stands for bits per
symbol where lower values represent redundancy. The length is in Kb (Kilobases) and all profiles use the same scale. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Bi-directional complexity profiles of human titin protein generated with GTO using the pipeline: gto_proteins_complexity_profile_regions.sh.
omplexity values below three are highlighted with a red colour while the others with blue. Bps stands for bits per symbol where lower values represent redundancy.
he length is in Ks (Kilosymbols). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

. Illustrative examples

All the tools in the toolkit were tested with synthetic se-
uences aiming for individual validation. Therefore, the docu-
ented examples are easily replicable with the written tests. Be-
ides applying these tools in controlled environments, the toolkit
as also used in several research workflows both as a primary
nd auxiliary tool. Several complete workflows are available in
he repository, under the pipelines folder while an extensive
escription of the tool can be found in the manual. Next, we
nclude some pipeline examples.

.1. Bi-directional complexity profiles

A workflow example is the computation of bi-directional com-
lexity profiles in any genomic or proteomic sequence [10].
hese profiles can localise specific features in the sequences,
amely low and high complexity sequences, inverted repeats
egions, tandem duplications, among others. The construction of
hese profiles follows a pipeline formed of many transforma-
ions (e.g. reversing, segmenting, inverting) as well as the use of
pecific low-pass filters after data compression applications [11].
ig. 1 depicts the complexity profiles of four human Herpesvirus
hole genomes using the same scale, where redundant regions
re highlighted in blue (below a Bps of one).
GTO uses GeCo2 [12] and AC [13] compressors to estimate

he local complexity of DNA and amino acid sequences, respec-
ively. However, GTO is not limited to using these data com-
ressors. For example, new models can be tested under this
ramework, namely with extended alphabets [14]. In general, any
ata compressor able to output local estimations can be used in
he pipeline as an alternative [15].

Analogous to the complexity profiles for DNA sequences, an
xample using amino acid sequences is given in Fig. 2. This

example depicts a bi-directional complexity profile for the largest
human protein sequence, titin. Several regions with low com-
plexity are usually associated with specific characteristics, namely
loops [16].

3.2. Rearrangements map generation

Another example workflow is in the domain of comparative
genomics, namely to map and visualise rearrangements. This
workflow is completely automatic from the input of the se-
quences to the generation of an SVG image, with the associated
and transformed regions corresponding to the rearrangements.
The pipeline applies smash technology [17,18] for mapping the
rearrangements using an alignment-free methodology [19]. To
prove the efficiency of the mapping pipeline, we use another
pipeline to generate two identical FASTA files with simulated re-
arrangements between them (gto_simulate_rearragements
.sh). After, loading the two FASTA files into the mapping pipeline
(gto_map_rearrangements.sh), the output is two files, one
with the mapping positions and the other is an SVG image de-
picting the mapped positions as can be seen in Fig. 3. All the re-
arrangements have been efficiently mapped with GTO according
to the ground truth (< 1 s of computational time).

Analogous to the rearrangements map pipeline, for mapping at
proteomic level, we consider the NAV2 HUMAN Neuron navigator
2 and the neuron navigator 2 isoform X15 of Macaca mulatta
proteins. Although there are many examples under the proteome
evolution [20], these are protein sequences considering identical
scale [21]. Additionally, we shuffled the Macaca mulatta proteins
using a block size of 300 amino acids. Fig. 4 depicts the proteins
map after running the pipeline (gto_map_rearrangements_
proteins.sh). Despite a low level of dissimilarity of the se-
quences with an additional pseudo-random permutation of blocks
of 300 symbols, all the regions have been efficiently mapped with
GTO (< 1 s of computational time).
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Fig. 3. Rearrangements map generated with GTO using the pipeline:
gto_map_rearrangements.sh. The length of both sequences (A and B) is 5
B. Wave pattern stands for inverted repeated regions.

Fig. 4. Rearrangements map generated with GTO using the pipeline:
gto_map_rearrangements_proteins.sh.

3.3. Viral metagenomic identification

A final workflow example is the full automatic metagenomic
identification of viral (or any other) content in FASTQ reads.
This includes the filtering and trimming of the reads, mapping,
and sensitive identification of the most representative genomes,
under a ranking of abundance. In this particular example, we
generate a semi-synthetic viral dataset containing several real
viruses with applied degrees of substitutions and block permuta-
tions shuffled with synthetic noisy DNA. This dataset is generated
using the gto_create_viral_dataset.sh pipeline.

The intention is to perform a metagenomic analysis on this
dataset without informing the programme what organisms are
contained in the sample since the programme needs to infer the
results. Then, we compare the results with the ground truth. If the
results are similar to the ground truth, then the methodology is
validated. For the purpose, GTO uses falcon-meta technology [22,
23] that relies on assembly-free and alignment-free comparison
of each reference according to the whole reads. The dataset
contains synthetic reads (uniform distribution) merged with the
following viruses with the respective modifications:

• B19V: two Parvovirus, one with 1% of editions and the other
with permuted blocks of 500 bases (GID: AY386330.1);

• HHV2: one human Herpesvirus 2 with permuted blocks of
size 100 bases (GID: JN561323.2);

• HHV3: one human Herpesvirus 3 (GID: X04370.1);
• HHV4: two human Herpesvirus 4, one with permuted blocks

of 300 bases (GID: DQ279927.1);
• TTV: one human Torque teno virus with 5% of editions (GID:

AB041963.1);
• HPV: one human Papillomavirus with 5% of editions and

permuted blocks of 300 bases (GID: MG921180.1).

After merging all FASTA sequences, ART [24] was used to generate
the paired end FASTQ reads. Meanwhile, another workflow exam-
ple was used to create the viral database (gto_build_dbs.sh).
Then, the pipeline (gto_metagenomics.sh) ran, obtaining the
top output presented in Table 1.

We can conclude that despite the noise, editions, and permu-
tations applied to real data, all the viruses have been efficiently

Table 1
The eight most representative reference sequences according to the RS (Relative
Similarity). ID stands for the order of the top output, length for the size of the
reference genome, and GID for the sequence global identifier.
ID Length RS (%) Reference GID Virus name

1 124884 97.767 X04370.1 HHV3
2 5596 96.603 AY386330.1 B19V
3 172764 94.143 DQ279927.1 HHV4
4 154675 81.400 JN561323.2 HHV2
5 154746 80.153 Z86099.2 HHV2
6 2785 78.300 AB041963.1 TTV
7 7372 71.445 MG921180.1 HPV
8 549 47.591 AY034056.1 PHV3-BALF1-gene

identified with GTO, including the exact genotype (< 1.5 min of
computational time).

4. Impact

Many software application exist to analyse and manipulate
sequencing data, namely fqtools [25], GALAXY [26], FASTX-
Toolkit [27], SeqKit [28], GATK [29], among others. The fq-
tools is a suite of tools to view, manipulate and summarise
FASTQ data [25]. This software was designed to work specifically
with FASTQ files and can be easily integrated into our toolkit.
However, the features existent in this software are similar to
some of the ones that GTO has in the gto_fastq_* section. Both
were written in C which in terms of performance could be similar.

GALAXY, is an open and web-based scientific platform for
analysing genomic data [30]. This platform integrates several
specialised sets of tools, e.g. for manipulating FASTQ files [31]. In
this web application, the FASTX-Toolkit was integrated, which
is a collection of command-line tools to process FASTA and FASTQ
files [27]. The available features in the FASTX-Toolkit are also
similar to some of the GTO tools designed to preprocess the
FASTA/FASTQ files, which are available in the gto_fastq_* and
gto_fasta_* sections. As our goal always was to have an easy to
use toolkit written in low-level programming languages and not
a web interface, we cannot compare it with GALAXY. However,
regarding the FASTX-Toolkit which was also written in C, it
is possible to compare and combine it with some of the GTO’s
features.

The SeqKit is another toolkit used to process FASTA and
FASTQ files and it is available for all major operating systems [28].
Comparing the performance and limitations of this toolkit with
the fqtools and FASTX-Toolkit is easier than comparing them
with GTO, mainly because these three toolkits were designed
specifically to manipulate FASTA/FASTQ files. On the other hand,
these functionalities are only a fraction of the features that we
provide in GTO. The idea never was to create more tools to
compete with the ones existing, but instead, aggregate them in
order to obtain a more complete toolkit for genomics analysis.

This idea of simplifying the development and aggregation of
analysis tools for genomic manipulation and analysis is not new.
Initially designed as a structured programming framework, the
Genome Analysis Toolkit (GATK) is a set of bioinformatics tools
for analysing high-throughput sequencing focused on variant dis-
covering and genotyping [2]. The high performance of this toolkit
is due to the required infrastructures that a personal computer
cannot offer. This is an excellent toolkit that integrates Apache
Spark for optimisation, but it is only possible to take advantage
of this potential in cloud computing.

The efficient performance from some of the presented tools
as well as GTO’s tools is due to the use of low-level program-
ming languages (e.g. C language). However, one limitation of this
strategy, in which the performance is prioritised, is the lack of
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a graphical user interface. Moreover, to take full advantage from
those tools, the end-users need to have basic shell script knowl-
edge. Nevertheless, GTO combines specialised tools for analysis,
simulation, compression, development, visualisation, and trans-
formation of data. Therefore, we would like to highlight some
important details that characterise this toolkit:

• The toolkit aggregates different tools in order to build re-
search pipelines to deal with very large data sets with-
out losing performance due to its modular architecture.
Adoption of standard streams to interconnect the tools im-
proved data processing. Throughout this procedure, the disk
read/write operations between tools have been removed by
sending the output directly to the input of the next tool.

• The toolkit can integrate external tools, besides the ones
already available. As such, some specific tools that have
already been evaluated and used outside this context were
aggregated:

– For compression purposes, the toolkit integrates GeCo2
[12], which along with HiRGC [32], iDoComp [33] and
GDC2 [34] are considered to have some of the best
performance for reference-free DNA compression [35].
Regarding the amino acid sequences, the toolkit uses
the AC tool for lossless sequence compression. The
performance of AC was compared in [36] to several
general-purpose lossless compressors and several pro-
tein compressors using different proteomes and AC
provides on average the best bit-rates.

– Concernings simulation, GTO integrates XS [37] which
is a FASTQ read simulation tool. Escalona et al. [38]
reviewed 23 NGS simulation tools and XS stands out
in relation to the others because it is the only one that
does not need a reference sequence.

– Additionally, we added a section in the toolkit specially
designed for tools from other authors. This way, we
simplify their integration and installation using GTO.
Those were described in Section 2.2.4.

• Finally, as briefly presented in Section 3, the toolkit can
answer new genomics questions without the need to create
new software.

5. Conclusions

We contribute with GTO, a toolkit to unify research pipelines,
composed of distinct tools aiming at efficient combinations of
them towards specific workflows. GTO’s efficient performance
is due to the use of low-level programming languages, which
increases the processing speed and decreases the RAM of address-
ing genomics and proteomics data. The flexibility of this toolkit
allows the end-user to quickly create new processing pipelines
in the genomic and proteomic field as it was described in the
examples provided in this manuscript.
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