1,972 research outputs found

    VLSI design methodology

    Get PDF

    Generating efficient layouts from optimized MOS circuit schematics

    Get PDF
    Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1988.Includes bibliographical references.Supported by the U.S. Air Force--Office of Scientific Research. AFOSR-86-0164 Supported in part by a National Science Foundation Graduate Fellowship. Supported in part by Thinking Machines Corporation. 2305/B4Donald George Baltus

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    The predictor-adaptor paradigm : automation of custom layout by flexible design

    Get PDF

    Transistor-Level Layout of Integrated Circuits

    Get PDF
    In this dissertation, we present the toolchain BonnCell and its underlying algorithms. It has been developed in close cooperation with the IBM Corporation and automatically generates the geometry for functional groups of 2 to approximately 50 transistors. Its input consists of a set of transistors, including properties like their sizes and their types, a specification of their connectivity, and parameters to flexibly control the technological framework as well as the algorithms' behavior. Using this data, the tool computes a detailed geometric realization of the circuit as polygonal shapes on 16 layers. To this end, a placement routine configures the transistors and arranges them in the plane, which is the main subject of this thesis. Subsequently, a routing engine determines wires connecting the transistors to ensure the circuit's desired functionality. We propose and analyze a family of algorithms that arranges sets of transistors in the plane such that a multi-criteria target function is optimized. The primary goal is to obtain solutions that are as compact as possible because chip area is a valuable resource in modern techologies. In addition to the core algorithms we formulate variants that handle particularly structured instances in a suitable way. We will show that for 90% of the instances in a representative test bed provided by IBM, BonnCell succeeds to generate fully functional layouts including the placement of the transistors and a routing of their interconnections. Moreover, BonnCell is in wide use within IBM's groups that are concerned with transistor-level layout - a task that has been performed manually before our automation was available. Beyond the processing of isolated test cases, two large-scale examples for applications of the tool in the industry will be presented: On the one hand the initial design phase of a large SRAM unit required only half of the expected 3 month period, on the other hand BonnCell could provide valuable input aiding central decisions in the early concept phase of the new 14 nm technology generation

    Fast structured design of VLSI circuits

    Get PDF
    technical reportWe believe that a structured, user-friendly, cost-effective tool for rapid implementation of VLSI circuits which encourages students to participate directly in research projects are the key components in digital integrated circuit (IC) education. In this paper, we introduce our VLSI education activities, with t h e emphasis on t h e presentation of Path Programmable Logic (PPL) design methodology, in addition to a short description of a representative student project. Students using PPL are able to implement MOS or GaAs VLSI circuits with several thousands to over 100,000 transistors in a few weeks. They have designed and built numerous VLSI architectures and computer systems which play an influential role in various research areas. Our educational activities and the Utah Annual Student VLSI Design Contest supported by over a dozen leading American firms have attracted multiple university involvement in recent years

    Structured, technology independent VLSI design

    Get PDF
    Journal ArticleRapid advancement in new semiconductor technologies has created a need for the design of existing integrated circuits using these new technologies. These new technologies are required to provide improved performance, smaller feature sizes and lower costs. The conversion of an integrated circuit from an existing technology to a new technology, however, is very difficulty with existing CAD tools. In this research, we have concentrated on developing a structured, technology independent VLSI design methodology, with the goal of theoretically quantifying technology independence and systematically performing technology transformation. We have identified the nature of the problems, using techniques developed during our past research, within the context of particular semiconductor technologies such as CMOS and GaAs technologies

    NASA Space Engineering Research Center Symposium on VLSI Design

    Get PDF
    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers

    Transformation of ADA programs into silicon (82 Mar. 1 - 82 Oct. 31)

    Get PDF
    technical reportThis report outlines the beginning steps taken in an integrated research effort toward the development of a methodology, and supporting systems, for transforming Ada programs, or program units, (directly) into corresponding VLSI systems. The time seems right to expect good results. The need is evident; special purpose systems should be realistic alternatives where simplicity, speed, reliability, and security are dominant factors. Success in this research can lead to attractive options for embedded system applications
    • …
    corecore