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Chapter 1

Introduction

In recent years, advances in integrated circuit technology have allowed circuit
designers to implement systems of ever increasing size and complexity on a single chip.
Integrated circuit design has thus become largely a problem of dealing with the
complexity that is inherent in such large systems [1].

In order to simplify the task of implementing these complex integrated systems,

structured design methodologies have been developed. These methodologies reduce
the complexity of the integrated circuit design process while at the same time providing a

standard framework to which automated design tools can be applied. Through the use
of such automated tools, the circuit design process can be further simplified.

1.1. Structured Design

A number of structured design techniques have been developed for dealing with

the problem of complexity in large software systems. Many of these same techniques

can and have been applied to the similar problem of complexity in integrated circuit

design. [2]

1.1.1. Abstraction

Perhaps the most important technique that can be used to reduce complexity in

designing a large integrated system is the use of various levels of abstraction to
represent and describe a design. In general, the same design can be described from a
number of different views with each view corresponding to a specific aspect of the circuit

design task. By specifying a design in some limited domain of representation, its

description is often simplified sufficiently that many useful transformations and

optimizations within that particular domain can be performed. More detailed descriptions

of some typical representational views of a circuit design follow.

�
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1.1.1.1. Functional Description

The functional description of a circuit design is simply a more formal version of the
problem specification. The functional description of a circuit describes exactly how that
design should behave in response to some set of inputs. A functional description can be
as simple as a boolean expression which defines the behavior of a piece of combination
logic or as complicated as a the specification of some detailed algorithm in a high level
programming language. In some cases, delay specifications are also included in a
functional description.

A functional specification should completely describe the desired behavior of a
given circuit while at the same time providing no constraints on how the circuit which
effects the desired behavior is to be implemented.

1.1.1.2. Structural Description

The structural specification of a circuit describes which components are used to
realize a circuit's desired functionality as well as how those components are
interconnected. A structural description may specify the particular interconnection of
logic gates which is used to implement a given functional specification or similarly the
particular interconnection of transistors that will implement some logic gate. Circuit level
structural descriptions often include specifications of the sizes and types of transistors as
well as of the sizes of node capacitances.

1.1.1.3. Physical Description

The physical description of a circuit defines exactly how a given circuit is to be
implemented. At the highest level, a physical description may simply specify the relative
placement of the functional blocks of a given design. At the lowest level, a physical
description will specify completely the masks required for fabrication.

1.1.2. Hierarchy

Hierarchy is also used to reduce the complexity of a large design. The use of
hierarchy involves subdividing a given design into some manageable number of
submodules. This process of subdivision is then repeated in a continuing fashion on
each of the submodules until the submodules are simple enough that they can be
implemented in some straightforward manner. It is important to recognize that a given
circuit design can be represented hierarchically in each of the different domains of
representation described above.

1:.
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The functional description of a circuit can be specified hierarchically with functions

calling successively simpler functions until each procedure being called is simple enough
that its behavior is well defined. Similarly, the physical structure of a circuit may be
specified hierarchically with each level of physical module specifying only the placement
and interconnect of its immediate submodules. It should be noted that while the
hierarchies of the physical and functional descriptions of a given design are sometimes
identical in structure, they can also be quite dissimilar. Often the hierarchy used for
describing the functionality of a given design does not correspond well to the hierarchy
that is appropriate for describing the physical structure of that same design. A typical
example is that of a bit-slice design whose bit-slice physical hierarchy is different from
the hierarchy best suited to describe its functionality.

1.1.3. Modularity

A modular design is one in which the interactions between different modules (as
defined by the hierarchy) can be easily and well characterized. In the case of a
functional module, this implies some known set of input and output signals through
which any and all communication with other functional modules takes place. In the case
of a physical module, it implies a known set of terminals through which all external
connections are made. Modularity in a design allows the various constituent
submodules to in large part be designed and tested before the system as a whole is
composed.

1.2. Automatic Layout Tools

By applying the various techniques of structured design described in the previous
section, the process of integrated circuit design can be reduced to a series of
transformations from one level of representation to the next. A design is first specified in
terms of its desired functionality. Next, a structural specification is generated from the
functional description. Finally, a mask layout is generated from the structural
description.

This ability to describe the circuit design process as a sequence of well defined
transformations has allowed designers to develop tools which automate (either entirely
or in part) the process of mapping a circuit description from one level of representation to
the next.
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Several of the most commonly used automated layout methodologies are
described below.

1.2.1. Weinberger Arrays

Through use of a Weinberger Array any combinational logic function can be
mapped into a regular array layout structure. Each gate in the logic network takes up
one vertical strip in the array. The inputs and outputs to the array are generally
restricted to appear at the left and right edges of the array. The width of the array is
determined by the number of logic gates and the height of the array is determined by the
number of interconnection tracks required. The height of the array can be minimized by
selecting an ordering of the gates which minimizes the number of interconnectio" tracks
required. [3]

1.2.2. PLA's

A programmable logic array is similar to a Weinberger array in that it allows
arbitrary combinational functions to be realized using a regular array layout structure.
Unlike the Weinberger Array however, a PLA utilizes two array planes (an AND plane
and an OR plane) to realize the functionality of arbitrary sums of products boolean
expressions. By jointly minimizing the various output functions the size of the PLA can
be minimized. [4]

1.2.3. Gate Arrays

Whereas Weinberger arrays and PLA's are generally used to realize the
functionality of only some part of a larger design, gate arrays are typically used to
generate the layout of an entire chip. In a gate array design the locations of the
transistors on the chip are fixed at specific sites arranged in an array configuration.
Space is left between the transistors to allow subsequent personalizing routing to be
done for individual designs. The input to a gate array system is generally a list of logic
gates and their interconnections. A placement program maps these logic gates into sets
of contiguous transistor sites on the chip. A routing program then provides the
appropriate interconnections between the gates. The fixed transistor topology of gate
array designs allows wafers to be fabricated through all steps short of metalization
before any personalization is added. This reduces the mask costs of a given design
while also greatly reducing the time from design to completed chip. [2]
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1.2.4. Standard Cells

As with gate arrays, standard cell design systems are generally used to generate
layouts of entire chips. The mapping from functionality to mask description is also
similar to that-of a gate array system. In the case of standard cells however, the exact
locations of transistors are not fixed. Instead a library of fixed layouts corresponding to
the various logic gates is used but these layouts may be placed anywhere on the chip.
The standard cells are generally placed in rows with routing channels between the rows
to provide space for the required interconnections.

1.2.5. Silicon Compilers

A number of more sophisticated so called silicon compilers have been developed
for mapping more complex functional specifications into mask level descriptions. These
systems generally utilize variations on a generic floor plan and architecture to realize
some desired functionality. A typical example of this is the MacPitts Silicon Compiler [5]
which converts functional specifications written in LISP into mask layout using a
predetermined general architecture and floor plan.

1.3. Limitations of Conventional Automatic Layout Tools

Although the automated layout tools described in the previous section do allow
appropriate mask level descriptions to be rapidly generated from functional
specifications, the layouts generated by these synthesis tools generally sacrifice much in
the way of area and performance as compared to layouts generated using a full custom
design methodology. This section proposes a number of fundamental reasons for the
inability of these conventional automated layout methodologies to generate high
performance integrated circuit layouts.

1.3.1. Limited Exploration of Design Space

The usefulness of an automated layout system is directly related to the number of
layout problems to which it can be successfully applied. As a result, automatic layout
systems have been designed to be as general as possible. The generality of these tools
however has for the most part been limited to the functional domain. While these
systems generally allow a great deal of flexibility in the functionality of the circuits they
can be used to realize, they at the same time focus on a quite limited set of circuit and
layout methodologies to implement these designs.
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The canonical silicon compiler system takes as input the functional specification of
a design and generates as output a corresponding physical description. The preceding
discussion of structured design methodologies however makes it clear that this mapping
from the functional domain into the physical domain is not a one step transformation. An
intermediate structural representation which specifies the exact circuit topology used to
realize the desired functionality must also be generated.

This two step transformation is illustrated in figure 1-1.

Functional Structural Physical

Figure 1-1: Functional to Physical Transformation

The two transformations involved in going from a functional to a physical
specification are by no means equivalent in complexity or in difficulty of implementation.
The transformation from a functional representation into a structural representation is
simply a mapping from one abstract model into another. The transformation from a
structural specification into a physical specification on the other hand is not so
straightforward. This transformation must necessarily deal with the multitude of
constraints that are involved in implementing an MOS circuit in a limited number of
layers on a two-dimensional chip.

It is thus not surprising that most automatic layout systems synthesize designs by
using only a very limited set of circuit and layout methodologies. Such systems
generally utilize circuit methodologies for which well defined mappings into the physical
domain are already known. The circuits used in PLA's or Weinberger Arrays are good
typical examples.

F := A + B

L ! 2:! I
........

In
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The simplicity of the transformation from the functional to the structural domain

allows these systems to easily coerce a given functional specification into the desired
circuit methodology. The subsequent mapping into the physical domain is also
straightforward since the circuit methodology used has been selected specifically to
ease this transformation.

While this strategy for layout synthesis has been successfully employed by many
systems which generate layouts from functional descriptions, the simplifying constraints
inherent in such approaches introduce significant costs in the way of layout area and
electrical performance. The restrictions on allowable circuit methodologies often prevent
these systems from using the circuit topologies and transistor sizings best suited to
particular design situations. In more abstract terms, it should be clear that an automated
layout system which severely limits the useable topological and physical design spaces
will rarely generate layouts which are comparable in performance to those generated
using a more custom design methodology which allows the entire topological and
physical design spaces to be explored.

1.3.2. Inappropriate Physical Hierarchy

Another limitation of conventional layout tools relates to the inability of these tools
to generate final design description hierarchies which are appropriate for the physical
domain of representation.

It is useful at this point to consider what is meant by an appropriate design
description hierarchy. The hierarchy used in describing a system defines how that
system is divided into submodules. If the hierarchy is such that the interactions between
the various submodules can be easily and well characterized, then the design
possesses the desirable attribute of modularity and the hierarchy which defines that
design is in some sense appropriate. The hierarchy that is best suited to one
representational view of given design may not be at all appropriate for describing a
different view of that same design however. The same design hierarchy which
subdivides a system in such a way as to generate a very modular functional description,
may divide the system in a way that is very poorly suited to the physical domain.

The input to each of these synthesis tools is a functional design specification. The
hierarchy that is initially present is thus not surprisingly more well suited to the functional
domain than it is to the physical domain.
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At the same time, the methods typically employed by these systems in
transforming a hierarchical design description from one representational view into
another do not involve any restructuring of the hierarchy present in the original view.
The transformation of such a design representation is instead implemented as a set of
simpler transformations on the leaf submodules of that representation.

Conventional automated layout methodologies thus tend to generate layout
descriptions whose hierarchical structures are based on functional rather than physical
design considerations. This can lead to a far from optimal physical hierarchy since many
of the issues involved in defining an appropriate physical hierarchy are not apparent in
the functional domain.

1.4. An Alternate Approach

This project investigates an alternate approach to layout synthesis through which
many of the performance penalties associated with conventional automated layout
systems can be avoided.

The preceding discussion makes it clear that a high performance layout synthesis
system must provide the same flexibility in the area of structural to physical
transformations as is already available in the realm of functional to structural mapping.

This project thus centers on developing a system for generating efficient layouts
from arbitrary structural representations. This system for mapping arbitrary MOS circuit
schematics into layout is intended for use as one component of a larger silicon compiler
system. Such a compiler would be free to select circuit topologies and transistor sizings
appropriate to specific design situations. The layouts generated by such a system would
thus be expected to be of better quality than those generated by conventional synthesis
systems which are by design constrained to utilize much smaller topological design
spaces.

The synthesis methodology developed in this project also addresses the problem
of inappropriate physical hierarchy. Before mapping a given MOS circuit schematic into
layout, a new hierarchy of the design description is generated based on topological
rather than functional constraints. The method of restructuring the circuit description
hierarchy was selected so as to ease the mapping of the leaf subcircuits into layout as
well as to ensure that a majority of the possible local layout optimizations (such as
connection by abutment) could be effected at the leaf subcircuit level.
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1.5. The Goals of the Research

In the area of integrated circuit design there is currently a tradeoff between the
fast design times afforded by automated layout systems and the high performance
generally associated with full custom designs.

It was hoped that by approaching the problem of automated layout using the novel
methodology presented in this report many of the performance penalties generally
associated with automatic layout systems could be avoided.

The primary goal of this body of research was thus to develop a program for
rapidly generating efficient mask-level layouts from arbitrary MOS circuit schematics. In
order to achieve this final goal a number of intermediate goals were also pursued.

It was clear that a system for mapping arbitrary MOS schematics into layout would
require a layout methodology that could effectively be applied to many different classes
of MOS circuits. Thus, one goal of this research was simply to investigate, develop and
characterize efficient layout methodologies applicable to wide classes of MOS circuits.

It was also necessary to investigate the nature of design description hierarchies
appropriate for the physical domain. Given such a characterization, it was hoped that an
algorithmically based methodology for restructuring a circuit description hierarchy into a
new description hierarchy more suited to the physical domain could be developed.

Finally, it was hoped that the usefulness of this restructuring could be
demonstrated by showing that if the physical hierarchy of a design is properly structured
then the placement and routing of the leaf modules of that hierarchy can be effected
using conventional placement and routing techniques without a substantial area or
performance penalty over a full custom design.

1.6. An Outline of the Report

This report consists of twelve chapters including this introduction. Chapter two
provides a summary of existing work in the area of layout synthesis from circuit
schematics. The third chapter discusses the basic design considerations which guided
the development of the program. Chapter four describes the specification language
used to provide input to the program. The next two chapters discuss the layout
methodology employed by the program in realizing circuits as well as the exact method



12

used to restructure the circuit description hierarchy for layout. Chapter seven and eight
provide details of the specific algorithms used to implement the placement and routing
phases of the program. In chapter nine the program's layout optimization procedures
are described. Chapter ten illustrates the workings of the program through a detailed
example. The next chapter presents a number of example layouts generated by the
program and analyzes the results in terms of the goals of the research. The final
chapter summarizes the research and discusses future improvements and directions.

't
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Chapter 2
Schematic to Layout Systems

In this chapter a number of existing schematic to layout systems are described.
Each of these systems generates the layout of a leaf cell given a circuit schematic of that
cell as well as a set of appropriate boundary constraints. The methodologies used by
these systems are summarized and finally a comparison and analysis of of the different
approaches is made.

2.1. DUMBO

DUMBO is a system for compiling NMOS circuit descriptions into layout. [6] The
input to DUMBO is a connectivity list of the circuit along with a specification of its
external connections.

The program performs an initial placement of the circuit components using a
force-directed placement methodology. Several subsequent phases serve to finalize the
placement and complete the routing between components.

DUMBO is implemented as a pipeline of five separate programs. Each of these
programs performs one of the compilation phases mentioned above. These five
programs are listed (in the order they are called) and described below.

Placer This program determines the relative positions of the transistors,
gates, and external connections.

Orienter This gives the placed transistors and gates their proper orientation
and/or mirroring.

Expander This program exoands functional blocks such as inverters or logic
gates into the appropriate transistor circuits.

Wirer This generates the appropriate pairwise connections (branches)
between nodes from the original net input.

Router This program generates the final routing of each branch.

_____I_··____________�_�___
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Each of these programs is implemented using standard algorithms similar to those
used in more specific programs dedicated to the single task being performed.

The output produced by DUMBO is a symbolic layout which is subsequently
compacted to generate a final mask level layout.

2.2. Koss's Topology Generator

A similar program for automatically generating layouts from NMOS circuit
schematics was developed by Michael Koss at MIT. [7]

Koss's program uses a MINCUT algorithm to establish the relative placement of
the transistors in the circuit. His methodology is unique in that it treats transistors and
wires with equal weight during the placement process.

The MINCUT algorithm establishes the relative placement of the transistors as
well as the relative locations of the connections between transistors. The locations of
these connections are used to establish the proper rotation and orientation of each
transistor.

Finally, a heuristic procedure is used to assign layers to the wire segments
connecting the various transistors as well as external terminals.

As with DUMBO, Koss's program generates symbolic layout as its final output.

2.3. TALIB

TALIB is a knowledge-based system for automatically synthesizing leaf cell
layouts from NMOS transistor and gate-level descriptions. [8]

The input to TALIB describes the circuit components (either transistors or logical
gates) and their interconnections as well as any geometric constraints for the boundary
of the generated layout. The geometric constraints specify which side of the layout a
signal node is to appear on as well as optionally the exact ordering of the signals on a
given side. These constraints can also specify physical constraints on the cell layout
such as aspect ratio or bounds on a given dimension.

TALIB is implemented as a rule-based planning system. TALIB generates a final
layout through the use of domain specific knowledge encoded as rules.

Il
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Most of the rules are simply subtasks which correspond roughly to a designers
steps in the integrated circuit design process. These subtasks are called in a
hierarchical manner with the more abstract subtasks calling several lower-level
subtasks.

The remainder of TALIB's rules are demons which guide the program in the
selection of subtasks.

The system's operation can be described as follows. TALIB continually uses the
presently known facts to develop a plan structure. Once this structure is developed at a
given level, each of the plan steps is expanded by calling the appropriate lower-level
subtasks. This process continues until a solution is found or a constraint violation is
detected. If a violation is detected, the system backtracks to undo some previous design
decision and try a different approach.

Unlike the other systems described here, the output of TALIB is a mask level
description of the completed layout of the cell.

2.4. Sc2

Sc2 is system for automatically generating CMOS layouts from transistor
schematics or more high level descriptions. [91 The program can be applied to arbitrary
CMOS circuits.

A design can enter Sc2 in one of three different ways. It can be described in
terms of connected logic gates; it can be described by a circuit schematic; or it can be
described in terms of boolean expressions. As with the other cell generation programs,
constraints on the locations of external connections to the generated layout can also be
specified.

If the input is not in the form of a circuit schematic, a translation program is
invoked which 'roduces a list of transistors and their sizes. This list of transistors is then
fed into the layout portion of Sc2.

The design is next split into rows of logic. Each row of logic is then processed
separately.

The target layout image for each row is a gate matrix consisting of a single row of
n-MOS and a single row of p-MOS transistors. The placement and routing of each row
of logic involves several steps.

__
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1. Wide transistors are split into smaller transistors to be connected in
parallel.

2. N and P devices sharing common gates are paired.

3. The pairs of devices are ordered within the row by use of the Kernigan-Lin
algorithm.

4. Transistor pairs are oriented so as to maximize the number of adjacent
sources and drains.

5. The program next connects the nodes of each net in the circuit while trying
to minimize the amount of area used. The routing is performed using a
number of different interconnection methods. All possible connections are
made using the least expensive method and then the next method is tried.
The methods of interconnect used (in order) are: abutting transistors,
routing over transistors, routing over existing gates, and channel routing.

6. Finally, heuristics are used to eliminate unnecessary wire level changes.

The layout generated by Sc2 is a symbolic layout described in the "i" language.

2.5. The IBM Program

A program similar to Sc2 has been developed at IBM. [10] [11] This program also
maps arbitrary CMOS circuit schematics into layout, and the target layout image is once
again a gate matrix consisting of two parallel rows of n-MOS and p-MOS transistors.

This work differs from Sc2 in the way in which the positions and orientations of
transistors in the gate matrix are selected. The program uses efficient search
techniques and dynamic programming algorithms to select truly optimal transistor
placement configurations. The placement and flipping heuristics used by Sc2 do not
guarantee an optimal solution.

The transistor positioning and orientation procedure is outlined below.

1. A depth-first-iearch routine is used to expand potential transistor
placements along the gate matrix array. A virtual search tree is generated
on which a branch-and-bound procedure is performed. Only placements
that can be subsequently routed are generated.

2. During the depth-first expansion, the optimal orientations of the transistors
in each potential placement are determined.

3. The detailed routing of the best placement found is then performed.
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The output generated by the program is symbolic layout.

2.6. TOPOLOGIZER

TOPOLOGIZER is an expert system for the automatic layout of CMOS cells from
an input schematic description [12].

TOPOLOGIZER takes as input a transistor connectivity description as well as
information about the environment in which the cell is to reside. The environment
specification includes information about the aspect ratio of the cell as well as external
connection constraints. The aspect ratio is specified in terms of transistors (width in
columns and height in rows).

A symbolic layout is created by separately performing transistor placement and
routing.

The aspect ratio constraint defines a grid on which the various transistors must be
placed. Given such a placement grid, the placement problem is translated into the
problem of finding a placement on this grid such that the number of nearby single-layer
routing connections is maximized. Kollaritsch likens this problem to the game of
dominoes. The placement expert first generates an initial random placement given the
aspect ratio information. The expert then responds to recognized patterns to bring the
placement incrementally closer to a final solution.

After the placement phase is completed, a routing expert is used to create a rough
routed layout. The initial routing is functionally correct, but is very inefficient in the way
of area and performance. The expert router thus continues by applying rules aimed at
improving the routing.

The final output of TOPOLOGIZER is a symbolic layout compatible with the
MULGA symbolic layout system.
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2.7. Comparative Analysis

In this section a comparative analysis of the various synthesis approaches
described here is presented. Table 2-1 lists each of the schematic to layout programs
presented in this chapter and summarizes the attributes of each.

Table 2-1: Summary of Schematic to Layout Programs

2.7.1. Generality

DUMBO, Koss's program and TALIB can only be used to realize NMOS circuits
while Sc2, the IBM program and TOPOLOGIZER are applicable only to CMOS circuits. It
is interesting to note the correlation between the layout methodologies employed by
these systems and the circuit technologies to which they can be applied.

All the programs which synthesize NMOS circuits use general layout
methodologies which ,can be applied to many different classes of circuits. These general
layout methodologies can be employed only because the problems of well and substrate
contact placement associated with CMOS circuit layout are avoided. The programs
which can be applied to CMOS circuits are forced to use more restrictive layout
methodologies which limit their usefulness and general applicability. While Sc2 and the
IBM program can be applied to to arbitrary CMOS circuit topologies, the gate matrix
target layout methodologies employed by these programs limit their efficient use to

Summary of Schematic to Layout Programs

Program Technology Programming Layout Layout Execution
Methodology Methodology Quality Time

DUMBO NMOS Algorithmic General Good Very
Poor

Koss's NMOS Algorithmic General Poor Very
Program Poor

TALIB NMOS Knowledge General Very Fair
Based Good

Sc2 CMOS Algorithmic Restricted Fair Very
Good

IBM CMOS Algorithmic Restricted Fair Very
Program Good

TOPOLOGIZER CMOS Knowledge Restricted Good Poor
Based

*1
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circuits which include equal numbers of n-MOS and p-MOS transistors.
TOPOLOGIZER, on the other hand, uses a placement and layout technique which

assumes that transistors are of similar size. The program thus has difficulty dealing with
sized transistor circuits.

2.7.2. Computational Efficiency

TALIB and TOPOLOGIZER both use rule based systems to address the problem
of layout synthesis. While there are many advantages associated with the ability to
encode knowledge about the layout process as rules, the use of a knowledge based
approach can introduce significant costs in the way of execution speed. Both TALIB and
TOPOLOGIZER are computationally rather slow.

Although DUMBO, Koss's program, Sc2, and the IBM program all use

algorithmically based programming methodologies, only Sc2 and the IBM work have any

speed advantage over the programs which use a knowledge based approach. DUMBO
and Koss's program are both relatively slow (taking in excess of twenty CPU minutes for
circuits with on the order of twenty-five transistors). These programs have poor
computational performance because they use general layout methodologies while
making little use of the hierarchy present in VLSI designs. Neither introduces any
hierarchy which is not included in the original input description. Problems thus occur
when these two programs are applied to large circuits.

While Sc2 and the IBM program make little use of hierarchy, the computational
advantage associated with the use of such restrictive layout methodologies serves to
give Sc2 and the IBM program by far the fastest execution times of the programs
presented here.

No specific execution time figures are given for TALIB, but it seems from the
information available that TALIB is at least somewhat faster than DUMBO for small
designs and that TALIB's performance advantage increases for larger designs. TALIB's
ability to plan at various levels of abstraction allows it to make good use of the hierarchy
present in a given design. This use of hierarchy allows TALIB to deal reasonably with
large designs and is also a factor in TALIB's speed advantage over TOPOLOGIZER, the
other knowledge based system presented here. TOPOLOGIZER applies its rules to a
flattened circuit description and makes no use of hierarchy in generating a final layout.
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2.7.3. Layout Efficiency

Of the programs presented here, DUMBO and TALIB generate the layouts of the
highest quality in the way of area and electrical performance. The general layout
methodologies employed by these programs allow many different classes of circuits to
be realized in an efficient manner. Although Koss's program also uses a general layout
methodology, the layouts generated by that program are of noticeably lower quality.
Koss's program works with a flattened circuit description and allows no grouping of
transistors during the layout process. Individual transistors are thus the largest objects
operated on during the placement phase of the program. This prevents the program
from performing the local layout optimizations that are essential in the generation of
efficient layouts.

One additional factor that contributes to the high quality of the layouts generated
by TALIB involves the use of boundary constraints. It is possible for a user to guide
TALIB's layout process through the liberal use of boundary constraints in the input
specification. The boundary constraints used by TALIB include position constraints on
power busses as well as on signal lines. By selecting the relative positions of multiple
power busses as well as signal lines, a user can guide TALIB towards some desired
layout. While it may be desirable to allow a user to aid the tool in this way, it is important
to realize that the layouts generated by TALIB would be of a lesser quality if the tool
were used in an environment where the boundary constraints were generated
automatically rather than by a human designer.

The programs applicable to CMOS circuits use restrictive layout methodologies
and thus these programs can generate inefficient layouts when applied to non-standard
circuits. Of the CMOS programs, TOPOLOGIZER generates the best layouts when
applied to circuits of arbitrary structure. Because Sc2 and the IBM program employ
more restrictive gate matrix layout methodologies, each pays a high performance
penalty when applied to circuits including unequal numbers of n-MOS and p-MOS
transistors. This sacrifice of layout quality does allow them to run very quickly however.
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Chapter 3
Design Considerations

In this chapter the high level design considerations involved in the development of
the synthesis program, SOLO1, are discussed and a rough outline of the program's
structure is presented.

3.1. System Requirements

The primary goal of this research was to develop a program for mapping arbitrary
MOS circuit schematics into efficient layouts. The first step in the design process was to
translate this general goal into a more concrete set of specifications.

3.1.1. Generality

While it is desirable for an automated layout system to be as general in its

applicability as possible, each added degree of flexibility introduces new costs in the way
of layout quality and computational efficiency. A tool designed specifically for a small

subset of problems will generally produce better solutions than a tool which must be
more generally applicable. This section outlines the factors that were considered in

determining the minimal level of generality SOLO should maintain in a number of
different areas.

3.1.1.1. Circuit Topologies

It was essential that SOLO be flexible in the types of circuits it could be used to
realize. One of the fundamental advantages of a system which generates layouts from

schematics rather than from functional specifications is the ability of such a system to
use the circuit topologies and transistor sizings best suited to particular design
situations. Much of this advantage is lost if severe restrictions are placed on the form of

'SOLO stands for Schematic tO LayOut program.
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the input circuits. A system which could be used to generate layouts from arbitrary MOS
circuit topologies thus became the target.

3.1.1.2. Technology

It was clear that the program should be as technology independent as possible.
The design time associated with developing a system of this size is such that it would be
inefficient to develop a system which would become obsolete as soon as small changes
in the available technology occur. SOLO was as a result structured to be easily
adaptable to changes in design rules.

It was also necessary to consider whether the system should be applicable only to
NMOS circuits, only to CMOS circuits, or to both NMOS and CMOS circuits. Sirce it
was anticipated that the system would employ a general layout methodology, it seemed
that it would be best suited to the realization of NMOS circuit designs. Recall that
general layout methodologies were successfully employed by a number of schematic to
layout systems in realizing NMOS circuits. At the same time however, the increasing
dominance of CMOS technologies made it clear that in order for the program to be of
general use now and of any use in the future, it must also be applicable to CMOS circuit
designs. The initial goal thus became to design a program which could accommodate
both NMOS and CMOS technologies. As the design of SOLO progressed, it became
clear that most of the methodologies and algorithms employed were indeed applicable to
both NMOS and CMOS designs. The goal of a system applicable to both technologies
was thus maintained.

3.1.1.3. Realization Constraints

The generality of a layout synthesis program also relates to the ability of that
program to produce layouts which are compatible with different surrounding
environments. Clearly a synthesis program which allows the user to specify constraints
on the locations of external connections in a generated layout or to specify a desired
aspect ratio will be of more use than one which creates layouts without any
consideration as to the environments in which the generated cells will reside.

All schematic to layout systems in the literature allowed the positions of external
connections to be specified. This seemed to be the minimal level of realization control
needed to allow useful layouts to be generated. Discussions with designers also
indicated that at least some control over the dimensions or aspect ratios of generated
layouts was necessary in order to allow a user to guide the program towards a layout
solution geometrically compatible with a surrounding environment [13].
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SOLO was thus initially designed such that the positions of external connections
could be specified along with the desired aspect ratio of the layout. As the development
of the program continued, the set of possible realization constraints was expanded to
provide users with additional control over the exact form of generated layouts. A
description of the complete set of realization constraints is given in chapter 4.

3.1.2. Computational Efficiency

An automated layout program is only useful if it provides a significant design time
advantage over human designers. One of the anticipated uses of SOLO was as a tool to
allow users to quickly explore large design spaces including many different circuit
topologies and transistor sizings. It was clear that the usefulness of the program in this
role was directly related to its computational efficiency.

The computational goal therefore became to create a program that would run for
no longer than a few CPU minutes for a circuit of reasonable size (roughly 20
transistors). In terms of the other schematic to layout programs presented in chapter 2,
such a system would be more computationally efficient than DUMBO, Koss's program or
TOPOLOGIZER. While it was not expected that the program would be as fast as Sc2 or
the IBM program, it was hoped that it could be competitive with TALIB. This level of
computational efficiency would allow the program to be applied to circuits including up to
roughly 200 transistors while still producing layouts in a reasonable amount of time.

3.1.3. Layout Efficiency

A schematic to layout system can generate high performance layouts because it
allows the circuit topologies and transistor sizings best suited to particular design
situations to be employed. The performance advantage associated with being able to
implement arbitrary circuit topologies is lost however if those topologies cannot be
implemented efficiently. It was thus clear that in order for the system to be at all useful it
would have tQ generate layouts that were superior in performance to those generated by
conventional restricted topology layout systems. The hope was that the layouts would in
fact be competitive with those created by human designers.

Although the layouts generated by TALIB were competitive with those of human
designers (at least for some classes of circuits), TALIB was only applicable to NMOS
circuits. On the other hand, the layouts generated by the programs applicable to CMOS
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circuits were necessarily of a lower quality due to the restrictive nature of the employed
layout methodologies. The goal became to create a program which would generate
layouts comparable in quality to those generated by TALIB but which was applicable to
CMOS circuits.

3.2. System Strategy

In this section a summary of the overall strategy employed by SOLO is presented.
This strategy was developed to provide a means by which the various system
requirements described above could be satisfied.

3.2.1. Programming Methodology

The level of computational efficiency desired indicated that an algorithmic rather
than a knowledge based programming methodology would be appropriate. Although
TALIB managed to run quickly while employing a knowledge based approach, much of
its computational efficiency could be attributed simply to well optimized code and to a
fast implementation of the associated production language rather than to any
fundamental advantage of the approach.

The goals of this research included the development of algorithmic methodologies
for the automated layout of MOS circuits. While the development of an expert system
for automated layout would provide insight into efficient layout methodologies for MOS
circuits, such an approach would not provide similar insight into the development of
algorithms appropriate for the implementation of such layout methodologies. An
algorithmic programming methodology was thus selected.

3.2.2. Layout Methodology

The layout strategy that evolved from the set of system requirements includes two
phases.

1.The circuit is first partitioned into sets of closely connected transistors
which are mapped into layout. The partitioning and mapping into layout
should allow local layout optimizations such as connection by abutment to
be incorporated into the layout and should generate sublayouts that can
effectively and easily be positioned by the subsequent general placement
phase.

2. The generated sublayouts are then positioned and oriented using a
general placement methodology.
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The development of this two staged strategy was based on a number of
considerations.

The circuit partitioning phase was incorporated to serve two purposes. First of all,
the computational efficiency of SOLO could be improved because of the added level of
hierarchy. Since the transistor placement portion of the program was now split into two
phases, the program could run more rapidly when applied to large circuits. In addition,
this partitioning could allow the layout efficiency of SOLO to be increased. Although
local layout optimizations are difficult to incorporate into a general placement program,
such optimizations could be incorporated during the more restricted mapping of the
partitioned subcircuits into layout. These local layout optimizations would improve the
quality of the generated layouts both in terms of area and electrical performance.

The placement methodology was selected because it seemed that a general
layout methodology would be needed if high quality layouts were to be generated from
arbitrary schematics. General methodologies were employed by both DUMBO and
TALIB, the schematic to layout systems most successful in generating layouts
competitive with those created by human designers. It was anticipated that such an
approach might be difficult however since general layout methodologies had rarely been
applied to the automated layout of CMOS circuits. The issues of well and substrate
contact placement had always made more restrictive methodologies more appropriate
for CMOS layout. This problem was addressed by incorporating into the placement
phase of the program measures related to the suitability of a given transistor
configuration to subsequent well and substrate contact additions. These measures allow
a general placement methodology to successfully be applied to CMOS circuits.
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3.2.3. Restructuring of the Hierarchy

One of the essential aspects of the layout synthesis approach presented in this
thesis is a restructuring of the circuit description hierarchy into a new hierarchy more well
suited to the physical domain. This restructuring is intended to help avoid the problems
associated with inappropriate layout hierarchy typical of many automated layout
systems.

While it was clear from the beginning of the design process that the overall
strategy for layout would include such a restructuring of the hierarchy, it was not initially
clear how this restructuring should be accomplished.

Since the new description hierarchy was to be appropriate for the layout domain,
an effective method for restructuring the description hierarchy would have to be
dependent at least to some extent on the target layout methodology. The selected
strategy for restructuring thus included an initial phase during which the input circuit
would be partitioned into subcircuits of closely connected transistors appropriate to be
mapped into the leaf sublayouts of the target layout methodology.

Although the hierarchy corresponding to a circuit partitioned in this manner would
be well suited to the physical domain, it was clear that this hierarchy could be improved
by recognizing that some of the generated subcircuits were more closely related than
others. Those subcircuits which compose a complex CMOS gate are closely related for
example. A second restructuring phase during which closely related subcircuits would
be clustered was therefore incorporated.

Finally, despite the fact that the hierarchy associated with the input circuit
description would in many ways be inappropriate for the physical domain, it was clear
that some aspects of that hierarchy could be incorporated into the new hierarchy in such
a way as to improve the quality of the restructured hierarchy.

The complete strategy for restructuring thus included three stages and is
summarized below. -

1. The circuit is partitioned into subcircuits of closely connected transistors of
similar size.

2. Closely related subcircuits are grouped.

3. The input hierarchy is preserved to the extent that it does not conflict with
these restructurings.
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3.2.4. Symbolic Layout as Output

Very early in the design process, the decision was made to generate symbolic
layout as the output of the synthesis process. TALIB was the only know schematic to
layout system which mapped circuits directly into mask level layouts. All of the other
systems mapped schematics into symbolic layouts. The generation of symbolic layout
as output had a number of anticipated advantages.

* Perhaps foremost, the use symbolic layout would provide a level of
abstraction through which the SOLO could be isolated from the details of
mask level layout. The ability to work with wires and transistors rather than
with rectangles would reduce the complexity of the program substantially.

* Efficient compactors existed for symbolic layouts and thus SOLO could be
somewhat more lax during the layout process than might otherwise be the
case.

* The generation of symbolic layout as output would give the program the
design rule independence that was required.

* Finally, the pitch matching capabilities of symbolic compactors provided a
convenient means whereby desired alignments between external
connections of generated cells could be maintained through the
transformation to mask level layout.
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3.3. Program Structure

The system strategy outlined in the previous section was developed into a
program which performs an ordered sequence of operations leading to the generation of
a final layout. This section presents a summary of the different phases the program.

1. Specification Language

The input to SOLO is generated using an associated circuit specification
language. The language allows the user to hierarchically describe the
structural topology of the circuit as well as to specify to a limited extent
how that circuit should be realized. These realization constraints allow the
user to specify the exact sizes and types of transistors, the desired aspect
ratio of the generated layout, and the relative positions of the external
connections to the circuit.

2. Restructuring of Hierarchy

The circuit description hierarchy is restructured into a new topologically
based hierarchy.

3. Mapping of Leaves into layout

The subcircuits which constitute the leaves of the new hierarchy are
mapped into symbolic layout.

4. Placement

The sublayouts are positioned and oriented using a general placement
technique.

5. Routing

The routing between the sublayouts is completed using conventional
routing techniques. This routing is also represented as symbolic layout.

6. Optimization

The layout is optimized by removing unconnected wires, removing
unnecessary layer changes, and by maximizing the amount of metal
interconnect.

7. Compaction

Finally, the symbolic layout is compacted and a mask level layout
description is generated.

4
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Chapter 4

Circuit Specification Language

4.1. Introduction

SOLO includes a specification language which allows the user to hierarchically
describe the structural topology of a circuit as well as to specify to a limited extent how
that circuit should be realized. The schematic for a simple CMOS exclusive-or circuit is
shown in figure 4-1. A corresponding specification language description of that circuit
follows.

AH

Figure 4-1: A Simple CMOS Circuit

OUT
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(circuit-macro nor (a b out)
(series vdd out (a b)

:type p :width 24 :length 3)
(parallel out gnd (a b)

:type n :width 8 :length 3))

(defschematic xor (a b out)
(local c)
(set-technology cmos21)
(left a b)
(right out)
(set-aspect-ratio 2 1)
(nor a b c)
(series vdd out

((transistor (c) :type p :width 24 :length 3)
(parallel (a b) :type p :width 24 :length 3)))

(series out gnd (a b) :type n :width 16 :length 3)
(transistor out gnd (c) :type n :width 8 :length 3))

This example illustrates two different uses of the specification language.

Primarily, the language provides a means by which a desired circuit topology can

be specified. Topological information can be represented through the use of several

different constructs. Topology is conveyed through the use of circuit macros, through

the specification of series and parallel connections of transistors, and through the

specification of individual transistors. Different means for describing the same circuit are

provided to simplify the task of the user in specifying a circuit and more importantly to

allow some degree of flexibility to be introduced into the topological specification.

The specification language also provides a means by which constraints on how a

desired circuit is to be realized can be introduced. In the example shown, constraints

are given which specify the sizes and types of transistors, the sides on which external

connections should be positioned, and a desired aspect ratio of the generated layout.

4.2. Language Capabilities

In this section the various capabilities of the specification language are outlined in

more detail.

�
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4.2.1. Specification of Circuit Topology

The primary purpose of the language is to allow the topological structure of a
given circuit to be described. The topological specification of a circuit defines how the
transistors in that circuit are interconnected as well as the exact types and sizes of those
transistors.

The structure of a circuit can be described using a number of different constructs.

4.2.1.1. Transistors

The most straightforward means by which a given circuit can be described is to
simply specify the connections of each transistor in the circuit individually. This is the
technique used to describe circuit networks for the circuit simulation program
SPICE [14]. While this method of circuit specification can become quite tedious for
human designers to use when describing circuits of any size, it does have the advantage
that such a definition can easily be derived from the network description of a circuit. This
capability is quite important if SOLO is to be used as one stage of a larger silicon
compiler system.

4.2.1.2. Series/Parallel Networks

This language also allows series and parallel connections of transistors (and of
other series-parallel networks) to be specified. Since series-parallel subcircuit
topologies occur often in digital circuits, describing a circuit in terms of series and
parallel connections can often greatly simplify the task of a designer in specifying a given
circuit topology.

This method of circuit description has the added advantage that it allows the user
to specify a set of circuit topologies any one of which is acceptable rather than
constraining_ the program to use one specific topology when such a restrictive
specification is not necessary. The specification of a group of transistors in series
whose exact ordering is not important is an example of how this construct may be used
to specify a set of acceptable topologies. SOLO can often take advantage of this
flexibility by delaying the binding of the exact topology of the circuit until the layout stage
and in so doing generate more compact and efficient layouts.
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4.2.1.3. Circuit Macros

Circuit macros are used to allow hierarchy to be introduced into the network
description of a circuit. This hierarchy aids the designer in describing large circuits
which include repeated subcircuits (such as logical gates). In addition, the structural
hierarchy created using circuit macros serves as an aid in generating an appropriate
physical hierarchy for use in describing a final layout.

4.2.2. Physical Realization Constraints

The specification language also allows some constraints on the exact form of the
physical realization of a given circuit to be introduced.

4.2.2.1. Transistor Specification

The exact type and size of each transistor in the topology can be specified. This
allows SOLO to be applied to optimized circuit schematics. The exact transistor sizings
specified in an optimized schematic will be preserved in the generated layout.

4.2.2.2. Critical Node Information

The user can assign relative weightings to the nets of a circuit description. Nets
along a critical delay path can be given higher weights than those whose capacitances
are less critical. The weighting information is used by SOLO during the placement
phase and has the effect of reducing the capacitances of the more highly weighted nets.

The weighting of nets can also be used simply to help guide SOLO towards some
desired layout configuration.

4.2.2.3. Specification of Interface Constraints

The language also allows the user to constrain the locations of the external
connections to the generated layout.

The placement of external connections can be constrained in a number of ways.

1. The side(s) on which a given external connection is to be located can be
specified.

2. The exact ordering of the the connections on a given side of the layout can
be defined.

3. Connections can be constrained to be positioned such that they will be
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aligned (in one dimension) with appropriate connections on the opposite
side of the cell. In this way cells can be generated which can be placed in
an array and connected by abutment.

4.2.2.4. Aspect Ratio

The desired aspect ratio of the generated layout can be specified by the user.
This specification is used to guide the placement phase of the program.

4.2.2.5. Feedthroughs

Finally, feedthrough nets can be specified. Such nets will have two external
connections at the same position on opposite sides of the layout. These two
connections are guaranteed to be connected within the cell in metal.2 This construct thus
provides a means by which clock lines and other nets which must be distributed to many
cells may effectively be incorporated into generated layouts.

4.3. Language Syntax and Semantics

A detailed summary of the syntax and semantics of the specification language is
given in appendix A.

2Since SOLO assumes that only a single layer of metal is available, feedthroughs are positioned such that
they do not conflict with power and gnd lines.
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Chapter 5

Layout Methodology

A system for mapping arbitrary MOS schematics into layout requires a layout
methodology that can effectively be applied to many different classes of MOS circuits. A
two staged strategy for layout was developed in an effort to provide such a generally
applicable layout methodology. This layout strategy is summarized again below.

1. The circuit is first partitioned into sets of closely connected, similarly sized
transistors which are mapped into layout. The partitioning and mapping
into layout should allow local layout optimizations such as connection by
abutment to be incorporated into the layout and should generate
sublayouts that can effectively and easily be positioned by the subsequent
general placement phase.

2. The generated sublayouts are then positioned and oriented using a
general placement methodology.

In this chapter, the exact methodology used to partition circuits and to map the
resulting subcircuits into layout is developed.

5.1. Gate Matrix Implementation of CMOS Circuits

Uehara and vanCleemput have presented a layout paradigm for efficiently
mapping complex circuits into layout [15]. The methodology presented in their paper
implements CMOS circuits on a linear array of transistors in a manner that maximizes
abutment between transistors and in so doing minimizes the size of the array. The
usefulness of the technique is somewhat limited however because it can only be used to
implement CMOS circuits composed of series-parallel pull-up and pull-down trees. It is
further required that the p-MOS and n-MOS halves of the circuits be duals.

The basic layout strategy involves the placement of transistors in an array
configuration as is shown in figure 5-1. Each cell consists of a row of n-channel and a
row of p-channel transistors. Since the pull-up and pull-down networks must be duals,

__ _�
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there is a one to one correspondence between each n-channel transistor and an
associated p-channel transistor sharing the same gate. By requiring that the n-channel
and p-channel devices sharing a common gate be aligned vertically, the space required
for making interconnections between the two rows can be minimized.

OUT

A -

B-

B A C D

Figure 5-1: Gate Matrix Implementation of a Classical CMOS Gate

The area of each gate matrix module is proportional to the sum of the number of
transistors in the module and the number of diffusion breaks required between chains of
connected transistors. A break is required when there is no connection between
adjacent transistors as is illustrated in figure 5-2. Thus, for a given number of
transistors, the size of a module can be minimized by minimizing the number of required
diffusion breaks. -

A -C
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Figure 5-2: Gate Matrix Module with a Required Diffusion Break

5.1.0.1. A Circuit Graph Model

A circuit graph model is used by Uehara to determine a placement of transistors
that will minimize the number of required diffusion breaks. One circuit graph is defined
for the p-MOS half of the circuit while another is defined for the n-MOS half. Each graph
is constructed as follows.

1. The drains and sources of transistors are represented by vertices in the
graph.

2. Each transistor is represented by an edge between the vertices
corresponding to the source and drain of that transistor.

3. Each edge in the graph is labeled with the net associated with the gate of
the corresponding transistor.

A sample circuit and the corresponding circuit graphs are shown in figure 5-3.

�
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Figure 5-3: A Sample Circuit and Corresponding Circuit Graphs

Given this graph representation of a circuit, there is one property that is of
particular interest in trying to minimize the number of required diffusion breaks.

If two edges share a vertex in the circuit graph, then their corresponding
transistors may be connected by abutment.

Thus, in order to minimize the number of required diffusion breaks, it is necessary
to find a set of paths3 which is minimal in number and which covers all of the edges in
the graph model. Furthermore, if the graph contains an Euler path [16] (i.e. a single path
which covers all the edges of the graph), then the corresponding circuit can be laid out
with no required diffusion breaks.

In order to allow the vertically aligned transistors in the gate matrix array to share
a common gate, it is necessary to find covering paths on the two graph models with the
same sequence of latels4. This will ensure that n-MOS and p-MOS transistors sharing
a common input will have the same horizontal position in the array.

3A path is a sequence of edges where the final vertex of one edge is the initial vertex of the next.

41n other words, the sequence of labels associated with the sequence of edges in each covering path
should be identical.
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The optimal layout algorithm can thus be summarized as [15]:

1. Find all Euler paths in each graph.

2. Find p-graph and n-graph Euler paths with identical labelings.

3. If 2-is not found, then decompose the graphs into a minimal number of
subgraphs such that 2 can be achieved by separate Euler paths.

5.1.1. Limitations of the Gate Matrix Technique

Although the gate matrix layout methodology can be used effectively to realize the
specific types of circuits described above, the technique has several limitations when it is
applied to more general circuit methodologies.

5.1.1.1. Sized Transistors

The gate matrix technique is intended for use with identically sized transistors.
When different size transistors are used, the height of the transistor array is dictated by
the widths of the widest n-MOS and p-MOS transistors. If a circuit includes transistors
that are significantly varied in size, a gate matrix realization can be inefficient in the way
of layout area. This is illustrated in figure 5-4.

5.1.1.2. Non-Standard Circuit Methodologies

The layout technique presented in [15] is only applicable to a very limited subset
of MOS circuits. More specifically, the technique requires that n-MOS and p-MOS
halves of the associated circuit graph be duals and that the circuit be composed entirely
of series-parallel combinations of transistors.

While techniques for realizing more general MOS circuits using a gate matrix
methodology do exist [10] [9], the usefulness of the gate matrix technique is inherently
limited to circuit methodologies which include equal numbers of n-MOS and p-MOS
transistors. The use of the gate matrix technique to realize circuit methodologies which
include unequal numbers of n-MOS and p-MOS transistors (such as domino CMOS)
results in much wasted area due to the unused transistor "slots" which necessarily
occur. A gate matrix realization of a domino CMOS circuit illustrating this inefficiency is
shown in figure 5-5.

_� __�_
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Figure 5-4: Gate Matrix Realization Including Sized Transistors

5.1.2. Transistor Splitting

One means by which the usefulness of the gate matrix technique can be extended
to more classes of MOS circuits is through the use of transistor splitting. This technique
allows sized transistor circuits to be efficiently realized using a gate matrix methodology.
In this technique, very wide transistors are split into several smaller transistors
connected in parallel. By properly selecting which transistors to split as well as the sizes
of the new transistors, the total area of the transistor array can be minimized. This
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Figure 5-5: Gate Matrix Realization of a Domino CMOS Circuit

technique is used by the layout synthesis program Sc2 [9] and allows that program to
effectively be applied to sized transistor circuits.

An example of the use of the transistor splitting technique is shown in figure 5-6.
This figure illustrates a more efficient realization of the same layout as was shown in
figure 5-4.

Transistor splitting still does not allow the gate matrix layout methodology to be
efficiently applied to all MOS circuit methodologies however. Although sized transistor
circuits can be realized in a more efficient manner, this technique does nothing to help in
the realization of non-standard circuit methodologies. Circuits must still include equal
numbers of n-MOS and p-MOS transistors if the gate matrix layout technique is to be
effective.

5.2. Generas Placement of Gate Matrix Modules

In this section a general layout methodology based on a variation of the gate
matrix technique is presented.
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Figure 5-6: Gate Matrix Realization with Transistor Splitting

5.2.1. Gate Matrix Mapping of Subcircuits into Layout

It is clear that even with the use of transistor splitting the gate matrix technique
cannot be applied effectively to MOS circuits in general. The technique does provide a
means by which partitioned subcircuits can efficiently be mapped into layout however. If
subcircuits are constrained to only include one type of transistor, then they can be
realized on a single row using the gate matrix technique. This is in contrast to the gate
matrix examples that have been shown in which two rows (one for n-MOS transistors
and one for p-MOS transistors) have been used. By limiting the use of the gate matrix
technique to subcircuits which can be realized on a single row, constraints on the
number of p-MOS and n-MOS transistors can be eliminated and non-standard circuit
methodologies can be implemented efficiently.

The gate matrix technique has a number of other desirable attributes that also
make it well suited to the mapping of subcircuits into layout. It allows connections by
abutment to be incorporated into the layout thereby improving layout efficiency.
Furthermore, given that the included transistors are similarly sized the generated
sublayouts tend to be rectangular and thus can effectively be positioned by a
subsequent general placement program.
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5.2.2. Partitioning Strategy

Given a means for mapping appropriate subcircuits into layout, a methodology
must be developed for dividing a circuit into such subcircuits. This partitioning strategy
must incorporate a number of basic goals.

1. The grouping of transistors should in some sense relate to their
connectedness. If this can be done in an appropriate manner, then the
number of connections between the different groups will be minimized and
a modular description hierarchy will result.

2. The partitioning methodology should generate groups that include enough
transistors that the use of the selected groups of transistors as leaf
modules rather than individual transistors will significantly reduce the
number of objects to be placed and interconnected.

3. The partitioned groups of transistors should constitute subcircuits which
can easily and efficiently be mapped into the physical domain using the
target single-row gate matrix methodology.

Before any circuit partitioning can be accomplished, it is necessary to create an
abstract representation of the circuit topology which captures all the information relevant.
to the partitioning process. A circuit graph model such as that defined by Uehara [15] is
appropriate for this purpose.

Given a circuit graph description of a circuit, the problem of partitioning a circuit
into appropriate groups of transistors becomes the problem of partitioning the circuit
graph into a set of appropriate subgraphs. One must now consider how the stated goals
of the partitioning strategy can be incorporated into an algorithmic methodology for
partitioning a graph.

The target single-row gate matrix layout methodology implements series chains of
transistors in an optimal manner. A partitioning method aimed at dividing the circuit
graph into series combinations of transistors might thus seem a reasonable strategy.
This proves not to be the case however. While series subcircuits can efficiently be
mapped into a gate matrix form, the series subcircuits extracted from typical MOS
circuits tend to contain relatively few transistors. Long series chains of transistors are
typically associated with poor circuit performance and thus such circuit constructs tend
to be avoided. Partitioning the exclusive-or circuit of figure 4-1 into series combinations
of transistors results in 8 series subcircuits. This can hardly be considered an effective
partitioning of a circuit which contains only 10 transistors.
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An effective partitioning strategy must be based on a more general circuit
characteristic which yields larger subcircuits while at the same time continuing to ensure
that the subcircuits can be efficiently realized using a gate matrix methodology.

The gate matrix methodology also realizes series-parallel combinations of
transistors in an efficient manner and in fact the technique presented by Uehara is
designed to implement just such circuits. A strategy based on the partitioning of a circuit
into subcircuits composed of series-parallel combinations of transistors has several
desirable properties. The subcircuits generated in this way tend to be larger than those
generated using a simple series subcircuit partitioning scheme. Unlike long series
chains of transistors, large series-parallel combinations of transistors are abundant in
digital MOS circuits. Partitioning the same exclusive-or circuit of figure 4-1 using a
series-parallel partitioning scheme results in only 4 subcircuits rather than the previous
number of 8. In addition, the number of connections between series-parallel subcircuits
tends to be quite low. Each series-parallel subcircuit can have at most one connection
for each transistor gate along with two additional connections corresponding to the two
distinguished vertices of the associated series-parallel subgraph. A series-parallel circuit
partitioning will thus tend to be modular.

Although a strategy based on the partitioning of the circuit graph into series-
parallel subgraphs appears promising, there are a number of associated problems that
must be considered. First of all, while the mapping of series-parallel circuits into layout
can only be efficient if the included transistors are of similar size, there is presently no
guarantee that the transistors included in each subcircuit will indeed be of similar size.
This problem must be addressed. In addition, an efficient method must be developed for
partitioning a graph into a minimal number of series-parallel subgraphs.

The first problem can be addressed simply by modifying the partitioning strategy
slightly so that a circuit is divided into series-parallel combinations of similarly sized
transistors rather than simply into series-parallel combinations of transistors. The
standard deviation of the widths of a set of transistors provides a reasonable metric as to
how similar in size those transistors are. Although this added constraint occasionally
results in the splitting of a series-parallel subcircuit into two or more smaller subcircuits,
the sizes of generated subcircuits are not on the average decreased significantly.

In addressing the second problem, it is first necessary to consider the nature of
series-parallel graphs.

__ _� _ I� I_
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A series-parallel graph consists of the series or parallel combination of other
series-parallel graphs. In the degenerate case, a single edge joining two vertices forms
a series-parallel graph. Associated with a series-parallel graph are two distinguished
vertices to which other series-parallel graphs may be connected [17].

This recursive definition of series-parallel graphs can be translated into an efficient
algorithm for partitioning a circuit into a minimal number of series-parallel subcircuits.
The algorithm also ensures that the generated subcircuits each include similarly sized
transistors.

The complete circuit partitioning algorithm is summarized below. This algorithm
takes a circuit graph as input and returns a set of subgraphs each corresponding to an
appropriately partitioned subcircuit.

1. Identify those vertices which correspond to Vdd, Gnd, transistor gates, and
external connections to the circuit. Mark them as specialvertices.

2. For each edge in the graph, create a subgraph consisting of that edge and
the two connected vertices. Mark the two vertices as distinguished
vertices.

3. For each subgraph:

a. Find any other subgraph which shares the same two distinguished
vertices.

b. If the two subgraphs have corresponding transistors that are
similarly sized5

then Merge the two subgraphs into a single subgraph with the
same two distinguished vertices.

4. For each vertex that is not special:

a. Find all subgraphs for which this vertex is a distinguished vertex.
b. if there are exactly two such subgraphs and the two subgraphs

have corresponding transistors that are similarly sized
then Merge the two subgraphs into a single subgraph. The

distinguished vertices of the new subgraph will be the two
distinguished vertices of the previous subgraphs that were
not shared between those subgraphs.

5. Repeat steps 3 and 4 until no subgraph consolidations occur.
6. Return the set of subgraphs.

5A set of transistors is considered to be similarly sized if the standard deviation of the widths of those
transistors is below some threshold level.
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This algorithm provides an efficient means for partitioning a circuit into a minimum
number of similarly sized series-parallel subcircuits. Since both the number of
subgraphs and the number of vertices w;11 be of the order of the number of transistors in
the circuit, O(T), this algorithm will run in O(T 3 ) time.

A partitioning algorithm based on the division of circuit into series-parallel
combinations of similarly sized transistors was thus selected. This methodology
generates subcircuits which are modular and which can be efficiently mapped into gate
matrix layout using straightforward techniques such as the one described in this chapter.
Furthermore, since this method ensures that the transistors included in each subcircuit
are similarly sized, the corresponding sublayouts tend to be rectangular with little wasted
layout area.

5.2.3. The Layout Process

The overall layout process can be summarized as follows:

1. The circuit is partitioned into a minimal number of subcircuits each of
which is a series-parallel combination of similarly sized, identically typed
transistors. It is clear that such a partitioning is always possible since in
the degenerate case each individual transistor will constitute such a
subcircuit.

2. Subcircuits which are each other's duals are paired.

3. A technique similar to that presented by Uehara [15] is used to map each
of these subcircuits into a single-row gate matrix module (which includes
any required internal connections).

In the case of subcircuits which are duals, it is ensured that both
subcircuits are mapped into gate matrix layout in such a way that the gates
associated with their transistors are identically ordered.

4. A general placement technique is used to establish the final positions and
orientations of the generated sublayouts.

The mapping f a series-parallel subcircuit into a gate matrix module is illustrated
in figure 5-7. This figure illustrates many of the advantages of this aspect of this layout
technique.

Because the transistors included in the sample subcircuit are all of similar size, the
generated layout is indeed rectangular with little wasted layout space. In addition, this
sublayout is very wirable. Each external connection is accessible on at least two sides
of the sublayout and some are accessible on more. In the example shown, the OUT



47

node is accessible on all four sides of the generated module. Finally, since the gate

matrix layout style tends to minimize parasitic capacitances, it is clear that this module

will also be electrically efficient.
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Figure 5-7: Mapping a Series-Parallel Subcircuit into a Gate Matrix Module

Since the methodology used for placing these generated gate matrix modules is

general in nature, it allows even sublayouts which vary greatly in size to be effectively

placed. Circuits including sized transistors can thus be efficiently realized using this

layout technique. Figure 5-8 illustrates the application of this approach to a circuit

including sized transistors.
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Figure 5-8: General Placement of Gate Matrix Modules
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This technique also provides an efficient means for realizing non-standard circuit
methodologies. An example in which this technique is used to realize the domino CMOS
circuit presented earlier is shown in figure 5-9. The general placement methodology
allows the p-MOS pull-up to be positioned next to the n-MOS pull-down tree rather than
above it. If one considers a circuit similar to the one shown here but in which the
clocked pull-up is replaced with a depletion load device, it becomes clear that this layout
technique should also be effective in realizing NMOS circuits.

PHI D C A B PHI

Figure 5-9: Efficient Realization of a Domino CMOS Circuit

The layout methodology presented here provides an effective means for mapping
many different classes of MOS circuits into layout. The methodology allows sized
transistor circuits as well as non-standard circuit methodologies to be efficiently realized.
This layout methodology, based on the general placement of gate matrix modules, was
thus incorporated into SOLO.
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Chapter 6

Restructuring the Hierarchy

An essential aspect of the layout synthesis approach presented in this thesis
involves a restructuring of the hierarchy used in describing a circuit into a new hierarchy
more well suited to the physical domain.

The strategy which was developed to implement this restructuring involves three

phases. During the first phase, the flattened circuit description is partitioned into

subcircuits appropriate to be mapped into layout using the target single-row gate matrix
layout methodology. This phase was included specifically to accommodate the selected
layout methodology. In the second phase, closely related subcircuits are identified and
grouped. This adds another level of hierarchy to the circuit description. The physical
hierarchy is finalized by preserving those parts of the hierarchical structure of the original

circuit description which do not conflict with the restructurings described above.

In this chapter the exact methodology by which these restructuring phases are

accomplished is presented and a number of restructuring examples are shown.

6.1. Partitioning

The first stage of the restructuring involves a partitioning of the circuit into a

number of subcircuits each of which will correspond to one leaf module in the generated

layout hierarchy. The method by which this partitioning is implemented is clearly

dependent on-the target layout methodology. The target layout methodology involves

the general placement of gate matrix modules corresponding to series-parallel
combinations of similarly sized transistors. The restructuring that is accomplished during
this phase is thus specifically the series-parallel partitioning that was developed in
chapter 5.



50

6.2. Grouping of Closely Related Subcircuits

During the second stage of the restructuring closely related subcircuits are
identified and grouped. There are two very specific types of groupings that are included
in this phase of the restructuring.

1. Subcircuits which constitute the pull-up and pull-down trees of a common
output node are paired.

2. Subcircuits which are a single n-MOS and p-MOS transistor respectively
and which together form a CMOS pass gate are paired.

6.2.1. Grouping Pull-Up and Pull-Down Structures

In order to ensure that all possible pairings of pull-up/pull-down structures are
accomplished, each subcircuit is compared with all other subc!rcuits to determine if the
two form a pull-up/pull-down pair. During these comparisons the following rules are
used to check if two subcircuits do indeed form a pull-up/pull-down pair and thus should
be grouped.

1. The two subcircuits must share a common distinguished vertex.

2. Among the two remaining distinguished vertices, one must be connected
to Gnd and the other must be connected to Vdd.

3. In the case where it is possible to pair a single subcircuit with more than
one other subcircuit, the following additional criteria are used (in this order)
to determine which subcircuits are paired. If more than one subcircuit
satisfies the relevant criterion, then an arbitrary choice is made.

a. Subcircuits which are duals are paired.

b. If the contention is between a number of subcircuits one of which is
a depletion-mode pull-up, then that subcircuit is selected.

c. If the contention is between a number of subcircuits one of which
appeas to be a clocked pull-up6, then that subcircuit is selected.

6A subcircuit appears to be a clocked pull-up if it consists of a single transistor and the net associated with
the gate of that transistor has a name including any one of the strings "phi", "clk', or "clock"
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6.2.2. Grouping Pass Transistor Structures

After pull-up/pull-down structures have been paired, a similar procedure is used to
pair pass transistor structures. In this case however, the following pairing rules are
used.

1. One subcircuit must be a single n-MOS transistor.

2. The other subcircuit must be a single p-MOS transistor.

3. The two transistors must be connected at both the drain and the source.

6.3. Preservation of Existing Hierarchy

The discussion thus far has centered only on the generation of new hierarchy. No
mention has been made of how this new hierarchy is incorporated into the description
hierarchy that is already present.

Each of the restructurings described above involves the introduction of another
level of hierarchy through the grouping of some number of objects in the existing
hierarchy. These restructurings can easily be incorporated into the existing hierarchy
only if all of the grouped objects share a common parent. Therefore, in order to allow
such restructurings to be accomplished, one additional type of restructuring is included.
This restructuring effects changes in the hierarchy so that the objects to be grouped will
share a common parent. More specifically, if a number of objects in the hierarchy are to
be grouped and those objects do not share a common parent, then the hierarchy is
altered so that each of those objects becomes a child of their closest common ancestor.

The third phase of the restructuring is thus not implemented as a single phase but
is instead incorporated into each of the other restructuring phases. This aspect of the
restructuring has the effect of limiting changes in the original hierarchy to only those
necessary to allow the other restructurings to be accomplished. The original hierarchy is
preserved to the extent that it does not conflict these other restructurings.
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6.4. Restructuring Examples

In this section two restructuring examples are presented. In one example the
original hierarchy is appropriate for the physical domain and thus the restructuring simply
results in the addition of new hierarchy to the leaves of the original hierarchy. In the
other example the original hierarchy is not appropriate for the physicai domain. The
subsequent restructuring therefore effects real changes in the description hierarchy.

The same exclusive-or circuit as was used in chapter 4 will be used in
examples and is duplicated in figure 6-1. The circuit graph corresponding to that
is given in figure 6-2.
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Figure 6-1: A Sample Circuit

.
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Figure 6-2: The Corresponding Circuit Graph

6.4.1. An Example with Appropriate Input Hierarchy

For this example it will be assumed that the circuit of figure 6-1 is defined as
follows:

(circuit-macro nor (a b out)
(series vdd out (a b)

:type p :width 24 :length 3)
(parallel out gnd (a b)

:type n :width 8 :length 3))

(defschematic xor (a b out)
(local c)
(set-technology cmos21)
(left a b)
(right out)
(nor a b c)
(series vdd out

((transistor (c) :type p :width 24 :length 3)
(parallel (a b) :type p :width 24 :length 3)))

(series out gnd (a b) :type n :width 16 :length 3)
(transistor out gnd (c) :type n :width 8 :length 3))

n
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The hierarchical structure associate with this input description is shown in figure
6-3.

Figure 6-3: Original Circuit Description Hierarchy

Partitioning the corresponding circuit graph into a minimal number of series-
parallel subgraphs yields the set of graphs illustrated in figure 6-4.

VDD C VDD OUT

C GND OUT GND

Figure 6-4: The Circuit Graph Partitioned into Series-Parallel Subgraphs

Incorporating the associate transistor groupings into the description hierarchy
yields the structure shown in figure 6-5.

The next step in the restructuring process is to group associated pull-up and pull-
down structures. Two pull-up/pull-down pairs are present in this circuit. Adding these

3
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Figure 6-5: Intermediate Circuit Description Hierarchy

pairings to the circuit description hierarchy results in the final description hierarchy
illustrated in figure 6-6.

d� d� A�

d� d� d� -d� A� A�
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Figure 6-6: Final Circuit Description Hierarchy
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6.4.2. An Example with Inappropriate Input Hierarchy

Assume for this example that the circuit of figure 6-1 had instead been defined as
follows:

p-trans (a b c out)
(series vdd c (a b)

:type p :width 24
(series vdd out

((transistor (c)
:typ

(parallel (a b)
:type

n-trans (a b c out)
(parallel c gnd (a b)

:type n :width
(parallel out gnd

((series (a b)
:type

(transistor
(c)
:type n :wid

:length 3)

p :width 24 :length 3)

p :width 24 :length 3))))

8 :length 3)

n :width 16 :length 3)

Lth 8 :length 3))))

(defschematic xor (a b out)
(local c)
(set-technology cmos21)
(left a b)
(right out)
(p-trans a b c out)
(n-trans a b c out))

The hierarchical structure associated with this description is illustrated in figure
6-7.

Partitioning the circuit graph into series-parallel subgraphs results in the same
groupings of transistors as in the previous example. Incorporating these groupings into
this description hierarchy results in the structure shown in figure 6-8.

Once again, the next step is to group associated pull-up and pull-down structures.
In this case however, the pull-up and pull-down structures to be paired do not share a
common parent. The hierarchy is therefore altered by making each of the subcircuits to
be paired a child of their closest common ancestor (in this case XOR). This gives the
two subcircuits to be paired a common parent. After this hierarchy change and the
incorporation of the appropriate pairings into the circuit description hierarchy, the final
description hierarchy shown in figure 6-9 results.

(circuit-macro

(circuit-macro
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Figure 6-9: Final Circuit Description Hierarchy
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Chapter 7

Placement

One of the primary goals of this research was to demonstrate that if the hierarchy
of the physical description of a circuit design is generated in a proper manner then the
subsequent placement and interconnection of the leaf sublayouts of that hierarchy can
be accomplished using conventional placement and routing techniques without a
substantial area or performance penalty over a true full custom design. If this was so, a
system for generating efficient mask level layouts from circuit schematics could be
implemented without the need to develop any new or novel placement and routing
techniques.

The placement program for positioning the generated leaf sublayouts thus
employs conventional placement techniques similar to those employed by other
placement systems. This chapter outlines the program and describes the methodologies
used in its implementation.

7.1. Overview

Although the program presented here is based in large part on techniques that
have been used before, it is not a direct reimplementation of any one existing program.
Its development was guided by the specific nature of this placement problem. More
specifically, the program was designed to satisfy the following set of requirements.

* The placement program must be able to position arbitrarily sized
rectangular modules in a general manner.

* The program must be hierarchical in nature. This allows it to make use of
the circuit description hierarchy generated during the restructuring phase of
SOLO.

* In order to ensure the quality of the generated placements, the program
must base its placement decisions on the specific locations of terminals
within a module as well as on other application specific cost functions.
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The placement algorithms employed by the P System [18] [19] [7] provided a
framework by which a placement roqram meeting these requirements could be
developed.

Consistent with-the philosophy of that system, a placement program based on an
initial rough placement phase and a subsequent refinement phase was designed. A
more detailed outline of this two-phased placement methodology follows.

1. A mincut partitioning algorithm is used to generate a binary placement tree
specifying the relative positions of the modules being placed.

2. A heuristic methodology is used to determine the exact rotations and
mirrorings of each node of the placement tree as well as to establish the
appropriate offset skew between the two children of each node.

7.2. Mincut Partitioning

The first step in developing the placement program was to select the general
methodology by which placement decisions would be made. There were only a few
such methodologies applicable to the general problem of placing rectangular modules.
These included mincut partitioning, placement by simulated annealing[20], and a
knowledge based system approach.

Although any of the methodologies mentioned above might successfully be used
to generate reasonable placements of rectangular modules, the mincut methodology
seemed the most likely to generate placements in a reasonable amount of computation
time. Furthermore, the slicing floorplans generated by the mincut methodology define
exactly the type of rough placement information that is required during the first phase of
placement.

In general, mincut partitioning consists of the partitioning of a set of elements
connected by a set of nets into two sets of elements such that the number of nets which
are connected to elenents in both sets is minimal. Some constraints on the relative
sizes of the two sets must also be included otherwise it is clear that the optimal
partitioning will result when all the elements are in one set and the other set is empty.

In this section, the application of a mincut partitioning methodology to the problem
of module placement will be discussed.

81 I Ir;
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7.2.1. The Mincut Heuristic

No polynomial-time algorithms are known to exist for solving the problem of
mincut partitioning exactly. Because of this, a number of algorithms based on heuristics
have been developed and applied to the problem [21] [22]. In practice, these algorithms
tend to find reasonable solutions while running in near linear time.

This section describes the particular mincut heuristic selected for use in the
placement program. It is similar in function and implementation to the mincut heuristic
used by Koss in his topology generator program [7].

The mincut procedure takes as input a list of elements as well as a list of the nets
connecting those elements. The set of elements is then partitioned such that the
number of nets crossing the partition is small. The final partitioning of elements can also
be constrained in a number of additional ways.

1. Fixed Elements

Certain elements may be constrained to lie on one side of the partition or
the other.

2. Ordered Elements

Certain sets of elements may be ordered. Each element in the ordered set
is assigned an index corresponding to its position in the ordering. The
following must be true in order for a partitioning of the elements to be legal.
Assume e and f are ordered elements.

If index(e) < index(f),

=> if f is on the left, then e must be on the left.
=> if e is on the right, then f must be on the right.

In the case of a vertical partitioning, left and right are replaced by top and
bottom respectively in the above restriction.

3. Independent Balance Constraints

The set of elements to be partitioned can also be divided into several
smaller disjoint sets of elements. In order for a partitioning of the set of
elements to be legal, each of the disjoint sets must independently satisfy a
balance constraint on the relative sizes of the two halves of the partition.
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7.2.1.1. Partition Balance Constraints

Partition balance constraints have only been discussed in general terms up to this
point. In this section, some more formal definitions will be presented.

The basic idea behind balance constraints is to assure that the two partitioned
halves generated by the mincut procedure are roughly equivalent in weight. The weight
of each half is defined to be the sum of the weights of the elements in that half.

In applying the mincut partitioning methodology to the problem of placement, the
weight of each element corresponds to the area of the associated module. Balance
constraints in this case thus ensure that the two partitioned halves are roughly
equivalent in terms of module area.

Desirable area balance characteristics have been obtained by constraining the
element partitioning balance as follows.

* Let WL be the sum of the weights of the elements on the left side of the
partition.

* Let WR be the sum of the weights of the elements on the right side of the
partition.

* The partition is balanced if and only if all of the following relations are
satisfied.

1. I WL - WR I < AMAX

2. WL>O0

3. WR >O

The first constraint ensures that the difference in areas between the two
partitioned halves is below some threshold level. The second and third constraints
assure that each half of the partition includes at least one module. This guarantees that
the recursive application of the mincut procedure to a hierarchical placement problem
will eventually terminate.
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7.2.1.2. The Heuristic Mincut Procedure

Each invocation of the heuristic mincut procedure is iterative in nature. The
procedure begins with an initial balanced partition. A sequence of passes is then
executed with each pass reducing the number of nets crossing the partition.

Each pass consists of a sequence of steps in which elements are moved from one
side of the partition to the other. At each step, the element to be moved is selected on
the basis of which move will result in the highest gain where gain is defined as the
reduction in the number of cross nets. It should be noted that the gain of the selected
element may actually be negative. By allowing moves of modules with negative gains,
the procedure is able to proceed beyond a locally optimal partition. After an element is
moved, it is marked as locked and it is not moved for the remainder of the pass. The
pass continues until no elements remain which can be legally moved. It is not legal to
move an element if that element is locked or if the movement of that element will violate
the partition balance.

The best partition found during the pass is saved and is used as the initial partition
for the next pass. The process terminates when two successive passes result in no
further improvement in the number of crossing nets.

The procedure runs in linear time per pass, and the number of passes tends to be
very small even when a very large number of elements are involved. In practice, the
complete algorithm thus runs in near linear time.

It should be noted that the mincut procedure used in the placement program is
slightly different from the procedure presented here. More specifically, in the placement
program version the cost of each partition is defined to be the sum of the net weights of
each net crossing the partition rather than simply the number of crossing nets. This
allows some nets to be given higher weights than others and allows net weighting
information supplied by the user to be incorporated into the placement process.

__
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7.2.2. Terminology

Before describing in more detail the application of mincut partitioning to the
problem of placement, some terminology will be introduced for use in describing and
defining a placement problem more exactly.

* Box
A box is a data structure which contains all the information necessary to
define a specific placement problem. A box has four sides (top, bottom, left,
and right). Each side has associated with it a list of connections as well as
possible constraints on the relative positioning of those connections. Each
box also includes a list of the modules to be placed within that box.

* Module

A module is a rectangular sublayout to be placed by the placement
program. Each module corresponds to a node in the circuit description
hierarchy. The node may correspond to a single leaf sublayout or to a
larger fraction of the circuit consisting of several sublayouts. Each module
has associated with it a set of terminals as well as the set of nets connected
to those terminals.

* Connection

A connection is a data structure used to represent the intersection of a net
with the side of a box.

* Net

A net is a data structure used to represent the electrical connectivity
between terminals and/or connections.

* Element

An element is a member of the set of objects to be partitioned using the
mincut algorithm. An element is either a connection or a module.

7.2.3. Applying Mincut Partitioning to the Placement Problem

In this section, the exact means by which mincut partitioning is applied to the
problem of placing modules will be discussed.

All the details needed to define a particular placement problem are included in a
box data structure. This structure defines a set of modules to be placed as well as any
constraints on where the external connections to the generated placement must be
made. A box data structure is illustrated in figure 7-1.

Mincut partitioning can be applied to a box data structure (in either a vertical or a

I�
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Connection
Box

.. Module

Net

Figure 7-1: Box Data Structure

horizontal manner) to generate two smaller box data structures. The partitioning
procedure can then be recursively applied to the newly generated box structures as well.
By continuing this process until all of the boxes have been reduced such that each
contains only a single module, the relative placements of all of the modules can be
defined.

The following is a description of the application of mincut partitioning to a box data
structure. The description assumes a partitioning of the box in which two smaller
horizontally adjacent boxes are generated. A description of the vertical partitioning of a
box would be nearly identical.

1. The elements of the box are divided into three disjoint sets. These sets
are defined as follows.

. Top Elements The top side connections. These elements may be
constrained to be ordered if the top side connections were ordered.

* Middle Elements This set includes all the modules included in the
box as well as the left and right side connections. The left and right
side connections are designated as fixed elements.

* Bottom Elements The bottom side connections. These elements
may be constrained to be ordered if the bottom side connections
were ordered.

2. The mincut partitioning algorithm is then applied to the union of these three
sets of elements with each set subject to an independent balance
constraint.
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3. Finally, the partitioned set of elements is used to generate two new box
data structures. It should be noted that the cut set of nets for the partition
of the original box is used to specify the right side connections of the new
left box as well as the left side connections of the new right box.

The process of partitioning a box data structure is illustrated in figure 7-2.

7.2.4. Top-Down Mincut Partitioning

The incorporation of the mincut placement methodology into SOLO is now
described. The mincut module placement procedure is applied in a top-down recursive
manner to the restructured circuit description hierarchy. Each application of the mincut
procedure adds two children to a binary placement tree that is simultaneously being
constructed. The final binary placement tree describes a slicing floorplan of the circuit.

Initially, the binary placement tree consists of a single node and the mincut
procedure is applied to the root of the circuit description hierarchy. A box data structure
is defined which includes the children of the root as modules and the external circuit
connections as connections. The area of each module is defined to be the sum of the
areas of the leaf sublayouts that are descendents of that node in the hierarchy.

The mincut procedure is recursively applied to this box data structure generating
smaller and smaller boxes until each box contains a single module. At the end of each
mincut step, two more children are added to the appropriate leaf of the binary placement
tree with each node corresponding to one subset of modules.

When a box which includes only a single module is generated, one of two
operations are performed. If the module corresponds to a leaf sublayout (i. e. it is a leaf
of the circuit description hierarchy), then that module is simply made a leaf of the
placement tree. If the module corresponds to a node in the description hierarchy, then
the box data structure is modified to include the children of that node as modules rather
than the single parent module. The mincut partitioning process then continues on the
new box data structure.

It is clear that each mincut partitioning step can be applied in either the vertical or
the horizontal direction. If a desired aspect ratio has been specified, then the partitioning
steps are constrained to be in the appropriate direction to a depth of

Max [ WD ,,, , H H i..e 1Depth = log2 Min[ WNaind, HD.,,d I
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Beyond that depth (and at all depths when no desired aspect ratio is specified),
both a horizontal and a vertical partitioning are tried and the one with the lowest partition
cost7 is selected.

7.2.5. Binary Placement Tree

The top-down application of the mincut procedure generates a binary placement
tree specifying the relative positions of the leaf modules. A binary placement tree and
the corresponding slicing floorplan are shown in figure 7-3.

In this section, a more detailed description of the binary placement tree data
structure will be presented.

A binary placement tree is a tree data structure. Each node in the tree has a
pointer to its parent as well as pointers to two children (except for the leaf nodes which
obviously have no children). Each leaf node instead has a pointer to an associated
module.

Each node of the tree also has a number of parameters associated with it which
specify more exactly the relative placement of that node's children. More specifically,
each node has associated with it a partition orientation, a spacing, a skew, and a
transform.

The partition orientation associated with a node specifies whether the two
subtrees pointed to by that node will be placed above and below each other (if the
orientation is vertical) or adjacent to each other (if the orientation is horizontal).

The spacing parameter associated with a node specifies how much space will be
left between the two children of that node. Similarly, the skew associated with a node
specifies the relative offsets of the two children.

Finally, the transform associated with a node specifies how the placement
specified by that subtree should be mirrored and or rotated before being incorporated
into its parent node's placement.

The geometric meanings of the above terms are illustrated in figure 7-4.

7The partition cost is a simple function that takes into account the weighted net partition cost as well as
the area balance of the partition.
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Figure 7-3: A Binary Placement Tree and the Corresponding Floorplan
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7.3. Placement Refinement

Once the mincut partitioning algorithm has been used to generate a binary
placement tree defining the relative positions of the modules being placed, a number of
heuristic procedures are used to refine this rough placement.

The mincut partitioning establishes the form of the binary placement tree and
associates a partition- orientation with each node. The transform, skew, and spacing
parameters remain unbound. This refinement phase involves giving appropriate values
to these parameters. The goal of this phase is to determine a transform, skew, and
spacing for each node that will minimize the cost of the layout both in terms of area and
electrical performance.
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7.3.1. Optimization Techniques

Given a large number of parameters to be adjusted in order to minimize the cost
of the associated layout, it was necessary to select an optimization methodology for
determining the appropriate combination of parameter values. A number of possible
techniques were considered and are listed below.

1. Exhaustive Search
In order to guarantee an optimal solution, one can do an exhaustive
search of all possible combinations of parameters. Each combination is
scored and the combination of values yielding the highest score is
selected. Such an approach is combinatorial in the number of modules
however and thus it is not practical for use with placement tree of any
size.

2. Limited Search

Another approach is to visit each node of the tree only once, trying all
possible parameter values for the given parameter for the visited node,
and to select the value yielding the highest score. While this approach is
certainly computationally efficient, it does not guarantee anything near an
optimal solution. This technique ignores the fact that the environment
surrounding each node being optimized may be changed by the
subsequent optimization of other nodes.

3. Probabilistic Optimization

Still another approach is to use a probabilistic optimization technique such
as simulated annealing [20]. While such techniques tend to generate near
optimal solutions, they also tend to be computationally expensive.

7.3.2. Transforms

The transform is the refinement parameter that has the most significant effect on
the form of the associated placement. This parameter specifies how the subplacement
associated with each node will be mirrored or transformed before it is incorporated into
the placement as a whole.

In developing a methodology to select appropriate transforms for the nodes of the
placement tree, one of the first questions to be addressed concerned exactly which
node's transforms should be adjusted. Should only the transforms of leaf nodes be
varied or should the transforms of all nodes be included? The PI system only adjusts
the orientations of the leaf modules of the placement tree and thus it seemed that such a
limited adjustment scheme might be appropriate. This was not the case however.
Because of the low level layout issues involved in the placement of the small sublayouts

___
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typically generated by SOLO, an approach which adjusted the transforms of all nodes
proved to be a necessity. A technique which adjusted the transforms of all the nodes in
the placement tree was thus developed.

Next, it was: necessary to develop a methodology for selecting the appropriate
combination of node transforms. While computational considerations indicated that only
a limited search technique could be employed, it was hoped that the technique could be
augmented in some way so that the quality of the generated placements could be
improved.

It was observed that a sublayout associated with a given node in the placement
tree is most closely associated with the sublayout corresponding to the sibling node of
the given node. This is to be expected given the nature of the mincut algorithm. It thus
seemed that better placements could be generated by using a technique in which all
possible combinations of transforms for each pair of sibling nodes were tried.

A modified version of the limited search selection technique was thus developed.
In the modified technique, as each node is visited, the transforms of the two children of
that node are adjusted rather than the transform of that node itself. All possible
combinations of transforms for the two children nodes are tried. Although this approach
increases the number of configurations to be scored at each step from eight (the number
of orthogonal transforms) to 64, the increase in computation cost is more than offset by
the improved quality of the generated layouts. Furthermore, the number of
configurations to be scored is still linear in the number of modules.

An outline of the developed recursive procedure for optimizing the transforms of a
placement tree is given below.

1. if the left child of the root of the tree is not a leaf node

then optimize the transforms of the left subtree.

2. if the right child of the root of the tree is not a leaf node

then optimize the transforms of the right subtree.

3.

a. Try all 64 possible combinations of transforms for the two children
nodes of the root of the tree.

b. Score the placement resulting from each combination of transforms
and select the transform pair yielding the highest score.

f
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c. Set the transforms of the two children to the values indicated by the
selected transform pair.

The procedure described above is applied as shown to those nodes whose

partition orientations were not fixed during the mincut process. In the case where one

(or both) of the children nodes have partition orientations that were fixed due to aspect

ratio considerations, the tried rotating transforms for that node are limited to those even

transforms that will not change the fundamental vertical or horizontal nature of the

partition orientation.

7.3.3. Spacing and Skew

The two remaining parameters that must be adjusted during the placement
refinement phase are the skew and spacing associated with each node.

The skew parameter specifies the offset between the two subplacements

associated with the two children of the relevant node. Selecting an appropriate skew for

each node involves tradeoffs between area and electrical performance. This is illustrated
in figure 7-5.
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Figure 7-5: Tradeoffs between Area and Electrical Performance

The selection of a set of appropriate skews can be done using a limited search

technique similar to that which was employed for transforms. In this case however, as
each node is visited, a number of possible skews are tried and scored. The set of skews
to be tried is limited to those for which the two subplacements being adjusted have at
least some overlap. The minimum and maximum tried skews for a sample optimization
problem are shown in figure 7-6.

_ _ _ ,
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Figure 7-6: Minimum and Maximum Tried Skews During Skew Optimization

The problem of spacing adjustment is slightly different from the parameter
optimization problems that have been discussed thus far. While the spacing between to
subplacements should clearly be selected so as to optimize the performance of the
placement as a whole, this spacing should also accurately reflect the space that will be
required for routing.

A methodology for selecting appropriate spacing parameters must therefore have
some means for estimating the amount of wiring space required between the relevant
subplacements. Since global routing is not performed until after the placement phase
has completed, this wiring estimation can be very difficult. Furthermore, the
computationally expensive nature of global routing indicated that it would not be
worthwhile to perform a preliminary global routing during the placement refinement
stage.

A number of heuristic methodologies were developed and tested in an effort to
provide an accurate means of estimating wiring requirements without the need to
perform a global routing. None of these methodologies proved to be very accurate and
at the same time some of them were very computationally expensive. Given the failure
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of even very complex routing estimation heuristics, the decision was made to employ a
simple and computationally efficient routing estimator.

The layouts generated by SOLO have routing channels that while varying
significantly in size tend to have somewhat similar aspect ratios. In other words, the
width of a given routing channel tends to be a fairly fixed proportion of that channel's
length. This observation led to the development of a function for estimating the
appropriate spacing between two subplacements based only on the skew between, and
relevant dimensions of, the two subplacements. Although this method of channel width
estimation was not in an absolute sense very accurate, it performed as well as any of the
much more complicated estimators and it was compu:3tionally very efficient. The ease
with which the width of a routing channel could be changed during the subsequent
routing stage (due to the nature of the binary placement tree) further indicated that such
a rough estimator would be appropriate.

Thus the problems of optimizing the skew and spacing parameters were combined
into a single optimization problem in which the skew is independently set and in which
the spacing is expressed as a function of the selected skew.

An outline of the skew and spacing refinement procedure is given below.

1. If the left child of the root of the tree is not a leaf node

then optimize the skew and spacing of the left subtree.

2. if the right child of the root of the tree is not a leaf node

then optimize the skew and spacing of the right subtree.

3.

a. Try all overlapping skews for the root of the tree starting with the
minimum overlapping skew and continuing up to the maximum
overlapping skew.

b. For each skew, compute the appropriate spacing as a function of
that skew.

c. Score the placement resulting from each skew (and associated
spacing) and select the skew and spacing yielding the highest
score.

d. Set the skew and spacing of the node to the values indicated by
the selected skew and spacing.
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7.3.4. Repeated Refinement

As was stated before, the limited search optimization technique selected for use in
both refinement procedures presented here can find far from optimal solutions because
it fails to take into account subsequent changes to other parameters when selecting the
appropriate value for a given parameter. It was thus hypothesized that better results
might be obtained by repeating the refinement procedures several times.

It was observed that the selected parameter values would converge on a stable
set of values after roughly three optimization passes. The number of passes required
was fairly independent of the size of the placement tree. This was not surprising given
the local nature of the layout features that tended to be optimized by these parameter
adjustments.

The full refinement phase was thus designed to include three passes of both the
transform optimization and skew and spacing optimization procedures. The applications
of the different procedures were interleaved in order to maximize the effectiveness of the
repeated refinement.

The full placement refinement procedure is outlined below.

* The following is repeated three times:

1. The transform optimization procedure is applied to the placement
tree.

2. The skew and spacing optimization procedure is applied to the
placement tree.

7.3.5. Placement Scoring

The concept of scoring placements in order to determine the relative desirability of
various placement configurations has been referred to in general terms many times
throughout the discussion of placement refinement techniques. In this section a more
detailed explanation of the exact methods and metrics used in evaluating placement
configurations will be presented.

The evaluation metrics that have typically been applied to high level placement
problems (such as placing the components of an entire chip) have been based almost

i·
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exclusively on the evaluation of global circuit characteristics such as area or total

interconnection length [23]. When evaluating placements on the scale of those

generated by SOLO, lower level layout issues must also be taken into consideration.

In evaluating the desirability of a given placement configuration there are three
basic factors that are considered.

1. Electrical Performance

2. Area and Aspect Ratio

3. Suitability for Well Positioning

Detailed explanations of the metrics that are used to evaluate these different
placement characteristics follow.

7.3.5.1. Electrical Performance

In order to optimize a circuit layout in terms of electrical performance, it is
necessary to minimize the interconnection lengths between connected nodes. Long
interconnection paths result in the high resistances and parasitic capacitances that are
typically associated with poor circuit performance.

A number of evaluation metrics geared towards the minimization of total
interconnection lengths have thus been developed. Since intermodule routing is not
accomplished until after the placement phase however, these metrics have been based
only on estimates of the total wire length required. The methods used for estimating
interconnection length given a set of net terminal locations have included the calculation

of the net half perimeter, the complete graph, the steiner tree, and the minimum
spanning tree [23].

While these different techniques do provide varying levels of accuracy in
estimating the interconnection length of the subsequent routing, each proves to be
inadequate wben applied to the low level placement problem presented here. The
problem with these metrics stems from the fact that they fail to accurately model the true
costs of interconnection that are incurred during the subsequent routing.
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In the simplest terms, an interconnection path between two terminals can be
characterized as one of two types, either a short interconnection or a long
interconnection. These two types are described in more detail below.

1. Short Interconnections

These interconnections involve terminals that are very closely situated.
The associated interconnection wires typically involve few or no jogs and
include no layer changes. They are sometimes effected by the simple
abutment of the two relevant modules. The costs of these connections,
both in terms of layout area and electrical performance are typically very
low.

2. Long Interconnections

These interconnections involve terminals that are separated by some
distance. The associated interconnection wires generally involve many
jogs and layer changes. In order to avoid conflicts with other modules, the
interconnection paths often deviate significantly from the straight line path
between the associated two terminals.

Metrics based simply on estimated total interconnection length necessarily weigh
each unit of interconnection length with equal importance. A placement which results in
a spanning tree made up of two interconnection paths each of length 50 will be scored
the same as a placement which results in a tree with one path of length 5 and another of
length 95.

A more appropriate metric would reflect the fact that a spanning tree made up of
one long and one short interconnection is more desirable than one made up of two long
interconnections. Although it might seem that such a biased metric might lead to
placements with very long total interconnection lengths, such inefficient placements do
not occur. The general form of the layout is fixed when the placement tree is initially
constructed. The mincut partitioning algorithm ensures that this initial placement has
associated interconnection lengths that are of a reasonable size. The subsequent
optimizations effected during the placement refinement phase are very local in nature.
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An interconnection length evaluation metric biased in favor of short
interconnections was thus developed.

The general form of the evaluation procedure is outlined below.

1. A model of the interconnection paths that will constitute the subsequent
routing is created.

2. A score is obtained for each of these paths based on its length. The
scoring function is biased in favor of very short interconnection paths.

3. The scores for each of the interconnection paths are summed to provide a
biased interconnection length metric.

The first step of the procedure generates a model of the interconnection paths that
will be used in wiring the given net. Of the interconnection length estimators discussed
here only the minimum spanning tree and steiner tree algorithms generate models of the
exact paths that will used during routing. Although the steiner tree provides the most
accurate model of the subsequent routing paths , the steiner tree problem is NP
complete [24]. A steiner tree based estimator is thus not well suited to the computational
requirements associated with a procedure that must be executed many times.
Conversely, a minimum spanning tree can be calculated in an efficient manner while at
the same time providing a reasonably accurate model of the subsequent wiring paths. A
minimum spanning tree algorithm is thus used to provide the needed model of the
interconnection paths that will be included in the subsequent routing.

Given a spanning tree which defines the exact form of the estimated wiring, a
scoring function which can associate an appropriate score with each of the constituent
interconnection paths is needed. The function should calculate a score as a function of
interconnection distance. It should further be biased such that the total score associated
with a spanning tree made up of one short and one long interconnection path will be
higher than the total score of a spanning tree (of equal total length) made up of two
medium length paths. A scoring function well suited to this task is given below. A plot of
the function is-shown in figure 7-7.

Score = 50(e- d/5 + e- d/20)

The distance units used in the scoring function represent grid units in the target
symbolic layout environment. When mapped into mask level layout, each unit
corresponds roughly to the distance between the center of a minimum width wire and the
center of an adjacent contact at minimum design rule spacing. At a distance of zero
units, the function attains its maximum value of 100.
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Figure 7-7: Interconnection Distance Scoring Function

The function has a number of desirable properties. Most importantly, it scores
short interconnection distances more highly than long interconnection distances.
Furthermore, the function is not linear. The exponential factors ensure that the slope of
the function decreases as distance increases. This has the effect of scoring a
movement which decreases an interconnection distance from 5 to 2 more favorably than
one which decreases a distance from 55 to 52.

The scoring function includes two exponential factors, one with a time constant of
5 units and the other with a time constant of 20 units. The factor with the shorter time
constant gives the expression very high gain at short distances. This gives decreases in
interconnection lengths at very close distances high importance. Two connections that
are closely situated will thus tend to be brought even closer together so that a wire jog
may be avoided or a connection by abutment may be made. The factor with the longer
time constant ensures that reasonable gain still exists at longer distances. An
interconnection path of length 37 is scored more highly than a path of length 40.
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This nonlinear scoring function was combined with a minimum cost spanning tree
algorithm to provide an appropriately biased interconnection length metric. The
procedure for calculating this metric is outlined below.

1. For-each relevant net8:

a. Compute a minimum cost spanning tree.

b. For each edge (i. e. connection path) in the spanning tree:

i. Generate an associated score by applying the
interconnection distance scoring function to the distance of
that path.

ii. Scale this score by the relative weighting of the net.

c. Sum these weighted scores.

2. Sum the scores from each net.

It is interesting to consider how this biased interconnection length metric scores
the two equal length spanning trees discussed earlier. Assume again that one has
interconnection paths of lengths 50 and 50 units and the other has lengths of 95 and 5.
The two trees are no longer scored the same. Applying the biased metric to the
spanning tree with paths of lengths 50 and 50 results in a score of only 8. Applying it to
the tree with paths of 95 and 5 units yields a score of 57.

7.3.5.2. Area and Aspect Ratio

Layout dimensions are the placement characteristics that are most easily captured
in an evaluation metric. Each node has associated with it a width and height. These
values are initialized immediately following the construction of the binary placement tree
and are updated appropriately with each change of a parameter during the refinement
phase. The width and height values associated with each node in the tree are thus
always kept accurate.

The estimated height and width of a placement tree can be obtained by simply
using the height and width associated with the root of that tree. Although these values
do not account for the space required to route to external connections and use only

8A relevant net is one for which the relative positions of its terminals may be changed by the current
parameter adjustment.
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estimates of the internal routing area, they do provide good rough estimates of the
dimensions of the generated layout.

If all that was desired was a metric to measure the estimated layout area of a
given placement configuration, such a metric could be obtained by simply multiplying the
height and width values associated with the root of the placement tree. A metric which
also measures the compatibility of a given placement configuration with the desired
aspect ratio is needed however. Although the rough form of the placement tree is made
compatible with the desired aspect ratio during the mincut partitioning phase, the
introduction of aspect ratio considerations into the refinement phase tends to make the
aspect ratios of the generated layouts match the desired aspect ratios somewhat more
closely.

Aspect ratio considerations can be incorporated into a layout area metric by using
an expression which scales each dimension of the placement tree by the desired size of
the opposite dimension and then sums the square of these two terms. This placement
tree size metric is given below.

Size = [ W. HDesired ]2 + [ H. WDesired ]2

For a given area (i. e. W.H = K) , this expression is minimized when the height

and the width are in the same ratio as the desired height and the desired width. This
expression thus provides a metric that will be minimized when applied to placements
that are small in area and are of the desired aspect ratio.

7.3.5.3. Suitability for Well Positioning

The basic idea in creating a placement that is well suited to well positioning is to
cluster sublayouts that are of the same diffusion type. The spacing required between
different types of diffusion tends to be quite large and thus an effort is made to avoid
such interfaces. By grouping sublayouts that are of the same diffusion types the number
of such interfaces carn be minimized.

Originally, an evaluation metric was used in which the two different diffusion types
were treated much like two signal nets each connected to the appropriate sublayouts.
By trying to minimize the biased interconnection length metric associated with each of
these pseudo nets, sublayouts which were of the same diffusion type tended to be
clustered. Although this technique did work as desired, an unanticipated problem
occurred.
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While the metric did tend to cluster sublayouts of the same diffusion type, it made
no effort to control the relative positions of the N-type and P-type diffusion areas. Recall
that P-type diffusion areas generally have connections to Vdd while N-type areas
generally have connections to Gnd. The positioning of Vdd and Gnd connections thus
tended to be dominated by clustering considerations. Because the subsequent routing
program was biased in the way it would connect to power terminals (only connecting to
Gnd on two sides of a sublayout and to Vdd on the remaining two sides), the placements
that were generated (primarily on the basis of clustering considerations) would often
have connection paths to Vdd and Gnd that were unnecessarily long and indirect.
Although one might have thought that the net interconnection length minimization metric
would have helped to avoid such problems, this was not the case. This metric did not
take into account the biased nature of the routing program when wiring power and
ground.

The associated long meandering power lines introduced significant costs in the
way of layout area. These costs were typically higher than those that would have
occurred had the placement been guided by a suitability for power wiring metric rather
than by clustering considerations.

It was thus necessary to develop an evaluation metric that would tend to cluster
sublayouts of the same diffusion type (as before) but which would also ensure that
placements in which the relative locations of N-type diffusion and P-type diffusion areas
were well suited to the biased routing program would be scored more highly than those
in which they were not.

Such a scheme was developed and is described below. The basis of this
technique involves the association of a simple diffusion type with each node of the
placement tree.

There are seven basic diffusion types one of which is associated with each node.
The different types of nodes are listed below and are illustrated graphically in figure 7-8.

1. N type node.

2. P type node.

3. N-P type nodes (four different orientations).

4. Mixed type node.

Each diffusion type is meant to reflect the diffusion area characteristics of the
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Figure 7-8: Graphic Representations of the Seven Different Diffusion Types

associated subtree. Leaf nodes are either N-type or P-type depending on the diffusion
type of the associated sublayout. The types of the higher level nodes are determined by
combining the types of the two associated children nodes in obvious ways. A number of
typical node combining rules are shown in figure 7-9.

A binary placement tree in which the diffusion types of the nodes are graphically
labeled is shown in figure 7-10.

Immediately following the construction of the binary placement tree, a depth-first
procedure is used to give appropriate initial diffusion type values to each of the nodes in
the tree. Because changing the transform associated with a node in the placement tree
can effect the diffusion types of other nodes, a special procedure must be included to
update the appropriate diffusion types whenever a transform parameter is changed. In
this way the diffusion types associated with each node in the tree are always kept up to
date.

Each of the seven diffusion types has an associated score based on its relative
desirability. N, P and mixed diffusion types each have an associated neutral score since
rotating a node of one of these types will not affect the basic nature of the placement in
terms of N and P diffusion area positioning. The two N-P diffusion types which are
oriented so as to be well suited to the biased routing of power wires are given high
scores because power connections to the associated sublayouts can be made in an
efficient manner. Conversely, the two other N-P diffusion types are given low scores.
Making power connections to the associated sublayouts can be very expensive.

N P

_
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Figure 7-10: A Placement Tree and Floorplan Showing the Node Diffusion Types
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In order to evaluate the overall desirability of a placement tree (in terms of

suitability for well positioning), the scores associated with the diffusion types of each
node in the tree are first scaled by the total area of the associated subtree. These
weighted scores are then summed and a metric reflecting the relative desirability of the
entire placement tree is obtained. A placement which is well suited to the biased routing
of power nets will have many N-P type nodes oriented in the correct way and which thus
have high scores. Similarly, a placement in which sublayouts of the same diffusion type
are well clustered will have many high scoring N-P type nodes. The clustering will lead
to high scoring diffusion types many levels up from the leaf level. A more fragmented
positioning will instead lead to mixed diffusion types very close to the leaf level.
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Chapter 8

Routing

After the placement of the leaf modules is completed, a routing program is used to
define the exact placement of the wires interconnecting the various modules and the
external connections. A set of specifications defining more completely the requirements
of the routing program is given below.

* The program need not be totally general in nature. More specifically, it is
not necessary to have the capability to define a set channels linking
arbitrarily placed rectangular modules. The nature of the placement tree
definition of the positions of the leaf modules is such that the appropriate
routing channel structure is inherently defined. Furthermore, the defined
channel structure will always be such that it is possible to route all the
channels using channel routing rather than switch-box routing capabilities.

* The routing program must be able to effectively utilize information about
terminals internally connected within a module. By using this information,
redundant connections to internally connected terminals can be avoided.

* The program should be capable of routing both signal and power nets. The
program should further ensure that power nets run exclusively in metal.

Although this set of specifications indicated that a direct reimplementation of any
one of several existing routing programs would produce acceptable results, a survey of
the techniques employed by these existing programs led to the conclusion that better
results could be obtained by using a slightly different routing technique specifically

designed for the intended symbolic layout routing environment. The fact that the

requirements Qf the routing program were in some ways less stringent than those for a

truly general routing program (due to the nature of the placement hierarchy generated by

the placement program) also indicated that an application specific routing program would
be appropriate.

Thus, a new placement program was written for use as part of SOLO. A detailed
description of this routing program follows.

___
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8.1. Overview

In this section a general overview of the routing problem is given and an outline of
the channel routing approach to solving that problem is presented.

8.1.1. The Routing Problem

The complexity of the routing problem is such that it is impossible to solve the
problem optimally for instances containing more than a few modules and a few nets. As
a result, the algorithms generally used to solve the routing problem have been heuristic
in nature and have imposed a number of simplifying assumptions on the form of the
completed routing [25].

There are a number of different heuristic methodologies that are typically applied
to the routing problem.

* maze-running routers [26]

* line probe routers [25]

* channel routers [27]

While each of these methods has a number of associated advantages and
disadvantages, only the channel routing methodology can provide a reasonable
guarantee of routing success by considering all nets simultaneously during the routing
process. Furthermore, channel routing is among the most computationally efficient of
the above methodologies. The channel routing methodology was thus selected as the
basis of the routing program.
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8.1.2. Channel Routing

Channel routing simplifies the routing problem by partitioning the problem into a
number of simpler subproblems.

1. First,the routing surface is divided into a number of disjoint rectangular
areas called channels. The routing surface is that part of the layout that is
not occupied by the placed modules.

2. Next, a global router selects which channels each net traverses.

3. Finally, a channel router completes the detailed routing of each channel.
This final routing is generally constrained to utilize different layers for
different directions. All horizontal interconnection segments are routed in
one layer while all vertical segments are routed in a second layer that is
insulated from the first. This requirement is relaxed in the case of power
nets.

8.1.3. Terminology

In this section the terminology used in specifying a routing problem is defined.

* Module

A module is an atomic, rectangular sublayout that has been placed by the
placement program. Each module has associated with it a set of nodes and
their associated terminals.

* Terminal

A terminal is a point where a connection to a node can be made. Each
terminal has an associated position and layer. It is assumed for the
purposes of routing however that any terminal can be accessed on either of
the two routing layers by the addition of a single contact (if necessary).
While terminals are generally located on the borders of modules, a terminal
may also be used to represent a connection point at the end of a channel or
a point on the border of the layout where an external connection is to be
made,

* Node

A node is a set of terminals which are electrically connected prior to routing.
All those terminals which are electrically connected within a given module
are associated with a single node.

* Net

A net is a data structure used to represent a set of nodes to be
interconnected by the routing program.

Modules and terminals are illustrated in figure 8-1.

�
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Figure 8-1: Routing Problem Terminology

8.1.4. The Routing Process

The input to the routing program consists of set of placed modules (each with
associated nodes and terminals) as well as a number of external connections as
represented by node/terminal pairs.

The goal of the routing program is to interconnect all the nodes associated with
each net. Connections to a node can only be made through an associated terminal. If a
node has more than one associated terminal, whichever terminal is most convenient
may be used. A signal net may even be routed through a module by entering a node
through one terminal and exiting through another.

- - - - - - -- - " - - -- - - -II
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The routing program accomplishes this interconnection through the application of
a standard channel routing methodology. A summary of the complete routing process is
given below.

1. A routing channel is created for each node of the placement tree. Each
channel corresponds to the rectangular routing area between the two
children of the associated node.

2. Four surrounding channels are added to provide a routing interface to the
external connections.

3. Each net is globally routed, determining which terminals it will be
connected to and which channels it will use.

4. The routing specification for each channel in the layout is generated.

5. A detailed routing of each of the channels is performed.

8.2. Channel Creation

The first step in the routing process is to define the dimensions and locations of
the routing channels which make up the routing surface.

In the case of a placement of rectangular modules defined by a binary placement
tree, the channel definition process is quite straightforward. A routing channel is
associated with each node of the placement tree. The main dimension of the channel
runs perpendicular to the orientation of the node. The width of the channel is defined by
the spacing between the children of the node. After the channel has been placed, the
effective sizes of the two leaf modules are expanded to extend to the ends of the routing
channel. This composite module, consisting of two expanded modules and a routing
channel will constitute a single module at the next level of the placement tree. Although
expanding the two leaf modules in the manner described here prevents the expansion
space from being used for routing, this operation assures that the composite module is
rectangular. The area minimization metrics used during the placement phase assure
that the area wasted due to this expansion is minimized. The structure of a composite
module is shown in figure 8-2.

��
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Figure 8-2: A Composite Module

This process of adding routing channels to the placement tree starts at the leaf
nodes of the tree and continues to the root node. The set of channels associated with a
complete placement tree is illustrated in figure 8-3.

Figure 8-3: Routing Channels Associated with a Placement Tree
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The set of channels defined by a placement tree provides the necessary routing
surface to connect the terminals on different leaf modules but it provides no means for
connecting those terminals to external connections. Four surrounding routing channels
are thus added to provide an interface to the external connections of the layout.
Although all four surrounding channels will rarely be needed, a complete set is included
to accommodate all possible interconnection situations. Since unused surrounding
channels will not contribute to the final layout area, it is not necessary to determine
which surrounding channels are needed and which are not. A complete set of routing
channels for a set of placed modules is shown in figure 8-4.

Figure 8-4: A Complete Set of Routing Channels
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8.3. Global Routing

Once the routing surface has been defined, a global router is applied to each of
the,nets in the layout. The router determines which terminals each net will be connected
to and which channels each net will .traverse.

8.3.1. Generating a Graph Model

A graph model representing the relative distance between the terminals and
external connections must be generated before the global routing can be accomplished.
This graph model is generated as follows.

1. At each end of each routing channel a set of nodes and associated
terminals is created. Each set contains one node/terminal pair for each
net in the layout. These pseudo terminals are positioned at the center of
the line defining that end of the channel.

2. Vertices are created and associated with each node in the layout.

3. Each terminal in the layout is associated with the appropriate adjacent
channel or channels. Terminals on modules will typically be associated
with a single channel while the terminals positioned at the ends of
channels will be associated with the two adjacent channels.

4. For each channel:

* For each signal net:

All the terminals of that net associated with that channel are
interconnected using a fully connected graph of edges. These
created edges are added to a list including all the edges positioned
within that channel.

While in actuality it is the vertices associated with the terminals that
are joined by edges rather than the terminals themselves, a
reference to the connection of terminals (rather than to the
connection of vertices) is made here. This is intended to stress the
fact thiat an edge is added for every possible pair of terminals, not
just for every possible vertex pair.

* For each power net:

All the usable terminals of that net associated with that channel are
interconnected using a fully connected graph of edges. These
created edges are added to a list including a the 'edges positioned
within 'that channel.

For the Vdd net, usable terminals are those terminals associated
with the bottom and rig't of the channel (if the channel is 'hoizontal)
or those termin'als associated with the top and left of the channel (if
the channel is vertical).

-NNNNNNNNN�
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For the Gnd net, usable terminals are those terminals associated
with the top and left of the channel (if the channel is horizontal) or
those terminals associated with the bottom and right of the channel
(if the channel is vertical).

These restrictions are relaxed somewhat on two of the external
channels to allow feedthrough power busses to be formed.

By restricting the usable terminals for power nets in this manner, it
can be assured that no power net will ever cross a channel (by
being connected to both the top and bottom of a horizontal channel
or to both the left and right of a vertical channel). It is further
assured that the Vdd and Gnd nets will never cross. This allows
power net wiring to be accomplished on a single layer.

5. Finally, a weight is assigned to each edge of the graph. The weight
associated with each edge is a complex function based on the rrnhattan
distance between the two terminals associated with that edge as well as a
number of additional penalty functions.

One penalty function is applied if the two terminals associated with the
edge are on different layers. This additional weighting gives preference to
edges connecting terminals on the same layer over edges connecting
terminals separated by a similar distance but connected to two different
layers. An additional penalty is applied if the edge being weighted crosses
an edge connecting the output nodes of a pull-up/pull-down pair. This
penalty weighting is intended to allow the connecting wire between a pull-
up and pull-down to be run in metal (or diffusion) whenever possible.

The routing graph associated with a typical signal net is illustrated in figure 8-5.
The graph associated with a power net is shown in figure 8-6. Each of the contiguous
darkened areas represents a vertex. Those that are small circles correspond to nodes
with single associated terminals. The more unusual shapes correspond to nodes with
multiple internally connected terminals. The rounded ends of these shapes are
positioned at the associated terminal locations.

The diagram of power net routing illustrates the fact that connections to power
terminals are only made on certain sides of modules. It is thus necessary to consider
the constraints that must be placed on power terminal locations to ensure that any
required interconnections can be accomplished. Only one such constraint need be
applied.

*Each power node must be accessible through terminals on two opposite
sides of the module.

If this constraint is followed, then any power node can always be wired regardless
of the orientation of the associated module.

I _



100

The Routing Graph Associated with a Signal NetFigure 8-5:
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Figure 8-6: The Routing Graph Associated with a Power Net

8.3.2. Finding the Best Routing

Given a connected routing graph for each net in the layout, the problem of globally
routing each net is reduced to the problem of finding an appropriate spanning tree of the
associated routing graph.

It is important to notice at this point that the problem of globally routing the nets of
the layout is not the same as the problem of finding the minimum weight spanning tree of
the routing graph as it has been generated. The routing graph includes the pseudo
vertices located at the ends of the routing channels. These vertices are intended to
provide paths whereby the vertices associated with true terminals and external
connections may be connected. It is certainly not desirable to have the global routing of
each net connect each of the pseudo vertices associated with that net (one at the end of

__
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each routing channel). Instead, the global routing should define a spanning tree which
includes all the true vertices of the graph and only those pseudo vertices which are
needed to allow all the true vertices to be connected. Such a spanning is called a
Steiner Tree. [24]

8.3.2.1. The Steiner Tree Problem

Before formally defining the Steiner tree problem, some formal definitions of
weighted graphs and spanning trees will be presented. The definitions given below are
taken from [28].

* An undirected weighted graph G=(V,E,w) consists of a finite set of vertices
V, a set of edges E, and a weight function w which maps E into the set of
non-negative real numbers.

* A tree T= (VT C V, ET ~ E) in G is a connected subgraph of G such that the
removal of any edge in the subgraph will leave it disconnected. For any
v'c V we say that T spans V in G if V' VT

* A tree which spans V in G is called a spanning tree of G.

* The weight of a tree T is defined to be W(T)= X (w(e)le E ET)

* A leaf of a tree T is a vertex v E VT which is connected to one and only one
edge e E ET.

The Steiner tree problem can now formally be defined as follows [28].

Let G denote an undirected weighted graph and let D s V denote a subset of the
vertices in G with IDI > 1. A Steiner tree TD with respect to D in G is a tree in G that
spans D and has leaves from only the set D.

A minimum weight Steiner tree with respect to D in G is defined to be any Steiner
tree with respect to D in G whose weight is minimum among all such Steiner trees.

An example showing a weighted graph and the minimum weight Steiner tree
spanning the distinguished vertices of that graph is given in figure 8-7.

8.3.2.2. A Steiner Tree Algorithm

The problem of finding a minimum weight Steiner tree given a fixed graph as input
is known as the Graph Steiner Tree Problem. Since this problem has been shown to be
NP-hard [24], heuristic methods have been developed for finding near optimal solutions.

.. MM MMMM
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Figure 8-7: A Minimum Weight Steiner Tree

The algorithm used in SOLO and presented here is similar to one developed for
use in the global routing phase of the PI placement and routing system [28] [18].

The algorithm is a generalization of Dikstra's single-source shortest path
algorithm [29]. An explanation of Dikstra's algorithm will thus be presented first.

Given an undirected weighted graph G=(V,E,w) and some vertex v E V Dikstra's
algorithm computes a minimum weight path from v to any other vertex in V. Dikstra's
algorithm proceeds as follows (taken from [29]).

1. S *- {( Vo };

2. for each v E V do
C(v) - oo;

3. C(vo) O;

4. for each v V- { v) do
C(v) w( {,v o );

5. while S * V do

a. Choose a vertex v' e V-S such that C(v') is minimum;

b. Add v' to S;

c. for each v E V-S do

C(v) - Min[C(v), C(v')+ w( (v',v} )
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This single-source shortest path algorithm can easily be generalized to include
multiple sources. It can further be modified to terminate when a minimum weight path to
a particular vertex (or to some member of a particular set of vertices) is found.

A modified version of Dikstra's algorithm which, given an undirected weighted

graph G=(V,E,w), finds a minimum weight path between some member of the set TE V

and some member of the set U a V (Tr U = 0) is given below.

1.S -- T;

2. for each v e V do

C(v) - o;

3. for each v E S do
C(v) - O;

4. for each v E V-S do
for each v' e S do

C(v) - Min[C(v),w( { v',v} )]

5. while S c U = 0 do

a. Choose a vertex v' E V-S such that C(v') is minimum;

b. Add v' to S;

c. for each v E V-S do

C(v) <-- Min[C(v), C(v')+ w( {v',v} )]

6. Return v'

7. Return the set of edges included in the minimum weight path.

This algorithm returns the vertex of U that is being connected to the vertices of T

as well as the edges included in the minimum weight connecting path.
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An approximate minimum weight Steiner tree with respect to D in G can thus be

constructed by simply the repeated application of this modified algorithm.

The complete minimum weight Steiner algorithm is summarized as follows.

1. E < 0

2. Select some vertex v E D.

3. T- (v}

4. U - D-{v};

5. while U • 0 do

a. Apply the modified Dikstra's algorithm to the sets T and U.

b. Set v equal to the vertex returned by the modified algorithm.

c. Set F equal to the set of edges returned by the modified algorithm.

d. T- Trn{v);

e. U U-(v};

f. E <-- ErF;

6. Return E.

This Steiner tree algorithm involves O(ID I) Dijkstra computations, each with time
complexity O(IEl logl VI). This algorithm will thus have a worst case time complexity of
O(ID I IEl log IVI).
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8.3.2.3. Improving the Power Routing

After spanning trees for each of the routing graphs have been been generated, a
final optimization step is applied to the Vdd and Gnd routing graphs.

Recall that each power routing graph is initially constructed using only a subset of
the edges that would be included in the routing graph associated with a comparable
signal net. The set of edges included in each power routing graph is such that the final
routing of the graph can be accomplished exclusively in metal regardless of the final
routing configuration of the other nets.

Once the global routing of the signal nets has been completed however, it is
possible to add some of these previously unusable edges to the power routing graphs
while at the same time still ensuring that the final routing of these graphs can be
accomplished entirely in a single layer of metal.

This optimization of the Vdd and Gnd routing graphs is accomplished as follows:

1. For the Gnd routing graph:

Maximally high weights are assigned to those edges in the routing graph
that are not included in the spanning tree. This ensures that a newly
generated spanning tree will only include edges from the original spanning
tree or edges that are subsequently added.

Edges that had been previously excluded are added to the routing graph if
they either:

a. Do not cross the channel and do not cross any wired power edges.

b. Do cross the channel but do not cross the wired edges of any net.

Note that in this context two edges are said to cross if straight lines drawn
between the two terminals associated with each edge cross.

These restrictions are sufficient to ensure that the final spanning graph can
still be wired entirely in metal.

A new minimum weight steiner tree is generated.

2. For the Vdd routing graph:

The procedure outlined for the Gnd routing graph is repeated.
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8.4. Channel Routing

At this point, each channel presents an independent routing problem. The length
of each channel is dictated by the placement of the leaf modules. Furthermore, a
number of strands have been defined for each channel. Each strand defines a set of
positions along the edge of the channel that must be interconnected.

8.4.1. Terminology

In this section the basic terminology used in describing a channel routing problem
is summarized in detail.

* Channel

The channel is a gridded rectangular region where the routing is
accomplished. The size of a channel is generally described in terms of the
number of columns and rows it includes.

* Strand

A strand is a list of terminals to be connected within the channel. Although
each strand must correspond to a single net, a given net may have more
than one associated strand within a channel.

Each strand may include any number of top or bottom terminals, but is
restricted to include at most one left and one right terminal. While a strand
is generally implemented by a single horizontal segment and an appropriate
number of vertical segments to provide connections to the top and bottom
terminals, a strand is occasionally broken into two or more horizontal
segments occupying different rows through the use of doglegging.

* Terminal

A terminal defines one connection point of a strand with the side of a
channel. Each terminal is associated with one side of the channel (left,
right, top, or bottom). Those terminals along the top or bottom of the
channel each have an associated position which specifies at exactly which
column position the connection must be made. Left and right terminals
have no associated positions and thus connections to the left and right
sides of.a channel may be made at any position along the appropriate side.

* Horizontal Segment

A horizontal segment is a segment of interconnecting path that lays on a
row of the channel area.

* Vertical Segment

A vertical segment is a segment of interconnecting path that lays on a
column of the channel area.



108

8.4.2. The Channel Routing Problem

A channel router is designed to route the nets that interconnect the terminals on
the sides of the channel. The input to a channel routing program consists of a list of
strands to be routed as well as a specification of the fixed length of the channel.

A strand consists a set of terminals to be interconnected. When routed, each
strand is realized by a connected set of vertical and horizontal segments. It is assumed
that only two layers are available for interconnection and that the horizontal segments
are constrained to run in one layer while vertical segments must run in the other.

The goal of a channel router is to complete the required interconnections (as
defined by a set of strands) using the available number of columns and a minimum
number of rows while at the same time minimizing interconnection lengths.

8.4.3. Generating Channel Routing Specifications

In moving between the global routing and channel routing phases of the program,
the results of the global router are used to generate an input specification to the channel
router for each of the channels in the layout.

Recall that the input to a channel routing program consists of a list of strands to be
routed as well as a specification of the number of routing columns available in the
channel.

Since the number of columns available in each channel is defined by the
placement of the leaf modules in the layout, this input specification can be easily
ascertained.

It is also fairly straightforward to generate an appropriate list of strands to define
the routing that must be accomplished in each channel. Recall that each channel has
associated with it a list of the edges (from the various routing graphs) which are
positioned within that channel. It is a simple matter to reduce that list to include only
those edges that are part of one of the generated spanning graphs.

While these spanning edges do specify the interconnections that must be realized
by the channel routing program, they do not correspond on a one to one basis with the
strands that must be used to specify the desired routing. Some strands correspond to
single edges whereas others correspond to sets of edges which form connected graphs.
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As a result, the list of spanning edges within the channel is next partitioned into a
number of sets of edges with each set including those spanning edges which together
form a connected graph. The connectivity represented by each of these connected
graphs (and thus also by each set of edges) constitutes a strand.

A strand is formed from each corresponding set of edges by simply generating a
list including all the terminals (without repeats) associated with all the edges in the set.
Applying this process to each of the sets of edges generates the appropriate list of
strands for the channel.

8.4.4. Formalizing the Problem

The goal of a channel routing program can be more formally stated as follows.
Find an assignment of horizontal and vertical segments such that the interconnection
requirements specified by the associated strand set are satisfied and no design rule
violations occur.

The design rules which constrain the assignment of horizontal and vertical
segments can be summarized as follows.

Two horizontal segments on the same layer, which belong to two different strands
and which have in common at least one column, cannot overlap and must be assigned
to different rows. This is a horizontal constraint.

In the same way, two vertical segments on the same layer, which belong to two
different strands and which share the same the same column, cannot overlap. The
lowest row occupied by the upper segment must be above the highest row occupied by
the lower segment. This is a vertical constraint.

The channel routing problem as presented here can utilize an unlimited number of
rows. If it is assumed, at least initially, that each strand is implemented with a single
horizontal strand, then horizontal constraint violations can always be avoided by simply
using a sufficient number of rows. In the worst case a single horizontal segment (and
thus also a single strand) would be assigned to each row.

Finding an assignment of segments that will not present any vertical constraint
violations is more difficult however.

If it is again assumed that there is only one horizontal segment per strand, then it
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is clear that the horizontal segment of a strand connected to a top terminal at a given
column must be placed above the horizontal segment of another strand connected to the
bottom terminal of that column. Such vertical constraints between strands can be
represented by edges in a directed graph.

8.4.4.1. Vertical Constraint Graph

The vertical constraints that exist between the various strands in a channel are
represented using a vertical constraint graph. A vertical constraint graph is a directed
graph in which each vertex represents a strand. A directed edge from vertex i to vertex j
means that strand i must be placed above strand j because of a vertical constraint. A
sample routing and the associated constraint graph is illustrated in figure 8-8.

Figure 8-8: A Sample Channel Routing Problem and the Associated
Vertical Constraint Graph

If the constraint graph is acyclic, then the routing can be realized by simply
maintaining the proper vertical relationships between strands. On the other hand, if
there is a cycle in the constraint graph, then a cyclic vertical constraint exists and the
routing cannot be completed without doglegging.

C
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8.4.4.2. Cyclic Constraints

A routing example which leads to a cyclic vertical constraint is shown in figure 8-9.
It is clear that if each strand is constrained to include only a single horizontal segment,
then routings such as this cannot be realized.

A

Figure 8-9: An Example with a Cyclic Vertical Constraint Graph

A solution can be found however if strands are allowed to occupy multiple
horizontal rows. If this is done, each vertical constraint need only be applied to the
horizontal segment connected at the column of interest. The constraint need not be
applied to all the horizontal segments that make up a given strand. Allowing multiple
horizontal segments per strand can be represented in the constraint graph by splitting
each vertex representing a strand into a number of vertices each representing one of the
horizontal segments of that strand. This vertex splitting can be used to break cycles and
in so doing eliminate vertical constraint violations. This technique is known as
doglegging.

8.4.4.3. Doglegging

The use of doglegging allows routing channel problems with cyclic vertical
constraints to be realized. An example of the use of doglegging in the routing of the
cyclic example of figure 8-9 is shown in figure 8-10.

8.4.5. The Algorithm

Although the general channel routing problem has been proven NP-complete [24],
various heuristic solutions to the channel routing problem as formulated above have
been presented in the literature.

A

B_I___
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Figure 8-10: Realizing the Routing Through the Use of Doglegging

The greedy channel routing algorithm presented by Rivest [30] wires a channel in
a left to right column by column manner. Each column is wired completely before the
next is started. The algorithm has the advantage that it is quick, simple and it is
guaranteed to succeed. The technique does have several disadvantages however. The
nature of the technique is such that the interconnection lengths associated with the
generated routings tend to be longer than those generated by routers based on more
complex graph theoretical algorithms. Perhaps more importantly, the algorithm may
under some circumstances have to complete its wiring by the addition of extra routing
columns "off the end of the channel".

WEAVER is a knowledge-based channel routing program [31]. The program
consists of a number of knowledge-based experts which communicate through a
medium called a blackboard. Each expert decides which routing step should be taken
next and a focus of attention module decides which expert should be allowed to give
advice next. In contrast to more standard routing programs, this architecture allows
WEAVER to consider a number of different routing metrics in generating its routing
solution. Algorithmic approaches to routing are generally forced to consider only one or
two of these metrics. The knowledge based approach taken by WEAVER also allows it
to eliminate the restriction that horizontal wires must be routed in one layer while vertical
wires are routed in another. Thus, WEAVER tends to generate routings of very high
quality. It only does so at a very high computational cost however. WEAVER is orders
of magnitude slower than algorithmically based routers.
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YACR2 (Yet Another Channel Router) is a graph theory based channel router [32].

The program uses one layer for vertical interconnections and another for horizontal
interconnections, but allows some exceptions on horizontal interconnections, this feature
tending to improve the qualities of its routings substantially. While YACR2 performs as
well as or better than any of the other algorithmically based routers on a number of
published examples, it too has the disadvantage that additional columns may need to be
added "off the end" in order to allow the routing to be completed.

The channel routing method presented here was developed with a number of
goals in mind.

* The selected channel routing method must be guaranteed to succeed.

*The computational requirements of the routing program indicate that it
should be algorithmically based.

* The routings generated should be comparable in quality (in terms of
interconnection lengths) to those generated by graph theory based routers.

*The global routing is done in such a manner as to guarantee that it is
possible to route the power nets entirely in metal. The channel routing
program should ensure that the power routing is indeed accomplished in
that way.

* The program should avoid the need to add additional columns "off the end"
of the routing channel.

* Finally, the strategy employed by the channel routing program should be
based, at least to some extent, on the specific nature of the intended routing
environment.

With these constraints under consideration, a graph theory based channel router
was developed.

The basic strategy employed by most graph theory based routers involves three
phases. First, an initial assignment of segments is generated in which no horizontal
constraint violations occur and in which the number of vertical constraint violations is
minimized. Next, an attempt is made to remove constraint violations through the use of
heuristic doglegging techniques in the remaining available space. Finally, if any
constraint violations remain, rows or columns are added and the process is repeated.

This channel router employs a somewhat different strategy.

The first step of the algorithm is to sort the strands into different groups on the
basis of the connection requirements of each strand. This step is based on the
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observation that only strands that are connected to both the top and the bottom of the
channel can lead to constraint violations.

Next, those strands with connections to both the top and bottom of the channel
are used to generate-a vertical constraint graph which summarizes the required vertical
relationships among those strands.

If any cycles exist in the constraint graph, an attempt is made to break each cycle
by applying a defined set of doglegging techniques to the vertical constraints that makes
up that cycle. These defined techniques utilize jogs of at most one column and as such
the effects of adding these doglegs to the routing can be represented by the simple
addition or removal of edges to or from the constraint graph.

For each cycle that still exists, an additional column is added to provide room for a
dogleg to eliminate a vertical constraint and in so doing break that cycle. Each added
column is located between two virtual grid lines which define adjacent columns of the
channel and at the position in the channel where it is needed. The effects of adding
these doglegs can similarly be summarized by the addition or removal of edges to or
from the constraint graph.

Finally, the strands are positioned in the channel based on their assigned
connection requirement group and as dictated by the now acyclic vertical constraint
graph.

The ability to represent the effects of doglegs in the constraint graph allows the
selection of the appropriate set of doglegging techniques to be done entirely using the
constraint graph representation of the channel. As a result, the final assignment of
segments and layout of the channel need only be done once.

There is a disadvantage associated with restricting the repertoire of doglegging
techniques to a limited set of single column jogs however. Since many possible
doglegging techniques will not be tried, the program may unnecessarily add columns in
order to complete a given routing.

The nature of the intended routing environment however lessens the severity of
this problem. Each of the leaf modules being placed and routed consists of a linear
array of transistors. These transistors are placed such that the gates are positioned on
every other grid position with the alternate positions being filled by drains and sources.
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Because connections to the drain and source areas of these modules are much less
frequent than those to the gates, channel terminals tend to be spaced with free columns
situated between them. As a result, single column jogs have a high likelihood of
success.

In addition, the cost of adding a new routing column (when necessary) is
minimized. Since the routing is accomplished on a virtual grid, columns can be added at
any position in the channel. This allows columns to be added where needed rather than
always at the end of the channel. No other router is known which allows this flexibility.
Furthermore, since the program will never add more than one column between two
adjacent grid lines, the distorting effects (on the existing layout) of adding new columns
will be minimal.

8.4.5.1. Sorting the Strands

The first step in the routing process is to sort the strands into a number of different
groups based on the connection requirements of each strand.

The strands are sorted into the following groups:

*Top Strands, which are those strands without any connections to the
bottom side of the channel.

* Bottom Strands, which are those strands without any connections to the
top side of the channel.

* Through Strands, which are those strands which connect only to the left
and right ends of a channel.

* Cross Strands, which are those strands which connect to both the top and
the bottom of a channel.

8.4.5.2. Generating the Constraint Graph

Since constraint violations can only occur among the cross strands, only these
strands are used to generate a vertical constraint graph.

Given a set of strands, the associated vertical constraint graph is generated as
follows:

1. A vertex is created to represent each strand.

2. Two linear arrays are created, each with as many elements as there are
columns in the channel. One is designated the top array, the other is
designated the bottom array.
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3. For each strand:

* For each top terminal:

A pointer to the associated strand is placed in the element of the top
array- that corresponds to the position of the terminal.

* For each bottom terminal:

A pointer to the associated strand is placed in the element of the
bottom array that corresponds to the position of the terminal.

4. For each element in the top array:

A directed edge is created between the vertex associated with the strand
in that element and the vertex associated with the strand in the
corresponding bottom array element. If either element does not contain a
pointer to a strand, then no edge is created.

8.4.5.3. Removing Cycles

Before the final assignment of segment positions can be accomplished, any cycles
in the vertical constraint graph must be eliminated. Cycles are removed by the use of
doglegging techniques to remove edges from the constraint graph.

Only two predefined doglegging techniques may be used for this purpose. One
technique involves a single column jog by the strand connecting to the lower terminal at
the column of interest. An example of such a dogleg is shown in figure 8-11.

Figure 8-11: A Single Column Jog Dogleg

The other defined technique is similar but it adds a new column to the channel in
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order to provide room for the dogleg. An example of this type of dogleg is shown in
figure 8-12.

Figure 8-12: A Single Column Jog Dogleg Using an Added Column

It is clear that other techniques could be added to the library of predefined
doglegs. Techniques identical to those described above but which instead involve single
column jogs by the upper strand are obvious examples. The routing program has
performed so well using only these two techniques however that the addition of new
dogleg techniques did not seem necessary.

These predefined doglegging techniques provide a means by which edges may be
removed from the vertical constraint graph. This ability to remove edges provides a
technique whereby cycles in the graph may be eliminated. An obvious question arises
however. To which edges should these techniques be applied? Each cycle will contain
at least two edges (only one of which need be removed). Furthermore, the removal of
an edge from a given cycle and the associated doglegging may affect which other edges
(in other cycles) may be removed.

Selecting the proper edges to remove can have a direct effect on the quality of the
routing. If doglegging is applied to an inappropriate edge, unnecessary additional rows
may be introduced (due to new vertical constraints introduced by the dogleg) or
additional columns may be introduced if there is no space available for the desired
dogleg. Therefore, an effort is made to to select edges whose corresponding vertical
constraints are associated with columns with free space around them.

I
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The first step in the edge selection process is to generate a list of all the

combinations of edges which when removed will break all the cycles in the graph. Each
of these lists is then scored by summing the scores of the edges when a rough "ease of
doglegging" metric is applied. Ease of doglegging is evaluated by looking at at the
columns adjacent to the column where the relevant vertical constraint is generated. The
score is based on the number of connected terminals in each adjacent column as well as
on whether each adjacent column is one to which doglegging is also being applied.
Those edges resulting in the highest "ease of doglegging" combined score are selected
as those to be removed.

Next, a list summarizing all the possible combinations of doglegging tech :,ques

that can be applied to the selected set of edges is generated. Each of these
combinations is scored using a procedure similar to that described above for scoring
sets of edges to be removed. In this case however, when scoring each edge/dogleg
technique pair, only the adjacent column in the direction of the dogleg is scored. A large
penalty is associated with those doglegging techniques in which a column is added.
More specifically, no combination of techniques in which no columns are added will
score below any combination of techniques in which new columns are needed.
Furthermore, no combination of techniques which results in the addition of more than
one column between two existing columns is allowed. The sets of dogleg combinations
are ranked and the highest scoring combination is preliminarily selected.

At this point, the effect of adding the selected doglegs is incorporated into the
vertical constraint graph. First, each of the selected edges is removed from the
constraint graph. Next, a number of edges and vertices are added to the graph to
represent the constraints introduced by the new doglegs.

If there are connected terminals in the adjacent column where the dogleg is
positioned, a vertex and three edges are added to ensure that no design rule violations
occur. A diagram illustrating the vertex and edges that are added is shown in figure
8-13. The asterisk designates the added vertex. The dummy strand associated with this
added vertex prevents a strand with a terminal connection in the adjacent column (where
the dogleg must be placed) from being positioned in the row directly below the strand
being doglegged around. This ensures that there is sufficient room for the horizontal
portion of the dogleg.

If two doglegs share the same column, then still more vertices and edges must be
added to the constraint graph. In this case, an added vertex and two edges prevent the
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Figure 8-13: Added Edges Associated with a Dogleg and Adjacent
Strands

two doglegs from interfering with each other. Figure 8-14 illustrates such a situation
along with the added edges and vertex. As in the other diagram, the asterisk designates
the added vertex.

It should be noted that these diagrams show only the added edges. It should be
clear that other constraint edges will already exist between the illustrated strands. For
example, the nature of the doglegs in each diagram makes it clear that an edge from
vertex B to vertex A exists in each case. Furthermore, the two illustrated cases are not
exclusive in nature. If two doglegs share a column containing connected terminals, then
edges and nodes corresponding to both the situations shown here will be added to the
constraint graph.

Since new edges are added to the constraint graph, new cycles may be
introduced. Thus, the constraint graph is subsequently checked for cycles. If no cycles
exist, a solution has been found and the final assignment stage of the routing begins. If
cycles do exist, the constraint graph is restored to its previous state and the next highest
scoring combination of doglegging techniques is selected and the appropriate changes
to the constraint graph are made. This process is continued until a combination of

� �I�
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doglegs is found which introduces no new cycles. Since no edges are added for a

dogleg in which a new column is introduced, it is clear that this process will eventually

dogeg in which a new column

terminate.

The procedure outlined here for selecting the set of edges to be removed as well

as for selecting the doglegging technique associated with each edge is clearly

combinatorial in nature. The routing applications encountered up to this point have all

been smal enough tin terms of the number of cycles and the number of edges per cycle)

however that the computational performance of this part of the routing algorithm has still

been quite good. In the future, if the encountered applications become large enough

that computational performance becomes an issue, the code will be modified to do a

less extensive search of the possible edge and doglegging possibilities when a large

number of cycles or edges is encountered. The only effect of this change would be an

occasional slight degradation in the quality of the generated routings for large

applications.
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8.4.5.4. Final Assignment

Once the vertical constraint graph has been made acyclic, the final positions of the
strands in the channel can be determined. Strands are positioned in different regions of
the channel based on their connection requirement groups. A diagram showing the
different areas for the different types of strands is given in figure 8-15.

Top Strands

Through Strands

Cross Strands

Bottom Strands

Figure 8-15: The Positioning of Strands within a Channel

The strands are positioned within these regions so as to minimize the number of
rows required. In the cross strand region, the strands are positioned such that the

positioning constraints dictated by the associated vertical constraint graph are not
violated.

Each signal net strand has an associated realization description which specifies
the position and extent of its horizontal segment as well as the positions of any
connections of that segment to the appropriate top and bottom terminal locations. Each
connection is specified to be either a normal straight connection or one of the predefined
jogs. The horizontal segment is realized in metal while any connections (including jogs)

are realized in polysilicon. The constraints imposed by the vertical constraint graph
ensure that the jogged connections will not conflict with any other strands.

_ _____1___11_________ll_____
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Power strands are realized similarly except that both the vertical and horizontal

segments of each power strand are realized in metal. Since metal vertical segments
cannot cross the horizontal segments associated with other strands (which are also in
metal), some special procedures are used to ensure that the metal vertical segments
associated with each power strand do not conflict with any other strands.

* In the top and bottom strand regions, the power and ground strands are
simply positioned close enough to the associated edge that no conflicts with
other strands occur. It is clear that this is always possible to do. Because it
is assured that none of the global routing edges associated with the power
strands will cross (see section 8.3.2.3), power strands will never conflict with
each other. Conflicts with other strands can be avoided by simply
positioning the power strands closer to the appropriate edge (either top or
bottom) than signal strands.

* Conflicts with cross power strands will not occur. Since the global routing
edges associated with cross power strands cross no other edges (also see
section 8.3.2.3), conflicts with other strands cannot occur.

* Through power strands have no vertical segments and thus no conflicts can
occur.

It should be noted that power strands will never include jogs. Since it is assured
that the edges associated with cross power strands will not cross any other wired edges,
a cross power strand can never be involved in a vertical constraint.

Although the strands have been positioned so as to minimize the number of rows
required for each region, inefficiencies may exist at the interfaces between regions.
Thus, after the strands have been placed within their respective regions, a final
combining procedure is applied. This procedure merges those rows situated on the
edges of adjacent regions which can legally be combined into a single row. This
process is illustrated in figure 8-16.

8.5. Complete Routing

This section considers the exact means by which the channel routing algorithm is
applied to the globally routed placement.

Recall that one channel is associated with each node of the placement tree. The
channels of the placement tree are routed in a depth-first order. As each channel is
routed, a composite module is formed consisting of the routed channel and the two
children modules of the associated node. Since the exact form of the composite module



123

Figure 8-16: Combining Rows on the Edges of Regions

may be slightly different from the form that was predicted by the placement program, the
skew parameter associated with each node is readjusted before the final channel routing
of the node occurs. This readjustment takes into account any changes in the two
children modules.

It should be noted that although the locations of modules (and the associated
terminals) may be changed during the channel routing process, the global routing is not
recalculated. The selected interconnection paths are thus based on an estimated
placement and not on the actual final placement. Since the changes in the placement
brought about during the routing process tend to be small, the selected routing paths still
tend to be near optimal.

The recursive routing procedure that is applied to the placement tree is outlined
below.

1. If the left child of the root of the tree is not a leaf node

then channel route the left subtree.

2. If the right child of the root of the tree is not a leaf node

then channel route the right subtree.

3. Readjust the skew parameter of the root. The channel routing of the left
and right subtrees may have changed the exact locations of terminals on
those trees.

4. Channel route the channel associated with the root of the tree.

5. Adjust the spacing parameter of the root to match the number of rows
actually used by the routing program.

6. Adjust the locations of the terminals located at the ends of the channel to
match the channel end connection locations specified by the routing.
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Once all the channels associated with the placement tree have been routed, the
four surrounding channels are routed. This completes the routing process.

8.6. Substrate Contacts

In this section, the topic of substrate contact positioning will be considered.

In using a CMOS technology, substrate contacts are needed to tie the substrate
and wells to the appropriate supply voltages. At least one such contact is needed for the
substrate and one must be included in each well. It is good design practice to distribute
substrate contacts much more liberally than this however.

Substrate contact placement is straightforward for automated layout systems
which realize CMOS circuits using restrictive layout methodologies such as the gate
matrix technique. Since n-MOS and p-MOS transistors are aligned in rows, substrate
contacts can simply be positioned at regular intervals along the power line associated
with each row. The problem of substrate contact placement becomes much more
difficult when a general layout methodology is used.

In the custom layout of CMOS circuits, substrate contacts are typically positioned
in the free space between blocks of transistors. It thus seemed that the routing surface
between the placed sublayouts would provide the most appropriate place for substrate
contacts to be positioned by the program.

A good rule of thumb in CMOS circuit design is to provide one substrate contact
for every 5-10 transistors [2]. In terms of the program, providing one substrate contact
for each leaf sublayout is thus appropriate. Recall that each sublayout is constrained to
only include transistors of a single type.

The substrate contacts situated near n-MOS sublayouts must be connected to
Gnd. Conversely, those contacts situated near p-MOS sublayouts must be connected to
Vdd. For sublayouts .which have connections to Vdd or Gnd (such as pull-up or pull-
down networks), the associated substrate contact can be positioned quite easily. It can
simply be placed in an adjacent routing channel somewhere along the connecting power
line. If a sublayout has no power connections however, the problem of positioning an
associated contact can be more difficult.
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Since the sublayout has no power connections, it cannot be assured that an
appropriate supply line for the substrate contact is situated anywhere nearby. The
problem is solved by associating a dummy power node with each sublayout that does
not include an appropriate power connection. Although no power connections to the
sublayout are -actually made, the dummy node assures that an appropriate supply line is
present in one of the adjacent routing channels.

The complete substrate contact positioning procedure is outlined below. The
procedure assures that at least one appropriate substrate contact is situated in close
proximity to each leaf sublayout.

1. A dummy node is added to each sublayout which does not include an
appropriate power connection. A Vdd node is added to p-MOS sublayouts
while a Gnd node is added to n-MOS sublayouts.

2. Four terminals are associated with each dummy node, one positioned at
each corner of the corresponding sublayout. These positions are selected
since it is assured that there will be no other terminals at these locations
and because they allow the dummy node to be accessed on all four sides
of the sublayout. Each of these added terminals is given an associated
layer of "nil".

3. The standard routing program is applied to the Vdd and Gnd nets with only
two minor modifications. Both of these changes relate to how the final
channel routing specifications are mapped into layout.

a. An appropriate substrate contact is added to Vdd and Gnd lines at
each position where a horizontal segment of the power routing is
connected to a vertical segment which connects the horizontal
segment to a leaf sublayout. This will add at least one substrate
contact for each sublayout.

b. If a vertical segment of the routing connects to a terminal with an
associated layer of "nil", then that segment is omitted from the
layout. This prevents the program from making unnecessary
connections to the dummy nodes that have been associated with
some sublayouts.

The positioning of substrate contacts is illustrated in figure 8-17. One substrate
contact is positioned on a power line connected to a sublayout while the other is
positioned near a sublayout with no power connections.
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Chapter 9
Layout Optimization

Although it is functionally correct, the symbolic layout that exists subsequent to the
completion of the routing phase of the program is still somewhat raw in form. This
chapter describes the optimization procedures that are applied to the symbolic layout
before it is mapped into a mask level representation.

There are two basic aspects of the layout optimization.

One aspect of the optimization involves the removal of unnecessary wires and
contacts from the symbolic layout. At this stage of the synthesis process, the layout
includes unnecessary objects. Each leaf sublayout is generated with appropriate wires
and contacts connecting the transistors of the sublayout to numerous terminal positions
situated on its border. Since only some of the available terminals are actually used for
interconnection, the wires and contacts connecting transistors to the other terminal
locations serve no purpose. These wires and contacts can thus be removed.

The second aspect of the optimization tries to minimize the number of contacts in
the layout while at the same time aiming to select interconnection layers that will
enhance the circuit's electrical performance. Sometimes these two goals coincide.
When a polysilicon wire connected to metal at both ends can be replaced by a metal
wire, two contacts are eliminated and the electrical performance of the interconnection is
also improved. At other times the goals of contact minimization and layer optimization
conflict however. When a metal wire is connected to polysilicon at both ends, it is not
clear whether or not the wire should be replaced by a polysilicon one. Although two
contacts could be eliminated, the electrical performance of the circuit might be degraded
because of the increased resistance of this interconnection path. This optimization
phase must thus make decisions relating to the relative desirability of different layout
options. This can be difficult to do.

__
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9.1. Removing Unnecessary Wires and Contacts

The first step in the layout optimization is to remove unnecessary wires and
contacts. This optimization step involves no subtle decisions as to the relative
desirability of different layout characteristics. A simple criterion is applied. Those wires
and contacts that are connected to other objects at only a single position on a single
layer are unnecessary and can be removed.

The procedure used to remove unnecessary wires and contacts from the symbolic
layout is outlined below.

1. The object list defining the symbolic layout is scanned for wires or contacts
connected to other objects at only a single position on a single layer.

2. When such an object is encountered, the object is removed and the wires
and contacts that had been connected to the removed object are checked
to see if they too can now be removed. Those that can be removed are
removed and the objects that had been connected to those objects are
checked.

3. This remove and follow procedure is continued until no more objects in the
current search path can be removed.

4. The scan of the object list is then continued.

5. The symbolic layout object list is scanned again and again until a scan is
completed in which no object removals are made.

9.2. Contact Minimization and Layer Optimization

The problems of contact minimization and layer optimization have been
investigated by many researchers [33] [34]. Although a number of graph-theoretical
solutions to the problem have been presented [33], these approaches present problems
when applied to the diverse layout environment generated by SOLO. Most significantly,
these approaches are unable to deal with more than two layers of interconnect. In
addition, these techniques have difficulty basing optimization decisions on any criterion
other than simply the minimization of the number of required contacts.

Given these difficulties, a heuristic optimization procedure was developed. The
optimization procedure is based on the concept of clusters of wires. A cluster is defined
to be a connected contiguous set of wires, all on the same layer.

The basic optimization step involves finding clusters that are only connected to

_�
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other objects through contacts. If all the contacts associated with a given cluster
connect to other objects on the same layer and there are no conflicts with other objects,
then the wires of that cluster may be replaced with wires of the contact connecting layer
and the contacts may be removed. The cluster replacement process is illustrated in
figure 9-1. -

- - -- - - - - - - - - - - - - - - - - - - -
* I

E 

Figure 9-1: Replacing a Cluster and Removing Contacts

Since each step involves both the removal of contacts and a layer change, a
decision must be made as to the relative desirability of a particular layer change- given
that some number of contacts will be removed. The total length9 of the cluster is used
as the decision criterion. The selection of this criterion was based on the idea that if the
total length of the cluster is below some maximum value then the cost of the layer
change will be more than offset by the associated removal of contacts. In the case of a
desirable layer change (such as from polysilicon to metal) the maximum allowable length
is set to infinity.

Each phase of the optimization procedure involves scanning the layout for clusters
of a particular layer which are suitable to have their wires replaced by those of a
particular replacement layer. The wires of those clusters found suitable are replaced
and the associated contacts are removed.

9The total length of a cluster is defined to be the sum of the lengths of the wires that make up that cluster.
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The cluster replacement procedure is described below. This procedure is given

the layer of clusters to replace, the intended replacement layer, and the maximum length
a cluster may be and still be replaced.

1. The object list defining the symbolic layout is scanned for clusters which
are of the appropriate layer and which are connected to other objects only
on the intended replacement layer. The cluster must also be such that the
replacement of its wires with wires of the intended replacement layer will
not conflict with any other objects in the layout.

2. When such a cluster is encountered, the total length of the cluster is
calculated.

3. If the cluster is sufficiently small to be replaced, then the wires in the
cluster are replaced with wires of the replacement layer and the
connecting contacts are removed.

4. The scan of the object list is then continued.

5. The symbolic layout object list is scanned again and again until a scan is
completed in which no cluster replacements are made.

The total optimization procedure includes several cluster replacement phases.
The exact sequence of replacement phases employed is described below.

1. Appropriate polysilicon clusters are replaced with metal clusters.

2. Appropriate metal clusters are replaced with polysilicon clusters if the total
length of the metal cluster is two grid units or less.

3. Appropriate metal clusters are replaced with diffusion clusters if the total
length of the metal cluster is six grid units or less.
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Chapter 10

A Layout Example

In this chapter an illustrative layout example will be presented. The simple CMOS
exclusive-or circuit used throughout the report will be the basis of the example. A
schematic of that circuit is shown in figure 10-1.

Figure 10-1: Example Exclusive-Or Circuit
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10.1. Circuit Specification

The first step in the synthesis process is to create a description of the desired

circuit using the circuit specification language. The input to SOLO for this example is

shown below.

(circuit-macro nor (a b out)
(series vdd out (a b)

:type p :width 24 :length 3)
(parallel out gnd (a b)

:type n :width 8 :length 3))

(defschematic xor (a b out)
(local c)
(set-technology cmos21)
(left a b)
(right out)
(nor a b c)
(series vdd out

((transistor (c) :type p :width 24 :length 3)
(parallel (a b) :type p :width 24 :length 3)))

(series out gnd (a b) :type n :width 16 :length 3)
(transistor out gnd (c) :type n :width 8 :length 3))

This description specifies the topology of the desired circuit, the desired realization

technology, and the size and type of each transistor. The location of the external

connections to the circuit are also specified. The inputs A and B should be located on

the left side of the realized circuit while the output OUT should be located on the right.

A
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10.2. Restructuring the Hierarchy

The
description

next step in the synthesis process involves a restructuring of the circuit
hierarchy. The original circuit description hierarchy is shown in figure 10-2.

Figure 10-2: Original Circuit Description Hierarchy

The final restructured hierarchy is shown in figure 10-3. This hierarchy illustrates
the partitioning of the circuit into series-parallel subcircuits as well as the grouping of
subcircuits which constitute pull-up/pull-down pairs.

�( d� d� A� A� A(d� d� A� A(
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Figure 10-3: Final Circuit Description Hierarchy

10.3. Mapping of Leaves into Layout

After the hierarchy has been restructured, the series-parallel subcircuits which

make up the leaves of the new hierarchy are mapped into symbolic layout using a
single-row gate matrix methodology. Additional wires are included in these sublayouts
which connect externally accessed nodes to the edges of the sublayouts. All

connections to the sublayouts can be made in either poly or metal. Poly wires are used
to connect to gates while metal wires provide connections to sources and drains. The
external connecting wires and internal personalization wires for Vdd and Gnd are
realized using wider pitch metal wires than those that are used for signal nodes. The
exact mappings of the various subcircuits are shown in figure 10-4.

1( d' d� A( A� A�
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10.4. Placement

The placement program is next used to place the generated sublayouts in an

appropriate manner. During this phase, an exact position, rotation, and mirroring for

each sublayout is determined. The positioned sublayouts are shown in figure 10-5. The

final placement has clustered the p-MOS sublayouts together and the n-MOS sublayouts

together. The p-MOS devices have been situated above the n-MOS devices to provide

for efficient power routing given the biased nature of the routing program. Furthermore,

the orientations of the placed sublayouts are such that dual n-MOS and p-MOS

transistors sharing a common gate are vertically aligned.
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Figure 10-5: The Positioned Sublayouts
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10.5. Routing

The actual routing of the placed sublayouts is next performed. The routed layout
is shown in figure 10-6.

Vdd

B

A

Gnd

Figure 10-6: The Routed Sublayouts

A Vdd feedthrough is provided across the top of the layout and a Gnd feedthrough
is provided along the bottom. This raw symbolic layout illustrates the layout
simplifications imposed by the channel routing methodology. Within each channel,
horizontal segments are run in metal while vertical segments run in poly. It also shows
that only some of the external connecting wires included in each sublayout are actually

Vdd

OUT

Gnd
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used. Those that are not needed will be removed during the subsequent optimization
phases. Finally, it is interesting to notice that the exact positions of the sublayouts have
changed somewhat during the routing process.

10.6. Optimization

Once the raw symbolic layout has been generated, two optimization procedures
are applied to improve the quality of the final layout.

The first optimization involves the removal of unnecessary wires and contacts.
The symbolic layout which results after this optimization is applied is shown in figure
10-7.
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Figure 10-7: After Removal of Unnecessary Wires and Contacts
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Next, unnecessary layer changes and contacts are removed. The final symbolic
layout is given in figure 10-8.

Vdd
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Gnd

Figure 10-8: Final Symbolic Layout
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10.7. Compaction

Finally, a compactor is used to map the symbolic representation into a mask level
layout. The final mask level layout is shown in figure 10-9.
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Gnd

/dd

DUT

Gnd

Figure 10-9: Final Mask Level Layout
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Chapter 11

Results

In this chapter a number of sample layouts generated by SOLO are presented.
Each example includes a circuit schematic and a generated layout. The specification
language descriptions corresponding to these examples are given in appendix B.

In all the examples except one, the layouts shown are mask level representations.
The mask level layouts were generated using the virtual grid compactor which is part of
the NS design system in use at Symbolics Incorporated. [35] The one NMOS example
layout is shown in symbolic layout form because a compactor compatible with NMOS
designs has yet to be acquired.

Finally, an analysis of these results is presented in terms of the original design
goals for the program.
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11.1. Layout Examples

11.1.1. Exclusive-Or Circuit

The exclusive-or circuit analyzed extensively in chapter 10 is presented again for
completeness. This example demonstrates the ability of the program to effectively utilize
a gate matrix layout methodology when such a restrictive methodology is appropriate. A
schematic of the circuit is given in figure 11-1. The corresponding layout is shown in
figure 11-2.
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Figure 11-1: Exclusive-Or Circuit
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Exclusive-Or Layout
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Figure 11-2:
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11.1.2. Clocked Exclusive-Or Circuit

The circuit presented here is a clocked CMOS realization of an exclusive-or
circuit. The example illustrates the ability of SOLO to efficiently implement circuit
methodologies which-include unequal numbers of n-type and p-type transistors. The
example also demonstrates the use of feedthroughs for the effective realization of
clocked circuit methodologies. The circuit schematic is given in figure 11-3. The
generated layout is given in figure 11-4.
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A PHI

PHI

OUT

Figure 11-3: Clocked Exclusive-Or Circuit
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11.1.3. Classical CMOS Adder Circuit

The circuit shown in this example is classical CMOS adder circuit. The schematic
is given in figure 11-5. The circuit was realized several times each with a different
desired aspect ratio. - The layout shown in figure 11-6 was generated with no specified
aspect ratio. The layout in figure 11-7 was generated with a specified aspect ratio (width
to height) of 1 to 4. The layout given in figure 11-8 was generated with a desired aspect
ratio of 4 to 1.

x-

c

S-OUT

Figure 11-5: Classical CMOS Adder Circuit
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X Y
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Figure 11-6: Classical CMOS Adder Layout
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Figure 11-7:
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X Y

S-OUT

Figure 11-8: Classical CMOS Adder Layout with Desired Aspect Ratio
of 4 to 1
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11.1.4. Pass Transistor Adder Circuit

This example presents the realization of a well known transmission gate adder
circuit. The circuit schematic is given in figure 11-9. The example demonstrates the
problems SOLO has when applied to a circuit which does not partition effectively. The

series-parallel partitioning methodology does not deal well with pass transistor circuits.
The circuit is partitioned into subcircuits which include exactly one transistor each! The
generated layout is shown in figure 11-10. Despite the poor partitioning, this example
does demonstrate the program's ability to effectively cluster n-MOS and p-MOS
sublayouts.

Figure 11-9: Pass Transistor Adder Circuit
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11.1.5. D Flip-Flop Circuit

SOLO can also deal with the layout issues involved in the realization of very small
circuits. The D flip-flop circuit shown in figure 11-11 includes only 6 transistors. The
corresponding layout is given in figure 11-12.
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Figure 11-11:

Phi-bar

Vdd

r
J

L.

D

Gnc

Phi

D Flip Flop Circuit

Phi-bar

Vdd

Q-bar

Q

Gnd
*

Phi

Figure 11-12: D Flip Flop Layout
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11.1.6. Four-Input Exclusive-Or Circuit

The circuit presented in this example consists of three instances of the two-input
static exclusive-or circuit already presented. These circuits are interconnected so as to
form a four-input exclusive-or. The interconnection scheme is shown in figure 11-13.
The output exclusive-or is realized with wider transistors in order to accommodate a
large output load. This example demonstrates the program's ability to realize circuits
including transistors with widely differing gate widths. The generated layout is shown in
figure 11-14.
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Figure 11-13: Four Input Exclusive-Or Circuit
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Figure 11-14: Four Input Exclusive-Or Layout
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11.1.7. A Voting Circuit

This example illustrates the application of SOLO to a somewhat larger circuit. The
circuit shown in this example is used to select an output based on three data inputs and
three mask inputs (one corresponding to each data line). The output goes low if at least
two of the inverted inputs are low and are not masked or if one of the inverted inputs is
low and the other two are masked. The schematic for this circuit is given in figure 11-15.
The layout is shown in figure 11-16.
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Figure 11-15: A Voting Circuit

___



156

OM

, +

IC

- I 

/ A -~.. 1:

I1.. 
I

f; I .

.. V l /i - ' LZ .1Z / 7 /,

* I

* I

I1 -I
I I I I1

,

LM
--~~ AL

f lattK -z1

-J

Tr

E
E

V

L

J3_

RM
i -I-

-- I

I

_I

zz/- x1Ei:z z41- 1 :;

E

' I

I .

* I
* I
*I

I' Z r - Z ' ;.:'4

-

I

I r

!

' :':"p !
h ~i r

' 3 1 

L _ _ I I

Figure 11-16: Voting Circuit Layout

Vdd 

O-barat

R-barc±
I 

:r

L-bar 

Gnd '~

l,. [ - I
I _ . . .4!- ,0

·-- L__ .- 4 ................- TT--T7r

1'.,, '-*e/ _ - r'~ - - --- ---- ---- ' , W i . .: 

I . . - I I f- ;'4' ': I I'. I -

s F.--,* ,1 1 -, h ,--.S, i, . �I rtl, X r ·*. I x. ., J t-.
'' 7: / I z o /' t. f- l ' I 1 ' ' 'i-f- -'I ' '§ ', . r In I--I r / I- */ I e / * 4r- s.1 w wow.

--q - -- . s. I { I r s LY 

I
r * ^

, . .,.., , , , , .. , ,q,
I _ I L 1

L'�LLLI- m w + I-·1 1-. .- 11 - .,.r

J¢ ' '-- * - - - Pl --
1 ' . q iw - w wz 

A. V V'I' / ; , / A / .. / / , t-sI IS ZEIi IE ,^'it

. v ,r- : 12,· ii
L-----~---(V k /- - 'S 1 IA1 1 I 

V L.1 Z Z

1 4 [Z 14 Z' r- r 1 Z' r- Z-z

r

| s Z Z I S t Z Z W

_ _F], 1, ,. ,1 r,, , . +,: .) i,,

L~-L--(L .

1 ·b1 ·· ·.- / / , 2 ..
f ~ ~~~ J/: 1 [:i

1 I I I w1- 1, L ·S ,i ,1

, I
I

I .

-- --

11 rr 

.4 I
[2

�1

q-,-.-T -

.. . ,

1 . . . . .. . . . I
V. .A. .4_ I / .. 1/ / /.· fJ

f J J J J J vl-j jjjj

W^4. m@.
1Z 'A- " ~,i 1 j J F U if I1~ J J J f" - .j.

I 
I .11 Af l

I

I

I

J

I
III /
, 

/I / I

I

I, .,~-

i
J'JJlAJJ

I
I

q
I 

I 

_ W

,. ,,,I I I ./. I

' *1 - I V," I / M * .Y / //I /

Vl J ~

E
7

iAE / / / ' I . 41,

L7 1 i~~L~G

I

i tt~t

--i

III
W
i L.-IlI

I

- - iII
L

-4�- 17:Q

L:-t~



157

11.1.8. Four-bit Lookahead Adder Circuit

In this example, SOLO is used to realize a static CMOS implementation of a four-
bit adder with carry lookahead circuitry. The circuit includes 148 transistors. The
general form of the circuit is shown below. The details of the circuit are given in the
circuit specification in appendix B. The generated layout is shown in figure 11-18.
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Figure 11-17: Four-bit Lookahead Adder Circuit



158

GND C-OUT-BAR

GND C-IN-BAR

Four-bit Lookahead Adder Layout
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11.1.9. NMOS Adder Circuit

SOLO can also be applied to NMOS circuits.

realization of an NMOS adder circuit.

This example illustrates the

Figure 11-19:
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11.2. Analysis

In this section, a critical analysis of SOLO is presented. This analysis discusses
the performance of the program as demonstrated by these examples in terms of the
original design goals of the research.

11.2.1. Generality

One goal of the research was to design a synthesis program that would be as
general in its applicability as possible. It was hoped that the system could effectively be
applied to sized transistor circuits of varying methodologies and to circuits of both NMOS
and CMOS technologies. It was further hoped that the program would be capable of
generating layouts compatible with specific surrounding environments.

The generality of the program in each of these areas has been demonstrated.

* SOLO can be effectively applied to circuits employing many different circuit
methodologies. The circuits used in these examples include sized
transistors and demonstrate the use of a variety of circuit methodologies
including methodologies which do not include equal numbers of n-type and
p-type transistors.

* The program can be applied to both NMOS and CMOS circuits.

* Through the use of realization constraints, SOLO can generate layouts that
are compatible with specific surrounding environments. These examples
made use of desired aspect ratio specifications, of desired connection
location specifications, and of feedthrough net specifications.

The degree of generality supported by SOLO in each of these areas equals or
exceeds that supported by any other known synthesis program.

11.2.2. Computational Efficiency

Another design goal was to create a program that would run for no longer than a
few CPU minutes for a circuit including roughly 20 transistors. It was hoped that the
program could be competitive with TALIB in terms of computational efficiency and more
efficient than DUMBO, Koss's program or TOPOLOGIZER. This level of computational
efficiency would allow the program to be applied to circuits including on the order of 200
transistors while still running in a reasonable amount of time.

This level of computational efficiency has been achieved. A summary of the
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computation time required for each of these synthesis examples is given in tab:e 11-1.
SOLO is implemented in Common Lisp and runs on a Symbolics 3640 Lisp Machine.

Table 11-1: Summary of Computation Times

These computation times are clearly superior to those for DUMBO and Koss's
program. Those programs took in excess of twenty minutes for circuits on the order of
twenty-five transistors. The ability of SOLO to outperform these programs
computationally can be directly attributed to the use of hierarchy. The program uses the
existing hierarchy and the new hierarchy (which is introduced during the restructuring
phase) to reduce the complexity of the computationally expensive placement phase.
The fact that. the required computation time is more a function of the number of
sublayouts than it is of the number of transistors is indicative of this use of hierarchy.

The computation times of SOLO are also competitive with those of TALIB.
Although no exact execution times for TALIB were published, these times seem
comparable to those alluded to.

The program is not computationally competitive with either Sc2 or with the IBM

Summary of Computation Times

Circuit Number of Number of CPU Time
Transistors Sublayouts (Minutes)

D 6 6 0.8
Flip-Flop

Clocked 9 4 0.5
XOR

Static 10 4 0.6
XOR

NMOS 18 8 1.5
Adder

Pass Gate 24 24 7.0
Adder

Classical 28 8 2.0
CMOS Adder

4-Input 30 12 2.6
XOR

Voter 42 8 4.0
Circuit

Lookahead 148 48 39.5
Adder
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program however. The restrictive layout methodologies used by these programs allow

them to run at least an order of magnitude faster than SOLO on circuits including large
numbers of transistors. Although a reimplementation of SOLO in a more efficient
programming language would close this computational gap somewhat, the general
nature of the program's layout approach makes it inherently more computationally

expensive than the methods employed by Sc2 and the IBM program. This general
approach does, however, lead to the generation of higher quality layouts in many design
situations.

11.2.3. Layout Efficiency

In terms of layout efficiency, the design goal was to create a program which would
generate layouts that were comparable in quality to those generated by TALIB but which
was applicable to CMOS circuits.

SOLO is clearly applicable to CMOS circuits and the layouts it generates do seem
competitive with those generated by TALIB. Because the compactor presently being
used by SOLO only allows the generation of CMOS mask layouts, and because TALIB
can only be applied to NMOS circuits, it is not possible to directly compare different
realizations of the same circuit as generated by SOLO and TALIB. Although layout
quality is difficult to quantify under such conditions, by surveying a number of layouts
generated by a synthesis program it is possible to gauge fairly accurately the level of
layout expertise that program has attained. In terms of such a layout expertise metric,
the layouts presented here are comparable with those of TALIB.

Comparing the quality of the layouts generated by SOLO to that of those
generated by Sc2 or by the IBM program is also not straightforward. For most circuits,
the layouts generated by SOLO are superior to those generated using more restrictive
layout methodologies. With these circuits, the circuit partitioning phase is effective and
thus many of the same local layout optimizations typical of circuits realized using a gate-
matrix methodology can also be incorporated into the layouts generated by SOLO. At
the same time, the general placement methodology used by SOLO allows it to be
effectively applied to a wider class of circuits. For circuits which do not partition
effectively however, the rigid layout approach employed by Sc2 and the IBM program is
sometimes more effective in generating quality layouts. Circuits which are of a form that
can be effectively realized using a gate matrix technique (and which do not partition
effectively using the series-parallel partitioning algorithm) an typically be more
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effectively realized using the restrictive layout methodologies employed by Sc2 and the
IBM program. In these specific cases, the local layout optimizations made possible by
the gate matrix technique are of greater importance than the advantages associated with
SOLO's more general layout approach. The pass transistor adder (shown in figures
11-9 and 11-10) is an example of a circuit which does not partition effectively and which
can be more effectively realized using a more restrictive layout methodology.

Although no human layouts corresponding to the examples presented in this
chapter have been created, some general observations can be made regarding the
relative quality of these layouts as compared to those created by human designers.

The highest quality layouts are generated when the circuit partitioning is most
effective. The classical CMOS adder, the voter circuit, and the lookahead circuit are all
examples in which the circuit partitioning was effective and in which quality layouts were
generated as a result. These layouts seem only slightly less dense than comparable
human designs. The area penalties over human designs in these cases are well below
50%10, and much of the added area can be attributed simply to the use of symbolic
layout and the associated virtual grid compaction scheme. The use of a more effective
graph-based compaction scheme would further reduce the area penalty.

For circuits which do not partition effectively, the area penalty over human designs
can be much more substantial. In these circuits, the ineffective partitioning prevents
many local layout optimizations from being incorporated into the layout. The realization
of the pass transistor adder circuit is the worst example of this phenomenon
encountered thus far. The generated layout in this case is roughly four times the size of
a corresponding human layout.

This analysis of the program's layout efficiency makes it clear that two specific
aspects af the synthesis strategy are of primary importance in the generation of quality
layouts.

One such aspect is the circuit partitioning phase and the subsequent mapping of
the subcircuits into layout using a gate matrix technique. The partitioning and mapping
into layout allows local layout optimizations such as connection by abutment to be
incorporated into the layout. The importance of these optimizations is illustrated by the

10Although an area penalty of 50% may seem quite high, it corresponds to a linear size penalty of only
20% on each side.
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fact that the highest quality layouts are generated when the circuit partitioning is most
effective.

Another important aspect of SOLO in terms of layout efficiency is the general
placement methodology. Although general placement methodologies have been used
by all the synthesis programs most successful in generating high quality layouts, general
methodologies have never previously been applied to CMOS circuits. The general
placement methodology allows non-standard circuit methodologies such as that
employed in the clocked exclusive-or circuit to be realized effectively.

11.3. Problems

While the preceding discussion does highlight many of the strengths of the layout
approach developed here, some major problems with the present strategy are also
revealed. These problems are discussed in more detail below and some possible
solutions are proposed.

11.3.1. Circuit Partitioning

One problem with the present approach relates to the effectiveness of the circuit
partitioning strategy when applied to certain types of circuits. Although the series-
parallel partitioning strategy works quite well for most circuits, some circuits, such as
those including many pass transistors, are partitioned quite inefficiently using this
technique. The ineffective partitioning prevents many local layout optimizations from
being effected and thus leads to inefficient layouts.

The obvious solution to this problem is to develop a new partitioning strategy that
can effectively be applied to more classes of circuits. The present strategy was selected
because it provides a technique for partitioning a circuit into closely connected
subcircuits while at the same time ensuring that the generated subcircuits can be
mapped into layout in-a straightforward manner using a gate matrix technique. Any new
strategy must thus address the problem of circuit partitioning as well as the problem of
mapping the more general subcircuits into gate matrix layout.

The algorithm used by the IBM program for mapping circuits onto a gate matrix
transistor array [11] provides a viable method for mapping more general subcircuits into
gate matrix layout. While no comparable solution to the associated problem of circuit
partitioning is immediately known, it is clear that some better solution to the partitioning
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problem can be found. The improved layout efficiency associated with being able to
more effectively partition more classes of circuits certainly makes the search for such a
new strategy worthwhile.

11.3.2. Computational Efficiency

Another more subtle difficulty with the program relates to the issue of
computational efficiency. Although SOLO's level of computational efficiency is
acceptable, it would certainly be desirable for the program to run faster in general and in
particular when applied to larger circuits.

As was alluded to earlier, the computational performance of SOLO could be
improved a great deal simply by its reimplementation in a different programming
language. It is reasonable to expect that the program's execution speed would improve
by as much as a factor of ten if the program were reimplemented in a more efficient
programming language such as C. The computational performance of SOLO could also
be improved through the reimplementation of certain timing critical parts of the program
using more efficient algorithms. When applied to very large circuits, the computation
time of the present program is dominated by the global routing phase. This part of the
program is quite computationally expensive because it is applied to a flattened layout
description. The global router does not take advantage of the hierarchical nature of the
binary tree layout description. If the global routing algorithm could be modified so as to
somehow be applied in a hierarchical fashion, the computational efficiency of the
program as a whole could be greatly improved.
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Chapter 12

Conclusions

12.1. Summary

In developing large integrated systems, circuit designers have typically been
forced to choose between the rapid design times afforded by automated layout systems
and the high performance layouts generally associated with full custom designs. The
goal of this research was to develop an automated layout methodology through which
the performance penalties generally associated with automated layout systems could be
avoided.

A program for mapping MOS circuit schematics into layout was developed to
provide a vehicle through which this goal could be pursued. The resultant program can
effectively be applied to circuits employing many different circuit methodologies, to
circuits including sized transistors, and to circuits employing either NMOS or CMOS
technologies. The computational efficiency of the program is such that circuits including
up to roughly 200 transistors may be realized. The layouts generated are superior in
performance to those generated by conventional automated layout systems and for
some classes of circuits are competitive with layouts created by human designers.

12.2. Overall Layout Strategy

The strategy for automated layout demonstrated here involves the application of
general techniques most often applied on a global level (with standard cells for instance)
to the more local problem of layout synthesis from circuit schematics. A general layout
technique was employed because general strategies allow the widest variety of circuit
methodologies to be effectively realized. This has been demonstrated by the success of
NMOS layout synthesis programs which employ general layout strategies.



168

The general approach to automated layout has a number of associated problems
however.

1. General layout strategies do not typically effect local layout optimizations.

2. General layout strategies are difficult to apply to CMOS layout.

A hybrid layout strategy was thus developed which preserves many of the
desirable aspects of a general strategy while at the same time minimizing the problems
outlined above.

A general strategy is only applied to the non-leaf (more global) levels of the
hierarchy. These levels tend to be modular (with a minimum number of interconnections
between modules) thus local layout optimizations are rarely appropriate on these levels
even in an optimal layout. A more restrictive gate matrix layout methodology is applied
to the leaf subcircuits. This methodology allows many local layout optimizations to be
incorporated into the generated layout. Although the restrictive gate matrix methodology
can only effectively be applied to specific types of circuits, the combined strategy can be
applied to circuits of any type. Since the gate matrix strategy is only applied to the leaf
subcircuits, the specific nature of the circuit as a whole is not restricted.

In order to improve the effectiveness of this mixed strategy, an initial restructuring
of the circuit description hierarchy is included. This restructuring results in a more
modular description hierarchy (in the layout domain), and leads to leaf subcircuits which
can be effectively realized using the target gate matrix methodology.

The employed strategy also addresses the problem of applying general layout
techniques to CMOS circuits. The issues that make the application of general strategies
to CMOS layout difficult are well and substrate contact placement. In order to ease well
placement, a special suitability for well positioning scoring function is included in the
general placement phase. In addition, the global routing program is designed to ensure
that substrate contacts can be easily positioned in appropriate locations. By addressing
the issues of well and substrate contact placement at a high level, their subsequent
positioning becomes trivial. The consideration of CMOS-specific layout issues on a
global level allows general layout techniques to effectively be applied to CMOS circuits.

Finally, in order to further enhance the effectiveness of general techniques when
applied to layout problems that are typically quite local in nature, scoring functions are
used which incorporate both local and global layout issues. The employed electrical
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performance scoring function includes two factors, one biased towards local layout
considerations and the other towards more global considerations. Similarly, the
suitability for well positioning scoring function addresses both local and global layout
issues. On a local level, the function tends to orient sublayouts so as to ease their
connection to-power and ground lines. On a global level, layouts of the same diffusion
type tend to be clustered.

12.3. Perspective

The ultimate goal of research in this area is to develop a program that can
consistently generate layouts that are competitive with those created by human
designers. Although it is clear that SOLO in itself does not represent the attainment of
this ultimate goal, the lessons learned through SOLO's development do provide some
valuable insights which will aid in the quest for that final goal.

The success of SOLO in generating high quality layouts in certain design
situations demonstrates the general usefulness of several aspects of the developed
layout strategy. A program that is to generate layouts that are consistently competitive
with human layouts should incorporate these effective aspects of SOLO's layout
strategy.

Like SOLO, an effective layout synthesis program should be both flexible and
controllable. The optimal layout of a given circuit will be different in different design
situations. In order to compete with human designers an automated layout program
must be able to adjust to different surrounding environments and design requirements.

It further seems clear that the program should employ a mixed layout strategy. It
should deal differently with local layout issues than it does with global layout issues.

* On a local level, the basic strategy should be layout optimization. This
optimization should include the removal of unnecessary wires, contacts, and
jogs and the realization of connections by abutment. In order to allow
connections by abutment to be made, a restrictive layout methodology
should be applied at the leaf level. SOLO effects these local optimizations
through a specific layout optimization phase in which unnecessary wires,
contacts, and layer changes are removed and through the application of a
gate matrix layout methodology to the leaf subcircuits.

* On a global level, general layout techniques should be employed. Above
the leaf level, general techniques introduce few costs in the way of layout
area or electrical performance. These techniques will allow the program to
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effectively be applied to many different circuit methodologies. In addition,
the scoring functions typically used by general layout approaches provide a
convenient means for representing and incorporating application specific
knowledge. The scoring functions used by SOLO incorporate CMOS-
specific knowledge, router-specific knowledge, and address both local and
global layout: issues.

In order for the strategy described above to be effective, a restructuring of the
circuit description hierarchy should also be included. The restructuring should ensure
that the description hierarchy is modular in the layout domain and that the leaf
subcircuits can effectively be realized using the target restrictive layout methodology.

An analysis of the factors involved in SOLO's inability to generate quality layouts
for certain types of circuits reveals a number of improvements that should also be
included in any subsequent programs that are to be truly competitive with human
designers.

The most obvious improvement that is needed is a better restructuring strategy.
The new strategy should lead to the effective partitioning of essentially all classes of
circuits. The only layouts generated by SOLO that were of significantly lesser quality
than those generated by human designers were those in which the partitioning strategy
was ineffective. The use of a partitioning strategy that could effectively be applied to
nearly all classes of circuits would lead to the generation of more efficient layouts much
closer in quality to those generated by human designers.

A more subtle needed improvement involves the effective use of layout replication
in appropriate situations. In order to avoid the downfalls of more conventional
automated layout systems (such as standard cells), in which each instance of a given
subcircuit is realized using an identical layout, SOLO was designed to adjust the layout
realization of each instance of a given subcircuit to its specific environment. -In some
design situations -however (such as with bit-slice designs for instance), both
computational efficiency and layout efficiency could be improved if one appropriate
layout could be generated and then replicated many times. It is the detection of
appropriate design situations that makes this problem difficult. When should an instance
be replicated and when should it be adjusted to the specific surrounding environment?
The ability to detect and take advantage of such replication situations would allow higher
quality layouts to be generated while at the same time improving computational
efficiency.

I
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A final improvement that is needed relates to computational efficiency. In order for
a synthesis program to be competitive with human designers its applicability must not be
limited to circuits with on the order of 200 transistors (as SOLO presently is). The key to
increasing the size of circuit to which a program can effectively be applied involves
increasing that program's computational efficiency. A truly competitive layout synthesis
program must be more computationally efficient than SOLO. The needed improvement
in computational speed could be effected in a number of ways.

* Algorithmic improvements in the program's implementation could be made.

*The program could be implemented in a more computationally efficient
programming language.

* The program could be run on more computationally efficient hardware.

Hopefully, the lessons learned through SOLO's development and outlined above
will help bring the next generation of layout synthesis programs closer to the ultimate
goal of replacing human layout.

12.4. Future Extensions

Although SOLO can be applied to optimized circuit schematics, its effectiveness in
generating high performance layouts is inherently limited by the open loop nature of the
synthesis process. By combining the program with a computationally efficient delay
estimation program, a closed loop synthesis system could be developed. Information
from a layout generated on one pass through the system would be used by a transistor
sizing program to generate a new sized circuit schematic for the next pass. By repeating
this process several times, layouts which meet specific delay performance constraints
could be generated.

Another extension to SOLO would involve its incorporation into a complete silicon
compiler system. Recall that mapping a design from the functional domain into the
physical domain is a two step transformation. SOLO would provide a means for
mapping intermediate structural representations into layout specifications. The
associated compiler would thus be free to select the circuit topologies and transistor
sizings best suited to specific design situations. An expert system could provide a
means by which appropriate realization circuit methodologies would be selected. The
layouts generated by such a compiler would be of better quality than those generated by
a compiler constrained to use a much smaller topological design space.
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Appendix A
Specification Language Syntax

A.1. Introduction

This appendix presents a summary of the circuit specification language syntax.

A.2. Specifying a Design

A.2.1. Defschematic

The macro used to specify a design to be realized is defschematic.

(defschematic name (external-nodes)
[ (local local-nodes) ]
body)

Each defschematic must include a name and a list of external-nodes. If any
local-nodes are used in the body of the defschematic, they must be listed in the first line
of the body through use of the local function. The remainder of the body consists of
functions and macros which define the topology of the circuit as well as any desired
realization constraints.

Any nodes referenced in the defschematic other than vdd and gnd must be
included in either the local-nodes or the external-nodes lists. vdd and gnd are global
nodes and should not be included in either list.
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A.3. Realization Constraints

This section describes the functions used in specifying desired realization
constraints which control the exact form of the generated layout.

A.3.1. Technology

The desired realization technology is specified using the set-technology function.

(set-technology technology)

A.3.2. Aspect Ratio

A desired aspect ratio is specified using the set-aspect-ratio function.

(set-aspect-ratio width heigho)

This function takes a width and a height as arguments. These both must be
integers greater than 0. If no desired aspect ratio is specified, a desired aspect ratio of 1
to 1 is assumed.

A.3.3. Net Weighting

The relative weightings of nets can be set using the set-weighting function.

(set-weighting node value)

This function takes a node and a value as arguments. Value must be an integer
between 0 and 50. The relative weighting of the specified node is set to value. The
default weighting for all signal nodes is 10.

A.3.4. Connection Locations

The desired locations of all external signal connections must be specified.
Desired locations are specified using the top, bottom, left, and right functions.

(top nodes keyword-value-pairs)
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(bottom nodes keyword-value-pairs)

(left nodes keyword-value-pairs)

(right nodes keyword-value-pairs)

Each of these functions takes a list of nodes as arguments as well as an optional
:ordered-p keyword with an associated value. The connections of the nodes included in
each argument list are located on the appropriate side. The keyword specifies whether
the connection locations must be ordered as they appear in the argument list.
:ordered-p takes a value of either t or nil and has a default value of t. If they are
ordered, top and bottom connections are ordered from left to right while left and right
connections are ordered from bottom to top.

Each of these functions can be called only once and each external node of the
circuit must be included in the argument list of at least one function.11 If an external
node appears more than once, multiple external connections for the same node will be
generated. It is assumed that these multiple connections are externally connected. This
assumption can be changed by using the not-externally-connected function.

(not-externally-connected nodes)

This function takes a list of nodes as arguments. It will not be assumed that
multiple external connections of these nodes are externally connected.

By using the horizontal-align and vertical-align functions it is also possible to
constrain connections such that they will be aligned (in one dimension) with appropriate
connections on the opposite side of the cell. In this way cells can 'be generated that dan
be placed in an array and connected by abutment.

(horizontal-align)

(vertical-align)

l1 This is not entirely true. Feedthrough connections, vdd, and gnd are not included in these argument
lists.
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The horizontal-align function aligns connections on the left and right sides of the
cell while the vertical-align function aligns connections on the top and bottom.

A.3.5. Feedthroughs

Feedthrough nets can be specified using the top-feed-through and
bottom-feed-through functions.

(top-feed-through nodes)

(bottom-feed-through nodes)

Each of these functions specifies two connection locations for each node, one on
the left side and one on the right side of the cell. The two connections are connected by
a metal feedthrough and are aligned with each other in the Y dimension. Feedthroughs
specified with the top-feed-through function are positioned near the top of the cell
above the VDD feedthrough. Those specified with the bottom-feedthrough function
are positioned near the bottom of the cell below the GND feedthrough. Feedthrough
connections should not be included in the left or right connection location specifications
unless extra connections (in addition to the feedthrough connections) are desired.

A.4. Specifying Topology

This section describes the syntax used in defining the desired circuit topology.

A.4.1. Circuit Branch Descriptors

Circyit branch descriptors are the basic functions used to specify topology.
Functions exist for specifying individual transistors, for specifying series combinations of
branches, and for specifying parallel combinations of branches.

A.4.1.1. Transistors '

Transistors are specified using the transistor function. This function takes a
gate-node as an argument as well as optionally a drain-node and a source-node.

(transistor [drain-node source-node] (gate-node)
keyword-value-pairs)
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If this function is invoked at the top level, the drain-node and source-node must be

included. If it is called within a series or a parallel branch descriptor, the drain-node and

source-node must be omitted.

A number of keyword value pairs may also be used to specify the exact

characteristics of the transistor.

:type This keyword is used to specify the type of transistor. Possible
values are n, p, d, and z. It should be noted that only a subset of
these are applicable to any given realization technology. The
default value is n.

:width This keyword is used to specify the width of the transistor in units of
lambda. The default value is 2.

:length This keyword is used to specify the length of the transistor in units of
lambda. The default value is 2.

A.4.1.2. Parallel Branches

Parallel connections of transistors (or of other branches) are specified using the

parallel function. This function takes a list of gate-nodes-or-branches as an argument
as well as optionally two connecting nodes (node-1 and node-2).

(parallel [node-1 node-2] (gate-nodes-or-branches)
keyword-value-pairs)

If this function is invoked at the top level, the node-i and node-2 arguments must
be included. If it is called within a series or a parallel branch descriptor, these
arguments must be omitted.

If the parallel function is specifying the parallel combination of a set of transistors
all of which have identical characteristics, then the transistors may be specified simply

by their associated gate nodes. The characteristics of those transistors are specified
using the same keywords as were used with the transistor function.

If the function is specifying the parallel combination of more complex branches or

of transistors with different characteristics, then each branch must be explicitly specified.
The :type, :width, and :length keywords are no longer applicable.
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A.4.1.3. Series Branches

Series connections of transistors (or of other branches) are specified using the
series function.

(series [node-1 node-2j (gate-nodes-or-branches)
keyword-value-pairs)

The use of this function is identical to that of the parallel function with one
exception. The series function can be invoked with one more possible keyword value
pair.

:ordered-p This keyword specifies whether the specified ordering of the
branches or transistors connected in series is relevant. The
possible values are t and nil. The default value is nil.

A.4.2. Circuit Macros

A circuit-macro is used to specify the topology of a larger subcircuit.

(circuit-macro name (external-nodes)
[ (local local-nodes)]
body)

Each circuit-macro must include a name and a list of external-nodes. If any
local-nodes are used in the body of the circuit-macro, they must be listed in the first line
of the body through use of the local function. Once again, the vdd and gnd nodes
should not be included in either list. The remainder of the body consists of functions and
macros which define the topology of the subcircuit. Functions specifying realization
constrdints are generally nrrt included in a circuit-macro since these functions will affect
the realization of the top level defschematic.

A circult-macro must be defined before it is invoked. A circuit-macro is called
like any other function. The syntax is shown below.

(macro-name nodes)
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A.5. An Example Defschematic

In this section a sample defschematic illustrating many of the functions and
constructs described here is presented.

(circuit-macro pull-up (phi output)
(transistor vdd output

(phi) :type p :width 15 :length 3))

(circuit-macro pull-down (phi output)
(transistor output gnd

(phi) :type n :width 15 :length 3))

(defachematic clocked-xor (a b out phi-1 phi-2)
(local x y z)
(set-technology cmos21)
(left a b)
(right out)
(top-feed-through phi-l phi-2)
(bottom-feed-through phi-l phi-2)
(pull-up phi- x)
(parallel x y

(a b) :type n :width 15 :length 3)
(pull-down phi-l y)
(pull-up phi-2 out)
(parallel out z

((transistor (x) :type n :width 15 :length 3)
(series (a b) :type n :width 15 :length 3)))

(pull-down phi-2 z))
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Appendix B
Specification Language Descriptions

B.1. Introduction

In this appendix the specification language descriptions of the example circuits

presented in chapter 11 are given.

B.2. Exclusive-Or Circuit

(circuit-macro nor (a b out)
(series vdd out (a b)

:type p :width 24 :length 3)
(parallel out gnd (a b)

:type n :width 8 :length 3))

(defachematic xor (a b out)
(local c)
(set-technology cmos2l)
(left a b)
(right out)
(nor a b c)
(series vdd out

((transistor (c) :type p :width 24 :length 3)
(parallel (a b) :type p :width 24 :length 3)))

(series out gnd (a b) :type n :width 16 :length 3)
(transistorout gnd (c) :type n :widths8 :length 3))
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B.3. Clocked Exclusive-Or Circuit

(circuit-macro pull-up (phi output)
(transistor vdd output

(phi) :type p :width 15 :length 3))

(circuit-macro pull-down (phi output)
(transistor output gnd

(phi) :type n :width 15 :length 3))

(defschematic clocked-xor (a b out phi-1 phi-2)
(local x y z)
(set-technology cmos21)
(left a b)
(right out)
(top-feed-through phi-1 phi-2)
(bottom-feed-through phi-1 phi-2)
(pull-up phi-1 x)
(parallel x y

(a b) :type n :width 15 :length 3)
(pull-down phi- y)
(pull-up phi-2 out)
(parallel out z

((transistor (x) :type n :width 15 :length 3)
(series (a b) :type n :width 15 :length 3)))

(pull-down phi-2 z))
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B.4. Classical CMOS Adder Circuit

(circuit-macro inverter (input output)
(transistor vdd output

(input) :type p :width 12 :length 3)
- (transistor output gnd

(input) :type n :width 4 :length 3))

(defschematic classic-full-adder-l (x y c-in c-out s-out)
(local s-out-bar c-out-bar)
(set-technology cmos21)
(top x y)
(bottom s-out)
(right c-out)
(left c-in)
(horizontal-align)
(parallel c-out-bar gnd

((series
((parallel (x y) :type n :width 4 :length 3)
(transistor (c-in) :type n :width 4 :length 3)))

(series (x y) :type n :width 4 :length 3)))
(series vdd c-out-bar

((parallel
((series (x y) :type p :width 18 :length 3)
(transistor (c-in) :type p :width 9 :length 3)))

(parallel (x y) :type p :width 18 :length 3)))
(parallel s-out-bar gnd

((series
((parallel (x y c-in) :type n :width 4 :length 3)
(transistor (c-out-bar)

:type n :width 4 :length 3)))
(series (x y c-in) :type n :width 6 :length 3)))

(series vdd s-out-bar
((parallel

((series (x y c-in) :type p :width 24 :length 3)
(series (c-out-bar) :type p :width 8 :length 3)))

(parallel (x y c-in) :type p :width 24 :length 3)))
(inverter c-out-bar c-out)
(inverter s-out-bar s-out))
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B.5. Pass Transistor Adder Circuit

(circuit-macro inverter (input output)
(transistor vdd output

(input) :type p :width 12 :length 3)
(transistor output gnd

(input) :type n :width 8 :length 3))

(circuit-macro pass-transistor (input output phi phi-bar)
(transistor input output

(phi-bar) :type p :width 12 :length 3)
(transistor input output

(phi) :type n :width 8 :length 3))

(defschematic pass-adder (a b c c-out s-out)
(local a-bar c-bar a+b a+b-bar s-out-bar c-out-bar)
(set-technology cmos21)
(top a b)
(bottom s-out)
(left c-out)
(right c)
(horizontal-align)
(transistor a-bar a+b-bar

(b) :type p :width 12 :length 3)
(pass-transistor b a+b-bar a a-bar)
(pass-transistor a+b b a-bar a)
(transistor a+b a

(b) :type p :width 12 :length 3)
(pass-transistor a-bar c-out-bar a+b-bar a+b)
(pass-transistor c-out-bar c-bar a+b a+b-bar)
(pass-transistor c-bar s-out-bar a+b-bar a+b)
(pass-transistor s-out-bar c a+b a+b-bar)
(transistor a-bar a+b

(b) :type n :width 8 :length 3)
(transistor a+b-bar a

(b) :type n :width 8 :length 3)
(inverter a a-bar)
(inverter c c-bar)
(inverter s-out-bar s-out)
(inverter c-out-bar c-out))
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B.6. D Flip-Flop Circuit

(circuit-macro inverter (input output)
(transistor vdd output

(input) :type p :width 10 :length 3)
.- _(transistor output gnd

(input) :type n :width 4 :length 3))

(circuit-macro pass-transistor (input output phi phi-bar)
(transistor input output

(phi-bar) :type p :width 20 :length 3)
(transistor input output

(phi) :type n :width 8 :length 3))

(defschematic d-flip-flop (d q q-bar phi phi-bar)
(set-technology cmos21)
(top-feed-through phi-bar)
(bottom-feed-through phi)
(left d)
(right q q-bar)
(pass-transistor d q phi phi-bar)
(inverter q q-bar)
(inverter q-bar q))

� _�_



186

B.7. Four-Input Exclusive-Or Circuit

(circuit-macro

(circuit-macro

(circuit-macro

(circuit-macro

a-nor (a b out)
(series vdd out (a b)

:type p :width 24 :length 3)
(parallel out gnd (a b)

:type n :width 8 :length 3))

b-nor (a b out)
(series vdd out (a b)

:type p :width 144 :length 3)
(parallel out gnd (a b)

:type n :width 48 :length 3))

s-xor (a b out)
(local c)
(s-nor a b c)
(series vdd out

((transistor (c) :type p :width 24 :length 3)
(parallel (a b) :type p :width 24 :length 3)))

(series out gnd (a b) :type n :width 8 :length 3)
(transistor out gnd (c) :type n :width 8 :length 3))

b-xor (a b out)
(local c)
(b-nor a b c)
(series vdd out

((transistor (c) :type p :width 144 :length 3)
(parallel (a b) :type p :width 144 :length 3)))

(series out gnd (a b) :type n :width 48 :length 3)
(transistor out gnd (c) :type n :width 48 :length 3))

(defachematic xor-4 (a b c d out)
(local f)
(set-technology cmos21)
(left a b c d)
(right out)
(s-xor a b e)
(s-xor c d f)
(b-xor f out))
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B.8. A Voting Circuit

(circuit-macro nor (a b out)
(parallel out gnd

(a b) :type n :width 8 :length 3)
(series vdd out
- (a b) :type p :width 12 :length 3))

blob (a b c lm rm om out)
(parallel out gnd

((series (a b)
(series (a c)
(series (b c)
(series

:type
:type
:type

n : width

n : width

n :width

((parallel (a b c) :type n
(parallel

((series (lm rm) :type
(series (lm om) :type
(series (rm om) :type

(series vdd out
((parallel (a b)
(parallel (a c)
(parallel (b c)
(parallel

((series (a b
(series

((parallel
(parallel
(parallel

:type p
:type p
:type p

:width
:width
:width

8 :length 3)
8 :length 3)
8 :length 3)

:width 8 :length 3)

n :width 8
n :width 8
n :width 8

:length 3)
:length 3)
:length 3)))))))

20 :length 3)
20 :length 3)
20 :length 3)

c) :type p :width 20 :length 3)

(lm rm)
(lm om)
(rm om)

(defachematic voting-circuit (1-bar r-bar o-bar
(local a b c)
(set-technology cmos21)
(top om lm rm)
(left 1-bar r-bar o-bar)
(right out)
(nor 1-bar lm a)
(nor r-bar rm b)
(nor o-bar om c)
(blob a b c lm rm om out))

:type p
:type p
:type p

:width 20
:width 20
:width 20

:length 3)
:length 3)
:length 3))))))))

lm rm om out)

(circuit-macro

_____
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B.9. Four-bit Lookahead Adder Circuit

(circuit-macro inverter (in out)
(transistor vdd o

:type p :
(transistor out g

:type n

)ut (in)
width 16 :length 3)
rnd (in)
:width 8 :length 3))

(circuit-macro nor (a b out)
(series vdd out (a b)

:type p :width 32 :length 3)
(parallel out gnd (a b)

:type n :width 8 :length 3))

(circuit-macro nand (a b out)
(parallel vdd out (a b)

:type p :width
(series out gnd (a b)

:type n :width

16 :length 3)

16 :length 3))

(circuit-macro

(circuit-macro

(circuit-macro

(circuit-macro

(circuit-macro

(circuit-macro

(circuit-macro

x-or (a b out)
(local c)
(nor a b c)
(series vdd out

((transistor (c) :type p :width 32 :length 3)
(parallel (a b) :type p :width 32 :length 3)))

(series out gnd (a b) :type n :width 16 :length 3)
(transistor out gnd (c) :type n :width 8 :length 3))

gp (a b g-bar p-bar)
(nor a b p-bar)
(nand a b g-bar))

sum-gen (p-bar c-l-bar sum)
(x-or p-bar c-l-bar sum))

bit (a b c-in-bar s g-bar p-bar)
(gp a b g-bar p-bar)
(sum-gen p-bar c-in-bar s))

look-ahead-O (c-in-bar p-O-bar g-O-bar c-O-bar)
(local c-O)
(series c-O gnd

((parallel (p-O-bar c-in-bar) :type n :width 16 :length 3)
(transistor (g-O-bar) :type n :width 16 :length 3)))

(parallel vdd c-O
((series (p-O-bar c-in-bar) :type p-:width 32 :rgth 3)
(transistor (g-O-bar) :type p :width 32 :length 3)))

(inverter c-O c-O-bar))

look-ahead-l (c-in-bar p-O-bar g-O-bar p-l-bar g-l-bar c-l-bar)
(local -l)
(series.c-1 gnd

((parallel (p-l-bar p-O-bar c-in-bar) :type n :width 16 :length 3)
(parallel (p-l-bar g-O-bar) :typ n :width 16 :length 3)
(transistor (g-l-bar) :type n :width 16 :length 3)))

(parallel vdd c-1
((series (p-l-bar p-O-bar c-in-bar) :type p :width 32 :length 3)
(series (p-l-bar g-O-bar) :typ p :width 32 :length 3)
(transistor (g-l-bar) :type p :width 32 :length 3)))

(inverter c-l c-l-bar))

look-ahead-2 (c-in-bar p-O-bar g-O-bar p-l-bar g-l-bar
p-2-bar g-2-bar c-2-bar)
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(local c-2)
-(sries c-2 gnd

((parallel (p-2-bar p-l-bar p-O-bar c-in-bar)
:typ n :width 16 :length 3)

(parallel (p-2-bar p-l-bar g-O-bar) :type n :width 16 :length 3)
(parallel (p-2-bar g-l-bar) :type n :width 16 :length 3)
(transistor (g-2-bar) :type n :width 16 :length 3)))

-(parallel vdd c-2
((series (p-2-bar p-l-bar p-O-bar c-in-bar)

:type p :width 32 :length 3)
(series (p-2-bar p-l-bar g-O-bar) :type p :width 32 :length 3)
(series (p-2-bar g-l-bar) :typ p :width 32 :length 3)
(transistor (g-2-bar) :type p :width 32 :length 3)))

(inverter c-2 c-2-bar))

(circuit-macro

(defschematic

look-ahead-3 (c-in-bar p-O-bar g-O-bar p-l-bar g-l-bar p-2-bar g-2-bar

p-3-bar g-3-bar c-3-bar)

(local c-3)
(series c-3 gnd

((parallel (p-3-bar p-2-bar p-l-bar p-O-bar c-in-bar)
:type n :width 16 :length 3)

(parallel (p-3-bar p-2-bar p-l-bar g-O-bar)

:type n :width 16 :length 3)

(parallel (p-3-bar p-2-bar g-l-bar) :type n :width 16 :length 3)

(parallel (p-3-bar g-2-bar) :type n :width 16 :length 3)

(transistor (g-3-bar) :type n :width 16 :length 3)))

(parallel vdd c-3

((series (p-3-bar p-2-bar p-l-bar p-O-bar c-in-bar)

:type p :width 32 :length 3)

(series (p-3-bar p-2-bar p-l-bar g-O-bar)

:type p :width 32 :length 3)
(series (p-3-bar p-2-bar g-l-bar) :type p :width 32 :length 3)

(series (p-3-bar g-2-bar) :type p :width 32 :length 3)

(transistor (g-3-bar) :type p :width 32 :length 3)))

(inverter c-3 c-3-bar))

adder (a-O b-O a-1 b-1 a-2 b-2 a-3 b-3
s-O s-1 -2 s-3 c-in-bar c-out-bar)

(local p-O-bar g-O-bar c-O-bar
p-l-bar g-1-bar c-1-bar
p-2-bar g-2-bar c-2-bar
p-3-bar g-3-bar)

(set-technology cmos21)
(top a-3 b-3 a-2 b-2 a-1 b-1 a-O b-O)
(bottom s-3 s-2 s-1 -0)
(left c-out-bar)
(right c-in-bar)
(horizontal-align)
(bit a-O b-O c-in-bar s-0 g-O-bar p-O-bar)
(bit a-l b-1 c-O-bar s-i g-l-bar p-l-bar)
(bit a-2 b-2 c-l-bar s-2 g-2-bar p-2-bar)
(bit a-3 b-3 c-2-bar s-3 g-3-bar p-3-bar)
(look-ahead-O c-in-bar p-O-bar g-O-bar c-O-bar)
(look-ahead-l c-in-bar p-O-bar g-O-bar p-1-bar g-l-bar c-l-bar)
(look-ahead-2 c-in-bar p-O-bar g-O-bar p-l-bar g-l-bar p-2-bar g-2-bar c-2-bar)
(look-ahead-I c-in-bar p-O-bar g-O-bar p-l-bar g-l-bar p-2-bar g-2-bar

- p-3-bar g-3-bar c-out-bar))
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B.10. NMOS Adder Circuit

(circuit-macro pull-up (node)
(transistor vdd node

(node) :type d :width 2 :length 8))

(circuit-macro inverter (input output)
(pull-up output)
(transistor output gnd

(input) :type n :width 4 :length 2))

(defachematic nmos-full-adder (x y c-in c-out s-out)
(local c-out-bar s-out-bar)
(set-technology nmos)
(top x y)
(bottom s-out)
(left c-out)
(right c-in)
(horizontal-align)
(parallel c-out-bar gnd

((series
((parallel (x y) :type n :width 4 :length 2)
(transistor (c-in) :type n :width 4 :length 2)))

(series (x y) :type n :width 4 :length 2)))
(pull-up c-out-bar)
(parallel s-out-bar gnd

((series
((parallel (x y c-in) :type n :width 4 :length 2)
(transistor (c-out-bar)

:type n :width 4 :length 2)))
(series (x y c-in) :type n :width 6 :length 2)))

(pull-up s-out-bar)
(inverter s-out-bar s-out)
(inverter c-out-bar c-out))
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