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Abstract
This report summarizes the second six months of work of the coordinated research project, 

"Transformation of Ada Programs into Silicon.’1 (The main objectives of this project -were 
outlined and then introduced in depth in the preceding semiannual report.) In the past seven 
months, work has advanced in three main areas. Expanded summaries of work in these areas 
(and subareas) are presented:

1.Work on the principal case study of this project: Converting the DoD Internet 
Protocol to silicon. The full Protocol has been decomposed into three main parts.
The part that handles outbound datagrams has been fully specified ir. Ada and 
an interesting part of that code has been transformed into an NMOS circuit 
composite represented in PPL (Path Programmable Logic).

2. A tranformation system is being implemented to map Ada program units into 
intermediate forms in syntactically correct Ada. These intermediate forms are 
suitable for input to the transformation system (A SSASSIN) that automates the 
production of the asynchronous control components of the PPL circuit composites.
A theory for synthesizing circuits from system specifications that are more 
abstract than A da is also reported.

3. Research and Development on the design, fabrication, and application of PPL 
(Path Programmable Logic) circuit arrays is reported

' a. The ASSA SSIN system which transforms state graphs of state machines
expressed in textual form to self-timed PPL programs and composites is 
operational.

b. Completion of a PPL simulator (ASYLIM) has been incorporated into the 
PPL design system.

c. Design and composite layout of three different PPL test circuits were sent 
out for fabricaton. The circuits will be used to check a wide variety of 
PPL cells and supporting circuitry. 1

d. A design technique for ICs representing self-timed stored state machines 
and data path components using the PPL cell set has been developed. The 
results of the research have produced new PPL macro cells which 
augment the set cf available cells.
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1. Summary
This report summarizes the second six months of -work of the coordinated research project, 

"Transformation of Ada Programs into Silicon.'1 Project objectives span a broad and ambitious 
spectrum (broader than the already broad title implies), hence the tenm coordinated-, this 
refers tc the fact that, on the one hand, all research within the project is closely related, but 
that the overall project success is not predicated on dose coupling of individual subproject 
results. The main objectives of this project -were outlined and then introduced in depth in the 
preceding semi-annual report [19]. They are repeated here in more brief and in a somewhat 
updated form:

1. Develop elements of a tranformation methodology for converting Ada programs 
or their parts, into VLSI systems. This research indudes identifying a suffident 
set of transformation rules for mapping program spedfications through 
successive levels of representation, from Ada or related abstract spedfications, to 
integrated drcuits.

2. Demonstrate the methodology developed in 1 by manually applying it to a non
trivial example: transforming an Ada-encoded representation of the DoD 
Standard Internet Protocol [20] (or a significant subset thereof) into NMOS 
drcuitry.

3. W ork toward a theory for identifying substructures within Ada programs for 
which the transformation methodology is pragmatically attractive.

4. Develop spedfications for a set of software tools for use in automating the 
transformation methodology developed in 1.

5. Develop a methodology for testing integrate drcuits representing Ada program 
units and for integrating such circuits into a larger system.

In the past seven months, our work has advanced in three main areas and in several 
subareas listed below. Expanded summaries of work in these areas are presented in 
succeeding sections of this report.

1. Work on the prindpal case study of this project: Converting the DoD Internet 
Protocol to silicon. The full Protocol has been decomposed into three main 
parts [18, 13]. The part that handles outbound datagrams has been fully 
spedfied in Ada [14] and part of that code has been transformed into an NM OS 
drcuit composite [6].

2. Implementing a tranformation system to map Ada program units into 
intermediate forms in syntactically correct Ada. These intermediate forms 
represent < state machine, data path> pairs suitable for input to another 
transformation system that automates the production of drcuit composites [24],

a. Development of a theory for synthesizing drcuits from system 
spedfications that are more abstract than Ada, e.g., axiomatic algebraic 
spedfications or from A da augmented with A NNA —like specifications that 
also allow spedfication of temporal properties. [12, 29, 25, 26]

3. Research and Development on the design, fabrication, and application of PPL 
(Path Programmable Logic) drcuit arrays.

a. Completion of the transformation system called ASSASSIN, reported in 
detail elsewhere [7], which transforms state graphs of state machines 
expressed in textual form to self—timed PPL Programs and composites.

b. Design and composite layout of three different PPL test drcuits called 
UU2C, UU21, and UU23. UU2C is used to check the read-enable flip- 
flop, the write-enable flip-flop, the asynchronous-clear flip—flop, row 
pass-transistors, and flip-flop pull-up cells. UU21 checks the Set/Reset 
flip-flop, the two-wire latch, the inverter cells, the column pass—

' transistor, and the S, R , 1, and 0 cells. UU23 checks the input and output
pad cells. In addition, a test drcuit containing several different csdllators 
and counters has been induded for determining performance.

UU20 and UU21 were sent to M OSIS for the June 4 run, and in July we 
were informed that, due to some mask problems, none of the drcuits were 
completed. W e are still waiting for these parts. In September we dedded
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to process all three test circuits in our own (HEDCO) laboratory. 
Problems with mask making equipment have caused delays, however, 
•UU20 and UU21 are expected out of the process line in late November or 
early December. UU23 should also be processed in December.

c. Completion of a PPL simulator tailed ASYLIM which has been under 
development for the past v6ar. (The work was sponsored primarily by a 
commercial company. The simulator was incorporated into the PPL 
design system for use in this project. The main characteristics of this 
simulator are outlined ir. Section 4 of this report.

d. Development a design technique for ICs representing self-timed stored 
state machines and data path components using the PPL cell set. (The 
work was sponsored by a private company.) These techniques have been 
primarily directed at the design of circuits using a conventional single
rail Four Cycle signalling protocol. The results of the research have 
produced new PPL macro cells which augment the set of available cells.
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2. Converting the DoD Internet Protocol to Silicon.

by

Elliott I. Organick and Gary Lindstrom

As mentioned previously [19], our design of the Protocol is based on a decomposition into 
three submodules: INM _ OUT dealing with traffic outbound on a given local net, IN H _ IN 
similarly handling inbound traffic, and INM _ SRV tying them together and interfacing to the 
Hcst(s). Yf e envision one INM _  IN and INM _ OUT pair of submodules for each local net 
interface, but only one IN M _  SRV submodule per Internet M odule (IN M ).

W e are following the five-level software development and testing plan discussed in the 
preceding report. The levels correspond to IP applications in increasingly generalized settings. 
The plan stipulates testing as each level is reached, rather than as an epilog tc the 
development plan. Testing is to be conducted at several levels, from the physical 
characteristics of the circuits themselves to the (Ada) semantic behavior of the submodules 
that have been converted to circuits.

After designing (specifying) the interfaces between the submodules [13, 10], we then 
selected the INM _ OUT (sub)module as the first one tc be converted to circuitry. Yf ork toward 
this objective in the past seven months has been rapid in some respects and slow in others.

The specific and significant accomplishments have been as follows:

1. IV e have coded the complete INM _  OUT submodule in Ada and have succeeded 
in compiling most of it for execution on the Intel iAPX 432 system except for 
statements and declarations associated with uses of the Ada rendezvous 
construct. • - ■ .

[As later versions cf the Intel compiler become available, we expect not cnly to be 
able to compile the full module using rendezvous syntax and semantics, but to 
execute it in this mode as well. In the meantime we are working with a version 
of the code that simulates each rendezvous via Send/Reoeive primitives 
instantiated through use of the A da generic package mechanism.] ,

2. The INM_ OUT submodule is an Ada package named INM_ OUT- Module; it 
contains three intercommunicating Ada tasks. TV e are in the process of

. transforming each of these tasks into PPL circuit composites beginning with the 
second one listed below:

a. The main task, named INM _ OUT, interfaces with INM _  SRV and with 
LN M _ OUT such that a pipeline effect is achieved for speeding datagrams 
along the outbound data path: Host module — > IN M _SRV  — >
INM_ OUT — > LNM_ OUT.

b. An auxiliary (server) task, named Read- Init- Parameters, which obtains 
from host—related memory the initial parameter values needed tc perform 
datagram transmission. Transformation cf this server task, one which is 
rich in Ada control structures, is essentially completed. A demonstration, 
showing the process by which we make the transformation tc PPL circuit 
composite was given in June, 1982 during a DARPA review of our project.
That demonstration was based on a preliminary version of the Ada task, 
which has now been updated. The composite produced for the current 
version of the task is more interesting and is apt to resemble more closely 
the one we eventually will consider the final version.

c.Ar. auxiliary task named Translate— TOS_ Task, which operates in 
parallel with INM _ OUT, the main task, by translatiing type—cf-service 
information from host-level to local-net level encoding.

3. As just mentioned, the task Read- Init_ Parameters has now been converted 
semi-eutcmatically to PPL circuit composites in NMOS. The conversion into 
PPL composite form is discussed in part in a new paper by Carter, to be presented 
at a DA RPA-sponsored meeting at Stanford, on November 5 and in part below. 
Carter's paper focuses primarily on the technology for converting the control 
structure portion of the A da task into the self-timed control unit of the
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corresponding circuit

In this report we make some observations on the overall structure of 
Read- In it_  Parameters and on some of its subtle details. W e also comment on 
some of the steps vre traversed in arriving at this version of the task. A copy of 
the body part for the present version of this Ada task is to be found in the 
A ppendix.

[The complete Ada specification of the INM_ OUT submodule, which includes 
this task is giver, in a separate report [14]. A reader cf the Appendix version 
only is expected to imagine how the task Read- Init_ Parameters interfaces with 
the remainder of the entire submodule. A. reader of the separate report is treated 
to a ’’road map" of the full Ada structure of the INM _ OUT submodule which 
helps to understand our overall design.]

4. As a prelude to testing hardware versons of Ada pargram units and in support of 
our work in specifying subsystems in Ada and then simulating them, we 
installed, made operational, and have begun using a complete Intel 432 Cross 
Development System. This system includes an Ada cross compiler for a large 
subset of Ada and a 432 multiprocessor system consisting of two regular and two 
interface processors. W e expect to receive from Intel a compiler that includes full 
tasking by the end of calendar 1982 and an equally complete resident compiler 
approximately a year later. W e have also gained hands-on familiarity with a 
number of the 432 System’s operating system features.

2.1. Interesting aspects of Read— Init_ Parameters
The structure of Read— In it_ Parameters includes a number of typical and interesting 

features of Ada tasks both from the point of view of inter-task communication and intra-task 
body structure ,

-Inter-task communication. The task indudes nested accept statements both of 
which have both in-bound and out—bound parameters. There accept statements 
are implemented using simple request/acknowledge protocols.

— Intra—task computation. The task body includes a rich, nested loop structure and 
one nested block defining local variables whose ranges are determined 
dynamically. The loops include the infinite outermost loop of the task, familiar 
”fcrv loops with fixed upper bounds, and indefinite loops escapes from which are 
based on "exit when” clauses. As we have expected all along, all of these Ada 
control structure forms map in a straightforward way tc corresponding control 
structures at the state machine level and thence tc PPL circuits.

The data path of Read- In it_ Parameters indudes several variables which are represented 
in the hardware as registers or counters. One array variable is represented as a RAM to 
represent a map from type—of-sen’ice encoded at the host level to type—cf—service encoded at 
the lccal net level. [The size of this RAM , which is never apt to be very large in any case, is 
limited to four-octets (for a 2 by 2 array) in our demonstration implementation. M ost of the 
above variables are shared with the other two tasks of the submodule; that is, they are 
declared local tc the containing package, INM _ OUT-M odule, however we perceive no 
difficulty in achieving mutually exclusive access.

The cne variable that is local to the entire server task does not and is not represented in 
hardware as a storage element. Variables used locally for loop control are represented as 
hardware counters and/cr registers, but some sharing is achieved where there is no chance for 
conflict.

Although the transformation to the Ada code to the "engine level”, i.e., to representation as 
a (control unit, data path) pair, has been done by hand, the transformation research reported 
in the next section has included consideration of each of the "hand-made” mapping steps in 
this particular exercise.
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2 .2 . Arithmetic processing
That we have encountered so little trouble performing the mapping for this task is partially 

explained by the fact that the task involves only trivial arithmetic processing. (Indeed, the 
entire INM _ OUT_ Module involves only minor arithmetic processing.) At this stage of our 
research we are glad this is the case as we consider it important to determine first what new 
challenges, if any, must be met for achieving asynchronous control.

2.3. On going and future related work
Now that this part of the research is essentially complete, including the development of the 

ideas embodied in ASSASSIN, we expect tc be concentrating next on such challenges as the 
application of the same or related asynchronous design principles to arithmetic processing. 
Also included in our agenda is research intended to help us automate the mapping of data 
path storage components, identified in the transformation from Ada program units, into PPL 
circuits coupled to their controls.
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3. A Transformation System : Theoiy and Implementation
by

P.A. Subrahamanyam

W e have mede substantial progress along two directions: implementation of a prototype 
transformation system and further development of a conceptual/theoretical basis to support 
the design of integrated s of tw a re-h ar d w are systems. W e outline the major contributions 
below, with appropriate pointers to references that contain more detailed discussions.

3.1. Systems Implementation
—A set of tools to support experimentation with Ada-tc—Silicon transformations has 

been implemented, and runs on the TOPS-20. The system has been ported to the 
VAX—750, and an initial version has been installed This porting proved tc be a 
major job (and problem) due to unstated incompatibilities between INTERLISP-20 
and INTERLISP—VAX. Further debugging and testing of the Vax version will be 
done when the experimentation is moved completely over tc the Vax. (Given the 
needed personnel, we expect this to be carried out over the next year, when our 
address space requirements force us to move over tc the V ax).

—An initial set of transformation routines has been implemented and is being 
augmented so as to handle additional syntactic constructs in Ada. This set of 
programs is intended to aid in the interactive generation of the target hardware 
description in a symbolic representation. Details of the current status of this work 
are reported in [24].

3.2. Conceptual/Theoretical Basis for Transformation
—A unified theoretical framework to support a broad spectrum of the VLSI design 

process has been introduced in [29], which is currently available in the form of the 
draft of a research monograph. This monograph introduces an algebraic 
framework to aid in the synthesis and verification of special purpose VLSI 
systems, proceeding from high level specifications. It allows for abstract 
specifications of the syntax, semantics, temporal and performance requirements 
particular tc a given problem. The characteristics of the environment in which the 
syslem is embedded can also be specified and are used in the synthesis process. In 
addition, the framework allows several of the constructs in existing languages to 
be modelled, including nondeterminism, concurrency, and data /demand driven 
evaluation. This allows the infrastructure tc be (l) applied tc situations wherein 
the problem "specification” is in the form of a program in a conventional high level 
language and (2) used to model the lower level synchronous/asynchronous nature 
of implementations. Topology and circuit layout geometry can also be expressed 
by using the algebraic primitives available.

—Annotations tc Ada have been proposed tc aid the abstract specification of 
temporal properties of systems and desired performance requirements [25, 28, 12].

— Transformation methods to apply the theory in the context of Ada tc obtain 
systolic implementations are detailed [27, 24].

— A n algebraic modelling of weak conditions to be met by asynchronous circuits has 
been done —  the resulting model is very simple, and the conditions concise and 
intuitive [26].

Following a discussion of the specification and synthesis methods, illustrations are given 
in [29] that demonstrate the use of the proposed theoretical basis in synthesizing various 
classes of algorithms. It is shown how (families of) systolic algorithms may be obtained as a 
special case. Methods for proving the correctness of implementations are presented and 
illustrated with examples. The concept of the propagation of computational lod arises 
naturally in course of the development, and serves tc generalize the commonly used notion of a 
"wavefront” of computation for 2-dimensional architectures. Automatable design aids based 
on. the proposed algebraic basis are delineated. Finally, it is shown how M OS drcuits can be
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modelled using the primitives available, and the algebraic derivation of Bryant’s simulation 
algorithm used in M OSSIM II is illustrated in this context

3.2.1. Interface With Diana
M ost of our transformation tools use the parse tree representation of a program as the 

primary data structure they work with. W e have in mind the long term objective of being able 
to interface with the tools that are designed to operate on Ada program parse trees, and that 
being developed by the Ada community at large (and in particular the DA RPA community). 
Tc this end, we have been interacting (to a limited extent) with the Diana group (primarily at 
Tartan Laboratories).

3.3. Some Remarks on System Implementation Issues
W hile we are continuing work on the current version of the transformation system (in 

Interlisp, and on the Vax and DEC-20), it has become clear that there are two major 
defidendes that need to be remedied sooner or later. These are (1) unsuitability of the current 
parse tree interface (and parser generator) fcr several of the transformation routines 
themselves; and (2) (lack of) speed: this is due to the slowness of Interlisp on the Vax 
(compounded, of course, by the fact that we are working with non-trivial pieces of software).

To solve the first problem, it is necessary to redesign the parser generator (which has been 
imported from ISI [31]). However, since the other tools (particularly the syntax directed editor 
generator and pattern matching system) and the history list mechanism are all very much 
inter-related and quite deeply ingrained in the system, there is a substantial software 
development effort involved in doing this. Currently, we have neither the equipment nor the 
man-power to support such an effort. W e envision the redesign being more profitably done 
using a newer generation of Lisp (e.g. PSL, CcmmonLisp) fcr efficiency reasons, and run on 
personal machines, rather than on a Vax like machine. In the interim, hew ever, the response 
of the extant version of our system can also benefit greatly from being run on an Interlisp—  
supporting machine, e.g., the Dorado/Dolphin. Having access tc such systems would 
obviously result in greatly improved programmer productivity.
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4. PPL Design Activities

by

j. Kent F. Smith, Brent N elson, Tony Carter, and A lan Hayes

I  . '
A system for the design of integrated circuits using a methodology known as Path 

Programmable Logic (PPL) has been developed by the Utah ArLSI Group. This work has beer, 
sponsored in part by the DARPA contract and by contracts with ether government agencies 
and in part by support from several independent companies. The system addresses the 
complete design cycle including initial logic design, circuit layout, simulation, electrical 
checking, and pattern generator tape preparation. It indudes: (1) symbolic layout programs to 
fadlitate the placement of the symbols on the grid, (2) a simulator patterned after switch- 
level simulators but spedfically tailored for use on PPL, (3) a checker program for cell 
placement verification and DC drcuit loading checking, and (4) a common database for design 
representation.

4.1. PPL Design Characteristics
The characteristics of design using the PPL methodology indude:

1. IC design is performed by pladng small circuit modules which can be represented 
■with logic symbols on a grid representing the integrated drcuit. hen the grid 
is completely populated, it is both the logical representation and the topological 
layout of the drcuit. Effident design changes can be made as a result of this 
design methodology because the designer has simultaneous perception of the 
drcuit function and the drcuit topology.

2. The drcuit modules have predefined schematic and composite representations. 
They are custom designed to optimize performance and size for any specific 
integrated drcuit process. Design Rule Checking (DRC) is performed on the 
module and thus it is not necessary to do DRC cn the overall drcuit since it is 
simply a collection of drcuit modules. ■

3. A complete drcuit can be designed in PPL and no custom design is required. The 
pads and the interconnect can also be made by the placement of PPL cells on the 
grid. All interconnections between modules are there by default. The designer 
only places breaks tc remove connections rather than to add them.

4. Hierarchical design is possible by custom design cf macros which are collections 
of PPL cells put together to perform spedfied functions. These macros cells can 
have custom physical shapes to conform tc specific space requirements.

5. Simulation and checking are easily accomplished, eliminating the need for very 
_ difficult and time-consuming operations. The only elements manipulated are

symbols rather than transistors or rectangles which must be checked in systems 
that design at the transistor level.

4.2. The Analogy Between the PPL Design and a Computer Program
There is an analogy between the development of the PPL design methodology and 

Programming languages. The l's and C’s which were used in early machine language 
computer programming are analogous to the rectangles which are used in the custom layout of 
integrated circuits. Pladng transistors on a composite might be thought cf as being analogous 
tc writing machine language code in hexidedmal since we are still pladng rectangles cn a 
grid in shorthand form. The PPL design methodology is analogous tc writing programs in 
assembly language where mnemonics are used tc represent spedfic collections of transistors 
(functions). This PPL design methodology is still very dependent upon the spedfic technology 
which it is designed in. This is similar to the way that assembly language is machine- 
dependent.

The analogy between the development of computer programs and the PPL methodology can 
be carried even further with the compilation of high level circuit description languages to
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integrated circuit layouts (silicon compilers). The high level descriptions of the integrated 
circuit are machine independent and are compiled directly to a specific PPL cell set designed 
in a particular technology. To date there have been cell sets done in NMOS [21], CMOS [22] , 
and I2L [23]. An example of such a silicon compiler is A SSA SSIN [7] which is currently in vise 
at the U niversity of U tah.

4.3. Design Time vs. Integrated Circuit Area
The main disadvantage of PPL design methodology is that it ■will probably result in circuits 

which are larger than completely custom-designed circuits. Previous work done by the VLSI 
group at the U niversity of U tah has compared some custom designs tc some PPL designs. This 
gives insight into the tradeoffs which exist between the two techniques. A circuit known as 
the U tah Serial Cordic M achine (U SCM) was designed under a contract with W right Patterson 
AFB for the VHSIC program [3, 4, 5] using both custom design techniques and the PPL Design 
Methodology. The USCM was constructed using an implementation similar to the shift— 
register scheme proposed by V older [30].

The USCM was implemented using a CMOS PPL cell set. Its design time and chip area 
were compared to those for an equivalent custom NMOS design done at Boeing Aerospace 
Corp. The entire CM OS PPL chip was designed and simulated in approximately eight man 
days, compared to approximately eighty man days for the NM OS custom design. The CMOS 
PPL design was 19 percent larger than the custom NM OS design. Vf hile these figures may 
not be an accurate reflection of the variables which enter into design time measurements, they 
are indicators that PPL designs require significantly less design time than do equivalent 
custom designs and result in chips which are not significantly larger in area.

This favorable reduction in design time can be attributed to several factors: (1) The designer 
has concurrent perception of logical function and layout. Thus, he can immediately see when 
the logic function being implemented does not fit in well with the rest of the circuit. The logic 
design is made as the composite is drawn. This eliminates the need for separate composite 
layout/logic design stages. (2) The higher level symbolic notation allows the designer to 
manipulate very complex logical elements in an efficient manner. It is, for example, not 
necessary to trace a complex series of logic gates to determine the function of the circuit 
because the symbolic notation is easily read and interpreted. In addition, the symbolic 
notation can be directly simulated and does not require the extraction of the transistor-level 
circuit from the composite.

Past experience would indicate that the area penalty incurred by the PPL design 
methodology will eventually disappear as more scphsticated design tools are developed. This 
is again analogous to the development of compilers. It is well known that, as expertise in 
compiler writing improved, the gap between hand-coded and compiler-produced object code 
size became negligible. Some of the techniques being developed for compaction of integrated 
circuit layouts will be used to close the current gap between the area required for custom 
designs and automatically generated PPL layouts.

4.4. The Utah PPL Design System
In addition to the development cf the PPL as a hardware implementation methodology 

described above, the other major thrust of research here at Utah has been in developing 
software tools for PPL design. The goals of this software research have included the following:
(1) Finding ways to exploit the symbolic nature and representation of a PPL design to reduce 
design complexity. (2) Development of CAD tools around conventional computer hardware, 
which would allow designers to work from remote workstations. (3) Creation of a complete 
system tc be used by the IC design community here at U tah.

An integral part of the design system is a Computer Vision CADDS2A'LSI Designer 
System. It is used tc do the composite layout of the individual PPL cells, placement of the 
individual cells on a grid to form a circuit, connecting the circuit to pads, adding scribe lanes, 
and generating a PG tape. Although we have relied heavily on this machine in the initial 
development of the system, in its absence all of the functions it performs could be done with 
other tools (the Cal—Tech Software Package for example).
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The other part of the design system is built around a DECSystem-SO. A silicon compiler for 
finite state machines (FSM), a symbolic layout system, a simulator and cell placement 
checker, and a compaction program all reside there. The transfer of designs between the 
Computer Vision machine (CV) and the DECSystem-20 is done using a mag tape written in 
Computer Vision External Database format. The combination of these two computers gives 
the system the power of the CV’s IC layout features combined with the computing power of a 
mainframe.

Each PPL cell used in the system has three representations. The composites of the cells are 
designed sc that they fit together by virture of their being placed adjacent to each other on the 
grid. A schematic representation of each cell is created for reference. A graphical 
representation is also created which is used by the designer as he uses the cells tc form larger 
drcuits.

4.5. Presently Existing Circuit Layout Tools
The placement of the PPL cells on the grid to form a drcuit can be done using either the 

Computer Vision machine or one of several programs on the Utah DEC System-20. The 
program used for cell placement on the DEC System—20 is known as SLED (Structured Logic 
Editor) [15] . In SLED, the PPL design is represented as an array of cell symbols which are 
then edited. W ith the SLED editor, a simple CRT terminal and modem is all that is needed for 
drcuit design but at the expense of more cryptic graphical representations of the individual 
PPL cells than those found on the Computer Vision machine. In general, the ability to use 
SLED from a remote terminal outweighs this limitation. Advanced editors are now being 
designed to run on a CRT terminal that will overcome some of the graphical limitations of 
SLED. .

SLED was designed to be similar to a screen-oriented text editor. In fact, the commands in 
SLED are the same as the equivalent commands in, EM A CS [8], a popular screen-oriented text 
editor. Cursor movement is possible in any of the four directions, and regions (windows) can 
be marked and then named, deleted, replicated, or written to a disk file. Conventional text 
editors, however, only allow for scrolling and windowing in the vertical direction (lines longer 
than the width of the screen are wrapped around). In SLED, scrolling and windowing are 
possible in both directions. Thus, an array with 300 columns and 300 rows can be displayed 
and edited using SLED without screen wrap-around. The effect is that the user has an 80X24 
window which can be moved around the array.

Circuit layout car. also be accomplished using a first-generation silicon compiler. 
Compilaton of Ada language modules to drcuits is accomplished using the program named 
ASSASSIN [7]. This program takes as its input a textual description of the operation of a 
control unit (Finite State Machine) and from it generates a PPL layout implementing the 
control unit.

4.6. Circuit Simulation and Electrical Checking
Simulation of the PPL design is essential before actual fabrication. An important part of 

the design system is a simulator (A SYLIM ) which can do simulation of the PPL. Because the 
PPL cells are simulated and checked individually at the transient level when the cell set is 
designed, the complete drcuit made up of PPL cells can be simulated at a switch or gate level. 
ASYLIM [16, 17] reads the drcuit database written in Computer Vision External Database 
format. Thus, the actual design can be simulated rather than a logic equivalent.

ASYLIM is similar tc other recently developed M0S simulators in that it uses a switch 
ttodel. However, the development of a simulator for PPL has shewn [17] that a spedal 
Purpose simulator was required in order to preserve the user’s abstract view of the drcuit.

input format to existing simulators is typically given in the form of a table or listing of 
V'ansistors and nodes. To preserve the user’s abstract view of the drcuit it was necessary to 
“^ign a simulator for PPL where the elements in the simulator correspond to those in the 

cell set. During the interactive debugging phase of the simulation of a drcuit, the user 
^  then refer to circuit elements by their position in the PPL array. An added feature of the 

simulator is that the information stored in the simulator’s internal representation of the
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drcuit interconnect structure can be used for additional drcuit checking unique to the PPL 
methodology. The end result is that ASYLIM is similar to conventional switch-level 
simulators but with an extensive user-interface that allows the user to work with the drcuit 
at the symbolic PPL level, the same level he uses when designing.

ASYLIM makes use of six-valued logic and uses a unit-delay timing model [1,2]. The 
underlying drcuit model primitives are switches but with extensions to allow for the 
simulation of certain entities as gates (flip flops and latches). It has been shown that the 
unit—delay model is adequate provided the circuit is free from races. Thus it car. be used to 
model the sequence of drcuit activity [2].

An additional advantage of using ASYLIM over other simulators is that it contains an 
extensive interactive circuit debugger. The features of this debugger allow the user to view 
the circuit interconnect structure as constructed by the simulator. This is displayed in a 
readable format that allows the user to quickly compare the simulator’s interpretation of the 
drcuit element interconnections and the intended design. This comparison uncovers most 
design errors relatively quickly. In addition, the simulator performs a pre-simulation 
plausibility check on the drcuit’s nodal structure. This feature (the idea borrowed from 
Bryant’s M OSSIM [2] enables the user tc find a large percentage of the design errors without 
ever going to the expense of an actual simulation. This check identifies nodes with fanout but 
no inputs, inputs but no fanout, no path to either power or ground, or multiple pullup loads.

yf hile a logic or switch-level simulation can provide an invaluable service in  verifying the 
logic design, there are many features of a design that do not shew up in a simulation run. For 
example, the ground node may be spedfied as an input to a transistor in a diagram but it 
requires an explidt check on the layout to ensure that ground actually has been routed to that 
device. In  PPL design, these types of electrical (non-logic) entities are included in the design 
using spedal cells. For instance, the power bussing structure is induded by placing power and 
ground buss oells around the circuit perimeter. In addition, other cells, like row and column 
loads, are usually left of out of logic diagrams but must be induded for the drcuit’s correct 
operation. ASYLIM checks for these cells as a part of its operation. .

4.7. Self Timed TC Design with PPL's
Another activity which has been funded by a private company and is cf importance in the 

development of the PPL methodology is the design of self-timed modules using the PPL cell 
set. The work is based on techniques developed earlier [9] for realizing self—timed stored state 
sequential circuits. The original investigations were applied to off-the-shelf SSI parts. The 
present investigations are for the transfer of those ideas to large collections (macros) of PPL 
cells for use in the design of self timed systems tc be contained on single integrated drcuits. 
The investigations have led to further development of the PPL cell set to indude methods for 
self timed drcuits [11].

This research has resulted in a design disdpline for self-timed stored state machines which 
has been developed using a conventional single rail Four Cyde signalling protocol. (State 
descriptions are encoded in PLA s represented in PPL.) The disdpline differs from that vised by 
Carter [7] which uses a technique known as a "one hot" scheme. The approach used for 
realizing the self timed stored state machines is based on two key developments: (1) A novel 
docking drcuit that generates a non-overlapping two phase dock cyde for an arbitrary size 
register, where the duration of the phi 1 phase of the cyde is automatically adjusted to the 
register size, and (2) A layout discipline for the folded PLA holding the state table, which 
guarantees that the inputs to the state register will be valid at the time that the dock cyde 
occurs.

The method depends on certain properties of the NM OS PPL cell set, i.e. that row and dock 
wires are polysilicon, and that registers are formed by locating flip-flop cells such that their 
dock lines are serially connected. This method offers a designer the advantage that he need 
not conoern himself with the timing details of a state machine design in order to assure that it 
will work. Assuming that the state table realized by the PLA is correct, that the rows and 
columns of the design are properly loaded, and that the proper interconnections have been 
made (all of which can be verified with the PPL simulator [17]), the designer can be assured of 
correct operation of the state machine. The prindple disadvantage of the method is the
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In addition to the self—timed state machine design, the described design disdpline [11] has 
been applied to several interesting types of self—timed data—path modules, for example multi
bit latches and ripple-carry counters.

overhead of the d ock ing  d r c u it  w h ich  m ust be associated w ith  each state m ach ine .

4.8. Future CAD Tools for the PPL Design Methodology
Our operational design tools should be enhanced. The following agenda lists the tools we 

have identified as being an important part of a design system for this methodology and which 
■we plan tc develop:

1. A Relational PPL Database Management System —  This will allow the same 
software tools such as the editor and simulator to be used on PPL designs done 
using any spedfied integrated drcuit technology such as NMOS, CM OS, I2L, and 
GaAs. In addition, it will provide a standard interface between the various CAD 
programs.

2. A Symbolic, Interactive, PPL Editor —  this editor will be used to create a 
symbolic representation of a PPL drcuit. It will be used interactively by a 
designer for the semi-automatic placing of PPL cells on the PPL grid. Because of 
the symbolic nature of PPL, many of the mundane design tasks can be 
automatically performed by the editor, leaving the designer free to concentrate 
on logical design. The editor will use either tablet or keyboard entry with 
simultaneous graphical representation of both the logic description and the 
drcuit topology.

3. Minimization of PPL programs —  Development of a compaction program for 
compressing a PPL design by rearranging its symbolic description. Such a 
program will use heuristically driven artifidal intelligence techniques tc arrive , 
at a neai—optimal solution to the minimization problem. This tool will give us
the capability of doing loosely packed PPL designs which can then be ■ 
automatically compressed. This is a unique feature of the PPL design 
methodology and can be accomplished because of the symbolic nature of the PPL.

4. Predefined Structured Logic Blocks —  We are persuaded that drcuits that 
already contain large blocks cf non—PPL structured lcgic should be designed 
using similar techniques tc these presently used fcr the design of such blocks.
For instance, if a random access memory (RAM ) is required in a drcuit, it is more 
effident, both from a performance as well as a topological standpoint, tc actually
dc a custom laycut of the RA M . The PPL cell set can be extended to indude very . 
elementary cells from which macro cells can be developed for any specific 
implementation cf a RAM. Components generated by such an implementation, 
although not strictly PPLs, would be compatible with their PPL neighbors. A list 
cf cf structures we expect to implement as macros indudes:

nxm ram 
nxm rom
n -b i t  r  i ppIe adder 
n b i t  fa s t  adder 
n -b i t  p r i o r i t y  encoder 
n -b  i t  reg i s te r  
nxm mu I t i p i i e r  
n -b i t com parator 
n -b i t  synch counter 
n -b i t  r ip p le  counter 

■ n - b i t  by m :l flUX

4.9. Observations
Our research thus far has demonstrated the usefulness of the PPL methodology as a higher 

level design technique for hardware analogous to the use of assembly language for computer 
Pr°gramming. The analogy has been extended by the introduction of ASSASSIN, a first- 
generation silicon compiler for speed-independent finite state machines.
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Our design system has proven useful for doing actual design of a variety of integrated 
drcuits. It has reduced design times required by an order of magnitude. Resultant designs 
are easily simulated and corrected due to their symbolic representation. System designers 
with little or no direct experience with integrated circuit design can do actual IC layout.
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--  f 1 e mo r y  m o d u l e .
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r  i  q u i t  t _ t  y p e _ f  o r  ma I =  >  l o a d  _ a  d d n t s ,

c h u n  k _ o  f _ a  d d  r  a s s _ f  o r m a  I = >

C o n v e r t _ s r v _ e o s > m a n d _ t o _ c h u n k _ o f _ a d d r e * *  

( s e r v e r _ c o m » a n d _ d a t u « >  , 

o c  t e  t _ f o r n a  I = >  d o n  t  _ c a  r e  _ o c  1 e t ) ;

e n d  S p v _ r • q ; 

e n d  l o o p ;  .

- -  C e t  t h e  6 i n d i v i d u a l  i n i t i a l i z a t i o n  p a r n c t i r t  ( c o n t a i n e d  i n  t h a  

--  n e x t  8 o c t e t s  r e c e i v e d )  f r o m  t h e  f l e m o r y  N o d u l e ,  

f o r  i n d e x i n  1 . . 8 

l o o p

Re n o r y _ r e q u e i t  C

r a q u • 1 1 _ t y p a _ f o r m a  I =  >  r a c e i v e _ d a t u m _ o c t e t ,

c h u n k _ o f  _ a d d r e s s _ f  o r m a  I = >  d on  t _ c  a r  e _ X _ d a  t u n , 

o c t e t _ f  o r  i a  I = >  o c t e t _ r  e g  i 1 1 a r  ) ;

c a s e  i n d e x  i s

w h e n  1 =  >  l n m _ m a x _ p a e k e t . l o  : -  o c  t « t _ n g  i t  t e r  ;

w h e n  2 -  >  I n » . « a x . p a  c k  a t . h I : =  o c  t a  t _ r e g  i s t e r  ;

w h e n  3 = >  I n m _ a d  d r  a s  s _  I e n g  t h : =  o c t e t _ r e g i s t e r  ;

w h e n  4 = >  I n m _ t  i # ie _o  u t . I o : =  o c t e t _ r e g i s t e r ;

w h e n  5 -  >  I n m _ t i m e _ o u t . h i  : =  o c  t a t _ r  e g  i s t e r  ;

w h e n  6 = > a c k _ t y p e  : — o c t e t _ r e g  i t t e r ;

w h e n  7 -  >  l o c a l _ n e t _ t y p e _ o  f _ t e r v  i c e _ t a b l e _ r o u _ t i z e

: =  o c t e t  _ r e g i s t e r ;  

w h e n  8 = >  n u m b e r  _ o  f _  I o c a  I _ n e  t _ t  y p e  s _ o  f _ s e  r  v i c e

: =  o c t e t . r e g i s t e r ;

e n d  c a s e ;

e n d  l o o p ;  .

—  C o n v e r t  t h e  l o c a l  n e t  t i i e o u  t i n t o  *  i I I i s e c o n d s . ? _ '

—  t i m e _ o u  t _  i n _ m  i I I i s e c o n d s  : =  I n m _ t  i ate _ o u  t /  1 6 8 6 . 6 ;  •

- - -  L e f t - h a n d  s i d e  v a r i a b l e  d e c l a r e d

- -  i n  I n m _ 0 u t _ H o d u I e . V a l u e  i s  u s e d

- -  l a t e r  i n  D o _ s e n d  p r o c e d u r e .

- -  N o t e :  D a v i s  n e v e r  d i d  t h i s  i n

—  h i s  d e s i g n .  I s  t h i s  s t e p  n e e d e d ?

- -  N o !  Ue d o n ’ t n e e d  t h i s  s t e p

- -  s i n c e  t h e  q u o t i e n t  c a n  b e

--  a p p r o x i m a t e d  b y  a d i v  b y  2 * * 1 6

- -  i n  t h e  e v e n t  u e  n e e d  t o  .

- -  r e p r e s e n t  m i l l i s e c o n d s .

- -  R e a d  i n  t y p e  o f  s e r v i c e  t r a n s l a t i o n  t a b l e .

--  Th e  f o l l o w i n g  c o d e  i n  c o m m e n t s  i s  r e p l a c e d  b e l o u  by  a

-- " l o w e r  - l e v e l "  v e r s i o n  t h a t  c l o s e l y  r e f l e c t s  t h e  h a r d u a r e

—  i m p l e m e n t a t i o n  c h o s e n  i n  w h i c h  we e l i m i n a t e  t h e  n e e d  f o r

-- f o r  a m u l t i p l i e r .

n u m b e r  _ o f _ t o t _ t a b l e _ o c t e l s  : =  l o c a l _ n e t _ t y p e _ o f _ s e r v i c e _ t a b l e _ r o n _ s i z e

t  n u m b e r _ o f _ l o c a l _ n e t _ t y p e s _ o f _ s e r v i c e ;

- -  C h e c k  t o  s e e  i f  r e q u i r e d  t a b l e  s i z e  e x c e e d s  m a x i m u m  

i f  n u m b e r _ o f _ t o s _ t a b I e _ o c t e t s  >  m a x _ t o s _ t a b I e _ s i z e  t h e n  

r e s p o n s e  : =  b a d _ s r v _ c o m m a n d ; 

r e t u r n ;  

e n d  i f ;

f o r  i n d e x  i n  1 . .  n u m b e r _ o f _ t o s _ t a b I e _ o c t * t s  

l o o p

M e m o r y _ r e q u e s t (

r e q u e s t _ t y p e _ f o r m a I  = >  r e e e  i v e . d e  t u n . o c t e  t ,

c h u n k _ o f _ a d d r e s t . f o r m a l  = >  d o n t _ c a r e _ X _ d a t u m ,

o c t e t _ f  o r  ma I = >  t o s _ t a b  I e ( i n d e x ) )  ;

e n d  l o o p ;
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n u m b e r _ o  f _ I o c a  l _ n e t _ t y p e s _ o f  s e r v i c e ;

d e c l a r e

r o w . n u m b e r : i n t e g e r  r a n g e  6 

c o l . n u n b e r :  i n t e g e r  r a n g e  8

I o c a  I _ n e t _ t y p e _ o f _ s e r v i c e _ t a b I e  _ r  o n  _ s  i z e ;  

i n d e x :  i n t e g e r  r a n g e  0 . .

n u m b e r _ o f _ l o c a l _ n e t _ t y p e s _ o l  s e r v i c e  

■ *  l o c a l  n e t _ t y p e _ o f _ s e r v i c e _ t a b I e  r o u . i i i t

: = « ;
b e g i n

r o u _ n u m b e r  ! =  8 ;

l o o p

c c I _ n u » b e r  : =  8 ; 

l o o p

f l e m o r y  . r e q u e s t (

r  e q u  e s t _  t y p e  o r  m a I = >  r  e e e  i v e _ d a  t u n . o c  l e t ,

c h u n K _ o f _ a d d r e s s _ f o r m a  I = >  d o n t _ c  a r  e _ X  _ d  £ t u nt, 

c c t e t _ f o r m a l  = >  t o s _ t a b l e ( i n d e x ) ) ;

- -  O u t e r  l o o p  r e a d s  a l l  r o u s  o f  TOS t a b l e .

—  I n n e r  l o o p  r e a d s  i n  o n e  r o w  o f  TOS  t a b l e .

c o l . n u n b e r  : =  c o l . n u n b e r  + 1 ;

e x i t  w h e n  c o l . n u n b e r  =  l o c a l . n e t . t y p e . o f . s e r v i c e . t a b l e . r o u . s i i e ;

i n d e x  : =  i n d e x  + 1 ;

i f  i n d e x  >  m a x _ t o s _ t a b I e  _ s  i r e  t h e n  

r e s p o n s e  : =  b a d _ s r v . c o m m a n d ;

r e t u r n ;  —  E x i t  t h e  c u r r e n t  a c c e p t  s t a t e m e n t .

e n d  i f ;

e n d  l o o p ;  —  E n d  i n n e r  l o o p ,

r o u . n u m b e r  : =  r o u . n u n b t r  + 1;

e x i t  w h e n  r o w . n u m b e r  =  n u t n b e r _ o  f _  I o c a  I _ n e  t _ t  y p *  s _ o  f _ s e r  v i c e  ; 

e n d  l o o p ;  —  E n d  o u t e r  l o o p ,

e n d ;  . »  E n d  d e c  l a r e  b l o c k .  '

e n d  G o ;  -

e n d  l o o p ;  

e n d  F e a d . I n i  t . P a r a n e t e r s ;

— . E n d  o f  i n i t  p r o c e s s i n g .

- -  E n d  o f  o u t e r - m o s t  ( i n i f i n i t e )

—  l o o p .  ■
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