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Abstract 

This book is about the automation of the design of masks for custom 
integrated circuits. The predictor-adaptor paradigm is the general 
pattern of collecting information followed by taking design decisions. 
This pattern is the result of top-down design or design by stepwise 
refinement. The book explains how thls general paradigm can be 
applied to design problems of custom IC's. Several algorithms are 
given. 

The blocks in a floor plan are designed according to parameters. First 
the freedom of these parameters must be determined by the predictor. 
Then the important design decisions can be taken. Taking the global 
design decisions bas been called floor planning. The parameters are 
then determined and the blocks are adapted to .their environment. 

A new polynomial algorithm for the optimal slicing of point 
configurations is presented. Given the shape funetions of the bloeks and 
a point configuration, the algorithm finds the slicing' structure that has 
the smallest total area. Although there are an exponential number of 
possible slicing structures, the number of possible slices is polynomiál. 
This makes a dynamic programming approach feasible. The 
complexity of the algorithm is O(n6) where n is the number of bloéks. 
The dimensions of the blocks must be expressed as small integers. 

A heuristic for the shortest steiner tree problem is presented. The 
heuristic starts with a shortest spanning tree from which the topology 
is derived. The optima! positions of thls topology can then be 
determined using a polynomial algorithm. This algorithm first 
determines the freedom to choose steiner points. Then the points are 
chosen in a top-down order. 
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An algorithm is presented is for the unconstrained two-dimensional 
folding problem. In this problem horizontal and vertical strips must be 
assigned to rows and columns. Strips in the same row or column should 
not overlap, while the connection pattem of the strips must be realized. 
The algorithm uses an elegant hierarchical divide and conquer 
technique to gradually refine the folding. Each refinement step consists 
of partitioning a group of strips. A cutting line separates the groups of 
strips in horizontal or vertical direction. 

Two new layout styles based on this algorithm are presented. They are 
called 'nor matrix layout' and 'transistor matrix layout'. The nor 
matrix style is similar to the weinberger array. The nor matrix consists 
of multilevel nor gates. Several rows of pull-ups are used to allow for 
folding in both dimensions. The transistor matrix style can handle any 
circuit of transistors. The W/L ratio of each transistor can be specified. 
Although the implementation handles only nMOS circuits, an extension 
to CMOS is straightforward. 

The folding algorithm allows for easy adaptation of the pin positions 
and the shape. This is important in combination with floor planning. It 
is shown that the area of the blocks can be accurately predicted and the 
aspect ratio can be accurately controlled. The orientation of the cutting 
line influences the aspect ratio. The new layout styles give much 
smaller layouts than conventional layout styles. 

U sing the flexibility of the sub-designs design problems can be solved 
more easily. Specialized sub-designs allow the design to be more 
critica!. 



Samenvatting 

Dit proefschrift; gaat over het ontwerpen van geïntegreerde 
schakelingen, ook wel chips. Het einddoel van het ontwerpen bestaat 
uit een aantal maskers, die met fotografische en scheikundige 
processen worden afgebeeld op het silicium. Omdat deze maskers erg 
ingewikkeld kunnen zijn willen we het ontwerpen hiervan zoveel 
mogelijk automatiseren. Dit spaart tijd en verminderd het aantal 
fouten. Ook moeten we de ontwerpmethode zeer precies beschrijven om 
hem door een computer te kunnen laten uitvoeren. Een methode die 
geschikt is voor een computer wordt een algoritme genoemd. 

Het ontwerpen is vooral moeilijk omdat de schakelingen erg groot zijn. 
Daarom wordt het ontwerp gesplitst in een aantal deelontwerpen. Ieder 
van die deelontwerpen wordt ook weer gesplitst tot de delen wel 
hanteerbaar zijn. 

Tijdens het ontwerpen van een chip moet er een groot aantal 
beslissingen worden genomen. Sommige beslissingen hebben een grote 
invloed op het resultaat, andere een kleinere. Beslissen welke 
schakelingen links op de chip worden geplaatst en welke rechts heeft 
veel meer invloed dan het trekken van een enkel draadje. Omdat de 
grote beslissingen veel meer invloed hebben willen we die het eerst 
nemen. De kleinere beslissingen kunnen we dan aanpassen aan de 
grotere. 

De titel slaat op het algemene patroon dat we gebruiken in onze 
ontwerpmethoden. Dat patroon bestaat uit het voorspellen van de 
eigenschappen van nog niet ontworpen deelontwerpen, en dan het 
aanpassen van die deelontwerpen aan elkaar en aan de eerdere 
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beslissingen. In dit proefschrift wordt dit patroon toegepast op een 
aantal problemen die we tegenkomen bij het ontwerpen van chips. 

De ruimte op de chip wordt verdeeld in rechthoekige stukken, de 
blokken. Een deelontwerp kan bestaan uit een blok, maar afhankelijk 
van het probleem ook uit een groepje blokken of een stuk van een blok. 
Het kan ook een stuk van een draadje zijn. 

Voor een aantal problemen worden in dit proefschrift nieuwe methoden 
beschreven. Dit zijn het verdelen van de ruimte in blokken, het trekken 
van draadjes tussen de blokken en het ontwerpen van de blokken zelf. 

Het verdelen in blokken wordt behandeld in hoofdstuk 3. Ieder blok 
heeft een aantal mogelijke vormen, die worden weergegeven door een 
vorm functie. Eerst krijgen alle blokken een punt op de chip. Deze 
puntenwolk wordt daarna doorsneden met rechte lijnen, de slicing 
lijnen. Het nieuwe algoritme kiest deze lijnen zo dat de chip zo klein 
mogelijk wordt. Het vindt altijd de beste oplossing. Het is ook redelijk 
snel: de tijd die nodig is is kleiner dan a.n6+b, waarbij n het aantal 
blokken is, en a en b constanten zijn. 

Het trekken van de draadjes wordt behandeld in hoofdstuk 4. Dit 
ontwerpprobleem is bekend als het steiner probleem in grafen. Het 
algoritme dat wordt gegeven vindt niet altijd de beste oplossing, maar 
het is wel snel. 

De blokken zelf kunnen worden ontworpen met een methode die 
'vouwen' wordt genoemd. Een blok is bijvoorbeeld opgebouwd uit 
draadjes en transistoren. Voor de draadjes worden lange dunne 
verticale strips gebruikt. De transistoren zijn ook lang en dun, en lopen 
horizontaal. Het vouwalgoritme kent draadjes aan kolommen toe, en 
transistoren aan rijen. Het algoritme probeert zoveel mogelijk draadjes 
in dezelfde kolom of dezelfde rij te stoppen en ook zoveel mogelijk 
transistoren in dezelfde rij. Natuurlijk mogen ze niet overlappen en 
moeten de juiste aansluitingen worden gemaakt. Door meer in de ene of 
in de andere richting te vouwen kunnen we de vorm van het blok 
aanpassen aan zijn buren. 

Door het gebruiken van de flexibiliteit van de deelontwerpen kunnen 
we veel ontwerpproblemen gemakkelijker oplossen. Door 
deelontwerpen aan te passen wordt het hele ontwerp beter. 



Pref ace 

The first time 1 met Ralph Otten was September 1982 when I was 
doing an assignment for him as an undergraduate student at 
Eindhoven University. The assignment was to make a channel router 
that used simulated annealing. These two subjects, simulated 
annealing and layout design, have dominated the research we did in 
the following years. Later we used simulated annealing for :Hoor 
planning, hut after that the two subjects were investigated 
independently. Both have lead to a number of publications over the 
years. Our simulated annealing research has lead to a book called 'The 
Annealing Algorithm' [53] that is to appear shortly. 

This thesis was the result of the work I did on layout design. It is 
about top-down layout design by stepwise refinement. The predictor­
adaptor paradigm refers to the general pattern of first collecting 
information and then taking decisions. The predicted design freedom is 
used to adapt sub-designs to the global specifications. 

Of course, many researchers have pointed out the advantages of a top­
down approach to layout design. In this book, however, this principle 
has been applied more universally; it has been applied to many sub 
problems as well as to the global chip layout problem. The work 
presented here is an application and extension of the ideas of Ralph 
Otten on automatic :Hoor planning to all aspects of layout design. He 
explained hls ideas in several papers, among others the paper called 
'Stepwise Layout Refinement' [79]. In this book these ideas were also 
applied to several problems that arise in the design of the sub circuits 
of a floor plan. 
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The major contribution of this book is the consistent application of 
stepwise refinement to many aspects of the automatic layout design of 
integrated circuits. It features a new algorithm for the Steiner tree 
problem in graphs and a new algorithm for optimal slicing of point 
configurations. The hierarchical folding algorithm was due to Jos van 
Eijndhoven. Using this algorithm some new layout styles have been 
developed. The transistor matrix style applies principles of stepwise 
refinement to the design of the smallest possible circuits: the 
transistors. 

The book consists of eight chapters, which each, except for the first and 
last one, describe an application of stepwise refinement. Since the 
reader may be interested in only one of the algorithms, each chapter is 
more or less independent. As a whole, the book forms a consistent 
application of stepwise refinement to layout design. The book describes 
solutions to most problems arising in the design of custom layouts for 
integrated circuits. 

In chapters 2-4 the conventional method is described in which the 
circuits occupy two dimensional rectangular areas. Chapters 5-7 
assume unidimensional circuits, in an entirely new approach to matrix 
style layout. 

The first chapter looks at layout design from an abstract point of view. 
This chapter explains the philosophy of this book in terms of adaptive 
design using :flexible parameterized circuit generators. This is the 
background against which the rest of the chapters should be seen. 

The second chapter describes the usual :floor planning - circuit design -
routing approach to building block layout. It serves as the framework 
into which the algorithms in the next two chapters fit. 

In chapter 3 the aspect ratio trade-off of the circuits in a :floor plan is 
addressed. An algorithm for slicing of point configurations is 
presented. This algorithm finds the slicing structure with the smallest 
possible area in polynomial time. 

Chapter 4 describes a heuristic for the steiner tree problem. In this 
heuristic the steiner tree is viewed as a hierarchy tree. In this tree the 
positions of the steiner points can be chosen optimally and 
polynomially in a top-down sequence. 

The next three chapters, 5-7 describe a less conventional top-down 
approach to layout design. In this approach the circuits are not blocks 
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1 

8 

Figure 3.1. The organization of the chapters in this book. Chapters 2 
and 6 describe two different approaches to structured 
layout by stepwise refinement. Chapters 3, 4, 5 and 7 
describe specific sub problems. Chapter 1 gives an 
introduction and 8 gives a review of the methods used. 

hut unidimensional transistors or gates. The layout problem is 
formulated as an unconstrained folding problem. In chapter 5 the 
folding problem is solved by a stepwise refinement heuristic. 

Chapter 6 describes two new layout styles that use this folding 
algorithm. One is a variation on the weinberger array style, the other is 
called 'transistor matrix layout'. In transistor matrix layout the 
adaptable circuits are the smallest possible circuits: single transistors. 

Chapter 7 describes the shape adaptation of these transistor matrices. 
Also an prediction is made of their shape function for the floor planner. 
Some comparisons with conventional layout styles show the very small 
areas that these new circuit styles need. 

The last chapter, chapter 8, a review is given of the algorithms and how 
they are consistent with the principles. We also look the requirements 
for a complete layout design package. Some possible areas of further 
research are indicated. 

Finally, I would like to mention those who contributed to this work. 
I'm grateful to Jochen Jess and Bob Brayton for the opportunity to 
work in their research groups. My advisors, Jochen Jess and Ralph 
Otten did the proofreading of the thesis. Jos van Eijndhoven carne up 
with the idea for the folding algorithm just when the need for such an 
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algorithm arose. I would also like to mention the students who 
developed parts of the package: Paul van Teeffelen, Gert-Jan van 
Lieshout, Tony Brans, Jos Brouwers and Theo Deckers. My work was 
supported financially by the foundation FOM under project number 
EEL 36.041 7 and IBM. 

I'm especially indebted to Ralph Otten for his continuous support of my 
work. Our numerous discussions have been major source of inspiration 
to me. Without hls efforts and hls insight this book would not have 
been possible. 

Lukas P.P.P. van Ginneken 
Eindhoven, January 6, 1989 



1. The predictor-adaptor paradigm 

In this chapter we will introduce the predictor-adaptor paradigrn as an 
approach to hierarchical design. First we will look at the complexity of 
design methods and at hierarchy as a means to deal with this 
complexity. 

Then we will introduce the stepwise refinement as a strategy aimed at 
global optimality. Global optimality is facilitated by taking the first 
design decisions at a high level. Subsequently, the design is further 
developed by taking design decisions at the lower levels. Hence the 
names 'top-down design' or 'stepwise refinement'. 

The design decisions must be based on some information. Since the 
sub-designs have not yet been designed, their properties must be 
predicted. The predictor derives the global design freedom from the 
properties of the sub-designs. The adaptor then adapts the sub-designs 
to the global design specifications. 

The sub-designs are designed according to parameters that have been 
determined by the top level decisions and the global specifications. 
These parameters should preferably be optimized simultaneously. 

Finally, an example algorithm will be presented that incorporates 
many principles of the predictor-adaptor paradigrn in a simple and 
concrete manner. 



§1.1 Design theory of complex systems 15 

1.1 Design theory of complex systems 

When we study the process of design, we study the design methods. 
For developing a theory of design, we would like to describe these 
methods formally. A formally descriJ;>ed method is an algorithm. When 
such an algorithm is formulated in an algorithmic language, we speak 
of a program. 

In this book we will study formal design methods for integrated 
electronic circuits. These design methods formulated in an algorithmic 
language are software. In short, we will study software to design 
hardware. In this book the design problem will be limited to the design 
of the layout of an integrated circuit. 

The practical limits to the design of hardware and software systems are 
set by the complexity of the systems, and our ability to deal with this 
complexity. Much of theory of the design of hardware and software 
systems is the theory of the design of complex systems. 

The time complexity of an algorithm describes how the time needed to 
execute the algorithm grows asymptotically with the size of the 
problem. The size of a problem can be measured as the number of bits 
to describe a problem instance. Suppose we need n bits to describe the 
problem instance, and the time needed to execute the algorithm is at 
most t(n) seconds. If there are two constants a and b such that 
t(n) ::;; a.f(n)+b for all n then the complexity of the algorithm is said to be 
O(f(n)). Mostly the simplest function which is a sharp bound for large n 
is taken for f(n). If f(n) can be expressed as nk then the algorithm is 
called polynomial. If this is not possible, the algorithm is called 
exponential [26]. Many of the combinatorial problems posed in this 
book cannot be solved by a polynomial algorithm. 

There is a large class of problems, called the NP-complete problems 
[26]. These problems are formulated as decision problems, for instance: 
is there a solution with a score better then a given k? It is generally 
believed that no algorithm exists that can solve these problems in 
polynomial time, hut so far no one has been able to prove or disprove 
that. The related optimization problems (what is the best solution?) are 
in the class of NP-hard problems. 

To reduce the complexity of the algorithms several methods have been 
devised. Perhaps the most genera! method to cope with any kind of 
complexity, is the use of hierarchy [61,54,83]. A hierarchy is a 
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recursive tree structure of modules within modules: A module M is a 
set of modules M={m1 ,m2, · · · ,m#M}. The modules mi are the sub­
modules of M. Each sub-module may be decomposed itself. 
Decomposed modules are called compound modules. Primitive modules 
are modules without sub-modules. Mis the super module of mi. There 
is exactly one module without a super module called the root module. 

Flgure 1.1. A hierarchy of modules. R = root module, J = compound 
module, P = primitive module. 

The hierarchy can be represented as a rooted tree. The modules are 
represented by the nodes: the root represents the system, the leaves of 
the tree represent the primitive modules and the internal nodes 
represent the compound modules. The arcs point from each module to 
its sub-modules. 

The complexity of the design problem can be reduced by representing 
the design as a hierarchy. The design problem is decomposed into sub 
designs, called modules. The root module represents the whole design. 
In stead of solving the entire design problem at once, the design 
problem is solved in steps. In each step a sub-problem is solved. In 
algorithms this principle is known as 'divide and conquer' [4]. 

An example of a hierarchy is the decomposition of an electronic circuit 
into sub-circuits. The circuits C={C1 ,C2 1 • • ·} are the modules of the 
hierarchy. The circuits are connected by nets. A net list is a bipartite 
graph ~Cu{C},N,P), in which N is the set of nets and Pc(Cu{C})xN is 
the set ofpins. The pins are the edges between the circuit and the nets. 
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The pins Pn{C}xN are the pins of circuit C itself, that is, the pins to the 
outside. In this book we will assume that the design is given as a 
hierarchy of circuits to the layout algorithms. The primitive circuits 
are the circuit elements like transistors and resistors. Note that they 
are the simplest indivisible circuits since they cannot be represented by 
a net list. 

Hierarchy can help to reduce the complexity, by restricting the view to 
the immediate sub-modules. When looking at a compound module, we 
are in fact looking at all the leaf nodes in the sub-tree. However, in 
stead of looking at the leaf nodes and their interactions directly, we 
look at a model ofthis sub-tree. We look at the compound module as a 
'black box' of which we can see only its outside shape, hut not its 
internal structure. Such a model is the interface of the module to its 
super module. 

The use of hierarchy can have advantages other than the decrease in 
complexity by modeling compound modules. Some of the modules in 
the hierarchy may be identical. The design may be repeated, so the 
circuit needs to be designed only once. Sometimes this property is used 
to design an entire librory of circuits, ready for use. 

The design problems of the sub-modules become mutually independent 
when their inter-relations are explicitly known. The designs can 
therefore be done simultaneously: Several sub-modules may be 
designed in parallel. Finally, no single design method may be suitable 
for the entire design. A different design method can be used on 
different modules of the hierarchy. 

There are two requirements for the hierarchy concept to work. First, 
the complexity is only reduced if the interface description of a 
compound module is simpler than a structural description of all the 
component modules together with their interrelations. Seeondly, this 
interface description must be a sufficiently accurate model for the 
compound module. 

Hierarchy is no panacea, nor is it always obvious how it should be used. 
lntroducing hierarchy almost always means a longer algorithm. lt is 
essential that the interfaces are chosen such that they form a good 
model, while they provide sufficient simpli:fication. An 
oversimpli:fieation will lead to a 'short sighted' algorithm, while an 
exact and concise model may lead to a polynomial and optimal 
algorithm. The better models we have, the better is our 'understanding' 
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of the problem. 

1.2 Stepwise refinement 

High level decisions are likely to have the most influence on the 
quality of the design. Therefore the high level decisions should be taken 
first, when the freedom to take decisions is still large. The first 
decisions can guide the lower level decisions towards global optimality. 
The design starts at the root node and progresses down the hierarchy. 
Hence the name top-down design. When the design starts with the leaf 
nodes, it is called bottom-up design. 

Stepwise refinement has been widely advocated för the design of 
complex systems by human designers [47]. lts application to software 
development was first proposed by Niklaus Wirth in his paper 
'Program development by stepwise refinement' [72]. lts application to 
automatic layout design was described in [64, 79]. 

Before a module can be designed, some information is needed to base 
design decisions on. This can be done by preliminary designs, or by 
predictions derived from key parameters. The predictor is an algorithm 
that makes a such predictions. The information of the predictions can 
be propagated up the design hierarchy. Of course the quality of the 
high level decisions depends on the accuracy of the predictions. 

The second phase is the top-down adaptor. During this phase 
important design decisions are taken. The first decisions are taken on a 
high level of the hierarchy. Therefore they will have a large influence 
on the whole design. The design is then refined, and the sub-modules 
adapted to the earlier design decisions. The decisions taken in the sub­
modules have a smaller influence, and are guided by the decisions 
taken earlier. This way the design strategy is targeted towards global 
optimality. 

The design decisions taken at a high level must be represented by an 
intermediate representation of the design. This intermediate 
representation is a plan. Examples of such plans are a floor plan, a wire 
plan or a data flow graph. A fioor plan of a chip for instance spatially 
orders the circuits on the chip. It relates the shape and positions of the 
circuits to each other. 

Another approach to design which uses hierarchy is bottom-up design. 
In bottom-up design, the modules that are lowest in the hierarchy are 
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designed first. These modules are then combined to create more 
complex modules, until the system design bas been realized. 

Figure 1.2. This car was designed top-down. The parts are especially 
designed for this particular car. This requires a lot of time 
and craftsmanship. 

The most important advantage of bottom-up design is that the design 
of a module, ignoring environment information, is simpler. Only the 
function has to be specified. For an automatic design algorithm, this 
means a simpler interface. Also, the design is usually general enough to 
allow repeated usage. Furthermore, the sub-modules are exactly 
specified when designing a compound module. The design can be done 
using exact data, not just predictions. 

The price to be paid however, is that the modules are unadapted. The 
more complex the modules are the more variation is possible. In the 
layout design of circuits, bottom-up design is often done up to a certain 
level, for instance the standard cell level. For each specific design top­
down design is then used down to the standard cell level. This 
compromise is also known as a 'meet in the middle' design strategy. 

Most design methods use such a compromise. The approach that is 
presented in this book however aims at a completely top-down design 
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Figure 1.3. Thls car was designed bottom-up. The building blocks have 
been designed beforehand, and are not committed to a 
particular function. The quality of the car is poor, hut the 
job can be done by a child. 

flow down to the transistors. The transistors are the primitive circuits 
because they cannot be represented by a decomposition with a net list. 

Top down design can also be looked at as postponing design decisions. 
It is important that sufficient information is available when taking a 
decision. Decisions reduce the freedom for further decisions. Taking 
decisions leads to a gradual stiffening of the design. Decisions should 
be based on reliable information, limit the freedom of further decisions 
as little as possible, and result in a maximal amount of new 
information. 

In top-down design, design criteria can often be met by propagating the 
design criteria towards the sub-modules. The design criteria are merely 
translated to criteria for the sub-modules. In the sub modules, the 
problem of meeting these criteria must be solved. Of course, unless the 
sub-module is a pnmitive module, the design problem can be delayed 
further, and moved down the hlerarchy again. 
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The decisions that are taken in a top-down design process are 'self 
fulfilling'. That is, for the modules that are finally used, the design that 
bas been made with them is likely to be the best possible with these 
modules. 

When the modules have not yet been designed, there is no good reason 
to assume rigid constraints on the freedom of the modules in advance. 
We may assume that the modules are completely flexible in all their 
parameters. Of course not every combination of parameters is possible: 
parameters can be traded against each other. But within certain 
bounds each parameter can take any value. 

1.3 Design parameters 

For a top-down design method, the modules must be adaptable to their 
environment. The design decisions taken at a high level are presented 
to the designers of the sub-modules as parameters. Such parameters 
are used in the hierarchy of circuits and in other hierarchies yet to be 
introduced. 

In the design of the layout of a circuit, the design decisions are 
translated to parameters for the design of the sub circuits. The 
parameters form the specifications of the circuit; they form the 
interface through which the circuit generators receive their 
information. For an electronic circuit on a chip we can distinguish the 
following important classes of parameters: 

1. Function 

2. Testability 

3. Delay 

4. Power consumption 

5. Technology 

6. Design rules 

7. Shape 

8. Pin positions 

9. Design effort 
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With so many parameters, it becomes infeasible to maintain a library. 
Some parameters, like function, would need a very large set. Even if 
the number of choices per parameter is small, the number of 
combinations may be enormous. An application specific design must be 
done for most circuits. Such a design for each circuit is too expensive to 
do by hand. However if this could be done by an automatic program, a 
different design for each circuit becomes feasible. 

In stead ofhaving a large number of different standard cells, the design 
software should have a small number of automatic circuit generators. 
The circuit generators should be able to generate circuits according to 
parametric specifications. Preferably, the circuit generator should take 
as many parameters into account as possible. 

It seems obvious that the fimction of a circuit should be parameterized. 
The circuit should be able to do any function within the class of 
functions of the circuit generator. The PLA generator was the first 
general function generator that could generate any boolean function. 
Generators may be relatively uncommitted, and generate random logic 
or finite state machines. For certain classes such as multipliers, 
memories or register files dedicated circuit generators may be 
necessary. We will assume that the circuit is given as a hierarchy of 
circuits with net lists. 

Testability can also be built into a circuit. For instance, depending on a 
parameter, level sensitive scan paths may be built in. Also selftest may 
be built in or spare parts may be included, to replace faulty parts. 
Finally, extra pins may be added to make internal signals visible. 

The delay of a circuit should be a parameter. Because timing 
constraints are often an important and rigid design parameter at the 
top level, the delay should be a parameter that is set, while the power 
is minimized. The delay can be shortened by increasing transistor 
widths, adding buffers, or it may be decreased by adding extra 
hardware, by duplicating part of the logic to reduce the logic depth, or 
by introducing parallel processing. 

When the delay of the circuit is decreased the power consumption of the 
circuit is likely to increase. Figure 1.4 shows the relation between the 
delay and power parameters of an inverter. The power consumption 
also depends on the switching behavior of the circuit, and can therefore 
only be determined exactly by a realistic simulation. 
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Figure 1.4. Statie power dissipation of an nMOS inverter as a function 
of the rise time. 

The power consumption, and its trade-off with speed depends on the 
technology. With technology we mean the kind of process: for instance 
bipolar, nMOS or CMOS. This is strongly related to the kind of gate 
circuits that can be used. In genera!, this will be a difficult parameter 
to take into account. Certainly on a lower level, the design method 
depends heavily on the technology. 

The design rules are structural and numeric constraints on the 
geometry of the layout. As far as the design rules are numeric rather 
than structural, they are often easy to parameterize. The numeric 
design rules are taken into account during the mask generation. In this 
phase, a topological structure is translated to mask data. The numeric 
rules determine the minimum width and spacing of the mask elements. 
Structural rules are difficult to implement, since they often inftuence 
design strategy that can be used. Such rules can not easily be 
parameterized, they must often be built into the algorithms. 

The shape of the circuit follows from its environment and the shapes of 
the circuits surrounding it. The shapes of the larger circuits will be 
restricted to rectangles, hut the aspect ratio can be chosen freely. The 
use of rectangles with variable aspect ratio makes a dense packing of 
the circuits easy. 

The pin positions adapt to the environment. The positions of the pins 
are determined by the neighbors of the circuit. Sometimes through the 
cell routing is desired. In this case several pins for the same net are 
necessary. 
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Finally, the effort needed to design the circuit, or the cost to design it 
could be taken into account. In genera!, a better design may be 
expected when the effort that went into the design was greater. For 
instance certain critica! circuits may be redesigned by hand. Less 
critica! circuits can be designed automatically. For an automatic 
design tool such a parameter may also be useful. For instance, a 
simulated annealing algorithm may invest more time to achieve a 
better solution for a critica! circuit, while a less critical circuit may use 
a fast and non-equilibrium schedule. 

1.4 Joint parameter optimization 

The parameters of the modules must be optimized to match the 
environment of the modules. The requirements of the super module are 
translated to requirements of the sub-modules. The optimal 
parameters of the modules depend on each other. Therefore the 
parameters of the modules should be chosen simultaneously. Hence 
the name joint parameter optimization'. 

Pin positions are an example of a parameter that should be optimized 
for all circuits simultaneously. When the floor plan is known, an 
approximate direction for the wire can be derived, and the pin position 
can be determined. However, when the positions of pins of some circuits 
are fixed, this optimization problem can become difficult. When two 
circuits are abutting, the pin position must be chosen for both circuits 
simultaneously. Preferably, the positions of the two pins should be 
facing each other, giving a minimum length connection. 

Several parameters can be viewed as valuable resources. These 
parameters are related to the time, space and energy needed to perform 
the function and perhaps the effort to design the function. For each of 
these there is a price to be paid in terms of another parameter. These 
parameters can be traded against one another. 

Well known is the trade-offbetween speed and power. More power can 
be used to make a gate or a macro faster (see figure 1.4). Such trade­
off scan be represented by a trade relation. This is a relation between 
the resources that can be traded against each other. In a trade relation, 
a parameter cannot increase because another increases. 

The parameters are related to each other, often by a partial order. The 
partial order relates the parameters of the sub-modules to the 
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parameters of the super module. In timing such a partial order is a 
data flow graph. The data flow graph is a partial order of the 
computations that are performed by the sub-modules. Each sub-module 
needs a certain amount of time to perform its computation. The longest 
path determines the total time for the whole module. 

Figure 1.5. Data flow graph of a circuit. The longest path determines 
the delay of the circuit. 

To do the optimization, the trade relations need to be known. Since the 
design of the sub-module is not yet known, a prediction of the trade 
relations has to be made. Such a prediction can be made by making a 
number of sample designs, and interpolating the trade relations 
between the known values of the parameters. Alternatively, 
information about old designs can be stored or a prediction can be 
derived from some characteristic parameters. 

Delay can be traded against area. The trade-off between the area and 
the delay, by using more hardware, is the subject of high level 
functional synthesis (63]. Timing constraints set by the data flow 
graph relate the delays of the circuits to each other. Delay can be 
traded against hardware by introducing parallelism at a high level or 
by duplicating logic to reduce the length of the critical path. 

In this book we will not address the optimization and design problems 
arising from such an approach to timing. The possibility of giving a 
macro cell generator parameters for speed, power and testability bas 
not been investigated. We will only consider the function of the circuit 
and the layout parameters. We believe however, that the methods 
indicated in this book are well suited for introducing such parameters. 
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Flgure 1.6. A rectangle dissection with its corresponding polar graphs. 

The area of a chip is dissected into rectangular areas; a rectangular 
area is allocated for each circuit. A rectangle which is dissected by 
straight orthogonal lines is called a rectangle dissection. In a floor plan 
with rectangular circuits the width and the height of the circuits can be 
traded against each other. A partial order of the coordinates of the 
circuits is used to represent the relations between the width the 
different circuits. The graph representing this partial order is called 
the horizontal polar graph and denoted by Pt,(Jv,C). A second, dual, 
(vertical) polar graph Pv(Jh,C). represents the relations between the 
heights. The topology of the rectangle dissection is determined by the 
polar graphs (see figure 1.6). The nodes Jv of the horizontal polar 
graph correspond to the vertical dissecting lines. The faces of the 
horizontal polar graph correspond to the horizontal dissecting lines. 
For the dual polar graph it is the other way around: the faces are the 
vertical lines and the nodes are the horizontal lines Jh. The edges of 
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each polar graph represent the rectangles of the rectangle dissection. 

A trade relation, called shape function, specifies the trade-off of length 
and width för each circuit. No polynomial algorithm is known to 
determine the optimal trade-off in the general case [62]. When some 
restrictions are applied to either the polar graph or to the shape 
functions, polynomial algorithms become possible. In the next section 
and in chapter 3 some shape optimization algorithms will be described. 
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Figure 1.7. A slicing structure. The boxes within boxes indicate the 
hierarchy of slices. 

The restriction to series parallel polar graphs is very effective. The 
rectangle dissections that have a series parallel polar graphs are called 
slicing structures. A slicing structure is a rectangle dissection that can 
be obtained by recursively dissecting rectangles into smaller rectangles 
by vertical and horizontal slicing lines. A slice is either an undissected 
rectangle or a rectangle dissected into two slices by a vertical or 
horizontal slicing line. This recursive definition indicates the 
hierarchical nature of the slicing structure. The slices are the modules 
ofthis hierarchy. The undissected rectangles represent the circuits, the 
primitive modules of the slicing hierarchy. A slicing structure can be 
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recognized by the property that all dissecting lines dissect a slice from 
one side to the other. Thereföre it does not contain the 'wind mill' 
pattern: 

1.5 Example: shape optimization 

In this section we will look at a simple algorithm for shape 
optimization för rectangular circuits [50]. It serves as an example of 
how the general predictor-adaptor paradigm can be translated into a 
concrete and straightforward algorithm. In this algorithm we will use 
some concepts that will play an important role in chapter 3. 

The problem arises in the optimization of the aspect ratio of the circuits 
in a floor plan. We assume that the circuits have not yet been 
designed, so that they can take any aspect ratio, but have a fixed area. 
This assumption is consistent with top-down layout design. The 
rectangle dissection is already designed, the circuits are designed later. 
Only the area of the circuits is known, for instance by making a 
prediction based on the number of transistors or the number of nets in 
each circuit. 

The flexibility of the circuits makes it possible to fill the available area 
completely. The problem is to find the optimal aspect ratios for the 
circuits, such that there is no wasted space between the circuits. The 
aspect ratio of the fl.oor plan is given. The rectangle dissection is 
represented by a slicing structure. Each undissected slice is a circuit 
which has two parameters, w and h. The circuits are assumed to be 
completely flexible, only the product of wxh is fixed. The trade relation 
for the length and the width is a hyperbola. Because of the hierarchy 
and the :flexibility of the circuits, an optimal solution is easy to find. 

First, the areas of the compound slices are computed in a bottom-up 
order. This process is simple. The areas of the circuits are known. The 
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Figure 1.8. Shape assignment in a slicing floor plan. tand u are are 
slices that are separated by a slicing line (drawn) and they 
are decomposed themselves into sub-slices by further 
slicing lines ( dashed). The optimal aspect ratio of each slice 
can simply be computed from the area of the slices and the 
dimensions of the :floor plan. 

area of a slice is the sum of the areas of its sub-slices. Finally the area 
of the fioor plan is known. This process represents the bottom-up 
predictor. Information of the circuits is propagated up the hierarchy. 
This way global information about the design is gathered. 

Once all slice areas are known the first global design decisions can be 
taken. The adaptor adapts the shapes of the slices in a top-down order. 
The first decision taken is the position of the first slicing line. This 
position follows directly from the shape of the floor plan and the area of 
the sub-slices. 

Let the area of slice s be <Xs· Let slice s consist of two sub-slices t and u. 
The shape of slice s is w5xh5 • The shape of the sub-slices can be 
computed by ht = hs and Wt=ailht if the slicing line is vertical. The 
shape of u can be computed in the same way. When the slicing line is 
horizontal ht can be computed sirnilarly. 

By applying this method to all sub-slices, the shape assignment is done 
in a top-down order. The position of the slicing line determines the 
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shapes of the sub-slices. The shape requirements are realized by 
translating them to requirements for the sub-slices, thereby moving the 
problems down the hierarchy. Since we assumed that the circuits are 
completely flexible, the problems can be solved here easiest. 

In this algorithm we can see how the general concepts can be used 
explicitly in an algorithm for a specific problem. The hierarchy of slices 
and the fiexibility of the rectangles made the problem much simpler. 
We saw how each slice was modeled by the height and width 
parameters and how they were related by a hyperbolic shape function. 



2. Building block layout 

The conventional method of structured layout is building block layout. 
In this method the circuits are allocated a rectangular area. Because of 
this restriction they are also called blocks. This shape restriction is 
very common, and rarely a problem. Remember that in top-down 
design the blocks are designed after the construction of the floor plan, 
and that the shape of the blocks is to be adapted to the floor plan. 
There is no reason to make a flexible circuit any other shape than 
rectangular - rectangular is as good as any. The available area is 
dissected into rectangles. This dissection is represented by the polar 
grap hs. 

The layout problem is reduced to arranging the blocks and realizing the 
connections between them. In chapter 6 we will introduce another 
method for top-down layout design in which the primitive circuits are 
represented by unidimensional 'strips'. The building block method is 
more suitable for the layout of circuits that consist of complex sub­
circuits. 

The circuits are connected by nets as speci.fied by the net list. The 
building block circuit generator designs the layout of a circuit of 
rectangular blocks. It creates a rectangular layout, which can be used 
on a higher level in turn. We will assume that the area of the blocks 
and the area of the interconnections is disjunct: the interconnections 
are realized between the blocks. This assumption is reasonable if a 
small number of routing layers is available. When four or more layers 
are available, this assumption may not be reasonable any more. 
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Figure 2.1. A building block layout. 

The area for the interconnections is decomposed into channels. Each 
channel corresponds toa line jeJ in the rectangle dissection. The blocks 
on both sides ofthis line are moved apart to allow for the routing of the 
interconnections: each line is replaced by a rectangle that represents 
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the area of the channel. A channel can be seen as an 'interconnection 
block'. 

The layout of the blocks is generated by other circuit generators. The 
building block circuit generator needs only to generate the layout of the 
interconnections. 

This chapter serves as an example of the use of the predictor-adaptor 
paradigm to layout design and as a background for the remainder of 
the book. The generation of a building block layout proceeds in the 
following steps. First the relative positions of the blocks are 
determined. Then the nets are routed. From these first design decisions 
some parameters for the circuit generators are derived. Together these 
steps are called floor planning. Guided by the parameters, the circuit 
generators design the layout of the blocks. Finally the layout of the 
interconnections is generated and combined with the layout of the 
blocks. 

2.1 Floor planning 

Floor planning was introduced by Preas and vanCleemput in [56]. 
They used a polar graph which was construeted by a branch and bound 
algorithm. In [32] a reetangle dissection was found by planarization of 
the interconnection graph and making a rectangular dual of this graph. 
Slicing was introduced in [64]. The approach followed here is based on 
the ideas of [51] in whieh a point configuration was sliced to get a 
slicing structure. Several software packages for floor planning have 
been developed, for instanee [57, 41,67]. 

The floor plan eonsists of a polar graph and its dual and a channel 
assignment which assigns nets to channels. The design decisions that 
are taken during the floor planning phase are the design of the polar 
graphs and the channel assignment. 

The design of the floor plan is done in several steps, which can be seen 
as a gradual refinement of the floor plan. The polar graphs, which give 
partial orders on the positions of the blocks, are determined first. Once 
the polar graph is known, a first prediction of the area allocation of the 
chip can be made, using the predictions for the shape functions of the 
bloeks. This geometrie information is used to determine the shortest 
route of each net. 
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The polar graph is restricted to a series parallel graph. In that case the 
rectangle dissection is a slicing structure. Using slicing structures has 
several advantages due to its hierarchical nature, such as: The use of a 
slicing structure avoids channel routing order confl.icts [50]. A slicing 
structure facilitates the shape optimization [62, 52]. A slicing structure 
can be constructed by repeated slicing of a point configuration [51]. 

Since the shapes of the blocks have not been determined yet, the shape 
fitting problem does not play such an important role in tl.oor planning. 
Therefore tl.oor planning aims more at reducing the interconnection 
length. Shape fitting should be seen as a secondary objective. The 
slicing structure is designed in two steps [51). In the first step the 
interconnections are taken into account. The decisions taken in the first 
step are refined further in the second step which takes the shape 
functions of the blocks into account. 

The first step in designing a tl.oor plan is the design of a point 
configuration. In a point configuration, each circuit is assigned to a 
position in the plane. The circuits are represented by points, and the 
shape of the circuits is ignored. The point configuration should be 
regarded as an ideal placement that should be approximated as close as 
possible. The point configuration is usually designed with disregard of 
any shape information, often even wîth disregard of area information. 
The only kind of information that is used is the net list information. 

Once the point configuration has been determined a slicing structure 
must be found that is consistent with this point configuration. The 
slicing structure is made by slicing the point configuration by straight 
orthogonal slicing lines. Any two circuits are separated by a slicing line 
during some stage of the slicing process. Exactly one of the two 
ordering relations in both dimensions is enforced by the slicing tree. So, 
for the purpose of slicing, the point configuration can be seen as two 
sequences of circuits. Slicing the point configuration means enforcing 
one of the two ordering between the groups of circuits that are 
separated by the slicing line. 

The distance information in the point configuration may be interpreted 
as additional connectivity information. However, it is not obvious how 
this information can be used in the slicing process. 

During the slicing the shapes of the circuits can be taken into account. 
An algorithm that finds the best slicing tree, given a point 
configuration and the shape functions of the circuits is described in 
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§ 3.3. 

When the topology of the blocks is known, the routes of the nets can be 
detennined. This is called global routing or channel assignment. The 
channel assignment assigns each net to a set of channel intersections. 

After the slicing structure has been detennined, the important design 
decisions have been made and the parameters for the circuits can be 
derived. From the slicing structure and the trade relations of the 
length and width parameters, we can derive the optimal shapes of the 
blocks. This problem is addressed in chapter 3. Also the optimal pin 
positions can be detennined froin this fioor plan. 

2.2 The point configuration 

A point configuration is the assignment of circuits to positions in the 
plane. Each circuit has two coordinates Xc and Yc· The distance dij 

between two circuits is 

(2.1) 

The circuits C are connected by the nets N. The connections are 
represented by a bipartite graph ~Cu{C},N,P), in which the edges P 
are the circuit - net incidences, the pins. Each net has a so-called net 
weight Wn which indicates the relative importance of the net to be kept 
short. This weight is used in the various score functions used by the 
different algorithms. A net with weight 2 has the same influence as 
two nets with weight 1. 

A number of numeric methods to construct the point configuration have 
been described in the literature. The dutch metric [51] translates net 
list information to distances between the circuits. In the dutch metric 
the distance between two circuits is defined to be 

,I:{wn 1 (i,n)eP /\ U,n)eP} 
m" = 1 

'l ,I:{wn 1 (i, n)e P v U, n)e P} 
(2.2) 

Two circuits that do not share any nets are placed at the maximum 
possible distance 1. Circuits that share all nets are placed at the 
minimum distance _0. This distance space is embeddable in a #C-1 
dimensional euclidean space. 

To reduce the number of dimensions to two, the method of [51] uses a 
Schoenberg projection [60] to project this multi dimensional point 
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Figure 2.2. The point configuration is a placement of points which 

represent the circuits in the plane. 

configuration onto a plane. This method minimizes the distortion of the 
distances caused by the projection: it minimizes 

:L (mii-d11)2 (2.3) 
i,jeC 

The method of [30] tries to minimize the net length by minimizing 

L d~:L{Wn 1 (i, n)e PAO, n)e P} (2.4) 
i,jeC 

The minimization of this object function involves the calculation of the 
eigenvalues of a matrix. 

The same problem is posed in [39], except that pin positions on the 
boundary are given. When given pin positions taken into account, the 
problem is reduced to solving a number oflinear equations. 

Equation (2.4) gives a bias for nets with many pins. Of course this 
problem could be alleviated by adjusting the net weights for multi-pin 
nets. But preferably, the connections should consist of two pin nets 
only. We already noted that connectivity is a more important 



38 Building block layout Chapter2 

consideration in top-down design than shape fitting. It is therefore 
advisable to do the routing as early as possible. The ideal is to do 
routing before placement has been done. 

Routing can be done beföre the construction of the point configuration 
by using the dutch metric. Using this distance metric, a shortest 
spanning tree can be determined for every net. The edges of the 
spanning tree represent two pin nets. The decomposition in two pin 
nets depends only on the structure of the net list, and not on the 
placement. Such a decomposed net structure is likely to give less 
deformation in the schoenberg projection method. 

2.3 Channel assignment 

After the tl.oor plan bas been designed by calculating a point 
configuration and slicing, the topologies of the interconnections have to 
be determined. The channel assignment determines which channels 
are used by a net to make a connection. It is sometimes called global 
routing because it finds the rough routes of wires. After it is 
determined which wire uses which channel, the routing within the 
channels can be compacted. Using contour compaction track 
assignment is unnecessary. 

The channel intersections are the set of the intersections between the 
horizontal and vertical channels. They are sometimes called the T­
junctions. The channel intersections are denoted by the set VcJhxJv. 

The channel assignment is an assignment function x:N-+V* which 
assigns to each net a set of channel intersections. The set of channel 
intersections of a net must be connected: there must be a path of 
intersections, going from channel to channel, connecting any pair of 
intersections in the set. 

The routing model is a graph C1V,E) ofwhich the vertices V correspond 
to the channel intersections. Therefore this graph is called the channel 
intersection graph. Nodes that are neighbors in a channel are 
connected by an edge. Figure 2.3 shows an example of a channel 
intersection graph. The channel intersection graph is a planar graph. 
Note that the faces of the graph correspond to the circuits in the floor 
plan. 

The length of an edge is the distance between the channel 
intersections. The distances in the routing model are not changed after 
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Figure 2.3. Example of a graph used as a global routing model.The 
drawn edges correspond to the edges of the channel 
intersection graph. The dashed edges are temporary edges 
that model the connections of a circuit. 

a net has been routed. The sequence in which the nets are routed is 
therefore irrelevant. 

The pins of the net are added to the graph as temporary nodes during 
the routing of the net. Temporary edges connect the temporary node to 
nodes that represent possible positions of the pin. A pin whose position 
is entirely unknown gets edges to all nodes surrounding the circuit. A 
pin whose position is exactly known only gets two edges. These two 
edges lead to nodes adjacent to the pin position. In figure 2.3 the 
temporary edges are indicated by dashed lines. 

Some circuits allow a net to enter at different positions on its 
periphery. Making the length of the temporary edges small encourages 
routing through the circuit. Longer edges prohibit routing through the 
circuit. 

Since the width of the channel is adapted, there is no limited channel 
capacity. We will not pay attention to the problem of controlling the 
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channel density. The main criterion for the wiring will be the length of 
the wires: all wires are to be kept as short as possible. 

The routing problem is now to find the shortest connected subset of 
edges in the extended channel intersection graph that connect to the 
temporary nodes. This is known as the shortest steiner tree problem in 
graphs. A heuristic for the steiner tree problem is presented in chapter 
4. 

The steiner tree is a set of nodes and edges of the channel intersection 
graph. Only some of the nodes in the steiner tree indieate a transition 
from one channel to another. These nodes have orthogonal edges in the 
steiner tree. Only those channel intersections are included in the 
channel assignment of the net. 

2.4 The Interfaces 

From the floor plan, as determined by the slicing structure and the 
channel assignment, parameters must be derived for the design of the 
circuits. Figure 2.4 gives an overview of the flow of the design data. 
The design is specified as a net list of interconnected circuits. The 
circuits also each have a description, which depends on the type of 
circuit. An essential feature of top-down design is the information 
exchange between the circuit generators and the floor planner. 

The circuit generators start by reading the descriptions of the circuits 
they must design. In bottom-up design the circuit generators would 
immediately design these circuits. In a top-down design method the 
circuit generators first predict the capabilities they have for the 
parameters. For some parameters this can be specified in the form of 
trade relations. 

Using the net list and the capabilities of the circuits, the floor planner 
designs a floor plan. This floor plan is represented as a slicing structure 
and as a channel assignment for the nets. The slicing structure 
determines the ordering of the circuits on the chip. The design 
parameters that can be derived from the fioor plan are passed to the 
circuit generators. The circuit generators can then design the circuits 
accordingly. Once ~e circuits have been designed, the building block 
layout can be assembled and the masks for the connecting nets can be 
generated. 
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Figure 2.4. Interfaces between the programs. 

We use the channel assignment to estimate the length of each wire and 
the widths of the channels. A statistica! method for estimating the 
channel width has been proposed in (21]. The length of a wire can be 
used to estimate the capacitance of the wire. The output buffer driving 
the wires could be dimensioned to compensate this capacitance. 

The channel width is not fixed; the width of the channel is determined 
by the number of wires that must be accommodated. The use of a 
slicing structure makes it easy to adapt the widths of the channels to 
match the requirements. 

The width of a channel can be estimated from the routes found by the 
channel assignment. A lower bound for the width of the channel is the 
number ofwires that must pass a certain point. The maximum number 
of wires that overlap at any point in the channel is called the channel 
density. Experience shows that this bound is rather sharp. After the 
channel assignment, shape optimization resizes the circuits according 
to widths of the channels. 
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A problem is that the topology of the channel intersection graph 
depends on the dimensions of the circuits and the widths of the 
channels. To determine the topology and distances in the channel 
intersection graph, the dimensions of the circuits must be known. It is 
therefore necessary to determine the optimal shapes of the circuits 
before the channel assignment can be done. It is advisable to redo the 
optimization aft.er the channel assignment. Note, however, that the 
channel assignment, once determined is insensitive to topology changes 
in the channel intersections graph. The same nodes still exist in the 
graph, only the connecting edges have been changed. The channel 
assignment for a net is still valid. 

The optima! shapes can be determined with the algorithm that is 
described in § 3.2. It may be a good idea to redo this optimization aft.er 
the design of each circuit. When the predictions were inaccurate, it may 
be necessary to redesign some circuits. 

Some blocks, like PLAs, may have limited fiexibility and others may be 
designed beforehand. Of course, it is necessary to limit the number of 
fixed shape blocks. Another problem of fixed shape blocks is in the pin 
positions. A special heuristic is necessary to find a good orientation of 
the circuits. The pin positions can be determined once the orientation 
of the blocks is determined. 

When all the circuit generators can produce the pins where they 
predicted that they would he, the channel assignment need not be 
redone. To avoid prohlems that may occur due to inconsistencies, the 
channel assignment is redone aft.er all the circuits have be designed. 

2.5 Mask generation 

When the layout of the circuits has been designed, and the channel 
assignment of the nets is known, the layout of the routing can be 
generated. This is one of the most time consuming tasks in manual 
layout design. The mask generation of the interconnections is probably 
in any automatic layout design package the most time saving program. 

A layout is a set of patterns that completely specifies the geometry of 
the circuit. The term mask will be used for each pattern. To keep the 
mask generating algorithms simple, the mask patterns will be 
restricted to sets of iso-oriented rectangles. 
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To increase the yield when the circuit goes into production, patterns 
are required to satisfy certain rules, the design rules. Two classes of 
rules can be distinguished: structural rules and numeric rules. 
Structural rules enforce or prohibit certain combinations while numeric 
rules quantify the width of, and spacings between patterns in a mask 
or in a combination of masks. The numeric rules are almost exclusively 
specifications of lower bounds, because it is assumed that the layout 
design techniques will try to keep the total chip small. 

The process of packing the layout elements as close as the design rules 
allow is called compaction. A channel allows for one-dimensional 
compaction because the positions of the pins of a channel are fixed hut 
the channel width is not. One-dimensional compaction is a simpler 
problem then two-dimensional compaction. 

Contour compaction [15] introduces jogs anywhere where this is 
advantageous. It takes maximum advantage of the design rules by 
using different rules on different layers. It allows variable width wires 
and takes advantage of irregular channel boundaries. 

A number of channel routers that use contour compaction have been 
described [59, 80, 28]. However, contour compaction alone suffices to 
get good layouts. It makes conventional track assignment unnecessary, 
which simplifies the channel routing considerably. 

trunk branch 
trunk 

branch 1---t_run_k_~ 

branch 

bottom boundary 

Figure 2.5. A routing channel with irregular boundaries. A net with 4 
pins is deeomposed into 2 pin sections. Each section has a 
trunk and two branches. The masks of a pair of branches to 
the same pin are superimposed. 
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The channel bas two channel boundaries. We will assume that the 
channel is oriented horizontally, so there is a top and a bottom 
boundary. Wires can leave the channel at the open ends to the left and 
the right. Which nets have to leave and at which side is determined by 
the channel assignment. The pins on the boundary have known exact 
positions while the pins that leave the channel still have to be 
positioned. 

Given the pins of a net, the net can be decomposed into one or more 2 
pin segments. The global router ensures that there is never a net with 
only one pin. If there are several segments, the segments share a pin. 
Each pin connects at most to two segments. 

Each two pin segment is realized by a horizontal piece called tronk and 
two vertical pieces called the branches. The vertical branches bring the 
wire into the channel. The horizontal trunk connects the branches 
together. 

The compaction is done by maintaining two contours, one for each 
layer, that indicate the area occupied by previous trunks. A contour is 
a piecewise constant function, which gives the boundary between the 
area that is occupied by the wires and the free area. Only the trunks 
and their vias are considered during the compaction; the branches are 
added once the layout for the trunks is determined. 

The contour is initialized with the shape of the bottom channel 
boundary. Trunks are processed one by one, and the channel is filled 
from the bottom to the top. The next trunk, with its associated vias, is 
placed against this contour, thereby using a minimum of space. The 
space used by this trunk and its vias, determined by the design rules, is 
added to the contour. 
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Flgure 2.6. Routing after compaction phase. · 

As can be seen in figure 2.6 not all jogs that are generated this way are 
necessary to reduce the channel width. Each jog is believed to be a 
small reliability hazard due to electromigration. Also many jogs mean 
many rectangles in the layout. Wire straightening therefore increases 
the reliability of the chip and decreases the amount of disk space 
needed to store the layout. 

Two passes are needed to get rid of unnecessary jogs. In the first 
compaction pass the width of the channel and the space available for 
each trunk is determined. All contours are saved, such that it will be 
known exactly what area can be used för each trunk in the second pass. 

In the second pa1!!s the actual mask generation is done. The second 
pass starts at tlile iop of the channel, and the trunks are compacted in 
the reverse o~r. Nnw theire are two boundaries for each trunk, 
delimiting the area available on both sides. The straightening 
algorithm construtts a trunk with a minimum number of jogs that fits 
between the two contours. 
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Figure 2.7. Routing after straightening phase. 

Because the pins are not restrieted to grid positions, a branch may have 
more than one opposite branch. Therefore gridless channel routing 
introduces more vertical constraints. A problem is that there may be 
cycles in the vertical constraint graph. In [44] a simple hut less 
conventional approach was used, which guarantees that there will be 
no cycles. This will guarantee that the algorithm generates a valid 
layout. 

In the approach of [ 44] the two pin segments are divided into five 
classes, indicated by the letters A through E. Branches and trunks are 
realized in both layers. Figure 2.8 illustrates the different classes. The 
bottom layer is realized in polysilicon, the top layer is realized in metal. 

Class C segments, that have pins in exactly opposite positions of the 
channel, are handled as class E or D segments. Power and ground linea 
are routed planarly. Therefore the power and ground linea are routed 
at the top and bottom of the channel. In [ 44] the branches at the top of 
the channel use another layer than the branches at the bottom. 
However, to be able to connect to power and ground on the metal layer 
it is unavoidable that the branches connect to the sides of the cells on 
the polysilicon layer. Therefore the classes D and E use an extra via 
hole to change layer. 
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Flgure 2.8. Different classes of two pin segments. 

The segments will be ordered from the bottom of the channel to the top 
of the channel. The classes can be ordered in the sequence B-E-D-A. 
Within the classes A and B there are no vertical constraints, and any 
order is possible. Within class D the segments can always be ordered on 
the position of the bottom pin from right to left. The segments of class 
E can be ordered from left to right on the position of the top pin. This 
always constitutes a valid order, in which the vertical constraints are 
satisfied. 

The vertical constraints in the classes E and D tend to form very long 
chains. This causes trunk ordering algorithms similar to [76, 8] to 
become ineffective. It is necessary to use contour compaction to reduce 
the channel width. 

Table 2.1 compares the channel widths för two randomly generated 
channels and Deutsch's Difficult Example [14]. The channels have a 
large number of pins. Realistic channels in building block layouts 
mostly have far fewer pins. The channels were routed using Mead & 
Conway [46] design rules. Since our router does not have the concept of 
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tracks it is only possible to compare the width of the channel in 
lambda's. The pin positions were on a grid and the channel sides were 
straight. For comparison the last column is added which gives the 
density of the channel times 6. This could be the performance of a good 
track based router. 

Table 2.1. Performance comparison for three Channels 

gridless router track router 
example pin pitch track pitch 

5 6 6 
randoml 128 120 132 
random2 82 68 84 
Deutsch's 144 116 114 

The results for Deutsch's Difficult Example are almost as good as those 
of a good track based router, and for random examples even better. In 
most practical floor plans the pin density is much lower, and 
compaction is more rewarding than track assignment techniques. 



3. Joint shape optimization 

In this chapter we will consider the problem of joint optimization of the 
shapes of the circuits. The essential idea of the adaptor is the 
adaptation of the flexible circuits to their environment. For the shapes 
of the circuits this means that they have to be optimized 
simultaneously. 

We will assume that all circuits occupy a rectangular area, and that 
only the length and width can be chosen. The objective is to find the 
optima! aspect ratio of each circuit such that the area occupied by the 
compound circuit has minimal dimensions. In the remainder of this 
chapter the shape of the circuits will be limited to a rectangle. 

The possible shapes of the circuits are represented by a shape function. 
The shape function gives the smallest height of a circuit as a function of 
the width of the circuit. It is a model for the possible parameter 
options of the circuit. The circuits can be ordered in space in different 
ways. Whether the optimization algorithm is polynomial also depends 
on the kind of spatial ordering and the representation of the shape 
functions. 

In the first section we will look at the different representations of the 
shape functions. Then we will look at the different possible spatial 
orders of the circuits, and the consequences for the optimization 
problem. In the föllowing sections two specific optimization problems 
will be elaborated. 
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3.1 Shape functions 

As multiple parameters of circuits are optimized together, a tradeoff 
relation hetween the parameters must he specified. In the optimization 
of the aspect ratio of the circuits, the parameters that can he traded 
against each other are the width w and the height h of the circuit. The 
height and width of a circuit are related to each other by a shape 
function s(w). Allowahle shapes for the circuit are those för which 
h~s(w). 

Width and height can be viewed as valuable resources. We may 
assume that a larger width will not lead toa larger height. A shape 
function is therefore a positive non-increasing function: 

s(w1) ~ s(w2) > 0, 0 < w1 < w2 

The inverse of the shape function, sf-(h) is defined as 

sf-(h) = min{w 1 s(w)Sh} 

(3.1) 

(3.2) 

For a completely flexible circuit only the area ex is known. Ideally we 
may assume that a certain area is necessary to perform the function of 
the circuit. In that case the shape function follows a hyperbola: 

<X 
h(x) =­

x 
(3.3) 

Ohviously, flexible circuits have limits on the aspect ratio, and other 
circuits may not be flexible at all. Piecewise linear functions can he 
used to model a large variety of circuits. A piecewise linear shape 
function is defined as 

oo if W<W1 

a, w+b1 if W1 SW<W2 

s(w) = a2w+b2 if w2Sw<w3 
if 

bn if Wn"5.W 

(3.4) 

and can be represented in a computer by 3 vectors W, 11 and tf. A 
piecewise linear shape function must be non-increasing: 

8j S 0 /\ 8jWi+1 + b1 ~ 8i+1Wi+1 + b-1+1 (3.5) 

Notice that a piecewise linear function models the limitations on the 



52 Joint shape optimization Chapter 3 

Figure 3.1. A hypothetical flexible circuit would be represented by a 
hyperbola. A convex piecewise linear shape function is used 
to approximate the hyperbola. The dashed line is a 
staircase function. It models a fixed shape rectangle with 
two orientations. 

aspect ratio: w'è.w1 and h'è.bn. 

A special case of the piecewise linear functions are the convex piecewise 
linear functions. These can be represented by a set of linear 
inequalities: 

A [~]'<!.~ A'è.O, lt>O (3.6) 

Another special case of the piecewise linear functions are the piecewise 
constant, or staircase shape functions: 
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if W<W1 

b1 if W1$W<W2 

s(w) = b2 ifW2$W<W3 (3.7) 

if ... 
bn if Wn$W 

Staircase functions can be seen as the enumeration of a number of 
options for the shape of the circuit. For circuits with a rigid shape 
there are two possible orientations giving two shape options. For 
reasons of complexity to be explained later, we will also introduce the 
integer staircase functions for which Wj,bie IN. 

The joint shape optimization problem is solved by computing the shape 
function of the whole using the shape function of the pieces. Once this 
shape function is known, the point with the lowest score e(w,h) can be 
selected. e(w,h) must be nondecreasing in both arguments. This 
guarantees an optimum solution on the points (w,s(w)) of the the shape 
function. It is a reasonable assumption, since a circuit that is purely 
larger in one dimension is always worse. Examples of such score 
functions are 

e(w,h) = wh and e(w,h) = 2(w+h) (3.8) 

The first one measures the area of the fl.oor plan, the second the 
perimeter. The second has a preference for small, close to square 
solutions. 

When one of these two score functions is used in combination with a 
piecewise linear function, the solution is always on the convex corners 
of the piecewise linear function. The optimum can simply be found by 
evaluating this function for all Wj. 

In the algorithms described in this chapter, the shape function of the 
fl.oor plan is computed by combining the shape functions of the circuits 
and slices. The algorithms use two operations on shape functions: 
addition and sometimes taking the minimum of two shape functions. 
Addition arises when two slices with known shape functions are 
abutted to form one slice. The new slice has a shape function that is the 
sum of the two shape functions of its components. Depending on the 
orientation of the slicing line, the widths or the heights of the slices 
must be added. For two slices that are stacked vertically, the new 
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+ 

L---

Figure 3.2. Addition of two shape functions. The shape function of a 
slice is computed by adding the shape functions of the sub­
slices. The shape function of a vertically stacked slice is 
drawn, the shape function of a horizontally stacked slice is 
dashed. 

shape function is computed by: Snew(X) = S1 (x)+s2(x). For slices that are 
abutting horizontally, the shape function is: srew(y) = st(y)+st(y). 

In some algorithms, there are multiple different implementations 
possible for a slice. For instance, the same subslices can be abutted in 
two ways: horizontally and vertically. Each of the different 
implementations bas a shape function. The shape function of the slice, 
independent of implementation, is the minimum of the shape functions 
of the different implementations: hnew(x) = min(h1 {x), h2(x)). Note that 
minimization is not dependent on orientation. 

min( 

Figure 3.3. Computing the minimum of two shape functions. Taking 
the minimum of the shape functions oftwo implementation 
options summarizes the options possible for that slice. 

Different spatial orders are used for representing the topology of fioor 
plans. Let (Xi.Y1) be the coordinates of circuit i. The spatial ordering 
constraints are formulated in terms of inequalities: 

(3.9) 
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In a genera} rectangle dissection the constraints for the x coordinates 
can be represented by the polar graph. The polar graph gives a partial 
order för the circuits. The constraints for the y coordinates are given by 
the dual polar graph. 

Consider the joint shape optimization problem. The two dimensions of 
each circuit are related to each other by equation (3.4), while the 
dimensions of the circuits are mutually related by equation (3.9). This 
problem can be solved in exponential time with integer programming 
as described in [77]. A branch and bound algorithm was presented in 
(68). The constraints of equation (3.9) combined with the equations for 
the convex shape functions of equation (3.6) form a linear program 
which can be solved in polynomial time [ 49]. If the shape functions are 
not convex, the problem becomes NP-hard [62]. An iterative numerical 
approach using the constraints of equation (3.3) was described in [67). 

When the polar graph is a series parallel graph, the rectangle 
dissection can be described by a slicing tree. For a slicing fioor plan, 
the joint shape optimization problem can be solved in polynomial time 
for the more genera! shape functions of equation (3.4). The shapes of 
the circuits in the slicing tree can then be optimized by the algorithm 
proposed in [52]. A simpler version of this algorithm, using shape 
functions of equation (3.3) was described in § 1.5 and first presented in 
(50]. 

In the next section we will review the algorithm of [52]. Although this 
is not a new algorithm we will treat it more extensively hecause it is 
important to the building bloek method, while it refiects the predictor­
adaptor paradigm on a small sub-problem in an elegant way. 
Furthermore, understanding this algorithm may help to understand 
the combined slicing and shape optimization algorithm of the föllowing 
section. 

In [36] the algorithm was extended to determine the optimal 
orientation of the slicing lines. This can also he done in polynomial 
time, but only if the shape functions are limited to integer staircase 
functions. 

Finally, the spatial relationships can be represented by a point 
configuration. In § 3.4 the two steps of slicing and shape optimization 
are combined into a single exact and polynomial algorithm. For a given 
point configuration, it is possible to determine the optimal slicing tree 
and circuit shapes. For integer staircase functions, this can be done in 
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polynomial time. This new algorithm will be presented in § 3.3. 

3.2 Optimization of a slicing floor plan 

In this section we will look at the algorithm of [52, 62]. For a given 
slicing structure, and piecewise linear shape functions, this algorithm 
determines the optimal shapes of the circuits. It does this in 
polynomial time and it always finds the best solution. 

The two algorithms of [62] and [52] differ only in the representation of 
the shape function. The first [62] uses stair case functions, while the 
other [52] uses more general piecewise linear functions. 

The floor plan is represented by a binary tree: the slicing tree. The 
slicing tree represents the hierarchy of the slicing structure. The leaf 
nodes of the slicing tree are the circuits ce C. The leaf nodes have only 
one edge Vcec[0 e=1]. The other nodes are called slicing nodes J. There 
is a root node reJ which has two edges 0 r=2. All other nodes have 
degree 3: VjeJ\{rj[0 j=3]. The 3 nodes adjacent to such a slicing node are 
represented by leftÜ), rightÜ) and parentÜ). 

Figure 3.4. The slicing hierarchy of the slicing structure offigure 1.7 

The nodes of the tree correspond to the slicing lines. Each slicing node 
has a label roÜ), which indicates the orientation of the corresponding 
slicing line: roÜ) can be either B or c:p. This binary tree representation of 
the slicing tree was chosen to simplify the algorithms. 
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The shape function of a slice can be computed by adding the shape 
functions of the sub-slices. The circuits have shape functions sc(w). 
From the shape function of the circuits, the shape functions of the 
slices, Sj(w) are computed. For slices that are stacked vertically, 
(horizontal slicing line), the shape functions can easily be added. For 
horizontally abutted slices, the functions must be inverted before 
adding them, and the result must be inverted afterwards. 

In this way the shape function of the floor plan Sr(w) is computed. A 
pair (w,h) for which the score i;(w,h) is minimal is determined. Once the 
shape of the floor plan has been deterrnined, the dimensions of the 
slices can be derived. 

The algorithm consists of two phases: a bottom-up phase in which 
information is collected, and a top-down phase, during which the 
decisions are taken. On a sub-problem, this. reflects the genera! 
predictor-adaptor paradigm. 

Algorlthm 3.1. The predictor: computation of the shape functions. The 
function returns the shape function of slicing node v. 

functlon predictor(v); 
begin lf not ve C then 

end; 

begin S1ett(v) :=predictor(left(v)); 
Snght(v) :=predictor(right(v)); 
lf ro(v)=E3 
then Sv :=S1ett(v)+Sntit(v) 
else st"" :=st"tt(v) +Snght(v); 

end; 
return(sv ); 

The predictor is a depth first search that collecta information ahout the 
sub-slices. This is done by computing the shape function for each slicing 
node in the slicing tree in a bottom-up order. The shape functions are 
retained for the second pass of the algorithm. 

From the shape function of the whole circuit, the most suitable 
height/width combination can be chosen. Then in a depth first search 
algorithm, the shapes of all sub-slices, and :finally all the leaf nodes are 
determined. The second phase of the algorithm is a top-down phase, 
during which the decisions about the shapes of the slices and the 
circuits are taken. 
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Algorithm 3.2. Top down shape assignments. adaptor(v, w, h) assigns 
dimensions w, h to slice v. 

procedure adaptor(v, w, h); 
begin if ve C then 

3 begin width[v] = w; 
height[v] = h; 

end 
6 else lf ro(v)=S then 

begin adaptor(left(v), w, s1e1t(v)(w)); 
adaptor(rlght(v), w, Snght(vJ(w)); 

9 end 
else 
begin adaptor(left(v), stëftcvi(h), h); 

12 adaptor(rlght(v), Srlght(v) (h), h); 
end; 

end; 

When adding two piecewise linear functions, the number of line 
sections in the functions can be at most #s1+#s2-1. At each junction 
node at least one line section is eliminated. So, the number of line 
sections for the entire floor plan is at most 

1-#C+ l:#Sc (3.10) 
ceC 

When the line sections are kept sorted, the addition of two shape 
functions can be in linear time. Both passes are depth first search 
algorithms, that visit each node in the tree exactly once. Therefore, the 
complexity of the algorithm is O(#C2) ifthe number of points per circuit 
is constant. 

3.3 Optima! sllcing 

In this section we will consider the problem of simultaneously 
constructing the slicing tree and finding the optimal shapes of the 
circuits. The objective is to find a slicing tree that will lead to a 
minimum area floor plan. A point configuration with circuit coordinates 
Xc,Yc is given. 

Each node in the slicing tree corresponds to a slicing line in the point 
configuration. Each slicing line divides the circuits in a slice into two 
groups. A horizontal slicing line partitions the circuits depending on 
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their y-coordinate, a vertical slicing line partitions the circuits by their 
x-coordinate. 

In [51] a heuristic for slicing the point configuration is proposed. This 
method solves the problem in two steps: first the slicing tree is 
designed, then the shapes of the circuits are optimized. The slicing 
lines are picked using heuristic criteria. Each slicing line corresponds 
to a node in the slicing tree. The first few slicing lines are chosen with 
respect to connectivity criteria. The slicing lines at a lower level of the 
hierarchy are chosen to optimize shape fitting. The slicing heuristic 
tries to keep the circuits close to square. 

Once the slicing tree has been designed, the shapes of the circuits can 
be optimized using the algorithm of § 3.2. The slicing tree is 
constructed top-down, beginning with the nodes at the top of the 
hierarchy. 

The new algorithm constructs a slicing tree for a given point 
configuration. It is possible to compute the shape function that 
represents the best solutions over all slicing trees that match the point 
configuration. Although an exponential number of slicing trees is 
possible, we will show that only a polynomial number of possible sub­
slices needs to be considered. We wi11 use dynamic programming over 
these slices to find the optimal slicing lines for the point configuration. 

The circuits of a slice are always contained in a rectangular area of the 
point configuration that contains only points of the circuits of the slice. 
This is true for any sub-slice of any slicing tree that is consistent with 
the given point configuration. The set of circuits contained in a 
rectangular section of the point configuration will be called a point 
slice. 

A rectangular area of the point configuration bas four sides. There are 
#C positions for a side, separating the circuits in the point 
configuration. Of course the number of possible choices for the right 
side is limited by the choice of the left. side. The same goes for the other 
two sides. Therefore there are at most (112 #C(#C-1) )2 different 
rectangles. Many of these rectangles contain the same set of points. So, 
the actual number of point slices to be considered is smaller. The exact 
number of point slices depends on the point configuration, hut obviously 
this number cannot be larger then 0(#04 ). 
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Figure 3.5. The different rectangular cuts of the point configuration are 

called point slices and are the partial solutions of the 
dynamic programming problem. The dashed line indicates 
a possible slicing of the set of circuits. 

The shape function of a point slice is computed by combining the shape 
functions of smaller composing point slices. A point slice with the given 
set of circuits can be composed in different ways. There are different 
options for the choice of the slicing line that partitions the point slice. 
For a point slice with n circuits there are 2n-2 options. 

The shape function of each option is computed by addition of the shape 
functions of the sub-slices. The shape function of the slice becomes the 
minimum of the shape functions for the different options. 

Initially only the shape functions of the slices with one circuit are 
known. The shape functions of slices with 2 circuits can be computed 
by combining two slices of 1 circuit. For a slice of two circuits two 
implementation options exist: one with a horizontal slicing line and one 
with a vertical slicing line. The shape functions of slices of 3 circuits 
are computed by combining slices of 1 and 2 circuits. The slices of 4 
circuits are computed by combining slices of 2 and 2 circuits or of 1 and 



§3.3 Optimal slicing 61 

3 circuits, etc .. 

This method of computing partial solutions from smaller partial 
solutions is called dynamic programming. Each partial solution can be 
used in the computation of several larger solutions. The partial 
solution needs only be' computed once, which saves a large amount of 
time. 

The partial solutions are subsets of the power set of circuits: ScC*. Not 
all subsets need to be considered, only the point slices are enclosed by a 
rectangle in the point configuration. There are only a polynomial 
number of such point slices. This fact makes dynamic programming 
efficient. · 

Algorlthm 3.3. Bottom up computation of shape functions. The function 
predictor(Q) returns the shape function for a slice with 
the circuits in set 0. 

functlon predictor(Q); 
begin lf sa :=0 then 

3 for ro=El,Ql do 
begin V :=0; 

W:=O; 
6 whlle #W> 1 do 

begin lf ro=E3 
then q := qeWIV'tewlYéYt1 

9 else q := qe W 1 'l1'1ew[Xq::;ict); 
V:=Vu{q}; 
W:=O\V; 

12 sv := predictor(V); 
sw := predictor(W); 
lf ro=E3 

15 then sa:=min(sa,sv+sw)_ 
else SQ :=min(sa ,Sy +sw ); 

end; 
18 end; 

end; 

The predictor computes the shape function for each point slice. The 
shape function of the point slice Qe S is computed by taking the 
minimum over all partitions of Q into a pair V, W that are allowed by 
the point configuration. The shape functions are saved in a global data 
structure for the second phase. 
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Algorithm 3.4. Top-down slicing decisions and shape assignment, the 
adaptor assigns dimensions w, h to set Q 

procedure adaptor(Q, w, h}; 
begin lf #0 = 1 then 

3 begin width[qeO] := w; 
height[qe O] := h; 

end 
6 else 

begin for ro:=B,Ql do 
begin V:=0; 

9 W:=O; 
whlle #W> 1 do 
begin lf ro=B 

12 then q := qeW IV'tewlYqSYtl 
else q := qeW 1 V'tew[xq:!>Xt}; 
V:=Vu{q}; 

15 W:=O\V; 
lf ro=8 
then si:=Sv+sw 

18 else Sl~:=Sv+sw; 

21 

found: 
24 

27 

30 

end; 
33 end; 

lf s1(w)sh then goto found; 
end; 

end; 
{ this point should never be reached } 

slice(V,W); 
if ro=B then 
begin adaptor(V, w, sv(w)); 

adaptor(W, w, sw(w)); 
end 
else 
begin adaptor(V, sv(h), h); 

adaptor(W, sw(h}, h); 
end; 

From the shape function of the entire set C, the most optima! shape of 
the floor plan is chosen. The adaptor then traces back the computations 
of the first phase that led to this shape. While it does that, it slices the 
point configuration, and assigns dimensions to the circuits. 
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Any two circuits are separated by a slicing line during some stage of 
the slicing process. Exactly one of the two ordering relations in both 
dimensions is enforced by the slicing tree. So, for the purpose of slicing, 
the point configuration can be seen as two sequences of circuits. The 
distance information in the point configuration may be interpreted as 
additional connectivity information. However, it is not obvious how this 
information can be used in the slicing process. 

The slicing algorithm takes the shape functions of the circuits into 
account. Connectivity information is disregarded with the exception of 
the information that is contained in the point configuration. The point 
configuration is an approximate placement. The design of the point 
configuration takes connectivity information into account, hut may 
ignore the shapes of the circuits. 

3.4 Efficiency of the slicing algorithm 

Figure 3.6 shows an example of 30 arbitrary circuits was sliced using 
the optimal slicing algorithm. The circuits are rigid, hut can be oriented 
both ways. An arbitrary point configuration was used. 

The shape function for the floor plan offigure 3.6 is shown in figure 3.7. 
We see that the flexibility of this floor plan is very great. The shape 
function is an almost perfect hyperbola. After the slicing lines have 
been chosen, the flexibility of the floor plan is very small. Most floor 
plans have a limited number of circuits, typically 5-25, and for such 
numbers exact solutions can be found easily. Because the complexity of 
the algorithm is quite high, a heuristic may be more efficient for a 
larger number of circuits. 

The slices separated at a high level have a large number of circuits. 
They can be given almost any shape. The first decisions of the first few 
slicing lines have little influence on the quality of the final result. The 
heuristic chooses the first few slicing lines on the the basis of sha pe 
fitting. If a slicing line is accepted, the shape of the slices is 
determined by the aspect ratio of the floor plan and the areas of the 
slices. This is similar to the algorithm of § 1.5. A slicing line is 
acceptable if all circuits in the slice can be fitted into the slice 
individually. If no acceptable slicing line can be found, algorithm 3.4 is 
called. The floor plan found by this heuristic is shown in figure 3.8. 
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Figure 3.6. Example slicing result of the dynamic programming 

algorithm. This result bas a 95.7% occupation and took 
about 5 minutes to compute on a single CPU of an 
Alliant/FX8. 

For reasons of complexity, general piecewise linear functions cannot be 
used. If piecewise linear functions were used, the number of line 
sections could grow exponentially with the number of circuits in a slice. 
To keep the complexity of the algorithm down, the algorithm uses 
integer stair case functions. The length and width of each circuit are 
expressed as small integers. Because all the discontinuities are 
required to be at integer coordinates, the discontinuities in different 
functions will often occur at the same coordinate. Since such 
discontinuities will -often coincide the number of discontinuities will not 
grow exponentially. Using integer staircase functions, the number of 
segments is limited by the maximum dimension of the slice. 
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Figure 3.7. Shape functions for the floor plans of the 30 circuit 
example: The drawn shape function represents all possible 
shapes with a given point configuration. After the optima! 
slicing tree has been chosen, the shape of the floor plan is 
limited to the dashed shape function. 

The shape functions have been implemented as arrays of integers. The 
index of the array is the argument of the shape function. For integer 
stair case functions, this is the most efficient implementation. Addition, 
minimization and inverting a shape function can all be implemented as 
simple 'for' loops. These loops can simply be vectorized. 

The complexity of the algorithm is polynomial, although a rather high 
polynomial. The number of slices is limited by O(#C4). Constructing a 
new slice from known sub-slices takes O(#C) additions and 
minimizations. Each minimization and each addition takes O(w+h) 
operations, where w, h are the maximum integer dimensions of the 
floor plan. When the dimensions of the circuits are small constants, the 
maximum dimension of the fioor plan grows linearly with #C. The 
complexity of the algorithm is O(#C6). 



66 Joint shape optimization Chapter 3 

1 10 

26 Eli 30 

2 

8 1_1 _19_ 

11 

25 

5 EJc:J c:JD 
1 27 1~ 

6 

22 

13 

Figure 3.8. Example slicing result from the heuristic for the same 
problem. This result has a 81.5% occupation and took less 
than a second to compute on a single CPU of an 
Alliant/FXS. 

The number of slices is O(#C4), hut the number of possible sets of 
circuits is exponential: #(C*) = ttC. To avoid using an exponential 
amount of storage, the sets have been hashed. U sing hashing, the 
access time to a set and its shape function is almost constant. 

Connectivity information may also be important. Algorithm 3.4 
chooses a slicing structure that realizes minimum dimensions. But 
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there may be many different slicing structures that realize the same 
dimensions. A variation of the algorithm is conceivable which tries to 
enumerate the different solutions, and evaluates the solutions with 
respect to a measure of connectivity, for instance wire length. 



4. A steiner tree heuristic 

The steiner tree problem arises in the channel assignment of nets in 
fioor plans. The channel assignment problem is reduced to finding the 
shortest steiner tree in the channel intersection graph. In this chapter 
we present a heuristic for the shortest steiner tree problem in graphs. 
The heuristic is based on a notion of hierarchy in the steiner tree. This 
hierarchy, the topology of the steiner tree, is determined using a 
shortest spanning tree algorithm. 

A second stage maps the topology of the steiner tree onto the graph. It 
decides on the best positions for the steiner nodes in a top down order. 
This stage finds in polynomial time the best solution possible with the 
given topology. Because large numbers of steiner trees may have to be 
calculated special attention is given to an efficient implementation. 

4.1 The shortest steiner tree problem in graphs 

The shortest steiner tree problem in a graph can be fonnulated as 
follows: Given a graph C(V,E), with nodes V = {v1 ,v2". } and edges 
E = {e1 ,e2···} with positive integer edge weights w: E-?IN. Let S c V he 
the subset of nodes to be connected, called the leaf nodes. The steiner 
tree of S is a connected acyclic subgraph 'I' c C such that (S, 0) c 'I'. A 
steiner tree is a acyclic connection in the graph connecting the nodes of 
S. A steiner node is a node te '1\S 1 °t>2. The steiner nodes are the 
junction nodes of 'I' in which the tree splits. The number of steiner 
nodes is ::;; #S-2. The length of a steiner tree is .I:ee E{S) w(e). The 
problem is to find the minimum length steiner tree in a graph. 
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steiner points 

Figure 4.1. The shortest steiner tree connecting 5 leaf nodes could look 
like this. This steiner tree has 3 steiner nodes. The steiner 
tree is a subgraph of <j (which is not shown here). Thinking 
about the steiner tree problem in the plane may help to 
understand the steiner tree problem in graphs. 

The problem has been shown to be NP-hard för general graphs [34]. 
The global routing graph is planar, hut even för planar graphs the 
problem remains NP-hard [24]. For series parallel graphs the decision 
problem and the optimization problem are in P [66]. For this class the 
problem can be solved by a dynamic programming method that takes 
advantage of the hierarchical strueture of the series parallel graph. 

Let v be an arbitrary node in the steiner tree. Let (v, w) be an edge of 
the steiner tree. Let Sv,w be the subset of S that is connected to v when 
(v,w) is removed. Then there is a shortest steiner tree %,w with leaf 
nodes Sv,wu{v} such that %,wc'I. This is easy to understand. If a 
shorter tree %,w would exist this could be replaeed in 'I, making 'T 
shorter. Since 'Tis the shortest, such a %,w cannot exist. So, the sub­
trees of a shortest steiner tree are the shortest steiner trees of the leaf 
nodes in that sub-tree and anode v. 

Exact solutions using branch and bound methods have been given by 
[18, 29]. Of course these methods require exponential running time and 
cannot be used for problems of over about 10 nodes. Since some wires 
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may have a large number of connections we have to rely on a heuristic. 
For larger numbers of nodes heuristics have been presented by 
[ 40, 7 4, 65). The worst case length of the steiner tree found by those 
heuristics is 2(1-1/#S) times the length of the shortest steiner tree. A 
complete survey on steiner trees can be found in [71]. 

By far the fastest heuristic of the three mentioned is [7 4] which is a 
faster version of the heuristic of [40] with a complexity ofO(#E log(#V)). 
However, this algorithm does not guarantee the best solution for the 
found topology, as our algorithm does. In particular if the paths 
between the leaf nodes have to pass through many nodes, the heuristic 
of [ 40] performs poorly. This is a very common situation in large chips 
with many circuits. The heuristic presented here performs better at 
the cost of a slightly higher computing time. lts performs better 
because it guarantees that the solution is the best possible with the 
given topology. 

Let us introduce the notion of distance in a graph. A distance d(a, b) is 
defined between each pair of nodes a, be V. Llke any distance measure it 
satisfies the following equations: 

d(a,b)~. with d(a,b)=O if and only if a=b. 

d(a,b) = d(b,a) 

V [d(a,b) s d(a,v)+d(v,b)] 
veV 

(4.1) 

(4.2) 

(4.3) 

Equation (4.3) is known as the triangle inequality. The distance 
between two nodes can be computed from the edge weights: 

{ 

w(a,b) if (a,b)e E 
d{a,b) = ~V d(a,v)+d(v,b) otheiwise <4.4) 

We can now introduce the length of any graph with nodes in V. Let 
H(W,F) be a graph with nodes WcV. Since the distance measure that 
was introduced above applies to the nodes of V, each branch of F can be 
assigned an edge weight d, and the length of the graph H(W,F) is 

L(H) = I, d(a,b) (4.5) 
(a,b)eF 

Two interesting special cases exist. In the case that #S=#V there are no 
steiner nodes and the problem becomes the shortest spanning tree 
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problem. If #S=2 the problem becomes the shortest path problem. For 
both problems efficient polynomial algorithms exist [17]. We will use 
both algorithms in our heuristic. 

Algorithm 4.1. Shortest Path 

input: C={a,b}; av,E); 
output: P; 

3 P:=(C,0); 
repeat v: (a,v)e E "d(a,v)+d(v,b)=d(a,b); 

P := P u ({v}, {(a,v)}); 
6 a :=v; 

until (v,b)e E; 
P:=P u {(v,b)}; 

The two node steiner tree problem can be solved by the shortest path 
algorithm. A path Pa,b from node a to node b is a connected acyclic 
subgraph with 'Vpe P\{a,b} "p=2 and "a=1 and 0 b=1. The distance from b to 
all other nodes in the graph can be computed using equation (4.4). 
When these distances are known, it is simple to find a path connecting 
the two leaf nodes (See algorithm 4.1 ). In our steiner tree heuristic this 
algorithm is used to find the paths between the leaf nodes and the 
steiner nodes. Notice that the shortest path is not completely 
determined by the begin and end node of the path. 

4.2 The topology of the stelner tree 

Our heuristic is based on a hierarchical representation of the topology 
of the steiner tree. Each hierarchy can be represented by a tree. 
Alternatively, each tree can be represented as a hierarchy. We will call 
this hierarchy the topology of the steiner tree. The topology is found by 
the shortest spanning tree algorithm. This algorithm always :finds the 
best spanning tree. This does not guarantee that the topology is the 
best possible, hut it is a good heuristic. 

The topology of the steiner is a binary tree ?(N, B), where N denotes the 
set of nodes and B the set of edges of :Y called the branches of the 
topology tree. The nodes N consist of the leaf nodes ScN and the 
junction nodes J=N\S. The tree is binary because 'VjeJ["j=3] and 
'Vses["S=1]. The number of nodes is #N = 2.#S- 2. Except for the case 
that #$=2 no branches connect two leaf nodes: B c JxN 
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The steiner assignment function Ç:N-N determines the steiner nodes in 
the routing graph. The leaf nodes are always mapped to themselves: 
V5Es!;(s)=S. The junction nodes can be viewed as potential steiner 
nodes. The branches in Y stand for paths in the routing graph. The 
steiner tree is the union of those paths. The steiner tree with 
assignment Ç is 

(4.6) 

The topology class C of a topology Yis the set of steiner trees that can 
be realized by choosing an assignment function Ç and paths between 
the leaf and steiner nodes: 

C(9' =V{~} 
I; 

(4.7) 

It is possible that two junction nodes are assigned to the same node in 
V or that they are assigned to a leaf node. In this case a path 
disappears, and the steiner tree bas less then the maximum number of 
steiner nodes #J. 

The topology tree Y has a root re S. By defining a root, the tree can 
represent a hierarchy. The neighbors of the nodes jeJ will be 
represented by leftU), rightO) and parentO). For the nodes seS only 
parentO) is defined. The edge {n,parent(n)) always points towards the 
root of the tree, except when n is the root itself. leftO) and right(j) are 
the other two edges of a junction node. It is not important which is 
which. 

A variation of the spanning tree algorithm, the nearest neighbor 
algorithm, determines the topology of the steiner tree (See figure 4.2). 
The graph for which the shortest spanning tree is determined is the 
complete graph (S, SxS) with edge weights d:SxS~IN. Instead of 
producing the spanning tree the algorithm constructs a binary topology 
tree '.:Y. 

The algorithm finds the shortest edge connecting a node pe S already in 
the tree to a node qe S not yet in the tree. However, instead of simply 
adding an edge, it removes the old edge connecting p to X and adds a 
three edge star withjunction node j1 (See figure 4.3). 

There exists a steiller tree 'I with topology Y found by algorithm 4.2 
that has a length that is not longer then 2(1-1/#S) times the length ofa 
shortest steiner tree 'Is: 
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Figure 4.2. The spanning tree is extended with the shortest edge (p,q) 
that connects a node in the spanning tree (p) with one 
outside the spanning tree (q). The new edge is dashed. 

Figure 4.3. When a new edge (p,q) of the shortest spanning tree is 
föund the topology '.Y is extended with an extra junction 
nodeji. 

3'lëC(?l [L('lJ ~ 2(1-1 /#S).L('1$)) (4.8) 

We will show this by showing that the length of'Icannot be longer then 
the length of the shortest spanning tree. The assignment Ç'ü1)=P1 maps 
all junction nodes to the leaf nodes from which they were derived (The 
index refers to the index used in algorithm 4.2). Therefore Ç':N-?S 
makes 7ïnto a shortest spanning tree of (S,SxS). The length of this 
spanning tree is 
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Algorithm 4.2. Spanning tree 

input: d:SxS~IN; 
output: .?'{N,B); r; 

3 i := O; 
r,qe S : 'v'(x,y)eSxS [ d(r,q) ::;; d(x,y) ]; 
N := {r, q}; 

6 B:={(r,q)}; 
R := S \ {r, q}; 
parent(r) := q; 

9 parent(q) := r; 
while R::P0do 
begin i := i + 1; 

12 {p,q)e ({NnS)xR) : 'v'(x,y)e((N"SJxR) [ d(p,q)::;; d{x,y) ]; 
N :=Nv {q, ji }; 
B := (B \ { (p, parent(p)) }) v { (parent(p),ji ), Üi ,p), Üi ,q) }; 

15 R := R \ {q}; 
if p=rthen 
begin parent(parent(r)) := ji; 

18 parentüi) := r; 
end 
else parentüi) := parent(p); 

21 parent{p) := parent{q) := ji ; 
end; 

L = I: d(l;'{a),l;'(b)) 
{(a,b)e B 1 Ç'(a)"'1;'(b)} 

(4.9) 

A steiner tree with this assignment and using only shortest paths has 
the length of this spanning tree. So there e:xists a steiner tree with the 
topology !)"as found by algorithm 4.2 that is not longer than L. 

The shortest spanning tree of SxS cannot be longer than twice the 
length of the steiner tree '%. Suppose a steiner tree '% is given. It is 
possible to visit every leaf node while crossing each edge in 'l' twice. 
(See figure 4.4) 

This corresponds to a cycle in SxS with twice the length of the steiner 
tree. By removing one branch of this cycle it becomes a spanning tree. 
The minimum length of the longest branch is 1 /#S times the length of 
the spanning tree. Therefore the length of the spanning tree is 
2(1-1/#S) times the length of the steiner tree. 
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Figure 4.4. A cycle visiting all leaf nodes has a length of at most twice 
the length of the steiner tree. One edge may be left out to 
create a spanning tree. 

In the next section we will show that it is possible to find the optima! 
assignment s for a given :Yin polynomial time. 

4.3 Applylng the paradigm 

In the second stage the optima! assignment s is föund, that is, an 
assignment is found such that 

L'('lJ = i: d(s(a),!;(b)} (4.10) 
(a,b)eB 

is minimal. If a shortest steiner tree is in the topology class of :Y then 
the result will be a shortest steiner tree. In any case the tree that is 
returned is not longer than the length of the shortest spanning tree. 
Notice that equation (4.10) does not necessarily represent the length of 
the corresponding steiner tree 'I: Some of the paths may overlap, so 
that they counted twice in L': L('l}s;L'('l}. 

The second stage is an optimization stage similar to the algorithm of 
(18]. However we do not enumerate all possible topologies. Only the 
topology of :Y will be considered. Because of this restriction the 
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algorithm is polynomial. 

The sub-tree of a node je J is the part of the topology tree that is 
hierarchically under that node, that is, the part that can be reached 
through leftG) and rightO). The function l..:NxV.....+IN gives for the sub-tree 
of each node in J the length of that tree when connected to an arbitrary 
node veV. So A.(parent(r),r) = L'('l). The function A. can be computed 
using the following recursive definition: 

{ 

d(n,v) if nes 
A.(n, v) = i:nin d{v,i)+A.{left{n),i)+A.(right(n), i) if neJ 

IEV 

(4.11) 

Notice that to compute À for each node ve V the best steiner node for 
each sub-tree is determined. 

v 
A.{p, v)=d(v,p)+A.{a,p)+À(b, p) 

Flgure 4.5. A. is computed recursively. 

This algorithm consists of two depth first visits to the tree. The 
predictor computes À. The adaptor traees back how this optimum was 
constructed, while choosing the steiner nodes. 

Since this algorithm always finds an optimal assignment, it is 
immaterial what node re S is used as the root node. This does not need 
to be the same node as in algorithm 4.2. 

One way to look at this optimization is as a 'contraction' of. the 
spanning tree. While the spanning tree eontracts, the steiner nodes 
move away from the leafnodes that they were assigned to by Ç'. 
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Algorithm 4.3. Recursive optimization of the assigrunent. 

input: d: SxS~N;?'(N,B);r; 
output: 'T; 

3 procedure predictor(n); 
begin ifneS 

then \'lvev[À(n,v):=d(n,v)] 
6 else begin predictor(left(n)); predictor(right(n)); end; 

\'lve v[A.(n, v) := À(left(n), v)+À(right(n), v)]; 
9 'v'vev[A.(n,v) := minwevÀ(n,w)+d(v,w)]; 

end; 

procedure adaptor(n, k); 
12 ifn11:Sthen 

begin v: J.(n,k) = À(n,v)+d(v,k); 
l;(s) := v 

15 adaptor(left(n),v); 
adaptor(right(n),v); 

end; 

18 begin predictor(parent{r)); 
adaptor(parent(r),r); 

end; 

4.4 An efficient lmplementation 

77 

Most of the time is spent in computing the distances d and À. Once d 
and A. are k.nown, the optimal assignment and the shortest paths are 
easily reconstructed. Note that hoth d and À are computed by a 
minimization over the entire graph. dis computed using equation (4.4) 
and A. is computed using the minimization of equation ( 4.11 ). This 
minimization can be done by a single algorithm. This algorithm 
computes a function J3(v) which can either represent A. or d. Given an 
initial J3(v) the function computes 

W(v) = min{j3(v)}u{w(v,u)+W(v) 1 ueV} (4.12) 

Thisa 

Algorithm 4.4 is the wavefront expansion algorithm which computes J3. 
It assumes that for some nodes the shortest distance is given. With the 
triangle inequality (4.3), J3 can be computed for the other nodes. This is 
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Algorithm 4.4. Wavefront expansion 

global: C(V,E);p:V-tN; heap; 
repeat getheap(v); 

3 ~r~l~u~Edo 
if ~(u}>~(v)+w((v,u)) then 
begin p(u):=(j(v)+w((v,u}); 

6 putheap(u); 
end; 

untll heap=0 

Chapter4 

done starting at the node with the smallest p. The ~ of the neighbors of 
this node is computed, then the p of their neighbors, etc" Both 
algorithm 4.2 and algorithm 4.3 can use this efficient wavefront 
expansion algorithm. It uses a heap for an efficient implementation of 
the selection of the smallest element of a set. 

The algorithm considers each edge once and the heap operations have 
complexity O(#V}. The complexity of the algorithm is O(#Elog(#V)). The 
routing graph Cis planar so #E ~ 3#V - 6, and therefore the complexity 
is O(#V log(#V}). 

Algorithm 4.4 can be used in the shortest spanning tree algorithm and 
for the computation of À.. In the shortest spanning tree algorithm, an 
unconnected node must be found, that is closest to the tree already 
formed. So, initially ~(v)=O for all nodes in the tree, and ~(v)=oo for all 
other nodes. The algorithm will compute the distance to the set of 
nodes in the tree, beginning with the nodes closest to the tree. In the 
computation of À, ~is initialized as P(v)=À.(left(n), v)+À(right(n), v). 

To improve the efficiency of the algorithm, the wavefront expansion can 
be limited to a part of the graph. In the spanning tree algorithm 4.2, 
the expansion can be stopped as soon as the distance to one of the 
remaining nodes in R is known. This is automatically the nearest 
neighbor, which is the node we are looking for. 

In algorithm 4.3 À. needs only be computed for those nodes that are 
possible steiner nodes. We will now show that candidate steiner nodes 
must be located within a certain neighborhood of the sub-trees that 
they connect. 

Consider the sub-tree below junction node peJ of the topology :r. Let 
Sp,parent(p) be the leaf nodes in this sub-tree. Let " denote the length of 
the shortest spanning tree between these leaf nodes. Let ve V be a 
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candidate steiner point. Then v can only be a steiner point if 

t..(left(p), v)~tp " l..(right(p), v)~tp 

79 

(4.13) 

Any node v for which l..(left(p), v)>tp or t..(right(p), v)>tp cannot become a 
steiner node for p. So the wavefront search of algorithm 4.4 can be 
stopped as soon as equation (4.13) is violated. This will limit the 
wavefront expansion to the immediate neighborhood of the nodes to be 
connected. 

t..{left(p), v)~tp " , ' , ' , ' , ' , ' , ' , ' , ' - - , \. 

' 1 ' ', ) - --

t..(right(p), v)~tp 

Flgure 4.6. The length of the sub-trees (dashed) is limited by the 
length of the shortest spanning tree (fat). The steiner node 
v must within both ranges. 

We will derive equation (4.13) as follows: In a steiner node the two 
sub-trees are joined. So, fora steiner node candidate v=Ç(p), À can be 
computed by: 

l..(p, v) = l..{left{p), v) + t..(right(p), v) (4.14) 

These two sub-trees that are connected through p could be built up 
differently. An altemative realization of the steiner sub-tree of p is the 
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spanning tree of the nodes under p, which bas length ip, plus an edge 
from a leaf node to p. To make this topology match a possible ,.; the 
worst edge on either side is assumed. However, we may choose the best 
of the two sides. This number results in an upper bound for A.{p, v): 

A.{p,v) s tp+min{ max d(p,q), max d(p,q)) (4.15) 
qe Sieft(p),p qe Srlght(p),p 

The length of the worst edge to the nodes in the sub-tree S1ett(p).p is of 
course always smaller then À(left(p), v) of that subtree. Substituting 
equation (4.13) gives 

A.(left(p),v) + À(right(p),v) s lp+ min(A.(left(p),v),A.(rlght(p),v)) (4.16) 

from which we can derive a bound on A. for each of the sub-trees: 

A.{left(p), v)Slp " A.(right(p), v)Slp (4.17) 



5. Two-dimenslonal folding 

Folding is a class of layout methods, like placement and routing are 
classes of layout methods. In földing, one-dimensional elements, called 
strips, are assigned to tracks. 

Strips are small layout elements, often wire segments. Sometimes the 
strips can represent more complex compounds such as transistors and 
gates. These layout elements have approximately the same thickness, 
hut varying lengths. The strips will thereföre have a uniform width. 

Two strips that are assigned to the same track cannot overlap. When 
more strips are assigned to the same track, we say that they have been 
folded. The objective is to use as few tracks as possible, thereby 
minimizing the area of the circuit. 

In this chapter we will present a new algorithm for the two­
dimensional földing problem. The algorithm uses an elegant divide and 
conquer heuristic. This heuristic gradually refines the folding by 
repeated partitioning. 

Two-dimensional folding can be used för several layout problems. 
Usually layout styles that use some kind of földing introduce some 
additional constraints. In chapter 6 we will reformulate some common 
layout problems, which leads to some new layout styles. 

5.1 The folding problem 

In folding the objective is to assign strips to tracks such that the strips 
do not overlap and the number of tracks needed is minimal. In the 
simplest folding problem, all strips have a :fixed lefi and right edge. In 
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this case the folding problem is optimally solved for n strips in only 
O(n log(n)) time by the well. known lefi edge algorithm. Ofien other 
objectives or constraints are present, complicating the problem. 

The two-dimensional · folding problem is the problem of assigning 
horizontal and vertical strips to rows and columns. The strips have an 
interconnection pattern that must be realized. This interconnection 
pattern can be thought of as a net list for the horizontal and vertical 
strips. Each horizontal strip has a number ofvertical strips to which it 
is connected. A horizontal strip must reach all columns that contain 
strips to which it is connected. The span of a strip is therefore not fixed. 
Of course the strips in the same row must not overlap. But whether 
they overlap or not also depends on the assignment of the vertical 
strips to the columns. 

Channel routing can be förmulated as a one-dimensional földing 
problem. The unconstrained case can easily be solved by the lefi edge 
algorithm. For the constrained case heuristics have been given by [76] 
and others. Two-dimensional folding techniques have been developed 
for PLA's [12] where the objective was to minimize the area of the PLA. 
These techniques can handle certain constraints for the pins, hut the 
possibilities of adapting the shape and pin positions are limited. Also 
there are several additional constraints on the order of the strips in 
PLA folding. Ofien only two strips can be folded into one column. Also 
the strips of the or and and planes must remain separated. 

The circuit to be laid out is represented as a bipartite graph 9'.(H, V, E). 
H is the set ofhorizontal strips, Vis the set ofvertical strips. The set of 
pins EcHxV contains the edges of the graph, that stand for the 
incidences between the vertical and horizontal strips. 

The folding algorithm assigns the horizontal strips to columns and the 
vertical strips to rows, such that they do not overlap. Notice that the 
sequence of the incidences on a strip is completely free. The folding 
algorithm allows no constraints on this order, hence the name 
unconstrained folding. 
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Figure 5.1. Two-dimensional folding: A circuit (left) with one strip per 
row or column is folded. The result (right) has strips that 
share rows or columns, and is therefore smaller. 

We formally state the unconstrained two dimensional folding problem 
as follows: The circuit is to be realized on a grid of rows and columns. 
The set of grid points is represented by 'Z:xZ.. The folding of a circuit is 
determined by the column assignment function q,: v~z that assigns 
vertical strips to columns and the row assignment function w: H~Z 
which assigns horizontal strips to rows. Let v(s) denote the set of strips 
connected to strip s: v(s) ={te HuV 1 (s,t)e E}. Notice that s and t are 
always in different sets because :Fis a bipartite graph. The span cre Z 
of a vertical strip se V is an interval of rows defined as 

cr(s) = [min w(t), maxw(t)]. 
lev(s) tev(s) 

(5.1) 

The spans of strips that are assigned to the same column are not 
allowed to overlap: 

(5.2) 

Since the problem is symmetrie the same goes for the horizontal strips. 
In the remainder of this chapter this duality will not be explicitly 
mentioned. The objective of the folding algorithm is to find a valid $ 
and '11 subject to some score function, for instance area. 

The unconstrained two-dimensional folding prohlem was first posed in 
[16) and a simulated annealing solution was proposed. An improved 
simulated annealing algorithm was described in [73]. A new solution to 
this prohlem [81, 82) uses an elegant hierarchical divide and conquer 
approach similar to the approach of [7] to placement and routing of 
gate arrays. The algorithm allows for a large amount of freedom in 
choosing the aspect ratio and pin positions. Different amounts of 
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folding in both dimensions are used to get the desired aspect ratio. For 
larger arrays two-dimensional folding also increases the functional 
density. 

We may classify one-dimensional gate placement as a special case of 
two-dimensional folding. In the one-dimensional gate placement the 
column assignment function qi must be a permutation. The objective is 
to minimize the area, that is, to minimize the number of rows needed. 
This problem has been shown to be NP-hard [35]. Therefore, the 
assumption that two-dimensional folding is at least NP-hard seems 
valid, although proof is not provided here. 

5.2 The hierarchical folding algorithm 

The new algorithm is a divide and conquer heuristic. The design is 
repeatedly subdivided by straight orthogonal cutting lines. After each 
division the strips are partitioned into two groups. After the kth 
horizontal cut the horizontal strips H are partitioned into k+ 1 groups 
Ho .. Hk. 

(5.3) 

Similarly the vertical strips are partitioned into {+1 groups Vo" .• Vc 
after {vertical cuts. The sets are ordered in the grid space, that is, the 
sets imply a constraint on the functions qi and 'Ijl. 

'lf SE V;, te VJ [i<j => i!>{S)<i!>{t}] (5.4) 

When a group V1 is partitioned into two groups V1 and Vi+1 this implies 
a constraint on $ (although a solution remains always possible). The 
index of remaining groups VJ with j>i increases by one. As the exact 
assignment bas not yet been determined the span of a strip will be 
defined as 

cr{s) = [ min{i 1 Hirw(s)~}. max{i 1 Hirw(s):;t0} J (5.5) 

To make a prediction of the resulting size of the array, and to evaluate 
the consequences of cutting line decisions, we use bounds on the 
number of rows or columns needed for a group of strips. The maximum 
number of columns needed is equal to the number of overlapping strips. 
In the worst case all strips that can overlap will actually overlap. An 
upper bound for the number of columns needed for a group of vertical 
strips is therefore given by 
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Chapter 5 

cut k 

Figure 5.2. Each cut creates a 2xn subproblem, that is easier to 
conquer. Further cuts hierarchically divide the problem 
into smaller partitioning problems. Step by step the 
partitioning refines the assignment of the strips to rows 
and columns. 

µ(Vj)= max #{seV1 1 je<J(s)} 
j 

(5.6) 

Notice that this is the exact number of columns if <J=G. A lower bound 
for the number of columns is determined by the number of strips that 
cross horizontal boundaries: 

(5.7) 

Since the incidences of the strips are not allowed to overlap there is 
another lower bound: 

(5.8) 

These upper and lower bounds are the predictor for the final size of the 
array. A dimension of the matrix is predicted as the mean of the upper 
and lower bounds. The area can be predicted as 
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3 3 4 4 2 µ=4 

Flgure 5.3. We can compute bounds for the width of a group. The upper 
bound µ is the maximum of the number of possibly 
overlapping strips in one box. A lower bound o is the 
maximum of the number of strips that are cut. 

2 1 2 1 3 1 

- --~ 

Figure 5.4. Another lower bound is y, the maximum of number of 
connections to an orthogonal strip. 

r max(o(V1),y(Vi))+µM) k max(o(H1),y(H1))+µ(H1) (
5

.
9
) 

a = (1: 2 ).(1: 2 ) 
~ ~ 

When the following criterion is satisfied, further cuts cannot improve 
the result. 

(5.10) 

When µ(S);t:1 then the elements of S do not have a completely 
determined assignment function. An assignment with a minimum 
number of rows or columns can easily be constructed using a le:ft edge 
algorithm. The le:ft edge algorithm assigns two strips with an 
overlapping span to different columns. 

(5.11) 

This le:ft edge assignment realizes the upper bound µ. This upper 
bound, and also the le:ft edge algorithm, assume that all strips that can 
overlap, actually do overlap. Notice that it is now possible to exchange 
the columns within a group without creating any overlaps between 
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horizontal strips. This freedom can be used to further optimize the 
assignment with respect to other criteria. 

The shape is controlled by selecting the orientation of the next cutting 
line. A vertical cutting line tends to make the array wider and lower, a 
horizontal line makes the array higher and narrower. How this is used 
to con trol the shape will be explained in chapter 7. 

5.3 Partitioning the groups 

When a cut is made a group of strips is partioned into two groups. The 
partitioning problem can be formulated as a combinatorial problem: 
Given a group ScH, partition this set into two groups PcS and S\P 
such that a score function e(P) is minimal. Since each element of S can 
be either in P or not, the number of possible partitions, or states, is 2#S. 

The state is fully determined by the subset P, therefore the score 
function e is a function of P. Since little is known about the score 
function e, the general problem is NP-hard. Therefore we will resort to 
heuristics. For these heuristics, we will assume that there is some 
correlation between the scores of neighboring states. States are 
neighbors of they differ in at most one element: 
#(P1nP2) =#(P1uP2)-1. We assume that in that case e(P1):::: e(P2). 
The score functions that were used are all simple arithmetic functions 
ofµ, y and o. These three measures satisfy the correlation assumption. 
A score function that proved to be very effective was equation (5.9). 

We will consider three strategies for partioning a subset of strips. All 
strategies start with an arbitrary partition, and transfer strips between 
the two subsets while trying to minimize the score function. The 
strategies differ however in the control of this process. The first 
strategy is based on a strategy as used in the mincut algorithm of [37]. 
It is a very effective method for escaping from local minima, hut it is 
rather time consuming. The second strategy, based on iterative 
improvement, is faster hut can easily get stuck in a local minimum. 
Finally, an attempt is made to combine the best features of both in a 
two stage algorithm. 

The first strategy performs several passes while trying to improve the 
initia! partition. Initially each strip is assigned to an arbitrary subset. 
It transfers strips one by one to the other subset in an attempt to find a 
better solution. An element which has been transferred becomes locked 
and cannot be moved any more. When all strips have become locked the 
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algorithm bas completed a pass. The algorithm performs several 
passes until no improvement can be found. Each time the initia! state 
of a pass is the best state encountered so far. A pass is continued even 
when the current state becomes worse. This helps to escape from local 
minima. 

60 

50 

40 

0 5 10 15 20 

Figure 5.5. The first partitioning strategy performs several passes. The 
score is plotted during each of three passes. The last pass 
(not shown) did not give an improvement. The best state of 
the previous pass is the initial state of the next pass. 
Notice that the state is pushed out of the local minimum 
during the first and second pass. 

To prevent all elements from moving to one set, elements are not 
allowed to be selected from a set which contains less than Vs of the total 
number of elements. The algorithm continues to transfer strips, until 
no valid move is possible (all elements are locked or all unlocked 
elements are in a set smaller than Vs ). In practice only a few passes are 
necessary to arrive at a minimum. This is reached when the initia! 
state of the pass is the best state encountered. 

The number of passes needed in practice is not very large. At least two 
passes are needed. The last of those two is needed to make sure that no 
further improvement can be found. For large numbers of strips (>100) 5 
passes or so are needed. We will assume that the number of passes is 
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Algorlthm 5.1. Partitioning 

1. Begin with an arbitrary partition. Save this initial state. 

2. Begin of a pass: unlock all strips. 

3. Is one set smaller than 113? lf yes then limit the following selection to 
members of the larger set. 

4. Select the strip that gives the lowest increase or largest decrease of 
the score function. 

5. Transfer that strip and loek it. 

6. Is the present state better than the saved state? lf yes then save the 
present state. 

7. Are there still unlocked strips? And are they in a set larger than 113? 
lf yes then go to 3. 

8. The best state becomes the initia! state of the next pass. Did we 
encounter a state that was better than the initial state? lf yes then go 
to2. 

constant, as is assumed in [22], although O(log(#S)) may be more 
realistic. 

Let O(e) be the complexity of the computation of the score function. The 
algorithm transfers each strip exactly once, so #S transfers are done. 
Before a transfer is done, the best strip to be transferred is found, by 
trying out all #S strips. The complexity of one pass of algorithm 5.lis 
O(#S2).0(e). The computation of the score function involves the 
recomputation of the bounds µ,ö and y. The computation of these 
bounds is rather costly. Using some redundant data structures, which 
are updated after each move, the effort can be reduced. The complexity 
of computing those bounds by updates is determined mainly by the 
number of subsets perpendicular to the subset being partitioned (k or {, 
depending on the orientation). 

5.4 Performance improvements 

One of the most time consuming features of algorithm 5.1 is 
determining the best strip to transfer in step 4. This is done by simply 
trying out all strips. Step 4 has a complexity ofO(#S).O(e). 
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In stead of finding the best strip, algorithm 5.2 accepts any strip that 
gives an improvement. Often, we do not have to search very long to 
find such a strip. Although the worst case complexity of algorithm 5.2 
is very bad, it proves to be much faster then algorithm 5.1. The 
disadvantage of this algorithm is that it never accepts a transfer that 
increases the score. It cannot escape from a local minimum. 

Algorithm 5.2. Iterative improvement 

1 . Begin with an arbitrary partition. Unlock all strips. 

2. Is one set smaller than 1/3? lf yes then limit the following selection to 
members of the larger set. 

3. Select an unlocked strip at random. 

4. Transfer that strip. 

5. Is the present state better than the previous state? lf no then 
transfer the strip back and loek it. lf yes then unlock all strips. 

6. Are there still unlocked strips? And are they in a set larger than Vs? 
lf yes then go to 2. 

In [22] an implementation of algorithm 5.1 is described that uses the 
object function (Remember that we assumed that ScH is a horizontal 
group): 

e=#{seV 1 keä(S)Ak+1eä(s)} (5.12) 

With the use of special data structures it is possible to make the total 
effort needed for updating the date structures is linear with the 
number of incidences in the subset O{#SxVnE) during one pass. 
Unfortunately this method is specific for the score function of 
equation (5.12). This score function tends to reduce µ{Vj) and ö(V1) but 
ignores µ(H1),ö(Hi) and 'Y(H1). ('Y(V1) cannot be infiuenced by the 
partitioning process). In particular, it is sometimes possible that the 
algorithm finds the same partition during the first horizontal and the 
first vertical cut. In that case, most incidences will be in diagonally 
opposing quadrants. 

To avoid this effect, some extra strips are introduced temporarily 
during the partitioning. They must ensure an even distribution of the 
strips in the groups. An extra vertical strip was added between each 
non-overlapping pair of horizontal strips. This way there is a penalty 
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for each pair of strips that could be assigned to the same track, hut is 
assigned to different partitions. Notice that these strips are added only 
during the partitioning algorithm, and only in:fluence the score 
function. Unlike the regular vertical strips, the temporary strips do not 
imply overlap. 

So, first some extra strips were added between non-overlapping strips. 
Then algorithm 5.1 was used with the score function of equation (5.11). 
Then the temporary strips are removed, and algorithm 5.2 is used with 
score function equation (5.9) to 'fine tune' the partition to the true 
objective. 

The quality of the solutions of the folding can be improved by 
remerging and repartitioning groups. When no improvement can be 
made by further partitioning groups, a second optimization stage is 
done. In this stage, groups are remerged if this is possible without 
increasing the score function. Some groups that were separated at a 
high level can now be merged. By repartitioning these groups, 
sometimes an improvement can be made. In this way, old partitions, 
that were taken at an early stage, can be partly reconsidered with more 
information available. The second stage optimization yields an 
improvement of a few rows and/or columns for both small and large 
circuits. Of course, remerging and repartitioning can be done at every 
level of the hierarchy. 

5.5 Some practical experiences 

First, we will look at the performance of the algorithm in terms of 
computational speed and area reduction. Table 5.1 shows the 
experimental results for the three partitioning strategies. Three 
different examples were used. For each strategy and each example 
circuit the final size and the CPU time on an Apollo DN3000 in seconds 
is given. The CPU times for algorithm 5.1 are much higher then for 
algorithm 5.2 hut the results are much better. The combination of both 
(third column) seems to be a good compromise. 
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Table 5.1. Comparison of the three partitioning algorithms. 

example 
alg 5.1 alg. 5.2 5.1;5.2 

time area time area time area 
cnt4 642.57 2385 26.50 3540 49.92 2236 
four 213.33 891 14.42 1739 29.52 986 
five 1895.05 3534 74.15 5727 128.83 4260 

To test the stability of the algorithm, choiees for which the algorithm 
has no preference were randomized. Several runs of the program, with 
identical input will generally result in different solutions. The folding 
algorithm has been applied toa 79 by 74 strips example. A sequence of 
ten runs .with randomized choices resulted in an average area of 818 
units. The standard deviation of the sequence was 61, or 7.45%. The 
best and worst solutions have areas of729 and 930 units. 

The algorithm bas been applied to dense regular connection pattems of 
which the optima! solution is known. Notice that these examples are 
not typical. The algorithm finds solutions that are about a factor 2 
worse than the optimum. 

Figure 5.6. The result of the simulated annealing algorithm (left) 
compared to the result of the new algorithm (right). 

We compared the new algorithm to the simulated annealing algorithm 
of [16]. The following example was taken from that paper as a bench 
mark. The circuit contains 36 vertical strips and 28 horizontal strips. 
The pins were required to be at the same side as in the given example. 



94 Two-dimensional folding Chapter 5 

The result of [16] is given in figure 5.6 and uses 21 rows and 21 
columns. The result of our algorithm uses 18 rows and only 10 columns, 
an improvement of 59%. 



6. Layout of unidimensional modules 

In this chapter we will present two new layout styles that are based on 
two dimensional folding. These styles are well suited for laying out net 
lists of small circuits that can be represented as strips in the folding 
algorithm. The folding creates a wire plan, to which the pin positions 
of the primitive circuits are adapted. 

The first style is called transistor matrix. In this style the horizontal 
strips are transistors. The style is somewhat related to gate matrix 
which also lays out transistor net lists. 

In the second style, called nor matrix, the horizontal strips are nor 
gates. The nor gates are implemented as statie nMOS logic. This style 
is related to the PLA style, and even more to the weinberger array 
style. Like the weinberger array, this style can handle multi level logic. 
In both styles the vertical strips are the nets. 

6.1 The wire plan 

In both new layout styles, the circuit to be laid out is represented by a 
bipartite graph ?({Cu{C},N,P) called the net list. In this graph C 
represents the primitive circuits and N represents the nets. The edges 
of the graph P represent the pins of the circuits, or the circuit net 
incidences. Nets that are connected to the super circuit C are I/O nets, 
so circuit C represents the periphery. In the first layout style, the 
primitive circuits are transistors. In the second, the primitive circuits 
are nor gates. 
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To use folding, a circuit should consist of interconnected horizontal and 
vertical strips. It is represented by a folding graph .'l{H, V,E), in which 
Hand V represent the horizontal and vertical strips. The edges E of the 
folding graph represent the connections between the horizontal and 
vertical strips. When strips are folded, they share a row or column. 
The folding algorithm (see chapter 5) folds the strips to save area. 

The new layout styles are based on equating the folding graph .'l(H, V, E} 
with the net list graph ?l(C,N,P). The vertical strips are the nets, and 
the horizontal strips are the primitive circuits. The pins of the circuits 
are the incidences between the horizontal and vertical strips. The 
layout problem is now a two dimensional folding problem: the circuits 
and nets are folded, such that all connections are made while the strips 
do not overlap. 

Figure 6.1. The wire plan is designed by the folding. The rectangles are 
the primitive circuits, are designed to match the pin 
positions. In the two styles presented here, the primitive 
circuits are either transistors or nor gates. 

In previous chapters we looked at the design of circuits with an 
intemal decomposition. First a floor plan was designed. Then the sub­
circuits were designed according to this plan. 
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The circuits considered here also have an internal decomposition. The 
folding process could be regarded as a planning phase. The primitive 
circuits, transistors and nor gates, are then designed according to this 
plan. Because this plan only determines a wiring pattern, it is called 
the wire plan. Together with the folding graph, the assignment 
functions <I> and 'I' determine the wire plan of the circuit. 

A circuit that uses folding is in an intermediàte position in the 
hierarchy. Not only does it consist of sub-circuits, the circuit itself is a 
sub-circuit in a fioor plan. So the wire plan of the circuit must be 
adapted to this fioor plan. The pins of the circuit are positioned such 
that the wires in the fioor plan remain short. The number of rows and 
columns is also determined by the fioor plan (see chapter 7). 

Like the wire plan is adapted to the fioor plan, the primitive circuits 
are adapted to the wire plan. Specifically, the wire plan determines the 
positions of the pins of the primitive circuits. 

To represent the periphery of the circuit C, four new strips are 
introduced n,seH and e,weV that represent the sides of the circuit. 
The folding algorithm assigns the side strips toa predetermined side: 

Vhe H\{s,n} ['Jf(S)<'Jf(h}<'Jf(n)] 
VveV\{w,eJ[<l>{W}<<l>(v)<<l>(e)] 

(6.1) 
(6.2) 

It does that by introducing a special group for each of these strips at 
the beginning of the folding. 

A pin for a net ve V at the top or bottom of the matrix is represented by 
an edge {v,s) or {v,n). Fora pin that connects to the left or right side of 
the matrix an additional horizontal strip is introduced. Lets say that 
this new strip h carries the net from strip v to the left side w of the 
matrix. Two new edges are introduced: {v,h) and {h,w). The fioor 
planner determines which net is assigned to which side. 

Most cell generators found in the literature have no or very limited 
possibilities of adapting the pin positions. In [ 45, 10, 58] pin positions 
are adapted by stretching the circuit. Only the distances between the 
pins can be specified, hut not the order. Terminals that can be assigned 
to any side in any order are allowed by [ 43]. So far most circuit 
generators that have this capability rely on placement and routing [48]. 

The layout algorithms commonly used for gate matrices and 
weinberger arrays reduce the layout problem to a restricted two 
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dimensional folding problem. The vertical assignment function 'I' is 
required to be a permutation. Since each vertical strip uses a whole 
column, the horizontal assignment function qi can be found using the 
left edge algorithm. Finding the optima! permutation \jf is NP-hard 
[35], hut an efficient branch and bound algorithm is possible [2]. Most 
papers about weinberger arrays or gate matrix layout describe 
heuristics to find the permutation \jl. 

6.2 Transistor matrix layout 

The first layout problem that we will treat is the layout of a transistor 
circuit. The specification of the circuit is a net list of transistors. 

A layout style called gate matrix [ 42] is commonly used for this 
problem. In this style, only one polysilicon strip is used per net for all 
transistor gates. All transistors that share the same gate net, are 
required to use that strip as their gate. The gate matrix style got its 
name from those gate strips. Other connections in the circuit are made 
using horizontal metal strips. 

An automatic method for the gate matrix style was first proposed in 
[69]. Since then many algorithmic approaches to this problem have 
been published [70, 13, 19). 

Gate matrix layout requires transistors with the same gate net to be on 
the same polysilicon strip. This requirement results in complex 
optimization problems and hampers efficient compaction. By dropping 
this requirement we arrive at a more elegant and symmetrical 
optimization problem: the two dimensional folding problem. 

Llke the gate matrix style, this new layout style can handle any circuit 
of transistors, while the transistor sizes may vary. Each transistor can 
have different electrical parameters. Logic with pass transistors or 
special buffers and latches can easily be handled. Even non-critica! 
analog circuits can be laid out, hut there is no control over the 
parasitics. 

In addition, it is more area efficient than the gate matrix style and it 
can control the shape and pin positions accurately. Because the 
primitive circuits are transistors in this case we called the new style 
transistor matrix layout [82]. 
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The horizontal strips represent the transistors and the vertical strips 
represent the nets. The nets are implemented in metal, while the 
transistors use diffusion and polysilicon. The folding algorithm assigns 
the nets to columns and the transistors to rows, such that they do not 
overlap. 

nets 

........ __ "_ - -- --rowl 

Figure 6.2. Transistor matrix layout: The transistors are assigned to 
rows, while the nets are assigned to columns. The net order 
determines the transistor configuration. 

The order of the pins of a transistor is determined by the folding. 
There are no constraints on the order of the nets for the folding 
algorithm. Each transistor bas three pins, the gate, the source and the 
drain. When the gate is the middle pin, a different transistor model is 
needed then when it is the left or right pin (see figure 6.2). Sometimes 
the gate is connected directly to the source or the drain. In that case, 
the transistor model has only two pins. 

Since the folding algorithm assumes that all transistors are equally 
high, it is desirable that the transistors have a small and almost 
uniform height. The height of the transistors should preferably be close 
to the width of a horizontal polysilicon or diffusion wire. 

6.3 Parameterized transistors 

As a rule, in top-down design, design decisions are postponed as much 
as possible. In optimizing the design we always assumed that the sub 
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circuits can be designed according to the specification determined by 
the global structure. In this way the global structure could be optimized 
easily, without taking all kinds of additional constraints into account. 
The burden of actually realizing the global specifications is moved down 
the hierarchy. 

Finally, when the primitive circuits are designed, it is no longer 
possible to move the design problems down. The primitive circuits must 
meet their parameters without decomposition. It is however, much 
easier to design a single transistor according to a variety of parameters. 
Since there is no decomposition, there are no sub-circuits that need to 
be ordered. The transistor layouts are so simple that compaction is not 
necessary. The coordinates of the rectangles of the layout can be 
calculated as simple arithmetic expressions of the parameters. 

lmi.,,,,,,F,,: • 
• &''''''''"ï • 

-11;;!11J.;•rnFO!l!ffi"W;!<'. 

Figure 6.3. Some examples of automatically generated nMOS 
transistors. The transistors are designed according to 
geometrical, electrical and design rule parameters. 

We can distinguish the following classes of parameters for the 
transistors: electrical, geometrical and design rule parameters. The 
electrical rules deal with the function and speed of the circuit. For an 
nMOS transistor they are the width and length of the transistor, which 
determine the drain current factor and the gate capacitance, and an 
optional diffusion implant, which controls the threshold voltage VT. 

The geometrical parameters are in the first place the positions of the 
pins of the transistor. It is essential for the folding that each pin can be 
assigned to any position. Furthermore, various shapes are possible with 
the same pin positions. The active area can be oriented horizontally or 
vertically, or the transistor can be mirrored in the X axis, to decrease 
the occupied area. 
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Finally, the design rule parameters are the minimum feature sizes of 
the transistor. As no compaction is involved in the generation of the 
layout of a single transistor, these parameters are handled easily. 

Figure 6.4. In this figure four methods of compaction are compared. 
Grid based compaction with a fixed grid (top left) and with 
a variable grid (top right) is not very efficient. Therefore the 
transistors are individually spaced (bottom left) and pins of 
the same layer are allowed to overlap (bottom right). 

For the compaction of the matrix, the transistors are modeled by the 
area they occupy in the polysilicon layer and the diffusion layer. This 
area is represented by a polygon. The minimum separation rule 
between the transistors is implemented by adding a margin of half this 
design rule on all sides. 
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Pins of different transistors are allowed to overlap, if they are 
connected to the same net and use the same layer. Therefore the 
diffusion pins only occupy area in the polysilicon contour, and 
polysilicon pins only occupy area in the diffusion contour. 

The compaction works from the bottom to the top while it places the 
transistors one by one. It uses a grid for the nets, hut the transistors 
are spaced individually (see figure 6.4). 

During the compaction two contours, one for polysilicon and one for 
diffusion, are maintained to indicate the occupied area. The shape of 
the transistors can be designed according to the shape of the contours. 
Of course the selections of the transistors are mutually dependent, hut 
no decisions are traced back. 

6.4 Track assignment 

In § 5.2 we mentioned that track assignment can be done optimally 
with the left edge algorithm. This algorithm ensures that the upper 
bound µ is realized. The left edge algorithm places two strips with an 
overlapping span cr on different tracks (equation 5.11). 

Since the left edge algorithm uses the span a to determine overlap 
between strips, the assignment in a group has no consequences for 
orthogonal groups. A box is a part of the grid that belongs to two 
orthogonal groups (see figure 5.2). Within a box no tracks are shared. 
Notice that it is now possible to exchange the tracks within a group 
without creating any overlaps between orthogonal strips. This freedom 
can be used to further optimize the net assignment with respect to 
another criterion. 

Often the transistors in the matrix have either a long or a wide active 
area. These sizes can be much larger then the width of the wires. 
Since the height of the transistors must be approximately equal, a 
horizontal orientation of the active area is desired. When the pins of 
the transistor are sufficiently far apart, enough space is available to 
allow very wide or very long transistors. However, when the pins are 
close together, a vertical orientation is necessary. This may lead to 
large empty areas in the matrix. 

The columns can be reordered to create sufficient space between the 
pins. When the columns within a group are reordered, this does not 
cause overlaps between transistors in the same row. The objective is to 
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find a column sequence that will allow a horizontal orientation for 
many transistors. 

Figure 6.5. The influence of exchanging two columns: the transistor to 
the left does not have enough space to lie flat. To the right, 
enough space between the pins is created for a flat 
implementation by exchanging two nets. 

Let for each transistor t the nets connected to gate, drain and source be 
{g1,d1,st}=v(t) and let w(t),l(t) denote the width and length of t. The 
number of columns needed by transistor t is 

. max(w(t)+c1 ,l(t)+c2) 
S(t)=ent1er( + 1 ). (6.3) 

p 

p is the metal pitch and C1 and c2 are constants. An assignment that 
allows sufficient room for all transistors satisfies: 

(6.4) 

Such a perfect assignment may not always be possible. In that case a 
solution is preferred that leads to a small number of violations. In a 
vertical orientation the size of the transistor determines the height of 
the row. A violation bas a larger influence when the size of the 
transistor is larger. We therefore optimize the sum of sizes of the 
transistors that cannot be placed horizontally: 

l: S(t) 
{t 1S(I)>1~(s1)~(di)1} 

(6.5) 

Then columns are reordered to allow more horizontal transistors. This 
problem can be solved exactly using a dynamic programming 
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technique. lts complexity grows exponentially with maxi µ(Ni), so it is 
only efficient when the partitions are small. To avoid this exponential 
growth, a smaller subset of partial solutions could be retained as a 
heuristic. 

1 

1 1 

Figure 6.6. Reassignment of transistors to rows. Because the terminals 
that use the same layer are allowed to overlap, one track 
less is needed. 

Another optimization is possible by reassigning the transistors of a 
group to rows. If the pins of two transistors connect to the same and if 
they use the same layer, they are allowed to overlap. This means that 
the lower bound 'Y as defined in the previous section is not always 
completely valid for estimating the width of a partition of transistors. 

The left edge algorithm that assigns the transistors to rows uses cr, not 
ä to determine whether transistors overlap. It looks at what colu.mns 
are spanned by the transistors, not just at what groups are spanned. 
The algorithm needs to know the exact order of the columns. Therefore 
the transistor to row reassignment must be done after the column 
ordering. 

Since a more accurate model is used, which also allows the pins of the 
transistors to overlap, the left edge algorithm may need less tracks 
then µ. It may even need less tracks then y. Of course it cannot need 
less then ö tracks. 
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6.5 Nor matrix layout 

The second layout style bas nor gates as its primitive circuits. The nor 
gates form the horizontal strips, and the nets are the vertical strips. 
The horizontal strip of a gate and the vertical strip of its output signal 
are connected pairwise forming a conducting cross. In figure 6. 7 the 
schematic diagram of such a nor gate is given. 

Figure 6.7. Cross of conducting strips representing the nor gate and its 
output net. 

The nets are connected to the drains of the transistors; the sources are 
always connected to ground. This way the transistors function as the 
pull-down devices of the nor gates. The output is formed by a via, 
which connects the horizontal net to the vertical gate thus forming a 
conducting cross carrying the output net of the nor. A depletion 
transistor is connected to the gate as a pull-up. The pull-ups of several 
nors are placed in rows to allow them to be connected by a power net. 

This layout style has a number of features, which make efficient folding 
possible. The most important one is that the sequence of the transistors 
and the output is irrelevant. This way the folding algorithm is 
completely free to determine the most optima! sequence. Secondly, the 
devices and vias that are located at the intersections of the gates and 
nets, have sizes that are comparable to the width of the wires. An 
important property of nors is that all pull-down transistors can have 
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the same size, when the pull-ups have the same size. The size of the 
pull-downs does not neeél. to depend on the number of inputs. To make 
two dimensional folding possible multiple rows of pull-up devices are 
introduced. 

Figure 6.8. Full adder schematic circuit. The nor matrix layout style 
can handle any circuit that is described with multilevel 
nor's. 

In figure 6.9 the schematic of a small example circuit is given. The 
circuit is a full adder which implements the following boolean 
equations: 

D=AB+AC+BC 
E=ABC+D(A+B+C) 

(6.6) 
(6.7) 

This 5 level implementation is not necessarily the best, hut it 
îllustrates the capabilities of the technique. Since a PLA realization 
needs only 3 levels, this is always a possible solution. The multilevel 
implementation however needs 7 transistors less then a 3 level 
implementation. 
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Figure 6.9. Mask layout of a full adder 

The layout ofthis circuit can be seen in figure 6.9. The implementation 
presented here is suitable for a simple nMOS process with one layer of 
metal. The nets are realized in polysilicon and the nor gates in metal 
and diffusion. For the ground extra vertical diffusion strips are 
introduced everywhere. They do not take part in the folding process. 
The power and ground are distributed by horizontal metal rails. Notice 
that multiple rows of pull-ups have been placed, which allows several 
gates to share the same column. 

A simple grid based compaction algorithm is applied before the masks 
are generated. When the arrays become larger, however, this 
compaction becomes less effective. The probability that somewhere on a 
grid line the maximum design rule must be applied increases with the 
size of the array. 

6.6 The power and ground rails 

If a single net were used for the ground or power, two-dimensional 
folding would become almost impossible. All gates would have to 
connect to the power and would therefore need a separate row. 
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Therefore we do not consider the power and ground during the folding. 
The power and ground nets are eliminated before the folding. 

The power and ground rails are inserted in the array after the folding. 
In contrast to all other nets, the power and ground in a nor-matrix use 
rows, so they can be implemented in metal. The power and ground rail 
are placed in pairs, and always occupy a full row in the array. 

The pull-up devices are placed on the intersection ofits net and a power 
rail. The position ofthé power rails is therefore determined by the legal 
positions of the pull-ups. The ground rail is placed next to the power 
rail, so the pull-up can use the area underneath both rails. The first 
row of pull-ups must always be to the top of the array to connect the 
ground diffusions (see figure 6.9). 

The problem of placing the power rails is equivalent to covering an 
interval graph with a minimum number of cliques. This problem can 
be solved efficiently [27]. 

I(N,A) is a graph in which Nis the set of nets that must be connected to 
a power rail. Two nodes are connected by an edge aeA when the nets 
overlap i.e. if cr(n1 )(i(J(n2):#0. l is an interval graph. The minimum 
number of cliques can be determined by a linear scan over the 
intervals. A pair of rails is placed whenever the placement of a pull-up 
of some gate can no longer be delayed. 

Subsequently the pull-ups are assigned to valid positions on the power 
rails. Valid positions are the intersections of the power rails and the 
nets. For each net that needs a pull-up there is at least one valid 
position. This is guaranteed by the placement algorithm of the power 
rails. 

The pull-up devices are wider than pull-downs and vias. Therefore two 
pull-ups are not desired to be adjacent between two ground diffusion 
strips. When two pull-ups are adjacent, more space is needed between 
the ground diffusion strips. Because grid compaction is used, this will 
affect the distance between the columns over the entire length. 

The columns can be considered per pair, since the columns that share a 
ground diffusion strip are independent. Each pull-up has a number of 
the power rails on which it can be placed. This set of power rails is 
always consecutive. This problem can be formulated as a scheduling 
problem of tasks of unit length on two processors. This problem can be 
solved in polynomial time [251. The algorithm can place the pull-ups in 
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one scan over the power rails. It always places the pull-up with the 
closest 'deadline'. 

6.7 A comparison of automatic layout styles 

A number of experiments were done to compare the new layout styles 
to other automatic layout styles. All programs design for the same 
nMOS process, with the same design rules. We compared the results to 
the results of a conventional gate matrix generator and a standard cell 
place and route package. The standard cells were automatically 
generated linear transistor arrays. Some of the net lists were extracted 
from layouts produced by the standard eell package. The area of the 
minimum enclosing box is shown in the table. Compared with the 
standard cell package the area was 34%-63% smaller. The comparison 
with a gate matrix implementation showed an 27%-56% improvement. 

Inspecting the layouts shows that the new transistor matrix layouts 
contain no empty areas. The standard cell program suffers from empty 
area in channels and of unbalanced columns. Also, the positions of the 
transistors are not matched as precisely as in the folding. The gate 
matrix suffers from its grid based compaction. Both old methods 
exhibit wire congestion in the center of the layout that pushes layout 
elements apart over the entire width or length of the circuit. Some of 
these problems may be fixed, hut even then it seems unlikely that the 
results can be matched. 

Table 6.1. comparison oflayout areas 

example area of smallest enclosing box 
name nrof xtor nor gate standard PLA 

xtors matrix matrix matrix cell 
hel84 12 0.043 - 0.072 - -
data 24 0.088 - 0.166 - -
adc 42 0.175 0.114 0.411 0.472 0.277 
mp5 46 0.176 0.090 0.436 0.465 0.386 
four 68 0.38 0.208 0.52 0.58 0.425 
cnt4 96 0.57 - 1.35 - -
five 177 1.33 0.595 2.99 2.29 0.81 
six 332 3.85 - - 3.95 1.58 

Both new styles are nMOS styles. Folding seems to suit nMOS well 
because the transistors are not much wider then the wires. they can 
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easily be intermixed with the wiring and each other. The circuits must 
have approxirnately the same width because they share a row. The 
more different the devices are from the wiring, the more efficient the 
separation of the device area and the routing area may be. 



7. Shape control and prediction 

As we stated before, the placement of arbitrary ftxed shape rectangular 
circuits is very difficult. To alleviate this problem top-down floor 
planning does not use a fixed shape for a circuit. It assumes that a 
circuit can have any aspect ratio within certain constraints. The 
shapes of the circuits can jointly be optimized after the floor plan 
topology has been determined. 

To make top-down floor planning feasible, it is necessary that the 
shapes of the circuits are controlled. To design a floor plan, the floor 
planner needs to know a prediction for the area of the circuit and the 
constraints on the shape before the circuit is designed. 

Most circuit generators described in the literature have no or very 
limited possibilities of controlling the shape. The few circuit generators 
that have this capability mainly rely on a placement and routing [48]. 
Using placement and routing it is easy to change the shape of a circuit. 
In pluri cell circuits, automatically generated cells are placed in 
columns. The shape can be controlled by choosing the number of 
columns. 

Accurate control of the shape is difficult if the circuit contains only a 
few primitive circuits. The control of the shape is ftner when the circuit 
primitives are smaller. Folding allows the use of smaller circuit 
primitives, such as transistors. For smaller circuits shape control by 
folding is therefore more suitable. 
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Flgure 7.1. Two standard cell macros for the same function. By 
changing the number of columns, the shape of the macro 
can be controlled. Because the number columns is small, 
the control is rather crude. 

In this chapter we will look at methods of shape control and prediction 
in two-dimensional folding. First, we will consider the control of the 
shape of the circuit. The orientation of the cutting line determines 
whether the rows or the columns are optimized. The direction of the 
cutting line can be used to steer the folding process to the desired. 
aspect ratio. 

The aspect ratio cannot be controlled equally well for all circuits. Long 
strips with many connections may limit the aspect ratio. In the second 
subsection we will consider partitioning these strips with a . mincut 
algorithm. 

Finally, to be able to design a floor plan, a prediction must be made for 
the shape ftmction of the circuit. A prediction of the area can be made 
from the number of strips and their connections. Bounds on the aspect 
ratio are also derived. 
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7 .1 Shape control 

The folding algorithm assigns horizontal and vertical strips to rows 
and columns (see chapter 5). Two strips are folded when they are 
assigned to the same row or column. Using two-dimensional folding 
the number of rows and columns can be traded against each other. 
When more vertical strips are folded, fewer columns are needed. As a 
consequence, more horizontal strips overlap. They will need more rows. 
The number of rows can be traded against the number of columns 
accurately. 

The folding algorithm repetatively partitions groups of strips. The 
partitioning algorithm tries to optimize a score function e. A simple 
approach is to put the aspect ratio criterion into the score function of 
the partitioning algorithm. A suitable score function is 

w e = max(w,ph).max(h,-) 
p 

(7.1) 

In this formula w,h are estimates for the width and the height of the 
circuit and p represents the desired aspect ratio: the desired value of 
w/h. The formula represents the area of the smallest enclosing 
rectangle that bas the desired aspect ratio p. 

This seems to provide a good control mechanism for both area and 
shape optimization. It is not sufficient, however, because the cutting 
line orientation determines wether the width or the height can be 
optimized. When a horizontal group is partitioned, the height of the 
circuit cannot be reduced. Only the width of the circuit can be reduced. 

To understand this we have to look at the consequences of cutting line 
decisions för the width and height of the array. Partitioning a group 
influences the width of the group being partitioned as well as the width 
of all orthogonal groups. The width of the group is the number of 
tracks it needs. It can be estimated with the upper bound µ and the 
lower bounds o and 'Y· 

Let Hk be the group that is partitioned into the groups H'k and H'k+1 · 
Partitioning this group can only make it wider: a bound for the new 
sub-groups are together never smaller then the same bound for the 
original group. 
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µ(H'k)+µ(H'k+1) ~ µ(Hk) 
3(H'k)+ó(H'k+1) ~ 3(Hk) 
y(H'k)+y(H'k+1) ~ y(Hk) 
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(7.2) 
(7.3) 
(7.4) 

The bounds hecomë larger when the strips are not distrihuted evenly 
over the entire length of the new groups. (See figure 7.2). Using the left 
edge algorithm, and assigning the tracks to the new groups would lead 
to an even distribution. This way it is always possible to make a 
partition such that the upper bound does not increase and equality 
holds in equation (7.2). In short, partitioning a group cannot decrease 
its height, hut the upper bound µ does not need to increase. 

----------cut 

Figure 7.2. An uneven distribution of the strips over the two groups 
increases the height estimate of the group. The strips could 
be placed in 4 rows, hut with this partition 6 rows are 
needed. 

In the other direction, the bounds for the groups V 1 • • • V t are also 
influenced by the partition. In this direction the gain is made because 
partitioning can decrease µ. To decrease µ and to keep a down, few 
strips must cross the cutting line. Notice that y cannot be infiuenced in 
this direction. 

µ'(Vj) s; µ(V1) 
ö'(V1) ~ ö(V1) 
i(V1) = y(V1) 

(7.5) 
(7.6) 
(7.7) 

We conclude that a horizontal cutting line tends to make the cell 
narrower and a vertical cutting line makes the cell lower. When the 
aspect ratio requires that the height be reduced, a vertical group must 
be partitioned. The control of the aspect ratio is therefore done by 
selecting the cutting line orientation. The orientation is chosen such 
that the estimated aspect ratio is corrected towards the desired aspect 
ratio. This is an effective control mechanism, which is also accurate 
because the repeated cuts allow for corrections that gradually become 
smaller. 
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Flgure 7.3. The height of a group can be reduced by a vertical cut. The 
density µ of the group is reduced by finding a partitioning 
that cuts few nets. This also optimizes the lower bound ö. 
The lower bound y cannot be in:fluenced. 

The shape control algorithm estimates the aspect ratio, and determines 
the orientation of the next cutting line. It selects a group of this 
orientation and tries to partition it. If it is better, that is, if e has 
become smaller, it is accepted. Ifit isn't, it is locked to prevent repeated 
seleetion. The algorithm ends if all groups are locked, that is, no group 
could be partitioned giving a better result. 

When an improvement is found all groups are unlocked again because 
the partitioning of one group can in:fluence the partitioning of all other 
groups. Ifthe algorithm fails to improve the aspect ratio, it will try the 
other orientation. This will have a negative effect on the aspect ratio, 
hut may further reduce the area. 

Algorlthm 7.1 Shape control 

1. Determine a prediction for the aspect ratio W I H. Unlock all groups. 

2. lf W/H < p then select a horizontal orientation else select a vertical 
orientation. 

3. Select an unlocked group of this orientation. Partition this group. 

4. Is the new state better than the previous state? lf yes then go to 1. 

5. Eise merge the partition and loek this group. 

6. Are there still unlocked groups of this orientation? lf yes then 
go to 3. 

7. Eise select the other orientation. Are there still unlocked groups of 
this orientation? lf yes then go to 3. 
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Figure 7.4. This graph shows the convergence of the aspect ratio to the 
desired value for two cases. The lower curve accurately 
approaches the desired ratio. The upper curve bends down 
because folding is not possible any more in the selected 
orientation. The aspect ratio gets worse, hut the area 
improves. 

Experiments have been done to verify that the shape can be controlled 
accurately. As an example, a nor matrix circuit was laid out with 10 
different aspect ratios. In figure 7 .5 five of the results are shown. The 
numbers indicate the desired aspect ratio. The arrays tend to be about 
20% too high, which is due to different row and column pitches, and the 
assignment of power and ground after the földing. Since this factor is 
fairly constant it is easily compensated. 

In figure 7.5 the result ofthis experiment is plotted in a graph. We can 
see that there is an almost linear relation between the desired aspect 
ratio and the actually obtained aspect ratio. Within a wide range, the 
aspect ratio can be controlled accurately. At the same time the area is 
almost independent of the shape. This is what can be expected of a 
completely flexible circuit. 
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Figure 7.5. Five times the same nor-matrix circuit, but with different 

aspect ratios. 
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Figure 7.6. Control over the aspect ratio. The relation between the 
desired and the resulting aspect ratio (drawn) is almost 
linear. Meanwhile, the area (dashed) remains almost 
constant. 

7.2 Shape function predlction 

In top-down design, the ffoor plan is made before the circuits are 
generated. The :f:loor planner needs however some information about 
the shape of the circuits. As is described in chapter 3 information about 
the shape of the circuit is represented as a positive non-decreasing 
function. A prediction for this shape function is needed. Methods for the 
prediction of shape functions have been described in [78, 9]. 

A completely flexible circuit has a constant area and an unconstrained 
aspect ratio. As figure 7.6 shows, circuits that use földing behave that 
way within a large range of the aspect ratio. In this range their shape 
function can be approximated by a hyperbola. 

Since the aspect ratio is not completely free, bounds on the aspect ratio 
are needed. To predict the possible shapes of the circuits, we have to 
predict the area of the circuit, and the limits of the aspect ratio. 

The area of the circuit can be predicted from the size of the input. In 
particular we used #H, #V and #E as characteristic values. The area of 
the final array can be predicted as: 

a=(#V.#H)0.75 (7.8) 

This relation is quite accurate over a number of examples as is shown 
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Figure 7.7. The area of the final array as a predicted from the number 
ofvertical and horizontal strips #V.#H. 

in figure 7.7. 

In figure 7.8 the relation a=:a#E2+b#E is fitted to measured data. 
Clearly, this is also a very good estimation mechanism. Perhaps it is 
possible to make a more accurate prediction using both numbers, but to 
do that it is necessary to do more experiments with a wider variety of 
circuits, because the deviations from the predicted values now seem 
hardly significant. 

1e+07 

resulting 
area 

1e+06 

Figure 7.8. The area of the layout as predicted from the number of 
incidences #E. 
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It is clear that the circuit cannot be deformed to every aspect ratio, so 
there are bounds on the aspect ratio. To inform the floor planner, we 
have to make a prediction of these bounds. These predictions can be 
made using the bounds µ, ö and y. They can be computed very simply 
for the unpartitioned groups. 

The upper bound µ is equal to the number of strips in a group. At the 
extreme, all horizontal strips are assigned to a separate column. 
Clearly, the array cannot become higher than this. 

The lower bound y is the number of connections on a strip. Each of 
these orthogonal strips must be placed on a separate row or column. 
This constitutes a lower bound on this dimension of the array. The 
lower bound ö translates to the number of pins on the sides of the 
array. 

If we assume that the area is known, and independent of the aspect 
ratio, we can compute from each lower bound an upper bound on the 
other dimension. For instance, let w?:y(V) then hSalpha/y(V). This way 
we can compute 3 upper bounds and 3 lower bounds for each 
dimension, from which we can compute bounds for the aspect ratio. 
The bounds computed this way are not sharp, hut can be used as an 
indication. 

7.3 Partitioning before foldlng 

Unfortunately, the shape cannot always be controlled as accurately as 
figure 7.6 suggests. Nor-matrix layouts are usually quite flexible, hut 
transistor matrix layouts are often hard to control. The reason for this 
is that transistor net lists often contain nets that are connected to 
many transistors. Power and ground nets and nets like the clock and 
reset signal, must often be present everywhere. This means that 
initially there is a very high lower bound y(H) for the height of the 
matrix. For larger circuits it is often not even possible to make it 
square. 

To alleviate this problem, it is necessary to partition the nets into 
several vertical strips. The vertical strips are connected by introducing 
a horizontal connection strip. 

To decide which connections should go to which strip is not trivia!: a 
good decision needs to know the global structure of the net list. 
Preferably, each vertical strip connects to horizontal strips that will be 
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Figure 7.9. The shape function is a hyperbola within the ftexible range. 
The limits of this range are in this case determined by the 
µ and y of the horizontal strips. The bounds are 'mirrored' 
in the hyperbola. 

close together in the final layout. Therefore, the choice is made globally 
by partitioning the horizontal strips into groups. Within each group a 
net is represented by a vertical strip. Nets that occur in several groups, 
and that have several vertical strips, are connected by new horizontal 
connection strips. These connection strips are the only elements 
between the groups. 

The nets are partitioned with the fast mincut heuristic of [22]. Given is 
the bipartite folding graph J{V,H,E). The nodes Vare partitioned into 
two sets V1,V2. The set must be about the same size: 
l#V1--#V2l<V3(#V1+#V2). Under this constraint the heuristic 
minimizes the number of connections between the two sets: 

(7.9) 

The algorithm is repeated several times, until the groups are small 
enough. When a wide array is desired, more cuts must be made to be 
able to get the desired aspect ratio. With each cut we introduce a 
number of extra horizontal strips. Partitioning the matrix into many 
groups may therefore lead to a larger area. It also may impair the 
possibility of creating very high circuits. It is therefore important to 
use a suitable number of cuts. 
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The optima! number of groups depends on the size of the matrix and 
the desired aspect ratio. As a heuristic we adopted the rule that the 
number of columns of a group aft.er the folding must be constant. 
Empirically we determined that a group must be about C=15 columns 
wide aft.er the folding. The number of groups is entier(w/c). Using 
w={fXl and equation (7 .8), the optimal number of groups is computed 
with 
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Figure 7.10. The obtained aspect ratio versus the desired aspect ratio 
for two versions of the same circuit. The unpartitioned 
circuit (drawn) is not very ftexible. The other circuit 
(dashed) is partitioned into 8 groups before the folding. It 
has a much wider aspect ratio range. 

Figure 7.10 shows the inftuence of partitioning on the ftexibility of a 
circuit. For the unpartitioned circuit the aspect ratio could be varied 
from 0.27 to 0. 7 4. When the same circuit was partitioned in to 8 groups 
before the folding, the aspect ratio could be varied from 0.39 to 2.96. 



8. Discussion 

This chapter gives a more global view of the design problem and the 
proposed methods. First we will look back to the beginning of the book. 
At the beginning of the book we outlined a design philosophy. We will 
reconsider the principles outlined there, and evaluate them in the 
concrete terms of the algorithms that have been presented. Then we 
will look at how these algorithms can be put together to form a design 
package. Finally we will indicate a number of problems that have not 
been solved, and that require further research. 

8.1 The predictor-adaptor paradigm 

In this book the predictor-adaptor paradigm bas been applied to a 
number of different problems. It has been applied to the fioor planning 
problem, to the shape optimization problem, to the steiner tree 
problem, the folding problem and others. 

In some cases it led to efficient algorithms. The best example of this is 
the shape optimization algorithms, which is both polynomial and 
optimal. In other cases it led to a decomposition of the problem into 
stages that gradually refine the design by taking more decisions. In the· 
case of fioor planning this is obvious: the layout problem is decomposed 
into the steps of fioor planning - circuit generation - routing. The fioor 
planning process itself goes through the steps of designing a point 
configuration and slicing, then channel assignment and shape 
optimization. 
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Sometimes it leads to a decomposition of the problem into similar, hut 
smaller problems. In the slicing the solution space could be covered by 
combining the shape functions of smaller problems to shape functions 
of larger problems. Algorithms that do this are often referred to as 
'dynamic programming' [3]. In the case of folding it lead to a 
decomposition of the partitioning problem into a smaller progressively 
smaller partitioning problems. The track assignment was gradually 
refined until the exact assignment was known. Tackling a problem by 
decomposing it into similar, hut smaller sub-problems is known as 
'divide and conquer' [4]. 

Since the design of the circuits is done according to parameters, this 
leads to some design criteria for the algorithms. For instance, the 
földing has to be able to take information about the optimal shape and 
pin positions into account. 

The advantage of custom layout over gate-array is that there is more 
freedom to design the circuits. A circuit generator for custom layout 
should be able to exploit this freedom by taking many layout 
parameters into account. The transistor matrix layout style provides 
the best basis for such a flexible circuit generator that can take many 
important parameters into account. 

The transistor matrix layout style shares with gate matrix layout the 
property that it can design a layout for any network of transistors. The 
transistors are adaptable in width and length. In many designs this is 
important because a lot of circuitry depends on electrical properties. 
Examples of such circuits are flip-flops, dynamic circuits, pass 
transistor logic, comparators, buffers, schmitt-triggers, clock drivers, 
precharged circuits, tri-state buffers and mueller C-elements. They can 
only be described in general terms as electronic networks. It is often 
important that the electric parameters of these circuits can be 
controlled. For instance the delay and fan-out of a buffer are important. 

The advantages of transistor matrix layout over gate-matrix layout are 
clear: the layout is considerably smaller and the aspect ratio and pin 
positions of the layout can be controlled accurately. Esthetically it is 
pleasing to see that the transistor matrix layout style is entirely 
consistent with the top-down design philosophy. 

We showed already that transistor matrix layout can handle 
parameters like shape and pin positions. Also the transistors have 
parameters for the width and the height and possibly the threshold 
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voltage VT. 

Adaptation to the design rule parameters is realized by the compaction. 
We proposed different compaction algorithms for different styles. The 
one-dimensional compaction of the channels and of the transistor 
matrix layout is done by contour compaction. The weinberger array was 
compacted using grid based compaction. 

Design rules can be very diverse. This makes it difficult to design 
compaction algorithms which can take every type of design rule into 
account. Writing a compaction routine is not easy. The principles are 
often simple, hut if there is no simple and genera! framework to 
formulate the design rules, it will be sensitive to bugs. 

A single genera! grid based compaction has been proposed for all cell 
generators [58]. Grid based compaction is usually the easiest to 
implement. However in both the channel routing and the transistor 
matrix, the layout method depends heavily on the compaction scheme. 
The way they are implemented now would make grid based compaction 
inefficient. 

In :floor planning decisions are made on the basis of predictions of the 
shape functions. The quality of the decisions depends entirely on the 
quality of the predictions. It is essential that these predictions are 
accurate, without a good predictor :floor planning is not feasible. 

The shape functions can be predicted by making a number of trial 
designs. Trial designs have the drawback that it is almost impossible 
to make a design for all different aspect ratios. When several 
parameters will influence each other a lot, the problem of making a 
prediction becomes an even larger problem. Predictions can also be 
made from some key parameters such as the number of transistors or 
the number of nets in the design. Luckily, the evidence so far suggests 
that good predictions can be made, at least for the layout methods that 
we studied. It also seems that the pin positions are oflittle influence to 
the predicted sizes of the circuits. 

A circuit in the hierarchy provides simplification by replacing the 
complex internal structure of the circuit by a simpler model. In the 
building block layout, all circuit parameters are captured by a single 
model. The building block layout method assumes a complete isolation 
of the blocks for all parameters. This was necessary to be able to 
handle any circuit in any layout style in a single genera! method. 
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Such a complete isolation of the circuits may not always be a good 
solution. lt is not always possible to find a good model for every 
parameter of the circuit. Also a different hierarchy may be more 
suitable for a different parameter. If complete isolation is unnecessary 
it is usually undesirahle. 

Slicing structures are an example of a hierarchy in which the slices 
have a model for some properties hut are transparent in other 
properties. The hierarchy is present, but it is only used where it is 
advantageous. We used the slicing hierarchy only for the parameters 
for which it is advantageous: the dimensions of the slices. The 
dimensions of a slice can be modeled by only two numbers. They can 
easily be derived from the dimensions of the sub-slices and there 
relative positions. For the pin positions it would be more difficult to 
find a model that can easily be derived from the component slices and 
their relations. Therefore we did not use the slicing hierarchy in the 
channel assignment. 

Another example is the hierarchy of groups in the folding. The 
hierarchy is gradually refined by partitioning groups into smaller 
groups. During the partitioning the groups are modeled by the 
(partial) evaluation of the parameters µ, 6 and y. Since this hierarchy 
serves no other purpose and since the parameters can be derived 
directly from the groups the hierarchy is not retained. 

The floor planning problem was originally introduced in the layout of 
large row based designs. The problem was that a few large blocks, like 
memories or PLA's had to be embedded among a large number of small 
standard cells. There are no placement algorithms that can handle this 
problem gracefully. Therefore the placement can be done in two steps. 
First a floor planning phase and then a detailed placement phase. In 
the floor planning blocks that represent the memories and PLAs are 
placed together with blocks which represent groups of functionally 
related standard cells. These last blocks could be fiexible since the 
number of rows of standard cells was not fixed. 

The advantage of building block layout is that the inside of the block 
can be entirely bidden. These cells, mostly memories and register files, 
are often much more area efficient because they use a special array 
structure. Smaller circuits, like registers or PLAs can be implemented 
more efficiently in a general layout method. Their internal efficiency 
due to a special structure does not measure up to the inefficiency of the 
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external wiring needed to connect it with the other circuits. The reason 
for using building block layout essentially depends on the need to 
include special structures on the chip. 

The design of the interconnection structure is the most important 
problem in layout. AB the scale of the integration grows, the wiring 
becomes the dominating factor. Therefore the wiring should be 
designed as early as possible. It is however not clear how the wiring 
can be designed before the placement is known. The objective of the 
placement is however to create an efficient wiring pattern. Several 
approaches have tried to combine placement and wiring for this reason 
[7,11]. 

Designing a wiring pattem first, and then placing the circuits 
accordingly, is called wire planning. In [5] a wire planning approach is 
described for stackable designs such as the data path of a micro 
processor. Ifthere area sufficient number of routing layers the circuits 
can be placed under the wiring pattern. Since most of the chip area is 
wiring space we may assume that there is sufficient space underneath 
the wires to accommodate the circuits. 

Wires should preferably be as straight as possible. Efficient regular 
patterns used in VLSI have straight wires only. The rationale is that a 
straight wire can connect things that are far apart more efficiently. lt 
has, with the same wire length, a longer reach then a wire which has 
several branches. 

The layout styles based on folding have these properties. The wires are 
required to be straight. The track assignment can be seen as a wiring 
plan. The circuits are placed undemeath the wires and connected to the 
right wires after the folding. The circuits are designed with pin 
positions that match the environment in which they are used. 

Figure 8.1. (right) A section of a draft layout for the bit-blitter chip 
that has been designed using the described algorithms. The 
design is done in nMOS. The two large regular arrays are 
barrel shifters that have been implemented using the nor­
matrix style. The small modules in the center are registers. 
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8.2 Architecture of a design package 

To make the algorithms available to a designer, they must form a 
package. Such a package consists ofvarious programs that can be used 
to design an integrated circuit. It could consist of various programs for 
design synthesis such as logic synthesis and layout design, and various 
programs for analysis, such as design rule checking and simulation. 
The programs in the package can work together by exchanging design 
data. It is important that the package is consistent in the data 
exchange and in the tasks of the programs [6]. First we will look at the 
requirements for consistency in tasks, then we will look at the 
exchange of design data. 

The task of a layout design package is to design a layout. The user 
must be able to have confidence in the correctness of the design. 
Confidence can be obtained in two ways: by analysis and by synthesis. 
Compliance with the design rules can be checked by a design rule 
checker. That the design does what it was intended to do can be 
checked by extraction of the net list and simulation of the net list. 
Programs to do this were the basis of the ICD package. 

Another way of guaranteeing correctness is to use synthesis programs 
that produce correct designs. Such a synthesis program produces a 
layout from a higher level specification. When the whole design is done 
by such synthesis algorithms, the end result will be correct by 
construction. It is still necessary however to check the correctness of 
the higher level specification. To do this the designer needs a 
simulation program for this higher level specification. The tasks of a 
design package depend on each other: different synthesis programs 
require different analysis programs. 

When custom layout is preferred over gate-array layout techniques it is 
usually for reasons of efficiency or for the need for analog circuitry on 
the chip. Often it is only possible to achieve the required function, 
circuit density or speed by using specialized design methods for several 
circuits. It may for instance be necessary to incorporate on the chip 
circuits like AD and DA converters, dynamic RAMs, phase locked loops, 
CCD-memories etc. 

Such specialized circuits are designed by specialized methods, which 
are often not general enough to be automated. We cannot expect an 
automatic layout package to have an answer to every layout problem of 
these specialized circuits. Since the intemal structure of these circuits 
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is very different, it is necessary to use a layout technique för the entire 
chip that hides the intemal structure of the circuits, and which can 
work with the circuits in terms of a model: the shape and pin positions. 
This is what the building block method was invented for. 

A custom layout package should be open to differently designed 
circuits. The package should allow specially designed circuits or special 
circuit generators to be incorporated in the package. It should also 
allow easy interfacing to other synthesis and analysis programs. A 
package which allows this is called an open package. 

A drawback of such an open package is that there is a large variety of 
data that is needed by the layout design generators. The package may 
accept data in the form of a net list, a piece of layout, random logic, 
trade relation predictions, design rules, timing information etc. A 
functional description of the package in terms input and output is then 
very difficult. Also it is more difficult to guarantee correctness by 
construction or to check that the input of the package is correct. 

A complete chip design package requires too much expertise to be 
architectured by a single person. Yet the programs in such a package, 
although designed by different people at different times, must be able 
to work together. It is therefore necessary that the assumptions that 
must be made about the environment in which such a program 
operates are minimized. A program should preferably use only the 
most general methods of communicating with its environment. The 
only way of communicating with the environment which is sufficiently 
standardized is communication by means of files. 

Like any complex system, the software package should be structured 
hierarchically. The practical levels in the hierarchy are often the 
procedure, the source file and the program. A couple of programs make 
for instance a circuit generator. The circuit generators for instance 
which generate the folded circuits consist of 3 or more different 
programs. 

This separation into different programs has many advantages. Each of 
the programs has input and output files. The structure of these files can 
be defined exactly, thus facilitating the functional description of the 
programs. This allows a more accurate description then strong typing 
of the parameters of routines. The programs can check the input files 
för correctness, a much more rigorous checking than strong type 
checking. The separation into programs dissallows the use of global 
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data structures [75]. Such an approach to programming is also known 
as functional programming or object oriented programming [55]. In 
this approach the programs are regarded as operations that are 
performed on the files which are the objects. Although most 
programming languages are unsuitable for object oriented 
programming, any program written in any language can be a primitive 
operation when the objects are files. Because the communication is 
through files only, the package does not need to be programmed in a 
single language. 

On computers that have a limited amount of memory, an additional 
advantage is that the active piece of code is much smaller. The small 
programs function like overlays. Also the mess of dynamic data 
structures that most programs create is cleaned up automatically. 

The partitioning of the package into small programs has several 
advantages for the programmers. The programmers that are working 
on the package, can work independently. Each programmer can keep a 
set of examples that he/she can use as test material. Text files can 
easily be inspected and edited by the programmer. Bugs created by one 
programmer in one program will not affect the others. When 
debugging, only the program with the bug has to be located and 
debugged. Since all the intermediate results are stored in files, finding 
the incorrect program is easy. The execution time of this single 
program may be much shorter than the execution time of the entire 
package. The repeated tests will therefore take less time. 

Since an open package is extensible by design and since different 
people make these extensions, format conversions are unavoidable. A 
couple of measures can be taken to facilitate extension and conversion 
of formats. File formats can be made extensible by using labels for 
different kinds of data. The programs should look only at the data that 
is of interest to them and ignore unknown labels [20]. To facilitate 
conversions the file formats could be limited to an organization of 
columns and records. Such a representation of data is commonly used 
in relational data bases. The UNIX operation system provides many 
utilities, for instance awk, that perform operations on such files [38, 1]. 

8.3 Further research 

One of the more important issues that has not been addressed in this 
book is the design of the timing of the integrated circuit. Much ofwhat 
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has been said about parameter optimization and trade-off in the first 
chapter applies directly to timing. Timing becomes increasingly 
important. For application specific integrated circuits speed is often 
the main reason for the design of a special chip. 

Tradeoffs between area and delay must be made at an earlier stage 
than the layout stage. During the layout stage it is however necessary 
that the timing specifications are realized despite the fact that not all 
capacitances can be controlled. It is thereföre necessary to change the 
sizes of the transistors to improve the timing. 

The transistor matrix layout method allows any size of transistor to be 
used. For an accurate control of the timing resizing of the transistors 
after folding is necessary. Methods for resizing transistors have been 
published in [31, 23]. lt would be useful if this could be done in such a 
way that timing of a circuit can be guaranteed. 

Presently, the design rule parameters are not implemented in a 
satisfactory way. The design rules should be taken into account in the 
compaction as well as the transistor generation. The transistor 
generator should be able to take design rule parameters into account. 
By taking into account more environment information of the shape of 
neighboring transistors, a more efficient compaction may still be 
possible. 

The transistor matrix generator can presently not handle delay and 
power consumption as parameters. To handle such parameters requires 
some understanding of the circuit. A separate program that translates 
the functional description of the circuit to a network should handle 
these parameters. It could take into account the delays between the in­
and outputs and adjust the transistor sizes accordingly. This algorithm 
would be limited to a smaller class of circuits then transistor matrix 
layout can design. 

Our present implementation of the matrix layout generator is not able 
to generate CMOS layouts. To make CMOS layouts only a small 
modification to the mask generation routines is necessary. The n 
transistors must be placed in a p-well and the p transistors must be 
placed in an n-well. The groups that are created by the folding can he 
partitioned into an n and a p part. Each part can have its own well. 

In the comparison of layout styles the nor matrix style bas the smallest 
area for the same function. The prohlem with nor-matrix is that it 
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depends on the nMOS technology. There is no simple CMOS equivalent 
of the nor-matrix. 

Folding can also be done by the simulated annealing algorithm of [73]. 
It would be interesting to compare the two approaches. Also it would be 
interesting to investigate whether folding and Bursteins placement and 
routing [7] could be combined. Bursteins placement and routing allows 
för bent strips, which is more suitable for very large arrays. Of course, 
in stead of simple transistors or nor gates more complex gates could be 
used. It is however questionable whether this would lead to an efficient 
result. 

Another interesting subject would be the design of folded circuits that 
can be abutted to form arrays. Such circuits are called tiles. This 
requires a accurate control of the pin positions during the folding. The 
sides of the tile that are abutted could be connected during the folding. 
When a tile is to be abutted horizontally only, left and right side of the 
circuit are connected thus forming a cylinder. This cylinder can be cut 
and repeated to get the required repetition. For two-dimensional 
abutment also the top and bottom should be connected. The matrix 
becomes a torus and can be repeated in two dimensions. 

The channel routing described in chapter 2 allows only for two layers of 
routing. As technology has progressed, more layers have become 
available. Nowadays, three or more layers of metal are common. The 
router as described could easily be changed to allow for three layers. 
However as the number of layers increases, the assumption that we 
made earlier that the wiring area and the area of the function blocks 
must be separate becomes less valid. An area router will be needed 
[33]. Area routers have the disadvantage that they cannot guarantee 
completion as channel routers can. Channel routers can guarantee 
completion because they can increase the channel width when needed. 
An area router that could do the same would be useful. 

In this book we addressed the automation of custom layout design. For 
chips that must be developed fast, a gate-array is probably more 
suitable. The methods proposed in this hook for building block layout 
are applicable to sea-of-gates too. It would be interesting to devise a 
sea-of-gates pattern that can be used in combination with folding. 
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8.4 Conclusions 

The predictor-adaptor paradigm is not only applicable to floor planning 
hut also to various design sub-problems. lt leads to algorithms that are 
targeted towards global optimality by stepwise refinement. We showed 
how the paradigm can be used in routing, slicing and folding 
algorithms. A new polynomial and optimal slicing algorithm was 
presented. 

We introduced design with unidimensional circuits rather then 
rectangular circuits as a more suitable method for designing 
compounds of small circuits. Compared to conventional methods the 
new layout styles give much smaller circuits. 

Top-down design also determines the tasks of the various design 
algorithms and the interfaces between them. Custom layout allows 
indefinitely many layout styles. A design package that does not 
constrain the number of styles is necessarily open. 

Top-down design is essential to achieve the maximum benefit of custom 
layout. Future research could address parameters that have been 
ignored so far. The most important of these parameters is delay. Many 
other refinements to existing software are possible. Particularly to the 
transistor matrix generator many interesting enhancements are still 
possible. 
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Scalars 

Wc,hc 
Xc,Yc 
<Xc 
Sc(W) 
st(h) 
e 

µ(S) 
ö(S), 'Y(S) 

ç 
x 
<!> 

\lf 

Sets 

V={V1,V2, • · ·} 
VEV 
V={VE W 1 P(v)} 
VuW 
VnW 
V\W 
VxW 
VcW 

width and height of a circuit 
x and y coordinates of a circuit 
area of a circuit 
shape function 
inverse shape function 
score function of an algorithm 

upper bound for the number of tracks in group S 
lower bounds for the number of tracks in group S 

steiner assignment function 
channel assignment function 
column assignment function 
row assignment function 

set of elements v1 , V2 •.. 
set membership 
set ofmembers ofW for which P(v) is true 
set union 
set intersection 
elements of V that are not in W 
set product 
V is a subset of W 
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#V number of elements of V 

0 empty set #0=0 
z whole numbers · · · -2,-1,0, 1,2 · · · 
IN natura! numbers 1, 2, 3 · · · 
IR real numbers 
c set of circuits 
p set ofpins 
N set of nets 

a(s) span of a strip expressed in tracks 
cr(s) span of a strip expressed in groups 

Graphs 

q(V,E) graph named ij with nodes V and edges EcVxV 
(V,E) unnamed graph 
(v,w) edge (v, w)e E 
v(v) neighbors of a node {we V 1 (v, w)e E} 
ov degree of a node #v(v) 
(V, E)u(W, F) graph union (VuW,EuF) 
(V,E)tî{W,F) graph intersection (VtîW,EnF) 

parent(v) parent node of a node 
left(v) child node of a node in a binary tree 
right(v) other child node of a node in a binary tree 
ro=8 orQJ orientation of a slicing line 

C(V,E) channel intersection graph 
~Cu{C},N,P) bipartite netlist graph 
!l{H, V,E) bipartite folding graph 
1(N,B) topology of steiner tree tree 
'I' steiner tree 
Pv{Jh,C) vertical polar graph 
1\,(Jv,C) horizontal polar graph 
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Mask layers 

contact hole 

metal 

polysillcon 

diffusion 

burried contact 

depletion lmplant 
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STELLINGEN 

bij het proefschrift van 
Lukas P.P.P. van Ginneken 

THE PREDICTOR-ADAPTOR PARADIGM 

1. De transistor matrix layout methode maakt het mogelijk om 
circuits in vele parameters aan te passen aan de 
ontwerpspecificaties. 

Dit proefschrift 

2. Gegeven een puntconfiguratie en de uitwisselingsrelatie tussen 
de dimensies van de modules, is het mogelijk om een met de 
puntconfiguratie consistente slicingstructuur te vinden in 
polynoom begrensde tijd, zodat de oppervlakte van de 
slicingstructuur minimaal is, indien de dimensies van de 
modules integers zijn. 

Dit proefschrift 

3. Hoewel berekening van de krimpfactor van een eerste 
slicinglijn, maximaal O(n2) operaties kost, waar n het aantal 
punten in de puntconfiguratie voorsteld, kunnen de 
krimpfactoren van alle eerste slicinglijnen eveneens in O(n2) 
operaties worden berekend. 

L.P.P.P. van Ginneken: 'Gridless Routing for Generalized Cell Assemblies: 
Report and User Manual', TU Eindhoven research report 87-E-180, September 
1987. 

4. In simulated annealing van een probleem met een 
kwaliteitsfunctie die samengesteld is als de som van vele 
termen vormt de uitdrukking E(t)-ef(t)/t een nauwkeurige 
schatting van het optimum. 

R.H.J.M. Otten and L.P.P.P. van Ginneken: 'Stop Criteria in Simulated 
Annealing', Proc. Int. Conf. on Computer Design. p.549, IEEE, 1988. 



5. In simulated annealing vormt de uitdrukking 

a ln(1/j}) + max\O,Ae) + (a-1) ln(1-a) 

waarin j} de uniforme selectiekans van een 
toestandsverandering is, Lle de scoreverandering veroorzaakt 
door die toestandsverandering, t de controleparameter en a de 
gemiddelde acceptatiekans, een goede indicatie voor het aantal 
toestandsveranderingen dat nodig is om de 
evenwichtsverdeling te herstellen. 

L.P.P.P. van Ginneken and R.H.J.M. Otten: 'An Inner Loop Criterion tor 
Simulated Annealing', Physics Letters A, 130(1988)429. 

6. Om de timing van een geïntegreerd circuit te kunnen 
garanderen is het noodzakelijk om de snelheid van de circuits 
op een laag nivo te kunnen beïnvloeden. 

7. De introductie op grote schaal van de VLSI chip technologieën 
met meerdere metaallagen zal een drastische vereenvoudiging 
van de automatische routing tools tot gevolg hebben. 

8. De pointer kan worden gezien als de goto van de 
datastructuren. Pointers moeten daarom evenals goto's als 
schadelijk worden beschouwd. 

9. De gebruikersvriendelijkheid, complexiteit en functionaliteit die 
verwacht worden van software voor hardware ontwikkeling is 
veel groter dan wat gangbaar is voor software die gebruikt 
wordt bij software ontwikkeling. 

1 o. In het huidige economische bestel bestaan kosten grotendeels 
uit distributie kosten. Dit verklaart de grote hoeveelheden afval: 
de vuilnisman is de goedkoopste vorm van distributie. 



The Predictor-Adaptor Paradigm 

Lukas P.P.P. van Ginneken 

This book shows how the predictor-adaptor paradigm can be applied 
to many aspects of automatic layout design. lt features a new 
polynomial algorithm tor optimal slicing of point configurations and a 
new heuristic tor the Steiner tree problem in graphs. In these 
algorithms, the predictor predicts the design freedom, and the adaptor 
adapts the sub-designs to the specifications. 

Design by adaptation implies design of circuits according to 
parameters. An elegant hierarchical folding algorithm makes accurate 
control of the aspect ratio of circuits possible. 

A new layout style based on this folding algorithm, called transistor 
matrix layout, applies parametrized design to the smallest possible 
circuits: the transistors. The new layout styles give much smaller 
layouts than conventional layout styles. 
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