43 research outputs found

    Sweet Streams are Made of This: The System Engineer's View on Energy Efficiency in Video Communications

    Full text link
    In recent years, the global use of online video services has increased rapidly. Today, a manifold of applications, such as video streaming, video conferencing, live broadcasting, and social networks, make use of this technology. A recent study found that the development and the success of these services had as a consequence that, nowadays, more than 1% of the global greenhouse-gas emissions are related to online video, with growth rates close to 10% per year. This article reviews the latest findings concerning energy consumption of online video from the system engineer's perspective, where the system engineer is the designer and operator of a typical online video service. We discuss all relevant energy sinks, highlight dependencies with quality-of-service variables as well as video properties, review energy consumption models for different devices from the literature, and aggregate these existing models into a global model for the overall energy consumption of a generic online video service. Analyzing this model and its implications, we find that end-user devices and video encoding have the largest potential for energy savings. Finally, we provide an overview of recent advances in energy efficiency improvement for video streaming and propose future research directions for energy-efficient video streaming services.Comment: 16 pages, 5 figures, accepted for IEEE Circuits and Systems Magazin

    Video delivery networks : challenges, solutions and future directions

    Get PDF
    Internet video ecosystems are faced with the increasing requirements in versatile applications, ubiquitous consumption and freedom of creation and sharing, in which the user experience for high-quality services has become more and more important. Internet is also under tremendous pressure due to the exponential growth in video consumption. Video providers have been using content delivery networks (CDNs) to deliver high-quality video services. However, the new features in video generation and consumption require CDN to address the scalability, quality of service and flexibility challenges. As a result, we need to rethink future CDN for sustainable video delivery. To this end, we give an overview for the Internet video ecosystem evolution. We survey the existing video delivery solutions from the perspective of economic relationships, algorithms, mechanisms and architectures. At the end of the article, we propose a data-driven information plane for video delivery network as the future direction and discuss two case studies to demonstrate its necessity

    Video Delivery Networks: Challenges, Solutions and Future Directions

    Get PDF
    Internet video ecosystems are faced with the increasing requirements in versatile applications, ubiquitous consumption and freedom of creation and sharing, in which the user experience for high-quality services has become more and more important. Internet is also under tremendous pressure due to the exponential growth in video consumption. Video providers have been using content delivery networks (CDNs) to deliver high-quality video services. However, the new features in video generation and consumption require CDN to address the scalability, quality of service and flexibility challenges. As a result, we need to rethink future CDN for sustainable video delivery. To this end, we give an overview for the Internet video ecosystem evolution. We survey the existing video delivery solutions from the perspective of economic relationships, algorithms, mechanisms and architectures. At the end of the article, we propose a data-driven information plane for video delivery network as the future direction and discuss two case studies to demonstrate its necessity

    CLOUD LIVE VIDEO TRANSFER

    Get PDF
    As multimedia content continues to grow, considerations for more effective storage options, like cloud technologies, become apparent. While video has become a mainstream media source on the web, live video streaming is growing as a prominent player in the modern marketplace for both businesses and individuals. For instance, a business owner may want to oversee operations while he or she is away, or an individual may want to surveillance their property. In this work, we propose Cloud Live Video Streaming (CLVS) - a very efficient method to stream live video that creates a separate pricing model from modern video streaming services. The key component to CLVS is Amazon Simple Storage Service (S3), which is used to store video segments and metadata. By using S3, CLVS employs what is referred to as a ”serverless” design by removing the need to stream video through an intermediary server. CLVS also removes the need for third party accounts and license agreements. We implement a prototype of CLVS and compare it with an existing commercial video streaming software - Wowza Streaming Engine. As live video streaming becomes more common, alternative and cost effective solutions are essential

    PEER-TO-PEER VIDEO CONTENT DELIVERY OPTIMIZATION SERVICE IN A DISTRIBUTED NETWORK

    Get PDF
    Η δυναμικά προσαρμοζόμενη ροή βίντεο μέσω HTTP (DASH) παρέχει βελτιώσεις στην ποιότητα της εμπειρίας χρήσης (QoE) κατά την αναπαραγωγή βίντεο σε δίκτυα παλαιότερα των δικτύων 5ης γενιάς (5G). Ωστόσο, οι εφαρμογές τύπου νέφους τις οποίες μπορεί να παρέχει η αρχιτεκτονική δικτύων 5ης γενιάς, σε συνδυασμό με την υλοποίηση υπολογιστικών υποδομών νέφους στο άκρο του δικτύου και κοντά στους τελικούς χρήστες, μπορεί να βελτιώσει σημαντικά τόσο την ποιότητα της προσφερόμενης υπηρεσίας (QoS) όσο και την εμπειρία χρήσης λόγω της δυνατότητας προσωρινής αποθήκευσης περιεχομένου βίντεο στο άκρο του δικτύου, λόγω της δυνατότητας παροχής προσωρινής αποθήκευσης μέρους του βίντεο στο άκρο του δικτύου. Επιπροσθέτως, εκτός της αποθήκευσης στο και διανομής βίντεο από το άκρο του δικτύου προς τους τελικούς χρήστες, οι νέες υποδομές βίντεο θα παρέχουν τη δυνατότητα διανομής περιεχομένου βίντεο απευθείας από συσκευή σε συσκευή (D2D). Αξιοποιώντας τις τεχνολογίες αυτές, μπορούν να υλοποιηθούν καινοτόμες υπηρεσίες ροής βίντεο, οι οποίες μπορούν όχι μόνο να βελτιώσουν την εμπειρία χρήσης των τελικών χρηστών κατά την αναπαραγωγή βίντεο, αλλά και να μειώσουν το συνολικό κόστος διανομής βίντεο καθώς και την συμφόρηση των δικτύων, άρα και την καθυστέρηση από άκρο σε άκρο και τη συμφόρηση στα δίκτυα διανομής περιεχομένου (CDN) των παρόχων υπηρεσιών διανομής και ροής βίντεο. Στην παρούσα διπλωματική εργασία μελετούμε την επίπτωση που έχουν διάφοροι συνδυασμοί τεχνικών προσωρινής αποθήκευσης, διανομής, καθώς και επιλογής ανάλυσης, σε περιεχόμενο βίντεο, πάνω στην ποιότητα της προσφερόμενης υπηρεσίας και στην εμπειρία των τελικών χρηστών που βρίσκονται στο άκρο του δικτύου, οι οποίες μπορούν να αξιοποιηθούν στη δημιουργία μιας καινοτόμας υπηρεσίας που βελτιστοποιεί τη διανομή περιεχομένου βίντεο μεταξύ ομότιμων κόμβων (P2P) σε ένα κατανεμημένο δίκτυο.Dynamtic Adaptive Streaming over HTTP (DASH) has yield several improvements in the video playback Quality of Experimence (QoE) for the end users in pre-fifth generation (5G) networks. However, cloud applications that 5G networks enable, combined with cloud infrastructures at the edge of the network and in close vicinity to the end users, can offer significant improvements in both the offered Quality of Service (QoS) and QoE because of the video content caching capabilities at the edge of the network that the edge cloud can offer. Furthermore, in addition to edge caching and edge video streaming to the end users, new video infrastructures can offer Device-to-Device (D2D) video content exchange and delivery. Taking advantage of these technologies, innovative video streaming services can be developed which not only improve the video playback QoE for the end users but also reduce the video delivery costs and generated network traffic, which also means reduced end-to-end latency and reduced overhead in video content providers’ Content Delivery Network (CDN). In this thesis we study the impact of using different combinations of distinct video caching techniques, video segment request and streaming algorithms and video resolution selection logics on the QoS and the QoE of end users at the network edge, which can be used in developing an innovative Peer-to-Peer (P2P) video content delivery optimization service in a distributed network

    FlexStream: SDN-Based Framework for Programmable and Flexible Adaptive Video Streaming

    Get PDF
    With the tremendous increase in video traffic fueled by smartphones, tablets, 4G LTE networks, and other mobile devices and technologies, providing satisfactory services to end users in terms of playback quality and a fair share of network resources become challenging. As a result, an HTTP video streaming protocol was invented and widely adopted by most video providers today with the goal of maximizing the user’s quality of experience. However, despite the intensive efforts of major video providers such as YouTube and Netflix to improve their players, several studies as well as our measurements indicate that the players still suffer from several performance issues including instability and sub-optimality in the video bitrate, stalls in the playback, unfairness in sharing the available bandwidth, and inefficiency with regard to network utilization, considerably degrading the user’s QoE. These issues are frequently experienced when several players start competing over a common bottleneck. Interestingly, the root cause of these issues is the intermittent traffic pattern of the HTTP adaptive protocol that causes the players to over-estimate the available bandwidth and stream unsustainable video bitrates. In addition, the wireless network standards today do not allow the network to have a fine-grain control over individual devices which is necessary for providing resource usage coordination and global policy enforcement. We show that enabling such a network-side control would drive each device to fairly and efficiently utilize the network resources based on its current context, which would result in maximizing the overall viewing experience in the network and optimizing the bandwidth utilization. In this dissertation, we propose FlexStream, a flexible and programmable Software-Defined Network (SDN) based framework that solves all the adaptive streaming problems mentioned above. We develop FlexStream on top of the SDN-based framework that extends SDN functionality to mobile end devices, allowing for a fine-grained control and management of bandwidth based on real time context-awareness and specified policy. We demonstrate that FlexStream can be used to manage video delivery for a set of end devices over WiFi and cellular links and can effectively alleviate common problems such as player instability, playback stalls, large startup delay, and inappropriate bandwidth allocation. FlexStream offloads several tasks such as monitoring and policy enforcement to end-devices, while a network element (i.e., Global Controller), which has a global view of a network condition, is primarily employed to manage the resource allocation. This also alleviates the need for intrusive, large and costly traffic management solutions within the network, or modifications to servers that are not feasible in practice. We define an optimization method within the global controller for resource allocation to maximize video QoE considering context information, such as screen size and user priority. All features of FlexStream are implemented and validated on real mobile devices over real Wi-Fi and cellular networks. To the best of our knowledge, FlexStream is the first implementation of SDN-based control in a live cellular network that does not require any internal network support for SDN functionality
    corecore