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ABSTRACT

FLEXSTREAM: SDN-BASED FRAMEWORK FOR
PROGRAMMABLE AND FLEXIBLE ADAPTIVE VIDEO

STREAMING

Ibrahim Ben Mustafa
Old Dominion University, 2018

Director: Dr. Dr. Tamer Nadeem
Co-Director: Dr. Dr. Ravi Mukkamala

With the tremendous increase in video traffic fueled by smartphones, tablets, 4G

LTE networks, and other mobile devices and technologies, providing satisfactory ser-

vices to end users in terms of playback quality and a fair share of network resources

become challenging. As a result, an HTTP video streaming protocol was invented

and widely adopted by most video providers today with the goal of maximizing the

user's quality of experience. However, despite the intensive efforts of major video

providers such as YouTube and Netflix to improve their players, several studies as

well as our measurements indicate that the players still suffer from several perfor-

mance issues including instability and sub-optimality in the video bitrate, stalls in

the playback, unfairness in sharing the available bandwidth, and inefficiency with

regard to network utilization, considerably degrading the user's QoE. These issues

are frequently experienced when several players start competing over a common bot-

tleneck. Interestingly, the root cause of these issues is the intermittent traffic pattern

of the HTTP adaptive protocol that causes the players to over estimate the avail-

able bandwidth and stream unsustainable video bitrates. In addition, the wireless

network standards today do not allow the network to have a fine-grain control over

individual devices which is necessary for providing resource usage coordination and

global policy enforcement. We show that enabling such a network-side control would

drive each device to fairly and efficiently utilize the network resources based on its

current context, which would result in maximizing the overall viewing experience in

the network and optimizing the bandwidth utilization.

In this dissertation, we propose FlexStream, a flexible and programmable

Software-Defined Network (SDN) based framework that solves all the adaptive

streaming problems mentioned above. We develop FlexStream on top of the SDN-

based framework that extends SDN functionality to mobile end devices, allowing for



a fine-grained control and management of bandwidth based on real time context-

awareness and specified policy. We demonstrate that FlexStream can be used to

manage video delivery for a set of end devices over WiFi and cellular links and can

effectively alleviate common problems such as player instability, playback stalls, large

startup delay, and inappropriate bandwidth allocation. FlexStream offloads several

tasks such as monitoring and policy enforcement to end-devices, while a network

element (i.e., Global Controller), which has a global view of a network condition, is

primarily employed to manage the resource allocation. This also alleviates the need

for intrusive, large and costly traffic management solutions within the network, or

modifications to servers that are not feasible in practice. We define an optimization

method within the global controller for resource allocation to maximize video QoE

considering context information, such as screen size and user priority. All features

of FlexStream are implemented and validated on real mobile devices over real Wi-Fi

and cellular networks. To the best of our knowledge, FlexStream is the first imple-

mentation of SDN-based control in a live cellular network that does not require any

internal network support for SDN functionality.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The Internet has recently witnessed a tremendous increase in video traffic fueled

by smartphones, tablets, 4G LTE networks, and other mobile devices and technolo-

gies. In 2012, it was reported that video traffic generated by YouTube and Netflix

alone constituted more than 50% of the peak download traffic in the USA [32]. More-

over, Cisco reported that mobile video traffic is growing rapidly and expected to form

75% of total Internet traffic by 2020 as shown in Figure 1. Surprisingly, unlike other

type of traffics that are generated throughout the day, video traffic tends to be heav-

ily streamed during evening hours and has a peak time. Consequently, increasing the

video traffic would lead to adding more traffic during the peak hours which increases

the possibility of creating network bottlenecks, making video flows competition over

the bandwidth unavoidable. Figure 2 shows that global busy-hour traffic was 66%

higher than the average-hour traffic in 2015 and expected to reach 88% in 2020 [37].

In its 2014 viewer experience report, Conviva [11] analyzed 45 billion viewed videos

and found that 26.9% of viewers experienced buffering, 43.3% were impacted by low

resolution, and 4.8% of videos failed to start.

The nature of wireless links, on the other hands, adds another challenge. Unlike

fixed devices in wired networks, wireless devices can experience severe fluctuation

in the network condition which would dramatically impact the throughput, latency,

error rates, and other network metrics [17, 24]. Moreover, limited battery power of

mobile devices is also another critical issue that should be considered when stream-

ing videos [46, 72]. Therefore, providing satisfactory services to end users in terms

of playback quality, fair share of network resources, and low battery consumption

becomes challenging. As a result, most video providers such as YouTube [79], Netflix

[55], Hulu [36], and Dailymotion [13] have embraced the HTTP Adaptive Streaming

as a video delivery approach to assure a high level of QoE to end users. This adop-

tion, as indicated in [70], was motivated by several features and services provided by

this technology:
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Figure 1: Traffic percentage for different classes of traffic from 2015 to 2020.

1. The ability of the video player, residing on the client device, to dynamically

and seamlessly adapt the video bitrate to the network condition.

2. The reliance on the existing Content Delivery Network (CDN) infrastructures

for Web content delivery, allowing videos to be streamed from stranded HTTP

servers and caches.

3. The seamless and easy streaming via traversing the NAT and firewall without

any complication.

4. The popularity and widespread of HTTP and underlying TCP protocol pro-

vides reliability and simplicity for video delivery.

1.2 ISSUES WITH HTTP ADAPTIVE STREAMING

Despite the benefits that this protocol brings to video streaming, recent measure-

ments [32, 2, 4, 30] have shown that many widely used adaptive players suffer from

multiple performance issues including:

1. Instability and sub-optimality in the video bitrate and thus quality.

2. Interruption and freeze in the Playback.

3. Long startup delay time.
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Figure 2: Busy-Hour vs Average-Hour traffic.

4. Unfairness in sharing the network resources, leading to unbalanced Quality of

Experience (QoE) among end users.

5. Inefficient use of network resource utilization.

These issues were also confirmed by our measurements of recent versions of players

competing over a common bottleneck. Many studies have reported that providing a

high quality picture and stable bitrate is very important for maximizing user engage-

ment and repeat viewership, and the instability in the perceived quality, in contrast,

can significantly diminish user engagement [15, 12, 7, 52]. Results in [68, 29, 75]

show that fluctuation in video quality found to be very annoying to users, degrading

video QoE. Consequently, it is reported by [62] that users prefer a lower constant

bitrate or quality over unstable bitrate while higher in average. In fact, instability in

the video bitrate not only affect the perceived quality, but also causes network un-

derutilization [16, 2]. As HTTP operating over TCP protocol, the bandwidth tend

to be distributed equally (assuming same RTT values) among end-devices regardless

of their characteristics (e.g., screen size) and context, leading to unfair QoE among

the end users.

In fact, the main cause of the previous issues is the well-known unwanted interac-

tions between multiple adaptive players. As players operate in the ON/OFF pattern

in the steady state, downloading small chunks of video periodically, the OFF periods

of one or more players can cause other players to overestimate the available band-

width when requesting new chunks of data. Conversely, if multiple players overlap
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their ON periods they may perceive lower bandwidth, not accounting for the OFF

period. This can ultimately lead to player instability, with frequent video bitrate

switching which lowers the video Quality of Experience (QoE). Moreover. If the

overestimation of the available bandwidth is considerable, then a major drop in the

throughput can also lead to playback freeze (stall). Other issues are long startup de-

lay time and unbalanced video QoE which mostly occur when a new player(s) joins

and finds the bandwidth is dominated by other running players. Therefore, looking

beyond a single player scenario and accounting for the interaction of several adaptive

players is essential for improving the video QoE. It is more probable in the coming

years to find many people simultaneously streaming videos from the same access

point in the home network, or at some public place such as the airport, shopping

mall, or university campus.

While various approaches are used to stabilize bitrate selection of players and

prevent stalls, these players typically work in a homogeneous environment where

the same adaptation algorithms co-exist and their limited local view of the network

can be somewhat mitigated. This implies that for stable and stall-free multi-player

streaming experience, the same adaptation algorithm should be run on different

devices. This is unrealistic to expect in today's real world where virtually every

video service has its own player and a video catalog of titles with a proprietary

selection of video bitrate profiles. Also, after considering multiple types of devices,

screen sizes, and user needs, we can realize that the only entity that can have a global

view and optimally manage many players competing for the bottleneck bandwidth

is the network.

1.3 CONTRIBUTION

In this dissertation, we argue that the network should step in and help the play-

ers, whenever needed, to stream the best possible video bitrate while ensuring fair

distribution of bandwidth (to provide balanced QoE), stable video quality, stall-free

playback. The network should also be able to provide some valuable services such

priority of certain users, if needed (e.g., emergency responders, premium customers,

etc.). We stress that for the purposes of this work, we redefine the notion of fairness.

As detailed later, we do not consider equal distribution of available bandwidth to be

fair and appropriate in all cases. Instead, the goal is that devices with the same (or

similar) screen size should receive similar video bitrates, meaning that larger screens
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should receive higher bitrates than smaller screens. In terms of stability, the network

should step in when it detects conditions that lead to instability, such as devices

imposing higher demand that the network currently cannot sustain. Moreover, if

there are higher priority users in the network, they should receive higher bitrates

than lower priority users.

To achieve these goals, we propose FlexStream, a flexible and programmable

Software-Defined Network (SDN) based framework that automates the process of

monitoring and managing bandwidth of video users. We select this approach for the

following reasons:

1. examine the ability to extend the SDN paradigm to end user devices to perform

automated management and control tasks.

2. SDN promises a standardized framework for programmable control and can be

implemented as a kernel functionality.

3. offers a universal approach to work across network technologies and network

domains (cellular, WiFi, home networks, etc.).

FlexStream is a system that we developed on top of the framework that extends

the SDN to mobile devices. FlexStream enables centralized control of bandwidth

allocation via a global controller that specifies a policy, and a local policy imple-

mentation via Open vSwitch (OVS) that offloads the fine-grained functionality to

the end device. In addition to the bandwidth control policy, the system supports

defining various control policies based on the different interests and contexts of the

user, device, video, network, and environment (e.g., user priority-based policy, device

screen size-based policy), which is often overlooked in practical implementations. Us-

ing an optimization function, we demonstrate that all these factors can be effectively

accounted for within the policy that allocates bandwidth across devices. Network

programmability is also one of the main features of FlexStream, where network poli-

cies can be implemented and enforced in real time based on the context (e.g., time,

location, flow type). Finally, as end devices running FlexStream can be treated as

logical switches with ports acting like the available network interfaces (e.g., WiFi

and cellular), they can support multi-path delivery (e.g., MPTCP) according to

user-specified interface preferences [25].

We implement FlexStream on commodity Android devices and evaluate its per-

formance using realistic scenarios on both WiFi and cellular networks. Our prototype
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implementation uses a controller located in the cloud so that the SDN functional-

ity does not depend on the underlying network support. Our contributions can be

summarized as follows:

� We develop FlexStream on top of the SDN-based framework that extends SDN

functionality to mobile end devices, allowing for fine-grained control and man-

agement of bandwidth based on real time context-awareness and specified pol-

icy.

� We demonstrate that FlexStream can be used to manage video delivery for

a set of end devices over WiFi and cellular links and can effectively alleviate

common problems such as player instability, playback stalls, large startup delay,

and inappropriate bandwidth allocation.

� We define an optimization method to practically improve video QoE considering

context information, such as screen size and user priority, and validate it using

real experiments, including reductions in quality switching by 81%, stalls by

92%, and startup delay by 44%.

� We introduce, to best of our knowledge, the first working implementation of the

SDN extension to commodity mobile devices that runs in both WiFi and cellular

networks without requiring support from the existing network infrastructure.

1.4 ORGANIZATION

The reminder of this thesis is organized as follow. Chapter 2 provides a back-

ground on HTTP adaptive streaming and SDN, while Chapter 3 presents traffic

analysis for adaptive players. We introduce the FlexStream framework in Chapter 4.

Then, in Chapter 5, we describe the implementation of FlexStream. While Chapter

6 presents our optimization module for resource allocation, Chapter 7 is dedicated to

the system evaluation. Finally, Chapter 8 concludes the dissertation and highlights

the future work.

1.5 SUMMARY

A tremendous increase in mobile data traffic in the recent years increases the

possibility of having more network bottlenecks. These bottlenecks would have a
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negative impact on the performance of adaptive streaming technology. When these

adaptive video players compete over bandwidth, several performance issues that de-

grades the users QoE appears such as instability in the perceived quality and stalls

in the playback, among others. It is found that the root cause of these issues is the

intermittent of the adaptive traffic that often causes video players to misestimate

the available bandwidth. To overcome these issues and improve the performance of

adaptive players, we proposed FlexStream, a flexible and programmable Software-

Defined Network (SDN) based framework that automates the process of monitoring

and managing video sessions in the network. We explained that FlexStream also sup-

porting defining various control policies based on the different interests and contexts

of user, device, video, network, and environment.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 BACKGROUND

2.1.1 VIDEO STREAMING OVER IP NETWORKS

Videos is a sequence of frames or pictures which when played they generate an

illusion of motion. The number of frames ranges typically between 24 to 60 per

seconds. Low number of frames (< 24) can result in unsmooth motion, while a

high number can produce an adequate motion but with larger video size. There

are typically three types of video frames, Intra (I), Bidirectional (B), and Predicted

(P) frames, generated by video compression algorithms. These frames are different in

size, with the I-frame is larger than the other two frames since I-frames use only intra

frame compression, while B and P frames use previous I-frames for size reduction.

Most of the videos are encoded with variable video bitrates (VBR) at the servers side

before being transmitted through the Internet to the client devices. However, the

network can only support streaming videos on a best-effort basis, which means that

if the available bandwidth is not sufficient for streaming the requested video biterate,

then the decoder at the client side will consume the video data on a higher rate than

the receiving rate supported by the network, leading to a drop in the video quality

in addition to rebuffering events (video stalls). To avoid these undesirable events,

several solutions have been proposed in the literature aiming to provide simple but

effective mechanisms to match the video biterate to the available network bandwidth.

These solutions can be summarized as follow:

1. Using playback buffer: This buffer allows the player to pre-fetch and to store the

data in advance to absorb any short term variations in the network bandwidth.

2. Transcoding-based solutions: These solutions are computationally intensive

as they require to change one or more compression algorithm parameters to

accommodate the video bitrate and the available bandwidth.
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3. Scalable Video coding: In this technique, the video is encoded into a base layer

and multiple enhancement layers that can be partially or totally truncated to

adjust the video bitrate to the network bandwidth. However, this solution has

not been adopted by video providers as it is also computationally intensive.

4. Adaptive Streaming Solution: Video data with this technique is processed or

encoded into multiple bitrates and stored on the server. These different bitrates

can then be requested by the video player according to the available bandwidth.

Most of the video providers have adopted this solution, with a playback buffer

to avoid any bandwidth variation impact. The following section introduces this

technology in details.

2.1.2 EVOLUTION OF VIDEO STREAMING TECHNOLOGIES

Since the Internet was not originally designed to support data delivery of

bandwidth-intensive applications such as video streaming, most of the early efforts

on improving streaming services focused on techniques that enable resource reserva-

tions and Quality of Service (QoS). Real Time Transport Protocol (RTP) [38], Real

Time Streaming Protocol (RTSP) [63], RTP Control Protocol [20], Resource ReSer-

Vation Protocol [81], and Session Description Protocol (SDP) [28] are examples of

the protocols that were developed and proposed to support real-time streaming over

UDP. The server in these protocol controls and configures the end systems that sup-

port and initiate the video streams. However, these protocols and techniques require

dedicated servers and network infrastructure, incurring high deployment cost and

adding major complexities. I addition, these protocols have an issue in traversing

NATs and firewalls. Moreover, as these techniques use UDP as a transport protocol,

the congestion control and reliability remain open issues. Finally, These techniques

can not provide real-time adaptability to network condition. Consequently, HTTP

adaptive streaming protocol over TCP is proposed to overcome all the above issues.

2.1.3 HTTP ADAPTIVE BITRATE STREAMING

HTTP Adaptive Streaming (HAS) has become the prevalent paradigm for video

delivery in today's Internet. In Adaptive Bitrate Streaming (ABR), video content is

encoded into multiple bitrate profiles (also known as tracks or quality levels), with

each having different screen resolution, frame rate, and other encoding parameters.
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With increasing picture quality, each track has a higher bitrate, i.e. higher bandwidth

requirement for delivery. The purpose of multiple bitrates is to allow the client player

to adapt to varying network conditions.

As illustrated in Figure 3, the content of each bitrate profile in ABR is further

split into small segments, where each segment represents a short duration of playback

time (typically 2 to 10 seconds). Segment boundaries are the same in each profile,

giving the player an opportunity to switch profiles at each segment boundary. These

segments are made available for downloading on a conventional HTTP web server

via a standard HTTP request. A manifest file, which describes the available bitrate

profiles, segment URLs, and other parameters, is downloaded by the player prior to

the streaming session. Typical player behavior is to seek the highest available bitrate

if bandwidth allows.

The examples of the most widely used protocols for HAS streaming today are

Apple HTTP Live Streaming (HLS) [5], Microsoft Smooth Streaming (MSS) [80],

Adobe HTTP Dynamic Streaming (HSD) [1], and Dynamic Adaptive Streaming

over HTTP (DASH). DASH is a standard (ISO/IEC 23009-1) [69], while HLS, MSS,

and HSD are proprietary protocols. All these examples are client-centric solutions,

meaning all decisions are made on the client, leaving the server to only respond

to the client's requests. This enables rapid deployment through the existing CDN

infrastructure, which is the key enabler responsible for the prevalence over ABR

over HTTP. The client can dynamically adapt to the change in network conditions

by adjusting the video bitrate, typically according to measured bandwidth. For

instance, the player can request a lower profile when it encounters a major drop in the

available bandwidth to avoid possible stalls in the playback if it had stayed with the

same quality profile. One of the major challenges in designing the adaptive algorithm

of the video players is the adaptation logic that maximizes the viewing experience.

In fact, most of the work in the literature tries to enhance the performance of video

players by designing a better adaptation algorithm.

HAS protocol has two distinct states: buffering state and steady state as depicted

in Figure 4. Initially, the player enters the buffering state to fill the buffer with

video frames and as soon as the buffer is filled, it switches to the steady state in

which the player starts generating ON/OFF traffic patterns. Typically, the adaptive

player maintains two thresholds, an upper and lower thresholds. The player pauses

downloading video chunks as soon as the buffer reaches the upper threshold, and
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Figure 3: Adaptive Video Streaming.

it resumes downloading once the buffer drops to the lower threshold. The main

purpose of using a limited buffer size is to avoid downloading unnecessary content

and thus save network resources when the user abandons watching the video before

completion.

The intermittent traffic pattern (ON/OFF periods) of the HAS players in the

steady state introduces a major challenge for competing players to accurately esti-

mate the available bandwidth, as any one player may perceive drastically different

network condition depending on whether it competes with another player during a

segment download or not [2]. To further understand how the intermittent pattern

of HAS players can cause them to over estimate the available bandwidth, Figure

5 shows the traffic pattern of two competing players of a real experiment that we

conduct over the WiFi network. As we can observe, when the two players start

downloading at the same time before second 307, they tend to fairly share the band-

width. However, when Player B goes off after that time for about 15 seconds, Player

A starts observing higher bandwidth causing it to over estimate the available band-

width. Similarly, when Player A goes off at time 22, Player B starts overestimating

the available bandwidth till Player A wakes up after 17 seconds at which the players

start seeing the actual available bandwidth. This behavior is the key contributor to

instability in the video bitrate.

TCP-based operation underneath the HTTP leads to another unintended effect.
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Figure 4: Player's States: Buffering state and steady state.

As TCP flows from competing players attempt to equally share the bottleneck, the

players perceive that share and gradually converge to the same video quality. This

may not be desirable at all times, given that player requirements may differ due the

variations in screen size, type of content, or user preferences and priorities. For ex-

ample, larger screens, sports and fast action, as well as higher data cap call for higher

bitrates. In typical cases, neither clients or servers, nor the network can recognize

these requirements across heterogeneous players from different content providers.

2.1.4 TCP FLOW CONTROL

Transport Control Protocol (TCP) [18] is a transport protocol that provides a

reliable data transfer over an unreliable network. This is to ensure that the packet

reaches the destination intact and in the right order. Also, when data packets are

sent from a node to another in the network, the TCP protocol ensures that the sender

node is not overwhelming the receiver by sending too many packets. This happens

when the receiver node receives packets at a rate faster than it consumes. To prevent

this from happening, the TCP protocol allows the receiver to send feedback informing

the sender about its buffer condition, to adjust the sending rate. The TCP protocol

implements this feedback mechanism by advertising its Receiving Window (rwnd)

with every acknowledgment (ACK) packet sent from the receiver to the sender. This

rwnd field is included in the TCP packet and contains a value that matches the

spare room in the receiving buffer. On the other side, the sender node uses a sliding

window protocol to control the sending rate according to the last advertised rwnd
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Figure 5: Traffic patterns of two competing Players.

received from the client. This process is intended to control the number of bytes sent

by the sender, but have not been acknowledged yet.

2.1.5 SOFTWARE-DEFINED NETWORK

Software-Defined Network (SDN) is a promising technology invented to simplify

network operation and management, and also to allow for innovation to promote

the network infrastructure. This new technology introduces a new layered network

architecture in which the control plane (i.e., control function such as routing, security,

etc.) are decoupled from the data plane (forwarding function) of the network devices

(e.g., switches), allowing for more sophisticated and flexible traffic management. As

shown in Figure 6, an SDN instance mainly consists of three layers: application layer,

control layer, and data layer [49, 40, 45].

The application layer is the part that utilizing the decoupling of the data layer and

the control layer to achieve specific goals such as data collection or enabling a security

mechanism [56]. The application layer communicates with the control layer via APIs

using the northbound interface. On the other hand, the control layer is responsible for

accomplishing the target application goals by manipulating the forwarding devices

via a dedicated controller. In one direction the controller translates and conveys

the application requirement down to the data layer, while in the opposite direction

it provides the applications with a holistic view of the network topology (e.g., flow
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statistics and events), leveraging the link layer discovery protocol messages (LLDP).

The southbound interface of the SDN-switch enables the controller to communicate

with the data plane via a shard protocol, OpenFlow [50], which determine a set of

messages that can be exchanged between these two planes over a secure channel.

Therefore the control layer is composed of at least one Northbound-API Agent, the

SDN Control Logic, and Southbound-API driver [60]. The data plane handles the

actual packets according to the configuration received from the controller. It enables

the controller to handle the forwarding operations and to perform other tasks such as

advertising its capabilities, reporting traffic statistics, and sending event notification.

In the SDN-enabled switch forwarding rules, contained in the flow table, are

associated with ingress packets to look up the port to which the packet should be

transmitted. Therefore, once a packet is received, the packet header fields are used

to identify the flow and execute one of the following actions: (i) forward the packet

to a specific port, (ii) drop the packet, or (iii) send it to the controller for a flow rule

installation if there is no matching rule. Using the OpenFlow protocol, the controller
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can respond to the query according to the application policy.

2.2 RELATED WORK

2.2.1 CLIENT-BASED SOLUTION

In this section, we demonstrate the efforts done by the industry as well as by the

research community to enhance the performance and solve the issues at the client

side. The main focus of these solutions is to improve the application layer Adaptive

Bitrate (ABR) algorithms. In general, the aim is to make this adaptive algorithm

maximizing and the video bitrate in addition to avoiding stalls in the playback. In

fact, achieving all these goals simultaneously is quite difficult and some tradeoffs have

to be considered.

Performance of Commercial Players

Despite the continued efforts of major video providers such as Google and Netflix

in improving their ABR algorithms, many studies, as well as our measurements, have

revealed several performance issues with these players. For instance, studies such as

[4, 61] have shown that users with several state-of-art players such as Netflix, Smooth

Streaming, and Hulu can experience several performance issues including instability

in perceived quality that dramatically degrades the QoE. In fact, this instability in

the video quality has two adverse effects: first, switching too frequently is most likely

to disturb and annoy users [12], and second, a considerable amount of duplicated

video frames with different bitrates (for the same scene) are unnecessarily streamed

by the end devices, adding an additional burden on the network [65]. In most cases,

this causes a significant waste of both network resources and end-device resources,

which might be scarce (e.g., mobile device). It is reported, for instance, by several

studies [65, 66] that the YouTube player can download up to 40% of redundant video

data which are discarded and not displayed to the user. As we explained in the

previous section, the root cause of this oscillation is the released bandwidth at the

steady state which may cause several players to over estimate the available bandwidth

which would result in falling into unsustainable quality switches (to higher profiles)

making some or all of them to switch back to the previous qualities, or in some cases

even to lower qualities.
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Recent studies [6] have extensively examined the behavior and the performance

of six up-to-date ARB algorithms used by the most popular video players nowadays

including YouTube, Netflix, Vimeo [76], and Bitmovin [8] players. They evaluated

these players using several important quality metrics, which have the most impact

on the video QoE such as instability, stalls, and startup delay time under different

scenarios and network settings. Their findings show that the bitrate selection of

these players are not stable nor fair under the competing scenario. In addition, some

players can end up stalling for a considerable amount of time when tested under

the dynamic bandwidth scenario. Moreover, YouTube player exhibits an aggressive

behavior when competing with other players, thus causing these players to stream

low quality videos comparing to YouTube player, leading to unfair and unbalanced

QoE.

It is worth mentioning that our experiments also reveal that some video players

including the YouTube player may still experience very long and terrible stalls in

the video playback especially with live streaming. This undesired event usually

happens when the video player encounters a sudden and major drop in the available

bandwidth. When a stall event occurs, the player would have an extreme reaction

by making a significant quality reduction to prevent further stalls. This major drop

in the quality is usually unnecessary as in many cases the available bandwidth can

allow the player to stream a higher quality without any issue. Instability and quality

degradation are not the only the issues with this player, but also unfairness among

the competing players is also confirmed by our experiments. Other widely used

commercial players such as Adobe OSMF and Smooth Streaming suffer from similar

issues as reported by [41, 3].

Research Efforts

Most of the existing studies such as [41, 35, 48, 47] attempt to improve the

player's performance through improving the ABR algorithm of video players which

is primarily used to determine the rate of the next video chunk. In general, the client-

side ABR algorithms in the literature can be classified into three main categories:

rate-based, buffer-based, and hybrid solutions.

To decide about the bitrate of the next video segment, rate-based solutions esti-

mates the future bandwidth based on the past observation. Then the player selects

the highest bitrate based on the estimated throughput. Rate-based solutions basically
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depend on applying different throughput averaging techniques, such as exponential

or weighted averaging to avoid the impact of outliers and thus stabilizing the quality.

However, if the averaging period is too short, the instability might not be avoided,

while if the averaging period is too long, the resulting estimation can not correctly

reflect or adapt to the current network condition [52]. The algorithm proposed in

[48] and [41] (FESTIVE) are among the well-known and effective rate-based algo-

rithms in the literature used to cope with the stability, fairness, and efficiency issues.

The main idea with the adaptive algorithm proposed in [48] is to use a smoothed

HTTP throughput measurement based on the segment fetch time (SFT) to deter-

mine the bitrate of the next request segment, rather than using instantaneous TCP

transmission rate. The algorithm compares the segment fetch time with the seg-

ment playback duration to probe the spare network capacity and detect congestion.

For probing spare network capacity, an adaptive increase is used to choose a higher

bitrate profile, while an aggressive multiplicative decrease is used once detecting net-

work congestion to avoid stalls in video playback. FESTIVE on the other hand uses

the harmonic mean of the download speed computed over the last 20 video segments.

Other techniques such as [51, 52] are also throughput-based approaches which have

similar ideas in estimating the throughput. However, in the highly dynamic network

condition, having a good estimation of future network capacity becomes challenging.

Consequently, works such as [34, 33, 67] propose to ignore throughput estimation

and use an approach purely based on the buffer status. In other words, the adaptive

algorithm picks up the video bitrate by only looking at the current buffer occupancy.

Generally speaking, the algorithm selects a high bitrate if the buffer is full or near

full. Otherwise, it picks a low bitrate to avoid stalls.

A hybrid approach is more popular and used by many commercial players nowa-

days such as YouYube. It uses both throughput estimation and buffer occupancy

to decide about the next bitrate. PANDA [47] and SQUAD [] are among the most

known and effective hybrid algorithms in the research work. The key idea with

PANDA adaptive algorithm is to follow a probe-and-adapt approach in which the

algorithm periodically increments the requested bitrate to probe the available band-

width, while using the buffer fullness in addition to target bitrate to schedule next

request.

Despite these intensive efforts to improve the performance of adaptive algorithms

at the client side, the major issues that impact the video QoE remains unsolved



18

with these solutions as indicated by our measurements and also by several studies

mention above[6]. We believe that this is due to the intermittent pattern of adaptive

players, in addition to the inability of a player to realize both the current condition

of the network and the existing of other competing players, thus the estimation

algorithm clearly will not lead to an accurate estimation of the network capacity.

Another downside of client-based solutions is the lack of the flexibility that prevents

the network administrator to apply some policies and achieve specific requirements.

2.2.2 SERVER-BASED SOLUTION

The authors in [3] proposed server-based traffic shaping techniques to primarily

overcome the instability problem. The main idea behind their technique is to adjust

the streaming rate at the server side to be too close from the requested bitrate

to avoid the OFF periods and thus to stabilize the bitrate. However, modifying

a standard HTTP server, as their techniques required, may not be an attractive

technique. Furthermore, their solution adds a significant overhead on the server

since it requires the server to monitor the behavior of all connected clients, and then

performing traffic shaping once the oscillation is detected. The work in [27], on the

other hand, propose a system that involves a modification of both server and client

device to achieve one of two goals: improving the video QoE, or reducing the cost

(e.g., battery consumption) with negligible QoE degradation.

2.2.3 EDGE-BASED SOLUTIONS

To assist video players in selecting appropriate bitrates and co-existing gracefully

inside the network, several approaches are proposed. One such approach is to implic-

itly cause the player to adapt by shaping the flows of the video streams at the router

or DASH-aware proxy, including rewriting HTTP requests [31, 43, 9]. For example,

shaping traffic at home gateway was firstly proposed in [30] to also deal with the

unfairness issue. Their idea based on performing traffic shaping with two modes:

“static mode” in which the shaping decision remains fixed till one player finishes

downloading the whole video, and “flexible mode” in which the players are allowed

to utilize any extra bandwidth. However, their proposed techniques can only work

with unencrypted videos. They assumed that the home gateway can always intercept

the manifest file and get all the information about the requested video including the

available playback rates. In fact, this assumption is no longer valid with the major
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video providers including YouTube and Hulu have already adopted HTTPS protocol

in streaming videos. Moreover, their static shaping technique (which is their main

technique) can leave a significant portion of the bandwidth unutilized causing band-

width underutilization, while “flexible mode” can cause players to compete over the

released bandwidth.

When multiple bottlenecks exist, a set of coordinating proxies is proposed as

a mitigating solution, which includes information sharing between clients [58]. An

SDN-assisted solution uses an OpenFlow-enabled system with an orchestrating ele-

ment that explicitly informs the players which bitrate they should select [23]. An-

other proposal using SDN approach employs in-network caches to reduce the load

of many unicast flows on parts of the network and mitigate some causes of the poor

QoE [22]. The aforementioned approaches are implemented in the network, at the

proxies or upstream elements, may use intrusive approaches to detect and manage

video QoE, such as deep-packet inspection, bandwidth shaping, or request rewriting,

and collaboration between the player and the network is at the application layer. The

DASH standard has a proposal on Server and Network Assisted DASH (SAND) that

specifies the control messages between DASH Aware Network Element (DANE) and

players [71]. The goal is to formally specify interaction and establish a framework

for co-operation between network and players.

In [21], a centralized control plane, deployed on the top of multiple CDNs, is

proposed to assist players in selecting the optimal video bitrate in addition to opti-

mizing video delivery in CDNs. This goal is achieved by monitoring the buffer state

and experienced throughput via a thin layer deployed at the client device, which also

sends periodic updates to the control plane and executes control decision. A similar

idea of using a centralized node in a CDN to improve video QoE is proposed in [53].

Although these solutions conclude that a centralized controller can significantly help

to improve QoE, such solutions, in contrast to our work, are not designed to man-

age a group of video players sharing a bottleneck wireless link. Consequently, the

overall optimal QoE and fair share of network resources cannot be achieved, as these

solutions are agnostic to the exact network state (the number of competing streams,

background traffic, etc).

The key difference between our system and related proposals are that we extend

the SDN paradigm to the client device so that it directly communicates with the net-

work in a more fundamental SDN sense (via Open vSwitch), as opposed to messaging
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the player application. Then, we implement the system on the real smartphones that

uses the cellular interface, which is considerably more challenging than a simulation

or WiFi implementation. Finally, we present the use case that addresses previously

ignored aspects of bandwidth sharing by competing players.

2.3 SUMMARY

In this chapter, we started with presenting a background about video streaming

technologies focusing on the most recent technology, HTTP adaptive streaming. We

also briefly introduced the TCP flow control mechanism. Then we gave a background

about the SDN technology and its main layers in addition to its roles in simplifying

the network operations and management. The second part of this chapter was dedi-

cated to describe the research and industry efforts toward improving the video QoE.

We presented three main classes of solutions: Client-Side, Edge-Side, and Server-Side

solutions, and demonstrated the downsides of each of these class.
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CHAPTER 3

TRAFFIC AND PERFORMANCE ANALYSIS OF HTTP

ADAPTIVE STREAMING

In this chapter we analyze the traffic pattern and evaluate the performance of

commercial adaptive players via testing a recent version of one of the most com-

mon adaptive video players “YouTube”. We limit our analysis on YouTube as the

performance of other commercial players were extensively studied in [4, 61] and the

performance issues were detected and highlighted. Moreover, in contrast to other

popular players such as Netflix, YouTube uses encryption (HTTPs) to preserve their

users privacy, thus our goal of this analysis is not only to reveal some performance

issues, but also to understand the traffic pattern of adaptive players and to get some

insights on how to build an efficient streaming system that can also work with en-

crypted traffic.

We divide our analysis into two main scenarios: non-competing scenarios, where

only one video player is streaming, and competing scenarios where two or more video

players are competing for the bandwidth over the same bottleneck.

3.1 EXPERIMENT SETUP

In the experiments, we use a laptop as Wi-Fi Access Point (Wi-Fi AP) running

Ubuntu OS. This Wi-Fi AP is also connected to the Internet using Ethernet inter-

face. In the Wi-Fi AP, we installed OpenvSwitch (OVS) [74] and added the wireless

interface (wlan0) of AP as a port with the OVS bridge. Consequently, all the traffic

coming or going to any of the connected smartphones should pass through this OVS.

In addition, we use Linux Traffic Control (TC) [14] of the Wi-Fi AP to control or

limit the bandwidth of the video traffic. In the experiment setup, we have used three

Android smartphones (two Samsung S5 and one Nexus 5) which are all connected

with the Wi-Fi AP. Moreover, we use iperf [73] to generate UDP traffic as a back-

ground traffic. In our smartphones, we have installed and used the latest version of

YouTube app. This YouTube app comes with a “stats for nerds” option that enable
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Figure 7: The correlation of ON/OFF periods with video encoding rate.

us to observe the quality requested by each player in addition to the buffer status

and the estimated throughput value.

3.2 NON-COMPETING SCENARIO

In this scenario, we capture and study the traffic patterns generated by only one

video player with no competition from other players. We use different videos encoded

with different bitrates and make the player streams from one of the YouTube servers.

For the first experiment, we stream a video with a 480p quality resolution which

encoded at 650kbps (selected manually among different available resolutions) and set

the network capacity at different values to see its impact on the video traffic patterns.

We use the Linux TC at the Wi-Fi AP to control the available bandwidth of the video

player running on the smartphone. In the beginning, we allow the video player to

stream at 3200kbps, and then we reduce the bandwidth after 27 seconds to 1200kbps

for 30 seconds before reducing it again to 650kbps. As we can note from Figure 7,

the duration of OFF period at the steady state shrinks as the throughput rate drops

and getting closer to the video encoding rates, results in totally vanishing the OFF

periods in the last 30 seconds. Therefore, there is a strong correlation between the

length of the OFF period and the video streaming and encoding rates. The existence

of the OFF periods clearly indicates that the playback of the current quality profile

is utterly stable, and experiencing degradation in the viewing quality (e.g., switching

to a lower quality or stalling in the playback) is basically not possible as long as
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Figure 8: An increase in the throughput causes a change in the traffic pattern.

there is no drop in the throughput. On the other hand, the disappearance of the idle

period of the video stream as a result of a drop in the throughput may indicate that

either the throughput is equal (or slightly above), or below the encoding rate. In

the former case, the video playback will not be affected, while in the latter case, the

video playback may or may not be affected depending on some factors such as the

throughput drop level, buffer condition, and the length of the remaining playback

duration. Therefore, it is extremely important for the performance to distinguish

between these two cases and determine whether the drop in the bandwidth would

affect the playback rate. One technique for distinguishing between the two cases is

to determine the video average bitrate.

Since the video traffic is encrypted, knowing the exact value of the video bitrate is

not possible. However, an estimated value would be obtained if we can calculate the

average chunk size and divide it by the average duration of ON and OFF periods. In

fact, this becomes quite possible with the developing of OpenvSwitch which allows

for collecting statistical information about the traffic flows in real time. For example,

we see in Figure 7 that at second 57 the throughput drops from 1200kbps to about

650kbps which completely removes the OFF periods from the traffic patterns. Now

by dividing the average chunk size (800KB) by the average length of both ON and
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OFF periods (10 seconds), the estimated bitrate will be 650kbps which is too close

to the actual value (600kbps). Therefore, the drop in this example can definitely

affect the video traffic in a long play, and a well-designed assistant system should

react to prevent such possible degradation in the video viewing quality. Having this

situation, it will be more efficient to estimate the number of seconds in the buffer

at the time of the drop. This is very important for the performance of the overall

streaming system. For instance, if we get an estimated value of the video encoding

rate and know that the buffer has about x seconds of video frames at the time of

the drop, then the system will be able to infer when the buffer can turn empty and

start harming the viewing quality. In case the degradation would happen after a

considerable amount of time, the system can safely defer its intervention for quite

long time waiting for the condition to be inherently improved (e.g., waits for one

stream to finish downloading a video).

As a matter of fact, each streaming application has its own setting for the buffer.

For instance, our measurement reveals that YouTube app uses a 20MB buffer. This

means that at the time of the drop, the player can continue playing the current quality

for about 20MB divide by an estimated average bitrate. Thus, when the available

bandwidth drops below the encoding rate, we can have an estimated knowledge of

when the player might switch the quality or be subjected to playback stalls. It is

worth mentioning that the disappearing of OFF periods not only happen when the

throughput drops close to video bitrate.

In fact, we identify another scenario that causes the idle periods to vanish. Figure

8 shows the intermittent traffic pattern of a video player streaming video of 400kbps

bitrate disappears for a considerable period of time when the available bandwidth

increased from 900kbps to 1400kbps. The increase in the throughput happens at

second 30, and starting from second 68 the OFF periods disappear for nearly 140

seconds (persistent pattern) before showing up again at time 207. By looking at the

“stats for nerds” option, this is interpreted as the player increases the quality and

re-enters the buffering state in which some of the low quality packets in the buffer

get replaced by high quality packets for the same scene. This quality change can be

inferred from the traffic pattern by looking at the chunk size before and after the

buffering state. We can clearly see from Figure 8 that the video chunks streamed

after the persistent period is much larger in size than the chunks streamed before.

This change in the average chunk size is a clear sign of an increase in video quality
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Figure 9: Traffic pattern of high motion video.

as the chunks of a high quality profile typically have higher bitrate and size than the

lower quality. In case that the OFF periods vanish with no change in the throughput

value, the system can interpret this as the client jumps to time offset in the video

playback.

While switching to a higher video quality, the player, as we mentioned before,

flushes all the buffered packets of lower quality and replaces them with a higher

quality for the same scene. This behavior aims to enhance the QoE by switching and

playing a better quality as soon as the network condition gets improved. However,

switching from low to high quality would introduce a significant waste in the device

and network resources reaches up to 33% of redundant traffic, which would also

Figure 10: Traffic pattern of low motion videos.
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Figure 11: Two video players compete for bandwidth over the same bottleneck.

increase the load on the server [65]. Note that several quality switches can lead to

considerable amount of redundant traffic, resulting in an unacceptable increase in

the cost on users with limited cellular plans.

In videos, we see a mixture of slow and high motion clips such as sports games

or action movie, while in other videos, we see slow motion clips such as news. Note

that, the type of a motion clip in a video has a direct impact on the video encoding

rate. Similarly, the regularity of the ON/OFF period also depends on the variability

of the video encoding rate. For example, in Figure 9, the first two chunks of the video

are for high motion scenes, and have higher encoding rates and data size compare to

the following two chunks with slower motion scenes. Thus the change between the

high and slow motion clips changes the ON/OFF periods to have different length as

in Figure 9. On the other hand, the video chunks represented in Figure 10 have slow

motion scenes with almost the same encoding rates and date size. Thus, in this case,

we observe no changes in the length of ON/OFF periods.

3.3 COMPETING SCENARIO

In this section, we start analyzing the video traffic in more realistic scenarios

where multiple players stream videos concurrently over the same wireless access point.

Figure 11 shows the flow patterns of two devices playing video over the same wireless

AP. To ensure that both devices are exactly under the same condition, we place both

devices at the same distance from the AP and set the players to request the same
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Figure 12: The flow of one player competing with two other players.

video. In addition, we generate background traffic in the wireless network using Iperf

running on a third device to mimic a real-life scenario and make the flows compete.

We first start Player A, and after 30 seconds we start Player B, so at the beginning

Player A achieves high throughput, around 3200kbps, which permits to stream a high

quality profile. However, as soon as the competing flow of Player B shows up, the

throughput temporally drops to 1700kbps. Figure 11 shows aggressive competition

between the two flows, resulting in extreme fluctuation in the throughput. Player

A is clearly getting much higher throughput in average than the Player B which

is experiencing a very low throughput. This unfairness in sharing the bandwidth

lasts for about two minutes before eventually and slowly converse to a fair state as a

result of using TCP as the transport protocol. This slow increase in the throughput

not only reduces the user engagement and affect the video QoE, but also can lead

Player B to pass through all the quality levels before reaching to the final quality that

fits with the fare portion of the bandwidth. This several quality switches results in

flushing out most the packets from the buffer and replacing them with higher quality

at every switch, wasting the network and device resources.

We also examine the influence of the competition between three players. We start

running two players and after 80 seconds we start the third player. For clarity, Figure

12 shows only the flow pattern of the third player. As can be seen from the figure,

the third player can only obtain a very small portion of the bandwidth, making the

player unable to buffer enough packets to start the playback for about 40 seconds.

Under this circumstance, the user could get frustrated, and decide not to stream
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Figure 13: The traffic pattern of two players streaming different video bitrates while
competing over the same bottleneck.

video over the network. Note that having a short start-up delay time is one of the

most important metrics for the QoE. Therefore, it is essential to have a mechanism

that assures a good performance for all players.

Figure 13 shows the impact of different video bitrates on the flow competition

between two players, Player A and Player B. We disable the YouTube auto quality

selection on both players, and manually set the quality levels at 720p (130kbps) for

Player A and 360p (55kbps) for Player B respectively. We start both players at

the same time under the same conditions (i.e., same video and same distance from

Wi-Fi AP). Figure 13 shows that Player A with a higher bitrate stream wins the

competition and dominates the bandwidth. This explains, why Player A in the first

experiment has higher throughput than Player B which starts later. The reason is

that when Player A starts, it gets enough throughput to request high quality video,

while Player B does not find much bandwidth available, thus ends up requesting low

quality video.

Typically, the wireless link conditions of different devices in the same network

vary according to different conditions such as their distances from the AP. Figure

14 shows the result of an experiment in which we use two devices with different

link conditions. At the beginning, we start both players (A and B) while placing

both devices close to the AP, and then we slowly start moving the device that runs

Player B away from the AP. As a result, Player B starts to observe throughput

reduction around time 170s, and the player also loses the competition against Player
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Figure 14: The impact of the wireless link condition on throughput competition.

A which starts to experiencing higher throughput. Note that, in this case, we have

two factors contributing to the quality drop of Player B: the link condition and the

competition between the video flows. Although, we have no control over the link

condition, smarter network management can address the competition issue to have

an acceptable video quality for all users.

Now we turn our attention to understand the impact of the intermittent traffic

pattern of HTTPs adaptive streaming on the QoE. We study and analyze the traffic

pattern of two players at the steady state. Figure 15 shows the smoothed throughput

of these two players. Before second 350, both players (A and B) were stable and

achieved good and fair throughput values, but after 350 seconds, we observe a drop

in their throughput for about 100 seconds followed by a dramatic increase in the

throughput of Player A and a major drop in throughput for Player B.

To understand why Player B loses the competition, Figure 16 zooms into the first

40 seconds of the previous figure. This figure shows how both players were utilizing

the OFF period of each other for the first 25 seconds, and because of a long idle period

of Player B (between second 315 and 325), Player A experiences a huge increase in the

bandwidth during that period. This increase in the throughput causes Player A to

switch to a higher quality profile and to reenter in a buffering state, causing Player B

to lose its idle periods. Therefore, we can infer that Player B was relying on the Player

As released bandwidth (at OFF periods) in maintaining the current quality level. As

a result, both players start competing for bandwidth causing their throughput values
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Figure 15: Smoothed throughput averages of two video streams competing at steady
state.

to go below their current video bitrates. Consequently, their buffers start quickly

draining, and because Player A can slightly gain more bandwidth than Player B in

the competition, the buffer of Player B gets drained before Player A. This causes

Player B to switch down three quality levels at one time (from 720p resolution,

encoded at 1200kbps, to 240p encoded at 400kbps as confirmed by examining the

change in the player's playback resolution) in order to prevent stalls in the playback.

This experiment highlights a problem raised from the intermittent traffic pattern

of HTTP adaptive players and confirms the need for a mechanism to enhance the

performance.

Figure 16: Player A utilizing the huge bandwidth of Player B causing Player A to
switch and dominating the bandwidth.
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3.4 SUMMARY

In this chapter, we studied the traffic pattern of HTTP adaptive streaming pro-

tocol through YouTube player. The aim was to analyze and to understand the

ON/OFF pattern in estimating the video bitrate and buffer size for encrypted video

streams. This traffic analysis was presented as a stand-alone scenario, while in the

competing scenario we examined the performance of the video players when as they

compete over the bandwidth. Our focus in evaluating the performance was mainly

on instability, unfairness, and start-up delay time. As our results showed, under this

competing scenario, the YouTube player was found to be unstable and can cause

long-startup delay time. In addition, we found that competing over bandwidth can

also lead to an unfair share of network resources, results in unbalanced video QoE.
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CHAPTER 4

FLEXSTREAM FRAMEWORK

In this chapter, we introduce and describe our proposed system FlexStream which

is particularly designed and developed to maximize the overall video QoE in the

network. This can be achieved by managing the network resources in an efficient

way according to the network condition and various context information. We start

with giving a short overview of how the system actually works and how different

system components interact and cooperate to optimize the QoE before providing a

detailed description of the role of each system component.

4.1 SYSTEM OVERVIEW

FlexStream is designed to maximize QoE in the access network by allocating the

highest sustainable bitrates to adaptive players while ensuring: (i) minimal variations

in the quality, (ii) minimum number of stalls, and (iii) well-balanced and fair QoE.

FlexStream achieves this goal using a hybrid approach, which takes advantage of both

centralized and distributed components. While a network element, which has a global

view of network conditions, is primarily employed to manage resource allocation for

video flows, monitoring and policy enforcement tasks are offloaded from the network

to end-devices, via lightweight software agents. This alleviates the need for intrusive,

large and costly traffic management solutions within the network, or modifications

to servers that are not feasible in practice [3, 10, 44].

Figure 17 shows the high-level overview of our proposed system “FlexStream”,

where the end device simultaneously opens two communication channels with two

different network entities, the Global Controller (GC) and the media server (HTTP

server). The control channel is used by the end-device to connect to the GC to

receive commands that control and manages the data rate of the second channel

(the data channel) according to the global optimization policy. Intuitively, the data

channel is used to stream video content from the video server. To enable the control

over bandwidth, we deploy both SDN data plane (extended OVS) and the control

plane (SDN controller) on mobile devices. The OVS is installed with a new action
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Figure 17: FlexStream Overview.

added to the kernel module that compels the device to reduce the download rate

to a certain value dictated by the SDN Local Controller (LC). This control of the

bandwidth consumption at the end device provides the ability to stabilize the video

quality through avoiding the competition among video players.

As the LC is deployed on the end device and hence does not have any knowledge

about network conditions beyond its single link, we utilize the GC in the cloud (or in

the wireless network infrastructure) to have a global view of the network condition.

GC receives feedback from the end devices and possibly from the network infras-

tructure too (in case of a cellular network), so it can acquire a good knowledge of

various context information about the users and end-devices in addition to learning

about active streaming sessions and network load. Consequently, GC utilizes these

information to detect bottlenecks and activate the bandwidth control when neces-

sary. Therefore, the GC has a centralized role in managing the bandwidth according

to optimization policies that maximize the QoE in the network or achieves any other

objectives. The device agent, on the other hand, plays an important role in facili-

tating the communication between the local SDN components and the GC. It also
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provides the GC with the necessary information to make the best possible manage-

ment decisions, while translating GC's commands and policies to be understood and

enforced by the local SDN components.

We now can conclude the process of managing video sessions as follows: The

video session management process starts with data collection at end devices. The

DA collects information related to the video session, device characteristics, and con-

text information. This information is then reported to GC for processing. Upon

receiving information from the DAs in the network, and possibly from the network

infrastructure too (in case of cellular or enterprise networks), GC can detect bottle-

necks and take control over network resources, if necessary. In this case, the GC uses

the received information as input to some optimization policy that maximizes QoE

in the network or achieves any other objective. Bitrate allocation along with some

dynamic policy rules, such as location or time context restrictions, are then sent to

DAs for enforcement. Therefore, one of the primary tasks of DAs is to enforce GC

policies.

As we mentioned before, Flexstream takes into consideration different context

information as inputs to the global policy implemented inside GC in managing the

bandwidth to provide a fair share of network resources. This context information

can be classified into four main categories: (i) user context: priority class, prefer-

ences, and location, (ii) device context: screen size and battery level, (iii) network

context: link condition and traffic types, and (iv) environment context: surrounding

luminance. In fact, considering context information is crucial for achieving a high

and balanced QoE in the network. For example, if we have multiple users with two

different priorities (e.g., high and regular class) streaming videos over a shared bot-

tleneck, thus allocating more resources to those with high priority (e.g., emergency

services) to ensure higher video quality is essential for enabling service differentiation.

Similarly, assigning resources to devices in accordance with the type of the generated

traffic (video or background) can substantially improve the overall users experience.

To further realize the importance of considering various context information in

optimizing the service, consider the scenario in Figure 18 where four clients simulta-

neously stream videos over a shared bottleneck. As client A has higher priority (e.g.,

paying more money for the service or has an high rank in an organization) than the

other three clients, the system should provide better service (i.e., video quality) to

client A by assigning more bandwidth (or guarantee a minimum rate) to A's player.
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Figure 18: Example Scenario.

Similarly, to maintain a balanced QoE in the network, client C might get a higher

quality than clients B and D due to its bigger screen size. On the other hand, since

client D device experiences a poor signal because of its distant location from the AP

along with several obstacles in the path, the system should be aware of this situation

and react to prevent other competing players from starving it. Therefore, considering

all these factors when managing the bandwidth can considerably help FlexStream

improving the overall QoE in the network.

We note that GC could be deployed in the public or network operator clouds, or

at the network edge. We envision that the GC can be operated by content providers,

network operators, or individuals in their private networks. Deployments at the wire-

less access points for home or enterprise networks, or at mobile edge nodes, would give

GC a better view of network conditions and device contexts, enabling it to manage

bandwidth over the shared bottlenecks more effectively. Furthermore, it enables us to

easily conduct service differentiation among classes of devices. In addition, through

communication between the end devices and GC, Flexstream takes into considera-

tion different context information as inputs to the global policy implemented inside

GC in managing the bandwidth to provide fair share of network resources.Different

device contexts, comprised of video stream information, screen sizes, priority levels,

radio signal characteristics etc., are used as inputs to the global policy implemented

inside GC.
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4.2 SYSTEM ARCHITECTURE

Figure 19 shows the main system components and their key modules. Here we

briefly describe each component and its main tasks.

4.2.1 END-DEVICE COMPONENTS

There are three main components deployed on the end device: the DA, LC, and

OVS. The DA runs in the background and oversees functions of several modules, in

addition to mediating communication between local components and the GC. Crucial

to the operation of FlexStream, the DA listens to all important events (e.g., start

streaming, bitrate switch) and monitors local context related to the video stream, and

promptly informs the GC for appropriate action. To reduce the overhead and keep

the DA as light as possible, we set the DA to run every 2 seconds, which approximates

the minimum interval between two consecutive video segment requests generated by

adaptive players in the steady state [4]. However, this sleeping period can be set

dynamically by observing the player OFF period average length (using SDN data

plane) to further reduce the overhead. At each run, the DAs send an update to the

GC. An alternative approach is that reporting an update would only be triggered

by a change in the context including the average throughput, to reduce bandwidth

overhead and avoid overloading the GC. However, even with periodic updates, the

overhead would be limited with such time interval. In addition, since most adaptive

players use 30 seconds of playback buffer or more [55, 35], the GC can always react

before the QoE would be impacted in practice.

The DA consists of several modules. The Context Monitor is initially responsible

for observing and reporting a streaming event by combining netstat log data with

the data fed by HTTP Inspector. The main task of HTTP Inspector is to report

video encoding rates by inspecting the manifest file sent to the player prior to the

streaming session. The HTTP Inspector then keeps monitoring and inspecting the

HTTP requests sent by the video player to the server to know about the bitrate of the

next video segment, but only notifies the QoE Monitor module if there is a change in

the requested bitrate. If the session is encrypted, then the Bitrate Estimator module

is alternatively invoked to estimate the bitrate, which initially relies on recognizing

the streaming application and then following the bitrate guidelines of its provider.

Once the player reaches the steady state, the Bitrate Estimator starts a process of
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monitoring video flow statistics and patterns (segment size and ON/OFF duration),

through SDN components, to make another estimation and adjust the assigned re-

sources accordingly. The aim of this adjustment is to avoid inefficiency in utilizing

network resources, when the assigned bandwidth is too high, and also to avoid any

degradation in QoE, when the assigned bandwidth is too close from the video bitrate.

Note that this module uses the length of ON/OFF periods of the adaptive player as

an indicator of the error in bitrate estimation. For instance, if the players generates

a long ON period (long download) followed by a short OFF period (e.g., ON=10 s

and OFF=1 s), then we consider the allocated bandwidth is inappropriately tight,

and vice versa.

In addition, Context Monitor oversees the device context, which may contain both

physical device characteristics (e.g., screen size, radio capabilities, network interface),

user preferences (e.g., preferred interface), and administrative context (e.g., priority

class). It provides the function to monitor and report the device context to the GC.

Once the player starts streaming, the video quality is monitored by QoE Monitor

module. To reduce overhead, the QoE Monitor is only required to periodically check

the average throughput to ensure the sustainability of the current bitrate. Therefore,

there is no need for the HTTP Inspector to constantly inspect each HTTP request for

the requested bitrate, as long as the average throughput does not fall below the target.

Note that the throughput is estimated by monitoring the flow statistics through SDN

components (local controller and OVS). The QoE Monitor is also required to report

any switch in the video bitrate requested by the player to the GC.

At the higher level, the Policy Engine is responsible for maintaining and enforcing

the policies received from the GC. This is achieved by instructing the LC to install

new actions in OVS flow table. Note that these policies are dynamic and programmed

based on the context. For instance, the GC can restrict streaming HD videos (due

to high bitrate) at specific times or locations (base stations), or set the bitrate of

background traffic to different values based on the application type that generates

the traffic.

Since bandwidth control is a mechanism to implement a policy in our use case,

the Rate Handler module translates the bandwidth share assigned by the GC into

whatever the local implementation requires. As detailed later in the paper, we use ad-

justment of the TCP receive window (rwin) to limit the TCP connection throughput,

as one example mechanism of control applicable to the use case of video streaming.
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Figure 19: FlexStream system architecture.

Thus, the Rate Handler's role is to derive the appropriate rwin from Round Trip

Time (RTT) of video stream packets either upon request or if there is a significant

change in the RTT that could impact throughput (± 100 Kbps).

To modify TCP packet rwin in the data plane, we leverage OVS on the end

device. OVS is a programmable software switch which acts as the data plane in

the kernel space of the system, controlled and managed by the local controller via

OpenFlow protocol. In FlexStream, OVS uses the extended OpenFlow protocol to

receive the rwin modification action and insert it into the action field entry in

the flow table. Once a match in the flow table is detected, then the rwin field

in the TCP header of the matched packet is modified to the received value. Note
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that in addition to this newly added action, OVS is leveraged by FlexStream to

provide other functions including routing traffic between different network interfaces

and collecting flow-based statistics. In our implementation, when a background flow

(e.g., an app update) starts competing with video flow on the same device, one of the

options that FlexStream uses to maintain high QoE is to utilize the OVS in routing

the background traffic over another network interface, if possible (according to user

preferences).

Finally, to control OVS from the user space, we employ the Local Controller

(LC) as a separate component from DA to enable other systems to leverage SDN

data plane for their own services. The LC represents the control plane in the SDN

architecture. Its main function is to manage the OVS and handle the flow rules

within the flow table. In addition, the controller can instruct the OVS to return the

flow information maintained in its flow table. In FlexStream, the LC communicates

with the DA through the northbound API in order to receive the control commands,

and then uses the extended OpenFlow protocol through the southbound API to send

a rate limiting action (and rwin) to the OVS.

4.2.2 GLOBAL CONTROLLER COMPONENTS

The GC consists of the Network Monitor and Policy Manager. The Network

Monitor tracks network conditions and device states, such as video QoE of all devices

under control. To ensure stable and fair QoE in the network, the GC collects and

maintains device context including video meta-data, such as bitrate profiles, in the

Stream Table.

As part of monitoring task, the GC allows DAs to send several notification mes-

sages in regards to the performance. The GC, in fact, can have different interpre-

tation of the same notification messages. For instance, if a considerable drop in the

average throughput is reported while the wireless channel of the reported device is in

good shape, the GC interprets it as an indication of network load increase which can

lead to players competition. However, if the drop in the throughput is reported in

conjunction with a bad wireless link from only a single device, the GC interprets this

drop as a result of week wireless signal. In this case, the GC may decide to activate

the control over the bandwidth in order to prevent other players from getting its fair

share of network resources, which would harm the user experience.

Note that some of the context information is only required at the beginning of
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the streaming session, such as video bitrate profiles and device characteristics, but

other information is needed periodically or upon significant events, such as pause

or end of stream, throughput change, etc. The Policy Table is used to hold the

optimization policies set by the administrator. When bandwidth control is required to

improve performance, the Optimization Module is invoked on the policy by the Policy

Manager. It uses the information maintained in both tables to assign bandwidth to

video flows according to the optimization policy. For admitting a new stream, GC

also runs an admission control algorithm [77] to ensure that there is enough resources

that supports at least the lowest available video bitrate. This is always done right

after inspecting the manifest file to get video meta data.

4.3 SUMMARY

This section introduced FlexStream Framework with the focus on defining its

operation process and main modules. We started the chapter by giving an overview

of the FlexStream and how the process of managing the video sessions is initiated

and managed. In addition, we presented the two SDN components that we deployed

on the mobile device and their main role of enforcing the GC policies. Then we

described the system main components/modules in details including DA and GC.

We also described the main modules of these two main components (DA and GC)

and how these modules interact to achieve certain tasks.
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CHAPTER 5

IMPLEMENTATION

We start this chapter by describing the video session workflow, and then we move

to explain some implementation details of FlexStream's main components.

5.1 SESSION WORKFLOW

As soon as the client joins the network, the device agent establishes a commu-

nication channel with the GC through sending a registration request message. This

message should include the wireless access point unique identifier in addition to

client's account information. Note that in cellular networks, it is possible for a client

to get the tower ID number, while in the WiFi networks, we can use the MAC or IP

address, which should be public, of the wireless AP as a network identifier. The GC

in turn retrieves the client profile from its internal database to determine the client's

privileges. The client then is added to the active client table leaving a streaming flag

unset.

During the initial startup phase, certain information such as client device capabil-

ities are shared with the GC. Since the user agent is designed to remain active in the

background, it is leveraged to detect the start of the streaming event via monitoring

the active network sockets (netstat logs) and their bindings, which is available in

the Android OS. Upon detecting the streaming events, different device agent com-

ponents are activated which initially send a streaming notification message to the

GC. This message carries different pieces of information such as video meta data and

context information. The QoE inspector parse the Media presentation Description

(MPD) file to get video meta data and send it to the GC. It also continues inspect-

ing the HTTP requests and reports any change in current video bitrate or in the

average throughput. Similarly, the context monitor shares any major changes in the

device or client context with the GC. On the other side, once the start streaming

message reaches the GC, it adds the new stream to the active streaming table and

checks the network condition. If the network becomes saturated and the players start

competing for the bandwidth, the controller immediately activates the control over
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the bandwidth by invoking the optimization function. This function distributes the

bandwidth among the end devices according to the optimization policy, and then

sends each device its fair portion. On the end device, once the rate limiting handler

receives the assigned rate, it calculates the TCP receiving window which will be then

passed to the SDN local controller through the API northbound. The SDN controller

in turn uses the OpenFlow protocol to add a new flow to the OpenFlow table on

OVS with our new action that modifies the TCP receiving window to limit the media

server sending rate.

5.2 IMPLEMENTING OVS BINDING ON ANDROID

It is challenging to bind OVS to the local network stack and add the physical

network interface (e.g., WiFi or 3G/LTE) as a port to OVS. This requires us to

remove the IP address of the physical interface and assign it to the OVS to enable

forwarding traffic to its internal device, as is the case with other Linux bridges.

Otherwise, the traffic will stop at this interface and will not reach OVS. While possible

to successfully implement such configuration on the WiFi interface (wlan0), this fails

on the cellular interface as it uses different technologies and protocols to connect to

its base station. In fact, simply moving the IP address of the cellular interface to

OVS is unattainable as it immediately breaks the connection between the end device

and the base station, causing the interface configuration to reset and assign a new

IP address. Due to this challenge, a typical way to avoid this problem is to utilize

a WiFi access point as a mediator. However, this approach limits the practicality

of such a solution. To overcome this challenge and allow for direct experimentation

over cellular network, we should find a way to properly bind the cellular interface

(i.e., adding it as a port to OVS) without dropping its connection with the base

station while allowing the traffic to go through OVS. This is achieved by adding the

cellular interface with its IP address, assigned by the network, as a port to the OVS,

which is configured with a different IP address. Then we install a number of rules

to the OVS flow table to rewrite the destination IP and MAC addresses (for ingress

packets) with OVS addresses, to force the traffic to go (to the upper layers) through

OVS internal device once it hits the cellular interface. Similar actions are applied for

egress traffic, but in this case the IP and MAC source addresses are overwritten with

the cellular interface addresses instead. We also enable IP forwarding in the kernel

space and make appropriate changes to the routing table.



43

Figure 20: Performance of the TCP flow control in shaping the traffic.

5.3 RATE LIMITING APPROACH

The popular technique to limit the bandwidth for ingress traffic on Linux based

devices is to use TC Qdisc policing of iproute2 utility package. However, this tool

implements the policing via Token Bucket Filter which works by discarding the traffic

when exceeding a certain limit. This implies that successfully received packets will

be dropped at the end device which lead to unacceptable waste in the device and

network resources. Moreover, this technique of limiting the traffic can cause the

server to take a long time to respond to the shaping action, and before responding

the packets will keep coming at the same rate causing more packet loss. These

two drawbacks (packet loss and rate limiting delay) makes the TC tool not ideal

for limiting the rate by FlexStream. To avoid these drawbacks and provide a more

efficient way of shaping the traffic, we decided to limit the bandwidth using the TCP

receiving window. In fact, the main advantage of this technique is that the server

can be notified to reduce the rate fast enough. When the traffic shaping is activated

at the end device, the FlexSteam starts intercepting the outgoing packets (sent by

the video player to the server) and modifying the TCP receiving window according

to the desired limit. In addition to the fast response by the server, no traffic loss can

be incurred by this technique.

In order to use the TCP receiving window to limit the traffic, the round trip time
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between the client device and the server should be computed before sending the next

request. Therefore, we add a function running in the background which periodically

inspects the RTT value. Although we can modify the OVS to calculate the RTT

for the actual video packets, we simply choose to send ICMP packets to periodically

ping the server prior to sending the chunk request. This decision of using the ICMP

packets stems from the fact that the adaptive video players have idle periods followed

by active periods. As a result, when the player switches ON after a long idle period

to fill its video buffer, the last computed RTT value of the last received packets might

not reflect the actual value. In our implementation, we use the following formula for

calculating the TCP receiving window assuming that the wireless channel is perfect

and does not incur any packet loss:

Rwnd = (RTT ∗Ratelimit)/scalingfactor (1)

The TCP window scaling factor can be easily determined from the three way

handshake packets exchanged between the client and the server. Figure 20 shows

a real experiment that is conducted to show the performance of rate limiting using

the TCP flow control mechanism. To make the experiment as realistic as possible,

we set the player to stream a real Dash video from a server on the internet via a

large U.S. cellular carrier. Starting out, the player streams at 2500 Kbps, and after

120 seconds we set the TCP receiving window to limit the traffic to 2000 Kbps for

60 seconds before reducing it to 1300 Kbps. The calculated RTT value during the

experiment was around 100 ms, thus to limit the rate to 2000 Kbps and 1300 Kbps,

the TCP window (with disabling the scaling factor) is set to 26000 and 16000 bytes

respectively. Even with high fluctuation in the RTT values (±20 seconds), it is clear

from the figure that the achievable throughput by the player is reasonably stable and

too close to the desired rate. Moreover, the player is successfully forced to reduce the

requested bitrate when limiting the rate to 1300 kbps. Note that, we implement our

system such that the TCP window is updated whenever there is a significant change

in the RTT value.

5.4 EXTENDING SDN PLANES

As FlexStream is designed to shape the traffic by modifying the TCP receiving

window, we are required to extend the SDN data plane to rewrite the TCP receiving

window field in the TCP header for the outgoing packets sent from the player to
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the video server. Therefore, to force the traffic to go through the OVS, we bind the

OVS to the local network stack and add the physical network interface (e.g, WiFi or

3G/LTE) as one of OVS ports. In FlexStream, the OVS works by forwarding packets

between two ports: OVS internal port and the physical interface which now functions

as a port within the OVS. When a packet arrives at the OVS kernel datapath, which

contains part of the flow table, coming from the wireless interface, it checks whether

the packet matches any flow entries. If the match found, then the corresponding

action is executed. Otherwise, (in case of a new flow) the packet is forwarded to

the ovs-vswitchd, userspace daemon that implements the switch, to learn the about

the desired action. These actions may specify forwarding, dropping, modifying, or

sampling the packet. Packet modification is in our interest to enable the header

modification.

In fact, OVS is designed to perform a limited number of packet modification

actions such as rewriting Ethernet/IP source or destination addresses. The challenge

here is that the action field for “set” instruction in the flow table entry comes with a

limited size, and adding a new action to this field requires a change in the size of the

data structure to not only the flow table in the datapath, but the modification needs

to propagate to the user space and OpenFlow protocol. Whenever a packet matches

with a flow entry, the execute set action function, which responsible for modifying

packet header fields in the datapath, is invoked. This function in turn calls and

passes socket buffer ”sk buff ” and the new window value, to be written, to our new

added function ”set tcp window”, which perform the TCP modification field after

makes the TCP header in the sk buff writable. We also modified the SDN controller

on a mobile device to support this new action. As the OpenFlow protocol is used by

the controller to speak to the OVS user space, the OpenFlow protocol has also been

extended to support the TCP window modification action as well.

5.5 ESTIMATING VIDEO BITRATES FOR MANAGING

ENCRYPTED STREAMING SESSIONS

The functionality of FlexStream is already extended to also manage encrypted

streaming sessions. This becomes an essential feature since several video providers

have already adopted encryption for video delivery. However, managing encrypted

sessions is extremely challenging since the video meta data can no longer be obtained

by intercepting the manifest file which is typically sent by the server to the player
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at the beginning of the streaming session. Moreover, the HTTP requests sent by

the player to the server is also encrypted. This makes detecting the bitrate of the

newly requested segments by checking the HTTP get request header is impossible.

One solution to overcome this challenge is to assign an amount of bandwidth to the

encrypted session equal to those sessions which have similar priority, screen size,

and other contextual factors. However, even though this solution looks fair enough

to be adopted, it can lead to an extreme case of bandwidth underutilization. For

instance, suppose that the fair share of bandwidth assigned to an encrypted session

by the system is 2 Mbps. If the maximum bitrate profiles of this streaming video is

much less than this value (2 Mbps), say 0.5 Mbps, then we end up wasting about 1.5

Mbps for just one session. If we have more similar situations, then the bandwidth

underutilization will be considerably increased. However, this waste in the bandwidth

does start until the player transits from the buffering state to the steady state, in

which the player starts generating ON/OFF patterns.

Fortunately, during the buffering state, assigning high throughput compared to

the video bitrate can rather reduce the startup latency and make the player converge

to the target (highest possible) bitrate much faster, without causing any waste in the

bandwidth. Consequently, we only need now to eliminate the bandwidth waste during

the steady state through adjusting the traffic shaping value and then reassigning the

resulting (extra) bandwidth to other sessions by re-invoking the optimization module.

To this end, we need to estimate the current video bitrate as soon as the player

switches to the steady state. We utilize the OVS on the mobile device to calculate

the length of the ON and OFF periods as well as the segment size downloaded during

the ON period.

For determining the total size of the video segment downloaded by the player,

we leverage the byte counting feature of the flow table which is inherently supported

by the OVS datapath. The total number of received bytes of all received chunks

then can be retrieved through the SDN controller using any query command such

as “dump-flows”. By comparing the number of bytes before and after receiving a

video segment, we can accurately obtain the segment size. The OVS datapath also

supports several flow related timers such as “idle age”, which gives the amount of

time that has passed without observing any packets of the video flow passing the flow

table. We wrote a script using C language which developed to interact with the SDN

controller to utilize some of these timers and find out the length of ON and OFF
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periods. By knowing the segment size downloaded during the ON period and also

the length of this ON period in addition to the length of subsequent OFF period,

the video bitrate can be determine by dividing the segment size by the total time

of these two consecutive periods. FlexStream then sets the throughput rate of the

video session slightly above the video bitrate in order to be sustained as we describe

in the next chapter.

5.6 HEURISTIC BANDWIDTH MANAGEMENT ALGORITHM

In this section, we begin with introducing a heuristic algorithm for bandwidth

allocation which can give a solution to the problem close to the optimal solution

within a reasonable time complexity. However, we dedicate the following chapter

to formulate an optimization problem and introduce an optimal solution to this

bandwidth allocation problem.

Our system is triggered by two events: when the total video bitrate of all players

reaches a predefined threshold, or when one of the players unfairly gets a lower quality

(e.g., due to bad wireless link). Algorithm 1 shows the pseudo code for bandwidth

allocation. The algorithm takes as inputs C: the total bottleneck capacity, Cthresh:

the reached bottleneck capacity that triggers bandwidth control, N : the number of

active players streaming a video, {b1,...,bK}: bitrate profiles (we use the same profiles

across devices for simplicity), {z1,...,zL}: device screen resolutions, and {c1,...,cK}:
the current bitrate requested by all players.

We consider that the end devices come with different screen sizes and each device

does not request bitrate with a resolution higher than its screen resolution. Moreover,

to enable priority assignment, devices are classified into two main classes, high and

regular class. We also assume that the number of devices with high priority M is

much smaller than the number of regular users N −M . We set the threshold Cthresh

to be 75% of C, where we empirically observe that players usually start competing

for bandwidth which can lead to instability.

Therefore, if the total requested bitrate does not exceed this value, algorithm re-

turns without initiating the bandwidth control (L2); otherwise, it initially assigns the

highest quality profile to each device, whether it has a high or a regular priority (L3).

Then, it gradually reduces the bitrate profiles one level at a time for regular users

only, starting with the smallest screen size among those devices getting the highest

bitrates, until the network capacity can accommodate the total bitrate profiles of all
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Algorithm 1 : Bandwidth Allocation

INPUT: C, Cthresh, N , M , {b1,...,bK}, {z1,...,zL}, {c1,...,cK}
OUTPUT: ri - rate limits

1: Calculate btotal =
∑N

n=1 cn
2: if btotal < Cthresh & cbn == bK , ∀n = 1, ..., N then return

3: Set target bitrate tn = bK ,∀n = 1, .., N .
4: Calculate the new bandwidth capacity CNew = C −M × bK .
5: For the (N −M) regular users only do the following:
6: while

∑N−M
i=1 (ti) > CNew do

7: Find the session j with the smallest screen size from those which have the
highest bitrates.

8: Reduce tj one bitrate level.

9: Calculate ri = C /
∑N

n=1(tn) * ti, ∀i = 1, .., N.

sessions (L6-8). Note that the devices with larger screens are allowed higher bitrates

only when demand exceeds Cthresh, i.e., competition starts and does not allow all

devices to stream at the same bitrate. Further, the algorithm ensures that the maxi-

mum difference in bitrates across regular devices can not exceed one level regardless

of the size of the screen. Finally, once total demand is within capacity, the rest of the

bandwidth is distributed based on the assigned bitrate (L9). Once ri is computed by

GC, it is sent to DAs on each mobile device. The GC may release the control over

the bandwidth or reallocate the bandwidth as some players join or finish streaming.

We set the threshold to be 75% of the total network capacity C. Above this value,

we have observed, through several experiments, that players may start competing for

bandwidth which can cause instability in video quality for some players. If the traffic

load reaches the threshold, the algorithm initially assigns the highest quality profile to

each session, and then it starts reducing the bitrate profiles one level for regular users

only, one at a time, starting devices with lower screen sizes till the network capacity

can accommodate the total bitrate profiles of all sessions. Once rj is computed by

GC, it will be sent to user agents on mobile devices for bandwidth enforcement. The

GC may release the control over the bandwidth or reallocate the bandwidth as some

players finish or start streaming.
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5.7 SUMMARY

This chapter stated with explaining the session work flow of FlexStream. We

explained how the data move from one components to another to achieve the target

tasks. Then we turn into describing some implementation details and some of the

challenges that we encounter during the development of FlexStream such as binding

OVS with LTE interface and extending OVS function for rate limiting. In addition,

we described our methodology for traffic shaping which uses TCP flow control mech-

anism. Finally, we introduced a heuristic algorithm for network resources allocation

to manage video sessions.
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CHAPTER 6

FLEXSTREAM OPTIMIZATION MODULE

6.1 INTRODUCTION

As we mentioned before, our system Taking control over network resources by

GC is generally triggered by two events: when the total video bitrate of all players

reaches a predefined threshold or one of the players unfairly gets lower quality (e.g.,

due to bad wireless link). Once the control is activated, the optimization module

is invoked to manage network resources. The main objective of this module is to

optimize resource allocation over a set of performance metrics that maximize the

overall QoE across all users. Specifically, we formulate an optimization problem to

determine the highest possible set of video bitrates across all sessions that guarantees

a fair share of resources with minimum quality variations and stalls. To ensure a

well-balanced and fair QoE, we consider several context factors in the formulation

of the optimization problem including user priority, device capability (screen size),

surrounding luminance, link condition and traffic type, to differentiate between video

and background traffic.

6.2 PROBLEM FORMULATION

Let B be the total link capacity that is shared by N active video sessions. We

assume that each requested video i is encoded at Ki bitrates such that rij denotes

the bitrate j of video i. We define a utility uij as a function of video bitrate that

returns the value of selecting a bitrate j for video session i, and we define it as:

uij =
a∏

l=1

βil. log(rij) (2)

Our choice of the logarithmic utility function comes primarily from its properties

of diminishing returns as the bitrate increases. This property ensures a proportional

share of network resources among all users. Note that the log function is widely used

as a utility function for rate control in wireless networks [42, 64]. To account for



51

context factors in the utility, we weight the bitrate with a set of positive parameters

corresponding for the considered context factors. For example, if we want to consider

for user priority, screen size, surrounding luminance and background traffic for video

session i, we choose a to be 4 and assign positive weights to βi1, βi2, βi3, and βi4

respectively. In this example, βi1 is used to assign different priorities to different users

while βi2 expresses how much more value is assigned to a device with a large screen

size (e.g., tablet) than to the one with a small screen size (e.g., phone). Similarly,

as the surrounding luminance has a considerable impact on the perceived image

quality [78], βi3 can be set to have larger values for those devices located in the dark

environment (e.g., indoor) than those in a bright environment (e.g., outdoor). In

addition, βi4 is used to assign more value to the video flow than the background

flow. Once again, the aim of this utility adjustment is to guarantee balanced QoE in

the network in addition to enabling quality of service differentiation based on traffic

types and different contexts. Given this utility function, the optimization problem is

defined as the maximum sum of the utility functions uij across all video sessions as

follows:

max
xij

N∑
i=1

Ki∑
j=1

(uij − µδij)xij (3)

subject to
N∑
i=1

Ki∑
j=1

(εrij)xij ≤ B (4)

Ki∑
j=1

xij = 1, xij ∈ 0, 1 ∀i (5)

Where δij is a penalty function that we use to minimize the fluctuation in the bitrate.

As we show later, our definition of δij can also assist in reducing stalls. The δij

function is of the form:

δij =

|rij − ric|si + (m− d ti
k
e), t < tthresh

|rij − ric|si, t ≥ tthresh
(6)

This definition of δij takes into consideration a number of important factors that

impact the stability aspect of video QoE. First, the term |rij− ric|, where ric denotes

the current bitrate of video session i, ensures that the penalty increases in line with

the amount of bitrate variation. In other words, jumping across several bitrates at
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once is not recommended and will result in a larger penalty. This stepwise decrease

in the video bitrate, in turn, prevents a large drop in the assigned bandwidth to any

video session, hence reducing the possibility of having stalls in practice. Moreover,

this penalty increases as the total number of switches si of session i increases. We

also account for the time period between bitrate switches. We aim to ensure that

there is enough time tthresh between any two switches that might be experienced.

The term (m− ti/k), where m is the maximum penalty that can be applied while k

is a scaling factor, will result in a significant penalty when the time period from the

last switch ti is short. Note that this penalty function requires each DA to maintain

a history of the number of switches si as well as recording the time of the last bitrate

change ti. In addition, this penalty is not applied to background flows as it is only

used for stabilizing the video session.

In the objective function (3), we include a tunable parameter µ to tradeoff between

delivering high bitrate and stability. This parameter allows the network operator

to customize or balance the objective between maximizing the bitrate delivery and

stability. For instance, if the objective is to minimize the number of switches, then µ

should be set to a large value, while assigning a small value to µ will result in higher

average bitrate at the expense of stability. In our implementation, we set µ=1. The

indicator variable xij in the objective function is used to represent the selected video

bitrate for session i such that xij is equal 1 when bitrate version j is selected, and

0 otherwise. The inequality (4) indicates that the optimization formula in (3) is

restricted by the total available bandwidth at the AP. In addition, we use a constant

ε in (4) to account for the conservative behavior of adaptive players. Most adaptive

players tend to keep a safety margin between the requested bitrate and available

bandwidth to avoid any unnecessary bitrate variations. Although different players

may use different margins, we notice that most of commercial players converge to the

target version when the available bandwidth reaches 35% above the video bitrate.

Therefore, FlexStream initially sets ε=1.35, and then this value can be reduced once

the target bitrate is reached, in order to improve resource utilization.

To ensure high resource utilization and to maximize the QoE in the network, we

take into consideration the maximum achievable TCP throughput for each client. Ac-

cording to [57], this value is subject to the following factors: Round Trip Time RTT ,
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Maximum window size rwinmax, probability of packet loss p, the number acknowl-

edged packets b, and average retransmission timeout T0 and can be approximated by

the following model:

Gi(p) ≈ min

(
rwinmax

RTT
,

1

RTT
√

2bp
3

+ T0min(1, 3
√

3bps
8

)p(1 + 32p2)

) (7)

Where Gi denotes the maximum achievable throughput for client i. Note that this

maximum throughput is limited by the first term when probability of packet loss p

is low. Therefore, Gi should be calculated by all DAs and reported to the GC before

the optimization module is invoked. Then, to avoid assigning infeasible video bitrate

j to session i, due to limited throughput, the following constraint is added to each

session i in the optimization problem:

Ki∑
j=1

rijxij ≤ Gi ,∀ i (8)

6.3 PROBLEM SOLUTION

6.3.1 MAPPING THE OPTIMIZATION INTO MULTIPLE-CHOICE

KNAPSACK PROBLEM

The optimization problem (3) can be clearly map-ped to a multiple-choice knap-

sack problem, in which one item in each class of items must be selected with the

objective of maximizing the profit without exceeding the knapsack capacity. Each

video profile in our problem corresponds to a class of items while each bitrate that

belongs to the video profile represents an item within that class. Similarly, the total

available resource maps to the knapsack capacity, while the utility function represents

the profit of selecting an item.

6.3.2 DYNAMIC PROGRAMMING ALGORITHM

Intuitively, an exact solution for this problem can be obtained using Dynamic

Programming (DP) within pseudo-polynomial time complexity. In order to apply DP,

we start by defining a bandwidth step size s in which we use to discretize the total link
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capacity B into a series of Z incremental capacity values {0, s, 2s, 3s, . . . , zs, . . . , B}.
Then, for each video session i we calculate y(i, z) for each capacity value zs as follows:

y(i, z) = max
1≤j≤Ki

{hij|zs ≥ wi,j}, ∀ 0 ≤ z ≤ Z = B/s (9)

where y(i, z) represents the maximum utility of video session i when the available

bandwidth is zs, while hij=(uij − µδij), and wi,j=(εrij) as defined in (3) and (4),

respectively. Note that the constraint in (8) excludes any infeasible video bitrate.

Then, we can solve the problem via DP in a bottom-up fashion using the following

recurrence:

Y (i, z) =


y(i, z), i = 1,∀z

max
0≤a≤z

{Y (i− 1, a) + y(i, z − a)}, 2 ≤ i, ∀z
(10)

where Y (i, z) is the total maximum utility that can be obtained for all i video sessions

when the available bandwidth is zs. Note that at each step, the optimal utility for

session i is determined by selecting the highest utility among its Ki bitrates under

their bandwidth requirements zs − wij. Using this recurrence, we calculate Y (i, z)

in a bottom-up fashion for all i and z until we calculate Y (N,Z) that represent

the total maximum utility for all N video sessions when the available bandwidth is

B. Once Y (N,Z) is obtained, we then perform a usual trace back to construct the

optimal set of video bitrates that lead to the optimal solution. Algorithm 2 lists the

summary of the dynamic program used by GC for the network resource allocation

to video sessions.

6.3.3 ALGORITHM COMPLEXITY AND OVERHEAD

Given number of possible bitrates for a video session is quite limited in practice

(e.g., |Ki| ≤ 10), and careful implementation of the dynamic programming steps, the

complexity of this solution will be O(NZ). Given that the running time depends

on N and |z|, its overhead is within sub-second level for the typical practical large

values. For instance, when N = 400, K = 8, B = 200 Mbps, and s = 100 Kbps,

the execution time on a single-core Intel 2.20 GHz processor is about 400 ms. As

we pointed out before, this small time overhead would allow the GC to react in time

before the QoE can be affected. However, if the execution time occasionally becomes

larger and above certain threshold, then FlexStream can speed up the execution time



55

Algorithm 2 : Algorithm for solving the optimization problem using Dynamic
Programming

Variables: Number of video sessions: N , Video session index: i, Bitrate index: j
INPUT: Video bitrate profiles rij, Utility yij, Bandwidth steps: z, Safety margin:
ε, Total system capacity:B
OUTPUT: Selected bitrate profile for each video session xij, xij ∈ [0, 1]
Repeat: Each time there is a video session starts or finishes or there is a considerable
change in the network condition

1: for i from 1 to N do
2: for j from 1 to K do
3: wij = ε× rij
4: sort wi1 ≤ wi2 ≤ ... ≤ wi,Ki

5: if
∑N

i=1wi1 ≥ B then
6: assign the lowest bitrate profile to each video session and exit.

7: for i from 1 to N do
8: for j from 0 to B, j=j+z do
9: Y (i, j) = 0

10: for i from 1 to N do
11: for j from 0 to B, j=j+z do
12: for j from 1 to K do
13: Y (i, z) = max(Y (i− 1, z − wi,j) + yi,j, Y (i, z))

14: ourput the solution that produces Y(N,Z)

by reducing the granularity of z by increasing the bandwidth step size s without

empirically sacrificing the optimality of the solution, or by utilizing one of the well-

known approximate algorithms [59, 54] that guarantees faster execution to be within

this sub-second level at the cost of deviating from the optimal solution.

6.4 CONCLUSION

This chapter introduced an optimization problem that optimizes the network re-

sources allocation to different video sessions. The aim is to enable the players to

stream the highest possible set of video bitrates while maintaining a fair share of

the network resources with minimum quality variations and stalls. In addition, we

take into consideration several context factors in the formulation of the optimiza-

tion problem including user priority, device capability, surrounding luminance, link

condition and traffic types to ensure high, well-balanced, and fair video QoE. The

optimization problem is defined as the maximum sum of the utility functions (log
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functions) across all video sessions. We mapped the problem into a multiple-choice

knapsack problem in which we select one video bitrate from each video session profile

that maximizes the total streamed bitrates within the system capacity, then we used

dynamic programming to solve this optimization problem.
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CHAPTER 7

EVALUATION

In this section, we evaluate FlexStream through real implementation on mobile

devices in WiFi and cellular networks, in addition to emulated environment for larger

scale experiments. Since our implementation does not involve any modification to

the network infrastructure, the testbed described below is the same for both networks

(WiFi and cellular).

7.1 EVALUATION METRICS

Several objective tests have been conducted to evaluate the performance of the

proposed techniques in the literature using several QoE metrics. We select five of

these evaluation metric that are most important for the users QoE. The following

are the description of these metrics used in our evaluation:

1. Instability: Previous studies have shown that the instability in the video bi-

trate during the playback has significant impact on the user's watching experi-

ence. We simply measure the instability as the number of switches that occurs

throughout the video playback duration. Intuitively, the lower the number of

switches, the better viewing experience the user can get. Therefore, the goal

of our system is to minimize the number quality switches.

2. Inefficiency: One of the ultimate goals of FlexStream is to make streaming

videos more efficient by maximizing the average video bitrate taking into con-

sideration the available bandwidth for video sessions in the network. We mea-

sure the quality by calculating the average bitrate of all video chunks requested

by the video player.

3. Playback Fluency: It is defined as the number of playback freezes and the total

duration of all these freezes during the video streaming time. The aim here for

FlexStream is to minimize the number of stalls and the duration of each stall

if it could not completely avoid them.



58

Global Controller (Ubuntu 
14.04)

Proxy Server (Squid v3.1)
TC Linux to limit the traffic

HTTP Server (BBC)

Cell Tower

Internet
Media stream

Nexus 7  (7”)

Nexus 4  (4.8”)

Big Buck Bunny 
Video

Figure 21: Testbed used in conducting the experiments.

4. Startup Latency: The startup latency is defined as the time between the first

segment request sent by the player and when the playback starts. At this stage,

we defer computing this startup latency to future work.

5. Unfairness: To measure the unfairness, we use the difference in the video bi-

trate between the players, but here we also consider the screen size of different

devices. In the extended experiments, we use Jain's Fairness Index [39] of the

request video bitrates over all players. A higher value of this metric implies a

more fair QoE among users.

7.2 EXPERIMENTAL SETUP AND DESIGN

In our evaluation, we use two experiment setups, one with real players and the

other one with emulated players and server. We start by conducting relatively small-

scale, but real-world experiments using several mobile devices, to validate, analyze

and understand FlexStream behavior under different and realistic scenarios. We in-

stall and run the GC on a laptop running Ubuntu 14.04 connected to the Internet

via a public IP address. We use three Android mobile devices with different screen

sizes (Nexus 7 and two Nexus 4) sharing the bandwidth over the same wireless ac-

cess point. To create a bottleneck and make the devices compete for bandwidth in

the way that works for both WiFi and cellular scenarios, we place a Squid proxy
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Encoded Frame size Frame Rate Approx Bitrate Representation ID
512x288 25 449Kbps 512x288p25
704x396 25 843Kbps 704x396p25
896x504 25 1416Kbps 896x504o25
1280x720 25 2656Kbps 1280x720p25

Table 1: Encoding settings of video segments used in the experiments.

server (version 3.1) running on Ubuntu 12.04 between the end devices and the me-

dia server. The proxy controls the bandwidth using Linux Traffic Control (TC).

All video segments requested by video players on the end devices are forwarded

through the proxy server. On the end devices, four main components are installed:

FlexStream, SDN-Controller, OVS, and GPAC video player1. FlexStream is imple-

mented in Java and communicates with GC over TCP. The SDN controller uses

OpenFlow v1.2 on the southbound to control and configure the OVS. We install our

modified version of OVS v1.11.0 after cross compiling it for our Android devices, and

then we bind it to the wireless interface (wlan0/rmnet0) corresponding to the target

network (WiFi/cellular). This binding allows the traffic to pass through the OVS

and perform the TCP window adjustment. The Android version of GPAC player

v0.6.2-DEV (Osmo4) is the adaptive player that is used to stream videos on all end

devices. To make the experiment more realistic, a well-known Big Buck Bunny2 video

is streamed from a large Internet portal. The video, as shown in Table 1, comes with

several bitrate profiles ranging from 449 Kbps to 2656 Kbps and lasts for about nine

minutes.

To evaluate the actual performance of FlexStream in the presence of a sufficiently

larger number of concurrent competing video flows, we develop an emulator of a

real video player. Similar to the real player, the emulator, implemented as a Java

application, generates real traffic by sending HTTP requests to a test server, which

responds with dummy video segments equivalent in the size and distribution to those

used in the real experiment. We implement relevant adaptation algorithms and

operations in the emulator, including scheduling segment downloads and tracking

the buffer occupancy, with the exception of actually decoding and playing video

1https://gpac.wp.imt.fr/player/
2https://peach.blender.org/
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segments. As with the real experiments, all emulated players connect to the server

through a WiFi AP running on a Linux machine which in turn forwards the requests

to the server over the Internet. In all experiments, 12 emulated players, representing

8 phones and 4 tablets are used to stream over five different AP capacities {7, 10,

13, 16, and 19 Mbps}, and set to randomly start during the first two minutes. For

each capacity, we repeat the experiment 10 times with and without FlexStream

focusing on five different QoE metrics: bitrate, stability, fairness, playback stalls,

and startup delay. Finally, we examine the impact of both background traffic and

wireless link conditions on the video QoE. We believe that 12 concurrent players

reflect well a highly loaded home network, a moderately loaded public WiFi scenario,

or a lightly to moderately loaded LTE radio cell with one video service under control

and management of FlexStream.

Figure 22: Throughput and requested video bitrates of competing streams.

In these two experiment setups, the evaluation is split up into multiple experi-

ments using both static and dynamic network capacities. The first experiment is set

to inspect the impact of FlexStream on stabilizing and improving the video QoE.

We then look at the ability of our system in providing quality-based fairness in the

network. This is to assign more bandwidth to the devices based on the screen sizes

which would balance the observed video quality among all users in the network.

In another experiment, we show how FlexStream can differentiate between different

user classes where some users can have better video quality when the network gets
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Figure 23: Throughputs and requested video bitrates of competing streams when
FlexSteam is activated.

overloaded. Furthermore, we examine the impact of background traffic on the video

QoE and evaluate the performance of FlexStream when one or more devices start

downloading a large file (e.g., apps updates) while streaming videos.

7.3 PERFORMANCE UNDER STATIC BANDWIDTH

Instability and Inefficiency: It is well-known that adaptive video players suf-

fer from instability in the observed video quality which negatively impacts the QoE.

This issue frequently appears when the network gets overloaded and the players start

competing for bandwidth. Figure 22 demonstrates the impact of players competi-

tion on throughput and videos bitrates. In the beginning, there is only one player

streaming a video at the highest bitrate (2650 Kbps) since the network capacity is

set to allow up to 3800 Kbps. However, after 60 seconds two other players join and

start competing over the bandwidth causing a significant drop in download speed

of the first player. In theory, players are expected to equally share the bandwidth

as a result of using TCP, but due to the intermittent traffic of adaptive streaming

and selfish behavior of the adaptive algorithms of the players, we can notice large

oscillations in the download speed for all players causing them to frequently switch

between 1416 Kbps and 843 Kbps video bitrates.
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Figure 24: Comparison of the number of quality switches per device with and without
FlexStream.

FlexStream, on the other hand, is designed to prevent such fluctuations and pro-

vide better stability. Figure 23 shows the result of running the same experiment using

FlexStream. In this experiment, as soon as the second player starts at 60 seconds,

the FlexStream activates the control of bandwidth as the capacity is oversubscribed

with the highest bitrates. Therefore, players adapt to 1416 Kbps bitrate profile as

FlexStream splits the bandwidth equally between the players, but after 30 seconds

the FlexStream has to reallocate the bandwidth for the second time as the third

player joins.

Note that FlexStream is designed to distribute the bandwidth in such a way that

maximizes the requested bitrates. Hence, FlexStream assigns about 1850 Kbps for

one device, which is enough for streaming 1416 Kbps bitrate profile, while assigning

about 975 Kbps to other two devices which are capable of requesting 843 kpbs bi-

trate profile. These are the maximum bitrates that the players can request without

affecting the stability. After 120 seconds, all players can adapt to new rate limits

and switch to the target bitrates and maintain them throughout the video sessions

without any switches. FlexStream reduces the total number of quality switches for

all players from 66 in the first experiment to only 15 switches while maintaining

approximately the same overall quality (about 1125 Kbps on average in both exper-

iments). Note that GPAC is designed to initially request the lowest bitrate profiles

to reduce the startup latency and then gradually increases the bitrate as bandwidth

allows. Therefore, the 15 switches that were recorded with FlexStream are mostly
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Figure 25: Comparison of the Average bitrate requested by each player with and
without FlexStreams.

occurring upon startup, not because of fluctuation in throughput.

To better evaluate the effect of using FlexStream on the stability compared with

the non-controlled scenario, we repeat the previous two experiments many times

using different network capacity starting at 2500 Kbps with an increase of 1500

Kbps each time until no competition between the players is observed, at 8500kpbs.

The average number of switches for each device is recorded and showed in Figure 24

for both scenarios. It can be seen from the figure that the average number of switches

for non-controlled scenario ranges between 50 and 70 switches which are far more

than the number of switches when FlexStream was used, with only between 10 to 20

switches. Therefore, the advantage of using Flexstream in reducing the fluctuation

and stabilizing the video quality over the non-controlled case is obvious. However,

this instability reduction should not cause a big drop in the video quality. Figure 25

shows that FlexStream could maintain almost the same overall average video bitrate

with a clear enhancement of the tablet over the phones while they are still getting

high video bitrate (over 1 Mbps).

To evaluate FlexStream over a cellular network, we conduct the experiments on

a major U.S. cellular carrier with two mobile devices, tablet, and phone. The OVS

is now bound to the cellular interface (rmnet0) instead of WiFi interface. We set the

devices to forward the traffic toward our proxy and avoid the mobile network proxy

to have better control over the experiments, and also to be able to limit the capacity

at the desired level, 2600 Kpbs. The phone starts first, and the tablet joins at time
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Figure 26: Throughput and bitrates of competing players over Cellular network
without controlling the bandwidth.

60. Figure 26 shows the result of the uncontrolled experiment when players compete.

We observe expected bitrate fluctuation. Figure 27 shows that FlexStream works

again by stabilizing players. In this case, to maximize overall QoE, screen size-based

allocation is needed. Therefore, FlexStream works in a similar manner on both WiFi

and cellular networks.

This fluctuation in the throughput results in frequent bitrate switches between

843 Kbps and 1416 Kbps for both players which negatively impacting the stability

and the overall QoE in the network. On the other hand, Figure 27 shows that

the performance of the player is considerably improved with FlexStream regarding

stability and fairness. When the flow of the tablet shows up, FlexStream intervenes

and manages the bandwidth by assigning more bandwidth to the tablet than the

phone. Therefore, the player on the tablet can stream 1416 Kbps while the player on

the phone gets the next bitrate profile, 843 Kbps. From these two experiments, we

can conclude that the results for both WiFi and Cellular networks are too similar.

This makes us refrain from repeating other experiments that we have been conducted

on WiFi and consider these two experiments are sufficient to show the visibility of

our system on the cellular network.

In the previous experiments, we used real-world experiments but at small scale.
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Figure 27: Performance of FlexStream with players compete over the cellular net-
work.

Now to evaluate the stability of our system with larger scale, we use extended ex-

periments with emulated players as we explained in the previous section. Figure 28

compares stability of players with and without FlexStream for each AP bottleneck

capacity. Table 2 summarizes performance statistics over all bottleneck capacities. It

is clear that players with no control fail to provide a stable viewing experience. The

average number of switches per player is between 10 and 24. FlexStream substan-

tially improves stability in each case, with the average number of switches reduced

by 81% from 19.1 to 3.6 (Table 2). Again, the switches with FlexStream occur only

at the beginning of the streaming sessions while players ramp up and briefly while

the GC redistributes bandwidth as new players join.

Playback Fluency: Player competition for bandwidth not only causes instability

and degradation in the video bitrate, but can also lead to playback stalls (playback

freezes/rebuffering events) resulting in a severe QoE degradation. This undesired

event usually occurs when there is a major drop in the bandwidth, and at the same

time, there are not enough packets in the buffer. Therefore, this event can be en-

countered more with live streaming than on-demand streaming. This is because that

when the video player is used to stream live events it typically use much smaller

buffer size than if it is used to stream an on-demand video. This small buffer size
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Figure 28: FlexStream significantly reduces switching.

does not allow the player to react in time before the stall happens. With on-demand

streaming, the stall can happen when the player overestimates the available band-

width and starts requesting and streaming high bitrate segments while still no many

video segments are already buffered. If the player, in this case, experiences a major

drop in the available bandwidth, the stall event is likely to occur. To check how often

this event can happen with no control scenario and also to evaluate our system in

preventing or minimizing it, we conduct several experiments with different network

capacities. Figure 29 shows the average number of stalls per bottleneck capacity.

The decreasing trend with higher capacity is expected. The average duration of

stalls is also unacceptably high and follows the same trend, as shown in Figure 30.

In all experiments, adding FlexStream shows outstanding performance by reducing

the average number of stalls by 91% (from 10.6 to 1.0), and lowering the average

stall duration by 92% (from 40.6 to 3.1 s).

Startup Latency: Table 2 also shows that there is a significant improvement in

startup delay with FlexStream, with startups becoming faster by 44% on average

(from 7.9 to 4.4 s). The largest improvement was observed for the lowest capacity and

the smallest for the highest capacity (Figure 31). It is also noticeable that startup

delay with FlexStream is similar across capacities except for 10 Mbps. Similarity

or relative independence of startup delay from capacity can be explained by the

avoidance of competition. As soon as the new player notifies the controller, all

players get a rapid notification to adjust their bandwidth usage to allow the new
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Figure 29: FlexStream reduces number of stalls.

Figure 30: Comparison of average stall duration.

player to start up quickly.

To understand why we have such a large delay at the beginning of uncontrolled

streaming sessions, we record the startup delay time for all players for the experiment

with 19 Mbps capacity and present the players in the order of their starting time in

Figure 32. As can be observed, only players which started afterward have experienced

a large delay, starting with the eighth player and dramatically increased for the

rest. One way to explain this is that when later players join, they find most of

the bandwidth is already utilized and dominated by earlier players causing them to

struggle to get enough bandwidth to stream the first video segments. This situation

not only leaves these players subject to long stalls at the beginning of the streaming
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Figure 31: Comparison of average startup delay times.

Table 2: Average performance metrics for 12 players.

No Control FlexStream

Instability (switches) 19.1 3.6

Number of stalls 10.6 1.0

Stall duration 40.6 s 3.1 s

Startup delay 7.9 s 4.4 s

Tablets bitrate difference 20 Kbps 196 Kbps

Fairness (JFI) 0.90 0.96

session, but also can lead to extremely unfair scenario where the first set of players

can always receive higher bitrates.

Unfairness: We examine bitrate unfairness among uncontrolled players in Figure

33, where the average bitrates of the first six players to start is about 600 Kbps

higher than the average of the last six players. Specifically, those users with larger

screens (tablets) that belong to the latter group are most impacted by the unfair

share of bandwidth.

FlexStream further addresses fair allocation of available bandwidth among video

players taking into consideration their screen sizes. The Tablets bitrate difference en-

try in Table 2 refers to the average bitrate difference achieved by tablets over phones,

where tablets with FlexStream can obtain 196 Kbps higher bitrate on average than

the phones compared to only 20 Kbps in uncontrolled case. Therefore, FlexStream
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Figure 32: Startup delay times of video players ordered based on their start streaming
time.

considerably alleviates this type of unfairness.

Moreover, FlexStream improves fairness among devices of the same screen size

(e.g., phones or tablets). Figure 34 compares fairness in the average requested bitrate

among phones using Jain's Fairness Index (JFI), where higher values mean better

fairness. Across all capacities, FlexStream improves JFI, and significantly so for 7,

10, and 13 Mbps bottleneck. For 16 and 19 Mbps, JFI marginally improves because

under the capacity constraints, some devices with the same screen size received a

higher share of bandwidth to maximize average bitrate in the system, as per opti-

mization function. The overall JFI across all devices (including phones and tablets)

and scenarios are increased by 0.06 as indicated in Table 2.

7.4 PERFORMANCE UNDER DYNAMIC BANDWIDTH

In the previous experiments, we set the network capacity at fixed rates. However,

in practice, the network capacity can be highly dynamic. Therefore, to evaluate our

system on a more realistic scenario, we shape the traffic at the proxy server based

on a real bandwidth trace. We run the experiments with and without activating

FlexStream to show its performance on WiFi network. Figure 43 shows the scenario

without enabling FlexStream. Note that the dotted line at the top represents the

available bitrate which extremely bounces between 14 Mbps 4.3 Mbps. This extreme
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Figure 33: Comparison of average bitrate of players listed in the order of their starting
time.

fluctuation in the available bandwidth causes large variations in the download speeds

and makes the players compete from time to time till a significant drop occur after

about 180 seconds. As a result, the players start aggressively competing over the

bandwidth and consequently start switching between 2656 Kbps and 1416 Kbps video

bitrates. The total number of switches recorded in this experiment is considerably

large reaches to 42 switches for all players. On the other hand, when FlexStream

was used, the number of switches is significantly reduced to only 13 switches as

shown in Figure 36. When the large drop occurs around second 180, the FlexStream

starts controlling and reallocating the bandwidth. Since the Bandwidth is dynamic,

the FlexStream uses the throughput reported by video players to estimate the total

available bandwidth at that time. Therefore, it assigns approximately 3500 Kbps to

the tablet which becomes able to stream 2656 Kbps bitrate profile, while assigning

about 2000 Kbps to both phones which could adapt to 1443 Kbps video bitrate.

Now we turn into evaluating FlexStream with an entirely real scenario in which

we impose no cape on the bandwidth. In other words, we need to check whether the

performance of FlexStream is impacted by uncontrolled background traffic when the

network is naturally overloaded without any interference to limit the capacity (using

a proxy server). We have done a considerable number of download speed tests over

one major cellular network provider in our campus in order to determine whether

the base stations (towers) get overloaded and at which times. Our results show
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Figure 34: Comparison of average Jain's Fairness Index.

that during specific times during the day (e.g., during the lunch time) the network

experiences a considerable amount of traffic, creating several bottlenecks. Figure

37 shows the average number of switching of five experiments conducted during

those times. For each listed experiment, we run one experiment with no control

immediately followed by one with FlexStream enabled. As can be seen, even with no

control over background traffic, FlexStream still provides good stability compared

with no control scenario. The results are too similar to the static scenario with a

slightly higher number of switches. We believe that as the number of mobile phones

controlled by FlexStream, the performance will definitely get improved.

7.5 CONSIDERING VARIOUS CONTEXT INFORMATION

7.5.1 DEVICE CHARACTERISTICS

In fact, FlexStream does not only improves the QoE via stabilizing the video

quality, but also improves the fairness and overall QoE in the network through favor-

ing the devices with larger screen sizes over the devices with small screen (e.g., tablet

over phones). In the previous experiment depicted in Figure 23, when FlexStream

allocates the bandwidth to the players, it assigns the highest bandwidth (1850 Kbps)

to the tablet to have better quality than the other two phones. Therefore, the player

on the tablet could stream 1416 Kbps bitrate and have good quality comparable to
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Figure 35: Background flow degrades video bitrates.

the quality the players on phones get, which correspond to 843 Kbps bitrate. Bal-

ancing the quality among the clients is a substantial feature of FlexStream as for

some scenarios such as home network, it is possible to encounter a situation where

video streams generated by phones with only four or five inches screen size competes

with another stream generated by a TV with tens of inches screen size.

7.5.2 SERVICE DIFFERENTIATION

FlexStream is also designed to differentiate between two different classes of users,

regular and high priority users. Figure 42 show how FlexStream is capable of assign-

ing the bandwidth to the players based on their users priority level. As can be seen

from the figure, players on the phone and a tablet with regular priorities started at

time 0 and 50 respectively, and both adapt to stream the highest quality (at 2656

Kbps) till a third player on another phone with high priority class joins at time 100.

Consequently, as the network capacity can not allow all players to stream the highest

bitrate profiles, FlexStream activates the control over the bandwidth and allocates

higher bandwidth to the player with higher priority. The amount assigned to the high

priority user by FlexStream guarantees to stream the highest bitrate profile, 2656

Kbps. The rest of the bandwidth is then divided between the regular users taking

into consideration the screen size. As shown in the figure, even though that the player

on the phone with high priority started after the other two players and its device
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Figure 36: Throughput and bitrates of video streams with real bandwidth trace with
using FlexSteam.

has smaller screen size than one of them, it could stream the highest bitrate profile

at 2656 Kbps once it joins, while the tablet and the phone with regular privileges

could stream at 1416 Kbps and 843 Kbps respectively. Therefore, this experiment

not only shows the great advantage of using FlexStream in supporting different user

classes, but also shows how FlexSteam improve the stability in addition to providing

QoE-Based fairness through considering the devices’ screen sizes.

7.5.3 LINK CONDITION

In the previous experiments, we set the devices hosting the players at equal

distance from the AP to maintain similar radio signal. In reality, players are at

varying distances with different radio signals. To study the impact of the wireless

link conditions on the video QoE, we move one player further away to weaken the

signal. Figures 38 and 39 show the throughput and video bitrates requested by this

player without and with FlexStream, respectively. The drop in the throughput at

time 380 when the device is moved is much worse in the uncontrolled case than with

FlexStream. In uncontrolled case, the player lowers the bitrate to the lowest level

compared to only one level and better stability with FlexStream. The reason for the

difference is that the bandwidth share of the player is protected with FlexStream

although its throughput is affected by the radio signal and not also by the overall
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Figure 37: Performance comparison between FlexStream and No-Control scenario
over cellular network with no cape on the network capacity.

competition like in the uncontrolled case.

Figure 38: Impact of radio link on QoE (no control).

7.6 IMPACT OF BACKGROUND TRAFFIC ON VIDEO QOE

In practice, the drop and fluctuation in the video quality can be also caused by

background traffic. Figure 40 shows the negative impact of the background traffic

(e.g., auto apps update) on the throughput and video qualities. We set the capacity

of the network to 10 Mbps which is enough for all players to stream the highest

quality profile without causing them to compete. After started up all players, we

use iperf on one of the devices to initiate a TCP connection with an external device
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Figure 39: Impact of radio link on QoE (FlexStream).

for two minutes starting at seconds 210. Note that the download speed of this

connection is not controlled or capped and only tuned by the TCP congestion control.

Thus it is expected that the background traffic can get a quarter of the bandwidth

because of the TCP fair share mechanism. Consequently, from the figure, we can

notice a significant drop in the players'throughputs once the background traffic starts

causing the players to start competing over the bandwidth and perform poorly. This

competition between these four TCP connections over the bandwidth makes the

players not able to maintain the highest qualities and start bouncing up and down

several times between 2656 Kbps and 1416 Kbps bitrate profiles till the background

traffic ends at second 330. We repeat the previous experiment but now with using

FlexStream, which is set to limit the background traffic to be under 200 Kbps via

adjusting the TCP receiving window.

Figure 41 shows the result of this experiment where all players could obviously

maintain the same quality since no clear impact of the background traffic on the

video streams can be observed throughout the duration of the background traffic.

Therefore, having a control on the background traffic at the time of streaming videos

is crucial for maintaining good player performance. As part of our system resides on

the end devices, one of the advantages of FlexStream is that the application initiat-

ing the background traffic can be identified. Therefore, it is possible to set different

policies for different applications. For instance, we can set OVS to completely block

the background traffic generated by a game app and allow it after the player finishes
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Figure 40: The Throughputs and requested video bitrates of competing video streams
in the presence of background traffic which initiated at second 210 and lasts for two
minutes.

steaming. On the other hand, apps such as email and bank apps are much more im-

portant and should be allowed to send and receive data at reasonable rates. Another

factor that plays an important role in setting the rate for the background traffic is

the network condition which can be inferred from the observed download speed.

7.7 FLEXSTREAM OVERHEADS

In this section, we evaluate four types of overheads to demonstrate and confirm

the practicality of our solution. We consider the CPU overhead of deploying the

DA on a mobile device, communication overhead between the DA and GC, and

computation overhead resulting from executing the optimization function.

7.7.1 CPU OVERHEAD

As we mentioned before, we have three main components are deployed on a mo-

bile device: DA, SDN Contoller, and SDN. In this section, we evaluate the overhead

of running these components on the mobile device. To keep the overhead as low as

possible, we design DA to sleep and wake up with the video player keeping some

safety margin for variable encoding bitrate of the streamed video which might in-

cur some changes in the length of OFF period. For the evaluation, we use Google
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Figure 41: Throughput and requested video bitrate of competing streams in the
presence of background traffic when FlexStream is active. The background traffic
initiated at second 210 and lasts for two minutes.

Nexus 7 device that comes with 1.2 GHz quad-core processor. We use GPAC on a

mobile phone to stream a video encoded at 1.4 Mbps while DA is running in the

background. We start by streaming the video with tight bandwidth to trigger the

control over bandwidth by GC and trigger the DA to start monitoring the perfor-

mance, communicating with GC, and enforcing the GC policies through interacting

with the SDN controller, which in turn translates these policies into flow rules and

actions installed into OVS flow table. The CPU Monitor tool that comes with An-

droid Studio is used in this experiment to monitor the CPU usage overhead caused

by our system. As expected, we find that DA incurs a negligible CPU overhead which

found to be around 1%. This overhead is on quite an old device, and we expect the

overhead to be much less than this value for newer devices.

7.7.2 COMMUNICATION OVERHEAD

Now we turn into evaluating the communication overhead resulting from the mes-

sages exchange between the DA and GC. This is the extra bandwidth needed by our

system to work in addition to the video data. We measure it as the average number

of bits downloaded or uploaded at the end device. We use the same experimental

setup that is used in measuring the CPU overhead including the video bitrate profile.
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Figure 42: Differentiating between different user classes. FlexStream guarantees
better service to users with superuser privileges when the network gets overloaded.

Our results indicates that there is only about 800 bits/second on average added to

the bandwidth used by video traffic, which constitutes less than 0.00004% of the

total bandwidth. Therefore, the communication overhead caused by our system is

also negligible.

7.7.3 COMPUTATION OVERHEAD

In chapter 5, we show that the computation overhead resulting from executing

the optimization function is practically very low and sufficient for GC to react in

real time. Given the number of possible bitrates for a video session is quite lim-

ited in practice, and careful implementation of the dynamic programming steps, the

complexity of this solution will be the product of the number of video sessions and

available bandwidth, which divided into a series of Z incremental values. Given that

the running time depends on this product, its overhead is within sub-second level for

the typical practical large values. For instance, as we show before, when N = 400,

K = 8, B = 200 Mbps, and s = 100 Kbps, the execution time on a single-core

Intel 2.20 GHz processor is about 400 ms. As we pointed out before, this small time

overhead would allow the GC to react in time before the QoE can be affected. How-

ever, if the execution time occasionally becomes larger and above a certain threshold,
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Figure 43: Throughput and requested bitrates of video competing streams with real
bandwidth trace. FlexSteam is not enabled.

then FlexStream can speed up the execution time by increasing the bandwidth step

size in the optimization function without empirically sacrificing the optimality of the

solution, or by utilizing one of the well-known approximate algorithms [59, 54] that

guarantees faster execution to be within this a sub-second level at the cost of devi-

ating from the optimal solution. However, we believe that running our optimization

function on a newer and more powerful device with mutli-core processor (as it is the

case with most of the servers and also with most data centers) can produce much

better results which makes the system capable of managing thousand of users within

the required time frame (sub-second level).

7.8 CONCLUSION

In this section, we evaluated FlexStream using real experiments setup on mobile

devices over both WiFi and cellular networks, in addition to emulated environment

for larger-scale experiments. In our evaluation, we mainly focused on five metrics

which have the most impact on User's QoE: Instability, inefficiency, playback fluency,

and Startup latency, and unfairness. We evaluated our system using two main sce-

narios: under stable network scenario and when the network is highly dynamic (the

available bandwidth for video players is not stable and changes dramatically). These

two scenarios were conducted over WiFi networks as well as over a cellular network
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at ODU campus. We found that FlexStream reduces the bitrate switching by 81%,

stall duration by 92%, and startup delay by 44%, while improving fairness among

players. Moreover, this chapter revealed the impact of the background traffic on the

watching experience and we presented how FlexStream could effectively minimizing

the impact of background traffic. We also showed that Flexstream is capable of sup-

porting different user priorities and considering different screen sizes. To balance the

watching experience among users, we showed that FlexStream allows devices with

larger screen sizes to stream higher bitrates. Finally, this chapter highlights the im-

pact of having different link condition of the streaming devices. Our experiments

showed that devices with poor wireless signals could lose their fair share of band-

width to other devices having better signals. When FlexStream was activated, this

issue was totally overcome and the devices with poor wireless signals can sustain the

best possible video bitrate.
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CHAPTER 8

CONCLUSION

This chapter summaries the motivation behind this dissertation, the problem that

has been addressed, and the solution that we proposed to overcome this problem. It

also summaries our the results that we obtain from running our system in addition

to listing our plan for future work. This chapter is organized as follows: Section 1

summaries the problem and main motivation of this dissertation. Section 2 briefly

summaries our proposed solution and lists the contributions of this dissertation.

Section 3 summaries the evaluation part of this dissertation. Finally, our plans for

future works are described in Section 4.

8.1 SUMMARY

With the huge increase in mobile data traffic caused by the large increase in

the number of smart devices in addition to several bandwidth-intensive applications

such as streaming applications (e.g., Youtube, NetFlix, Facebook, etc.) and online

games applications, continue providing the end users with satisfactory services be-

comes challenging. We found that video streaming applications, in particular, are

impacted the most when the bandwidth in the network becomes scarce. This is still

the case with all video applications despite the huge efforts of the research com-

munity and major video providers such as YouTube and Netflix in improving their

players. Among the efforts and attempts to improve the performance of streaming

videos is the invention and adoption of HTTP video streaming protocol by most

video providers nowadays which enable the player to dynamically and seamlessly

adapt to the change in the network condition in addition to easily traversing NATs

and firwalls as well as eliminating the need of dedicated multimedia servers. However,

despite this nice feature of this new technology, our measurements as well as several

other studies indicate that most of the state-of-the-art players still suffer from sev-

eral issues including instability and sub-optimality in the video quality, unfairness in

sharing the available bandwidth, and inefficiency with regard to network utilization

which would have a negative impact on the video QoE. These performance issues are
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frequently experienced when several players start competing over a common bottle-

neck. Interestingly, it is found that the root cause of these issues is the intermittent

traffic pattern of HTTP adaptive protocol that causes the players to over estimate

the available bandwidth and starts fluctuating between several qualities.

Several solutions are proposed in the literature in order to overcome these issues

and provide seamless and nice streaming experience. For example, works such as

those proposed in [41, 35, 48, 47] attempt to improve the player user's performance

through improving the ABR algorithm of video players. This ABR algorithm is pri-

marily used to determine the rate of the next video chunk through estimating the

available bandwidth using either the throughput measurements of the last couple

of received video segments, buffer condition, or hybrid technique which considering

both the throughput measurements and buffer fullness in estimating the network

condition. Despite the intensive efforts to improve the performance of adaptive al-

gorithms at the client side, the major issues that impact the video QoE remains

unsolved with these solutions as indicated by our measurements and also by several

studies mentioned above[6]. This is due to the inability of a player to realize both

the current condition of the network and the existing of other competing players.

Thus the estimation algorithm clearly will not lead to an accurate estimation of the

network capacity. Moreover, client-based solutions lack the flexibility that precludes

the network administrator to apply some policies and achieve specific requirements.

Another attempt to address the performance issues with the adaptive application

is at the server side. For instance, the works in [3] proposed server-based traffic

shaping techniques which adjust the streaming rate at the server to be too close from

the requested bitrate to avoid generating the OFF periods and thus stabilizing the

bitrate. However, modifying a standard HTTP server, as their techniques required,

is definitely not an attractive technique in addition to adding significant overhead

on the server through monitoring and traffic shaping functions. Other works try to

improve the performance at the network edge such as [23, 58]. However, most of

these works are either expensive to adopt or application dependent.

Therefore, the research in this dissertation aims to address these performance

issues and maximizes the user's QoE. We proposed the design, implementation, and

evaluation of FlexStream, a system that we developed on top of the framework that

extends the SDN to mobile devices. FlexStream enables centralized control of band-

width allocation via a global controller that specifies a policy, and a local policy
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implementation via Open vSwitch (OVS) that offloads the fine-grained functionality

to the end device. This means that FlexStream uses a hybrid approach, which takes

advantage of both centralized and distributed components. While a network element

(GC) is primarily employed to manage resource allocation for video flows, monitor-

ing and policy enforcement tasks are offloaded from the network to end-devices, via

lightweight software agents. This alleviates the need for intrusive, large and costly

traffic management solutions within the network, or modifications to servers that

are not feasible in practice [3, 10, 44]. FlexStream is designed to maximize QoE in

the access network by allocating the highest sustainable bitrates to adaptive players

while ensuring: (i) the minimal variations in the quality, (ii) minimum number of

stalls, and (iii) well-balanced and fair QoE.

In addition to the bandwidth control policy, the system supports defining various

control policies based on the different interests and contexts of the user, device, video,

network, and environment (e.g., user priority-based policy, device screen size-based

policy), which is often overlooked in practical implementations. Using an optimiza-

tion function, we demonstrate that all these factors can be effectively accounted for

within the policy that allocates bandwidth across devices. Network programmability

is also one of the main features of FlexStream, where network policies can be im-

plemented and enforced in real time based on the context (e.g., time, location, flow

type). Finally, as end devices running FlexStream can be treated as logical switches

with ports acting like the available network interfaces (e.g., WiFi and cellular), they

can support multi-path delivery (e.g., MPTCP) according to user-specified interface

preferences [26].

8.2 CONTRIBUTION

The following are the main contributions that have been made by this dissertation:

� We develop FlexStream on top of the SDN-based framework that extends SDN

functionality to mobile end devices, allowing for fine-grained control and man-

agement of bandwidth based on real time context-awareness and specified pol-

icy.

� We demonstrate that FlexStream can be used to manage video delivery for

a set of end devices over WiFi and cellular links and can effectively alleviate

common problems such as player instability, playback stalls, large startup delay,
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and inappropriate bandwidth allocation.

� We define an optimization method to practically improve video QoE considering

context information, such as screen size and user priority, and validate it using

real experiments, including reductions in quality switching by 81%, stalls by

92%, and startup delay by 44%.

� We introduce, to best of our knowledge, the first working implementation of the

SDN extension to commodity mobile devices that runs in both WiFi and cellular

networks without requiring support from the existing network infrastructure.

8.3 EVALUATION

We evaluated FlexStream using real testbeds including real mobile devices and

players over both WiFi and cellular networks. In our evaluation, we considered two

main scenarios: (1) when the network bandwidth available to video players is stable,

(2) when the bandwidth is highly dynamic. In these two scenarios we focus on

five main evaluation metrics which we believe that are the most important for users’

QoE including instability in the video bitrate, playback fluency, video quality, startup

latency, and unfairness in utilizing the network resources which leads to unbalanced

and unfair QoE among the end users. We summarize our findings as follows:

� Most of the state-of-the-art adaptive players still suffer from several perfor-

mance issues with players compete for bandwidth over the same network bot-

tleneck.

� Under both stable and dynamic scenarios, we found that player competition

causes extreme instability in the video bitrate which not only impacts the user's

QoE but also causes a significant waste in the bandwidth reaches up to 40%.

� Adaptive video players can still encounter rebuffering events (playback freeze)

especially under dynamic scenario and also when there is no sufficient data in

the buffer to observe the drop in the network condition.

� When multiple video players simultaneously stream over the same network bot-

tleneck, unfairness in utilizing the network resources is observed. This creates

an unfair situation in which some users can have nice watching experience while

other can not.
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� When some players start streaming over already overloaded access point, these

player tend to have a long startup latency as the bandwidth is usually domi-

nated by other existing players.

� Background traffic found to have an impact on the video sessions. It can cause

instability and other issues depending on the number of the flows.

� We found that the variation in the link conditions among the end devices can

lead to unfair usage of network resources, especially over the cellular network,

leading to a significant drop in the quality for devices with poor wireless signals.

� Our proposed Systems, FlexStream, could minimize all the performance issues

with adaptive video players and provide high watching experience to end users.

� FlexStream can reduce the bitrate switching by 81%, stall duration by 92%, and

startup delay by 44%, while improving fairness among players and eliminating

the impact of link condition variation in addition to minimizing the impact of

background traffic.

� Flexstream is capable of supporting different user priorities and considering

different screen sizes, allowing devices with larger screen sizes to stream higher

bitrates.

8.4 FUTURE WORK

As streaming video primarily comes with two modes, live and on-demand stream-

ing, and the fact that video players typically set the buffer size according to the type

of the streaming mode, the need for an accurate buffer size estimation technique can

considerably enhance the performance. When streaming live videos, a video player

tends to maintain a relatively small buffer to ensure the freshness of the data. This

small buffer size makes the video playback more prone to quality switches and play-

back stalls. Therefore, it is essential for good streaming performance to differentiate

between users steaming live events and those streaming on-demand videos. To this

end, as part of our future works, we will focus on developing a new function for

estimating the player buffer fullness and then incorporate it with other FlexStream

modules. This can be achieved by utilizing the SDN on mobile devices in monitoring

and calculating the amount of data received by the player in addition to intercepting
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the HTTP requests sent by the video player to get the requested video bitrate of the

requested video segments.

Another avenue for extending our system is to make it fully capable of managing

encrypted streaming sessions. Several video providers have already adopted encryp-

tion for video delivery. Therefore the need for the extension to work and mange

encrypted video sessions becomes essential. Note that FlexStream comes now with

the ability to estimate the current video bitrate of an encrypted video session, and

thus we will only need to extend its functionality to estimate the buffer size, and

possibly other bitrate profiles. As indicated before, the traffic pattern of adaptive

players reveals several pieces of information about the player status. We will also

utilize the OVS on a mobile device to collect video traffic statistics and use them in

estimating the buffer size.

In addition, as part of our future work, we would like to investigate and study

the impact of the competition of heterogeneous adaptive players and understand

how this is different than the case of having only one type of video players. We will

also check how FlexStream would perform under this real scenario in which different

players would generate different ON/OFF periods and may use different adaptive

techniques. We will focus on improving the resource management module aiming to

minimize the bandwidth underutilization resulting from the traffic shaping, which will

result in maximizing the video QoE. Another possible extension that can improve the

watching experience is to check the possibility of scheduling the background traffic

during the players sleeping times. The goal is to improve the bandwidth utilization

and to entirely remove the impact of background traffic on the video sessions. It is

worth to re-mentioning that FlexStream is already developed with the function of

controlling and shaping the background traffic on supported devices in addition to

have the capability of directing the background traffic to be received from another

network interface which totally eliminates its impact on the running video sessions.

I would also like to investigate and study the advantages and downsides of re-

moving the OFF periods of adaptive players at the client side, using our DA and

SDN components. This elimination of these periods is quite easy to implement for

unencrypted traffic while needs current bitrate estimation for encrypted sessions. In

fact, this idea stemmed from our conclusion that the root cause of all problems with

adaptive players is their intermittent traffic pattern. Although we believe that this

approach can further stabilize the video bitrate, the major gain will be maximizing
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the video bitrate in the network. However, this approach requires that the network

interface on the mobile device will constantly be on which might increase the battery

consumption. Thus we need to measure the power consumption of this approach to

check its practicality. Also, we need to investigate the impact on the HTTP server as

now the server needs to continually sending video packets to the client, which might

increase the overhead.

Many people nowadays stream video to solely listen to the audio (mostly while

walking or driving) with no interest in watching. This implies that reducing the

video quality for those non interested in watching would not lead to any impact on

their QoE. Therefore, we are studying the possibility of utilizing this knowledge to

reallocate the network resource based on the user interest in watching the video. This

will enable FlexStream to efficiently manage the network resources and maximize

the videos QoE when the network gets overloaded. For example, suppose that a

user is deriving while streaming a video to only listen to the music (not interested

in watching). Also, suppose that he is joining a new cell tower of a cellular network

that provides a service to hundreds of people who are attending a football game at a

city stadium. Since people at such an event are usually overloading the network by

doing live broadcasting, streaming replies, ..etc., the bandwidth at this time becomes

very scarce. Therefore, it will be more efficient for QoE that FlexStream considers

lowering the video quality on the driver to release some bandwidth that can be used

to improve the QoE for other users. Since the driver is not showing any interest in

watching and also the reduction would only last for a small period of time (as cars

are moving very fast between towers), the QoE for this user will not be impacted. As

we saw in the previous example, considering user interest in watching video would

save much bandwidth. However, incorporating this context information is not an

easy task in practice. There are several challenges that need to be addressed:

1. Detecting whether the user is interested in watching the video.

2. Predicting the possibility that the user will not be interested again in the near

future.

3. When the user becomes suddenly interested, the video quality needs to be

switched up immediately to avoid user frustration.

4. Switching from low to higher quality may cause waste in network and device

resource.



88

Another possible way to extend the system is to integrate FleXstream with

Multipath TCP - Fortunately, an extension of the standard TCP, MultiPath TCP

(MPTCP) [19] have been recently launched by Internet Engineering Task Force

(IETF) which is currently considered the de-facto multipath solution enabling appli-

cations to transparently and simultaneously utilize several paths for receiving data.

However, this protocol does not take into account the user preferences in using differ-

ent network interfaces. To this end, we are examining the possibility of integrating

MPTCP with FlexStream to enable simultaneous multipath streaming over both

WiFi and cellular taking into consideration the users’ preferences in using network

interfaces. The idea is to leverage the SDN and TCP flow control mechanism to

control and manage the amount of data that should be streamed in parallel from

each interface.

We would also like that our system can consider a situation when the network

is overloaded with too many streams in which some users might not be able to get

enough bandwidth to stream good quality videos or even can not stream at all. This

situation is most likely encountered at (very crowded) public places such as airports

or stadiums. Such a low QoE is likely to cause users frustration, and thus reducing

their engagement. In or order to minimize this negative impact and improve the QoE

when experiencing a severe bottleneck, we propose to coordinate between the end-

users in using the network resources. This requires an explicit interaction between

end-users and the network along with some incentives to persuade and encourage

some users to defer their streaming for some time. The incentives can be bandwidth

points that are increased with the time. For instance, the user can get one minute

of high bandwidth (that ensures streaming high quality video) for every two minutes

of waiting time. In fact, this coordinating was motivated by the fact that most of

the streaming is not life which implies that deferring the watching will not lead to

missing any scene. Moreover, some users may prefer to wait several minutes to watch

a high quality video than immediate watching with low QoE (re-buffering events, low

quality, etc.).
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