35 research outputs found

    Task Suspension in Agent Systems

    Get PDF
    We discuss the similarity of a recent approach to task suspension in agent programming languages with an earlier approach to formalising preemption using a class of Petri nets, called M-nets. We argue that the theory of agent programming would benefit from adopting certain features of the Petri-net approach, and thus making further results for Petri nets applicable in the agent domain

    Agent programming in the cognitive era

    Get PDF
    It is claimed that, in the nascent ‘Cognitive Era’, intelligent systems will be trained using machine learning techniques rather than programmed by software developers. A contrary point of view argues that machine learning has limitations, and, taken in isolation, cannot form the basis of autonomous systems capable of intelligent behaviour in complex environments. In this paper, we explore the contributions that agent-oriented programming can make to the development of future intelligent systems. We briefly review the state of the art in agent programming, focussing particularly on BDI-based agent programming languages, and discuss previous work on integrating AI techniques (including machine learning) in agent-oriented programming. We argue that the unique strengths of BDI agent languages provide an ideal framework for integrating the wide range of AI capabilities necessary for progress towards the next-generation of intelligent systems. We identify a range of possible approaches to integrating AI into a BDI agent architecture. Some of these approaches, e.g., ‘AI as a service’, exploit immediate synergies between rapidly maturing AI techniques and agent programming, while others, e.g., ‘AI embedded into agents’ raise more fundamental research questions, and we sketch a programme of research directed towards identifying the most appropriate ways of integrating AI capabilities into agent programs

    Measuring plan coverage and overlap for agent reasoning

    Get PDF
    In Belief Desire Intention (BDI) agent systems it is usual for goals to have a number of plans that are possible ways of achieving the goal, applicable in di erent situations, usually captured by a context condition. In Agent Oriented Software Engineering it has been suggested that a designer should be conscious of whether a goal has complete coverage, that is, is there some plan that is applicable for every situation. Similarly a designer should be conscious of overlap, that is, for a given goal, are there situations where more than one plan could be applicable for achieving that goal. In this paper we further develop these notions in two ways, and then describe how they can be used both in agent reasoning and agent system development. Firstly we replace the boolean value for basic coverage and overlap with numerical measures, and explain how these may be calculated. Secondly we describe a measure that combines these basic measures, with the characteristics of the coverage/overlap in the goal-plan tree below a given goal. We then describe how these domain independent measures can be used for both plan selection and intention selection, as well as for guidance in agent system development

    A BDI agent programming language with failure handling, declarative goals, and planning

    Get PDF
    Agents are an important technology that have the potential to take over contemporary methods for analysing, designing, and implementing complex software. The Belief- Desire-Intention (BDI) agent paradigm has proven to be one of the major approaches to intelligent agent systems, both in academia and in industry. Typical BDI agent-oriented programming languages rely on user-provided ''plan libraries'' to achieve goals, and online context sensitive subgoal selection and expansion. These allow for the development of systems that are extremely flexible and responsive to the environment, and as a result, well suited for complex applications with (soft) real-time reasoning and control requirements. Nonetheless, complex decision making that goes beyond, but is compatible with, run-time context-dependent plan selection is one of the most natural and important next steps within this technology. In this paper we develop a typical BDI-style agent-oriented programming language that enhances usual BDI programming style with three distinguished features: declarative goals, look-ahead planning, and failure handling. First, an account that mixes both procedural and declarative aspects of goals is necessary in order to reason about important properties of goals and to decouple plans from what these plans are meant to achieve. Second, lookahead deliberation about the effects of one choice of expansion over another is clearly desirable or even mandatory in many circumstances so as to guarantee goal achievability and to avoid undesired situations. Finally, a failure handling mechanism, suitably integrated with both declarative goals and planning, is required in order to model an adequate level of commitment to goals, as well as to be consistent with most real BDI implemented systems

    handling, declarative goals, and planning

    Get PDF
    A BDI agent programming language with failur

    GROVE: A computationally grounded model for rational intention revision in BDI agents

    Get PDF
    A fundamental aspect of Belief-Desire-Intention (BDI) agents is intention revision. Agents revise their intentions in order to maintain consistency between their intentions and beliefs, and consistency between intentions. A rational agent must also account for the optimality of their intentions in the case of revision. To that end I present GROVE, a model of rational intention revision for BDI agents. The semantics of a GROVE agent is defined in terms of constraints and preferences on possible future executions of an agent’s plans. I show that GROVE is weakly rational in the sense of Grant et al. and imposes more constraints on executions than the operational semantics for goal lifecycles proposed by Harland et al. As it may not be computationally feasible to consider all possible future executions, I propose a bounded version of GROVE that samples the set of future executions, and state conditions under which bounded GROVE commits to a rational execution

    Semantic Based Support for Planning Information Delivery in Human-agent Collaborative Teams

    Get PDF
    Collaborative teams are organizations where joint members work together to solve mutual goals. Mixed-initiative planning systems are useful tools in such situations, because they can support several common activities performed in these organizations. However, as collaborative members are involved in different decision making planning levels, they consequently require different information types and forms of receiving planning information. Unfortunately, collaborative planning delivery is a subject that has not been given much attention by researchers, so that users cannot make the most of such systems since they do not have appropriate support for interaction with them. This work presents a general framework for planning information delivery, which is divided into two main parts: a knowledge representation aspect based on an ontological set and a reasoning mechanism for multimodality visualization. This framework is built on a mixed-initiative planning basis, which considers the additional requirements that the human presence brings to the development of collaborative support systems

    GROVE: A computationally grounded model for rational intention revision in BDI agents

    Get PDF
    A fundamental aspect of Belief-Desire-Intention (BDI) agents is intention revision. Agents revise their intentions in order to maintain consistency between their intentions and beliefs, and consistency between intentions. A rational agent must also account for the optimality of their intentions in the case of revision. To that end I present GROVE, a model of rational intention revision for BDI agents. The semantics of a GROVE agent is defined in terms of constraints and preferences on possible future executions of an agent’s plans. I show that GROVE is weakly rational in the sense of Grant et al. and imposes more constraints on executions than the operational semantics for goal lifecycles proposed by Harland et al. As it may not be computationally feasible to consider all possible future executions, I propose a bounded version of GROVE that samples the set of future executions, and state conditions under which bounded GROVE commits to a rational execution

    Methods for engineering symbolic human behaviour models for activity recognition

    Get PDF
    This work investigates the ability of symbolic models to encode context information that is later used for generating probabilistic models for activity recognition. The contributions of the work are as follows: it shows that it is possible to successfully use symbolic models for activity recognition; it provides a modelling toolkit that contains patterns for reducing the model complexity; it proposes a structured development process for building and evaluating computational causal behaviour models
    corecore