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Abstract

Context-aware systems are becoming an important part of our everyday life and their ability
to accurately recognise the user needs plays a crucial role in their performance. Assistive
software would be greatly impaired, were it unable to recognise the current user state, as it
would result in inability to correctly assist her. A typical approach in such situations is the
employment of probabilistic models that describe the possible states and the probabilities for
going from one state to another. Usually these models are handcrafted by the system engineer
and the transition probabilities are learned to fit the specific problem. However, in order to
build and learn the model, a training dataset has to be collected and annotated which in itself
implies finding subjects to conduct an experiment, spending time for repeatedly conducting the
experiment, and even more time for annotating it. This makes the building of such models
not only expensive but also leads to generalisation problems, as the model is not guided by a
domain structure but rather by the underlying sensor readings, which could cause suboptimal
solutions.

A different approach is to generate the probabilistic model from prior knowledge instead
of learning it. One approach to generating probabilistic models could be the usage of human
behaviour models that are later mapped onto a probabilistic model and an inference engine is
used for estimating the user state. It exploits the additional advantage that the natural way of
human thinking is based on causes and effects instead of probabilities. There are corresponding
theories that it would be much easier for a system engineer to build a non-probabilistic model.

Based on the above assumption, this work investigates the ability of symbolic models to
encode context information that is later used for generating probabilistic models. It also analy-
ses the problems arising from such approach and the need of a structured development process
for model based activity recognition. As a consequence, the contributions of the work are as
follows: (1) it shows that it is possible to successfully use symbolic models for activity recog-
nition in the field of activities of daily living; (2) it provides a modelling toolkit that contains
patterns for reducing the model complexity; (3) it proposes a structured development process
for building and evaluating computational causal behaviour models. In general, the thesis pro-
vides a practical guide to implementing and using symbolic models for activity recognition and
proposes a structured process for doing it – something that is often overlooked in the field of
activity recognition.

Keywords: human behaviour models, activity recognition, symbolic models, daily activi-
ties, probabilistic models.





Zusammenfassung

Kontext-sensitive Systeme werden ein immer wichtigerer Bestandteil unseres täglichen
Lebens. Ihre Fähigkeit die aktuellen Bedürfnisse des Benutzers zu erkennen spielt eine entschei-
dende Rolle ihrer Leistungsfähigkeit. Ein Assistenzsystem würde stark beeinträchtigt werden,
wäre es nicht in der Lage den aktuellen Zustand des Benutzers zu erkennen und ihn folglich
nicht korrekt zu unterstützen. Eine typische Vorgehensweise in solchen Situationen ist die
Verwendung von probabilistischen Modellen, die die möglichen Zustände und die Wahrschein-
lichkeiten für den Übergang von einem Zustand zum anderen beschreiben. Normalerweise wer-
den diese Modelle und Übergangswahrscheinlichkeiten gelernt und vom System-Ingenieur per
Hand abgestimmt, um bestmögliche Ergebnisse zu erzielen. Um das Modell zu bauen und zu
lernen muss man jedoch ein Experiment durchführen, Trainingsdaten sammeln und die Daten
müssen annotiert werden. Dies macht den Bau solcher Modelle nicht nur teuer, sondern er-
schwert auch eine universelle Einsetzbarkeit, da das Modell nicht auf Domänenwissen basiert,
sondern stark von den Sensoren abhängt und folglich zu suboptimalen Ergebnissen führt.

Eine Alternative ist, das probabilistische Modell auf Basis von vorhandenem Wissen zu
generieren. Ein Ansatz zum Erzeugen von probabilistischen Modellen kann die Verwendung
von menschlichen Verhaltensmodellen sein, die auf ein probabilistisches Modell abgebildet
und mit Hilfe von Inferenztechniken zum Schätzen des Benutzerzustands verwendet werden
können. Das reflektiert auch die Tatsache, dass menschliches Denken eher auf Ursachen und
Wirkungen basiert, statt auf Wahrscheinlichkeiten. Es gibt Theorien, dass es für einen System-
Ingenieur viel einfacher ist ein nicht-probabilistisches Modell zu bauen.

Basierend auf der obigen Annahme untersucht diese Arbeit die Fähigkeit der symbolischen
Modelle Kontextinformationen, die später zum Erzeugen von probabilistischen Modellen ver-
wendet werden, zu beschreiben. Zusätzlich werden die Probleme, die mit solche Ansätzen
verbunden sind, analysiert und die Notwendigkeit eines strukturierten Entwicklungsprozess für
die modellbasierte Aktivitätserkennung diskutiert. Als Folge davon sind die Beiträge der Arbeit
wie folgt: (1) es wird gezeigt, dass es möglich ist symbolische Modelle für Aktivitätserkennung
im Bereich der Aktivitäten des täglichen Lebens zu benutzen, (2) es wird ein Modellierungstool-
kit vorgeschlagen, dass verschiedene Entwicklungsmuster für die Reduzierung der Modellkom-
plexität unterstützt, (3) es wird ein strukturierter Entwicklungsprozess für die Erstellung und
Bewertung von Computational Causal Behaviour Models vorgestellt. Allgemein liefert die
Arbeit einen praktischen Leitfaden und strukturierten Prozess für die Implementierung und
Verwendung symbolischer Modelle für Aktivitätserkennung - etwas, das im Bereich der Ak-
tivitätserkennung oft übersehen wird.

Keywords: Modelle für menschliches Verhalten, Aktivitätserkennung, symbolische Mod-
elle, probabilistische Modelle.
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Chapter 1

Introduction and Motivation

“Suit the action to the world, the world to the action; with
this special observance, that you o’erstep not the modesty

of nature.”
William Shakespeare

Chapter Summary: This chapter introduces the concept of activity recognition and human be-
haviour models and explains the motivation behind using human behaviour models for activity
recognition. Additionally, it describes the challenges in using such approaches, gives the goal of
the thesis and the problems to be discussed throughout the thesis.

Chapter Sources: This chapter is partly based on the technical report “Toward a Unified Human
Behaviour Modelling Approach” [160] and the journal paper “Towards Creating Assistive Soft-
ware by Employing Human Behavior Models” [79].

Questions to be answered in the chapter:

What are assistive systems? (In Section 1.2)

What is context awareness? (In Section 1.2)

What are activity and intention recognition? (In Section 1.3)

What is human behaviour modelling? (In Section 1.4)

What is prior knowledge? (In Section 1.5)

What types of human behaviour models do exist? (In Section 1.6)

What challenges are there in the field of human behaviour modelling for activity recognition? (In
Section 1.7)

What is the goal of the thesis? (In Section 1.8)

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

1.1 Introduction
With the development of new context-aware technologies and applications, activity and

context recognition is a process we might not be aware of, but one we heavily depend on every
time we use some application, the aim of which is to provide us with information based on our
current location, or surroundings, or activities [69, 46, 27]. And, of course, one would expect
such application to perform accurately and to be able to provide the ”right” information1. To
be able to do that, beneath the ”shiny surface” we usually see, the application should possess an
activity recognition component that can correctly recognise the current user actions, and even
more – to be able to reason about the user situation [79].

Building such system could be a challenging task as it should be able to reason about the
user’s whereabouts and intentions based on imperfect user and environment observations and /
or the available context knowledge associated with the given problem [80, 112, 92, 162]. Even
more, gathering and including the context information into a successful activity recognition
system is a challenge in itself [82]. This work deals exactly with the problem of incorporating
prior knowledge in the form of symbolic Human Behaviour Models (HBM) for activity recog-
nition. It answers the question of how to build successful HBM for activity recognition, and
discusses the problems associated with developing such models. Even more, it discusses the
need of a structured development process that could improve the models, automate the model
implementation, and solve different problems emerging during the intuitive model develop-
ment.

This chapter presents the basic concepts associated with context-aware activity recognition.
It discusses the challenges related to developing activity recognition systems able to infer the
user actions and to provide additional information about the context of those activities. For that
reason, we2 look at context awareness from the viewpoint of assistive systems and its relation to
activity recognition. Later we discuss how context information can be incorporated into activity
recognition models, what challenges are there and which contributions this work brings.

1.2 Assistive systems and context awareness
In a world where mobile devices are everywhere around us, where new technologies and

applications constantly emerge, develop and evolve, context awareness plays a central role in
every system that strives to assist the human being in a way. Such systems could be a public
transportation app that shows the nearby bus stops [109], or such that strives at improving
the routes one takes while driving [83]. It could also be a system that monitors people with
cognitive or physical restrictions and strives to provide them with appropriate assistance that
would make their lives more independent of caretakers [109]. Another variation of such system
would be the different kinds of smart environments – smart meeting rooms, lecture halls and
classrooms [46, 47], homes [27, 30], learning environments [69] – that aim at providing the
appropriate help for the users within the environment.

In general, an assistive system is any system that provides some sort of help for the user in-
teracting with it. The assistance can be offered in different forms and degree of interaction and
automation. In fact, there are different taxonomies proposed for classifying assistive systems.
For example Sheridan proposes an eight level scale of automation which starts from systems

1Here by ”right” information, the information satisfying the user needs is meant. Such information should be
accurate and clear.

2Throughout the thesis, the personal pronoun ”we” is used for simplicity in the sentence structure as opposed
to the passive structure, and not as an indication that the work was completed by multiple persons.
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that provide no assistance at all, to systems that provide full automation [132]. Wandke pro-
poses a more complex classification system as he argues that Sheridan’s taxonomy is incom-
plete and does not refer to all action stages or types of assistive systems. Thus he classifies
assistance according to three dimensions: the stages of human-machine interaction that could
be achieved, the adjustment (or how the assistive system adjusts to the user needs), and initiative
(or who has the initiative for assistance – the user or the system) [124].

Regardless of the kind of assistive system, to be able to assist the user, it needs to possess
context awareness, as it is the component allowing the system to help its users in a meaningful
and adequate way [70]. Without information about the context of the user actions, it would be
impossible for the system to discover the correct kind of solutions that could further the user
actions toward achieving her3 goals.

Dey [33] defines the notion of context in the following way.

Context is any information that can be used to characterise the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a user
and an application, including the user and applications themselves.

On the other hand, Indulska et al. [70] try to define context without the meaning of ”situation
of an entity” and express it in a more concise form.

The context of a computing application is a set of circumstances surrounding it that are po-
tentially relevant to its execution.

Additionally, Dey [33] defines the concept of a system being context-aware as

A system is context-aware if it uses context to provide relevant information and/or services to
the user, where relevancy depends on the user’s task.

It is obvious that context plays an essential role in a system that provides assistive services
to a user, hence the appropriate incorporation of the relevant context information will be equally
important for the system’s performance.

Indulska et al. [70] discuss the importance of context awareness in assistive systems and
introduce several requirements for context modelling in context aware applications. Defining
such requirements is of importance for any assistive system that strives to achieve maximum
performance and user satisfiability. Krüger et al. [79] summarise these requirements and extend
them on their own with some additional requirements a successful assistive system should
possess. Below these requirements are presented.

Imperfect context information: Context-aware applications have the common problem of im-
perfect context information that could be due to noise in the sensor data, or sensor mal-
function, or even inaccurate algorithms for extracting context information from the sen-
sors. It could also be caused by incorrect information provided by the users, such as
incomplete or wrong agenda. Thus, when modelling context, it should be able to rep-
resent information that is incomplete, imprecise or ambiguous. Additionally, it should
have some sort of quality indicators, so that when a sensor is malfunctioning, it can be
traced back and repaired.

3Throughout the thesis the personal pronoun ”she” is used as a substitution of ”she / he”, and not as an
indication that the person in question was a female.
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Context histories: Often the information about the current state is not enough for the proper
functioning of assistive software. It could also require information about past and future
contexts. Therefore, a context modelling approach should be able not only to represent
histories but also to be able to reason about them. This information is essential in assistive
applications where behaviour patterns are to be detected or where the intention of a user
is to be inferred.

Software engineering: A context model benefits the software development when it is intro-
duced in the early stages of the software engineering lifecycle. Then it can be refined
incrementally, thus introducing the types of context information required by the applica-
tion and the data constraints. Additionally, it can be used to evaluate the suitability of
the context sensing infrastructure that is already developed, and to present more software
or hardware requirements. Furthermore, the context model can be used for producing
different use cases for software testing of the context-aware functionality.

Runtime querying and reasoning: One of the context models forms is the runtime model, that
is queried by the context-aware applications. The runtime model deals with problems
such as how to represent the information at runtime so that it can be reasoned upon in
order the system to provide decision making. The model should contain information
about the existing context types and their characteristics, as well as concrete context
information. It should also be easily extendable so that it can cope with the reasoning in
evolving environment.

Interoperability: One of the characteristics of smart environments is that the context-aware
applications could be faced with the problem of communicating with components that
were unknown to the software designer. Such components could be new applications,
or a new device, or new sensing hardware. Thus the context-aware applications should
be able to exchange information with them even when the component was previously
unknown. This requires either transforming the information in different representations,
using a shared context modelling approach, or supporting transformation between differ-
ent modelling approaches.

Recognition of semantic goals: A common practice in activity recognition is the detection
of labels, i.e. a name that is associated with specific data pattern without any further
meaning. However, in order a system to be able to perform strategy synthesis for assisting
the user, semantic goals should be recognised. Namely, not only an activity, but also the
plan (or path) that leads to achieving the goal. That way the system can generate a plan
based on the user’s semantic goal and assist her while achieving this goal.

It can be seen that a good context-aware assistive system should be able to cope with im-
perfect context information, thus it should be able to reason about imperfect knowledge about
the world and the problem. It should also be able to make track not only of the current state
but also of already visited states, so that it can avoid situations that are impossible based on
the context histories. Furthermore it should be able to reason about the user state and actions
during the model runtime and to be able to recognise not only an action label, but also semantic
goals that describe the path taken from the initial to the goal state. These requirements imply
that the given assistive system needs a component that is able to make use of the context infor-
mation and the observations coming from the environment in order to be able to reason about
the user actions, their causes and the goals she is following. This should be done in a way that
is flexible enough to cope with imperfect knowledge and observations. This component is the
activity recognition component that aims at satisfying exactly these requirements.
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1.3 The concepts of activity and intention recognition
The previous section already introduced the general idea behind Activity Recognition (AR)

– to accurately recognise the user activities so that the assistive system is able to provide ade-
quate help for the user. However, one more general question is What is actually an activity? Is it
the movement of the body? Or is it an intentional act or manipulation aiming at achieving some
goal? Is it the user behaviour or just a small part of that behaviour? Another question resulting
from that is Are the concepts ”action”, ”activity”, ”task”, and ”behaviour” interchangeable?

The fact is that in the field of activity recognition the words action, activity, task, and be-
haviour are rather loosely used and depending on the community, they could mean the same or
different things4. To avoid ambiguity, here we attempt to define these concepts before proceed-
ing to the concept of activity recognition.

According to the Oxford Dictionary of English, the word action has the following meanings
[105]:

(1) the fact or process of doing something, typically to achieve an aim

(2) a gesture or movement

The second definition suggests unconscious or unintentional execution of a low-level move-
ment like suggested by Sukthankar [142]. On the other hand, the first definition implies that
the executed process is intentional and executed with a certain purpose. The latter complies
with action theory that describes actions as processes causing intentional body movement that
are based on certain beliefs and desires [31]. In the course of this work when using the term
action, we refer to definition (1) and consider any lower body movement that does not have an
explicit intentional cause, to be just that – a body movement and not an action.

Definition 1. (Action) Action is an intentional process executed by the user that has a certain
cause that triggers it, and that aims at achieving a certain goal.

Furthermore, actions can be divided into two groups – atomic or composite actions.

Definition 2. (Atomic action) Atomic action is an action that cannot be divided into more
fine-grained intentional actions.

Notice that here we do not consider as intentional actions body movements that build up a
certain action, but that separately do not lead to a goal. Rather, atomic action is the smallest
intentional building block of a user behaviour that cannot be decomposed into any more finer
actions.

On the other hand, composite actions are built up out of atomic actions or out of other more
fine-grained composite actions.

Definition 3. (Composite action) Composite action is an action that consists of at least two
actions that are either finer-grained composite actions, or atomic. These actions are causally or
temporally related with each other in order to build a more complex structure. Here composite
action is used as equivalent to the terms activity and task.

4For example, van Kasteren distinguishes between action primitives and activities that are built of action prim-
itives [151]. On the other hand Subramanya et al. [141] do not make use of the term action and instead refer to
the user actions as activities. Alternatively, Sukthankar defines activities as higher level-descriptions composed of
low-level movement data [142]. On the other hand, Trafton et al. [146] do not speak of activities but rather refer
to tasks that build up user behaviour.
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Based on that definition, one can then define behaviour as:

Definition 4. (Behaviour) Behaviour is a set of atomic actions and activities that through their
execution lead from the initial state of the world to the goal that the user is pursuing.

Here, what is meant by initial state of the world is the state in which the environment and
the user were when the latter first started pursuing her goal.

Finally, one additional concept that has to be defined is that of intention. According to the
Oxford Dictionary of English [106], intention is explained as:

(1) a thing intended; an aim or plan.

Or in the context of multi-agent systems and the Belief Desire Intention (BDI) architecture,
intentions are commitments to the desires the agent has and to the plans that will achieve them
[54]. Based on the above, in this work we refer to intention as:

Definition 5. (Intention) Intention is a commitment to achieving a certain goal by executing a
set of causally related actions that lead to that goal.

Now we are ready to finally explore what exactly the field of activity recognition does.
According to Sukthankar the term activity recognition is used to describe the problem of seg-
menting and classifying low-level movement data into a higher-level description of the activity
performed [142]. He argues that in difference with plan recognition where the algorithms deal
with symbolic data and atomic actions, activity recognition algorithms trace the human po-
sition over time in order to recognise the activity being performed. This definition however
contradicts with other approaches that use symbolic action representation together with sensor
data as observations for reasoning about the user activities [66, 80]. Furthermore, probabilistic
approaches like some Dynamic Bayesian Network (DBN) do not make use of the time relation
between the observations, but rather take each observation as independent of the previous and
related only to the hidden model state [153, 133, 99]. For that reason here we give a more
general definition of the term activity recognition.

Definition 6. (Activity recognition) Activity recognition is the task of recognising user’s atomic
actions and activities based on a set of observations.

Slightly different is the concept of Intention Recognition (IR). Sadri [125] defines intention
recognition in the following way.

Intention recognition (...) is the task of recognizing the intentions of an agent by analyzing
some or all of their actions and/or analyzing the changes in the state (environment) re-
sulting from their actions.

As in the context of the thesis, the actions have to first be recognised, in order to analyse
them, we refer to intention recognition as:

Definition 7. (Intention recognition) Intention recognition is the task of reasoning about the
goals of a user based on the actions she is executing.

One could then ask the reasonable question How can one reason about the user intentions
based only on recognised activities? Where does the knowledge about the meaning of these
activities come from? Exactly here comes the role of models describing user behaviour. Such
models make use of the available context information and incorporate this prior knowledge in
the form of rules so that the system can later reason about the nature of the observed activities.
Below the concept of human behaviour models is discussed in detail.
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1.4 The concept of human behaviour modelling
Before discussing the different ways of modelling human behaviour, we have to answer one

important question: Why do we need to describe human behaviour at all?
Objectively speaking, it is possible to recognise user activities without using human be-

haviour models. There is an increasing number of works in the field of activity recognition that
are based only on the observed sensor data, and which try to recognise human activities with
the help of different statistical methods [5, 1, 117]. Many of these works give promising results
that encourage the development in this field of research.

However, there are several reasons for describing human behaviour, that make developing
behaviour models important. From psychological point of view, human behaviour modelling
is essential for the better understanding of human actions. Questions such as: What does an
action consist of?; What does this action imply?; What are the reasons and consequences of an
action? arise. Their answers could be found exactly in human behaviour models that describe
not only the actions, but also whether they are composed of more fine-grained actions, what
are the relations between the different actions in the context of the composed activities and the
user behaviour, how these relations influence the user(s) and the environment [4, 75, 29, 144].

Another reason for modelling human behaviour is to detect the user behaviour based on a
given activity. This aspect of HBM is important in systems that deal with human monitoring
and rise questions such as: If an activity is recognised, what kind of behaviour does it imply?
[114]; Is the behaviour normal or abnormal?; Should the activity be reported as deviation
from the expected? [128, 146]. These systems could be in the sphere of health care where the
condition of patients is monitored, or in the sphere of security where abnormal behaviour could
imply intrusion.

Yet another reason for describing human behaviour is to provide assistance. In this case
HBM is essential for systems that try to assist their users in accomplishing a goal. Here when
an action is detected and recognised, it is important to discover not only what the action implies,
but also why it is executed, what is the final goal of the user. In that way the system will be
able to assist the user in reaching her goal [146, 79, 119].

The questions above imply that human behaviour models could provide invaluable infor-
mation for the needs of users from different backgrounds – from helping medical doctors un-
derstand patients with cognitive restrictions, through monitoring and assisting elderly people,
to providing proactive assistance in smart environments.

1.4.1 Purpose of human behaviour models

It is apparent that although all of them explain the user behaviour, human behaviour models
can serve different purposes. Many of them are used just for simulation of human behaviour
where a particular behaviour path is constructed independently of its occurrence probability.
With the rapid development of more and more realistic human-centred games, simulation of
human behaviour is thoroughly investigated and different models striving to improve the simu-
lation realism and to better explain the agents actions are developed [44, 156].

If we go even further beyond simulation, models are used for inference. If the purpose
is inference, the model not only tries to predict the most probable human behaviour, but also
to infer the reasons behind this behaviour, and if possible, to discover the long term human
behaviour [66, 114, 80].

For example, one could use human behaviour models to detect a specific behaviour. This
is called prediction and the idea behind it is to find the most probable behaviour from a set
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of behaviours. In difference with simulation, models dealing with prediction usually assign a

probability function to all possible behaviours, instead of just giving one solution. For example,

to predict the behaviour of a user, one should look over all of the available behaviours and

predict how probable they are [81].

From the above examples two main purposes for human behaviour modelling can be dis-

tinguished – simulation and inference. Furthermore, we adopt the inference types presented by

Giersich [57, p. 113] and divide them into filtering, smoothing, and prediction.

Figure 1.1: Purposes of human behaviour models. Here the estimated behaviour is represented by a

solid line while the observations with a dashed line.

Simulation: Simulation is the process of imitating a real world situation or behaviour. Simu-

lation does not take into account how probable the execution sequence is, it just gives a

sample of a future trajectory. In simulation it is not possible to judge which is the best

course of action, because the different samples are equally probable. Fig. 1.1 graphi-

cally shows the difference between the different behaviour purposes, where simulation

is presented simply by a state sequence X1:t+s which is not affected by the probability

distribution of the observed states5.

Inference: Beyond simulation there is inference where we go one step further and try not only

to simulate behaviour, but also to predict it and find the reasons behind this behaviour.

When talking about inference, we distinguish 4 different approaches of interest.

• filtering: Filtering performs a transformation of the original data to approximated

copy of it that is reduced of noise. In filtering an online learning is performed

and the smoothing is done over only parts of observations. In Fig. 1.1 filtering is

described as the process of estimating the state Xt at time t, taking into account

only the observations Yt up to time t, namely P (Xt|Yt).
• smoothing: Often the sensor datasets contain not only useful information but also a

lot of noise. To avoid the redundant data, smoothing is employed. Smoothing is the

process where an approximation of the original data is obtained, that tries to catch

the information patterns but to leave out the noise or other fine-scale structures. Fig.

1.1 shows smoothing as the process where the state Xt at time t is estimated, taking

into account all observations YT up to time T, or in other words P (Xt|YT ).
5Here simulation refers to the simulation process in statistical inference and Bayesian filters, where simulating

from a distribution means to draw a sample from this distribution [101, p. 3]. It is not to be confused with the

notion of simulation from the field of modelling and simulation, where it is possible to determine the probability

of an observation by applying e.g. statistical model checking [87].
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• prediction: In difference with simulation, prediction defines a probability distribu-
tion across an action space. Here we not only have a sample of a future trajectory,
but also the probability of this action sequence happening. Prediction is extremely
helpful for making decision about which action to support and which to discard. In
Fig. 1.1 prediction is described as the probability of having the state Xt+s, given
the observations Y1:t, or shortly P (Xt+s|Yt).

In this work we are interested in human behaviour models for inference that can allow us
to recognise the user actions and to further be able to reason about causes that influence those
actions and parameters that are influenced by the actions. To do that, first we have to be able to
identify the context information that can be incorporated in these models.

1.5 Employing prior knowledge
Prior knowledge, or context information, is the knowledge about the environment, the users

and the relations between them we have prior to the present moment. In the context of activity
recognition, this is the knowledge about the user activities and their relations to the environment
or other users that is available prior to receiving the sensor data from which the actions have
to be inferred. Additionally, it contains the information about the problem domain6. When
creating a human behaviour model, this knowledge is incorporated into the model in order to
improve the process of activity recognition and / or to provide additional information about the
nature of the user actions.

As mentioned in the previous section, in the recent years there is increasing interest in using
statistical methods for activity recognition. Thus the question of prior knowledge’s importance
arises. Do we really need it or can we rely only on the sensor data?

If we consider situation where the sensor data describes human behaviour in a particular
domain and is collected with the same type of sensors, then a pattern extraction methods could
be sufficient for learning the system to recognise future human activities. Especially, when as-
suming that humans are creatures of habit and exhibit certain behaviour patterns [22]. However,
even changing the sensors type could be a problem for recognising the activity patterns. Even
worse, a change in the domain would make activity recognition more difficult if not hardly pos-
sible. The reason for this is that by using only sensor data, a learned model is highly dependent
on the observed data, so it will be difficult to use it in a different from the observed situation.

On the other hand, a human behaviour model making use of the prior knowledge could be
more abstract and flexible, so that it can be used in various situations7 and domains by utilising
different types of domain knowledge. Another problem that the use of prior knowledge solves,
is arriving at suboptimal solution. Geisler gives the following example with a first person
shooter in Quake: when relying only on observation data to learn, it is possible that there is
shooting only in 5% of the observations. Relying only on observations, the shooter learns not
to shoot, thus arriving at an undesirable problem solution [53]. Of course, that also could be
solved with selecting the appropriate type of training data, but as a whole it shows that one could
rely on the model to cope only with situations it has already seen in the data. This problem too
can be solved with obtaining more training data that however is expensive in terms of resources

6Here the meaning of domain complies with that of domain in knowledge representation where it is just some
part of the world about which we wish to express some knowledge [123, p. 300].

7Here situation complies with the definition given by Russell and Norvig, where situation is the initial state of
the world in a given domain before the agents begin performing their actions in order to achieve a goal [123, p.
388].
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and time. Applying prior knowledge, on the other hand, could ensure that the model is doing
whatever it is specified to do and without the additional costs for training data8.

As hinted above, another issue with statistical methods is the expensive training data. In
the recent years the sensor data to be analysed is increasing until we have come to the point
where we have huge amount of observations and the process of analysing it becomes tedious
and slow or sometimes even impossible [65]. A way to avoid this problem could be to employ
prior knowledge that will replace the needed data with the expert knowledge of the model
designer. This does not necessarily mean that the time needed for creating successful model
will be shortened, but it will reduce the need of involving additional manpower for obtaining
the needed amount of training data and the additional storage needed for this data.

In general, prior knowledge can be avoided in specific situations and only the sensor data
can be used for model learning [5, 1, 117]. However, for applying such model on a broader
spectrum of activity situations without the need of additional training data, as well as avoiding
arriving at a suboptimal solutions because of insufficient training data, the incorporation of
prior knowledge could be preferred.

1.5.1 Types of prior knowledge

Prior knowledge can come in different forms and from different sources. Here we propose
a categorisation of prior knowledge into three groups based on the knowledge incorporated in
different models.

Prior knowledge based on cognitive psychology: Cognitive psychology is the study of how
people perceive, learn, remember, and think about information [139, p. 2]. Prior knowl-
edge based on cognitive psychology consists of all the internal human states such as
stress, emotions, perceptions etc. Such type of knowledge is important because cog-
nition greatly affects human behaviour, and it is important to understand and take into
account its influence on the user actions. Works that apply this kind of prior knowledge
are such based on Adaptive Control of Thought – Rational (ACT-R) [128, 146]; such ap-
plying the BDI agent model [85]; even some Petri Nets approaches modelling emotional
agents [43, 44].

Environmental knowledge: Environment is everything that surrounds a system and that ex-
changes different properties with it. In the context of human behaviour modelling, prior
knowledge based on the environment is the knowledge about the state of the world out-
side the user. It includes information about the elements in the environment but also
about the user interactions with it, and how this interaction changes the environment.
Such knowledge is important, because it can be essential for determining different situ-
ation that may affect the way an activity is executed but still refer to the same activity.
For example, environmental knowledge will describe the initial state of the user and
the environment, such as what objects are there, where is the user, what has she al-
ready done etc. Approaches that employ environmental knowledge are Planning Domain
Definition Language (PDDL) [114], Computational Causal Behaviour Models (CCBM)
[80], Collaborative Task Modeling Language (CTML) [159].

8Here it should be noted that incorrectly incorporating prior knowledge or incorporating the wrong9 kind of
prior knowledge could also lead to suboptimal solutions.

9By wrong we mean knowledge that does not contribute to solving the problem or that incorrectly solves the
problem.
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Prior knowledge based on ergonomics: Ergonomics is the study that concerns the understand-
ing of the interaction between human and other elements of a system and that strives
to optimise human well-being and overall performance. Such type of prior knowledge
is important, because it may contain important behavioural patterns that will make the
recognition of a human activity easier. Approaches employing such kind of prior knowl-
edge are Goals, Operators, Methods, and Selection rules (GOMS) [144] and Concurrent
Task Trees (CTT) [58].

1.6 Types of human behaviour modelling approaches in the
context of activity recognition

It was already explained that there are various types of activity recognition approaches that
can basically be divided into data-driven which rely on training data in order to learn the human
behaviour. Such examples are approaches that use Dynamic Bayesian Networks combined
with clustering to learn the model [99], Markov models that rely on training data [133], and
Hidden Markov Models [153]. The second type of approaches are model-driven which rely
on underlying behaviour model in order to recognise the user activities. Examples of such are
ACT-R where the user behaviour is encoded in terms of production system [66], PDDL that
relies on precondition-effect rules to build the user behaviour [114], and CCBM that relies to
similar rules [80]. As this work centres on symbolic models for activity recognition, here we
discuss the different types of HBM formalisms that can potentially be applied to model-driven
activity recognition systems.

1.6.1 Process-oriented modelling

When thinking of a process, one usually understands the act of executing a set of routine
procedures in order to achieve a goal. Beaten [10] describes a process as

behaviour of a system. A system is anything showing behaviour, in particular the execution
of a software system, the actions of a machine or even the actions of a human being.
Behaviour is the total of events or actions that a system can perform, the order in which
they can be executed and maybe other aspects of this execution such as timing or prob-
abilities. Always, we describe certain aspects of behaviour, disregarding other aspects,
so we are considering an abstraction or idealization of the real behaviour. Rather, we
can say that we have an observation of behaviour, and an action is the chosen unit of
observation.

The above indicates that a process is nothing more than description of the system dynam-
ics, the actions it can execute, the order in which they can be executed, and any additional
constraints or aspects that may influence these dynamics. In this context, process-oriented
modelling describes behaviour through a set of actions that are temporally related.

In other words, process-oriented models answer the question what is a user doing?. There
are two different model approaches concerning the process-oriented modelling. These are
grammar-based models, where the human behaviour is described in the form of grammar and
rules; and process calculi which represents a diverse family of related approaches for modelling
of concurrent systems.
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1.6.1.1 Grammar-based models

The human behaviour in a grammar-based model is described by a grammar that explains
the behaviour. Russell and Norvig [122] define a grammar as

a finite set of rules that specifies a language. Formal languages always have an official gram-
mar, specified in manuals or books. Natural languages have no official grammar, but
linguists strive to discover properties of the language by a process of scientific inquiry
and then to codify their discoveries in a grammar.

Bernard Meyer [96] gives another definition by explaining that a grammar defines the syntax
of a language as a set of productions. Each production specifies one construct by describing
the structure of specimens of the construct.

In the context of human behaviour modelling, a grammar-based model describes behaviour
in the sense of constructions of rules that define the dynamics of the activities constituting a
behaviour. Examples of such modelling formalisms are GOMS [144, 86] that strives to model
human-computer interaction, CTT that expresses hierarchical task models [58], and natural
language modelling approaches to describing human behaviour [78].

1.6.1.2 Process calculus

Process calculi are various approaches for modelling concurrent systems. They provide a
tool for describing high-level interactions, communication and synchronisation between differ-
ent agents or processes. Another usage is for comparing and analysing independent processes.
Although there are different types of process calculus, all of them share the same features.
Namely, they represent interaction between independent processes as communication; they use
a set of primitives and operators combining these primitives to describe the processes; they de-
fine algebraic laws for the process operators; they use equation reasoning to manipulate process
expressions.

Beaten [10] describes process algebra as

the study of the behaviour of parallel or distributed systems by algebraic means. It offers
means to describe or specify such systems, and thus it has means to talk about parallel
composition. Besides this, it can usually also talk about alternative composition (choice)
and sequential composition (sequencing). Moreover, we can reason about such systems
using algebra, i.e. equational reasoning. By means of this equational reasoning, we can
do verification, i.e. we can establish that a system satisfies a certain property.

Examples of formalisms employing process calculus is Petri Nets [59] that among other appli-
cations are also used for simulation of social behaviour [44].

1.6.2 Causal modelling
Another perspective of human behaviour is the causal view or as Pearl explains – our aware-

ness of what causes what in the world and why it matters [110]. Causality is the relationship
between two events – the first being the cause, and the second – the effect that resulted from
the first. In his book ”Natural Philosophy of Cause and Chance” Born [16, p. 9] explains that
Causality postulates that there are laws by which the occurrence of an entity B of a certain
class depends on the occurrence of an entity A of another class, where the word ’entity’ means
any physical object, phenomenon, situation, or event. A is called the cause, B the effect.



1.6. TYPES OF HUMAN BEHAVIOUR MODELLING APPROACHES 13

In the context of Born’s definition, causal models do not specify a set of actions with which
a goal can be achieved, but rather define the preconditions for reaching it, and the effects after
the goal has been reached, thus creating a structure of causally related states that lead from the
initial to the goal state. In difference with process-based models which answer the question
what, causal models deal with the problem of why a user is doing something, thus investigating
the cause and effects of a given action sequence.

We should point out that when talking about causal models we do not consider those pro-
posed by Perl where they are thought of as causal graphs with assigned probability values.

Pearl gives the following formal definition of a causal model.

A causal model is a pair M =< D,ΘD > consisting of a causal structure D and a set of
parameters ΘD compatible with D. The parameters ΘD assign a function xi = fi(pai,ui)
to each Xi ∈ V and a probability measure P (ui) to each ui, where PAi are the parents
of Xi in D and where each Ui is a random disturbance distributed according to P (ui),
independently of all other u. [111]

In difference to this definition, we call causal models such that comply with Born’s def-
inition. Here, when talking about causal models, we consider two different types: forward
rule-based models and backward rule-based models.

1.6.2.1 Forward rule-based models

Forward rule-based models deal with rules and facts. First rules and facts are defined and
when the facts are true, they can make a certain rule applicable. When a rule becomes appli-
cable, it is asserted. In difference with the process-based models, where an explicit process
describes the system behaviour, the rule-based models continuously apply a collection of rules
to a collection of facts. Rules can modify the collection of facts.

For example, a production system, which is a forward rule-based system, consists of two
steps: the first is the prediction step or IF statement; and the second is the action step or THEN
statement. This means that if the production’s prediction matches the current state of the world,
the production is triggered and a production’s action is executed. Examples of forward rule-
based models are ACT-R [128, 146], PDDL [114], and CCBM [80].

1.6.2.2 Backward rule-based models

In difference with the forward rule-based systems, where an action is triggered only if a fact
is true, the backward rule-based systems use an approach called backtracking. As described in
[126] backtracking systematically searches for a solution to a problem among all available
options. It does so by assuming that the solutions are represented by vectors (v1, ...,vm) of
values and by traversing, in a depth first manner, the domains of the vectors until the solutions
are found.

In the context of backward rule-based models, this means that given a problem, the algo-
rithm goes through the present states and their relations and tries to find a solution. If any
goal fails in the course of executing the algorithm, all state bindings that were made since the
most recent choice-point are undone and the execution continues with the next alternative of
the choice point. The most well known example of a backward rule-based formalism is Prolog
[122, p. 339]. Among other applications it is used for implementing agents with advanced
reasoning capabilities [118].
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1.6.3 Probabilistic reasoning

So far we considered logic based approaches for human behaviour modelling that given
a fully observable system would yield good results at inferring the user actions. However
what happens when the user cannot be fully observed and there is some uncertainty about the
observations’ reliability? In such cases usually probabilistic reasoning is employed, which
allows combining the capacity of probability theory to cope with uncertainty with the capacity
of logic to exploit reasoning about the system structure and relations [111].

As Pearl explains, while causality connotes lawlike necessity, probabilities connote excep-
tionality, doubt, and lack of regularity. Still, there are two compelling reasons for starting with,
and in fact stressing, probabilistic analysis of causality... [111, p. 1]. According to Pearl, the
first reason is that even when using causal expressions to describe a given situation, it is usu-
ally the case that the situation contains uncertainty. The second reason he gives is that causal
expressions are a subject to exceptions which may cause major difficulties when processed by
standard rules.

This indicates that the combination of logic and probabilities should improve the model
performance and increase its robustness in situations where the observations are unreliable. To
develop such model one could take two different approaches – the first is using discriminative
models where the relation between the model state and the observation is explicitly provided,
or one could choose generative models where the Bayes rule is used to compute the probability
of the state based on the observation.

More formally, if we assume we have two correlated random variables X and Y , where
P (X,Y ) 6= P (X)P (Y ) and where Y is observable while X is hidden, then we can use the
observed value y ∈ Y to infer the density P (X|y).

The generative approach provides models for P (Y |X) and P (X), then the Bayes rule is
used to compute P (X|y) = 1

P (y)P (y|X)p(X).

On the other hand the discriminative approach assumes that a model P (X|Y ) is directly
provided.

Examples of generative approaches are CCBM that provide causal models that are com-
piled into probabilistic runtime models [80], an extension of PDDL that allows probabilistic
reasoning based on observations [114], and an extension of ACT-R that allows computing the
probabilities for each execution trace [66].

Discriminative approaches on the other hand are many ontology based approaches where
the observations are matched against a library of actions or plans [104, 119]. Another approach
making use of libraries of actions is proposed by Maier et al. [93] where probabilistic hierar-
chical constraint automata is translated into Bayesian logic network. However such approaches
are inherently unable to solve the problem of the libraries completeness as it would be an im-
possible task for the model designer to manually model all possible execution sequences. This
problem is solved by the generative approaches which based on their specification are able to
automatically generate all valid plans and map them to the corresponding observations in a
probabilistic manner.
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1.7 Challenges with human behaviour models for activity
recognition

As it could be seen from the sections above, human behaviour models are often used for
activity recognition. Regardless of the variety of human behaviour modelling approaches and
formalisms, there are still some challenges associated with creating successful models for ac-
tivity recognition. Here these challenges are summarised and discussed.

Challenges with the training data: Many approaches for activity recognition rely on train-
ing data in order to fit the model for recognising the user actions or in order to extend the initial
model [140, 104, 8]. These approaches show promising results, still there is the drawback of
collecting and annotating training data. In order for the model to be able to recognise a broader
spectrum of behaviour variations, it has to have been trained with training data that contains
those variations. This in itself includes preparing the experiment from which the data will be
collected, finding participants, conducting the experiment, and finally annotating the data. This
is expensive and time consuming task in terms of manpower and time needed from the begin-
ning of the planning to obtaining the training data. Even more, it is often the case that the
data contains errors or the sensors were not working and the experiment has to be repeated.
Additionally, one can rely that the system will be able to recognise only activities that occurred
in the training dataset. One solution to this problem is substituting training data with prior
knowledge.

Challenges with the behaviour variability: As mentioned above, the model should be
able to cope with the behaviour variability, which in the case of trained models leads to the
problem described above. In the case with manually encoded behaviour [94, 158], unless the
problem is trivial and restricted, it is almost always the case that the model designer is unable
to encode all behaviour variations. In such cases what is usually done, is that the most often
occurring behaviour is modelled and improbable actions’ combinations are omitted. This ap-
proach works in situations where the environment and the user actions are carefully controlled
and there is no danger of unexpected behaviour. However, what happens when the user de-
cided to complete the task in a way not encoded in the model? One solution to such problems
could be the employment of generative approaches that allow based on their precondition-effect
specifications to generate all possible behaviours without the need of explicitly encoding them.

Challenges with the model reusability: Often a model is developed solely for a specific
scenario and it is later impossible to reuse it, or parts of it, in another model [158]. From
a performance point of view this is not a problem, however developing a model from scratch
means that the model designer needs more time for implementing it than if she had components
that can be reused. This problem can be solved in different ways – one option would be to
apply reusable action templates that are later parameterised with problem specific parameters,
as proposed by Hein et al. [64]. Another option would be introducing design patterns of
commonly occurring problems similar to those in software engineering [52].

Challenges with model traceability: In the field of software engineering there are already
well established development methods that provide the information needed for easy tracking of
software solutions that could cause problems [135]. In the field of context-aware systems and
activity recognition however, that is not a common practice. As Helal et al. [70] explain, con-
text aware applications centre more on the runtime model and not on the model development
process. This could cause a variety of problems especially if the designer is dealing with a com-
plex model. In that case it becomes almost impossible to trace the reason behind using a given
modelling solution, and from that to discover design problems in the model implementation.

Challenges with results reproducibility: A problem that is often not mentioned in works
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about activity recognition, is the ability to reproduce the obtained results. As Gordon et al. [62]
explain, one of the major issues which we see in this field is the reproducibility of results. While
methodologies and algorithms may be well defined and formalized, re-implementation is time
consuming and effort intensive. It is often the case that change in the model parameters, the
evaluation procedure, or even the tool used for obtaining the results will produce different out-
come. Even more, results obtained without documentation about the involved process elements
(in terms of models, scripts, parameters, etc.) usually render the results unreproducible [82].

1.8 Goal of the thesis
In the previous sections we introduced the concepts related to model based activity recogni-

tion and the challenges associated with this kind of activity recognition. Based on them here we
present the goal of this work and the contributions it makes to the field of model-based activity
recognition.

The work aims at (1) empirically showing that activity recognition based on symbolic hu-
man behaviour models is applicable to the domain of daily activities; and (2) introduces a
structured development process for developing such models that produces well documented
and reproducible models.

To achieve (1), the work introduces three modelling problems from our daily life and iden-
tifies the requirements a modelling formalism needs to possess in order to successfully model
the problems. Based on them a suitable modelling formalism is selected and the problems’
solutions are presented and analysed in terms of model parameters and model performance.

To achieve (2), the work analyses the developed models and introduces a modelling toolkit
that contains solution patterns to frequent problems in the models. Additionally, the toolkit’s
applicability is evaluated by applying the solutions for the three models from (1). Furthermore,
based on the models’ analysis and the analysis of existing development processes, a structured
development process is proposed.

1.9 Outlook
The thesis is structured as follows.
Chapter 2 introduces the three modelling problems that are discussed throughout the thesis.

Based on them, the requirements for human behaviour modelling are identified and candidate
formalisms are evaluated.

Chapter 3 gives an introduction to the selected modelling formalism. Later it introduces the
intuitive models for the three ADL problems and analyses their parameters and performance in
order to identify successful modelling solutions and problems during modelling.

Based on the model analysis in Chapter 3, Chapter 4 introduces the modelling toolkit that
contains solution patterns to frequent problems. The patterns are evaluated based on their
influence on the model performance and parameters.

Chapter 5 introduces a structured development process based on the modelling experience
made in Chapter 3. It also discusses how this development process differs from existing de-
velopment processes and provides a practical guide to developing successful human behaviour
models for activity recognition.

Finally, the work concludes in Chapter 6 where the process of modelling human behaviour
is discussed, its advantages and drawbacks, as well as the challenges it poses for the field of
activity recognition.



Chapter 2

Modelling Preliminaries

“No sensible decision can be made any longer without taking into
account not only the world as it is, but the world as it will be.”

Isaac Asimov

Chapter Summary: This chapter describes the problems that are to be modelled throughout the
thesis. It also discusses the choice of the use cases, and additionally provides domain analysis of
the problems to be modelled. Moreover, it discusses the requirements a modelling formalism should
satisfy in order to be able to model the three use cases. Furthermore, it provides an insight into the
state of the art of relevant modelling formalisms and discusses their suitability for the problems at
hand.

Chapter Sources: This chapter is partly based on the technical report “Toward a Unified Human
Behaviour Modelling Approach” [160], and the journal paper “Towards Creating Assistive Soft-
ware by Employing Human Behavior Models” [79].

Questions to be answered in the chapter:

What types of behaviour dynamics are there? (In Section 2.2)

What are the problems to be modelled? (In Section 2.3)

What are the requirements for modelling these problems? (In Section 2.4)

What are the candidate modelling formalisms? (In Section 2.5)

How to choose the appropriate modelling formalism? (In Section 2.6)

2.1 Introduction
Capturing the complete diversity of human behaviour in the everyday life is probably an

impossible task, as the user behaviour is dependent not only on the available actions, but also on

17
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personal preferences, the environment, the concrete situation or any number of other unforeseen
factors that could influence the user decision making [34]. However, a human behaviour model
is a simplified and abstracted representation of reality, thus it should be possible for one to
define the purpose of the model and based on that to isolate the most relevant factors affecting
the resulting behaviour. This should result in a representation of the real world that contains
sufficient knowledge about the problem domain and the user in order to provide rich context
information.

To represent different aspects of human behaviour that are common for the activities from
our daily life, three use cases are selected that represent three common types of user behaviour
correlations. The use cases are then analysed for features and factors that have to be included in
the problems’ solutions. Based on the analysis, the requirements a modelling formalism should
possess were identified. Finally based on the requirements, a modelling formalism was chosen
that is to be used for implementing the problems’ solutions.

2.2 Behaviour dynamics and their dependencies
In the context of this thesis, two types of user behaviour are considered – the first is a single

agent behaviour whereas the second is a multi-agent1 behaviour.
In multi-agent systems, different types of agent behaviour and their dependencies on other

agents are observed. In such system, each agent is not only interacting with the environment
where she is situated but also with one or more other agents residing in the same environment.
This creates a complex system where the agent state and those of the environment depend on
multiple entities all of them having the ability to influence the given situation. According to
Wooldridge there are various types of interaction in a multi-agent system which create four
types of dependencies between the agents [155, p. 125].

Independence: There is no dependence between the agents and their actions.

Unilateral dependence: One agent depends on the other, but not vice versa.

Reciprocal dependence: The first agent depends on the other for achieving some goal, while
the second depends on the first for some other goal, where the goals are not necessarily
the same.

Mutual dependence: Both agents depend on each other when following the same goal. Note
that mutual dependence implies reciprocal dependence.

Based on the types of dependencies, here we introduce a categorisation of human behaviour
in multi-agent systems. It presents three main groups of behaviour correlations.

Uncorrelated: The uncorrelated behaviours of two or more entities have neither physical nor
intentional interactions between them. This group also comprises the behaviour of single
agents where there is no one else to interact with in the environment. Such correlation
has the property of independence described above.

Physical correlation: The physical relation between the behaviours of two or more entities
is based on physical interactions with the environment and or the rest of the entities,
causally affecting the physical world in which all agents are located. This type of relation
has the properties of unilateral dependence and / or reciprocal dependence.

1Throughout the thesis the terms user, person and agent are used interchangeably.
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Intentional correlation: The intentional correlation between the behaviours of two or more
entities is represented not only by physical correlation between them, but also by the
conscious decision of these entities to follow a common goal or goals. This type of
correlation has the properties of reciprocal dependence and mutual dependence.

Based on the types of behaviour correlation, throughout the thesis three types of problems
are considered, each of them represented by a concrete use case.

Problem describing uncorrelated behaviour: The uncorrelated behaviour problem aims
at describing behaviour where a single person is interacting with the environment while exe-
cuting a goal oriented task. The user behaviour is independent of any other agents’ actions but
still depends on the environment and the person’s capabilities to interact with it.

Problem describing physical correlation: During physical behaviour correlation the users
do not coordinate their actions with each other and do not follow a common goal. Each user is
acting independently of the rest of the agents or interacting with them in a competitive manner.
The actions of the user either do not affect the rest of the users, or when they affect them, it is
only to further the agent’s own goal. Thus her actions either influence the rest of the users in
a negative manner, or when in positive – it is an unconscious side effect of reaching her own
goal and in the process affecting the physical world.

Problem describing intentional correlation: During intentional behaviour correlation the
users coordinate their actions with each other while pursuing a common goal. The actions
of each single user have effect on the actions of the rest of the users, and each user aims at
contributing to the achievement of the common goal that is intentionally chosen by all involved
parties.

2.3 Use cases – analysis

This section describes the three scenarios from the daily life domain and analyses the prob-
lem domains. The use cases are a 3-person meeting, illustrating intentional correlation; a cook-
ing task, describing an uncorrelated behaviour and a multi-user office scenario, that represents
both uncorrelated behaviour and physical correlation (see Fig. 2.1). The analysis of each use
case is structured so that it gives the problem motivation and later describes the problem do-
main with enough details for the designer to be able to identify the elements to be modelled
and the model objectives. Additionally the detailed problem description is used for deriving
the requirements a modelling formalism needs to possess in order to be able to model the prob-
lems. Furthermore, the choice of sensor infrastructure is based on the problem elements that
were identified to be modelled, so that a test dataset can be recorded for evaluating the model
performance.

For each use case, the section is divided in 4 parts – the first is the motivation behind using
exactly that problem for illustrating the given behaviour relation; the second is the problem
description, where the users behaviour, objectives and the environment are described; based
on that, the third section identifies the elements that are to be modelled and the objectives the
given model has; the following part discusses the sensors needed to capture the desired user
behaviour and the resulting dataset with which the future model is to be tested and evaluated.

The final result of this analysis is a detailed specification of all elements involved in the
model implementation and evaluation – these are the model components, the sensors infras-
tructure and datasets and the objectives the models have.
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Figure 2.1: The three use cases illustrating the modelling problems. Clockwise from right to left: the

three person meeting, the office scenario, and the cooking task. All experiments were conducted in the

SmartLab of the Mobile Multimedia Information Systems Chair, University of Rostock [9].

2.3.1 3-person meeting

The first scenario is a three person meeting that aims at describing the behaviour of a team

of users trying to achieve a common goal.

2.3.1.1 Motivation

The 3-person meeting is a typical problem from the smart environments domain where as-

sistive software needs to know the user’s current state and intentions in order to be able to

proactively assist her in achieving her objectives. It is also a typical example of an intentional

behaviour correlation where the three users coordinate their actions in order to achieve a com-

mon goal – namely the completing of the meeting and leaving the room. Thus, on a more

coarse-grained level the users exhibit a team behaviour that is supported by the actions of the

separate team members. As the users all have the same team level objective, they also do not

interfere or contradict the actions of the remaining team members. However, on a more fine-

grained level it is a typical multi-agent behaviour problem, where each of the users acts as a

separate autonomous agent that contributes to achieving the common goal.

The reason for choosing this particular use case as an example of an intentional correlation,

is that it is relatively simple in terms of environment elements and number of users, yet it

contains the basic features making up an intentional correlation – multiple users, common goal,

and synchronisation between the actions of the different users in order to achieve this goal.



2.3. USE CASES – ANALYSIS 21

Table 2.1: Elements of the meeting team behaviour and environment. Here the number of users, actions,
objects and locations, as well as the initial and the goal state are described.

Types of elements Instances

Users one abstract user representing the team

Actions enter; move; presentA; presentB, presentC, discuss; leave

Objects none

Locations door, stage, seat

Initial state the team is outside the meeting room

Goal state the team is outside the room after having presented 3 times and discussed the presentations

Execution length at least 9 actions that need to be executed in order to reach the goal

2.3.1.2 Problem description

A meeting takes place in a meeting room (see Fig. 2.1, right). There are 3 participants that
are in the room during the meeting, each of them is supposed to make a presentation with the
option of a discussion after the end of the third presentation. At the beginning of the meeting the
3 participants enter the room, two of them go to their respective seats and one goes to the stage
area in order to prepare her presentation. After the first presentation is over, the presenter goes
to her respective seat, while the second presenter starts her presentation. The same procedure is
repeated for the third participant and after the last presentation, the participants have the option
to make a short discussion regarding the presentations. The order in which the presentations
are made is arbitrary and could be performed in any order, namely if the presentation of the
first user is denoted by A, of the second by B, and of the third by C, then

(ABC) or (ACB) or (BAC) or (BCA) or (CAB) or (CBA).

After the last presentation, or after the discussion respectively, the participants get up from
their seats and leave the room. The goal of the participants is that all of them have presented,
optionally discussed the presentations, and finally left the room.

There are several locations defined in the room: three seats, three stages, and a door area.
The objective of the system is to recognise the users’ current actions and to discover if they
have reached their team goal at the end of the meeting.

2.3.1.3 What is to be modelled?

As the problem could be considered both as a single team behaviour, or as a multi-agent
behaviour, its solution could also have two representations: one describing the coarse-grained
team actions, and the other, being able to explain the single users’ behaviours behind the team
actions.

Table 2.1 shows the elements that are to be modelled in the case of team behaviour. It can be
seen that a lot of abstractions are made: the three users are represented as a single team agent,
the move action is represented by a single action that could consist of any or all of the users
moving; also the locations are simplified and represented by just one single sitting area, and
one presenting area. Such model elements oversimplify the problem, but on the other hand are
more than enough to represent the team behaviour, especially when each of the agents’ actions
is governed by a common goal that defines their choices.

In difference with the team behaviour, the multi-agent behaviour should be able to also
represent the actions of the single users in the context of the common goal. Table 2.2 shows
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Table 2.2: Elements of the meeting multi-agent behaviour and environment. Here the number of users,
actions, objects and locations, as well as the initial and the goal state are described.

Types of elements Instances

Users userA; userB; userC

Actions enterA, enterB; enterC; moveA; moveB; moveC; presentA; presentB; presentC;
discussA; discussB; discussC; leaveA; leaveB; leaveC

Objects none

Locations door, stage1, stage2, stage3, seat1, seat2, seat3

Initial state the three users are outside the meeting room

Goal state the three users are outside the room after each having presented and discussed the presentations

Execution length about 20 actions that need to be executed in order to reach the goal

the elements that need to be modelled in such case. It can be seen that now the actions that
have to be tracked are not for the team as a whole, but for the separate users. Of course, their
actions are still synchronised or dependent on each other but their cooperation is based on the
agents’ nondeterminism2. Also now the goal consists of the separate goals of the three users
and in order the overall team goal to be achieved, each of the agents has to have achieved her
own goals.

2.3.1.4 Sensor infrastructure and datasets

As the application of the models is activity recognition, the final step is the decision about
the sensor infrastructure which is to capture the modelled behaviour. The choice of the sensors
could depend on different factors, such as the sensors affordance (or can we get the sensors
based on our budget, the sensors availability, experimental infrastructure, or other external
factors that could limit our choice); the model objective (or what exactly we want to observe
and recognise); sensors accuracy (or within what limit the sensors can deviate from reality)
etc.

The choice of sensors in this case was the UbiSense localisation system [147] that is an
ultra-wide band indoor location system that uses active RFID tags to detect the user location.
Fig. 2.2 shows an extract of the observations from the meeting dataset. Here flag indicates

flag-A x-A y-A flag-B x-B y-B flag-C x-C y-C
1 266.518 133.157 1 143.319 -170.781 1 212.95 -3.945
1 292.253 147.207 0 143.319 -170.781 0 212.95 -3.945
0 292.253 147.207 0 143.319 -170.781 1 205.842 2.184

Figure 2.2: Example observations from the 3-person meeting dataset. Here flag indicates whether there
is any change in the position, x is the x-axis and y is the y-axis that together give a 2D position of the
user in centimetres.

whether there is change in the user’s position (1), or not (0). After the flag, for each user there
are her UbiSense coordinates (in centimetres) in x and y direction.

Based on the use case and the chosen sensor infrastructure 21 experiments were conducted.
20 of them where staged3 3-person meetings with varying presentation order, and with a dis-
cussion at the end of the third presentation. Each of the meetings lasted about 3 minutes and
was conducted in a smart meeting room supplied with UbiSense sensors. Each dataset con-
tained between 2637 and 3176 samples. The last experiment was a real 3-person meeting that

2Here by nondeterminism we mean the agent’s ability to make seemingly arbitrary choices.
3Here staged indicates that the experiment was conducted according to a predefined execution sequence.



2.3. USE CASES – ANALYSIS 23

was not staged, and continued about 50 minutes and where the users decided not to have a
discussion at the end of the meeting. The meeting also took place in the same meeting room
and was recorded with the same sensors. It had 62 295 samples. Additionally, the experiment
was recorded with cameras so that the datasets could later be accurately annotated.

2.3.2 Cooking task
The second use case is a cooking problem where a single user is preparing a meal, having

lunch and then washing the dishes. The objective is for the user to successfully complete a
typical cooking task problem.

2.3.2.1 Motivation

The cooking problem is a Kitchen Task Assessment (KTA) problem [14], where the aim is
to detect whether the person is executing the task in the correct order, and if we stretch it further
to an assistive problem, the system would like to detect inaccuracies in the user behaviour and
assist her in correcting her mistakes and successfully achieving the task objective. This problem
is a typical Activities of Daily Living (ADL) problem and it has applications where the user
could suffer from Alzheimer or similar diseases but the disease is still in early stages and she
wants to preserve her independent lifestyle for as long as possible [128]. The solutions of such
kind of problem are extremely important in Europe where the elderly population is increasing
while the birth rate is decreasing [38, 13].

The cooking task is also a typical single user behaviour and thus uncorrelated, where the
agent’s actions do not depend on other users’ behaviour but where she interacts with the sur-
rounding environment, thus making her behaviour dependent on the environmental factors. It is
also a problem where there is a lot of interaction with different objects. This requires modelling
the problem on a more fine-grained level compared to the meeting scenario.

The reason for choosing this particular example is that it presents a simple cooking recipe,
with just a few ingredients, yet it possesses all basic interactions with the environment taking
place in a cooking situation (manipulating objects used in the everyday’s tasks in the kitchen,
using the cooking appliances, setting the table, eating, and cleaning). This allows us to explore
the complexity of a cooking task and a real world single user behaviour without running into
unnecessary details of complex meals.

2.3.2.2 Problem description

A person is cooking a carrot soup in a kitchen supplied with the necessary kitchen appli-
ances. The person starts by washing her hands, then cutting the carrot, putting it into the pot
and cooking it. Later after the meal is ready, she serves it in a plate, puts water in a glass, and
sits on the table to have a lunch. Finally, after the person has eaten and drunk water, she stands
up, goes to the sink and washes her utensils. There are generally the following experiment
stages that should be executed in the same order.

wash hands -> prepare to cook -> cook carrot soup -> serve meal
-> eat and drink -> clean up

On the other hand, the intermediate actions that take place (such as fill plate, fill glass,
move, etc.) can be executed in any causally correct order. The locations in the kitchen are sink,
counter and table, which are locations that could be reached only by walking from one place
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to another. Additionally, there are fixed locations, or places, which from a certain locations
can be reached only by moving the hand. The places are cupboard and oven, which could be
reached from the counter. Furthermore, different objects with varying functions and properties
are used: cutting board, pot, plate, glass, bottle, knife, spoon, sponge, and the additional water
and carrot.

2.3.2.3 What is to be modelled?

As the cooking task involves a lot of fine-grained activities, it is a more complex problem
than the 3-person meeting (regardless of the fact that in the latter we have people acting in
parallel). Thus also the behaviour and environment elements are much more than in the meeting
scenario.

Table 2.3: Elements of the cooking task behaviour and environment. Here the number of users, actions,
objects, locations, and places as well as the initial and the goal state are described.

Types of elements Instances

Users one default user

Actions wash, wait, move, take, cut, put, turn on, cook, turn off, open, fill, close, sit down, eat, drink, stand up

Objects cutting board, pot, plate, glass, bottle, knife, spoon, sponge, water, carrot

Locations sink, counter, table

Places cupboard, stove

Initial state the user is at the sink

Goal state the user is at the sink after cooking, eating the meal and washing the dishes

Execution length about 80 actions that need to be executed in order to reach the goal

Table 2.3 shows the elements that are to be modelled. It can be seen that there are 16 actions
that can take place, and most of them (except for wait, move, sit down and stand up) involve
manipulating any of the given objects. Additionally, there are 10 objects in the environment
that are manipulated by the user that indicates the need of a mechanism to cope with a high
number of different choices the model will be faced with (See Fig. A.1 in Appendix A for the
locations of the objects throughout the task).

2.3.2.4 Sensor Infrastructure and Datasets

##locations###
sink moving counter table
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
##fixed places###
sink moving counter stove cupboard table
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
##objects###
carrot knife c_board pot w_spoon plate glass bottle spoon sponge
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 2.3: Example observations from the cooking task dataset. Here the observations are either 0 when
no sighting at this location / place / object was observed, and 1 when a sighting was observed. One can
observe the locations, the places and / or the objects.

Fig. 2.3 shows an extract of the observations from the cooking task dataset. The first row
shows the observations for the locations with 1.0 indicating that the person has been observed
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at the given location. The second row shows the observations for the fixed places. The last row
shows the observations for the objects being observed. Seven cooking tasks were recorded.
Each of the tasks lasted about 7 minutes and although the task at hand, namely cooking, was
staged, the behaviour of the participants while achieving their goal was left to themselves.
This resulted in different execution paths leading to the goal state and increased the model
variability needed to be able to recognise the correct behaviour. Additionally, the datasets
contained between 636 and 1207 samples.

2.3.3 Office Scenario
The last use case is an office scenario where one to three users act independently of each

other in order to achieve their separate goals.

2.3.3.1 Motivation

In the office scenario the users are acting in unsynchronised manner and each of them is
following her own goal. The use case could be an example of a smart office, where the system
has to support several different users who do not have a common team goal and who could act
in a competitive manner. The users either do not interact with each other, or when interacting it
could lead both to positive or negative effects on the separate user’s goals. Although in general
the office scenario is a multi-user scenario, in the scenario variations there are multi-user as
well as single user instances in the cases when only one person was present in the office.

The goal of the system is to recognise the user actions and identities (namely who executed
which action) based on coarse-grained information about a location being occupied. For that
reason, the model should be able to represent not only coarse-grained activities but also actions
that involve objects manipulation and user identification. It could be said that this use case
is the middle ground between the meeting scenario and the cooking task as there are objects
that the model has to reason about like in the kitchen task assessment, but on the other hand
here we have a multi- agent behaviour that is observed based on location information. How-
ever, in difference with the meeting scenario, here the users do not try to cooperate or act in a
synchronised manner.

2.3.3.2 Problem description

In the office scenario a varying number of users enter an office room that contains a printer
and a coffee machine. The objective is to print some documents and / or to get a cup of
coffee. The behaviour of the users is either uncorrelated or physically correlated and everyone is
independently choosing their actions. To make the problem more complicated, it is possible that
the water or the ground coffee in the coffee machine are not enough, and in such case the coffee
machine has to be refilled with ground coffee and water before making coffee. Additionally, it
is possible that there is no paper in the printer, or that paper is stuck inside and the printer has
to be repaired.

The goal of the users is to have their documents printed and to get coffee. The order in
which the actions are executed, or the persons who perform the different tasks is arbitrary.

2.3.3.3 What is to be modelled?

Table 2.4 contains the elements of the user behaviour and the environment. It can be seen
that the number of users varies. This is due to the fact that the behaviour is unsynchronised
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and any of the users could decide for herself to appear in the office or leave it at any time. Ad-
ditionally, the actions to be modelled are fine-grained actions that involve the manipulation of
different objects, and any of the actions can be executed by any of the agents. It is possible that
the agents incidentally help each other achieving the goal, or block each other, but otherwise
each of them makes her decisions based on her own goals.

Table 2.4: Elements of the office behaviour and environment. Here the number of users, actions, objects
and locations, as well as the initial and the goal state are described.

Types of elements Instances
Users one, two, or three users

Actions move, take, put, refill ground coffee, refill water, repair printer

Objects paper for the printer, water, ground coffee

Locations door, printer, paper stack, coffee machine, water tap, coffee jar

Initial state the office is empty

Goal state the user(s) has (have) printed the documents, taken the coffee and left the room

Execution length 5 to 20 actions that need to be executed in order to reach the goal

2.3.3.4 Sensor Infrastructure and Datasets

The types of sensors used were the SensFloor sensors which uses radio modules and prox-
imity sensors to detect user presence without providing any additional identity information
[51, 138]. Using the SensFloor, it provided binary observations whenever someone was present
at the given locations (namely 0 for no presence, and 1 for presence). Fig. 2.3 shows an extract

Door Printer Coffee-Machine Paper-Stack Water-Tap Coffee-Jar
0 1 0 0 0 0
0 0 0 1 0 1
1 0 1 1 0 1

Figure 2.4: Example observations from the office scenario dataset. Here for each location 0 indicates
that there was no sighting, while 1 indicates that someone was at the given location.

of the observations from the office scenario dataset. It can be seen that there are multiple sight-
ings at the same time step but no information about the user identity at the given location. This
means that the model to be built should be able to reason not only about the users’ actions but
also about who is associated with which action and location.

Based on the problem domain and the sensor infrastructure 6 experiments were conducted
with varying number of participants: 4 one-person datasets, one two-person and one three-
person dataset. The duration of the different experiments was between 50 and 200 time steps.
The users acted autonomously and in unsynchronised manner without any verbal communica-
tion. This resulted in different action execution sequences as well as in different users perform-
ing different set of tasks in the two multi-user experiments.

2.4 Requirements for HBM
In order to choose an appropriate modelling formalism for the problems, we have to first

identify the dynamics and relationships between the elements that build up the given user be-
haviour. For that the modelling formalism should possess certain properties (or requirements)
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in order to be able to successfully capture the targeted behaviour. These requirements are simi-

lar to the software engineering requirements and could be considered as a special case. From a

software engineering perspective a requirement was formally defined in the IEEE 610.12-1990

standard [71] in the following way.

(1) A condition or capability needed by a user to solve a problem or achieve an objective.

(2) A condition or capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed documents.

(3) A documented representation of a condition or capability as in (1) or (2).

In our case a requirement is a condition or capability needed by a model designer to solve

a modelling problem or to achieve an objective. This capability should be possessed by the

modelling formalism used for solving the problem.

By analysing the problem domains and the modelling objectives, the set of properties can

be derived that represents the requirements needed for describing the users’ activities. This is

done by identifying all relations between the actions derived in Section 2.3. For example, in

the meeting scenario, the person enters the room and only after entering she is able to move to

the seats or the stage. This indicates the properties sequence and dependence of an action on

another action. Meanwhile, in the same scenario, there is another user acting in the environ-

ment, which indicates the requirement for modelling parallel actions. This process is repeated

for all actions and their relationships with the rest of the actions in the dataset, and then for

all three problems. Fig. 2.5 shows the process with which the requirements were identified. It

Figure 2.5: The algorithm shows the procedure for identification of requirements that are needed for

describing human behaviour dynamics.

can be seen that the relation between each action in a given problem and the rest of the actions

for this problem is identified; later if the relation was not previously identified for other pair

of actions, it is saved in a list containing all the requirements for all problems. The concrete

relations between the actions are defined in the next section.

This process resulted in 14 requirements that a formalism should possess in order to be able

to successfully describe the behaviour dynamics in the problems from Section 2.3. Addition-

ally, based on the model application, four more requirements were identified that are needed

for achieving the model purpose. They were derived based on the designer’s experience in the

field of activity recognition.

For that reason, the identified set of requirements for all three use cases is divided into two

main groups – behaviour based requirements and application-based requirements.

Behaviour-based requirements

• Requirements for procedural modelling: composition, sequence, repetition, inter-

leaving activities, choice, enabling, disabling, priority, independence, dependence;
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• Requirements for parallel execution modelling: parallelism, synchronisation, sus-
pend, resume;

Application-based requirements

• Requirements for probabilistic modelling: observation models, probable durations
of activities;

• Requirements for modelling purpose: activity recognition, unobserved actions;

In the following section, the requirements are explained in detail, as well as the need for
having them.

2.4.1 Behaviour-based requirements
To formally describe the requirements that represent the behavioural relations between the

different actions, the notation of Communicating Sequential Processes (CSP) introduced by
Hoare [67] is used. In it a process is described as a pattern of behaviour in which a given object
can be involved. Each process then consists of a set of events, or actions of interest which are
called the process’s alphabet [67, p. 23]. A detailed description of CSP and the corresponding
notation can be found in Appendix B. Here we make use of these notations and express the
requirements in terms of events and processes. To do that the notion of action as given in
Definition 2 (in Chapter 1, page 5) is considered to be equivalent to that of event in CSP, and
the notion of behaviour as given in Definition 4 (in Chapter 1, page 6) to be equivalent to
process in CSP (for more information see Appendix B).

Sequence: The first requirement for expressing user actions is the ability to execute actions
one after another. It is the most essential of the modelling requirements, as without being able
to execute actions sequentially, it would be impossible to represent any execution path leading
from the initial world state to the goal. For example if we first enter the room, then go to the
stage, we say that these two actions are executed sequentially. In terms of CSP we express
sequential action execution based on the definition of traces (see the explanation of traces in
Appendix B, page 204).

Definition 8. (Sequence) Given a process X with an alphabet αX , and events x and y such
that {x,y} ∈ αX , then a sequence is represented by the trace 〈x,y〉 indicating that x was
executed before y.

Parallelism: The next requirement is that of parallelism which allows executing actions
concurrently. This requirement is essential in multi-agent situations where several users are
acting in the same environment or when several actions can be executed at the same time. For
example, if two persons are walking in the room, we say that they are executing the action
walk in parallel. To express parallelism in terms of CSP we use the notion of concurrency as
explained in Appendix B (page 205).

Definition 9. (Parallelism) Given two processes X and Y , we call them parallel if the events
of the first process are possible without the events of the second process and vice versa, and if
both processes are executed concurrently. We denote such process as X||Y .

Repetition: Repetition allows executing an action multiple times. This requirement is
necessary in cases where the user is doing the same action several times like for example eating
repeatedly, or washing the same utensil several times. Here we assume that the recursion is
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not terminated by an external factor but rather by some internal unobserved state. To define
repetition according to the CSP notation we use the concept of recursion explained in Appendix
B (page 204).

Definition 10. (Repetition) Given a process X with an alphabet αX , and an event x such that
x ∈ αX , then we call repetition the process where µX : αX.(x→X).

Non-deterministic choice: Non-deterministic choice allows selecting between several ac-
tions when there are no external factors that can control the decision of which action to be
selected. This requirement could be interpreted as the user’s free will to perform a given action.
For example, if we enter the room and have the option either to sit down, or go to the stage,
but there is no other external factor that can influence our decision. To define the requirement
according to the CSP notation we use the concept of non-deterministic choice explained in
Appendix B (page 205).

Definition 11. (Non-deterministic choice) Given two processes X and Y , then we say that X
or Y is chosen if the resulting process will either behave as X or as Y and the selection is done
arbitrarily. We denote non-deterministic choice as X uY .

Enabling: Enabling represents the interaction between two actions, where the execution
of the first action allows the execution of the second that previously was not possible. This
requirement is especially important in any case where the person is following a given goal and
not just randomly executing actions, as well as in cases where there is an interaction between
different users in a multi-agent setting. For example, we enter the room and want to sit down,
but there is a book on the chair. We cannot sit down before the book is removed. We say that
removing the book enables us to sit down. To express the requirement according to the CSP
notation, we use the notion of traces as explained in Appendix B (page 204).

Definition 12. (Enabling) Given a process X with an alphabet αX = {x,y}, we say x enables
y if the trace 〈x,y〉 is a valid sequence and the trace 〈y,x〉 is not a valid one.

Disabling: Disabling represents the interaction between two actions, where the execution
of the first action forbids the execution of the second. Additionally, given the first action was
not executed, the second could still be executed. The requirement is the opposite of enabling
and its existence is important in the same situations as with its counterpart. Using the example
with the book, if we put a book on the chair, this will disable us from sitting down. To express
the requirement according to the CSP notation, we use the notion of traces as explained in
Appendix B (page 204).

Definition 13. (Disabling) Given a process X with an alphabet αX = {x,y,z}, we say that y
disables z if the trace 〈x,z〉 is a valid sequence, but the trace 〈x,y,z〉 is not.

Dependence: Dependence allows the execution of an action to be influenced by the effects
caused by other actions. The requirement is extremely important in any situation where the
actions are causally related or the user(s) is (are) following a common goal. It is strictly related
to the requirements enabling and disabling. Basically, any action that either enables or disables
other actions poses the property of dependence.

Definition 14. (Dependence) Given a process X with an alphabet αX = {x,y}, we say that
x is dependent on y or vice versa, only if one of the two requirements enabling, or disabling
holds for x and y.
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Interleaving: Interleaving allows expressing behaviours where actions from each of the
behaviours are executed sequentially until both behaviours are completed. Such requirement
is important in situations where a person cannot do two activities sequentially, but who is able
to execute parts of the first activity in between parts of the second activity. For example, while
we are cooking, the phone rings, so we seize our activity in order to answer the phone, then
return to cooking. To express the requirement in terms of the CSP notation we represent the
behaviour with a process and the actions it is composed of with events, then we use the notion
of interleaving processes described in Appendix B (page 205).

Definition 15. (Interleaving) Given two processes X and Y , we say that X interleaves Y , if
events from X are executed in between events from Y . We denote this process with X|||Y .

Priority: Priority represents the deterministic version of choice, or with other words the
selection of an action from several actions based on some external factor known to the environ-
ment. Taking the example for the requirement of choice, if we beforehand know that we are the
first to present, then we will prefer to go to the stage instead of sitting down. CSP defines such
interaction as deterministic choice (see Appendix B, page 205) between two processes where
the environment can control which of the two will be selected. This control is executed on the
first action being executed and represents exactly the notion of priority.

Definition 16. (Priority) Given two processes X and Y we say that one has priority over the
other, if the executed process behaves either as X or as Y and if the environment has control
over this choice. We denote priority with X[]Y .

Independence: Independence allows the execution of an action not to be influenced by
other actions. That means that given a set of actions, the independent action can be executed in
any order and there is no action that can influence the execution of this action. Such requirement
is important in cases where there are actions unrelated to the current goal, or when in multi-
agent settings the agents are acting without interacting with each other. For example, within
any scenario, we can stop for a moment and wait, and this action does not have any influence
on the rest of the actions. To express this requirement in terms of CSP, we use the notion of
traces (page 204).

Definition 17. (Independence) Given a processX with an alphabet αX = {x,y1, ...,yn} where
n+1 is the number of distinct events, we say that the event x is independent if it can be executed
in any order 〈x,y1, ...,yn〉, 〈y1,x, ...,yn〉, ..., 〈y1, ...,yn,x〉. Furthermore, none of the yi events
has the requirement of dependence with respect to x.

Synchronisation: Synchronisation allows setting the execution of several actions or pro-
cesses in parallel only after a certain action is executed. The requirement is important for
synchronised multi-agent behaviour where several users work in parallel toward achieving a
common goal and where certain parallel actions can be executed only after a given activity was
successfully executed. For example, in order for a presentation to start, each of the users have
to sit down and prepare to listen. That means they have to synchronise their actions in order
to start the presentation. To define this requirement in terms of CSP we use the above defini-
tion of parallelism (page 205) and the definition of composite sequential processes (page 206)
explained in Appendix B.

Definition 18. (Synchronisation) Given processes X , Y and Z, we say that X synchronises Y
and Z, if Y ||Z and if X has to be executed before that in order for (Y ||Z) to take place. We
denote this requirement as X; (Y ||Z).
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Suspending: Suspending allows interrupting a behaviour with another action or behaviour.
The requirement is needed in multi-agent situations where the actions of one agent (or an
external factor) can interrupt that of another agent. For example, while we are presenting,
somebody is entering the room thus interrupting our presentation. To express suspending in
terms of CSP we use the notion of interruption described in Appendix B (page 206).

Definition 19. (Suspending) Given two processes X and Y , we say that X was suspended by
Y , if while X was in progress, an event from Y was executed thus interrupting X . We denote
this as X∧Y .

Resuming: Resuming allows the continuing of an action after it was previously suspended.
The requirement is closely related to suspending and can be thought of as the second part of a
process that first interrupts a behaviour by executing another behaviour and after the execution
of the second behaviour, it resumes the first one from the state it was in before being interrupted.
For example, after being interrupted, we later continue our presentation from the point where
we were previously interrupted. To describe this interaction between processes, CSP uses the
notion of alternation described in Appendix B (page 206).

Definition 20. (Resuming) Given two processes X and Y , we say that X was resumed by Y ,
if X∧Y and if later X continued its execution from the state it was in before being suspended.
We denote that as X⊗Y .

Composition: The last property is that describing composite behaviour, or behaviour built
up of other behaviours. As such composite behaviour can consist not only of sequential com-
posite processes that are described in Appendix B, but also of parallel or interleaving processes,
we define the notion of composition based on that of parallelism (page 205), interleaving (page
205), and composite sequential processes (page 206).

Definition 21. (Composition) Given processes X , Y , and Z, we say that X is a composition,
if X = (Y ||Z), or X = (Y ;Z), or X = (Y |||Z).

2.4.2 Application-based requirements
After defining the behaviour-based requirements, below the application-based requirements

are presented. To define them along with the CSP notation we introduce the notion of observa-
tion.

Definition 22. (Observation) Given a process X with an alphabet αX = {x1,x2, ...,xm}, we
call OX = {ox1 ,ox2 , ...,oxm} the set of physical sightings that capture this process. Such sight-
ings are produced by sensors that observe the environment.

Additionally, we use the notion of probability and conditional probability as described in
probability theory [6, p.1– 43].

Probabilistic durations: Probabilistic durations allow expressing actions’ durations in
terms of probabilistic distribution, i.e. describe what the probability is of the action contin-
uing to be executed in the next time step.

Definition 23. (Probabilistic durations) Given an event x and a time interval δt that will elapse
between the begin and the end of x, we say that x has a probabilistic duration if it started at
time t, and it is being executed until a time interval δ̃t ∼ p(δt|x) has elapsed.
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Observation model: An observation model allows expressing the connection between be-
haviour and observations, i.e. what sensor reading is associated with which actions in the
model.

Definition 24. (Observation model) Given a processX with an alphabet αX , an event x∈αX ,
and a set of observations OX = {o1,o2, ...,on}, the observation model provides the probability
of a certain observation oi being true given x, or with other words P (oi|x).

Unobserved actions: Unobserved actions allow modelling actions that were executed by
the user but not observed by the sensors due to sensor granularity or unreliability.

Definition 25. (Unobserved actions) Given a process X with an alphabet αX , an event x ∈
αX , and a set of observations OX = {o1,o2, ...,on}, we call an action x unobserved, if there
exists no observation that gives the probability P (oi|x).

Activity recognition: To perform activity recognition the model allows inferring activities
based on a set of observations. With other words the model should be able to provide the
probability that a certain activity was executed, given the observations.

Definition 26. (Activity recognition) Given a process X with an alphabet αX , an event x ∈
αX , and an observation ot at time t, we say that the model performs activity recognition, if it
provides the probability of P (x|ot).

2.4.3 Do the requirements represent the actual need? - A study
The requirements were identified using a specific process and based on the designer’s ex-

perience. Yet one obvious objection against their validity could be the possibility that they are
just the designer’s biased interpretation of what is needed for modelling the problems. Is it
possible that the requirements in their current form are needed only by the designer herself?
Would researchers from other fields of computer science understand the requirements and think
them necessary at all?

To answer these questions, a questionnaire was distributed among 18 participants with dif-
ferent academic degrees4 and from different fields of computer science5 in order to identify
problems in the requirements specification. To do that, they were asked questions about the re-
quirements specification regarding the given problems; about a possible modelling formalism
that could be a solution for the modelling problems; and finally for each requirement, they had
to give an example from the problem domain in order for the evaluator to identify whether the
participant understood the requirement at all.

To answer the questions above, several hypotheses were assumed. They were then investi-
gated based on the answers provided by the study participants. To quantify the answers a Likert
scale was used with five items from 1 to 5 where one is the lowest quantity and five the highest.
These quantities are referred to as scores6.

Hypothesis 1: The majority of the requirements have a median7 score of above 3.

4The highest degree the participants have obtained was as follows: Abitur (2), Diplom (11), Master (4), and
Doctor degree (1).

5The participants were from the fields of activity recognition (7), data analysis (2), electrical engineering (1),
modelling and simulation (2), networking (2), software engineering (2), and visual computing (2).

6For more information about Likert scales see Appendix C.
7As explained in Appendix C, the Likert scale is assumed to be ordinal, thus we use the median and not the

mean.
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Figure 2.6: Average scores per requirement. For each requirement there are 8 features that are plotted,

namely, verifiability, validity, clarity, completeness, feasibility, testability, traceability, and importance

(for more information on the properties, see Chapter 5). The varying grey and white colours enclose the

features for a given requirement. To calculate the average score for a given feature the median for all

answers concerning this feature was taken.

This hypothesis aims at showing that the requirements identified by the model designer are

understandable and clear for the majority of participants that took part in the study. Many of

them were not closely related to the field of activity recognition, and the opposite could also

be possible – the specifications could be not well understandable, misleading, or clashing with

terms from the participants’ filed of work. The results showed that the majority of the answers

were of score 4 which is the second strongest answer possible. Figure 2.6 shows the scores per

requirement, where the x-axis indicates the requirement with its different features, while the

y-axis indicates the score it was assigned. This shows that the requirements specifications were

acceptable for the participants.

Figure 2.7: Number of people who understood a requirement and number of comments per requirement.

The left figure indicates the number of people who understood the requirement where with beige, the

requirements with score of 4 and above are shown, whereas with brown – those with score under 4. The

plot to the right indicates the number of comments per requirement. It has the same colour scheme and

legend.
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Hypothesis 2: The number of people who understood a requirement is higher compared to
those who did not understand it.

This hypothesis aims at showing that the requirements were clearly specified and most of
the participants were able to understand their meaning and to give an adequate requirement
example from one of the 3 problems. Fig. 2.7, left, shows the number of people who under-
stand a requirement. It could be seen that there is no requirement that was not understood by
at least half of the people (synchronisation having the lowest number of people that understood
it). It can even be seen that with small exceptions, the requirements were understood by at least
15 out of the 18 participants, which stands to show that the hypothesis is true for this study.
This indicates that the requirements the model designer identified are mostly meaningful for
researchers from different fields of computer science. It can also be seen that the requirement
synchronisation that was not well understood also got a lower score for its properties (with
brown). This is however not the case with the requirement for interleaving that was understood
by 14 out of the 18 participants, yet got a score under 4. This indicates the participants did not
give their evaluation based on how well they understood a requirement, but rather tried to give
an objective rating also of requirements that were well understood. Furthermore, Appendix
C.3 contains some more requirements’ evaluations8 given by the participants. In them it can
be seen that each requirement got an average score of 3 and above for its verifiability, validity,
clarity, completeness, feasibility, testability, and traceability. These results further support the
hypothesis that the requirements were generally understood and accepted as valid.

Hypothesis 3: The requirement’s score is inversely proportional to the number of com-
ments for the given requirement.

This hypothesis indicates that the more comments were given per requirement, the less clear
it will be, thus the score will also be lower. Figure 2.7, right, shows that the assumption holds
for the gathered data and the requirements with scores under 4 (interleaving and synchroni-
sation) also got the most comments. It also shows that only two of the 19 requirements got
average scores under 4 and also more than 15 comments per requirement, indicating that the
requirements as a whole were well understood. Also the fact that there is no requirement with-
out a comment suggests that the participants put effort in understanding and even proposing
improvements for requirements that received high evaluation score.

The next hypothesis aims at identifying whether the field of work influences the scoring.

Hypothesis 4: The participants from the field of activity recognition and data analysis gave
higher scores for the requirements’ specifications.

This hypothesis is based on the assumption that participants from the fields of activity
recognition and data analysis will have better understanding of the concept of activity recogni-
tion and thus will more easily understand the requirements compared to those participants that
come from other filed of computer science. Figure 2.8(b) shows that the hypothesis holds for
all the participants except for user 17 who had an average score of 3. However if we assume

8The evaluation was based on the properties a requirement has to possess according to the software require-
ments specification (SRS) semantic properties described in [39] and the model requirements properties defined in
[11]. A detailed description of the properties is given in Chapter 5. Furthermore an excerpt of the questionnaire
can be seen in Appendix C
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Figure2.8:Proposedformalisms(a)andscoresforusersfromactivityrecognitionanddatamining(b).
In(b),thebeigeboxplotsindicateparticipantsfromthefieldofactivityrecognition,whilethebrown
ones–fromthefieldofdatamining. Thewhiteboxplotsrepresentparticipantsfromotherfieldof
science.

thatuser17isanoutlier9,thehypothesiscouldbeconsideredasvalid.Thisstandstoshow
thattherequirementsspecificationwaswellunderstoodalsobyotherscientistsfromthefield
ofactivityrecognitionanddatamining,anddidnotreflectonlythepersonalinterpretationof
themodeldesigner.Thefactthattherequirementsreceivedbetterscoresfrompeoplefrom
thesetwofieldsindicatesthatthespecificationsareclearlydefinedforthefutureusersofthese
requirements.Theseareexactlythedesignersofactivityrecognitionsystems.Basedonthis
result,inthenextsectiontherequirementswereprioritisedbyagroupofactivityrecognition
anddataanalysisexperts.

Fromtheaboveresults,itcanbeconcludedthattherequirementsforhumanbehaviour
modellingforthethreeproblemsareacceptedasunderstandableandnecessaryalsobyother
researchersfromthefieldofactivityrecognition.Furthermore,participantsfromotherfieldsof
computersciencefoundthemgenerallyclear,indicatingthattherequirementsreflecttheneeds
oftheproblemstobemodelledevenforpersonswhoarenotbiasedbypreviousexperiencesin
thefieldofactivityrecognition.

2.4.4 Prioritisation

TheresultssupportingHypothesis4fromtheprevioussectionindicatedthattheresearchers
fromthefieldofactivityrecognitionanddataanalysishaveaclearunderstandingoftherequire-
ments.Forthatreason,8oftheparticipantsinthestudyfromthesetwofieldswereaskedto
discusstherequirementsimportanceandpriority.Thereasonforthatisthatwhenchoosing

9Thisissuggestedbytheassumptionthatsheisalwayschoosingthemiddleground.Theassumptionismade
basedonthefactthatparticipant17,whoalsoclaimedtohaveanexpertknowledge,almostalwaysgavethesame
scoreforeveryrequirement.Thiscouldindicatethattheydidnotreallytrytoanswerthequestions,orthattheir
actualknowledgewasnotsufficientforansweringadequately.
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an appropriate modelling formalism, if more than one formalisms cover the same number of
requirements, the one with an overall higher requirements priority can be selected. The re-
quirements’ priorities can also be used during the model design phase when the impact on
conflicting requirements to be implemented is taken into account. In order to be able to come
to convergence about the requirements importance, their prioritisation was restricted to only
three values: important, unimportant, and irrelevant.

Table 2.5: The table shows how the requirements are prioritised. The range of different priorities is
limited to three values: important, unimportant, and irrelevant.

Requirement 3-person meeting cooking task office scenario

B
eh

av
io

ur
-b

as
ed

sequences important important important
parallelism important unimportant important
composition important important important
interleaving irrelevant important unimportant
repetition unimportant important unimportant
choice important important important
enabling important important important
disabling important important important
priority important important important
independence important important important
dependence important important important
synchronisation important irrelevant irrelevant
suspending unimportant unimportant irrelevant
resuming unimportant unimportant irrelevant

A
pp

lic
at

io
n prob. durations important

observation model important
unobserved actions irrelevant
activity recognition important

Table 2.5 shows the requirements prioritisation. It can be seen that some of the require-
ments have different priority depending on the use case with suspending and resuming being
either unimportant or irrelevant in each of the cases. This indicates that they can be mostly
ignored for the solution of the problems. Furthermore, in the application-based requirements,
the requirement for unobserved actions was deemed irrelevant, with the suggestion that such
requirement could be handled by the observation model instead of the human behaviour model.
For that reason, the latter will not be discussed further in this thesis.

Based on the requirements and their importance, in the next section several candidate mod-
elling formalisms are discussed.

2.5 Human behaviour models for activity recognition
To implement a solution for the three modelling problems, first a suitable modelling for-

malism has to be selected. The previous section already discussed the requirements such for-
malism should possess in order to be successful. Here, based on these requirements and their
importance, several candidate formalisms are discussed and finally the one satisfying the most
requirements is selected. Additionally, the discussion is restricted to formalisms that are able
to incorporate prior knowledge in order to support the decision making of the corresponding
activity recognition system.

Fig. 2.8(a) shows candidate formalisms proposed by the participants of the evaluation study.
It can be seen that many did not give any suggestions. On the other hand, those who proposed
solution formalisms gave as examples several rule-based approaches, some probabilistic ap-
proaches and some calculus approaches like Petri Nets and DEVS that are usually used for
testing the capabilities of a system. As we are interested in approaches for activity recognition
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that are able to incorporate prior knowledge from which probabilistic models can be generated,
we consider the rule-based approaches ACT-R, CCBM, and PDDL. Additionally, concurrent
task trees are considered together with CTML task models as it was already shown that one
can generate probabilistic models based on those behaviour models [58, 158]. Furthermore, we
regard some additional formalisms as suitable. The study participants might not be aware of
them, but it has already been shown that they are applicable in the field of activity recognition
and mostly comply with the requirements for context-aware systems described in Chapter 1.

2.5.1 Some formalisms that are not regarded
There are formalisms that may seem suitable for the three modelling problems, but that are

not considered in this work for a variety of reasons. The first big group of such formalisms
are the ontologies used for activity recognition [104, 119]. Although vastly applied to this field
of science, they are not regarded here because they do not represent causal relations between
actions, but rather hierarchical dependencies between classes. This, although giving a mecha-
nism for correctly classifying the activities, could pose a problem when trying to reason about
actions’ histories and their causes.

This leads to the second group of formalisms that are not considered, and where ontologies
also fall – these are approaches that assign just action labels but do not make use of semantic
goals. Such formalisms once again have the drawback that they are not able to reason about the
causes behind actions. They are also not able to provide rich context information related to the
action’s specific causes.

Finally, approaches that support semantic goals but were never applied to activity recogni-
tion, or which were never extended for this application, are also not regarded. Typical example
of such are planning formalisms that were never applied to activity recognition (e.g. Hierarchi-
cal Task Networks with Partial Order Planning [123, p. 406–415]). The reason for that is to find
a formalism that can be directly applied or needs minimum modifications in order to be able
to support activity recognition. This is to reduce the designer effort in producing a successful
human behaviour model for activity recognition. One could argue that many formalisms can
produce promising results, provided they are extended for the purpose of activity recognition.
However, the goal of this work is not to provide a new formalism for activity recognition, but
rather to show that models supporting semantic goals can be successfully applied to activity
recognition problems, and based on that to introduce a development process for such models
for activity recognition.

2.5.2 Adaptive Character of Thought - Rational
The Adaptive Character of Thought -Rational or ACT-R is a cognitive architecture dealing

with the process-level theory about human cognition. It has its roots in cognitive science and
is concerned with explaining how the human mind works, and how humans think, perceive and
act [2, 4]. ACT-R is a symbolic/subsymbolic production system and assumes that knowledge
forms the basics of cognition and that there are two kinds of knowledge – declarative (facts),
and procedural (skills and rules). Additionally, there is also the input from the outside world
that can be in the form of visual, aural etc. perception. The declarative knowledge is static and
is stored in the form of chunks which is one of the basic ACT-R elements and can be thought
of as pieces of static memory that we can retrieve from our knowledge base. The procedural
knowledge, on the other hand, is a set of production rules that explain how to use the declarative
knowledge and how to react in a given situation.
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ACT-R is composed of different elements – it has several different limited-capacity buffers
which together build up its context. The buffers are the goal buffer, the retrieval buffer, the
visual buffer, and the manual buffer. Each buffer is supported by one or more theoretically
motivated modules. Each of the modules represents a specific cognitive area and has been
shown to correspond to similar anatomical faculties in the brain [3]. The first module is the
declarative which is responsible for the storage and management of the factual knowledge, also
known as chunks. It is also responsible for the chunks’ activation values which are basically
functions of how recently and frequently a given chunk was retrieved. The second module is
the procedural which is similar to the declarative, only it stores the procedural knowledge, or
productions. The subsymbolic information about the productions is represented by an expected
utility, which is learned over time based on a temporally discounted reinforcement learning
function [50]. The procedural module provides algorithms for matching the contents of the
buffers to production rules where the best match is selected to fire (namely to be executed) and
later it handles the implementing of the actions’ results. The intentional and imaginal modules
cope with the task-oriented cognition. The goal buffer, associated with the intentional module is
responsible for identifying the model’s current goal, while the imaginal buffer provides support
for intermediate state representations. The visual module is responsible for the system to see
elements in the outside worlds, while the aural module recognises sounds in the environment.
The temporal module, on the other hand, is responsible for keeping track of the elapsed time.
Finally, the manual and speech modules are the model’s actuators, namely they are responsible
for the physical and audio interaction with the outside world.

Each of the modules described above is involved in complex interactions which compose
the ACT-R’s predictive power and the ability to explain the human thought processes. On the
other hand, the modelling of the perceptions and actions is limited to how the cognition utilises
them, thus some processes such as the actual execution of actions, are outside the architecture’s
scope.

2.5.2.1 Applications

ACT-R has variety of applications – from simulating human cognition in order to give better
understanding, to providing user assistance based on those cognitive models.

For example, in his work [75], Juergen Kiefer models individual human behaviour in human
multitasking by using ACT-R. He investigates individual cognitive strategies in dynamic mul-
titasking environments and the resulting theoretical consequences for modelling. He achieves
that by using a car driving simulator where the test participants executed a compound con-
tinuous task. The test results showed that under multitasking cognitive strategies are used to
optimally adapt to a given situation, thus the strategies were successfully transferred into ACT-
R and their usage was able to explain individual differences in dynamic task environment.

Another work based on ACT-R investigates the modelling of the progression of Alzheimer’s
disease with application in smart homes [128]. The authors present a way of modelling and sim-
ulating the progression of dementia and also evaluate the performance of executing an activity
of daily living. In difference with other works form this area of research, the paper focuses
on modelling and simulating erroneous behaviour and its progression parallel to the disease
progression, rather than the modelling of normal behaviour. The simulated behaviour of 100
people suffering from Alzheimer’s disease was compared with the results of 106 patients per-
forming an occupational assessment. The comparison showed that the modelled behaviour
closely resembles the behaviour of real patients and the authors concluded that the model is
able to capture not only the erroneous behaviour but also its progression in the different phases
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of the disease.
In the field of activity recognition and assistance, ACT-R was successfully used to model a

robot’s understanding about human actions in a human-robot team scenario [66]. In it, a model
of the available human actions is created and later different simulations run, each of which has
different initial state and prior knowledge. Additionally, all possible execution sequences in a
model are followed and the probability for these sequences is calculated. In that manner, when
the robot observes its teammate executing a given action, the robot is able to reason about the
cause of it and give advice, or if needed, explain to the human that she has made a mistake. This
work is extended in [146] where the authors attempt to give the robots a deeper understanding
of human cognition and fallibilities by applying cognitive models to tasks like gaze following,
hide and seek, interruption and resumption.

2.5.2.2 Requirements fulfilment

In the previous section, the requirements a formalism should satisfy were discussed. Here
we analyse which of them ACT-R satisfies.

Composition: ACT-R is able to express composition by defining actions in the form of
IF-THEN clauses which contain causal relations between different actions.

Sequence: Basically, every formalism should be able to express sequential actions. ACT-R
is no different. Actions executed in sequence can be defined using productions, in the following
way.

Production 1: IF the goal is to execute A, and B was not executed,
THEN execute A.

Production 2: IF the goal is to execute B, and A was executed,
THEN execute B.

Parallelism, Synchronisation, Suspending and Resuming: Executing parallel actions or
modelling users that act in parallel can be achieved by creating separate models for each agent,
and then running the models simultaneously. The synchronisation between the different models
is then done by a separate model that manages the interactions between the agents, similar to
the communication model proposed in [95]. The same applies for suspending and resuming a
composite action – this can be done by the execution of another action from the second agent
which effect is communicated to the first agent via the communication model, thus interrupting
the action the first agent is conducting.

Repetition: ACT-R does not have an explicit mechanism for modelling repeating actions.
However, using the production rules, one can easily implement such. Additionally, a counting
mechanism can be implemented in order to keep track of the number of times the action was
executed.

Production 1: IF the goal is to execute A, and A was executed, and the counter
is less than MAX COUNT,
THEN execute A; increase counter.

Choice and Priority: The choice is modelled when two or more productions have the same
IF clause. Then, which action is executed can be controlled by the different types of heuristics
ACT-R provides. These are

Salience: An operator may be prioritised by applying a weight to it.
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Recency: The most recent operator may be prioritised.

Refractoriness: An operator that was applied once should not be applied again. This strategy
helps to avoid creating infinite loops.

Specificity: The operator that fulfils the most predicates of the goal state is preferred to other.

Dependence, Enabling and Disabling: Dependence in its two forms – enabling and dis-
abling, can be modelled by using the same production mechanism. Below Production 1 shows
an example of enabling, and Production 2 shows an example of disabling.

Production 1: IF the goal is to execute A, and B cannot be executed,
THEN execute A; B can be executed.

Production 2: IF the goal is to execute A, and B can be executed,
THEN execute A; B cannot be executed.

Interleaving: There is no explicit mechanism for modelling interleaving actions. However,
they can be modelled by allowing two composite actions to be executed in an interleaving way.

Production 1: IF the goal is to execute A and B,
THEN execute A1; execute B1; execute A2; execute B2.

Independence: Independence can be easily achieved by just defining IF clause that does
not depend on any other action.

Production 1: IF the goal is to execute A,
THEN execute A.

Application-based requirements: In its standard form ACT-R is not able to cope with
probabilistic durations. Regarding an observation model, the standard ACT-R does not possess
such. Still it was shown in [66] that it is possible to reason about the user actions’ based on
observations perceived by ACT-R’s perception modules (like visual and audio module). Hiatt
et al. [66] also showed that it is possible to apply ACT-R for activity recognition.

2.5.3 ConcurTaskTree
CTT which stands for ConcurTaskTree is a notation that was first introduced by Paterno

[108] and which provides support for design and analysis of complex task models in multi-user
environments. With it a compound activity is represented as a task tree, where each tree node
represents a task which allows composite tasks to be decomposed into subtasks. Various tem-
poral operators are used for expressing the relations between the tasks in the tree. Each task is
associated with a specific type, a category, attributes, and objects it is able to manipulate. Ad-
ditionally, it provides a graphical syntax that allows easier interpretation of the logical structure
of a task.

Fig. 2.9 shows an example of a task model, where a simple composite task consisting of
four tasks (A, B, C, and D) is represented in a CTT notation. The tasks A, B, and C can be
executed in any order, which is specified by the temporal relation order independency (| = |).
Additionally, task D can be performed only after all the other tasks are executed, which is
specified by the relation enable (>>).

In that manner user behaviour and the interaction between different users can be expressed
in a tree-like manner.
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Fig. 1. Task model specifying the schedule of a meeting

compound activities. For inferring the activity of a user from sensor data, we
need additional information: a specification of how probable a certain execution
sequence is. Next, we will look at a current approach to this problem.

3 Inferring Intentions

As outlined above, computing the user’s current activity from sensor data re-
quires a task model that allows to make statements about the plausibility of
sensor data given a specific activity. A system can then try to identify the user’s
current task by selecting that task, whose action sequence is most plausible with
respect to the observed sensor data.

Bayesian Filtering for identifying a user’s current task has been successfully
used in several projects that aim at supporting user activities in classrooms,
meeting rooms, and office environments [4,5,6]. Here, dynamic Bayesian networks
(DBNs) are investigated increasingly for modeling a user’s activities [7,8].

In our own work, we look at using DBNs for inferring the current task and
actions of a team of users. Given (noisy and intermittent) sensor readings of the
team members’ positions in a meeting room, we are interested in inferring the
team’s current objective – such as having a presentation delivered by a specific
team member, a moderated brainstorming, a round table discussion, a break, or
the end of the meeting.

The basic structure of the DBN we propose for modeling the activities of such
a team is given in Fig. 2. In general, a DBN consists of a sequence of time slices,
where each time slice describes the possible state of a system at a given time t.
A time slice consists of a set of nodes that represent the system’s state variables
at that time. State variables may be connected through directed causal links. A
connection such as X → Y means that the current value of Y depends on the
current value of X . This dependency is described by a conditional probability
table (CPT), such as

X = 0 X = 1

P (Y = 0|X) 0.9 0.3
P (Y = 1|X) 0.1 0.7

which in this example says that, in case X is 1, the value of Y will be 0 with a
probability of 0.3 and it will be 1 with a probability of 0.7. (If X is 0, Y will be
1 with a probability of 0.1 and 0 with a probability of 0.9.)

Figure 2.9: CTT for a composite task with four tasks (A, B, C, D) (Figure adapted from [58]).

2.5.3.1 Applications

CTT is mostly used in human-computer interaction problems such as building successful
interface designs. For example, Li at al. [89] use CTT to generate interface model of a display/-
control system. Furthermore, Klug et al. [77] extend CTT to accommodate its execution during
runtime, allowing the generation of applications that adapt to the user actions and preferences.

It has also been shown that CTT can be applied in the field of activity recognition. In their
work [58], Giersich et al. use CTT to model tasks from the viewpoint of mobile and ubiquitous
computing. With the help of CTT they manage to derive the dialog structure of a mobile
human computer interface and then use probabilistic behaviour models to assign probability
distribution over the activities space in order to infer the activity of a user. More concretely,
they propose the usage of priority values assigned to each sibling in a node that are relative
to the priority of all the remaining siblings. Then based on the model and the priorities, the
probability of the transitions from the given state to the next is calculated. This is done based
on the model history allowing for probabilistic reasoning over the user actions.

2.5.3.2 Requirements fulfilment

Below the requirements that are satisfied are discussed and the manner in which they are
implemented.

Composition: CTT expresses composition in the form of a hierarchical structure where
each root task has as leaves the actions, or tasks, it is composed of. Fig. 2.9 shows an example
of such task where the composed action consists of the four actions A, B, C, and D.

Sequence: Sequences are represented by sibling nodes in a task tree with a relationship
operator assigned between them. The sequential actions can have different relations (e.g. en-
abling, disabling, order independence, etc.). In the example from Fig. 2.9, the actions A, B,
and C are executed sequentially and have order independence, while action D is sequential to
the last executed action and has the relation enabling.

Parallelism: Parallelism is achieved by the concurrency relation between two nodes (A|||B),
or by using the concurrency and information exchange operator (A|[]|B) where the nodes can
also exchange information while acting in parallel.

Repetition: CTT expresses an action repetition by simple assigning an asterisk sign to the
repeated action (A∗).

Choice and Priority: Choice in CTT is modelled by using the temporal operator for choice
(A[]B). This indicates that both actions are executable, but when one of them is executed, the
remaining one can no longer be executed. Priority in CTT is managed by the temporal operators
thus, it is not available in the standard CTT formalism. However, Giersich et al. [58] extended
the notation to use priority values based on which later the transition probability distribution
was calculated.
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Dependence, Enabling and Disabling: Enabling in CTT is handled by the enabling tem-
poral operator (A >> B), which indicates that B cannot start before A was executed. It is also
possible to use enabling with information passing with the temporal operator (A[]>>B) Sim-
ilarly, disabling is modelled by the corresponding operator (A[> B) which indicates that A is
disabled by B.

Interleaving: Interleaving in the sense described in the previous section cannot be mod-
elled in CTT as composite actions have to execute the actions of which they are composed
before another composite action is able to be executed. However, it is possible to use suspend-
ing and resuming of composite actions to achieve the effect of interleaving.

Suspend and Resume: Suspend and resume are modelled by the suspend/resume temporal
operator (A|>B), which indicates that A can be interrupted by B, and later when B is executed,
A can be resumed.

Synchronisation: In CTT synchronisation can be achieved by having an action enable the
execution of two concurrent actions.

Independence: Independence is modelled by the order independence operator (A| = |B)
which indicates that the actions can be executed in any order, but when one of them starts, it
had to be finished before the second can start.

Application-based requirements: The standard CTT notation does not support proba-
bilistic durations. The same applies for observation model. However, Giersich et al. [58] have
shown that it is possible to extend the model so that it can be used for generating probabilistic
models that support probabilistic durations and observations. Giersich et al. have also shown
that it is possible to apply CTT in its extended form to activity recognition problems.

2.5.4 Collaborative Task Modelling Language

The Collaborative Task Modelling Language or CTML is proposed by Maik Wurdel [157,
159] and is used as a specification framework for collaborative applications. It is designed
specifically for the needs of intelligent environments and satisfies the following requirements
for such collaborative applications: it has task driven methodology; it is able to model cooper-
ation; it is able to model the domain; and it has formal syntax and semantics. These features
make CTML a good solution for activities modelling especially when team cooperation is con-
sidered. A CTML model is a tuple consisting of a set of actors, a set of roles, a set of collabo-
rative task expressions and a set of domain objects defined by a domain model. A collaborative
task expression is just another variation of task trees and is modelled as a CTT-like tree that has
an identifier, precondition and effect.

2.5.4.1 Applications

In their work [159], Wurdel et al. give examples of CTML’s usage in a collaborative en-
vironment. They apply the modelling formalism to a simple meeting situation consisting of a
chairman, presenter and an audience. The chairman announces the talk topic, and while the
presenter presents it, the audience can access additional information concerning the presenta-
tion topic on their personal devices. Subsequent talks are given in the same manner, until at the
end the chairman encourages an open discussion, sums the session up and closes it. Using the
CTML editor they specify this scenario and show the language’s usability.

Additionally, Wurdel et al. [158] show that CTML, or its task models respectively, can be
used in the field of activity recognition. The specified models are used to define the probabilities
of the next possible action during activity execution. A probabilistic inference mechanism,
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having recognised the current state, then makes use of the task model in order to adjust the

probabilities of the next state. This approach also reduces the state space growth as it removes

all states that are unreachable form the current state.

2.5.4.2 Requirements fulfilment

Behaviour-based requirements: As CTML uses task trees to express the user behaviour,

it could be safely said that the requirements CTML covers are the same that CTT supports.

The difference between the two environments is that they have different tool support and that

CTML provides additional features for smart environments. Still, these features are not applied

to activity recognition problems.

Application-based requirements: Similarly to CTT, task models with CTML do not sup-

port probabilistic durations and observation model. They could, however, be extended to sup-

port probabilistic reasoning by transforming them into Hidden Markov Models [159]. For that

reason they are suitable for applying to activity recognition problems.

2.5.5 Planning Domain Definition Language
The Planning Domain Definition Language or PDDL is initially developed for solving plan-

ning problems in the International Planning Competition [56, 55]. It has a STRIPS10-like syn-

tax and expresses the actions in precondition-effect pairs that contain causal relations between

the different actions. When expanded, they build an acyclic graph from the problem initial

state to its goal state. Later a planner explores that graph with a suitable search algorithm and

provides as an output a plan that is a possible solution to the problem.

PDDL is able to express the elements and dynamics of a domain, namely what kind of pred-

icates are there, what set of actions are possible, what is the structure of compound actions, and

what are the effects of these actions. The language supports the basic STRIPS-like actions, and

in addition it has conditional effects, universal quantification over dynamic universes, domain

axioms over stratified theories, specification of safety constraints, specification of hierarchi-

cal actions composed of subactions and subgoals, and management of multiple problems in

multiple domains [56].

Figure 2.10: A model structure with the PDDL formalism.

A PDDL model is divided into two parts (see Fig. 2.10) – the first is the domain description

that contains the action templates, the object types and description of the predicates used in the

action templates. The action templates in turn are described by a name, parameters, duration,

preconditions, and effects. The second part is the problem description that expresses the initial

10The STanford Research Institute Problem Solver (STRIPS) is an automated planner first introduced by Fikes

and Nilsson in 1971 [40]. It is the basis for many planning languages today.
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world state, the constants used in the problem, and the goal of the problem. That way the
first part provides an abstract description of the modelled domain, while the second gives the
problem-specific details needed for solving the problem. This division allows creating abstract
models that are later populated with the parameters of the specific problem, thus requiring the
change only of the problem description when new problem from the same domain is present.

2.5.5.1 Applications

Although PDDL is designed for planning problems, it has been shown that it can also be
applied to activity recognition problems. Burghardt et al. [18, 19] use PDDL for synthesising
probabilistic models for activity recognition, where the actions are represented by precondi-
tions and effects which allows the generation of different possible behaviours without explicitly
specifying every one of them. This is done by extending the PDDL operators and generating
a graph that contains all execution sequences leading from the initial to the goal state. The
model is then used as part of an inference mechanism for adjusting the probabilities for the
next possible action. It is also used for reducing the search space growth, as only states that are
part of valid plans are considered.

Another work that applies PDDL to a plan recognition problem is that by Ramirez and
Geffner [114]. In it they recognise the intentions of an agent that has an action library modelled
in a PDDL-like notation. The model is shared by the observer and the agent but the actions
of the agent are only partially observed. Then the policy for selecting the agent’s action is
based on the reward the agent will receive – thus, higher reward indicates higher probability for
selecting the action.

2.5.5.2 Requirements fulfilment

As PDDL is a causal approach, it satisfies a set of requirements similar to that ACT-R
satisfies.

Composition: Like ACT-R, PDDL can express composite actions by defining causal rela-
tions between actions. This is done by modelling abstract action operators that have the form
of precondition-effect pair.

Sequence: Sequences are modelled in a similar to ACT-R way.

Action 1: Precondition: A is not executed, and B is not executed, and A can
be executed.
Effect: A is executed.

Action 2: Precondition: A is executed, and B can be executed.
Effect: B is executed.

Parallelism, Synchronisation, Suspending and Resuming: Whether actions are executed
in parallel in PDDL depend on the planner – if it is able to execute partially ordered plans, then
the actions can be executed in parallel. That means, if the preconditions for both actions are
satisfied and the planner allows them to be executed in parallel. For example, in their approach
Burghardt et al. [18] are able to execute multiple actions in parallel. The same applied for
actions synchronisation where in the case the planner allows concurrent actions, an action is
executed that synchronises two other actions that are then executed in parallel. Suspend and
resume are only applicable in the cases where composite actions are modelled, that can then be
interrupted by another action, or by another agent.
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Repetition: Like ACT-R, PDDL does not have an explicit mechanism for modelling re-
peating actions. Still, using appropriate predicates in the action description, allows an action to
be repeated.

Action 1: Precondition: A can be executed,
Effect: A is executed, and A can be executed.

Choice and Priority: The choice is modelled when the preconditions of two or more
actions are satisfied but parallel execution is not possible. Then, which action is executed can
be controlled by the different types of heuristics. For example, it could be the goal distance
[114], or the ACT-R heuristics saliency, refractoriness, recency, and specificity [79].

Dependence, Enabling and Disabling: Dependence can be modelled by using the same
mechanism as in ACT-R. Below Action 1 shows an example of enabling, and Action 2 shows
an example of disabling.

Action 1: Precondition: A can be executed, and B cannot be executed.
Effect: A is executed, and B can be executed.

Action 2: Precondition: A can be executed, and B can be executed.
Effect: A is executed, and B cannot be executed.

Interleaving: There is no explicit mechanism for modelling interleaving actions. However,
they can be modelled by allowing two composite actions to be executed in an interleaving way.
In other words, if we have a composite actionA= {A1,A2} andB = {B1,B2}, then the effects
of A1 will fulfil the preconditions of B1, the effects of B1 will fulfil the preconditions of A2

and so forth.
Independence: Independence can be easily achieved by defining action’s preconditions

that are not dependent on the effects of any other actions. For example, if an action is exe-
cutable, and there is no other applicable action able to change the fact that the action is exe-
cutable, then this action is independent.

Production 1: Precondition: A is executable.11

Effect: A is executed.

Application-based requirements: The standard PDDL notation is able to express durative
actions [134], and Krüger et al. have shown that it is possible to model probabilistic durations
[79]. The standard PDDL does not support observation models but it was shown that the
notation can be extended to support such [114, 18]. It was also experimentally shown that
PDDL can be applied to activity and intention recognition problems [114, 18].

2.5.6 Asbru
Asbru is a time-oriented machine readable language developed for implementing skeletal

plans in the Asgard project [74, 97]. The idea behind Asbru is to represent the domain knowl-
edge as a library of skeletal plans that have various levels of detail and capture the structure
of the modelled procedures but that allow parameterisation with different problem-specific el-
ements. The created plans are stored in a plan library where each plan consists of a set of
sub-plans that are necessary for successfully completing the plan objective. A plan that cannot
be decomposed in a more fine-grained plan is then called an action. The plan interpreter when
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Figure 2.11: A plan structure in the Asbru formalism (Figure adapted from Miksch et al. [97]).

fed with a general plan is then attempting to decompose it into sub-plan until the level of the

actions is reached. This plan consisting only of actions is then executed by the agent.

The structure of an Asbru plan can be seen in Fig. 2.11. It consists of a name, a set of

arguments, including a time annotation, plan preferences, intentions, conditions, effects, and a

plan body which describes the actions to be executed. A sub-plan of a plan then has the same

components. It can be seen that the sub-plans are composed of actions (from A to H) which

indicates that they cannot be decomposed any further.

2.5.6.1 Applications

Asbru is designed for the project Asgard that aims at supporting clinical guidelines by pro-

ducing a library of skeletal plans that can later be applied to specific situations [130]. The

project focuses on recognising the caretaker’s intentions from their actions, and providing cri-

tique of these actions given the guidelines and the patient’s medical record.

Another application of Asbru was proposed by Azam et al. [7] where they use skeletal

plans for inferring user plans based on recognised actions. To achieve that, wireless proximity

data is recorded and separated into tasks and subtasks using a task separator algorithm. The

detected tasks then are mapped to the high level Asbru plans and together they are fed to an

activity recogniser. The recogniser in turn matches the available wireless proximity data to that

available in the plan library tasks, and when such are recognised, it attempts to infer the user

plan.

2.5.6.2 Requirements fulfilment

Asbru consists of a library of temporally related plans and actions and can thus express

many of the requirements with the help of these temporal relations.

Composition: In Asbru a composite action is represented by a plan that either has other

plans in its body or consists of actions. Fig. 2.11 shows such plan structure where each plan is

considered to be equivalent to a composite action.

Sequence, Parallelism, and Synchronisation: Sequences are modelled by operators in the

plan body that indicate whether a plan is executed sequentially, or in parallel. The synchronisa-

11Here we assume that no other action has as effect A is not executable.
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tion of two actions is also done with these operators, as the parallel operator expects the actions
to start at the same time. Below Plan 1 represents executing two actions sequentially, and Plan
2, the execution of the same actions in parallel that are also synchronised.

Plan 1: (DO-ALL-SEQUENTIALLY (action A) (action B))

Plan 2: (DO-ALL-TOGETHER (action A) (action B))

Suspending and Resuming: Suspending and resuming an action is modelled by defining
a suspend or resume point in the plan. It is expressed in the time annotation clause by defining
a time range in which the requirement should be executed, and the requirement itself together
with a pointer at the action of a plan where this should happen. Time annotation 1 gives an
example of a suspended plan, and Time annotation 2 – of such that is resumed.

Time annotation 1: ((<time-range>) SUSPENDED (action A))

Time annotation 2: ((<time-range>) RESTARTED (action A))

Repetition: Repetition of an action or a set of actions can be expressed by defining a
cyclical plan. That is done with the every clause that is defined in the plan’s body.

Plan 1: (EVERY (START <start-time>) (END <end-time>) (do action A) END-EVERY)

Choice and Priority: The choice is modelled by an operator in the plan body that allows
executing the actions in any order. Priority, on the other hand is not modelled as it is handled
by the time constraints and the sequential actions ordering.

Plan 1: (DO-ALL-ANY-ORDER (action A) (action B))

Dependence, Enabling and Disabling: Dependence can be modelled by using the time
annotation which allows enabling a given plan or an action. Unless the plan has been already
enabled, it is otherwise disabled, so there is no explicit definition of disabling.

Time annotation 1: ((<time-range>) ACTIVATED (action A))

Interleaving: Asbru does not support interleaving actions, as in order to continue from one
composite action (or plan) to another, all or part of the actions in the first have to executed, but
there is no explicit way of forcing the model to execute the remaining non executed actions,
after the second composite action is completed.

Independence: There is no mechanism for modelling independent actions as all specified
actions have temporal dependencies.

Application-based requirements: Asbru is not able to model probabilistic durations in
terms of probability distribution, but it can express uncertainty in the begin and end times of
the action by defining shift periods. It does not support observation model, but Azam et al.
[7] have shown that it is possible to map the actions to corresponding sensor readings. The
standard Asbru language is used for plans generation, but Azam et al. [7] have shown that it
can also be applied to intention recognition.
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Figure 2.12: A model structure in the CCBM formalism.

2.5.7 Computational Causal Behaviour Models

CCBM are specifically designed for the purposes of activity and intention recognition [76].

The formalism combines causal models with probabilistic reasoning in order to be able to cope

with the observations uncertainty. A CCBM model consists of several parts – a causal model

divided in domain description and problem description, and an observation model describing

the relations between the observations and the states in the causal model. A compiled model

then produces a probabilistic model such as an HMM or a particle filter.

The causal model has a PDDL-like notation with several extensions providing the ability to

specify different number of agents that can act in parallel, various types of duration probability

distributions and different heuristics for action selection. Furthermore, an action is specified

through its name, parameters, agents, duration, preconditions, effects, and observations. The

observation model, on the other hand contains the information about which sensor readings and

in what range are mapped to which high level actions and states. The structure and elements of

a CCBM model can be seen in Fig. 2.12.

2.5.7.1 Applications

As already mentioned, CCBM and the corresponding tool, were specifically designed for

activity recognition applications. Krüger et al. [80] showed that the modelling approach is

suitable for problems from the meeting domain. They modelled the activities performed during

a meeting in a smart environment and showed that the approach is suitable for such domains.

It was tested on 21 activity datasets containing variations of a 3-person meeting and compared

the results from those of a hand-crafted HMM. The comparison showed that the CCBM models

are performing comparably to a hand-crafted model.

2.5.7.2 Requirements fulfilment

The causal model in CCBM uses a PDDL-like notation, thus many of the requirements are

modelled in the same way.

Composition, Sequences, Synchronisation, Suspending, Resuming, Repetition, Choice,
Dependence, Interleaving, and Dependence: All these requirements are modelled in the same

fashion as in PDDL.

Parallelism: Parallelism is modelled by the additional :agent slot in the actions description.

This slot is optional and when it is included in the action, it indicates that all available agents

or objects of the given type are able to execute the action in parallel.
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Priority: Priority can be explicitly modelled with the :saliency slot in the actions descrip-
tion. It gives then the action’s priority relative to the priorities of the remaining actions. The
priority is also modelled by the action selection heuristics – these are the goal distance, where
the nearer to the goal the action is, the higher weight it has. Or it can be modelled by the
ACT-R heuristics for action selection – recency, refractoriness, and specificity, which values
are defined in the filter options.

Application-based requirements: CCBM is able to represent probabilistic durations with
distributions such as exponential distribution, and normal distribution [76]. It also supports the
modelling of an observation model that is separate from the observation model. The formalism
is specifically designed for activity recognition.

2.6 Discussion – choosing a suitable modelling formalism

The above section presented the candidate formalisms for modelling the three problems. It
also showed which requirements were satisfied and how (an overview of the satisfied require-
ments can be seen in Table 2.6). Now the only remaining question is how to select the most
appropriate modelling formalism? To answer this question, here we propose a selection method
based on the requirements satisfied by the formalisms and the importance of these requirements
for the different modelling problems based on Table 2.5.

Table 2.6: The table shows the candidate human behaviour models that can be used for modelling the
three problems. yes indicates the requirement is satisfied by the modelling formalism, no – that it is not.

Features ACT-R CTT CTML PDDL Asbru CCBM

B
eh

av
io

ur
-b

as
ed

sequences yes yes yes yes yes yes
parallelism yes yes yes yes yes yes
composition yes yes yes yes yes yes
interleaving yes yes yes yes no yes
repetition yes yes yes yes yes yes
choice yes yes yes yes yes yes
enabling yes yes yes yes yes yes
disabling yes yes yes yes yes yes
priority yes yes yes yes yes yes
independence yes yes yes yes no yes
dependence yes yes yes yes yes yes
synchronisation yes yes yes yes yes yes
suspending yes yes yes yes yes yes
resuming yes yes yes yes yes yes

A
pp

lic
. prob. durations no yes yes yes no yes

observation model yes yes yes yes no yes
activity recognition yes yes yes yes yes yes

Table 2.6 indicates whether a requirement was met by the formalism. As there is no concrete
mechanism for selecting a modelling formalism in the field of activity recognition, here we
propose the following criteria: the formalism that satisfies the most requirements is selected,
where each requirement is weighted according to its importance.

argmax
vmax

f(vmax) := {vmax|∀v : f(v)≤ f(vmax)} (2.1)

Formula 2.1 indicates that the set of values of v where f(v) attains its largest value is chosen.
Here v is the value assigned to the formalism and f(v) is calculated according to Formula 2.2.
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f(v) :=

n

∑
i=1

m

∑
j=1

rjwij +
p

∑
k=1

akwk

nm+p
, (2.2)

where i indicates the index for the modelling problem, j the index of the behaviour-based re-
quirement, and r is a behaviour-based requirement that has a value of either 1 if the requirement
is met, or 0 if it is not met. The requirement’s value is then multiplied by the requirement’s
importance w which is obtained from Table 2.5 and where irrelevant requirements are assigned
a value of 0 so that they have no influence on the formalism selection, whereas important
requirements are assigned a value of 1which indicates that important requirements that are sat-
isfied produce a value of 1. In between these two values are the nice to have but unimportant
requirements, which are assigned a value of 0.5 so that they would have some influence on
the formalism selection but not as much as the important requirements. The weight of the
application-based requirements a is calculated in a similar manner, where k is the index of the
requirement. In this case however, they are not summed up over the three problems as they are
all the same for the three cases. To normalise the result so that it is in the range [0,1], it is then
divided to the number of considered requirements multiplied by the number of use cases.

Using this formula, the scores of the different formalisms are calculated and the resulting
values are shown in Table 2.7. The resulting scores show that CTT, CTML, PDDL, and CCBM

Table 2.7: The table shows the candidate human behaviour models that can be used for modelling the
three problems and the scores they received after summing up the requirements that were met.

Modelling formalisms ACT-R CTT CTML PDDL Asbru CCBM

f(v) 0.80 0.82 0.82 0.82 0.63 0.82

have the same values which is not surprising as they satisfy the same set of requirements regard-
less of the fact that depending on the formalism, they are implemented in a different manner.
Asbru, on the other hand has a slightly lower score which is due to the fact that it does not
support representation of interleaving actions. ACT-R has a score between Asbru and the re-
maining formalisms. This is due to the fact that it supports all requirements necessary to express
the user behaviour in the three problems, but to our knowledge is unable to represent durative
actions in probabilistic manner.

The results from the table also show that the requirements in question are not enough for se-
lecting appropriate formalism. All formalisms with the exception of Asbru are able to represent
the underlying behaviour and 4 of them also satisfy the full set of application-based require-
ments. For that reason, below we introduce several additional application-based requirements
that were previously not considered.

• Ability to support large state spaces: As human behaviour contains by default high
variability, this also results in large set of ways the same task can be executed. This in
turn results in large state spaces. A formalism should be able to cope with such large
state spaces.

• Ability to support long observation sequences: As real world activities usually take
more than just a few minutes, the modelling formalism should be able to support rea-
soning given a long sequence of observations (e.g. in the 3-person meeting we have one
meeting with 62 000 observations).
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• Factored action representation: As the user behaviour in all three problems is goal
oriented, reasonable heuristic for the correct selection of actions will be the goal distance
from the initial to the goal state. Formalisms that rely on variable-free representation
of the actions and the states run into the problem of being unable to find a path to the
goal when the problem is more complex. A representation that relies on a collection of
variables (namely factored representation), on the other hand is able to cope with that
even in large problems [123, p. 366].

Table 2.8: The table shows the additional requirements the candidate human behaviour models have to
satisfy in order to be used for modelling the three problems. yes indicates the requirement is satisfied by
the modelling formalism, no – that it is not.

Features ACT-R CTT CTML PDDL CCBM

large state-space no no no yes yes
long observations no no no no yes
factored representation no no no yes yes

Table 2.8 shows the additional requirements that the formalism support12. It can be seen
that large state spaces and factored action representation are supported by PDDL and CCBM
which is due to the fact that the actions are represented in terms of templates with variables
that can later be replaced by the corresponding constants. On the other hand ACT-R, CTT and
CTML rely on variable-free representations making them unpractical for complex problems
where many different variations of the user behaviour are involved. The last requirement –
long observation sequences – has been shown to be supported only by CCBM in [80] where it
was able to recognise the activities of a meeting that had 62 000 observations.

Table 2.9: The table shows the candidate human behaviour models – with the exception of Asbru as it
is not able to support all behaviour based requirements – and the scores they received after summing up
the initial and the additional requirements.

Modelling formalisms ACT-R CTT CTML PDDL CCBM

f(v) 0.75 0.77 0.77 0.81 0.83

Table 2.9 shows the score for the modelling formalisms given the additional requirements
and assuming that all three requirements are important. It reflects the fact that CCBM is the
only one of the formalisms that satisfies all requirements thus has the highest score. As CCBM
can be considered to be an extension of PDDL, we can conclude that for the given problems
and assuming behaviour variability and goal oriented behaviour, planning languages seem to
be the most suitable choice. This is due to the fact that they are able to express any logically
correct variation of behaviour just by using action templates. This also makes them suitable
for problems with large state spaces. The combination of planning language and probabilistic
mechanisms like the Particle Filter (PF) theoretically allows them to be applicable also to
infinite state-spaces as they do not need to expand the whole state graph in order to find a
solution.

As a conclusion, based on the use cases and the corresponding requirements, CCBM can
be considered as the preferred modelling choice. Thus it is the formalism that will be applied
throughout the rest of the thesis. Chapter 3 gives some more insight into modelling with CCBM
and presents the corresponding models that are intuitive solutions to the problems.

12Asbru is left out because it does not support all behaviour-based requirements thus we assume it is unable to
represent the underlying user behaviour
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2.7 Outlook
The chapter presented the preliminaries necessary for modelling human behaviour for AR.

For that, the three modelling problems were introduced and the information that is to be in-
corporated into the models, was identified. Additionally, the corresponding test datasets were
described.

Based on the modelling problems, the requirements for modelling them were identified.
A formalism is then eligible for modelling the problems if all (or most) of the requirements
are satisfied. Depending on the modelling needs, several formalisms were regarded, and the
requirements they satisfy were discussed.

Later, a method for choosing the most appropriate formalism was introduced. Based on it,
CCBM was suggested as the most fitting formalism.

In general, the chapter described the preliminaries needed for selecting an implementation
language and technique for a given modelling problem for activity recognition. The output of
this chapter is used as a basis for the models to be developed in the next Chapter 3.



Chapter 3

Modelling Human Behaviour with
Computational Causal Behaviour Models

“The data is all over the place, the insight is yours, and now an
abacus is at your disposal, too. I hope the combination amplifies

each of these components.”
Judea Pearl

Chapter Summary: This chapter introduces the modelling with CCBM and presents the models
that were developed as solutions for the problems in Chapter 2. Later, the models are analysed for
identifying successful practices as well as modelling problems and the intuitive modelling approach
is discussed. These practices, or patterns, and the problems are the basis for the modelling toolkit
presented in Chapter 4. Furthermore, the intuitive modelling process is identified and analysed so
that it can be later used as a basis for the development process proposed in Chapter 5.

Chapter Sources: This chapter is partly based on the paper “Plan Synthesis for Probabilistic
Activity Recognition” [80]

Questions to be answered in the chapter:

What are CCBM models for activity recognition? (In Section 3.2)

How were the three problems modelled? (In Sections 3.3.1, 3.3.2, and 3.3.3)

What context information, dimensions and performance does the meeting model have? (In Section
3.3.1)

What context information, dimensions and performance does the cooking task model have? (In
Section 3.3.2)

What context information, dimensions and performance does the office model have? (In Section
3.3.3)

Is there a need for structured modelling process? (In Section 3.4)

What intuitive phases can be identified during modelling for activity recognition? (In Section 3.4)

53
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3.1 Introduction
The previous Chapter 2 concerned itself with the preliminaries for modelling the three daily

life problems. This chapter uses the preliminaries as a basis for implementing the problems’ so-
lutions. It provides some more details about Computational Causal Behaviour Models (Section
3.2) while a detailed introduction into modelling with CCBM is given in Appendix D. Later it
discusses the intuitive solutions of the modelling problems (Section 3.3). Furthermore, to dis-
cover model pitfalls as well as useful modelling practices, it analyses the resulting models and
discusses the different modelling problems. This information will later be used as the basis for
developing modelling patterns that can be applied to different problems. Finally, the intuitive
development process is analysed to be further extended in the following chapters (Section 3.4).

3.2 Computational Causal Behaviour Models
In the application domain of activity recognition we needed a modelling formalism that al-

lows encoding prior knowledge about the problem domain that can be used during the inference
phase to provide additional context information about the user’s current state and intentions.
Moreover, it had to be able to establish the bridge between causal modelling and probabilistic
inference allowing a way for coping with uncertainty and the sensors’ unreliability, and in the
same time providing a means for building rich user models. The modelling formalism we chose
is Computational Causal Behaviour Models because it satisfies all these requirements [76].

3.2.1 Causal Models
CCBM is a formalism that allows expressing human behaviour with a set of causally related

rules using a PDDL-like notation. Every action in the causal model is described in terms of
precondition-effect pair taking care that only actions which preconditions are satisfied could
be executable. The possible user actions are expressed as abstract templates that are later
parameterised with problem specific constants resulting in a set of grounded actions1. More
formally, given a set of predicates P := {p1,p2, ...,pn}, states x and x′, and an action a =
(V,Ppre,Peff−,Peff+), where V is a set of parameters used for parameterising the action’s
predicates, Ppre ⊂ P is a set of preconditions, Peff− ⊂ P is a set of negative effects, and
Peff+ ⊂ P is a set of positive effects, an action a can then be specified as a mapping from state
x to x′. To be executable in x, the preconditions of a have to be true in x, namely Ppre ⊆ x.
Furthermore, after a takes place, the negative effects of a are excluded from x′ and the positive
are part of x, namely x′ ∩Peff− = ∅ and Peff+ ⊆ x′. In other words, every action in the
described problem domain is represented as a transition from a certain state of the world to
a new state of the world, thus allowing the reasoning about the current state’s history and the
actions that led from the initial state to it.

Of course, in order to be able to represent the available context information, the causal
model contains not only the actions’ templates, but is also populated with different problem-
specific parameters that describe aspects of the available prior knowledge. Furthermore, the
initial world state xinit := {p1 init,p2 init, ...,pn init} is described, which is taken as the starting

1Throughout the thesis the terms grounded action and grounded predicate comply with the notion of a ground
term used in logic. Such term is one that contains no variables [123, p. 295]. For example, the action template
(move ?from ?to) contains two variables, namely the begin and end positions. When it is grounded (or instantiated),
the variables will be replaced by constants, resulting in e.g. (move sink table), (move stove sink), etc. The same
procedure is applied to the predicates.
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point for further causal reasoning. The simple representation of the abstract action templates,
combined with the problem-specific parameters allows the model designer to build a relatively
small description, that later is automatically grounded with the help of a planner, resulting in
the model state-space. Thus, by modelling just a few abstract actions, it is possible to create
models with state-spaces as large as several thousand to several million states [80].

3.2.2 Acting under uncertainty
Logic-based models alone could be good at inferring human behaviour, assuming that the

states of the world were fully observed and the observations completely reliable. However, in
reality that is hardly the case – usually, we are left with a set of observations taken from noisy
sensor readings. As we mentioned in Chapter 1, to cope with this problem, one could combine
causal models with probabilistic inference. This is done by grounding every feasible predicate
from the causal models with every applicable parameter. This results in a world state where one
possible occupancy of all predicates and the corresponding number of world states is defined
by the number of all grounded predicates together with the number of applicable operators.
Later, the state space is computed by the so called ”reachability analysis” which is performed
by first computing ground operators, and then expanding the state graph from the initial state.
Every vertex of the state graph then represents a possible state in the Markov model, every
edge is a non-zero entry in the transition matrix. The prior state distribution is calculated from
the initial world state of the causal model together with the valid operators for this state. The
transition function is generated by a planner that expands all possible plans leading to the goal
and generates a directed acyclic graph with transition probabilities based on Formula 3.1 which
states that for an action a and states x,x′ such that x′ = a(x), the probability of selecting a in
state x is then proportional to the influence of the revisiting factor (or was the action visited
before), the goal distance (or how many actions have to be executed until the goal is reached),
and the saliency (or what weight the action has in relation to all the remaining actions):

p(a |x) ∝ exp(
3

∑
k=1

λkfk(a,x)), (3.1)

where (fk(a,x)) is defined by

f1(a,x) = logγ(a(x)), (3.2)
f2(a,x) = logs(a), (3.3)
f3(a,x) = δ(a(x)). (3.4)

Here γ(a(x)) is the revisiting factor that by default is 0, if the resulting state of applying the
action a to the state x has already been visited. In other words, if the action was already
selected once, it cannot be selected again. The value of the revisiting factor can be increased
so that already visited states are allowed to be visited again. This factor is determined by
the history of each single running hypothesis. Furthermore, s(a) is the saliency of the action
a that is specified in the action template specification. It allows the assigning of weights to
the different actions, thus increasing their probability with respect to the rest of the available
actions. The third feature δ(a(x)) is the goal-distance of state x′ = a(x) that will be reached
if action a is applied to state x. When using the goal distance as heuristic, the less actions
that have to be executed before the goal is reached, the more probable the current state will be.
In other words, assuming the agent is following some goal, she will try to reach the goal by
following the shortest execution path. For that reason any actions that deviate from that goal
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or increase the goal distance, will have lower probability. By using λk, each feature can be
weighted.

Furthermore, the formalism makes use of probabilistic action durations, which introduces
the option of encoding a priori knowledge about the action duration to its definition. To do that
a duration density function is assigned to each action. The probability of finishing the execution
of an action α in the state s in the time interval (a,b) is then given by Equation 3.5.

P (a < δ < b|δ > a) =
F (b)−F (a)

1−F (a)
(3.5)

where F denotes the cumulative density function p(δ|α,s). This enables each hypothesis to
sample whether the action should continue or be aborted from F in each step.

This approach to combining causal models with probabilistic reasoning allows us to build
relatively small causal models that are compiled into huge probabilistic models without the
need of losing context information for the sake of simplicity. It also allows us to be able to
reason about actions, places and objects that were never observed but that were encoded in the
model and that are causally related to the observed world.

The resulting probabilistic model can have two forms – either a Hidden Markov Model
(HMM) or a PF. The HMM is a Markov model where the state is not directly visible, but the
observed output, that is dependent on the state, is visible. One can then infer the hidden states
based on the observed variables. HMMs are used in the case of a small causal model that
generates probabilistic model where the whole state graph can be extended. In that situation
an exact inference is performed as the probability of the states can be computed analytically.
In the case, the model is too big to do that, the particle filter is used where the model state is
approximated. The general probabilistic structure of the model can be seen in Fig. 3.1. In it

Figure 3.1: General probabilistic structure of Computational Causal Behaviour Models. In it Ct is the
current observation time; Gt is the current goal; Yt is the current observation. The current state Xt is
captured by four features: Dt is the flag indicating whether the action should terminate in the interval
between the current observation time and the previous observation time, At is the current action; St is
the starting time for the current action; Rt indicates the new state for time stamp t.

we see two time slices t− 1 and t. Each of them contains the following elements: Yt is the
observation data for time step t. Ct is the current observation time with the requirement that
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Ct−1 < Ct. Dt is the flag indicating whether the action At−1 should terminate in the interval
(ct−1, ct]. In case Dt = 1 new values are assigned to At, St, and Rt. Otherwise the random
variables carry the values from the previous state. St captures the starting time for the action
At. Rt gives the new state for the time step t either by applying the new action to the previous
state, or by carrying over the old state when the action has not changed. Gt represents the
current model goal. The variable is constant over time, allowing the computation of the goal
distance. The figures indicates that given the current goal Gt−1, an action At−1 is executed
to follow this goal which results in the state Rt−1. Then depending on the flag Dt−1 which
is based on the time elapsed since the beginning of the action, the action will either terminate
resulting in a new action At with a new state Rt, or it will be copied to the next observation
slice so that the action’s execution can continue until the flag Dt indicates that the action has to
terminate. Then a new action is selected.

From the above we can summarise that CCBM provides the ability to model causally related
actions in terms of precondition-effect templates that are later automatically grounded with
problem specific parameters. This results in a state space graph that leads from the initial to
the goal state. To allow probabilistic inference, the prior states probability is calculated based
on the predicates that are true in the initial world state and the mechanism for selecting the
next action to be executed is calculated with Formula 3.1 which ensures that always the most
probable action will be selected until the goal state is reached. Finally, as each action has its
own probabilistic duration, the decision whether the action will terminate in the next time step,
or whether it will continue its execution, is defined by the decreasing action probability since
the action execution has started. The above indicates that there are three different factors that
play role when performing activity recognition with CCBM – these are the causal structure of
the model, the action selection heuristics, and the actions durations. They all play an important
role in the model’s ability to correctly recognise the user actions.

3.3 Modelling the problems with Computational Causal Be-
haviour Models

Appendix D provides detailed introduction into modelling with Computational Causal Be-
haviour Models, while in this section the modelling formalism is practically applied to the
three modelling problems described in Chapter 2. The provided models contain the intuitive
solutions of the model designer to the problem at hand, which are later discussed in order to
identify the modelling mechanisms used, the questions the model can answer, and the model
performance. Each of the three problems is divided into several parts – first the model with
its parameters is presented, then the model is analysed for problems and successful practices;
finally, the model is evaluated in terms of activity recognition performance.

3.3.1 Modelling the 3-person meeting problem
Based on the problems’ analysis performed in the previous chapter, here two different mod-

els are presented – a team model and a multi-agent one.

3.3.1.1 Model

Team model: The team model describes the single agents’ behaviour as resulting from the
team behaviour. Namely, the actions of the team define the behaviour of the single users, or with
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other words the effects of the team actions cause the separate user behaviour. It implements
the elements presented in Table 2.1 in Chapter 2. Table 3.1 gives information about the actions

Table 3.1: Actions in the team model with the corresponding predicates that define their preconditions
and effects, as well as the parameters that are used in the actions.

Action Parameters Predicates

move none (doing ?a - activity) – for all activities ?a; (at ?p - person ?l - location) – for all persons and locations
present ?p - person (has-presented ?p); (doing ?p) (at ?p stage); (at ?p seat)
discuss none (have-discussed); (has-presented ?p - person) – for all persons; (doing discussing);

(at ?p - person seat) – for all persons
leave none (doing moving); (at ?p - person door) – for all persons

modelled in the team model and the parameters and predicates each of them has. It could be
seen that there are only five actions where only one of them has a parameter – that is the action
present and the presence of the parameter is to indicate that there are three presentation slots
each corresponding to one of the three participants. However, the parameter does not mean
there are three agents that can execute the action. It can be executed just by one (the default
agent) and simply indicates that there are three instances of the same action with a different
user as parameter. The remaining actions, on the other hand, apply their effects to all modelled
users, so that when the action is executed, it affects everyone in the environment. Thus it is
impossible to track the behaviour on a single-user level.

Table 3.2: Model parameters for the team and the multi-agent models.

Parameter Team model Multiagent model Description

# operators 6 88 grounded actions after the model compilation
# predicates 19 72 grounded predicates after the model compilation
# object types 3 4 see Fig. 3.7
# persons 3 3 objects of type person
# locations 3 7 objects of type location
# activities 6 6 team + 10 single-user activities to be estimated
# states 31 5568 state-space of the model
# valid plans 13 3515 valid plans leading from the initial to the goal state
# hierarchy level 2 3 levels of the type hierarchy
# goal distance 10 48 minimum distance from the initial to the goal state
# max. branching factor 4 9 maximum number of possible actions at a given time

Furthermore, Table 3.2 contains some additional information about the model characteris-
tics. The first column describes the name of the given model parameter, the second the value
associated with it, and the third – the value for the multi-agent model. The considered char-
acteristics are the number of operators which represents the number of grounded actions; the
number of predicates that shows how many predicates are there after they were grounded with
the available objects; the number of object types, which presents in how many categories were
the objects divided; the number of persons, locations, and activities represents how many con-
stants were there from a given type; the number of states represents how many states are there
after the model graph was expanded; the number of valid plans represents all plans that lead
from the initial to the goal state; the hierarchy level describes the hierarchy of the object types
with the highest level being the default object type; the goal distance that shows how long is
the shortest path from the initial to the goal state; it is later used for action selection heuristic
(according to Formula 3.4); and finally, the maximum branching factor shows how many ac-
tions at most are executable from a given state. We consider these parameters as they give us
information about the model size and complexity.
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It can be seen that the model is comparatively small with only 6 grounded operators and
19 grounded predicates. It has only 3 object types that describe the persons that participate in
the meeting, the locations, and additionally one type for the actions to be estimated. It can also
be seen that there are only 3 objects of type location, which is due to the fact that the loca-
tions were simplified and instead of taking each seat or stage as a separate location, they were
combined in one seats location, one stages location and a door. After the model compilation
the abstract model definition resulted in 31 causally related states and 13 valid plans could lead
from the initial to the goal state2.

Multi-agent model: Table 3.3 shows the actions the model has. The model implements the
elements presented in Table 2.2 from Chapter 2. It can be seen that each of the actions has at
least one parameter of type person and additionally each of the actions could be executed by
any of the agents in parallel with the actions of the rest of the agents.

Table 3.3: Actions in the multi-agent model.

Action Parameters Predicates

start-enter ?p - person (entering ?p); (at ?p door); (entered ?p); (idle ?p)
finish-enter ?p - person (entering ?p); (idle ?p)
sit-down ?p - person ?s - seat (at ?p ?s); (idle ?p); (seated ?p); (has-discussed ?p)
get-up ?p - person ?s - seat (at ?p ?s); (idle ?p); (seated ?p)
walk-to-seat ?p - person ?from - location ?to - seat (idle ?p); (entered ?p); (is-seat-for ?to ?p); (at ?p ?from); (walking ?p ?to)
walk-to-stage ?p - person ?from - location ?to - stage (entered ?p); (is-stage-for ?to ?p); (has-presented ?p); (at ?p ?from);

(idle ?p); (walking ?p ?to)
walk-to-door ?p - person ?from - seat (idle ?p); (entered ?p); (at ?p ?from); (has-presented ?p1) – for all persons;

(walking ?p door)
arrive ?p - person ?from ?to - location (walking ?p ?to); (at ?p ?from); (at ?p ?to);
exit ?p - person (idle ?p); (at ?p door); (entered ?p); (has-presented ?p1) – for all persons
start-presentation ?p - person ?s - stage (has-presented ?p); (decided-to-present ?p); (idle ?); (at ?p ?s);

(is-presenting ?p)
finish-presentation ?p - person (has-presented ?p); (decided-to-present ?p); (idle ?); (at ?p ?s);

(is-presenting ?p)
prepare-discussion ?p - person (discussing ?p); (has-discussed ?p); (has-presented ?p1) – for all persons;

(prepared ?p)
start-discussion ?p - person (prepared ?p); (discussing ?p)
finish-discussion ?p - person (discussing ?p); (has-discussed ?p1) – for all persons

Additionally, Table 3.2 shows the model dimensions and characteristics. It could be seen
that the model is considerably larger than the team model. Whereas the team model has only 31
states in its state space, the multi-agent has 5568 which would be an impossible task to build by
hand. This is due to the fact that the model has much more functionality than the team model
and is able to explain the behaviour also on the single-agent level and to provide additional
context information.

3.3.1.2 Model analysis

In order to identify different modelling practices and their influence on the model, here we
analyse the two models. First the way in which the actions are modelled is discussed; later
it is explained what kind of context information the model can provide; and finally the model
parameters, presented in the previous section are analysed.

2Valid here indicates that it is causally possible, however that does not mean all of these plans correspond to
the actual actions execution or that they make sense from a human point of view.
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Modelling the user actions: In the team model just the team actions are defined at the
model level, the effects of which capture the joint effects of the different individual actions
(which are invisible at the modelling level). In other words, the action’s effects force the agents
to exhibit specific behaviour regardless of their individual desires. Furthermore, this approach
to modelling team behaviour does not allow unsynchronised actions between the agents. The
individual actions executed in parallel have the same duration, as well as the same begin and end
times. To illustrate this approach, Fig. 3.2 gives an example with the action present. Here the
model forces all team members to simultaneously take a seat no matter where they are located
at the given time and then start the presentation. This type of modelling is not very suitable
for multi-agent behaviour modelling as it lacks the flexibility needed to express the individual
dynamics. On the other hand, it is relatively simple approach that is able to successfully identify
the team actions in cases where the reasoning over the single agents’ behaviour is not needed.

(:action present
:parameters (?presenter - person)
:duration (gaussian (presentation-duration ?presenter))
:precondition (and (active-moving)

(not (has-presented ?presenter)))
:effect (and (not (active-moving))

(active-presentation)
(forall (?p - person)

(when (not (= ?p ?presenter))
(at ?p seat)))

(at ?presenter ?stage))
)

Figure 3.2: Present action template for the team meeting model.

In difference with the team model, the multi-agent model represents the team behaviour as
an effect of the single user behaviour, or in other words, the single agents decide for themselves
how to act and by their actions define the team behaviour. For example, consider starting a
presentation in the multi-agent model. The action is shown in Fig. 3.3.

;;; begin action part ;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(:action start-presentation
:parameters (?presenter - person)
:agent ?presenter
:duration (gaussian (presentation-duration ?presenter))
:precondition (and (at ?presenter stage)

(forall (?p - person) (when (not (= ?p ?presenter))
(at ?p seat)))

:effect (active-presentation)
)
;;; end action part ;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;

(:action finish-presentation
:parameters (?presenter - person)
:agent ?presenter
:precondition (and (is-presenting ?presenter)

(forall (?p1 - person)(not (may-walk ?p1))))
:effect (and (has-presented ?p)

(not (is-presenting ?p))
(may-walk ?p)(idle ?p))

)

Figure 3.3: Present action template for the multi-agent meeting model.

Here, the condition of all non-presenting persons being seated is not established as joint
effect of a team action, it is rather a precondition the presenter has to obey before she can
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(reasonably) start her presentation. In a multi-agent model, agents have to rely on other agents
to cooperate – on the other hand, this gives a single agent more degrees of freedom regarding her
individual behaviour. This comes as a disadvantage for the model designer: in a team model,
social protocols (e.g., not getting up in the middle of a presentation) can be enforced simply
by not considering such misbehaviour in the joint actions. In a multi-agent model, where each
agent has the choice to freely select any applicable action, explicit locking mechanisms have to
be provided that allow any agent to disable actions of other agents which are not appropriate in
the current situations.

Furthermore, the action present is divided into a begin-end action pair (or a macro) consist-
ing of start-presentation and finish-presentation which allows the definition of actions that do
not depend on other team actions for another activity to take place. This results in every agent
having the ability to choose her own action that is independent of the team behaviour. For ex-
ample, in start-presentation the presenter can start her presentation only after all the other users
are seated and she is at the stage, which allows the separate participants to decide on their own
to sit for the presentation. The presenter alone cannot force the present team activity on the
single agents like in the team model. After the preconditions for start-presentation are satisfied
and the action is executed, the agents are locked in the present phase for the duration of the
activity. Afterwards, the only possible action is finish-presentation that unlocks the users and
allows them to choose new actions independent of the team behaviour. This kind of modelling
allows a serious degree of freedom for choosing the next possible action for every single user
and could reduce the goal oriented team behaviour to nonexistent. To solve this problem we
introduce a lock mechanism that reduces the set of actions executable from a certain state. For
example, an agent arriving at a place, sets the lock flag (idle ?p) to true which allows her to
choose another action to perform. On the other hand the lock flag (may-walk ?p) is set to false
which stops her from moving to another location, thus forcing her to wait until the other agents
have made their choices and have been forced to arrive at a state of the world where only the
action start-presentation can be performed. Using such mechanisms for every action in the
model, allows us to capture the independent behaviour of the single agents and in the same
time still to be able to detect the team behaviour.

Available context information: As one of the goals of the models is to support context
information, each of them can provide more than just the actions that are being executed. The
team model is relatively simple and consists of only four actions. Three of the four actions
do not have parameters (move, discuss, leave) which indicates that they can give us only in-
formation about the actions themselves. This is caused by the need to model the team as a
single entity which does not allow pinpointing additional information about the single users.
The fourth action present has one parameter of type person which indicates that the model is
able to provide information about who of the users is the one currently presenting.

Furthermore, it can be seen from the model predicates, that there is not much more context
information that can be obtained from them – the only additional knowledge there is the user
position, but as it is forced on the whole team, the predicate cannot say whether the users
locations actually differed when the action was executed. For example, during the discuss
action, the predicate (at ?p seat) holds for all users and it is not clear who sits where exactly as
the seats are represented by one abstract seat object.

In difference with the team model, the multi-agent model is able to support much more con-
text knowledge. There are 14 actions modelled and each of them has at least one parameter (see
Table 3.3). Some of these actions are combined into begin-end action pair which as explained
above allows the single users to be independent of the team behaviour and to make decisions to
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follow the team goal on their own. The first action pair is enter which has a parameter of type

person. This indicates that the model is able to provide knowledge about which agent exactly

entered the room at a given point. The same applies for the action exit, as well as for the action

pairs present and discuss. Additionally, as each of these actions is bound to a certain location,

the model is also able to provide the separate users locations while executing an action. The

Figure 3.4: The figure shows the users separate actions as well as the team actions during the meeting.

Here the darker the region, the more probable it is that at that time the user was doing the corresponding

actions. Furthermore, the solid black line indicates the estimated state, while the dashed line shows the

action that was actually executed.

same applies for the actions sit down and get up which are able not only to pinpoint to a con-

crete user but also to the specific seat she is sitting on. Similarly, the action pairs begin-end
move are able to give information about who is moving, from where she started, and what is her

destination. Based on these action templates the model is able to give information about what

exactly the user is doing and what is the corresponding team action to the separate user actions.

Fig 3.4 shows the probability for the user actions and the team actions during the meeting.

Figure 3.5: The figure indicates the idle states of the users throughout the meeting. The darker the

colour, the more probable it is that the user was idle at that time point.

Additionally, the model predicates can provide knowledge about whether the person is idle

at the moment or doing something toward achieving the team goal, which can be seen in Fig.

3.5. They can also tell us what is the user destination at a given point in time as can be seen in

Fig. 3.6.

Modelling such context information, the model is no longer just a means for recognising

activities, but also for providing any kind of prior knowledge the designer might deem impor-

tant to infer.

Model parameters: The models’ parameters were already presented in the previous section

in Table 3.2. It can be seen that while the team model has only 6 grounded operators, the multi-

agent has 88. Thus together with the increased number of predicates (72 against 19 for the

team model) and the increased branching factor (9 against 4), the model implies much larger

state-space (5568 against only 31 for the team model) and a higher degree of freedom for the

agents. This indicates that the multi-agent model is able to explain much more variations in the



3.3. MODELLING THE PROBLEMS WITH CCBM 63

Figure 3.6: The figure shows the users destination during the meeting. Here the darker the region, the

more probable it is that at that time the user is heading for the given location.

behaviour of users (3515 valid plans generated by the multi-agent model vs. 13 valid plans for

the team model) but also the danger of inferring the wrong action increases3. The high degree

of freedom and the increased state-space also influence the goal distance that shows the shortest

path from the initial to the goal state. In this case it has a length of 48 compared to the just

10 different states through which the team model has to pass. This is a result of the begin-end

action pairs modelled in the multi-agent model and the additional help actions such as prepare
to present and prepare to discuss which increase the number of actions that have to be executed

before the goal is achieved. Additionally, each action is now parameterised for three users and

not just for the team.

object

person location activity

object

person activity location

seat stage

Figure 3.7: The figure shows the type hierarchy for the meeting models. To the left is the type hierarchy

for the team model and to the right – for the multi-agent model.

The multi-agent model has almost the same object types as the team model with the dif-

ference that the location type is divided into two additional subtypes (see Fig. 3.7). In large

models, such specialisation leads to reducing the state-space as a given action will be grounded

only with the specific subtype of parameters resulting in less grounded operators. For example,

if we take the action sit down, in the current multiagent model it has as parameters variables

of types person and seat. When grounded, this will result in 9 operators. On the other hand,

if the seat type is replaced by the more general location, it will result in 21 grounded sit down
operators. This is explained by the fact that while in the team model there are only 3 different

locations, in the multi-agent there are 7, so the type hierarchy takes care of removing unwanted

grounded actions. The team model, on the other hand, did not make use of the objects type

hierarchy, simply because with the exception of the three user objects, there is only one object

representative from a given type.

3Here also stands the question whether 3 persons are able to execute a given plan that consists of just 10x3

activities in 3515 reasonable ways. This also leads to the question whether we need such high degree of freedom

when a more limited model will be also able to explain most of the reasonable (from a human point of view)

execution paths.
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3.3.1.3 Performance evaluation

To evaluate the model performance, the two models were compiled using the same type

of observation model in which the stages area was described as a rectangular region and the

seats as circles. Each runtime model was then used to perform state estimation, where in the

case with the team model, it was compiled for both exact inference (an HMM) and approximate

inference (a particle filter). That was due to the fact that the small state space allows compilation

for exact inference. In the case with the approximate inference, to diminish the influence of

a given random seed, the state estimation was performed 50 times for each of the meeting

datasets, and later a majority voting performed in order to obtain the most likely execution

path.

To evaluate the model performance, three different measurements were used – these are

accuracy, precision, and specificity. Accuracy is the degree to which the estimated behaviour

represents the real behaviour and is computed according to Formula J.1 on page 245. Preci-

sion represents the degree to which a positively inferred behaviour represents the underlying

behaviour it is being tested for. It is computed by Formula J.4 on page 245. Specificity repre-

sents the degree to which inferred negative instances reflect the actual negative instances and is

calculated according to Formula J.7 on page 246.

Furthermore, a Friedman test was performed to identify whether the results for the different

meetings from the same model significantly differ from each other. Description of Friedman

test can be found in Appendix H. A detailed description of the above measurement metrics can

be found in Chapter 5.3.

Figure 3.8: Overall model performance of the team model for the 20 meetings. The performance of

exact and approximate inference is compared.

Fig 3.8 shows the results from the team model compiled into an HMM compared to those

from a particle filter with 10 000 particles. It performed an exact inference to the 20 small

datasets describing the meeting scenario and inferred the team actions based on the sensor

data. It could be seen that the overall performance is about 89% which is comparable with the

results obtained by using a hand-crafted HMM presented in [80] that run on the same dataset

and managed to achieve a maximum accuracy of 92%. It can also be seen in Fig. 3.8 that

the model performed with similar accuracy, precision, and specificity in the form of particle

filter. This shows that even when using approximate inference the model is able to achieve high

performance level (at least for small state spaces). Furthermore, Fig 3.9 shows the performance

for the different meetings for all 50 runs in the case of the particle filter. It can be seen that for

the different runs there is no high variance in the performance. It further shows that the model

is relatively independent of the random seeds used in the filter. This result stands to show

that the performance of a generated probabilistic model is not significantly worse than that

of a hand-crafted and trained model. This indicates that provided a designer with knowledge

about the problem context, the training of a probabilistic model can be substituted with a priori
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Figure 3.9: The approximate model performance for the different meetings. For each meeting, a box

represents the performance for the 50 runs.

knowledge allowing the encoding of (sometimes) much more information than can be achieved

by hand.

To prove that statement, Fig. 3.10 shows the results from the multi-agent model which has

much more states compared to the team model (5568 states to 31 in the team model). It can

be seen that the performance of the multi-agent model on a team level is comparable to that of

the team model (with about 89% accuracy). This indicates that regardless of the much larger

number of states, the multi-agent model does not decrease the recognition rate. In the multi-

agent case however, the model is able to provide the additional information about the single

user activities (as already shown in Fig. 3.4). The model was also able to estimate the separate

users’ states with about 92% recognition rate. Additionally, it was able to provide information

about which user is doing exactly what, the concrete begin point and destination for the move
actions, the concrete user and her position while sitting or presenting, instead of just the more

abstract team state, associated with the combination of the actions of the three users.

One drawback to the multi-agent model that can be seen in Fig. 3.10 is that the different

runs for dataset 10 have much higher variance than in the team model. This indicates that the

high degree of freedom combined with this inference mechanism, also makes the model much

more dependent on the random seed used for the given run. It also implies that the model and

the corresponding inference engine did not capture the behaviour of dataset 10 in an optimal

manner. This artefact can be reduced either by introducing more model constraints or by better

action selection heuristics4.

Finally, the same multi-agent model was able also to recognise the activities from the long

meeting dataset that had slightly different agenda (the discussion was not performed) and that

was recorded while a real non-staged meeting took place. It can be seen in Fig. 3.11 that the

recognition rate is higher than that for the small meeting. However, that can be explained with

the fact that the long meeting lasted about 50 minutes compared to the 3 minutes per meeting

for the small meeting datasets. That resulted in long time slots without state change, thus the

recognition increased compared with the more often occurring state changes in the small model.

Furthermore, this also resulted in less performance variability for the different runs compared

to the small meetings (a variance of less than 1% for the long meeting compared to about 6%

for the small meetings).

To discover whether the model performance significantly differ for the different datasets,

Friedman test was applied [49]. Table H.2 and Table H.4 in Appendix H show the results

from the test. The results for this model are labelled intuitive. It can be seen that there was

significant difference in the accuracy and specificity for the different datasets. On the other

4It should be noted that in this case the system model introduces additional modelling mechanisms in order to

fix problems with the probabilistic inference engine, and not because of shortcomings in the system model.
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Performance User 1

Performance User 2

Performance User 3

Performance Team

Figure 3.10: Model performance for the multi-agent model. Here for each of the users as well as for

the team the accuracy, precision, and specificity are plotted. For each meeting the results for 50 runs are

plotted as boxes.

hand, the precision was not influenced and any differences there could be regarded as caused

by chance. Taking as an input the results of all performance evaluation metrics (accuracy,

precision, and specificity), the Friedman test showed that there is a significant difference in the

model performance across the different datasets. This indicates that the model was influenced

by variations in the data, which implies that its ability to represent the behaviour variability
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Figure 3.11: The figure shows the model performance for the long meeting. Here the x-axis represents

the three users (U1, U2, U3) and the team (T). The performance for 50 runs is plotted as a box.

influences the model performance. This can be interpreted as caused by model overfitting

where the relatively high model performance makes the model sensitive to variations in the

data. That shows the effect of the bias-variance dilemma, where the reduction of the model

bias results in increase of the model variance.

3.3.2 Modelling the kitchen task assessment problem
3.3.2.1 Model

The cooking task problem is a single agent problem that consists of one person interacting

with several different objects that can be positioned at multiple locations or which could be

used for completing a variety of actions. This makes the problem relatively complex because

the high number of environment elements and the user nondeterminism produce a high degree

of freedom in the possible set of executable actions. This also results in a huge state space,

making it difficult for the inference engine to infer the correct action being executed. It turns

the solution of the problem into a challenge, as the described behaviour relates a real world

situation where a person can interact with any number of environment elements and choose

from multiple completely different actions.

Table 3.4 shows the actions used in the model to describe the user behaviour. It implements

the elements from Table 2.3 from Chapter 2. It could be seen that there are multiple variations

of one action that create specialised action templates. The actions are 27 alltogether where

there are 4 variations of take, three of put, three of wash, three of fill, and two of open and

close.

Table 3.5 shows the parameters the cooking task model has. It can be seen that the model

has 111 grounded operators and 129 grounded predicates which results in extremely huge state

space (more than 600 million states5), thus the assumption of the state space being bigger than

the given values. It also has 23 object types; one person, 4 locations, 10 objects, 6 places, and

16 activities to be estimated. There are also more than 687 million valid plans that lead from

the initial to the goal state, and a complex type hierarchy of 4 levels is used. The minimal goal

distance could not be calculated as the reachability analysis was never completed but it could be

approximated based on the actions that had to be executed in the experiments. The maximum

number of actions from which can be chosen in a given state is 10 in the case of Objects Places

Locations (OPL) as observations. In the case of Objects Places (OL) the branching factor was

12; in the case of Objects (O) – 24; in the case of Places Locations (PL) – 32; and in the case

5The state space was analysed until it reached 675 million states due to the limited computing power available

for the calculations (120GB of RAM).
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Table 3.4: Actions in the cooking task model. For each action also the predicates used in the precondi-
tions and effects are given, as well as the parameter used in the action.

Action Parameters Predicates

move ?from ?to - location (isat ?from); (isat ?to); (adjacent ?from ?to); (reachable ?p1)
– for all places adjacent to ?to

take-one-object ?m - movable ?from - fixed-place (taken ?m); (taken ?from); (can-be-at ?m ?from); (at ?m ?from);
(reachable ?from)

take-food ?m - meal (taken ?m); (isin ?m cutting-board); (reachable cutting-board)
take-from-container ?m - movable ?from - special-container (taken ?m); (taken ?from); (can-be-at ?m ?from); (at ?m ?from);

(reachable ?from)
take-two-objects ?m - twomovable ?from - fixed-place (taken (object1 ?m)); (taken (object2 ?m)); (can-be-at (object1

?m) ?from); (can-be-at (object2 ?m) ?from); (reachable ?from)
put-one-object ?m - movable ?to - fixed-place (taken ?m); (taken ?to); (can-be-at ?m ?to); (at ?m ?to);

(reachable ?to)
put-into-container ?m - movable ?to - special-container (taken ?m); (taken ?to); (can-be-at ?m ?to); (at ?m ?to);

(reachable ?to)
put-two-objects ?m - twomovable ?to - fixed-place (taken (object1 ?m)); (taken (object2 ?m)); (can-be-at (object1

?m) ?to); (can-be-at (object2 ?m) to); (reachable ?to)
wash-hands ?h - hands (isat sink); (washed ?h)
wash-food ?m - meal (isat sink); (is-cut ?m); (washed ?m); (taken ?m)
wash-object ?m - movable (isat sink); (taken ?m); (taken sponge); (washed ?m)
cut ?m - meal (is-cut ?m); (taken knife); (at cutting-board counter);

(isat counter); (washed ?m); (isin ?m cutting-board)
fill-meal ?m - meal ?c - other-container (isin ?m ?c); (taken ?m); (isat counter); (is-cut ?m)
fill-from-liquid-container ?d - drinkable ?c1 ?c2 - liquid-container (isin ?d ?c1) (isin ?d ?c2); (opened ?c1); (opened ?c2);

(isat counter); (can-be-filled-from-to ?d ?c1 ?c2)
fill-from-container ?m - meal ?c1 ?c2 - other-container (isin ?m ?c1) (isin ?m ?c2); (isat counter);

(can-be-filled-from-to ?d ?c1 ?c2)
turn-on-stove – (turned-on); (was-turned-on); (isat counter)
turn-off-stove – (was-turned-on); (isat counter)
cook ?e - eatable (empty pot); (isin ?e pot); (turned-on); (at pot stove);

(taken wooden-spoon); (isat counter)
open-container ?o - openable (opened ?o); (taken ?o); (isat counter)
close-container ?o - openable (opened ?o); (taken ?o); (isat counter)
open-cupboard ?c - cupboards (opened ?c); (isat counter); (at plate ?c); (at glass ?c)
close-cupboard ?c - cupboards (opened ?c); (isat counter); (at plate ?c); (at glass ?c)
sit-down – (seated); (isat table); (hungry); (thirsty)
get-up – (seated); (isat table); (hungry); (thirsty)
eat ?e - eatable (seated); (cooked ?e); (taken spoon); (isin ?e plate); (has-eaten);

(hungry)
drink ?d - drinkable (seated); (taken glass); (isin ?d glass); (has-drunk); (thirsty)
wait – (isActive waiting)

of Locations (L) – 586. Due to the high degree of freedom, the model contains additional lock
predicates that play the role of constraints limiting the possible actions that can be executed
from a given state. This is the reason why the action templates contain complex descriptions
with various mechanisms restricting the states from which an action could be executed.

3.3.2.2 Model analysis

Modelling the user actions: It was already mentioned that the model consists of many
specialised actions. This is due to the attempt to reduce the state space, as more general ac-
tion templates increase the number of parameters with which they can be parameterised, thus
the number of grounded operators. More specialised actions, on the other hand, allow the pa-

6As the state space was never completely explored, the maximum branching factor was calculated given the
observations. In other words, how many actions at most were available during inference given the specific type of
observations.
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Table 3.5: Cooking task model parameters.

Parameter Value Description

# operators 111 grounded actions after the model compilation
# predicates 129 grounded predicates after the model compilation
# object types 23 see Fig. 3.15
# persons 1 objects of type person
# locations 4 objects of type location
# objects 10 objects of type object (divided into several subtypes)
# hand locations 6 objects of type place
# activities 16 activities to be estimated; correspond to the activity object types
# states > 657 000 000 state-space of the model
# valid plans > 687 000 000 valid plans leading from the initial to the goal state
# hierarchy level 4 levels of the type hierarchy
# goal distance approximately 80 minimum distance from the initial to the goal state
# max. branching factor 10 (OPL), 12 (OL), 24 (O), 32 (PL), 58 (L) maximum number of possible actions at a given time

rameterisation only of specific types of parameters. Thus they reduce the number of grounded
operators but increase the number of grounded predicates as new predicates are introduced to
describe the more special actions.

Additionally, the model introduces several predicates that are used as lock mechanisms in
order to reduce the number of possible plans that can be executed. These predicates indicate
whether or not a person can go to a given location, whether an object can be manipulated or
located at a given place.

(:action move
:parameters (?from ?to - location)
:duration (moveDuration)
:precondition (and

(isat ?from)
(allowed-to-move ?from ?to)
(not (= ?from ?to))
(not (adjacent ?from ?to))

(imply (= ?to table)(and (not (empty plate))(not (empty glass))))
)

:effect (and
(isat ?to)
(not (isat ?from))
(forall (?p - fixed-place) (not (hand-at ?p)))
(forall (?p - place)(and

(when (adjacent ?from ?p)(not (reachable ?p)))
(when (adjacent ?to ?p)(reachable ?p))
(when (and (adjacent ?to ?p)(adjacent ?from ?p))(reachable ?p))
)

)
(forall (?a - activity)

(and (when (= ?a moving)(isActive moving))
(when (not (= ?a moving))(not (isActive ?a)))))

)
)

Figure 3.12: Move action template for the cooking task.

To further control the number of executable actions from a given state, even more general
actions contain relatively complex description. For example, Fig. 3.12 shows the description
of the action move where it can be seen that the predicate (allowed-to-move) takes care that the
action is not executable during a certain stage of the meal preparation (e.g. the action cut sets
the predicate to false for the sink as destination, making the action move impossible until the
meal is prepared). Additionally, the predicate (adjacent ?from ?to) takes care that the person is
not attempting to move between places that are adjacent to one another as they are reachable
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also without moving. On the other hand, the effect of the action takes care to set the predicate
reachable to true for all places that are adjacent to the place where the person is located; while
the predicate isActive sets to true the flag for the action being currently executed. With such
complex descriptions the model copes with the high degree of freedom and limits the number
of possible actions, making it possible at all to infer the action being executed.

Available context information: The cooking task model is a complex representation of
the real world and can provide information about a number of elements. Table 3.4 shows
the available action templates and their parameters. From it can be seen, that the model is
able to provide knowledge about the location of the user, the objects being manipulated, their
locations, the start point and destination of the user and the objects she is carrying with her.
This can be seen in Fig. 3.13 that shows the probability distributions for different questions
that the model can answer, such as Where is the drink?, What is the meal?, Which objects
have been washed? etc. The questions regarding the user location and manipulated objects
can be withdrawn directly from the sensor data when such is available, but in the case when
one of these types of observations is not available, the model is still able to reason about the
questions. Additionally, Fig. 3.14 shows the probability distribution for the actions that are
being estimated.

The only action that does not provide any useful information is the action wait which is
implemented to cope with situations where the user is just standing without moving hands or
doing something. There are four more actions without any implicit parameters – sit down,
get up, turn on, and turn off 7. However, they are still able to provide information about the
user location, and if objects were previously taken and are being held, the execution of these
actions will not change or stop the flow of information about these objects. Additionally, the
actions take and put are able to give information about the location of the user, the location
from where an object was taken or where it will be left. The actions wash, cut, open, and close
provide information about the object being manipulated and the place where this manipulation
is taking place. They are also able to provide information about the user location. Finally, the
action fill contains prior knowledge about the food or liquid being filled, the container from
which it was willed, and the destination container. Furthermore, the actions’ predicates allows
to obtain such information as which places are reachable, where is the drink or the carrot that
has been cooked, which objects have been washed, and when is the person hungry or not etc.
(see Fig. 3.13). By using this encoded information, the model is able to provide much more
than just the action being executed. Depending on the application using the activity recogni-
tion component, it gives user specific information that can later be used to adequately assist her.

Model parameters: The model complexity is reflected in its parameters. It can be seen
that there are more than a hundred operators and predicates which is almost double the values
for the multi-agent model in the meeting scenario. However, this does not double the state
space but rather makes it more than a hundred thousand times bigger. Although the cooking
task is a single user problem, it has more actions to be estimated (16 against 10 in the meeting)
and more objects that are being manipulated (10 against 0 for the meeting) which results in
a higher degree of freedom (branching factor of 10 when observing objects, locations and
places, and increasing with removing any of these sensors8), and much more valid plans that

7They however have some explicit parameters that are encoded in the actions’ descriptions and that provide
additional context information (e.g. the place stove is explicitly encoded in the turn on and turn off actions).

8E.g. by removing the objects observations the branching factor increases to 32. When also the places are
removed and the only observations are about the user locations, the branching factor increases to 58.
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Figure 3.13: Context information that can be obtained from the model. In it, the darker the colour, the

more probable the state. The left uppermost figure shows where the drink is located throughout the

cooking task. The right uppermost figure shows what is the meal location throughout the experiemnt.

The left figure in the middle row shows the places where the user is doing something. The right figure

in the middle row shows which places are reachable with hands from the current user location. The left

bottommost figure shows the objects that are being manipulated at a given time point. And the right

bottommost figure shows which objects were actually washed and when.

lead form the initial to the goal state (more than 600 million). This shows that modelling a

real world problem with causal models even for a single person, even with a limited number

of locations and objects, leads to enormous state space. This in turn leads to the need of

introducing new mechanisms for coping with the state space or for selecting the correct action.

One such mechanism is the landmarks introduced by Richter [116, 115]. In it one first looks

at the predicates that have to be true in the goal state and then backtracks to the initial state.

Those predicates that are involved in reaching the initial state are called landmarks. Then when

the model is running, it looks for these landmarks in order to decide which actions to select.

Another mechanism is a complex types system that is used to reduce the number of objects

that can parameterise an action template, thus further reducing the possible model states. The

structure of the model type hierarchy can be seen in Fig. 3.15 where there are 14 main types of

parameters and several subtypes that inherit multiple main types. That way a given object can

be used as a parameter for one action, but not for another because the two actions use different

specialised subtypes (e.g. the actions fill-from-container and fill-from-liquid-container, where

the objects that can be parameterised belong to the same main type movable but to different

subtypes). Similarly, objects could be assigned multiple classes so that the given object can

be used as a parameter in actions expecting different object types (e.g. the object carrot is
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Figure 3.14: The probability distribution for the user actions. In it, the darker the colour, the more

probable the action. Furthermore, the dashed line indicates the ground truth, whereas the solid line

indicates the most probable action.

object

eatable openablemovablewashable locationfillable counter drinkable filling activityplacewashing cupboards special-container

meal tools container cleanerwashable-objecthands

other-container

fixed-place

liquid-container

Figure 3.15: The type hierarchy for the cooking task model.

both movable and eatable allowing it to be used in cook and take although the actions require

different parameter types).

3.3.2.3 Performance evaluation

To test the model, different combinations of the observations were tested. The first type

of observation was the combination of objects, places and locations9. This observation is also

equivalent to the combination of objects and places, as the places contain the information en-

coded in the locations observations plus some additional information. The second combination

was that of objects and locations, and the third of places and locations. The latter is equivalent

to observing just the places for the reasons described above. Then the model was tested with

only the objects as observations, and finally, with only the locations as observations. The mea-

surements used for evaluating the model were the same as those used in the meeting problem

– accuracy, precision, and specificity. Fig. 3.16 shows the results from the performed activity

recognition. It can be seen that the accuracy for the different datasets in the case of objects,

places and locations being observed varies between 75% and 84%. This stands to show that

in the presence of observations about the objects involved in different activities and the user

fine-grained location, the model is able to reason about the user actions with a high accuracy.

This is also reflected in the corresponding precision, recall and specificity values. This indi-

cates that the model is able to correctly recognise the underlying behaviour, and to correctly

identify most of the positive and negative action instances.

In the case of the objects and locations being observed, some observation information is

lost compared to the first case, as the locations represent only the places which the user can

reach by walking. In this situation, it can be seen that there is a small decrease in the model

performance with an average accuracy and precision of about 70%. It could also be seen that

9As already explained, the difference between places and locations is that the locations are reachable only by

walking while the places just by reaching with the hand.
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Performance with objects, places, and locations

Performance with objects and locations as observations

Performance with objects as observations

Performance with places and locations as observations

Performance with locations as observations

Figure 3.16: Model performance for the cooking task model. Here for each of the different observation

combinations the accuracy, precision, and specificity are plotted. The x-axis represents the dataset and

the y-axis the performance. For each observation type the results for 50 runs are plotted as boxes.

the lack of the additional information encoded in the places observations visibly reduced the

performance of the fourth user. This could be explained by the fact that the order in which the

fourth user executed the actions was atypical compared to the remaining 6 users for which the

model was better suited. Thus in the case where the places were also observed, the model was

able to discard the unlikely hypotheses, whereas in the latter case it found an explanation fitting

better to the model but not to the actual user behaviour.
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When also the locations are removed and only the objects are used as observations, it can
be seen that the model performance suddenly drops to accuracy of between 30% and 40%.
This is due to the fact that most of the actions can be applied on almost all of the available
objects, so without an additional mechanism for improving the probability of the correct action,
it is difficult for the model (combined with the particle filter inference mechanism) to find the
actual execution sequence. Additionally, as the model is extremely huge, one cannot rely on the
exact goal distance as a heuristic for finding the correct hypothesis. This is also evident in the
obtained precision, which is similar to the results for accuracy. This indicates that the model is
generally unable to represent the underlying behaviour. On the other hand the specificity still
stays relatively high which indicates that the model combined with this kind of observations is
still able to represent negative results.

The next case is where places and locations are used as observations. In this situation the
objects are not observed and the inference engine has to reason based only on the user’s current
position. This significantly reduces the model performance as there are 16 possible actions and
7 of them can be executed at any place provided the preconditions for the action were met. This
reflects in the model accuracy which now drops between 43% and 60% with most of the datasets
performing with accuracy of about 50%. This indicates that the lack of objects being observed
reduces the model performance with about 25%10. Still the results show that even with limited
observations, the model is able to reason about the user state and to find explanation about
what is being observed. One has also to consider the fact that this is by far the most complex
example of user behaviour modelled with CCBM which, with its high degree of variance and
number of objects involved, nears a real world example. Furthermore, in this case, similarly
to the long meeting in the previous section, a dataset contains more than a thousand samples
which compared to approaches like [114] represents a more realistic observation scenario.

The last combination is when only locations are observed. Not surprisingly, the model
performance drops further as the information contained in the observations is even more scarce
than in the previous case. This allows the model to follow hypotheses that otherwise will be
pruned out because of being impossible. This in turn results in the model being able to find a
causal explanation even to hypotheses that are not very probable from a human point of view.
This is reflected in the low recognition rate, represented by the model accuracy – it is between
30% and 40% percent. Also the variance for the different runs is higher which indicates that in
this combination the model is not robust to unwanted influences of the inference engine. The
model specificity remains high but some fluctuations that were not present in the previous cases
are now noticeable between the different runs.

Friedman test was performed to compare the variance of the model performance for the
different datasets. The results can be seen in Table H.3 calculated separately for accuracy,
precision, and specificity and in Table H.4 in Appendix H where the different performance
metrics were all taken as an input for the test. The results for this model are labelled intuitive.
It can be seen that the results are above the 0.05 p-value limit which indicates that the null
hypothesis is accepted. In other words, the model performance does not vary significantly
for the different datasets. This combined with the not overly high model performance points
out toward the bias-variance trade-off where the ability to recognise huge set of execution
sequences, results in decreasing the model performance. It can be further interpreted as the
model being under-fitted thus being able to fit many hypotheses but with the disadvantage of
increased bias.

10Compared to the first case of OPL.
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3.3.3 Modelling the office scenario problem
The goal of the model is to describe the unsynchronised user behaviour in an office scenario,

where one to three users act in the environment. Additionally, it aims at showing that the
modelling formalism is able to reason about the users’ identities and actions based only on
observations about the occupancy of certain locations.

3.3.3.1 Model

The office scenario is both single- and multi-agent problem depending on the number of
users present in the environment. The problem could be considered complex in terms of number
of agents, but in terms of actions it is a relatively simple problem that consists only of five
actions that take place. It is further simplified by the fact that agents act independently of each
other and no additional action synchronisation is needed. Table 3.6 shows the actions modelled
for this problem domain. They are based on the elements identified in Table 2.4 from Chapter
2. It can be seen that there are only five actions - take (divided into take refillable object, and

Table 3.6: Actions in the office scenario model. For each action, the predicates used in the preconditions
and effects are given, as well as the parameters.

Action Parameters Predicates

start-walking ?a - agent ?from ?to - position (at ?a ?from); (is-walking ?a ?to)
end-walking ?a - agent?to - position (at ?a ?to); (is-walking ?a ?to)
start-printing ?a - agent (at ?a printer); (is-there paper); (is-printing ?a)
end-printing ?a - agent (at ?a printer); (is-there paper); (is-printing ?a)
take ?a - agent ?r - refillable (at ?a paper-stack); (at ?a water-tab); (at ?a coffee-jar); (agent-has ?r); (holds ?r ?a)
refill ?a - agent ?r - refillable (at ?a paper-stack); (at ?a water-tab); (at ?a coffee-jar); (is-there ?r); (agent-has ?r);

(holds ?r ?a)
start-making-coffee ?a - agent (at ?a coffee-machine); (is-there coffee); (is-there water); (is-cooking ?a)
end-making-coffee ?a - agent (at ?a coffee-machine); (is-cooking ?a); (coffee-drink)
take-coffee-drink ?a - agent (at ?a coffee-machine); (coffee-drink); (agent-has-coffee-drink ?a)

take coffee drink), walk (divided into begin-end pair), print (also divided into begin-end pair),
and make-coffee (divided into begin-end pair).

Additionally, Table 3.7 shows the model parameters for the different number of users. It
can be seen that there are 50 operators and 28 predicates in the single user case, and that they
increase times the number of users. The goal distance also approximately doubles for each
additional user as well as the branching factor. The state space and the number of valid plans
also increase but they directly explode with increasing the number of agents. On the other hand
the number of locations, objects and activities remain the same as the environment in which the
users act does not have any new elements except for the varying number of users in it.

3.3.3.2 Model analysis

Modelling the user actions: In comparison with the cooking task, the office problem has
much simpler definition of the actions. Fig. 3.17 shows the action take-coffee-drink where it can
be seen that the action is influenced only by the available resources (whether there is a coffee-
drink ready) and not by the rest of the agents. This is due to the fact that the problem contains
only physical correlation and the only way actions of one user are influenced by actions of the
other user is through the physical changes in the environment. Although the modelled actions
are specialised, there are no constraints for synchronising based on a common goal like in the
meeting problem or for limiting the state space with lock predicates like in the cooking task.
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Table 3.7: Office model parameters.

Parameter Value (1 user) Value (2 users) Value (3 users) Description

# operators 50 100 150 grounded actions after the model compilation
# predicates 28 52 76 grounded predicates after the model compilation
# object types 3 3 3 see Fig. 3.20
# persons 1 2 3 objects of type agent
# locations 7 7 7 objects of type position
# objects 3 3 3 objects of type refillable
# activities 5 5 5 activities to be estimated
# states 21 504 9 633 792 > 880 000 000 state-space of the model
# valid plans 43329 48 373 761 >48 373 761 valid plans leading from the initial to the goal state
# hierarchy level 2 2 2 levels of the type hierarchy
# goal distance 14 33 > 33 minimum distance from the initial to the goal state
# max. branching factor 6 16 > 16 maximum number of possible actions at a given time

This makes the modelling of the actions straight forward and without further regards about the
user influences on each other. On the other hand it increases the state space exponentially, as
there are no mechanisms for reducing the predicates being grounded.

(:action take-coffee-drink
:parameters (?a - agent)
:saliency 1.2
:agent ?a
:duration (normal take-coffee) ; time to take a cup of coffee
:precondition (and (at ?a coffee-machine)

(coffee-drink)
(not (agent-has-coffee-drink ?a)))

:effect (and (not (coffee-drink))
(agent-has-coffee-drink ?a)

)
:callbacks (setAction (action-id take))

)

Figure 3.17: Take coffee action template for the office scenario

Available context information: The model consists of 9 actions and 6 of them are com-
bined into begin-end action pairs. Although the model is not as rich as the one for the cooking
task, still it can provide additional information about the users’ locations, and the objects they
are manipulating. It is also able to assign an appropriate action to the user regardless of the
fact that only the locations are being observed. The actions print, make coffee, and take coffee
can give information about the user executing the action, her location and, of course, the action
that is happening. The action walk is also able to provide information about the start point of
the user and her destination, while the actions take and refill give information about the ob-
ject being manipulated and the agent manipulating it. Furthermore, the model predicates can
answer questions such as Does user 3 have a coffee drink? (obtained through the predicates
(agent-has-coffee-drink)), Are there supplies for printing or preparing coffee? (obtained from
the predicate (is-there)), Does the user have her print? (obtained from the predicate (agent-
has)), etc. This can be seen in Fig. 3.18 that shows the probability distributions for the answers
of some of these questions, as well as in Fig. 3.19 that shows the probability of available sup-
plies.

Model parameters: The number of grounded operators and predicates depends on the
model parameters and it can be seen in Table 3.7 that the only model parameter changing is
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Figure 3.18: Context information that can be obtained from the model. In the figures, the darker the

colour, the more probable is the state / action. The uppermost figures represent the activities that are

assigned to a user at a given time. The figures in the middle row show the probability of a user location

at a given time point. The bottommost figure shows what is the probability of a person having coffee or

a print.

the number of users. Hence, it is not a surprise that the number of operators and predicates

doubles with increasing the number of users. However, that is not the case with the model’s

state-space. The single-user case generates small state-space (compared to the kitchen task

assessment problem). Yet, this changes when the problem becomes a multi-agent one where

two or three agents are acting in parallel and where there are no synchronisation constraints to

reduce the number of possible states. This can be seen in Table 3.7 where while the single-user

model has only 21 504 states, for the two- and three-user cases it suddenly explodes (9 633

792 states for the two-users case and more than 880 million states for the three-users case).

This is also reflected in the increasing number of valid plans, as well as the increasing goal

distance, and increasing branching factor11. This indicates that there is need of adequate lock

mechanisms for controlling the exponentially increasing state space with increasing the number

of users (or at least, in the case where the goal distance is used as an action selection heuristic.)

11Unfortunately the computational power needed for calculating the 3-users case was not available and the

analyser crashed after using the whole 120GB of RAM available without being able to fully explore the state

space and to calculate the goal distance and the number of valid plans.
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Figure 3.19: Probability of available supplies

throughout the experiment.

object

position refillable agent

Figure 3.20: The type hierarchy for the

office scenario model

Furthermore, it can be seen from Fig. 3.20 that the model has a simple type system with

only three object types (position, refillable, and agent) which also does not contribute for the

state space reduction. Of course, in difference with the cooking task, in this problem there are

not many objects to be manipulated, so there is also no need of a complex hierarchy.

3.3.3.3 Performance evaluation

To evaluate the model, it was compiled into runtime model that used observations provided

by the SensFloor to recognise the activities being executed and the agents associated with

them. The observations had a binary value with 1 for person sighting at a given location and 0

for no sighting (for more information about the test datasets, see Chapter 2). Fig. 3.21 shows

Figure 3.21: Model performance for the office scenario model. As there is a varying number of users,

the performance of each user is plotted separately. The results for each user from 50 runs are plot-

ted as boxes. The x-axis shows each user and the corresponding dataset, while the y-axis shows the

performance.

the results from the evaluation. It can be seen that the first user for the first dataset performed

surprisingly poorly and had an average accuracy of about 45% which is explained with incorrect

action duration values which caused the model to be extremely dependent on the particle filter

random seed. This resulted in the assignment of a higher probability to the action walking,

when it should have been print.

On the other hand, the remaining datasets showed better recognition rate (with average

above 60%), which is a surprise especially for the multi-agent cases in experiments 5 and 6.

In these two cases the inference engine had to decide not only what action is executed but also

who is executing it. It can also be seen that these two experiments showed a smaller variance

as compared to the single user cases. However, this is explained by the fact that the multi-agent

cases lasted longer and in more than 50% of the time the users were walking which the model

showed to be good at recognising.

Additionally, the model’s high degree of freedom made it dependent on the inference mech-

anism, thus causing deviation of about almost 90% in the precision values of the different
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runs. The same phenomenon is observed also for the specificity of the model. Furthermore, in
dataset 5, the behaviour of the second user, although having relatively high accuracy rate, has
a specificity rate of under 20% which indicates that above 80% of the negative instances were
incorrectly assigned to an action class.

The results thus indicate that although the model is able to provide additional information
about the given situation, it is still far from good. The high degree of freedom combined with
incorrectly assigned actions’ durations leads to the model dependence on the filter random seed.
It also makes actions probable, that in reality would not be executed by the user, and that could
be easily omitted by the introduction of some lock predicates.

Friedman test was applied in order to test the results variance for the different datasets. As
the users per dataset vary and act unsynchronised, the results from each user were taken as
different dataset. The results can be seen in Table H.4 in Appendix H. They show that the
p-value is above the 0.05 threshold, which indicates that there is no significant difference in
the model performance for the different users. This can be explained by the fact that the model
is relatively general and there are no many constraints that reduce the behaviour variability.
This results in increasing the model’s ability to recognise variations in the behaviour but on
the other hand, decreasing it ability to recognise the correct action which is reflected in the
model performance. This once again points at the bias-variance trade-off where the decreasing
variance results in increasing bias.

3.4 Discussion on modelling with Computational Causal Be-
haviour Models

In this chapter the models for the three problems were presented and discussed in terms of
model parameters and model performance. However, the process of creating running and well
performing models was one of trials and errors. Here we discuss some important issues about
the experiments planning and executing, as well as such concerning the model implementation
and evaluation. Furthermore, the need of structured modelling process is discussed as well as
such of a collection of implementation templates.

3.4.1 Discussion on related work

Before looking at the problems during modelling, we shortly discuss how the implemented
models compare to other state of the art work in the field of model-based activity recognition.
In his dissertation Giersich introduces a model-based approach to activity recognition where
he uses CTT model in order to model the behaviour of a 3-person meeting [57]. The model
then is used to generate a DBN that deals with the unreliability or noise in the sensor data. The
approach was tested on the 20 short meetings introduced in Chapter 2. The complexity of the
model is comparable to that of the team model introduced in this chapter. The CTT consists of
four task nodes that generate a DBN with 9 states. The actions that are recognised are presentA,
presentB, presentC, wander, and exit. The accuracy that Giersich reports is between 67% and
91%. Giersich’s approach is comparable to the CCBM approach, in so far that is uses symbolic
description of the user behaviour to generate probabilistic model with which to infer the user
actions. However, one disadvantage of task trees as a choice of formalism is that they are not
able to generate models with high behaviour variability, because each instantiation of an action
has to be modelled manually.
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Another work that deals with the meeting problems is that of Krüger et al. where the authors
replace the CTT model with a PDDL representation of the user behaviour. Furthermore, they
also discuss the model performance in recognising not only the team behaviour but also the
single user behaviour. The resulting model has 122 operators and 48 predicates. It then uses
particle filter to estimate the users’ activities. The authors report an accuracy between 67% and
78% depending on the observation model used. The model that was used is comparable to the
team model presented in this chapter. It however has some problems with the actions’ durations
as from the figures presented in the work it can be seen that the model quite often attempted to
choose another action while the current action was actually still running.

Ramirez et al. also use PDDL for modelling the underlying user behaviour which is then
mapped onto Partially Observable Markov Decision Process (POMDP) [114]. They then use a
simulated data to predict the activities and goals in three different scenarios: an office problem,
that is similar to the one presented in this chapter but consists of two separate rooms, a drawers
problem where the agent is looking for items in a drawer, and a kitchen problem where the
agent can cook several different dishes. The office problem produced a model with 2304 states,
and 23 operators. There were also 3 different goals that the agent could follow. The number
of observations that were used is 15. In the drawers problem, the model has 3072 states, 16
grounded actions, 16 observations, and 3 goals that the user can follow. In the kitchen problem
there are much more states: 69 120, 39 grounded actions, 32 observations, and 5 possible goals.
The model performance they report is between 84% and 100% depending on the scenario and
the number of observations that were removed from the observation sequence. In differences
to the models presented in this chapter, the ones that Ramirez et al. presented also discussed
the recognition of different goals. Still it was already shown in [81] that CCBM models are
also able to recognise different goals. Furthermore, the approach proposed by Ramirez et al.
uses extremely short observations sequences and does not incorporate probabilistic duration or
transitions. They however, point out that the latter could be solved by employing an HMM.

A different approach to model-based activity recognition is that proposed by Hiatt et al.
where an ACT-R model is used to incorporate the user behaviour [66]. In it production rules
are used to reason about the context encoded in the form of model chunks. Then in order to be
able to follow different hypotheses, the model is assigned different weights to retrieving facts,
different knowledge about the world (initial state), different acceptable subgoals, different pa-
rameterisation of the activation equations, different parameterisation of the utility functions.
Then the probabilities are calculated based on the standard ACT-R heuristics for activating a
chunk or for firing a production. The implemented model contained 134 chunks that contained
the facts about the world, and 49 production rules. They also had an average of 4.25 hypo-
thetical outcomes or goals to follow. One disadvantage to this approach is that it relies on
variable-free predicates representation which makes it more difficult to encode the behaviour
variability compared to CCBM.

The model-based activity recognition approaches that combine symbolic representation
with probabilistic reasoning are a relatively new filed of research that shows promising re-
sults. In that respect CCBM shows competitive results as it is able to easily generate behaviour
variability based only on a few action templates, in difference to ACT-R and CTT which need
the designer to more or less manually incorporate this variability. Another advantage is its
ability to cope with probabilistic durations. The approach proposed by Giersich and that by
Krüger et al. also support such durations while ACT-R and the approach proposed by Ramirez
et al. do not. This allows CCBM to cope with variations in the actions’ durations and to be able
to incorporate the information about the duration in a single action template instead of having
to assign it to every action instantiation. Furthermore, CCBM is so far the approach that has
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managed to cope with the longest observation sequence (62 000 observations in the meeting
model) compared to the maximum of about 3000 observations in the approaches proposed by
Giersich and by Krüger et al. Furthermore, CCBM produced the model with the largest state-
space reported so far that was still able to produce reasonable activity recognition results (with
more than 600 million states in the kitchen model, and more than 900 million states in the office
scenario). Of course, the process of creating the corresponding models was a challenge in itself
that consisted of many trials and errors before achieving the reported results. For that reason in
the sections below we discuss the problems during modelling, the solving of which is the topic
of the remaining chapters in this work.

3.4.2 Challenges during modelling
The process of developing a model is a complex one where the experimental settings, the

experiment planning, the correctness of the ground truth, the model implementation, and the
inference mechanism all influence the final product. Even more, the experience showed that
problems in one of these components could cause unexpected and unwanted model behaviour
or evaluation results. For that reason, below some of the most important issues are discussed.

3.4.2.1 Problems with the experiment planning and settings

Planning an experiment might seem a straight forward task – decide on the scenario, decide
on the participants and their agenda, decide on the sensors and provide the appropriate infras-
tructure. However, small details such as the step by step action execution or the constraints a
participant should have during the experiment should also be carefully planned. For example,
during the planning of the long meeting experiment, a discussion after each presentation was
planned. However, it was not explicitly explained to the participants that the discussion can take
place only after a presentation and not during the presentation. Thus when the meeting started
where each of them presented a real topic, some of the participants asked their questions dur-
ing the presentation making it impossible to distinguish between presentation and discussion,
given the sensor infrastructure. Another example is the cooking task, where the participants
knew what the task in hand is and what the different phases are, but each of them executed the
actions in a given phase in completely different order. That made it impossible to introduce
lock mechanisms that can considerably decrease the state-space.

One could argue that such variability is expected in real world scenarios, however when the
goal of the experiment is to show that a given approach works at all, there should be carefully
controlled experiment settings and tasks execution.

Additionally, one should always consider problems with the sensor infrastructure, failing
sensors or missing records. Before the experiment, the damage of such problems could be
decreased by checking whether the sensors and the whole infrastructure are working several
times before the experiment, checking the sensors batteries, or having backup sensors. After
the experiment, although the damage could not be possibly repaired, one should check the
collected data for missing or faulty values, as such could cause unexpected model behaviour.

3.4.2.2 Problems with the ground truth

Conducting the experiment is actually the easier part, obtaining appropriate and correct
annotation could turn into a real challenge. The annotation is the ground truth with which the
activities estimated by the model are compared in order to evaluate how good the model is
performing. It is obtained by defining natural language descriptions of the actions that take
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place during the experiment, and the exact time they started and the time they lasted. The
annotation is created by human annotators and usually with the help of different annotation
tools e.g. [84].

To evaluate the performance of causal models, the annotation itself has to be causally cor-
rect. While for machine learning approaches it would not be a big issue if the person suddenly
teleports from one place to another, for causal models that is just impossible. Additionally,
publicly available datasets like those in the CMU Multi-Modal Activity Database [145] contain
gaps in the annotation, annotation not matching with the activities shown on the correspond-
ing video etc. Depending on the length of the activities short incorrectly annotated activities
will also cause small deviation in the accuracy computation. However, long actions that were
incorrectly annotated could cause considerable drop in the estimated model performance.

Depending on the approach used for activity recognition, gaps in the annotation, or ob-
jects and persons that just appear from one place to another without being manipulated or have
moved could cause serious problems. In causal approaches like CCBM the model then is not
able to causally explain given annotation. This could lead, first to decreasing the model accu-
racy, and second to inability to generate useful observations from the annotation. For example,
in the cooking task there were some gaps in the first version of the annotation as well as objects
that appeared from place to place without being moved. After generating observations from
the annotation, this led to the model being unable to explain them not because the model was
wrong but because the annotation was causally incorrect.

3.4.2.3 Problems with the models

Although CCBM uses straight forward precondition-effect pairs for describing the action
templates, it could sometimes be a challenge to create a template reflecting the needs of the
problem. This is mainly because the incorrect use of a single predicate or of a logical expression
causes the model to act unexpectedly. Such problem could easily be tracked in simple models
like the team model for the meeting scenario, or the office scenario. However, in a more
complex model like the cooking task, it is almost impossible to find the problem without some
kind of backtracking mechanism for model implementations. The cooking task model led to
the need of recording the changes and the reasons for them after each model change.

Furthermore, the models were initially implemented with the idea of creating a general
domain description. Yet, the practice showed that it is extremely difficult to cope with such
model as it has high degree of freedom and causes problems with some of the action selection
heuristics (e.g. the goal distance, which can be calculated only after the whole state space is
analysed).

Another issue was caused by the actions durations. Choosing appropriate duration and the
corresponding probability distribution could be crucial for the correctness of the inferred action.
Actions with too short or long durations tend either to cause the model to select another action
although in reality the current action is still running, or to continue estimating the same action
although it has already ended.

However the opposite – assigning too exact duration, or allowing too small behaviour varia-
tions, leads to model overfitting and its inability to cope with new data from the given scenario.
For example, in the cooking task scenario, it was necessary to find the middle ground between
the high state-space and the ability to explain new data. Another example showing overfitting,
was the office dataset where for each action and user relatively exact duration was assigned.
This would probably yield good results for more restricted model, however the high degree of
freedom caused the wrong duration to be the one that is usually assigned.
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A serious issue during the model development and evaluation was related to traceability
issues. It was extremely difficult to discover the reasons behind past changes as there was
no substantial documentation about these changes. Although the model changes were under
version control, detailed information about the reasons behind these changes was missing. The
same problem was observed during attempts to reproduce given results. This was due to the
fact that the random seed generator uses the current time for generating values; due to different
inference parameters that were not documented; due to undocumented changes in the model
after the first results were obtained, etc. To avoid that, at a later point, a script was introduced
generating a documentation file. The file then provides information about all parameters and
scripts used for producing given results. The script also created copies of all scripts and files
involved in the inference and evaluation process.

3.4.2.4 The influence of the inference mechanism on the model behaviour

As the particle filter provides an approximation of the estimated state, it is dependent on the
random number (called random seed) used for sampling the state-space. In the particle filter at
each time step the state space is approximated with a weighted set of samples (particles) where
the weight of each particle is proportional to the particle’s probability. This however leads to
the problem that at some point many of the samples have very low weights and only a few
of them will have significant weight. Or with other words, the number of effective particles
drops significantly with time. To cope with this problem and increase the number of effective
particles, resampling is performed. During resampling, a new set of the original size of particles
is drawn with replacement from the discrete approximation of the samples distribution. In this
new set all particles have the same weight. However, this still does not solve the problem that
particles with larger weights will be drawn more often than such with low weights. This means
that after resampling the diversity of the particles will decrease. To solve this new problem,
random numbers are used in order to determine which particles to be drawn. For more details
on the particle filter and resampling see e.g. [68].

It is then possible that the random seed influences the system in a different way. For exam-
ple, it is possible that the correct hypothesis is not available because it was not sampled. It is
also possible that the particle representing the correct state has too low weight thus it was never
selected. This will result in the wrong state being estimated. Another possibility is that there
were not enough particles to represent the density distribution. It is especially true in prob-
lems with large state-spaces like the cooking problem where the state-space is several hundred
thousand states.

Additional problem could be caused by the action selection heuristics. For example, a
model using the goal distance as a heuristic will have problems with a subject that is not acting
in an obviously goal oriented manner. Each of the action selection heuristics, when inappropri-
ately used, can lead to the wrong hypothesis being selected.

Furthermore, it is possible that the actions were assigned inappropriate probability distri-
bution, or the chosen values did not represent the reality. This could result in either the action
terminating sooner than in reality, or that the inference engine believes the action is still being
executed even when in reality new action has started.

The above issues do not mean that the causal model is incorrect, they just indicate that
the combination of causal modelling and probabilistic inference can lead to unwanted con-
sequences. What can be done in this case on a causal level, is to introduce some artificial
constraints that do not improve the system model, but provide a mechanism for coping with
problems on the inference level. Another option would be more appropriate usage of the ac-
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tion selection heuristics, a better random number generator algorithm, and of course, careful
decision on the probability distribution describing the action duration.

3.4.3 The need of structured modelling process

The above problems pointed at the need of a structured modelling process. Such process
should be able to provide not only well performing models, but also documentation about them,
about history of model changes and the reasons behind them. It should also give information
about the model execution and evaluation that yields reproducible results. The experience
showed that without such process, the task of modelling human behaviour could be difficult and
result in unexplainable model dynamics. It also showed that especially in the case of complex
models like the cooking task, the lack of such process and the corresponding documentation
could lead to months of tracking and debugging implementation problems.

Apart from improving the model documentation, the main goal of such process would be
to provide guidelines for a structured way in which an activity recognition model can be de-
veloped and evaluated. Such process in difference to the state of the art waterfall model [120]
should include not only the model development itself but also the activity recognition lifecy-
cle including also experimental setup, data collection, data analysis and model performance
evaluation. These are steps that are typical for data analysis problems and empirical scientific
experiments but not for software engineering problems.

The experience showed that it is easy to get lost during the model development. It is also
easy to spend enormous amount of time in implementing a successful model, when it could be
much faster were there some existing guidelines about the process. This could be considered
as a drawback of any new and not well explored approach, but it is also a solid motivation for
providing such development process.

3.4.4 Identifying Development Phases

From Chapter 2 and Chapter 3 several phases could be identified. The modelling and activ-
ity recognition process was intuitively divided into such phases to help the model designers in
implementing appropriate models.

Problem analysis: This phase involved the identification of the problem; identification of
important environment and situation elements that will later play crucial role in the model; dis-
cussion about possible solutions; and the supply of appropriate ground truth (annotation). In
our experience, such phase is essential and one should spend enough time on the problem anal-
ysis. Although we instinctively had this preparation phase, the experience showed that not well
identified problems and objectives could lead to difficulties during the model implementation
and evaluation that is much more difficult to fix when the model is already implemented.

Model implementation: This phase concerns the incremental model implementation, de-
bugging and validation. It consists of implementing the different aspects of the model: its
causal structure, the action selection heuristics, and the action durations. This is the phase
where a typical data analyst focuses her efforts and we made the experience that sometimes
that leads to surfacing of problems caused by not carefully planning of the model solution in
the earlier phase. Additionally, the lack of detailed documentation in the model changes, or the
reasons for some solutions and changes made it hard to backtrack and fix problems.

Model evaluation: This phase is the most important result of the modelling process from
an activity recognition point of view, or namely, how well does the model recognise the user
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actions. In difference with the various simulation and software engineering development pro-
cesses, where a validation of the model correctness could be enough to make a statement, in the
activity recognition case, often a correct model does not necessarily indicate high performance.

It can be seen that these phases actually reflect the waterfall model, where the development
process is divided into analysis, design, implementation, and evaluation. Thus it could be con-
cluded that a human behaviour modelling development process will be based on these typical
software engineering phases. On the other hand, the process behind developing models for
activity recognition is a data analysis process and the experience showed that it is difficult to
fit typical data analysis procedures in a software development process. For that reason Chapter
5 investigates different existing development processes and together with the experiences gath-
ered from this chapter proposes a structured development process for Computational Causal
Behaviour Models.

3.5 Outlook
The chapter presented a detailed introduction to modelling with Computational Causal Be-

haviour Models, and showed that it is possible to model the three problems with this formal-
ism. The resulting models were able to recognise the activities of the users; and in the case of
a small enough model to generate an HMM, showed that a Hidden Markov Model generated
from CCBM performs comparable to a hand crafted HMM. Along with the ability to recognise
activities, the models were also able to provide additional context information about the users’
whereabouts. The chapter also analysed the models in order to discover successful practices
and pitfalls. The resulting analysis is later used as a basis for the modelling toolkit, presented
in Chapter 4.

In general, the chapter presented the intuitive data analysis approach to solving model based
activity recognition problems, and showed that the selected formalism is suitable for the mod-
elling domain. Still, it was concluded that a more structured approach could potentially improve
the modelling efforts and results.
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Chapter 4

Modelling Toolkit for Computational
Causal Behaviour Models

“Any intelligent fool can make things bigger, more complex, and
more violent. It takes a touch of genius and a lot of courage to

move in the opposite direction.”
Ernst Friedrich Schumacher

Chapter Summary: This chapter describes the CCBM modelling toolkit that contains modelling
solutions (respectively patterns) for solving problems from the activities of daily living that are
based on the modelling experiences from Chapter 3. Their aim is to provide mechanisms for reduc-
ing the model complexity in terms of state-space size, branching factor, number of operators, valid
plans, as these model aspects influence the correct action selection. Furthermore, some relevant
patterns are practically applied to the models from Chapter 3 and their performance is compared.

Chapter Sources: This chapter is partly based on the paper “Strategies for Modelling Human Be-
haviour for Activity Recognition with Precondition-Effect Rules” [161]

Questions to be answered in the chapter:

Why is there need of modelling mechanisms for CCBM? (In Section 4.1)

What kinds of CCBM modelling mechanisms are presently available, how can they be used and
why? (From Section 4.2 to Section 4.9)

Can the models from Section 3.3 be improved by applying some modelling patterns? (In Section
4.10)

4.1 Introduction and Motivation
The previous chapter already introduced the intuitive models for the three ADL use cases.

During the models analysis and evaluation it became apparent that the successful modelling of

87
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the problems is not a trivial task. Even more, as CCBM is a probabilistic approach that relies
on the goal distance for selecting the correct action, it was shown that models with high degree
of freedom and huge state space tend to assign higher probability to incorrect actions. Even
more, this makes the model more dependent on the underlying inference engine. For example,
changing the random seed used in the different model runs creates larger deviation from the
average performance value (as shown in the multi-agent model performance (Fig. 3.10), and in
the office scenario model (Fig. 3.21)). This is an indication that the model is not overly robust
and that its more probable execution paths do not match the actual activities.

One way of increasing the model robustness is the integration of modelling mechanisms
that reduce the model size and its degree of freedom. Such mechanisms are handled by the
different locks that allow a given action to be executed only if a certain constraint is met. The
discovery of such mechanisms is done during the model implementation, when it is noticed
that they are helpful for improving the model performance.

Another reason for the need of such modelling toolkit is that some modelling mechanisms
are not straight forward to model in CCBM. For example, the idea of introducing lock predi-
cates is clear, but on the other hand implementing a repeating action that can be executed only
a given number of times could be tricky. That is due to the fact that CCBM does not provide
an explicit mechanism for counting.

Furthermore, looking from the viewpoint of the requirements for human behaviour mod-
elling from Chapter 2.4, some of them are straight forward to implement, but other such as the
requirement for interleaving actions could be more complicated. This statement is reinforced
by the conducted user study that among other things posed the question of How feasible is a
requirement? (see Fig. C.5 in Appendix C.3). There it can be seen that requirements such as
interleaving and suspending are scored as moderate to difficult to implement.

For the reasons above, this chapter extracts modelling mechanisms that were used through-
out the modelling of the three problems, and discusses their effect on the model dimensions
and performance in a more controlled manner. For each modelling mechanism, its structure
as well as a sample implementation code are provided. Later, the consequences it has on the
model parameters and performance are analysed by providing evaluating the consequences a
pattern has on a simple model. The pattern influence on a general model are then discussed.
Finally, the pattern applicability is discussed.

To evaluate the pattern consequences on the model, the model parameters as introduced in
the previous chapter are analysed. These are

• the number of operators that tells us how many grounded actions are there in the model,
or with other words how many different instantiations of the actions are available;

• the number of predicates that tells us how many grounded predicates are there in the
model;

• the objects that are used for grounding these actions and predicates;

• the number of states in the model that gives information about how complex the model
is. They are computed based on the number of different combinations the predicates in
the model can provide;

• the number of valid plans that lead from the initial to the goal state, that indicates the
model ability to explain different behaviour variations. They are computed based on the
number of different combinations the actions in the model can provide;
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• the shortest goal distance from the initial to the goal state. It is computed based on the
minimum number of actions that have to be executed in order to achieve the goal. As
all considered problems concern goal oriented behaviour, the goal distance provides a
heuristic for choosing the next action based on its distance to the goal1.

• the maximum branching factor that gives information about the maximum number of
actions that can be executed from a given state;

• and finally, the final log likelihood is provided that gives the probability of the evaluated
plan. It is calculated by the formula log p(y1:t|M) where M indicates the model being
used and y the observation from time step one to t. Or in other words, the likelihood
gives us the information how good our model fits to the observations. In that manner the
system can follow different goals and just compare their likelihoods in order to discover
the most probable one.

Based on these parameters, and in order to discuss their behaviour in a general case, here
we formally define the notion of model.

Definition 27. (Model) A modelB is a tupleB := (PlB,OpB,P rB,ObB,SB,GB,BrB), where
PlB represents the number of valid plans the behaviour has; OpB is the number of operators;
PrB is the number of grounded predicates; ObB is the number of objects available; SB is the
number of states; GB is the goal distance; and BrB is the maximum branching factor.

Furthermore, the model performance is evaluated based on the model’s ability to correctly
predict an action. For that, three metrics are considered:

• the model branching factor after each action execution;

• the model entropy after each action execution, that gives us the model variability at a
given state;

• and the normalised action probability that gives the information about how probable is
the action correct action.

4.2 Locks
Motivation: Before discussing the different modelling patterns, here we present the basic

mechanism behind each pattern – namely the lock predicates that are used as constraints in the
model. The fastest way of reducing the model complexity is by introducing additional locks
that allow certain actions to be executed only after some conditions are met. These could be
for example that the person doing the action has to be at a certain position or that the object
being manipulated is located at a specific place. It could also be the case that an action can
or respectively cannot be executed when another person is executing a given action. In that
sense, locks are the base of all other more complex modelling mechanisms described in this
chapter. They can be thought of as similar to the semaphores in operating systems that control
the access of multiple processes to a shared resource [143, p. 78]. More precisely they are
similar to the mutexes in operating systems which are a special kind of semaphores that can

1The goal distance is also applicable in situations where there is no common goal, but rather a set of competitive
goals (e.g. the office scenario). In that case the agents still share the same state-space, thus the goal state will be
the one in which the goals of all agents are achieved.
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have only two states: locked and unlocked [143, p. 81]. In that sense the locks used here allow
or block the access to a certain resource in the shared environment when more than one agents
act in the environment, or when the execution of different actions has influence on the shared
environment.

Structure and implementation: Locks are implemented in the action’s preconditions and
effects, where they are defined as any other predicate and later parameterised with the available
objects. The lock takes care of whether the object being manipulated can be manipulated at
the given state, or whether the user is allowed to be at the location she is, or even if she can
execute the action or not. Fig. 4.1 shows an example structure of an action containing locks.

(:action A
:precondition (and

(lock 1)(lock 2)...(lock n)
)

:effect (and
(not (lock 1))(not (lock 2))...(not (lock n))(lock m)
)

)

Figure 4.1: Structure of an action with lock predicates. In this example in the precondition of the action
A n lock predicates are expected to be true. Later in the effect these locks are set to false and another
lock predicate m is set to true.

Examples of lock predicates can be seen in the sample code in Appendix E. For example, in
Fig. E.2 on page 220, such predicate is (counting ?i ?j) that locks an action to be executed only
a certain number of times. Another example is in Fig. E.1 on page 219, where the predicate
(allowed-repeat) defines whether an action can be repeated or not. Such examples can be found
in the implementation of all patterns as they are basically implemented and managed through
various locks.

Consequences: The consequences that a lock has on the model is basically that it reduces
the state space. This can be seen in Table 4.3 in the explicit case where lock predicates for the
order of the atomic actions execution was introduced. The same applies for Table 4.6 on page
116 where special lock predicates were used to combine two objects and which also defined
which objects can be combined together. The locks are essentially used in the phases definition
and their influence on the state space can be seen in Table 4.7 on page 122. They are also able
to reduce the branching factor, the number of valid plans and the number of operators. This is
usually to the expense of an increasing number of predicates, as the additional constraints are
introduced in the form of predicates.

Applicability: As already mentioned, locks are the main mechanism for building more
complex modelling mechanisms for reducing the model complexity. For that reason they are
applied to every pattern that is discussed below.

4.3 Abstract reusable actions
Motivation: Writing readable and error-free code often depends on the length of the code

and its complexity [37]. It is much easier to write simple code and later it is also easier to dis-
cover problems in such code compared to some more complex implementation. Furthermore,
complex code is difficult to reuse as it is specialised for a given problem and needs changes to
be done before being applicable for different kinds of problems. In such cases abstract reusable
actions can be used. They reduce the code needed for describing the different action variations
and are easily reusable due to their general implementation. Such actions can be applicable
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when one type of action is applied to situations, such as moving from or to different places or

manipulating different objects. Here we discuss how such actions are implemented and how

they affect the model compared to specialised actions.

Structure and implementation: An abstract action is implemented by defining one action

for all variations of a given situation with preconditions and effects that allow the action to

be grounded with the parameters for all variations. This is equivalent to implementing several

specialised actions, each of them representing just one situation and parameterisable with the

elements for just this situation. Fig. 4.2 shows the structure of an abstract action that can be

Figure 4.2: Structure of abstract and specialised action implementation. To the left the abstract action

implementation is shown where one action template is grounded into three action instances. To the right,

three specialised action templates are grounded in the same three instances as in the first case.

grounded into three specialised actions (to the left), and which is equivalent to three specialised

actions’ descriptions which after parameterisation result in the same grounded actions as the

first case. The advantage in this case is that the implementation of the abstract description is

usually shorter, as only one action is defined. This can be seen in Appendix E where Fig. E.3

on page 221 shows an example implementation of an abstract action, while Fig. E.4 (page 222)

shows the implementation of the same problem with specialised actions. It can be seen that

the specialised implementation requires the definition of three separate actions, while in the

abstract implementation, only one action is needed. Additionally, the specialised actions need

to make use of the type system. Otherwise each action description will be grounded with all

available constants resulting in 15 grounded actions instead of only 5 in the current case.

Consequences: Although the two implementations of the problem have different structure,

Table 4.1: Parameters of abstract action implementation. The values for the abstract model are calculated

based on the model implementation in Fig. E.3 on page 221 while, those for the specialised are based

on the implementation of specialised actions in Fig. E.4 on page 222.

Parameter Value (abstract) Value (specialised) Description

# operators 5 5 grounded actions after the model compilation

# predicates 5 5 grounded predicates after the model compilation

# objects 5 5 objects in the model

# states 32 32 state-space of the model

# valid plans 120 120 valid plans leading from the initial to the goal state

goal distance 5 5 distance from the initial to the goal state

max. branching factor 5 5 maximum number of possible actions from a state

final log likelihood -4.78749 -4.78749 final log likelihood of the execution sequence

they have the same consequences to the model. Table 4.1 shows the parameters for the abstract

and for the specialised implementations of the problem. It can be seen that regardless of the

different structure, both implementations result in the same number of grounded operators (5),
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specialisedonewithoutthedangerofchangingtheresultingruntimemodel.Inthenormalcase
whentheabstractactionisshorterthanacorrespondingspecialisedone,italsomakesiteasier
todiscoverproblemsintheimplementation.

Figure4.3: Modeldynamicsforabstractvs.specificactions.Thereddashedlinerepresentsthebe-
haviourofabstractactions,whilethebluesolidline–ofspecialisedactions.Theredlineisslightly
shiftedforbettervisualisation.

Thisisalsosupportedbytheresultingmodeldynamics.Fig.4.3showstheabstractmodel
behaviour(withblueline)versusthespecialised(withreddashedline). Tocomparetheir
behaviouraplanwascreatedwherethefiveavailableobjectsweremanipulatedsequentially.
Itcanbeseenthatbothimplementationsexhibitexactlythesamebehaviour.Thebranching
factordecreaseswitheachactionastherearelessobjectsavailablethatwerenotmanipulated2;
thesameappliesfortheentropy,whiletheactionsprobabilityincreaseswiththedecreasing
entropy;andtheprobabilityofthenormalisedactions’sequencedecreaseswitheachexecuted
action.Thisshowsthatthereisnodifferenceintheperformanceofthetwoimplementations.
Generalcase:Aboveweshowedwithadummyexamplethattheabstractimplementation

hasthesamemodeldynamicsasoneusingseveralspecialisedactions.Hereweassumeagen-
eralcaseandshowtheconclusionsarestillvalid.

Proposition:Amodelthatcontainsabstractactionimplementationwillhavethesame
dynamicsasamodelthatusesseveralspecialisedactionsthatcorrespondtothegroundedab-
stractactionsfromthefirstmodel.

AssumeamodelB1withanabstractactionawhichtakesoneparametermfromwhich
thereareninstances.Thismeansthattheactionwillresultinngroundedinstances.Ifwe
assumetheworstcasescenarioinwhicheachinstanceofactionacanbeexecutedsequentially
inanyorderwithoutrepetitionofaninstance,thenthenumberofvalidexecutioncombinations
willben!.

PlB1=n!, (4.1)

wherethenumberofoperatorsOpB1correspondstothenumberofgroundedactionsandis

OpB1=n. (4.2)

Ifweassumethattheabstractactionneedsatleastonepredicatewithwhichitcanberepre-
sented,thenwhengroundingtheaction,itwillresultinngroundedpredicates.

PrB1=n (4.3)

2Hereweassumethatanobjectcanbeinvolvedinanactionexecutiononlyonce.
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If we assume that in the best case there is one object per action instance, namely the object with
which the instance is grounded, then the number of objects will be n3.

ObB1 = n. (4.4)

The length of the goal distance will be equal to the length of the shortest execution plan, namely

GB1 = n. (4.5)

The state-space will then be computed based on the number of predicates. In this case, if we
have PrB1 with n predicates, then the number of all subsets of PrB1 will give us the number
of possible states , or with other words

SB1 = 2n. (4.6)

The branching factor then in the worst possible case will be equal to the number of available
actions at a time,

BrB1 = n. (4.7)

Now assume there is a second model B2 with actions am, where m := {1, ...,n} and where
to each action a different object is assigned as a parameter. Assuming once again that the actions
can be executed sequentially in any order without repetition of any action, then the number of
plans will be n! as shown in Equation 4.1; the number of operators will be represented by the
number of available actions, namely n (Equation 4.2). If we assume that in the best possible
case, the same predicate but with a different parameter will be used in all actions, this will result
in n grounded predicates (Equation 4.3). In the case when one different object is assigned to
each action, then the number of objects will also be n (Equation 4.4), as well as the goal distance
and the maximum branching factor. Assuming all actions have to be executed, the state-space
will once again contain all subset of the set of predicates, namely 2n (Equation 4.6). Comparing
the parameters ofB1 andB2 it can be seen that they have the same values. From this it could be
concluded, that if the models have the assumptions described above, they will also exhibit the
same model behaviour in both cases. The models’ behaviour for increasing number of actions
is visualised in Fig. 4.4.

Applicability: The abstract reusable actions can be used interchangeably with the spe-
cialised actions with the additional advantage that they take less time for implementing and
produce less code. For that reason they are often preferred to the specialised actions especially
in cases where there are no other modelling mechanisms that can be influenced by the abstract
actions. However, in more complex models like the cooking problem, specialised actions could
be preferable as they allow the control of only a given subset of the more general action in a
given phase of the model. On the other hand, in situations like the meeting scenario and the
office scenario the abstract actions come in handy as they reduce the model implementation
effort. For that reason the implementation of the remaining patterns in this chapter is done with
abstract action templates instead with specific actions, as this reduces the number of action
templates that have to be modelled. This results in the need of introduction of objects that have
to ground the templates in order to produce the needed number of variable-free actions.

3For the sake of fairness we have to admit that in the case n specialised action templates are implemented, we
can achieve the same effect when we introduce n variable-free predicates, each corresponding to one specialised
action. However, that means the model designer has to introduce each of the n variable-free predicates, which
could be omitted in the other case, when just one predicate with variable is introduced, and which later is grounded
with the corresponding object assigned to the specialised action.
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Figure 4.4: General model dynamics for abstract actions. The dashed red line represents the behaviour

of specialised actions, while the blue solid line – of an abstract one. The model complexity for increasing

number of actions was plotted starting with one action and increasing until 100 actions are reached. The

number of states and number of plans are plotted on logarithmic scale.

4.4 Repeating behaviour

Motivation: Repeating a given action or a set of actions is something that often happens

in our everyday’s life. For example, repeatedly eating until we are no longer hungry, or wash-

ing the dishes several times until we are sure they are clean. Such kind of behaviour can be

sometimes complicated to model with causal models as they do not have a direct mechanism

for counting repeating actions. This means that either such counting mechanism has to be in-

troduced by the designer in the model itself or that the repeating action has to be introduced

by the formalism’s heuristics, or more concretely – the actions’ revisiting factor4. Here we

discuss both options – using a counter and increasing the revisiting factor; and the effect both

implementations have on the model. The general structure of the two options is shown in Fig.

4.5.

Structure and implementation: The first option – of using a counter – is implemented by

introducing counter type5 that is used for creating the needed number of constants (respectively

the number of times the action will be executed). Later when implementing the repeating

action, in its precondition a predicate is used that expects one of the constants to be true. If that

is the case, in the effect the counter with this concrete constant is set to false and the next one

is set to true. That way the model is counting how many times the action was executed until

the expected number of repeats is reached. The sample code with the implementation of this

approach can be found in Fig. E.2 in Appendix E (page 220). It can be seen that the action can

be executed 5 times as the counter is set to count to 5.

The second option is to introduce two actions, the first having preconditions allowing the

action to be repeated indefinitely, while the second contains the effects that have to take place

after the last instance of the action is executed. This implementation is simpler than the first one,

4More information about the revisiting factor is provided in Chapter 3 in the discussion of Formula 3.1 (page

55).
5In reality the name of the type is irrelevant. Here it is called counter just for simplicity.
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Figure 4.5: Structure of repeating actions implementation. To the left – an implicit implementation

where the same action is repeated until the action finish is executed. To the right, the explicit implemen-

tation is shown, where each instantiation of the action is explicitly modelled.

as the need of explicitly encoding the number of times the action can be repeated is omitted. A

sample code with the implementation of this approach can be found in Fig. E.1 in Appendix E

(page 219). Here in difference with the explicit implementation, there is no counter calculating

how many times the action can take place. It can continue indefinitely, or until the action

repeat-finish has taken place. The action repeat has as precondition allowed-repeat which is

set to true until the action repeat-finish has taken place. This mechanism however, is working

only with the revisiting factor that allows exploring states that were already visited.

Consequences: The two different implementations of the repeating behaviour have dif-

ferent consequences to the model. After compiling, they have different number of grounded

operators and predicates and they influence the model dynamics in a different way. Table 4.2

Table 4.2: Parameters of repeating behaviour implementation. The values for the explicit repetition are

based on the implementation provided in E.2 on page 220, while those for the implicit are based on the

implementation in Fig. E.1 on page 219.

Parameter Value (explicit) Value (implicit) Description

# operators 5 2 grounded actions after the model compilation

# predicates 6 3 grounded predicates after the model compilation

# objects 3 0 objects in the model

# states 6 3 state-space of the model

# valid plans 1 1 valid plans leading from the initial to the goal state

goal distance 5 2 distance from the initial to the goal state

max. branching factor 1 2 maximum number of possible actions from a state

final log likelihood 0 -2.77259 final log likelihood of the execution sequence

shows the parameters for the two implementations. The first column with values contains those

for the explicit implementation with counters, whereas the second column – the parameters for

the non-explicit model. It can be seen that the first one has more grounded operators. This is

due to the fact that the actions are grounded against all instances of the predicate (counter ?i
?j) that are allowed in the precondition. On the other hand the implicit implementation does

not have this mechanism for counting the instances, but rather allows the action execution as

long as another action has not taken place and set the precondition of the repeating action to

false. The first implementation also uses objects while the second avoids that. The number of

operators and predicates for the first implementation also increases the state-space compared to

the second one (6 states in the first against 3 in the second), and for that reason also increases

the goal distance 6. That however, does not mean that the second implementation is better as it

6The values given here are for the shortest possible execution path given the model definition. This means that

the implicit model has 2 states and 1 valid plan, given the model ends after the repeating action is executed only

once. If we however calculate the values for five repetitions (as explicitly modelled in the first model), then the

results look different: 26 states and 24 valid plans which is much more than for the explicit model.
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Figure4.6: Modeldynamicsforrepeatingbehaviour.Thedashedredlinerepresentsthebehaviourof
explicitlymodelledrepeatingaction,whilethebluesolidline–ofanimplicitlymodelledaction.

hasthedangerofenteringinfiniteloopwheretheactionisrepeatedindefinitely.Theimplicit
implementation,ontheotherhand,increasesthebranchingfactor.Inarealmodelthatwould
meanthereisalwaysoneadditionalactionthatcanbeexecuted.

Lookingattheparametersofthetwoimplementationsitisobviousthatthesecondiseasier
(intermsofneedofcountingtheactions)andgeneratessmallermodel.Soonecouldaskwhy
everusetheexplicitimplementation?Theansweristhatduringtheinferencephase,thetwo
implementationsalsoaffectthemodeldynamicsinadifferentway.Tovisualisethat,aplan
wascreatedthatconsistsof5timesrepeatedlyexecutingtheactionrepeatandtheresultsfrom
thevalidationofthetwoimplementationsisshowedinFig.4.6.Herethefirstactionisthe
INITIALIZEaction,whiletheremaining5aretherepeatedaction.Itcanbeseenthatforthe
explicitimplementation,allfactorsstayconstant—thereisabranchingfactorof1indicating
thatthereisalwaysonlyoneactionthatcanbechosenfromagivenstate.Becauseofthat,the
entropyiszero,andthecurrentaction’sprobabilityaswellasthatoftheexecutionsequence
areallone.Thisindicatesthatusingsuchactionimplementationwillassignhigherprobability
totheactionsduringtheinference.Ontheotherhand,theimplicitimplementationincreases
thebranchingfactorasnowafterthefirstactionisexecuted,therearetwopossibleactions–
repeatandrepeat-finish.Thisincreasestheentropyofthemodelanddecreasestheactions’
probabilityandtheprobabilityoftheexecutionsequence.Itcanbeseenthatthemorethe
actionisrepeated,thelowertheprobabilityoftheexecutionsequence(thefinalloglikelihood
inTable4.2).

Generalcase: Aboveweshowedinadummyexamplethattheexplicitlymodelledre-
peatingactionshavesmallerbranchingfactorcomparedtotheimplicitlymodelledrepetitions.
Ontheotherhandtheimplicitactionsrequirelessparameterstobemodelledandhaveshorter
minimumgoaldistance,lessoperatorsandpredicates.Toprovethatthisbehaviourwillbealso
validforageneralmodelwemakethefollowingproposition.

Proposition:AmodelB1thatcontainsexplicitimplementationofrepeatingactionswill
havepredicates,operators,objects,statesandgoaldistancethatincreaselinearlywithin-
creasingthenumberofactions.ThebranchingfactorandnumberofplansofB1willstay
constant.AnimplicitmodelB2,ontheotherhandwillhavelinearlyincreasingnumberof
plansandstates,whileitspredicates,operators,objects,minimalgoaldistanceandbranching
factorwillstayconstant.

AssumeamodelB1withexplicitlyrepeatingactionamwherem:={1,..,n}isthenumber
oftimestheactionacanbeexecuted.Weassumethateachinstantiationoftheactionacanbe
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executed only once, and that an action aj with j := {2, ...,n} can be executed only and exactly
after the action aj−1 was executed. Then the number of valid execution combinations will be
1. From the above follows that the number of valid plans PlB1 such behaviour will have is

PlB1 = 1, (4.8)

where the number of operators OpB1 corresponds to the number of grounded actions and is

OpB1 = n. (4.9)

Furthermore, if we assume that we have n operators which can be executed only once each,
then the minimal number of grounded predicates will be n+ 1. This is the minimal number
needed to represent the increasing counter.

PrB1 = n+ 1. (4.10)

If we assume that in the best case there is one object per action instance (namely the counter
object), then the number of objects will be

ObB1 = n, (4.11)

and the length of the goal distance will be equal to the length of the shortest execution plan,
namely

GB1 = n, (4.12)

Furthermore, assuming that at least n actions are needed to reach the goal, then the states in
an execution path will be n+ 1. In this case they reflect the number of predicates, as only one
predicate can be true in a given state.

SB1 = n+ 1. (4.13)

The branching factor then in the worst possible case will be equal to the number of available
actions at a time, namely

BrB1 = 1. (4.14)

Now assume there is second model that uses implicit implementation of repetition B2 with
possible actions {a∗, b}, where ∗ indicates that the action a can be repeated indefinitely and b is
the action that can terminate a. Assuming there is no mechanism to indicate when the repetition
of the action has to terminate, and that the action a has to be executed at least once before b
takes place, then the number of valid plans PlB2 will increase linearly with each new iteration
of a.

PlB2 = 1, ...,∞, (4.15)

where 1 valid plan will represent the best possible case when the model terminates after one
execution of a and∞ the worst possible case where the model will execute a indefinitely.

The number of operators OpB2 is then

OpB2 = 2, (4.16)

as the sequence is represented by only two actions – a and b.
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The number of grounded predicates will be equal to 3 represented by one predicate that
allows the execution of the repeating action, one that indicates the action is executed, and one
that blocks the further execution of this action7.

PrB2 = 3. (4.17)

As in this case we do not need to track the number of action executions, the minimum number
of necessary objects will be 0. This means that the non-grounded predicates will be already
variable-free8.

ObB2 = 0, (4.18)

and the length of the goal distance will be equal to the length of the shortest execution plan,
namely the two available actions.

GB2 =OpB2 = 2 (4.19)

The number of states will then be equal to 3 represented by the initial state, the goal state, and
the state between the two actions that have to be executed, as no matter how many times a is
repeated, it will always end in the same state.

SB2 = 3 (4.20)

The branching factor then in the worst possible case will be equal to the number of available
actions, namely,

BrB2 = 2. (4.21)

From Equation 4.8 and Equation 4.15 it follows that while B1 has a constant number of
plans, B2 has infinitely many plans. From Equation 4.9 and Equation 4.16 it follows that B1

has n operators that however cannot be repeated, while B2 has only two operators that can
however produce an execution sequence that can have as few as 2 transitions or as many as∞.
From Equations 4.10 and 4.17 it follows that B1 will have n+1 grounded predicates, while B2

will have only three. From Equation 4.11 and Equation 4.18 it follows that in B1 there are at
least n objects, each corresponding to the index assigned to the available actions. On the other
hand, B2 does not make use of the counting mechanism, thus in the best case scenario it does
not have any objects. From Equation 4.12 and Equation 4.19 it follows that while B1 has a goal
distance of n, in the case of B2 a plan can have a goal distance from 2 to infinity depending
on the repetition of action a. From Equation 4.13 and Equation 4.20 it can be seen that while
B1 has n+ 1 states, the state-space of B2 stays constant. Finally, the branching factor of B1 is
equal to 1 (Equation 4.14), while in the case of B2 it is equal to 2 (Equation 4.21). The above
is reflected in Fig. 4.7 which visualises the dynamics of explicit and implicit repetitions for
increasing number of repetitions.

Applicability: Based on both implementations and their influence on the model dynamics,
each of them can be used in different situations. The explicit implementation is more time
consuming as one has to implement the counting mechanism. On the other hand, it ensures

7From the viewpoint of scheduling we need only two predicates – one for allowing the action execution and
one for blocking it. However from the perspective of the causal structure we need another predicate indicating
the action is executed as one execution could be needed to unlock another action execution and still allow the
repeating action to be executable.

8In difference with the abstract and specialised actions, here there is no need of an object as there is only one
grounded action, so there is no need to implement the predicate with variable, as there is only one instantiation.
If there are more than one instantiations of the whole pattern, then one can consider introducing objects and
predicates with variables. However, in the case where there is only one instance of the pattern, the necessary
objects are 0.
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Figure 4.7: General model dynamics for repeating behaviour. The dashed red line represents the be-

haviour of explicitly modelled repeating action, while the blue solid line – of an implicitly modelled

action. The model complexity for increasing number of repetition was plotted starting with one repeti-

tion and increasing until 100 repetitions are reached.

that there is only one action of the given type that is executable from a given state and that the

action will be repeated exactly the needed number of times. Such implementation is preferable

in situations where there is prior knowledge about the number of times the action is executed.

On the other hand, the implicit implementation is faster to implement and allows more flex-

ibility in the model. It also has a constant number of operators, predicates, objects, states, goal

distance and branching factor compared to the explicit implementation where these factors are

linearly increasing with the number of actions. However, it could cause unexpected problems

in the model, like for example executing the finish action too early, thus blocking any further

execution of the action9. One option for coping with this problem, although not optimal, is to

remove the finish action and allow the action to be indefinitely repeatable. Later, the model

should rely on the observations in order to infer how many times the action is executed. This,

of course, is not an optimal solution as the repeating action is always executable, even when

it should no longer be executed. A possible solution to that (in the case where there is no

information about the number of iterations) is using an explicit implementation and making

an educated guess about the maximum number of times the action can be repeated. Another

option is just to rely on the sensors that they will provide accurate information about the finish
action.

4.5 Macro structures

Motivation: Macro structures are composed actions that consist of begin-end action pair

and that could encompass other actions in between. The need of such modelling mechanism

comes from situations where interleaving actions are required or where a composite action

9One can argue that given the appropriate preconditions the point at which the finish action is executed can be

controlled. However, this can be achieved by introducing a mechanism for tracking the number of times the action

was executed, thus reducing it to the explicit implementation of repetition.



100 CHAPTER 4. CCBM MODELLING TOOLKIT

is expressed. Like with the repeating actions, macro structures can be expressed either in

explicit or implicit way. That means, given more than two actions involved, one could either

explicitly specify the order in which the actions can take place, or one could leave it to the

inference engine and the observations to decide what is the action sequence. Here both cases

are presented and their influence on the model is discussed.

Structure and implementation: Macro structure is implemented by creating a begin-end
action pair that due to its preconditions and effects is able to enclose in between the begin and

end part of a set of other actions. This is shown in Fig. 4.8 where it can be seen that three

macro actions are executed sequentially. The first action is a macro structure that encloses the

remaining two macro actions, while the second and the third are interleaving in between the

first action. There are two ways of implementing such behaviour – either explicitly defining

Figure 4.8: Structure of macro actions implementation. In this example there are 3 macro actions where

the first is built of two other actions, and each of these two actions have parts interleaving with each

other.

the preconditions and effects that influence the actions’ order or by leaving the order to the

inference engine and the received observations. The sample code showing the different imple-

mentations can be seen in Appendix E in Fig. E.5 on page 223 for the explicit implementation,

and in Fig. E.6 on page 224 for the implicit implementation. It can be seen that both cases

are implemented by an abstract begin-end pair that is later parameterised by the action number.

However, while in the implicit case the actions’ order is not specified, in the explicit case the

order is given by constraints encoded in the additional predicates. In the second case, the first

action can start only before the second and the third begin parts have been executed, and the

second can start only after the first and before the third. The order for the third is specified in

exactly the same manner.

Consequences: The two implementations also create different runtime models and have

different consequences for the model dynamics. Table 4.3 shows the model parameters for the

Table 4.3: Parameters of macro structures implementation. The values for the explicit macro structures

are based on the implementation in Fig. E.5 on page 223, while those for the implicit are based on the

implementation in Fig. E.6 on page 224.

Parameter Value (explicit) Value (implicit) Description

# operators 6 6 grounded actions after the model compilation

# predicates 6 6 grounded predicates after the model compilation

# objects 3 3 objects in the model

# states 7 27 state-space of the model

# valid plans 1 90 valid plans leading from the initial to the goal state

goal distance 6 6 distance from the initial to the goal state

max. branching factor 1 3 maximum number of possible actions from a state

final log likelihood 0 -5.0876 final log likelihood of the execution sequence

two implementations. Although both have the same number of operators (6), predicates (6),
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andobjects(3),itcanbeseenthattheimplicitimplementationhasbiggerstate-space(27states
against7fortheexplicit).Thisiscausedbythemorecomplexpreconditionsintheexplicit
macrostructurewhereitisspecifiedinwhatordertheactionscanbeexecuted. Thisalso
increasesthenumberofvalidplansfortheimplicitimplementation,asintheexplicitthereis
onlyonepossibleexecutionsequence.Thisisalsoreflectedintheincreasedbranchingfactor
fortheimplicitimplementationandthelowerloglikelihood.

Figure4.9: Modeldynamicsformacrostructures. Thebehaviouroftheexplicitimplementationis
presentedwithadashedredline,whilethatoftheimplicit–withasolidblueline.

ThesamemodeldynamicscanbeseeninFig.4.9wherethroughoutthemodelexecution,
theexplicitimplementationalwayshasabranchingfactorof1whilethenumberofpossible
actionsfortheimplicitimplementationincreasesto3.Itdecreasesonlyattheendofthe
executionwhenmostofthepossibleactionsarealreadyexecuted.Theentropyalsoreflects
theincreasingnumberofchoicesintheimplicitimplementation,whileatthesametimethe
actions’probabilitydecreasesandisincreasedonlyduringthelasttwoactions.Ontheother
handthevaluesfortheexplicitimplementationalwaysstayconstantduetothelackofchoices
inagivenstate.Thisreflectsthefinalplanloglikelihood:fortheimplicitmodelitdecreases
witheachexecutedaction,whileitstays0fortheexplicit(thefinalloglikelihoodinTable4.3).
Generalcase: Aboveweshowedwithadummymodelthatexplicitlymodelledmacro

structuresreducethemodelcomplexitycomparedwithsuchwheretheactionssequencewas
implicitlymodelled.Herewelookatthegeneralcaseandshowthatthebehaviourdynamics
willstaythesame.Wealsoshowthatbothexplicitlyandimplicitlymodelledmacroswillhave
smallernumberofstatesandbranchingfactorcomparedtoaplainmodelthatdoesnotuse
macros.

Proposition:Amodelthatdoesnotusemacrostructureswillbemorecomplexintermsof
numberofplans,numberofobjects,numberofstatesandahigherbranchingfactor,compared
toamodelthatusesmacrostructures.Furthermore,amodelthatusesimplicitmacrostruc-
tureswillbemorecomplexthatamodelthatusesexplicitmacrostructuresintermsofnumber
ofplans,numberofstates,andhigherbranchingfactor.

AssumewehaveamodelB1thatdoesnotuseanymacrostructuresandthathasnactions
whichcanbeexecutedsequentiallyinanyorderwithoutrepetitionandwithoutanyfurther
restrictions.SuchmodelwillexhibitbehaviourandhasparametersasthoseinEquation4.1to
Equation4.7.
NowassumethereisamodelB2thatusesimplicitmacrostructuresandthathasnactions

whereeachtwoactionsformabegin-endactionpair.Insuchactionpairthefirstactionhasto
beexecutedbeforethesecond.Ontheotherhand,itispossiblethatotheractionsareexecuted
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in between each action pair. Assuming that all actions have to be executed in order to reach the
goal state, then the number of valid plans PlB2 can be calculated by calculating the number of
permutations one can do with some identical elements. In our case the identical elements will
be the beginning and end actions of the macro structures because for calculating the different
combinations it does not matter which part of the pair we call begin and which end. In n actions
we will then have n/2 pairs of identical elements. Then the number of plans can be calculated
by applying the formula for permutations of multisets (see Formula F.9 in appendix F). In our
case we have n/2 times two identical elements which will transform the denominator in the
formula to 2!n/2.

PlB2 =
n!

2!2!2!...2!
=

n!

2!n/2
=

n!

2n/2
. (4.22)

The number of operators OpB2 corresponds to the available actions and is

OpB2 = n. (4.23)

If we assume that in the best case we need at least two predicates per action pair to man-
age which actions were already executed (one for indicating that the action is in progress and
another for indicating the end of the action), then we will need at least n grounded predicates.

PrB2 = n. (4.24)

If we have n
2 action pairs then we will need at least one object per action pair in order to

manage the executed actions, namely

ObB2 =
n

2
. (4.25)

The length of the goal distance will be equal to the length of the shortest execution plan, namely

GB2 = n. (4.26)

Furthermore, assuming that at least n predicates are needed to represent the actions, and that at
most half of them can be true in a given state10, then we will have at most m= n/2 predicates
from which to create new states. When we have all m predicates set to true, namely the pred-
icates indicating an action is being executed, then we can have only one state, because all the
remaining predicates that represent the action has ended can only be false in this case. On the
other hand if we have less than m predicates set, then we can generate k <m times 2k different
combinations of predicates. For example, if we have m− 1 predicates indicating the action is
being executed set to true, then we have still one of these predicates set to false. This could
mean two things – either that the predicate indicating the end of the action is true (the action has
ended) or that the action has never started. Then for each k≤m we can compute the number of
k-combinations of sets given m elements (see Formula F.7 in Appendix F). This will produce
the number of combinations for the predicates indicating the action is being executed. Then to
compute the corresponding number of combinations for the predicates indicating the end of the
action, given the number of k being executed predicates that are set to false, we just multiply
the result from Formula F.7 with the number of subsets k elements can produce (see Formula
F.8). In other words, our state space will be represented by the following formula.

SB2 =
m

∑
k=0

(
m

k

)
2k, (4.27)

10That is because the first predicate in the predicates pair indicates the action is being executed while the second
indicates that the action has ended, thus both cannot be true at the same time.
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with m= n/2.
The branching factor then in the worst possible case will be equal to the half the number of

the available actions as each two actions have a specific order,

BrB2 =
n

2
. (4.28)

Now assume, there is a model B3 that uses explicit macro structures. It has n actions and
each two actions form a begin-end action pair. The model has the same properties as B2, but in
addition the actions can be explicitly executed in only one way. Assuming that all actions have
to be executed in order to reach the goal state, then the number of valid plans PlB3 will be

PlB3 = 1, (4.29)

where the number of operators OpB2 corresponds to the available actions and is

OpB3 = n. (4.30)

Like in the case with B2, if we have n actions each two of which form an action pair, we will
need at most 2 predicates per action pair to manage the start and end effects of the action, thus
the number of predicates will be equal to

PrB3 = 2
n

2
= n. (4.31)

If we assume that in the best case we need objects only for managing the sequence of executed
actions, then we will need at least n/2 objects as we have n/2 distinct action pairs.

ObB3 =
n

2
(4.32)

The length of the goal distance will be equal to the length of the shortest execution plan, namely

GB3 = n. (4.33)

Furthermore, assuming that at least n actions are needed to reach the goal and that there is only
one execution sequence, then the number of states in the model will be equal to

SB3 = n+ 1. (4.34)

The branching factor will always be 1 as there is only one possible action that can be executed
from a given state,

BrB3 = 1. (4.35)

Comparing the parameters of the three models it can be seen that B1, which does not make
use of macro structures or any additional constraints has the largest number of valid plans –
n! (Equation 4.8) – compared to the n!

2n/2
plans of B2 (Equation 4.22). On the other hand, the

third model B3 that in addition to the macro structure, also contains explicit order in which the
actions can be executed, has only one valid plan. In terms of operators, all three models have
the same number of actions, thus the same number of operators. The number of predicates for
B1 is n (Equation 4.3), as is also the case for B2 and B3. The number of objects in B1 is n
(Equation 4.4), while in the case ofB2 andB3 they are n/2 as each two actions create an action
pair and less objects are needed for managing the action sequence. The length of the plans is
also the same for all three models as all actions in the model have to be executed to reach the
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goal state. They however differ in their number of states. While B1 has 2n states, B2 will have

∑m
k=0

(m
k

)
2k states. In the case of B3, the state space will be much smaller as there is only

one execution sequence, thus there are only (n+1) states. This is also reflected in the models’

branching factor – while B1 has maximum of n actions that can be executed from a state, B2

has n
2 , whereas B3 has only 1. This proves that using implicit macro structures decreases the

model complexity compared to models that do not use any macro structures. Additionally,

using explicit macro structures further reduces the model complexity. The above can also be

Figure 4.10: General model dynamics for macro actions. The solid blue line represents the behaviour of

actions that do not use macro structures, the dashed red line shows the behaviour of implicitly modelled

macro structures, while the blue solid line of explicitly modelled. The model complexity for increasing

number of repetitions was plotted starting with one repetition and increasing until 100 repetitions are

reached. The number of states and number of plans are plotted on a logarithmic scale.

seen in Fig. 4.10 where the model complexity for an increasing number of actions was plotted.

Applicability: The macro structures are useful in situations where the user’s actions are

not forced by an external factor like in the case with the team meeting model, where the user

behaviour was forced by the team behaviour. On the other hand, the multi-agent behaviour was

implemented exactly with begin-end action pairs. They ensured that the user action will not be

blocked by another action, but rather will end by itself evoking its own effects.

Another application for the macro structures is defining composite actions, where the begin-
end pair via its preconditions and effects enforces a certain set of actions to be executed in

between.

Macro structures are also used for expressing interleaving actions where one action starts,

then it is interrupted by another and then continues again. Such is the case with filling some-

thing in an object in the cooking task, or eating then stopping in order to drink water, then

continuing to eat. These actions could also be expressed by repeating actions and the choice is

left to the prior knowledge available when implementing the model and whether the action is

independent or influenced by another action.

Like in the case with explicit and implicit repeating actions, it depends on the context

information, whether to use explicit or implicit macro structures. When the order in which the

actions are executed is already known, it is better to use explicit definition, as it reduces the

number of possible actions and increases the action’s probability. However, if such information
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is not available beforehand, then the implicit implementation is the only choice, as it can cope

with the behaviour variability.

4.6 Actions synchronisation
Motivation: In problems where multi-user behaviour is expressed and where the separate

users’ actions have to be coordinated for achieving a common goal, action synchronisation is

needed. For example, in the meeting scenario, the users’ actions had to be synchronised in order

to achieve the team goal. This was done in two ways – the first was that the team behaviour

enforced the actions synchronisation on the separate users’ level, whereas the second option

was to let the users for themselves decide when a synchronised action can take place. As it

was already shown in the meeting problem, both options have their advantages and can be used

depending on the model purpose. Here we explain in detail how the actions’ synchronisation

was implemented and discuss both cases.

Structure and implementation: The idea behind synchronising actions is that when mul-

tiple users are acting in an environment, at a given point a mechanism is triggered that creates

constraints synchronising the actions of the users with each other. For example, in the meeting

scenario the users enter the room and can do whatever they want within the limits of the room,

but when one of them prepares for presentation, their actions are synchronised and they have

to finish whatever they are currently doing and prepare for the common goal of conducting a

presentation. Fig. 4.11 shows the structure of synchronising the actions of two users, where

the synchronisation itself can be enforced by the team or can be made as a conscious decision

by each of the users. The implementation of the two options can be found in Appendix E in

Figure 4.11: Structure of implementation for synchronising actions. In it the actions of two agents are

executed in an unsynchronised manner until either the team forces them to coordinate their next actions,

or they make the synchronisation based on their own free choice.

Fig. E.7 on page 225 for the synchronisation enforced by the team, and in Fig. E.8 on page

226 for the multi-agent synchronisation. It can be seen that in the first case (Fig. E.7) each

of the users have to execute an action. However, the moment all users have started executing

the action, and one has finished it, she can start executing the synchronisation action thus en-

forcing it to all remaining agents in the environment. This is done in the action’s effect, where

the forall clause enforces the agents to quit their actions and to be able to execute only the

synchronised action. In that manner time information about the action is lost as it is possible it

was never executed until the end. On the other hand, the implementation of the second option,

where each agent has to make her own decision, it can be seen that a macro structure is used,

ensuring that the agents will not be influenced by external factors while executing their actions.

Only after the actions are completed, the synchronised actions can take place (see Fig. E.8).

The difference between the two implementations is that while in the team case, the expected

behaviour is enforced by the effects of the synchronising action, in the multi-agent case, the

required conditions for executing the synchronised actions are specified in the preconditions.
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Consequences: The two options for implementing synchronisation, differ not only in the
details about the actions’ durations but also in the runtime models’ parameters and their dy-
namics during execution. Table 4.4 show the parameters for the two implementations. It can be

Table 4.4: Parameters of synchronisation implementation. The values for the team synchronisation are
based on the implementation in Fig. E.7 on page 225, while those for the multi-agent synchronisation
are based on the implementation in Fig. E.8 on page 226.

Parameter Value (team) Value (multi) Description

# operators 4 6 grounded actions after the model compilation

# predicates 7 8 grounded predicates after the model compilation

# objects 2 2 objects in the model

# states 7 12 state-space of the model

# valid plans 4 12 valid plans leading from the initial to the goal state

goal distance 4 6 distance from the initial to the goal state

max. branching factor 4 2 maximum number of possible actions from a state

final log likelihood -4.85203 -2.77259 final log likelihood of the execution sequence

seen that the synchronisation enforced by the team has less operators and less predicates, thus
generating smaller state-space. That is due to the usage of macro structure in the multi-user
synchronisation for ensuring that the users make the decision of finishing the action indepen-
dently. On the other hand, the fact that the first synchronised action in the multi-user case can
take place only after all other actions are executed, decreases the model’s branching factor (2
against 4 in the team enforced synchronisation) and the number of valid plans (12 in the multi-
user case against 4 in the team case). The lack of macro structures in the team implementation
decreases the goal distance and the shortest path to the goal is 4 states instead of 6 in the multi-
user implementation. Because of the higher branching factor in the team implementation the
final log likelihood of the model is smaller than for the multi-agent implementation, making
the chosen plan less probable than for the multi-agent implementation.

This is also reflected in Fig. 4.12 that shows the model dynamics for a plan where the non-
synchronised action of the first user is executed twice, then the non-synchronised action of the
second user is executed twice, followed by the first user executing the synchronised action then
the second. While in the multi-user behaviour, the model is just waiting until both users have
executed their actions, in the team behaviour, the synchronisation is enforced by the first execu-
tion of the synchronised action. This can be seen in the increasing branching factor for the team
enforced implementation, where after the first execution of the second user’s non-synchronised
action, the preconditions for executing the first user, non-synchronised action, as well as those
for executing the synchronised actions are met, increasing the branching factor from 2 to 4.
On the other hand, the branching factor for the multi-agent implementation decreases directly
before the end part of the second user action is executed as it is the only possible action left.
Then the branching factor once again increases to 2 as the synchronised actions for the two
users are now possible. The same behaviour dynamics are also reflected in the model entropy,
where for the team implementation the entropy increases at the synchronisation step, while for
the multi-user implementation it decreases. On the other hand the dynamics for the actions
probabilities is exactly the opposite with the model entropy and the probability increases to 1
at the synchronisation step for the multi-user implementation while it decreases for the team
implementation.

General case: Above we showed in a dummy example of the consequences of two differ-
ent ways for users actions’ synchronisation. Below we discuss the model complexity in a more
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Figure4.12:Modeldynamicsforsynchronisedactions.Inthefigurestheteambehaviourisrepresented
withadashedredlinewhilethemulti-agent–withasolidblueline.

generalcase.

Proposition:Amodelusingactionsynchronisationhassmallernumberofplans,states
andobjectsthanaplainmodel.Furthermore,amodelthatusesateamsynchronisationhas
asmallernumberofoperators,predicates,andstatesthanoneusingmulti-agentsynchronisa-
tion.Ontheotherhandthemulti-agentsynchronisationreducesthemodel’sbranchingfactor.

Assumewehaveanon-synchronisedmodelB1thathasnactionswhichcanbeexecuted
sequentiallyinanyorderwithoutrepetitionandwithoutanyfurtherrestrictions.Additionally,
theactionsareexecutedbyatleasttwoagents.Suchmodelwillexhibitbehaviourandhas
parametersasthoseinEquation4.1toEquation4.7.
NowassumethereisasecondmodelB2thatusesteamsynchronisationandthathasn

groundedactionswhicharedividedintwosets,thefirstcontaininglactions,thesecond–m;
andwherem+l=n. Moreoveralllactionsfromthefirstsethavetobeexecutedbeforethe
mactionsfromthesecondsetcanbeexecuted.Assumingthatallactionshavetobeexecuted
inordertoreachthegoalstate,thenthenumberofvalidplansPlB2canbecalculatedby
calculatingthenumberofallcombinationsoflelementsfortheunsynchronisedactions,then
multiplyingbyallcombinationsofmelementsthatrepresentthesynchronisedactions.This
resultsin

PlB2=l!∗m!, (4.36)

wherethenumberofoperatorsOpB2correspondstotheavailableactionsandis

OpB2=l+m=n. (4.37)

Ifweassumethatinthebestcaseweneedatleastonepredicateindicatingthatanactioncanbe
executed,oneindicatingthattheunsynchronisedactionisbeingexecuted,oneindicatingthat
thesynchronisedactionisbeingexecuted,andonepredicatewithoutparameterindicatingthe
synchronisationhastakenplace,thendependingonthenumberofusersintheenvironmentwe
have:

PrB2=3∗ObB2+1, (4.38)

whereObB2isthenumberofobjectswithwhichthepredicatesaregrounded.
Ifweassumethatinthebestcasethereareonlytwoobjectsusedfortherepresentation

oftwousers,thenthenumberofobjectswillbe2.Inamoregeneralcasewherepusers
areinteractingintheenvironment,thenumberofobligatoryobjectswillbeequalthenumber
ofusers.Thisnumberwillalsobeequaltothenumberofsynchronisedorunsynchronised



108 CHAPTER 4. CCBM MODELLING TOOLKIT

actions, assuming there is only one synchronised or unsynchronised action per user that can be
executed.

ObB2 = p= l =m= n/2 (4.39)

and the length of the goal distance will be equal to the length of the shortest plan, namely

GB2 = n. (4.40)

Furthermore, assuming that in the best possible case only two users interact in the environment,
then the minimal state space of the model SB2 can be computed by the number of predicate
combinations when the users can execute unsynchronised actions, namely 22. Here these are the
two predicates – one indicating the user can do something, and one indicating the user is doing
something unsynchronised – times the number of users. Then the number of combinations for
the synchronised actions (22− 1) is added. Here these predicates are that the user is doing
something synchronised times the number of users. The reason that there is one combination
less than with the unsynchronised actions is due to the fact that in the case no unsynchronised
actions can be executed, at least one of the synchronised actions should be true. In a more
general case where we have p users, the state space can be computed in the following way:

SB2 = 2p+ 2p−1 = 2p+1−1 = 2l+1−1 = 2(n/2)+1−1. (4.41)

The branching factor then in the worst possible case will be equal either to l until all non-
synchronised actions are executed, and m during the execution of the synchronised actions.
The only exception is at step l+ 1 as at that point the preconditions for all synchronised and
also for all non-synchronised actions will hold. In that case, the maximum branching factor
will be

BrB2 = l+m= n. (4.42)

Assume also, there is a third model B3 that uses multi-agent synchronisation. The actions
in this model are also divided into two sets – unsynchronised and synchronised. However in
difference with the actions in B2 here each unsynchronised action is expressed with a begin-
end action pair that ensures the action will be completed successfully. This means that we no
longer have l+m= n actions but rather 2l+m where l+m equals the number of operators n
fromB2. Like in modelB2, the actions from the first set have to be executed before those of the
second can be executed. In addition the actions from 1 to 2l that are combined in a begin-end
macro pairs have the properties described in Equation 4.22 to Equation 4.28. Assuming that all
actions have to be executed in order to reach the goal state, then the number of valid plans PlB3

will be calculated by computing the number of plans for the unsynchronised actions according
to Formula 4.22, then multiplying them by the number of combinations for the synchronised
actions.

PlB3 =
2l!

22l/2
!∗m! =

2l!

2l
∗m! (4.43)

The number of operators OpB3 corresponds to the available actions and is

OpB3 = 2l+m. (4.44)

The minimal number of predicates that are to be grounded will be 4: one predicate that indicates
whether the user is doing something, one indicating that she did something, one indicating that
she is allowed to do something, and finally, one predicate for the synchronised action. To cal-
culate the minimal number of grounded predicates one has to then multiply these 4 predicates
by the number of users in the environment.

PrB3 = 4∗ObB3 , (4.45)
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If we assume that in the best case there are two objects used in the actions (for expressing the
two users), then the number of objects will be 2. In the more general case and assuming each
user has to execute one synchronised and one unsynchronised actions, the number of users will
still be the same as in B2, namely

ObB3 = p= l =m= n/2, (4.46)

and the length of the goal distance will be equal to the length of the shortest execution sequence,
namely

GB3 = 2l+m. (4.47)

Furthermore, assuming that at least 2l+m actions are needed to reach the goal, and assum-
ing that the initial and the goal state are always the same in each execution sequence, the
state space SB3 can be calculated partially with the help of Formula 4.27 where in this case
m = p = l = n/2. This is the behaviour of the two predicates doing something and did some-
thing which express a macro structure. To the number of combinations these two predicates
generate, additional combination has to be added for the predicate can do something as it can
also be either true or false when both doing something and did something are false. In the
remaining cases it is true only when doing something is true. Finally, to add the remaining
combinations from the synchronised actions one has to compute ObB3 ! = p! which is the num-
ber of combinations of the grounded doing something synchronised predicate. This results in
the following formula.

SB3 =
p

∑
k=0

(
p

k

)
2k + 1 +p! =

n/2

∑
k=0

(
n/2

k

)
2k + 1 + (n/2)! (4.48)

The branching factor then will be either l or m depending on which of the two is greater,

BrB3 =

{
l if l > m

m otherwise.
(4.49)

Comparing the parameters of the three models, it can be seen that B1 which does not make
use of action synchronisation has larger number of valid plans – n! (Equation 4.8) – compared
to the (l! +m!) plans of B2 (Equation 4.36) that uses team behaviour synchronisation. On the
other hand, the third model B3 that allows multi-agent behaviour synchronisation has 2l!

2l
+m!

plans (Equation 4.43). This means that B1, has more plans than B2, and B3 has more than B2

and B1. This is caused by the macro structures in the third model that increase the number of
operators compared to B2 and B1. In terms of operators, the first two models have the same
number of actions, thus the same number of operators, while the third has 2l+m because of the
begin-end action pairs with which the user behaviour is expressed. The number of predicates
forB1 is nwhich equals the number of actions, while forB2 it is 3∗p+1 where p is the number
of users. For B3 the number of predicates is slightly higher than for B2 – 4∗p – which is due
to the begin-end action pairs. The number of objects for the first model equals the number of
actions. For the two models using action synchronisation the number of objects is constant,
and in the best case the models will need two objects for expressing the minimum of two users.
In a more general case it will be p objects corresponding to the number of users. The length
of the plans is also the same for the first two models, while for the third it is 2l+m. The
models differ in their number of states. While B1 has 2n states, B2 will have 2p+1− 1 states.
In the case of B3, the state space will be ∑

p
k=0

(p
k

)
2k + 1 + p! which makes it increase faster

than that of B1 and B2 for increasing number of actions. The models’ branching factor for
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B1 and B2 has maximum of n actions that can be executed from a state, while B3 has l or

m, which is smaller than that of B1 and B2. This shows that the multi-agent synchronisation

reduces the branching factor as the synchronisation is not enforced by another action but rather

is a result from the agents own decision to synchronise their actions. The models’ dynamics

for increasing number of actions can be seen in Fig. 4.13. It can be seen that the number of

Figure 4.13: General model dynamics for synchronised actions compared to plain model. The solid

green line represents the behaviour of actions that do not use synchronisation structures, the dashed red

line shows the behaviour of multi-agent modelled macro structures, while the blue solid line of team

synchronisation. The model complexity for increasing number of actions was plotted (1 to 100). The

number of states and number of plans have been plotted on a logarithmic scale.

plans for a team synchronisation model increases more slowly than that of the plain model.

The multi-agent model on the other hand increases its number of plans faster than the other

two models due to its macro structures. The number of operators increases linearly with that

of multi-agent synchronisation being higher due to the two operators needed for expressing an

action. The same applies for the goal distance. The number of objects, on the other hand, is

smaller for the synchronised models as for n actions one needs at most n/2 users to execute

them. The state space is smaller for the team synchronised model than for the other two models.

The number of states in the multi-agent increase faster than the other two models due to the

higher number of operators needed for expressing an action. Finally, while the branching factor

for a plain and a team synchronised model equals the number of operators, in the case of multi-

agent synchronisation, it is smaller because one can execute either the synchronised or the

non-synchronised actions.

Applicability: As already mentioned, the synchronisation mechanisms can be applied in

situations where multiple users are acting in the same environment and there is some common

goal that they have to follow. The team enforced synchronisation can be applied in cases where

only the team behaviour is of importance and where the model does not need to explain the

separate single user actions (like in the team model for the three person meeting). The multi-

user synchronisation on the other hand, allows the users to make their own choices to follow

the common goal. Both models have their advantages, as the team model needs less operators,

predicates, plans, and a smaller state space. On the other hand, the multi-agent synchronisation

has a smaller branching factor ensuring that irrelevant actions do not influence the actions
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probability. Thus, depending on the application one could use both of them.

4.7 Type hierarchy
Motivation: Using types in the human behaviour model is essential in situations where

a given action template needs to be parameterised with just a subset of the available objects.

This is important for reducing the number of available operators and grounded predicates, thus

also reducing the number of possible actions from a given state. On the other hand, it also

allows specific objects to inherit multiple types making them applicable for more than one

parameter type in an action template. Such system allows flexible work with the objects in the

environment and makes the model dynamics easier to control. It also allows the existence of

only those operators that are possible for the given problem. Here we show example of how

the type hierarchy influences the model compared to such without type hierarchy.

Structure and implementation: CCBM allows a simple way of creating type hierarchy.

There is a general default type and every other type that is defined is a subtype of the default

type. One can then create subtypes of the subtypes and also to allow a given type to have

more than one parent type. Fig. 4.14 shows the structure of the type system where it can

be seen that specialised type 2 on level n is a subtype of two parent types. Examples of the

type system were also shown in Chapter 3.3 where Figures 3.7, 3.15, and 3.20 show the type

system for the three modelling problems. The usage of the type system is also relatively easy.

Figure 4.14: Structure of implementation for type hierarchy. It can be seen that there is one abstract

parent type from which all specialised subtypes emerge. Each subtype in turn can have its own children

subtypes.

When defining an action template one has to just choose the appropriate type for the action’s

parameters thus allowing only specific objects to be used for the action parameterisation. That

way combination of actions and objects that do not appear in the problem are avoided. An

example of a type hierarchy implementation can be found in Appendix E in Fig. E.9 (page

227) where there are three subtypes defined, and 8 objects belonging to these subtypes. Later

when defining the action manipulate its parameter is of type1 thus parameterising the template

only with the objects of this type. Were there no type system, the action would be parameterised

with all 8 available objects, instead with the 5 objects from type1.

Consequences: The usage of a type system in a problem changes the runtime model pa-

rameters and the model dynamics during execution. Table 4.5 shows the parameters for the

same model, where in the first case a type hierarchy was used and in the second it was without

hierarchy. It can be seen that the usage of the type system reduces the number of operators

and predicates from 8 in the plain case to 5 in the hierarchical as the action is parameterised

only with the relevant objects. This also reflects in the model state space decreasing it from

256 states in the plain case to only 32 when using the type system. It also creates much less
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Table4.5:Parametersofhierarchyimplementation.Thevaluesforthehierarchicalobjectusageare
basedontheimplementationinFig.E.9onpage227.Thevaluesfortheplainmodelarebasedonthe
sameimplementationwiththedifferencethattheparametersthattheactioncantakearefromthegeneral
objecttype(orwithotherwordsanyobjectisapplicabletotheaction).

Parameter Value(hierarchical) Value(plain) Description

#operators 5 8 groundedactionsafterthemodelcompilation

#predicates 5 8 groundedpredicatesafterthemodelcompilation

#objects 8 8 objectsinthemodel

#states 32 256 state-spaceofthemodel

#validplans 120 13944 validplansleadingfromtheinitialtothegoalstate

goaldistance 5 5 distancefromtheinitialtothegoalstate

max.branchingfactor 5 8 maximumnumberofpossibleactionsfromastate

finalloglikelihood -4.78749 -8.81284 finallikelihoodoftheexecutionsequence
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validplansandnarrowsthemodeldiversity.This,inacasewherethemodelheuristicsarenot
verygood,couldplayanessentialroleinrecognisingthecorrectaction.Thatisreflectedinthe
branchingfactorwhereintheplaincaseeachoperatorcanbeexecutedfromagivenstate,while
inthehierarchical,onlythoseoperatorsparameterisedwiththedesiredsubtypearepossible.
Italsochangesthefinalloglikelihoodmakingitalmosttwicehigherforthehierarchicalcase
comparedtotheplainmodel.
Concerningthemodeldynamics–itcanbeseeninFig.4.15thatthebranchingfactoris

alwaysabout0.6timeshigherintheplaincase,whichalsoinfluencesthemodelentropy.Itcan
beseenthatwhileatthelastactionexecutiontheentropyforthehierarchicalcaseisdecreasing
to0,fortheplainitstillstayshigh,asthereare3moreactionsthatareexecutable.Thisis
alsoreflectedintheactionsprobabilities,whereinthehierarchicalcaseitisdecreasingwith
eachexecutedactionwhileintheplaincase,itstaysrelativelylowastherearestillthreemore
actionsavailable.

Figure4.15: Modeldynamicsfortypehierarchy.Theplainmodelthatdoesnotuseanyhierarchyis
representedbydashedredline,whiletheoneusinghierarchyisshownasasolidblueline.

Generalcase:Aboveweshowedthebehaviourofplainversushierarchicalmodelsina
dummyexample.Hereweconsiderthegeneralcaseforanymodelthatcontainstypehierarchy.

Proposition:Amodelthatmakesuseoftypehierarchyreducesthenumberofoperators,
states,plans,aswellasthebranchingfactorcomparedtoaplainmodel.

AssumewehaveamodelB1withactionsA:={a1,a2,...,am}wherem∈Misthenumber
ofobjectsavailable.Thenthemodelhasmactionsthatcanbeexecutedsequentiallyinany
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order without repetition and without any further restrictions. If we assume that in order to reach
the goal, n actions have to be executed with n < m, then the number of valid plans PlB1 can
be calculated by calculating the combinations of all plans of length n containing the n actions,
then summing them up with all plans of length n+ 1 containing all n actions needed to reach
the goal, then all plans with length n+ 2 and so on. Or with other words,

PlB1 =
m

∑
i=n

i!, (4.50)

where the number of operators OpB1 corresponds to the available actions and is

OpB1 =m. (4.51)

If we assume that to express an action we need at least one predicate per action, then the
minimal number of predicates will be equal to the number of actions:

PrB1 =m. (4.52)

If we assume that in the best case there are m objects used in the actions, then the number
of objects will be

ObB1 =m, (4.53)

and the length of the goal distance will be equal to the length of the shortest plan, namely

GB1 = n. (4.54)

Furthermore the minimal state space of the model SB1 is calculated by combining all possible
predicate combinations, and given we have m predicates and no further constrains, then the
state space will be

SB1 = 2m. (4.55)

The branching factor then in the worst possible case will be equal to the number of available
operators, namely

BrB1 =m (4.56)

Assume also there is a modelB2 that uses a type hierarchy. This model has p := {1,2, ...,m}
objects with p ∈M where m is the number of objects but due to the type system used in the
action templates, only a subset of them can be used for parameterising the actions. With other
words we have q := {1,2, ...,n} where q ∈N objects and N ⊂M . If we assume that an action
template is parameterised by a single object, then the number of available actions we have will
be n. Further assuming that in order to reach the goal, one needs to execute these n actions
regardless of their order, then the number of valid plans PlB2 can be calculated by

PlB2 = n!, (4.57)

where the number of operators OpB2 corresponds to the available actions and is

OpB2 = n. (4.58)

If we assume that to express an action we need at least one predicate per action, then the
minimal number of predicates will be equal to the number of actions:

PrB2 = n. (4.59)
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The number of objects will be m as all of the initial objects still exist in the environment.

ObB2 =m, (4.60)

and the length of the goal distance will be equal to the length of the shortest plan, namely

GB2 = n. (4.61)

Furthermore, given that n actions are needed to reach the goal and that only n predicates exist,

then the minimal state space of the model SB2 is

SB2 = 2n. (4.62)

The branching factor then in the worst possible case will be equal to the number of available

operators, namely

BrB2 = n. (4.63)

As model B2 has n actions while B1 has m with m > n, the number of plans in B2 will

be less than those in B1. The same applies for the number of operators, predicates, states and

the branching factor. This is due to the fact that the action templates in the second model are

always parameterised with a subset of all available objects while in B1 each action template is

grounded with all available objects. On the other hand, the number of overall objects in both

models is the same, as well as the minimal goal distance as in both cases there are n actions that

have to be executed to reach the goal. This stands to show that using type hierarchy reduces the

model complexity in terms of valid plans and model states. The model dynamics can be seen

in Fig. 4.16 that shows the model characteristics for increasing number of actions (from 1 to

100).

Figure 4.16: General model dynamics for hierarchical actions compared to plain model. The solid blue

line represents the behaviour of actions that use type hierarchy, the dashed red line shows the behaviour

of a plain model. The model complexity for increasing number of actions was plotted (1 to 100). The

number of operators for the plain model was set to n+20 where n is the number of operators in the

model using type hierarchy.

Applicability: The type hierarchy is applicable in any case where more than one objects

exist that should not be applied to the same action. Additionally the more complex the problem,
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the more important it is to use such types system. For example, in the cooking problem it

was essential to use a complex type system as the lack of such resulted in too many possible

actions from a given state, which usually led to the wrong action being selected. In more simple

problems such as the meeting scenario, it is not necessary to use overly complex type hierarchy,

still the division of the different types of locations proved to be a useful tool for reducing the

number of possible move actions from a given place.

4.8 Combining objects
Motivation: Combined objects are used in situations where there are many objects in the

environment and an operator is manipulating more than one of them. In that case using the

objects separately increases the model complexity due to the higher number of combinations

possible. This leads to the existence of repeating combinations that only decrease the proba-

bility of the correct action. To avoid that, a mechanism can be applied that either makes use

of a single combined object which in itself contains several objects, or that uses lock predi-

cates to define which objects can be combined together. Here we discuss the way in which

such mechanisms can be implemented and their consequences on the model parameters and

dynamics.

Structure and implementation: To create combined objects one needs to define an object

type and the corresponding constants for a combined object. Additionally, predicates are be-

ing introduced that allow assigning a single object to a predicate with combined object. The

structure of such modelling mechanism is shown in Fig. 4.17 where it can be seen that two

single objects are represented by a combined object. To get the single object id, two different

predicates with the same combined object are used. This can also be seen in Appendix E in Fig.

Figure 4.17: Structure of implementation for combined objects. The figure shows four objects each of

which is combined in a pair of two. Later to retrieve each element in the combined object, a special

predicate is used that provides the mapping from the combined object to the separate objects.

E.10 (page 228) where there are ten single objects and five combined, each of the combined

representing two single objects. Later, the action manipulate-two-objects has as parameter a

combined object and with the help of the predicates combined-object1 and combined-object2
sets the predicate indicating that a single object has been manipulated to true. The assigning of

a predicate with a combined object to a single object is then done in the problem description,

where each of the predicates with a combined object is assigned to one of the single objects.

That way the model is able to represent the manipulation of all objects without creating redun-

dant combinations.

Alternatively, the same can be achieved by using lock predicates that define which objects

can be used together. Then the action that makes use of these objects is parameterised only with

the objects that are allowed to be together and ignores all remaining combinations. An example
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implementation of this mechanism can be seen in Appendix E in Fig. E.11 (page 229). In it,
the predicate can-be-together takes care of the object combinations that are allowed ignoring
all the remaining combinations.

Consequences: Both types of model implementation have the same influence on the run-
time model parameters and dynamics. Table 4.6 shows the parameters of the runtime model
with combined objects, compared to those with lock predicates, compared to those of a model
that uses operator that simultaneously manipulates two single objects without any lock mecha-
nisms. As the compiled model generates all possible combinations of two objects and as there
are 10 single objects it can be seen that the single objects model has 100 operators. However,
most of these operators are redundant as the place of the objects (which of the two objects is
first) does not matter. Furthermore, if we assume that only two specific objects can be ma-

Table 4.6: Parameters of combined objects implementation. The values for the combined actions is
based on the implementation in Fig. E.11 (page 229), those of the lock predicates is based on the
implementation in Fig. E.11 (page 229), and the plain model is the same as the implementation with
the lock predicates, with the difference that the predicate can-be-together is missing, thus allowing any
possible combination.

Parameter Value (combined) Value (lock) Value (plain) Description

# operators 5 5 100 grounded actions after the model compilation

# predicates 10 10 10 grounded predicates after the model compilation

# objects 15 10 10 objects in the model

# states 32 32 1024 state-space of the model

# valid plans 120 120 11 551 680 valid plans leading from the initial to the goal state

goal distance 5 5 5 distance from the initial to the goal state

max. branching factor 5 5 100 maximum number of possible actions from a state

final log likelihood -4.78749 -4.78749 -16.5065 final log likelihood of the execution sequence

nipulated together, the number of relevant operators will be reduced to 5. This is the case in
the model using combined objects or lock predicates where the objects that can be combined
together are already defined. Of course, the combined model has more objects as it also has
to define the combined objects. On the other hand, using lock predicates does not increase the
number of objects, yet all other model parameters are comparable with the first model. This
significantly decreases the model state-space (compared to a model without lock mechanisms)
and it can be seen that whereas the model using single objects has 1024 states, the combined
both have only 32. This also generates much less valid plans which means that a given plan
(or execution sequence) would have higher probability than in the single objects case. This is
reflected by the models’ final log likelihood where the combined objects models have 4 times
higher likelihood than the one using single objects.

This can also be seen in the model dynamics shown in Fig. 4.18 where a plan is executed
that included the manipulation of the 10 single objects with five actions. It can be seen that
while the branching factor for the combined objects (both when using one combined object
or lock predicates) is always small, the branching factor for the single objects explodes at the
beginning and slowly decreases with each executed action. This also makes the model entropy
for the single objects case higher than for the models using lock mechanisms and in the same
time assigns smaller probabilities to the correct actions. This makes it more probable that the
inference engine will choose an incorrect action than in the case with the combined objects.

General case: Above we showed that using combined objects or lock predicates to com-
bine objects reduces the model complexity compared to plain models. We also showed that the
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Figure4.18:Modeldynamicsforcombinedobjects.Amodelthatdoesnotuseanyobjectscombination
isshownwithadashedgreenline.Amodelthatuseslockpredicatestocombinedobjectsisshownwith
adashedredline.Finally,amodelthatusescombinedobjectsisshownwithasoldblueline.Thered
lineisslightlyshiftedsothatitdoesnotoverlapwiththeblueline.

onlydifferencebetweenusinglockpredicatesandcombinedobjects,isthenumberofobjects
available.Belowweconsidertheinfluenceofthesemechanismsinageneralcase.

Proposition:Usingmechanismsforcombiningobjectsreducesthenumberofplans,states,
operators,aswellasthebranchingfactorcomparedtoaplainmodel.Usinglockpredicates
producesthesamemodeldimensionsasusingcombinedobjectswiththeexceptionofthenum-
berofobjects.Inthatcase,theobjectsinamodelusingcombinedobjectsishigherthanthat
ofusinglockpredicates.

AssumewehaveamodelB1withactionsA:={aij}withi:={1,...,n}andj:={1,...,n}
wherenisthenumberofobjectsavailable.Thismeansthatanactioncanbeparameterised
withanycombinationoftwoavailableobjects,alsowithrepeatingobjects.Thenthemodel
hasn2actions.Letassumethatinordertoreachthegoal,alltheavailableobjectshavetobe
involvedinanactionexecutiononceandwithoutanyobjectappearingtwice.Thismeansthat
wecanhaveaplanwithlengthatmostnelementsinthecasewhereanactioncontainsthe
combinationoftwoequalelementse.g.a11

11.Thiswillresultinn!plans.However,allobjects
canappearintheplanalsowhenitislessthannactionslong.Thisisinthecasewhensome
oftheinvolvedactionscontaintwodifferentobjects.Forexample,theplancanhavethelength
of(n−1)whentwoofthedifferentobjectsarecombinedinoneactionaijwithi=j,andthe
remaining(n−2)objectsappearastwoidenticalobjectsiinanactionaii.Inthatcasewewill
haven!/(n−r)!combinationsofactionswithidenticalobjectswhererrepresentsthe(n−2)
actionswithrepeatingobjects.Eachofthesecombinationsthenhastobemultipliedby2asthe
remainingactioncanhaveeithertheorderaijoraji.Thesameprocedurecanbeappliedfor
aplanthathasmorethantwodifferentobjectscombinedtogether.Inthatcasethenumberof
combinationswithidenticalobjectswillbeequalto(n−4),(n−6),...(n/2)andeachofthese
combinationshavetobemultipliedby2forthelastpairoftwodifferentobjects.

Theprocedureisrepeateduntilthelengthofaplaniseithern/2whenthenumberof
objectsiseven,or(n+1)/nwhenthenumberofobjectsisodd.Inthecaseofoddnumberof
objects,theprocedureofcalculatingthenumberofpossibleplansiscompleted,astheshortest
possibleplanwillhaveoneactionwithidenticalelementsand(n−1)/2actionswithpairsof

11Thatisaresultfromthelackofconstraintsforbiddingthesameobjecttoappeartwiceinthesameaction.
Thisresultsinthepreconditionsforexecutingsuchactionbeingsatisfied,astheobjecthasnotbeeninvolvedin
anactionbefore.
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two different elements.
In the case of even number of objects, the shortest plan will however contain N/2 actions

with pairs of only different objects. To compute the combinations of the shortest plan then the
number of objects n is multiplied by the available number of objects (n−2) when the first pair
of objects is fixed, times the number of objects (n− 4) when also the second pair of objects
is fixed, and so on, until the last not fixed pair of objects is reached which produces two more
possible combinations.

Finally, a special case arises when the number of objects equals 2. In that case there is no
plan that contains action with identical objects and action with different objects. Then we have
only 2! combinations in the case only identical objects are used, and additional 2! combinations
when the objects in the action differ.

The procedure of calculating the number of plans can be then represented by the three cases
described above and summarised in Formula 4.64.

PlB1 =


n! + ∑

(n+1)/2
i=2

n!
i! 2 if odd and n > 2

n! + ∑
n/2
i=2

n!
i! 2 + ∏

n/2
i=1 2i if odd and n > 2

n! + ∏
n/2
i=1 2i if n < 2.

, (4.64)

Here i is the length of the plan. It is the result of simplifying the denominator of n!/(n−(n−i))
which represents choosing r = (n− i) elements from a set of n elements (see Formula F.5 in
Appendix F for more details about permutation of elements of a set).

The number of operators OpB1 corresponds to the available actions and is

OpB1 = n2. (4.65)

Assuming we need at most one predicate per object, then the number of predicates will be equal
the number of objects.

PrB1 =ObB1 . (4.66)

The number of objects will be
ObB1 = n, (4.67)

and the length of the goal distance will be equal to the length of the shortest plan. In this case,
as each action can be parameterised with two objects, it will be half the number of objects in
the case we have even number of objects and half the number of objects plus one, in the case
of odd number of objects.

GB1 =

{
n/2 if even
(n+ 1)/2 if odd.

(4.68)

Furthermore, given that there are n grounded predicates and no additional constraints, then the
number of states in the model will be equal to all subsets of these predicates. With other words,

SB1 = 2n. (4.69)

The branching factor then in the worst possible case will be equal to the number of available
operators, namely

BrB1 = n2. (4.70)

Assume also there is a model B2 that makes use of lock predicates, with A := {a1, ...,an/2}
where n is the number of objects available. Each action takes as parameters two objects and
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there is only one combination possible for each two objects. Then the number of valid plans
PlB2 can be calculated by

PlB2 =

{
(n/2)! if even(
(n+1)

2

)
! if odd.

(4.71)

The number of operators OpB2 corresponds to the available actions and is

OpB2 =

{
n/2 if even
(n+ 1)/2 if odd.

(4.72)

The number of predicates then will be equal to the number of available objects, namely

PrB2 = n. (4.73)

The number of objects will be
ObB2 = n, (4.74)

and the length of the goal distance will be equal to the length of the shortest plan, namely

GB2 =

{
n/2 if even
(n+ 1)/2 if odd.

(4.75)

Furthermore, assuming that there are no repeating combinations of objects, then after the exe-
cution of an action two predicates will have the same value (true or false). This will reduce the
possible predicates combinations from 2n to 2n/2.

SB2 =

{
2n/2 if even
2(n+1)/2 if odd.

(4.76)

The branching factor then in the worst possible case will be equal to the number of available
operators,

BrB2 =

{
n/2 if even
(n+ 1)/2 if odd.

(4.77)

Assume also there is a model B3 that uses combined objects, with A := {ai} with i :=
{1, ...,n/2} where n is the number of objects available, and where there are n

2 additional com-
bined objects with each combined object representing a unique action pair. Then the number
of valid plans PlB3 can be calculated by

PlB3 =

{
(n/2)! if even(
(n+1)

2

)
! if odd

(4.78)

where the number of operators OpB3 corresponds to the available actions and is

OpB3 =

{
n/2 if even
(n+ 1)/2 if odd.

(4.79)

The number of predicates then will be equal to the number of single objects, as each complex
object is just a mapping to two single objects.

PrB3 = n. (4.80)
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The number of objects in this case will be the n single objects plus the additional n/2 combined

objects,

ObB3 = n+

{
n/2 if even

(n+1)/2 if odd
(4.81)

and the length of the goal distance will be equal to the length of the shortest plan, namely

GB3 =

{
n/2 if even

(n+1)/2 if odd.
(4.82)

Like in the case of B2 the minimal state space of the model SB3 is

SB3 =

{
2n/2 if even

2(n+1)/2 if odd.
(4.83)

The branching factor then in the worst possible case will be equal to the number of available

operators,

BrB3 =

{
n/2 if even

(n+1)/2 if odd.
(4.84)

Comparing the three models, it can be seen that B1 which does not use combined objects or

Figure 4.19: General model dynamics for combined actions compared to plain model. The solid blue

line represents the behaviour of plain model, the solid red line shows the behaviour of a model that

uses lock mechanisms to combine objects, and the dashed green line uses combined objects. The model

complexity for increasing number of actions was plotted (1 to 100). The number of states and number

of plans are plotted on a logarithmic scale.

lock predicates has the largest number of plans which in any of the three cases is higher than

n!. Using lock predicates, the number of plans is reduced to (n/2)! in B2, and is equivalent to

B3. The same proportions are reflected in the state space and number of operators, as well as

the branching factor. On the other hand, the usage of combined objects increases the number of

objects compared to the remaining two models, as it introduces additional combined objects.

Finally, the goal distance for the three models stays the same. This indicates that using lock
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predicates or combined objects reduces the model complexity as it removes redundant object

combinations. The usage of combined objects compared to lock predicates shows the same

model complexity. However, in the case of B3 there is the disadvantage of the additional

combined objects that are needed. The models’ dynamics for increasing number of actions can

be seen in Fig. 4.19.

Applicability: As already mentioned, the implementation of combined objects or lock

predicates for combining objects can be used in situations where a lot of objects are available.

These objects make the model state-space to explode due to the high number of possible com-

binations between objects. When the objects that can be combined together are already known,

it can decrease the model complexity as only the relevant combinations are considered at all.

The difference between using combined objects and using lock predicates is that in the first

case only one parameter is passed to the action template, whereas in the second case there are

two parameters. On the other hand, the first model artificially increases the number of available

objects which is avoided in the case with the lock predicates. For that reason, it is preferable

to use the lock predicates, as they require less implementation effort and do not introduce any

additional elements to the environment.

4.9 Phases
Motivation: In situations where the model is too complex and creates huge state-space that

often leads to decreasing the actions probabilities and inferring the incorrect action, this could

be avoided to an extend by defining phases. Such phases force the valid model sequences to

pass through a single state at some point during the model execution making all plans that do

not visit this state invalid. Especially, in cases where it is known that the model always visits

a certain state, phases can be extremely useful tools. Here we discuss how such modelling

mechanisms can be implemented and what consequences they have on the model.

Structure and implementation: Phases are nothing more than actions that contain certain

constraints in their preconditions and effects. After compiling, they force the model to always

pass through a given state at a certain point of the model execution. Fig. 4.20 shows the idea

Figure 4.20: Structure of phases. In it the states representing the phases are coloured in orange. All

execution paths that pass through all of the orange states are valid, while the rest are discarded.

behind the phases. It can be seen that states leading to the phases are connected with arrows

– these are the paths that are valid and lead to the goal state. All states that do not lead to the

phases are no longer valid thus the compiler removes them.

The implementation of phases can be seen in Appendix E in Fig. E.12 (page 230). It con-

tains the action do-something that generates five operators and that after grounding defines two

phases in the model (before and after action 3). It can also be seen that the abstract definition
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oftheactiondefinestheboundarybetweenthetwophasesaftertheexecutionofactionnumber
3.Thisisdonebythepredicatecan-do-somethingasforthefirstthreeactionsitissettofalse
whileitissettotruefortheremainingactionsthatwerepreviouslynotallowed.Thesameef-
fectcanbeachievedbydefiningthephaseboundaryasaseparateaction,howeveritwillresult
inmoreoperatorsastherewillbemoreactiontemplates.
Consequences:Theusageofphasesinfluencesthemodelparametersanditsdynamicsas

itreducesthenumberofavailablestates.Toillustratethat,amodelusingphaseswascompared
toonethatdidnotusesuch.Fig.4.7showsthemodelparametersinthecasewhenphaseswere

Table4.7:Parametersofphasesimplementation.Thevaluesforthephasesarebasedontheimplemen-
tationonFig.E.12(page230).Thosefortheplainmodelarebasedonthesameimplementationwith
thedifferencethatthewhenclauseintheaction’spreconditionismissing.

Parameter Value(phases) Value(nophases) Description

#operators 5 5 groundedactionsafterthemodelcompilation

#predicates 10 10 groundedpredicatesafterthemodelcompilation

#objects 5 5 objectsinthemodel

#states 12 32 state-spaceofthemodel

#validplans 4 120 validplansleadingfromtheinitialtothegoalstate

goaldistance 5 5 distancefromtheinitialtothegoalstate

max.branchingfactor 3 5 maximumnumberofpossibleactionsfromastate

finalloglikelihood -2.48491 -4.78749 finalloglikelihoodoftheexecutionsequence
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usedandthenthesamemodelwithoutphases.Itcanbeseenthatintroducingaphaseboundary
intheactionitselfdidnotincreasethenumberofoperators,ortheobjectsneeded.However,the
factthatthephaserestrictsthemodeltojustafractionoftheavailablestates,reducedthestate-
spacefrom32to12states.Furthermore,itgreatlyreducedthenumberofvalidplans(form120
toonly4)whichdirectlyresultsinincreasingthecorrectaction’sprobability.Thegoaldistance
wasnotaffectedasthephaseboundaryisintegratedintheactionsthatareanywayneededfor
executingthegivenplan,whilethebranchingfactorbecametwicesmallerthanwithoutphases.
Thisalsoaffectedthefinalloglikelihoodmakingtheexecutionsequencemoreprobablethan
inthecasewithoutphases.

Figure4.21: Modeldynamicsforphases.Themodelthatusesphasesisrepresentedwithasolidblue
line.Theonewithoutphasesisshownwithadashedredline.

ThisisalsoreflectedinthemodeldynamicsshowninFig.4.21wheretheinfluenceofthe
boundarybetweenthetwophasescaneasilybeseenataction3.Therethemodelbranching
factordropstoonlyoneavailableaction,reducingtheentropyto0andincreasingtheaction’s
probabilityto1.Itcanalsobeseenthattheconstraintsintroducedinthephasecontrolthe
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number of executable actions throughout the model. Their number is always smaller than the
branching factor of the model not using phases. The same is reflected in the model entropy
where the phases take care of lower entropy throughout the model execution. This also makes
the executed plan more probable than in the case without phases, thus increasing the probability
of selecting the correct action.

General case: Above we showed with a dummy example that the usage of phases in a
model decreases the model size in terms of state space and number of valid plans. Below we
discuss the influence of phases in a general model.

Proposition: By using phases the model complexity compared to that of a plain model de-
creases in terms of number of plans, number of states, and branching factor.

Assume we have a model B1 with actions {a1, ...,an} where n is the number of objects
available. If we assume the worst case scenario in which each instance of action a can be
executed sequentially in any order without repetition of an instance, then the number of valid
execution combinations will be n!.

PlB1 = n!, (4.85)

where the number of operators OpB1 corresponds to the number of grounded actions and is

OpB1 = n. (4.86)

If we assume that the abstract action needs at least two predicates with which it can be repre-
sented (one for allowing the action execution and another for indicating the execution), then
when grounding the action, it will result in 2n grounded predicates.

PrB1 = 2n (4.87)

If we assume that in the best case there is one object per action instance, namely the object with
which the instance is grounded, then the number of objects will be

ObB1 = n, (4.88)

and the length of the goal distance will be equal to the length of the shortest execution plan,
namely

GB1 = n, (4.89)

The state-space will then be computed based on the number of predicates. In this case, we have
PrB1 with 2n predicates, and we know that whenever the predicate allowing action execution
is true, the predicate indicating the action is being executed is false. This means that there will
not be 22n states but rather 2n as each two predicates are dependent on each other.

SB1 = 2n. (4.90)

The branching factor then in the worst possible case will be equal to the number of available
actions at a time, namely

BrB1 = n. (4.91)

Assume also there is a model B2 with actions A := {a1, ...,al, b1, ..., bq, ...,m1, ...,mp}
where l+q+ ...+p= n is the number of available actions and where a ∈ L, b ∈Q, m ∈ P and
L ⊂ A, Q ⊂ A, P ⊂ A and L∪Q∪ ...∪P = A. Additionally, actions a1 to al−1 have to be
executed before al, and, all actions b can be executed only after all the a actions are executed
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with b1 to bq−1 executed before bq and so on. The actions al and bq are then the boundaries
between phases in the model. Then the number of valid plans PlB2 can be calculated by calcu-
lating the number of possible combinations for actions a1 to al−1, then multiplying the results
by the number of combinations for b1 to bq1 , and finally, by the number of all combinations for
m. The reason for calculating only l− 1 and q− 1 combinations is that the execution order of
the actions al and bq is fixed. On the other hand, the last subset of actions does not contain a
phase boundary action thus actions m1 to mp can be executed in any order.

PlB2 = (l−1)!(q−1)!...p!.

If I is an index set that indexes the subsets of A P , namely all subsets except for the last subset
P , then we can write the number of plans in the following manner:

PlB2 = p!∏
i∈I

(|Xi|−1)!, (4.92)

where |Xi| is the number of elements for each subset in A.
The number of operators OpB2 corresponds to the available actions and is

OpB2 = l+ q+ ...+p= n. (4.93)

Like in the case of B1, here we also make use of two predicates per action.

PrB1 = 2n (4.94)

The number of objects will correspond to the number of grounded actions, namely

ObB2 = n, (4.95)

and the length of the goal distance will be equal to the length of the shortest plan:

GB2 = n. (4.96)

Furthermore, assuming that at least n actions are needed to reach the goal, and that the model
has always to pass through certain actions (al, bq), then the number of states in the model can
be computed by calculating the number of states in the different phases and then adding them
up.

SB2 = 2l+ 2q + ...+ 2p = ∑
i∈I

2|Xi|, (4.97)

where |Xi| is the number of elements in each subset of A. The branching factor then in the
worst possible case will be equal to the number of available operators in the given phase. That
means that if the number of operators in a phase is denoted by Op(y), where y is the phase,
then

BrB2 = argmax
ymax

Op(ymax) := {ymax|∀y :Op(y)≤Op(ymax)} (4.98)

Whereas modelB1 has n! plans,B2 reduces them to (l−1)!(q−1)!...p! with l+q+ ...+p=
n. The number of operators in both cases is n as is the goal distance, and the number of objects.
The minimal state space is also reduced – while B1 has 2n states, B2 has 2l + 2q + ...+ 2p. In
the case of B2 also the branching factor is smaller as in the worst case it is always equal to a
subset of the n available actions, while in B1, the maximum branching factor is n. The above
equations indicate that using phases reduces the model complexity, as the model can execute
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Figure 4.22: General model dynamics for a model using phases compared to a plain model. The solid

blue line represents the behaviour of the plain model, while the dashed red line shows the behaviour of a

model that uses phases. The model complexity for increasing number of actions was plotted (1 to 100).

The number of phases here is fixed to 4 phases with equal number of actions in each of them.

certain actions only in different subgraph of the model. This can also be seen in Fig. 4.22

which shows the model parameters for increasing number of actions.

Applicability: Phases are applicable when modelling complex problems that generate huge

state-spaces. This often leads to decreasing the probability of the correct actions during infer-

ence. Phases, for example, can be introduced in the cooking problem. Due to the high be-

haviour variability, it will not be possible to introduce real phases that make the model pass

through only one state. However, semi-phases can be used that force the model to pass through

just a few states during the phase, thus increasing the probability that the correct action will be

inferred.

4.10 Modelling the three problems – revisited
Chapter 3 introduced the intuitive CCBM solutions of the three modelling problems. Here

the models are revisited and improved based on the model analysis performed in the previous

chapter. This is done by incorporating relevant patterns from the CCBM modelling toolkit.

4.10.1 3-person meeting
The 3-person meeting model already contained abstract actions, implicit macro structures,

multi-agent action synchronisation, and a simple type hierarchy.

In this section it was improved by introducing an agenda that describes the order in which

the presentations can be executed. That is nothing more than an implementation of the phases

modelling mechanism described in the previous section. The mechanism was introduced based

on the results from the intuitive model which showed that the model sometimes confuses the

user presently executing a presentation action. Fig. 4.8 shows the differences in the two model

parameters. The first is the intuitive model presented in Chapter 3.3, while the second is the

improved version that contains phases. It can be seen that the phases reduced the number of
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Table 4.8: Comparison of model parameters for the intuitive and the improved models.

Parameter Intuitive model Improved model

# operators 88 72
# predicates 72 97
# object types 4 4
# persons 3 3
# locations 7 7
# activities 6 + 10 single-user 6 team + 10 single-user
# states 5568 5110
# valid plans 3515 2714
# hierarchy level 3 3
# goal distance 48 48
# max. branching factor 9 9

grounded actions (from 88 in the intuitive model to 72 in the improved) to the expense of
increasing the number of predicates (from 72 to 97). That is due to the additional predicates
needed for expressing the constraints of the phases. The type system remained the same as
well as the involved persons, locations, objects and activities to be recognised. The state space
however was reduced from 5565 in the intuitive model to 5110 in the model with phases.
The additional constraints also reduced the number of valid plans thus removing execution
sequences that are not plausible for the scenario. Finally, the shortest goal distance and the
maximum branching factor both remained the same.

From the values above it can be seen that the additional constraints managed to decrease
the model size. The hypothesis then was that decreasing the model size can improve its per-
formance. Fig. 4.23 shows the comparison between the performance of the two models. The
results of the intuitive model are shown in red while those of the improved model – in blue. It
can be seen that there is slight improvement in the latter’s performance. It is most visible in the
case of user one and on a team level. This can be explained by the fact that in the model without
agenda the inference engine sometimes chose the wrong user to begin the first presentation. In
the second case, this artefact is not present as the phases allowed just the right user to start first.
Additionally, there is a noticeable improvement in the performance of the model on the long
meeting (the last dot in the plots) where the accuracy of the first two users was increased from
about 95% to about 98%. It can also be seen that the model precision was improved on a team
level, namely the model ability to correctly recognise positive instances. On the other hand, the
model ability to correctly recognise negative instances (represented by its specificity) didn’t
improve. A noticeable improvement is present only in the case of the long meeting (the last dot
in the specificity plots) and especially regarding the second user, where it increased with about
1%. This is a noticeable difference for specificity as this measurement unit usually stays very
high.

To test the significance of the differences between the two models, also a Wilcoxon test was
performed12 [154]. The results from the test can be seen in Appendix I. Assuming significance
confidence of 95% or more, the p-value of the Wilcoxon test should be less or equal to 0.05.
From Table I.1 (page 244) it can be seen that the difference in the models results is significant
for all three users and the team. This indicates that the introduction of patterns in the model
improved the model accuracy and that one can conclude with 95% confidence or more that
the obtained values were not just due to chance. On the other hand, the results show that the
model precision was insignificant and that there is significant difference only in the case of the
team behaviour. Additionally, the difference in the specificity was insignificant in the case of

12For more information on Wilcoxon test, see Appendix I.
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Figure4.23:Performancecomparisonofthetwomeetingmodels.Theresultsoftheintuitivemodel
fromChapter3aregiveninred,whilethatoftheimprovedinblue.Foreachofthethreeusersandthe
teamtheaccuracy,precision,andspecificityareplotted.Foreachofthe21meetingstheaverageof50
runsistaken.

thethirduser,whilefortheremainingtwousersandtheteam,theabilitytorecognisenegative
instanceswereimproved.

Furthermore,likeinChapter3Friedmantestwasappliedtotheresultsfromthesecond
modelthatcontainspatterns.Thiswasdoneinordertotestwhetherthemodelperformance
significantlydiffersgiventhedifferentdatasets.TheresultsfromtheFriedmantestcanbefound
inTableH.2(page241)wheretheaccuracy,precision,andspecificityweretestedseparately;
andinTableH.4(page242)whereallperformancemetricsweretakentogetherasaninputfor
thetest.Itcanbeseenthatdifferenceinthemodelperformancewassignificantwhenallthe
metricsweretakentogetherasininput,andthatitincreasedcomparedtotheintuitivemodels
fromChapter3(seeTableH.4).Thisstandstoshowthatthebias-variancedilemmaisalso
validhere,andthatwithincreasingmodelperformance,themodelbecomesmoresensitive
tochangesinthedata.Thisis,ofcourse,nosurpriseasthisphenomenaiscommonforany
problemthatdealswithdata.Ontheotherhand,whenlookingattheseparateperformance
metrics,oneseesthatthedifferencesinaccuracywereinsignificant.Thisstandstoshowthat
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the introduced patterns in this case reduced the results variations. This is to no surprise as the
introduced agenda reduces the model ability to make errors thus producing similar recognition
results for the different datasets. This however, point once again toward the presence of model
overfitting.

4.10.2 Cooking task
The cooking task model already contained abstract actions, implicit macro structures, im-

plicit repetition, a complex type hierarchy, and combined objects.
In this section it was improved by introducing five phases that limited the number of actions

which can be manipulated at a given location, or the phase at which they can be manipulated.
This was introduced based on the conclusion that most of the actions can be executed with
all available objects, so it is difficult to distinguish an action based just on the objects being
observed13. Additionally, as the repeating actions were modelled to allow infinite repeating14,
a limit of repetitions was introduced based on an educated guess about how many times an
action can be executed. The resulting model parameters compared to those of the intuitive

Table 4.9: Cooking task model parameters.

Parameter Intuitive model Improved model

# operators 111 110

# predicates 129 159

# object types 23 23

# persons 1 1

# locations 4 4

# objects 10 10

# hand locations 6 6

# activities 16 16

# states > 657 000 000 > 657 000 000

# valid plans > 687 343 670 > 687 000 000

# hierarchy level 4 4

# goal distance approximately 80 approximately 80

# max. branching factor 10 (OPL), 12 (OL), 24 (O), 32 (PL), 60 (L) 10 (OPL), 11 (OL), 18 (O), 30 (PL), 58 (L)

model can be seen in Table 4.9. It can be seen that the phases actually increase the number
of predicates while there is almost no difference in the number of operators. The state space
also remains huge and it was impossible to calculate the exact number of states. Thus it is also
impossible to see if there is difference in the state-space size. Due to the fact that the state
space was not calculated, the exact goal distance was also not calculated as that can be done
only after the whole state space is analysed15. However, there is some difference in the number
of possible actions from a given state. In the case when all observations are involved there is
no difference, while when the places are removed the branching factor decreases with one, and
in the case when places and locations are used, or just locations it decreases with 2. This is

13This was observed in the case where only the objects were used as observations (see Fig. 3.16) in Chapter 3.
14Due to the fact that it was not known beforehand how many times the action was repeated.
15However, even in this case the goal distance is used as a heuristic for the action selection. This is done by

approximating the distance to the goal based on landmarks in the model. These landmarks are identified based on
the predicates that define the goal state. Then backward search is done for all preconditions and effects that lead
from the goal to the initial state and the predicates involved are called landmarks. A more detailed description of
landmarks can be found in [116, 115].
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notmuchdifferencebutitisindicationthatthepatternshaveinfluenceonthestatespace.The
situationchangesinthecasewhenonlyobjectsareused.Inthatcasethemaximumnumber
ofpossibleactionsdecreasesfrom24to18.Thiscanbeexplainedbythefactthatthephases
containinformationthatisotherwiseincorporatedintheplacesandlocationsobservations.
Thusthephaseswillhavenoticeableinfluenceonthemodelsizeonlywhentheobservations
containingthisinformationareremoved.
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Figure4.24:Performancecomparisonofthetwocookingtaskmodels.Theresultsoftheintuitivemodel
fromChapter3aregiveninred,whilethatoftheimprovedinblue.Foreachofthedifferentobservation
combinationstheaccuracy,precision,andspecificityareplotted.Foreachofthe7experimentsthe
averageof50runsistaken.

Thedifferenceinthemodels’performanceisreflectedinFig.4.24wheretheaccuracy,
precisionandspecificityforthedifferentobservationsareshown.Itcanbeseenthatinthecase
ofhavingobjects,placesandlocationsasobservations,theperformanceforthetwomodelsis
comparable.Thisisexplainedbythefactthattheobservationsaresodetailedthattheaddi-
tionalconstraintsoftheimprovedmodeldonotbringanythingtoitsperformance.Inthecase
whereobjectsandlocationsareusedasobservations,thereisanoticeableimprovementofthe
accuracyandprecisionforuser4.Thismeansthattheintroducedconstraintsprovideabetter
explanationfortheuserbehaviour.Ontheotherhandthespecificity,namelythemodelability
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to detect negative instances was not improved.
Noticeable difference in the models’ performance can be seen in the third case – when only

objects are used as observations. While the intuitive model performed with 30%-40% accuracy,
the introduction of phases improved it to 50%-60%. This shows that this modelling mechanism
is indeed able to reduce the number of possible actions in such a way that the inference engine
is able to find a much plausible explanation of the user behaviour. This is reflected not only
in the model accuracy but also in its precision and specificity, which indicates that the applied
patterns are able to improve the overall model performance.

The situation somehow changes in the case of not so strong observations. When places and
locations are used as observations, it can be seen that the intuitive model performed slightly
better in three of the datasets (in the case of model accuracy). This can be interpreted as there
is no influence of the patterns on situations where the objects are not involved as observations. It
can be explained by the fact that the phases are connected to the objects the model is reasoning
about and in a loose way can be looked upon as a mechanism for incorporating observation
model information into the system model. In the last case where only the locations are taken as
observation, the improved model is generally showing better recognition rate than the intuitive
model. This once again can be explained by the information encoded in the phases as they
limit certain actions to specific places which reduces the number of possible places accessible
at a given location. On the other hand the model ability to recognise positive instances that are
correctly recognised (its precision) is generally better for the intuitive model.

The results show that the phases are preforming better in situations where the additional
information encoded in them is not present in the sensor infrastructure. The significance of
the results is presented in Table I.2 (page 244). Assuming the 95% confidence, it can be seen
that the difference in model performance for the objects, places and locations was significant.
Thus we can assume that any changes in the model behaviour were due to the patterns and not
just to chance. The same could be concluded for the objects and locations, and for the objects
as observations. This indicates that all cases in which objects were involved as observations
had significant improvement in the performance. It is however not the case for the places
and locations, and only for the locations as observations. For the places and locations there
is significant difference in the models precision but not in its accuracy and specificity. On the
contrary, the p-values are so high that we can easily conclude that any difference in performance
was due to chance alone. In the case of locations it can be concluded that the model accuracy
changed based on the introduced patterns but its precision and specificity were insignificant.

Furthermore, like in Chapter 3 Friedman test was applied to the results from the second
model that contains patterns. This was done in order to test whether the model performance
significantly differs given the different datasets. The results from the Friedman test can be found
in Table H.3 (page 241) where the accuracy, precision, and specificity were tested separately;
and in Table H.4 (page 242) where all performance metrics were taken together as an input for
the test. It can be seen that difference in the model performance was significant for almost all
the calculated metrics, and that it increased compared to the intuitive models from Chapter 3.
This stands to show that the bias-variance dilemma is also valid here, and that with increasing
model performance, the model becomes more sensitive to changes in the data. This is, of
course, no surprise as this phenomena is common for any problem that deals with data. It
however, points out at the fact that one has to find the middle ground between bias and variance,
or with other words between the ability to produce accurate results, and that to predict new data.
The difference in the model performance however, was insignificant in the case of specificity
which can be explained with the fact that the increase in the model performance, also increases
the model ability to recognise negative instances, thus making the specificity more robust to
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variations in the data.

4.10.3 Office scenario
The office scenario model already contained abstract actions and implicit macro structures.
In this section it was enhanced by introducing lock mechanisms for the users’ agenda. This

was due to the fact that the users act in an unsynchronised manner, so synchronisation patterns
will not be applicable to the problem. On the other hand, it was shown that the model has
incredibly huge state-space for such small problem. In attempt to reduce the state-space, the
users’ agenda listed the activities the user plans to execute. The agenda here can be looked
upon as a single phase that indicates the constraints related to the user. The parameters of the
resulting model can be seen in Table 4.10. It shows that this modelling mechanism seriously

Table 4.10: Office model parameters

Intuitive model Improved model
Parameter 1 user 2 users 3 users 1 user 2 users 3 users

# operators 50 100 150 43 50 50

# predicates 28 52 76 19 28 28

# object types 3 3 3 3 3 3

# persons 1 2 3 1 2 3

# locations 7 7 7 7 7 7

# objects 3 3 3 3 3 3

# activities 5 5 5 5 5 5

# states 21 504 9 633 792 > 880 000 000 106 3064 962 880

# valid plans 43329 48 373 761 > 48 373 761 183 3217 4 590 145

# hierarchy level 2 2 2 2 2 2

# goal distance 14 33 > 33 14 15 29

# max. branching factor 6 16 > 16 7 8 21

reduces the number of operators and predicates. While in the intuitive model the number of
operators increases exponentially with each new user, in the improved model it almost does
not change as the model already knows which activities to ignore regarding a given user. The
number of elements that are modelled, as well as the object hierarchy stay the same. However,
there is a significant improvement in the state-space. While in the intuitive model there are
21504 states for the single user problem, in the improved there are only 106. And although the
states increase significantly with increasing the number of users, it is still possible to compute
the number of states for 3 users (in comparison to the more than 880 million states in the intu-
itive model). The same is reflected in the number of valid plans as well as the visibly smaller
branching factor and the smaller goal distance (in the case of two and three users). This indi-
cates that including simple non-synchronised and non-ordered agenda is able to significantly
reduce the model size.

This also improves the model performance as it can be seen from Fig. 4.25. It shows that in
overall the performance was noticeably better in the improved model. The same is reflected in
the model’s ability to represent the underlying behaviour (namely its precision) where in some
of the cases the precision increases from about 30% to about 90%. Similar tendency can be
seen in the model specificity with the exception of user 6. This indicates that the improved
model, as well as the intuitive were both unable to capture negative results.

The results significance is presented in Table I.3. It shows that all three measurements
had values under 0.05 which indicates that the changes in the performance were due to the
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CHAPTER4.CCBMMODELLINGTOOLKIT

Figure4.25:Performancecomparisonofthetwoofficescenariomodels.Theresultsoftheintuitive
modelfromChapter3aregiveninred,whilethatoftheimprovedinblue.Foreachoftheusersthe
accuracy,precision,andspecificityareplotted.Theaverageof50runsistaken.

introducedmodellingmechanismsratherthantochance.Fromthis,itcanbeconcludedthat
evensimpleusageoflockpredicatescanhavesignificantinfluencenotonlyonthemodelsize,
butalsoonitsperformance.Italsoshowsthatthesizeofthemodelandthenumberofpossible
actionshasinfluenceonthemodelperformance.
Finally,totesttheperformancevariabilityacrossdifferentdatasets,Friedmantestwasper-

formed.TheresultscanbeseeninTableH.4inAppendixH(page242).Itshowsthatthe
performancesignificantlydifferedgiventhedifferentdatasets.Itstandstoshowthatthein-
creasedmodelperformanceresultedintohigherresultsvariance.Thisonceagainshowsthe
problemofthebias-variancetradeoff.Namely,ifwewanttohavehighrecognitionrate,we
areforcedtoreducethemodeldegreesoffreedom,thusincreasingthemodelvariance,and
viceversa.Thispointstothefactthatoneshouldbeawareofthiseffectandcarefullyconsider
whatexactlyonewantsfromthemodelbeingdeveloped–veryaccurateactivityrecognition,
orabilitytorecogniselargerangeofuserbehaviour,ormaybesomewhereinbetween.

4.11 Discussion

Chapter3introducedtheproblemofthemodel’sinabilitytorecognisethecorrectactionsin
thecaseoflargestatespaces.Thisresultedinthemodellingtoolkitthatprovidesdifferentmod-
ellingpatternsthatcouldreducethemodelcomplexitythusincreasethemodelperformance.
Oneproblemwithreducingthecomplexityisthemodel’sabilitytorecognisenewvariationsof
thebehaviour.Thisisaresultofintroducingconstraintsthatallowjustsubsetofthelogically
validactionstobeapplicable.Thisproblemcanbeconsideredasaspecialcaseofthebias-
variancedilemma[36,p.466].Itstatesthatthereisalwaysatrade-offbetweenvarianceand
bias:byincreasingthemodel’sflexibilitytoadapttofuturedata,itsperformancetendstode-
crease.Ontheotherhand,whenthemodelisabletocorrectlypredictthetruevalue,ittendsto
bemoresensitivetochangesinthedata.Thisproblemcanalsobenoticedhereasthebehaviour
variabilitydecreaseswithintroducingthemodellingpatternsbutthemodelsensitivitytodata
variationsincreases.Ontheotherhanditwasshownthatthemodelsperformbetterwhenthe
complexityisreduced.Itisobviousthatthemiddlegroundbetweenthesetwophenomenahas
tobefound.Sothequestionarises:Whendowestoptoreducethemodelcomplexity?
Havinginmindthattheultimatereasonforactivityrecognitionistoassisttheuserina

certainway,theapplicationhastobeabletorecognisetheuseractionstosuchdegreethatit
islaterabletoaccuratelyassisther.Thismeansthatthemodelshouldbeabletoprovidehigh
recognitionrate.Meanwhileitshouldalsobeabletocopewiththebehaviourvariability.The
inabilityofthemodeltorecognisebehaviourjustbecauseitisexecutedinsomeotherorder,
rendersthemodelexactlyasuselessaswhenitisunabletorecognisetheactivitieswithhigh
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accuracy. From this is obvious that we need the model to have high performance and still to
be able to cope with differences in the user behaviour. One answer to this problem is that
the patterns although reducing the model variability, still do not reduce it to the extent that it
is able to recognise only the available datasets. For example, the meeting model after some
patterns are applied, still contains almost 3000 different plans for executing the user actions
which is much more than a system designer could model by hand. Especially having in mind
the actions’ granularity (basically the actions recognised are atomic actions) it is impossible to
introduce constraints that will render the behaviour fully deterministic. In that sense, we can
conclude that although the patterns reduce the model complexity, they still preserve some of the
behaviour variability, thus finding the middle ground between bias and variance. Furthermore,
the available amount of context information is not hindered by the reduction of the model
complexity. This means that all the information one could reason about in a general model
is still there in the reduced model with the added advantage that it is more accurate as it is
restricted to more specialised cases.

Another aspect that deserves discussion is the patterns applicability to other rule-based
formalisms. The patterns discussed in this chapter are, of course, presented in the concrete
context of CCBM. However, the applied mechanism – namely the rules that guide these patterns
– are universal for any rule-based formalism. They would yield similar complexity behaviour
regardless if they are implemented e.g. in CCBM, PDDL, LISP16, STRIPS etc. In that sense
one could consider the CCBM patterns as an example of how they will affect a model in a
more general case. This was also shown in the General case sections. The way in which
these constraints are then implemented depends on the concrete formalism and its syntax. The
important thing here is not how exactly or in which language they are implemented, but rather
how they affect the model behaviour and why and where we can apply them in order to decrease
the model complexity and produce desirable results.

4.12 Outlook
The chapter introduced the CCBM modelling toolkit. It is based on successful modelling

practices employed in the models from Chapter 3 and on needs discovered during the modelling
process. Its purpose is to improve the model performance by reducing the size of the model
parameters.

The influence of the patterns on the model parameters and performance was experimentally
shown by comparison of dummy examples. Later, the influence of the patterns was shown
more formally by calculating the parameters for a general model containing the mechanisms
in question. Furthermore, the models from Chapter 3 were enhanced with relevant patterns
and parameters, and their performance was compared with that of the intuitive models from
Chapter 3. The results showed that for the given use cases and models the mechanisms reduced
the size of some model parameters and increased the model performance.

A future work that was left aside here, can be the separate performance evaluation for each
pattern included in the model. Another aspect that deserves looking into is the structured incor-
poration of observation information into the system model. The effects of such incorporation
were observed in the cooking task problem (with objects as observations). However, as the
experiment was not intended to investigate the effects of such incorporation, it was not further
pursued here.

16LISt Processing Language (LISP) [137].
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Chapter 5

Development Process for Symbolic Human
Behaviour Models for Activity Recognition

“It may well be that intuition or artistic skill is largely the product
of imitation and practice, yet this process of development must have

a beginning.”
William T. Morris

Chapter Summary: This chapter looks at the state of the art in model engineering and discusses
advantages and drawbacks to existing approaches and their (possible) application in the field of
activity recognition. Furthermore, it introduces a structured modelling process for developing
human behaviour models for activity recognition based on the state of the art and the experi-
ences made in Chapter 3. The chapter aims at providing a structured workflow for developing
Computational Causal Behaviour Models for activity recognition. It should allow easier problem
backtracking, better model documentation, and results reproducibility – aspects that are generally
under-researched in the field of activity recognition.

Chapter Sources: This chapter contains previously unpublished work.

Questions to be answered in the chapter:

What development processes are there in the different fields of computer science? (In Section 5.2)

What is the development process for CCBM proposed in this work? (In Section 5.3)

5.1 Introduction
The previous chapters showed that modelling human behaviour with CCBM is not a trivial

task. It is rather a complex process where different model components interact and influence
each other to provide good activity recognition results. It was also shown that there are mod-
elling patterns that can reduce the model complexity and improve the actions’ probabilities.

135
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However, so far there is no structured process that provides step by step guidelines about de-
veloping CCBM models in a successful manner (or for any approaches that combines symbolic
and probabilistic techniques). As already shown in Chapter 3, intuitive modelling can lead to a
variety of problems some of which are visible only after the model is implemented and infer-
ence is performed. Such problems could potentially be avoided by applying a structured model
development and by being aware of the effects a given modelling mechanism could have on
the model. Yet, as discussed in the thesis introduction, usually the field of activity recognition
concentrates more on the performance of the runtime model rather on the analysis and design of
such models. For that reason, this chapter focuses on discussing model development processes
from different fields of computer science and their suitability in the case of causal models for
activity recognition. Based on them and the experiences made in Chapter 3, a development
process for CCBM models is introduced. The chapter is structured as follows. Section 5.2 in-
troduces existing development processes and discusses their (possible) application in the field
of activity recognition, as well as the drawbacks they have for applying in this field. Later,
Section 5.3 introduces the development process for Computational Causal Behaviour Models,
where the process phases are discussed in detail.

5.2 Development processes for model engineering
Structured development processes are something common in the field of software engineer-

ing where it is a well established practice to divide the production and maintenance of a given
software product in different stages. This allows better problem understanding, improves the
quality of the final product and provides structured documentation. On the other hand, the field
of activity recognition and data analysis concentrates on the implementation and performance
of runtime models, usually omitting extended problem analysis and design phases. However,
during the modelling of the three problems it became apparent that one could benefit from
a more structured development process for human behaviour models for activity recognition.
Thus, here we discuss the concept of a development process in different fields of computer
science and try to find the bridge between data analysis and engineering.

5.2.1 Software engineering development processes
In the field of software engineering, there are different well established models of the soft-

ware development process [135, p.7]. They all aim at producing more reliable, efficient, and
easily reproducible software. However, it is possible that the developed product is actually
a model itself and not a software. Schreuders argues that engineering paradigms should be
considered not only in the field of software creation, but also in the cases when the product
is a model for problem solving [127]. Thus, software engineering processes can also be ap-
plied to model development. For that reason, here we look into different software development
processes.

5.2.1.1 The waterfall model [120]

The waterfall model was introduced by Royce in his work Managing the development of
large software systems: concepts and techniques [120]. The process was later called waterfall
because of the cascade structure from one phase to another. Fig. 5.1 shows the structure of
the waterfall model. In it the first phase is the requirements definition where the system ser-
vices, constraints and goals are identified, followed by the system design where the components
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Figure 5.1: The waterfall software development process (Figure adapted from [135, p.9].)

of the system are conceptually developed. The third phase is the implementation and testing,

where the designed components are realised in the form of program(s) or program components.

The units are then verified for meeting their specifications during the unit testing. The fourth

phase is the integration and the system testing, where the individual program components are

integrated and tested as a complete system. The final phase is the operation and maintenance,

where the system is put to practice, and where errors that were not discovered earlier are cor-

rected in the course of the system usage.

It can be seen that the waterfall model is an iterative process where the different stages feed

information to each other and where in practice they sometimes overlap. However, as Som-

merville explains, an iterative process makes it difficult to identify checkpoints for planning

and reporting, thus after several iterations some of the early phases are frozen, and the process

continues with the later phases. This premature freezing could lead to the system not doing

what the user expects it to do [135, p.10].

In general, the waterfall model can be used as a basis for CCBM development process, as

it complements the intuitive development process identified in Chapter 3. However, in order

to be applicable in the case of causal models, it has to be seriously adapted for the needs of

CCBM and activity recognition. This is mainly based on the fact that the waterfall model is

very general model that could be applied to variety of applications but the detailed procedure

for the different fields has to be added. Even more, it is unable to cope with the development

of the model’s probabilistic structure.

5.2.1.2 Evolutionary development [135, p.11]

In difference with the waterfall model, evolutionary development is based on the idea of

developing an initial implementation, exposing it to user comments, then refining it through

different versions until the desired system has been developed [135, p.11]. The separate devel-

opment phases in the waterfall model here are carried out concurrently with feedback exchange

between the activities. Figure 5.2 shows the evolutionary development process where the speci-

fication, development and validation are done in parallel based on a simple outline description1.

1Here by simple description is meant that the model specification is simpler than the more complex and detailed

analysis and design phases in the waterfall model.



138 CHAPTER 5. DEVELOPMENT PROCESS FOR SYMBOLIC HBM FOR AR

Figure 5.2: The evolutionary software development process (Figure adapted from [135, p.11].)

There are two types of evolutionary development. The first is exploratory programming
which aims at working with the customer to identify the requirements and deliver a final system.

The initial development is done on those parts of the system that are understood and continues

to add new features proposed by the customer. The second type is throw-away prototyping
which strives to understand the customer requirements and use them as basis for defining better

system requirements. The prototype then concentrates on experimenting with the parts of the

requirements that were poorly understood.

Sommerville argues that although the evolutionary development process is more successful

than the waterfall model from a user point of view, there are three basic problems. The first is

that the process is not visible, and there are no documents which reflect the different versions of

the system. The second problem is that the system is usually poorly structured as the continuous

change corrupts the software structure. This in turn makes the software evolution difficult and

costly. The last problem is that often special skills are required. This is based on the fact that

most available systems developed in such manner are implemented by small teams of highly

skilled and motivated people [135, p. 12].

The problems concerning evolutionary development are actually the core problems that led

to the need of a structured CCBM modelling process. The lack of documentation and rapid

prototyping led to the inability to track the reasons behind modelling solutions, and the dis-

covery of implementation or design bugs. On the other hand the CCBM modelling toolkit

presented in Chapter 4 has parallels with throw-away prototyping, as among other things it ex-

amines the model requirements and strives to provide solution for vague or not well understood

requirements.

5.2.1.3 Boehm’s spiral model [15]

An alternative approach was proposed by Boehm [15]. He suggests that a model which

explicitly recognises risk can be used as the basis for a generic software engineering process.

Boehm’s model has the form of a spiral, hence the name. Each loop in the spiral is a process

phase. This means that the innermost loop could concern system feasibility, the next – system

requirements, etc. Fig. 5.3 shows an example of the Boehm’s spiral model. However, it is

just an example and the general model itself does not have fixed phases. The decision over the

phases’ structure is left for the stakeholders.

Furthermore, each loop in the spiral is split into four sectors. The first is the objective
setting where the objectives for the project phases are defined, the constraints on the process

are identified and a detailed management plan is constructed. Additionally, possible project
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Figure 5.3: The Boehm’s spiral software development process (Figure adapted from [135, p.13].)

risks are identified. The second sector is the risk assessment and reduction. In it for each of the

identified risks a detailed analysis is carried out and precautions are taken to reduce the risks.

The third sector is the development and validation where a development model for the system

is chosen. Based on the dominating risks different development models could be chosen. The

last sector concerns with the planning where the project is reviewed and a decision is made

whether to continue with the next level of the spiral [135, p. 14].

The Boehm’s spiral model in itself is relatively general and applicable to model based ac-

tivity recognition. The problem could arise in the third sector of the model that deals with the

development and validation as in this phase a concrete development process has to be chosen.

Thus in order to use the spiral model, one should have a suitable development process that can

satisfy the needs of model based activity recognition.

5.2.2 Modelling and simulation development process
An example of a model as the output of the development process comes from the field of

modelling and simulation where model development processes are used for model creation and

maintenance in a more structured and easily controllable and reproducible manner [11, 121].

5.2.2.1 Discrete-event system simulation process [12]

An example of a development process from the field of modelling and simulation is that for

discrete-event systems simulation [12, p. 34]. Such simulations deal with systems where the

state variable changes at a discrete set of points in time. Banks et al. [12] propose a simulation

study lifecycle for such systems that is composed of 12 steps. The process can be seen in Fig.

5.4. The first step is the problem formulation, where the problem to be solved is stated and

where possible conflicts in the problem statement are resolved. The second step is the setting
of the objectives and the overall project plan, where the questions to be answered are defined,

and the plans of the study is made in terms of participants involved, cost of the study, number of

days required for accomplishing each phase of the project, and the results expected at the end

of each phase. The third step is the model conceptualisation which deals with the construction
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Figure 5.4: The discrete-event system simulation process (Figure adapted from [12, p. 35].)

of the model. Banks et al. [12, p. 36] advise the developer to start with a simple model and

then build toward greater complexity. They also advise the participation of the model user in

the model conceptualisation as it will enhance the quality of the resulting model and increase

the confidence of the user.

The fourth step is the data collection, which deals with gathering the needed input data.

As the complexity of the model changes, also the required data elements may change. The

fifth step is the model translation where the conceptual model is implemented in a computer-

recognisable format. The sixth step is the model verification. It involves checking whether the

implemented model is performing properly, namely whether the input parameters and logical

structures of the model are correctly represented. This step is followed by the model vali-
dation where the model is calibrated by iteratively comparing the model behaviour with the

actual system behaviour. The model is then iteratively improved until a satisfiable accuracy

is achieved. The eighth step is the experimental design where the alternatives to be simulated

are defined. For each system design that is to be simulated, the length of the runs, the number

of replications, and the initialisation period are decided. The ninth step is the production runs
and analysis which estimate the measures of performance for the system designs that are being

simulated. The tenth step decides whether more runs are needed and what design they should

have. The eleventh step is the documentation and reporting which is divided into program doc-

umentation and progress documentation. While the first documents how the program operates,

the latter provides information about the simulation project history. The last step is the imple-
mentation where based on the simulated solutions and their performance, the client makes the

decision about the solution to be implemented.

This simulation study process has similarities to the intuitive activity recognition process,
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although it cannot be directly applied to activity recognition in its current form. The reason

for that is that while the output of the simulation process is information about which problem

solution would be most appropriate, in the case of activity recognition, the output is that of

the implemented system, and the question then is not only what is the best way of predicting

the user actions but also how well it is able to predict the user actions. Also in the case of

activity recognition, we cannot change the available data so that it will represent the needs of

the model, but rather the other way around – the model has to be able to represent and reason

about the available data. Furthermore, the process is designed for a setup where the actual

data is recorded after the simulation model is developed and evaluated. In the field of activity

recognition it is often the case that the data is recorded beforehand and due to the cost of the

experiment (in terms of participants, settings, infrastructure etc.) one is unable to repeat the

experiment. It is also the case that the model is built in order to explain the data, and not vice

versa2. Another aspect that simulation processes do not cover is that an activity recognition

model has to cope with future data, so it cannot rely only on learning from the available data.

For that specific reason prior knowledge is utilised in the activity recognition models.

5.2.2.2 A systematic methodology for developing discrete event simulation models [121]

An alternative methodology for developing discrete event simulation models was proposed

by Rus et al. [121]. It has five separate phases and could be considered as an adaptation

of the waterfall model. Fig. 5.5 shows the process phases and the steps of each subphase.

The first phase involves the simulator requirements identification and specification where the

Figure 5.5: The discrete-event system simulation process proposed by Rus et al. [121].

purpose and the usage of the model are defined. Also the questions the model has to answer are

determined as well as the data needed to answer these questions. The phase is divided into four

steps: the first is the definition of goals, questions, and the necessary metrics for answering the

questions; the second is the definition of the usage scenarios where the use cases are defined

that are used for answering the problem questions. The third step is the development of the

test cases which are used to verify and validate the model and the resulting simulation. The

last step is the validation of the requirements, where the customer involved in the activity must

agree with the content of the model specifications.

The second phase is the process analysis and specification which involves the understand-

ing, specification and analysis of the process that is to be modelled. This phase is also divided

into four steps. The first is the analysis and creation of a static process model which means

that the problem is analysed, an abstract model is defined and later refined. The process model

2This brings an interesting discussion about combining simulation processes and activity recognition. One

could produce simulated data on which the model is validated, and afterwards to conduct the recording of a real

data for the model evaluation.
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then shows which activities transform which artefacts and how information flows through the
model. The second step is the creation of the influence diagram for describing the relations
between parameters of the process. Here influence factors are such that change the result or
behaviour of other project parameters. The third step is the collection and analysis of empirical
data for deriving the quantitative relationships between process parameters. The last step in
this phase is the quantification of the relations and the distinguishing of the different parameter
types. The output of the second phase are models of the software development process and
parameters that have to be simulated, as well as the description of the assumptions that were
made during the phase.

In the third phase is the model design is developed that is independent of the model im-
plementation. The design is divided into two parts: high level design and detailed design. In
the high level design the surrounding infrastructure is defined, as well as the way in which the
input and output data is managed and represented. In the detailed design the decisions about
which activities to be modelled are made, as well as the items that are to be represented, and
the attributes they should possess. Finally, the flow of the different items is defined.

The fourth phase is the model implementation, where all the design decisions and the nec-
essary information are transferred into a simulation model. The last phase is the validation and
verification, where it is proved whether the model is suitable for the problems it should address.

This development process, similarly to the previous simulation process, cannot be directly
applied to an activity recognition problem. This is due to the fact that while simulation deals
with the problem of determining what will be the most suitable solution to a problem, model-
based activity recognition already provides a model that is a solution of the problem, and the
question then is ”how well the model performs”. Additionally, the fact that the early phases are
no longer revisited at a later stage, means that problems discovered during the implementation
and validation phases cannot be fixed by returning to the early stages.

5.2.2.3 A life cycle for modelling and simulation [11]

Another modelling and simulation development process is the life cycle proposed by Balci
[11]. In it the development process is viewed from four different perspectives – process, prod-
uct, people, and project. The life cycle specifies the work products that are to be created under
the corresponding processes, together with the integrated verification and validation activities.
It also structures the development and provides guidelines for project management, and finally,
identifies areas of expertise in which to employ qualified people. Fig. 5.6 shows the phases
in the proposed model. Although the arrows are sequential, the process is not intended to be
linear or sequential. It is rather an iterative process where reverse transitions are expected.

The first phase in the development process is the problem formulation where the problem
at hand is systematically analysed executing the following steps: establish the problem domain
boundary; gather data and information about the problem; identify the stakeholders and deci-
sion makers; specify the needs and objectives of the stakeholders and decision makers; identify
and specify the constraints; and clearly specify all assumption made so far. The second phase is
the requirements engineering which deals with identification and specification of requirements
based on the formulated problem. Balci argues that a use case based requirements engineering
is the best practice for requirements identification and specification, because a use case repre-
sents a small amount of the work the model is supposed to perform, thus it allows decomposing
the complex problem into subproblems. The third phase is the conceptual modelling which
deals with developing the highest layer of representation of conceptual constructs and knowl-
edge. The conceptual model is created to assist in designing many different types of simulation
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Figure 5.6: The life cycle for modelling and simulation proposed by Balci et al. [11] (Figure adapted

from [11].).

models, thus creating model reusability on a conceptual level. The fourth phase is the archi-
tecting. It deals with specifying the model architecture based on the conceptual model. Balci

explains that there is a distinct difference between design and architecture, as a design is an in-

stantiation of an architecture. This is also the next phase in the development process where the

model design is derived from the architecture specification. Balci proposes decomposition and

modularisation as solutions to reducing and managing the design complexity. The sixth phase is

the model implementation, which takes the model design from the previous phase and programs

it using a simulation software product. To overcome the model complexity, it is decomposed

into submodels. The seventh phase is the model integration which deals with combining the

individually developed submodels into an integrated simulation model. The eight phase is the

experimentation, exercise or use. During this phase the model is experimented with. This phase

produces the simulation results based on which a solution for the problem could be chosen. The

ninth phase is the model presentation which involves the interpretation and documentation of

the simulation results, and their presentation to the decision makers. Aside from these nine

phases there is the model certification that awards a certificate that the model satisfies a spe-

cific quality criteria. Balci’s life cycle also regards the model storage together with all the

documentation and data in a repository that allows future reuse.

Although more complex than the process proposed by Rus et al. [121] it basically has the

same structure and limitation. To be applied to the field of activity recognition such model

should be adjusted to the specific need of this field. The biggest drawback in it is that while it

provides a basis for choosing the best problem solution, an activity recognition model is already

a problem solution, so the choice of what and how to be modelled should be made already in

the first phases of the process.

The three presented methodologies could all be fitted in a general model of a simulation

experiment. Leye et al. discuss different modelling and simulations life cycles and propose

a general structure for modelling and simulation experiments [88]. It contains six phases –

specification where the experiment is defined, configuration where the model parameters are
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selected, simulation where the model is executed, data collection where simulated data of in-

terest is collected, and evaluation where the model results are assessed. These phases resemble

parts of the intuitive process from Chapter 3 – the model implementation and evaluation where

the model is applied to the available data and the estimated behaviour is analysed and evaluated.

However, these are just the later parts of the activity recognition model development. Before

that the test data has to be collected, annotated, and the model itself has to be developed. Fur-

thermore, development processes do not concern themselves with the problem of developing

the probabilistic model structure that is responsible for providing adequate activity recognition.

5.2.3 Development processes for ontologies
One way of encoding prior knowledge for activity recognition is by using ontologies [104],

and although there are no development processes for models for activity recognition, there

are some for developing and maintaining ontologies [60]. An ontology development process

resembles a software engineering process in that it is divided in similar phases – specification,

conceptualisation, formalisation, implementation, and maintenance [48]. Below we discuss

several different development processes for ontologies.

5.2.3.1 Uschold and King’s ontology development method [149]

According to [60, p. 115] the first method for building ontologies was proposed by Uschold

and King in [149] and later extended in [148]. The development process they proposed was

based on experience gathered from developing the Enterprise Ontology [150]. Uschold et al.

Figure 5.7: The ontologies development process proposed by Uschold and King [149] (Figure adapted

from [60, p. 115].).

propose a process that consists of four phases. Fig. 5.7 shows the structure of the development

process. The first phase consists of identifying the ontology’s purpose and scope. It aims at

defining why is the ontology being built, what applications it has, and what the relevant terms

of the domain will be. The second phase is building the ontology. As can be seen in Fig. 5.7,

it is divided into three activities: the first is the ontology capture which deals with identifying

the key concepts and relationships in the problem domain. The second activity is the coding,

where the basic terms that will be used for specifying the ontology are committed; and where

the actual ontology is implemented. The third activity is the integration of existing ontologies

and deals with the way in which already existing ontologies are used in the developed ontology.

The third phase in the proposed process is the ontology evaluation where a technical judge-

ment is performed on the implemented ontology, its documentation and the associated software

environment. The last phase is the ontology documentation where the guidelines for the docu-

mentation are established.

As Gomez-Perez et al. [60, p. 119] explain, the main drawback in this method is that it lacks

a concept phase before implementing the ontology. This leads to problems in understanding

the ontology when based on its implementation. This in turn causes the inability of experts to

build such ontologies in their domain of expertise. This is also one of the main drawbacks of

the intuitive model development presented in Chapter 3.
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5.2.3.2 On-To-Knowledge [136]

The On-To-Knowledge project’s [136] purpose was to apply ontologies to electronically

available information in order to improve the quality of knowledge management in large and

distributed organisations. Among other things the project includes a methodology for building

ontologies. The proposed development process can be seen in Fig. 5.8. It consists of five

Figure 5.8: The ontologies development process proposed by Staab et al. [136] (Figure adapted from

[60, p. 147].).

phases, the first of which is the feasibility study where the problem is identified, as well as the

most promising focus and the target solution. The second phase is the ontology kickoff where

the ontology requirements are identified and specified together with the domain and the goal of

the ontology, the design guidelines, the available knowledge sources, and the potential ontology

users and use cases. Additionally, a baseline taxonomy is developed. The third phase is the

ontology refinement where the goal is to create an application-oriented ontology based on the

guidelines produced by the kickoff phase. This phase is divided into two activities: the first is

the knowledge elicitation process with domain experts where the baseline taxonomy from phase

two is further developed and refined. The second activity is the ontology formalisation where

the ontology is implemented using the chosen ontology language. The language is selected

based on the requirements of the application.

The fourth phase is the ontology evaluation and it deals with proving that the developed

ontology and the corresponding software environment are serving their purpose. During this

phase, two activities are executed: the first is checking the requirements and competency ques-

tions derived in the second phase; and the second deals with testing the ontology in the target

application environment. The last phase is the maintenance. In the On-To-Knowledge project

it was proposed that the ontology maintenance is integrated in the system software [60, p.

146–148].

In difference with the methodology proposed by Uschold et al. [149], this one has a more

extensive conceptualisation phase. However, it still suffers from the fact that earlier phases are

not included into the iteration process, thus making it impossible to correct conceptual problems

discovered at the later phases. On the other hand, similarly to the intuitive development process

in Chapter 3, it defines the conceptual elements to be modelled and the requirements based on

which the implementation language is selected. Additionally, the evaluation process here is

nearer to that of activity recognition than the validation and verification processes typical for

simulation and software engineering.
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5.2.3.3 Methontology [48]

Methontology is a structured methodology for building ontologies from scratch proposed

by Fernandez et al. [48]. It is based on the experiences made in developing an ontology in the

domain of chemicals [48].

Figure 5.9: The ontologies development process proposed by Fernandez et al. [48] (Figure adapted from

[48] and [60, p. 127].).

Fig. 5.9 shows the lifecycle for developing ontologies. The first step that has to be per-

formed before building an ontology is the planification where the ontology designer plans the

main tasks that have to be executed, how they should be arranged, what time and resources are

needed for each task. After the planning, the ontology development begins. There are six states

(or phases) through which the developer should pass in order to create successful ontology. The

first phase is the ontology specification which deals with the questions what is the purpose of
the ontology, what are the ontology applications, and what are the users of this ontology. The

second phase is the ontology conceptualisation where the problem to be solved and its solution

are described. The conceptualisation is based on the problem specification and the knowledge

acquired about the problem domain. The third phase is the formalisation of the ontology. In it

the conceptual ontology is transformed into a formal model, in this case using description logic

or frame oriented representation systems. The fourth phase is the ontology integration. The

purpose of this step is to reuse already existing ontologies by integrating them into the ontol-

ogy being built. The next phase is the ontology implementation. In it the formalised ontology

is implemented in the selected formal language. The final phase is the ontology maintenance
which deals with modifying or including new definitions to the ontology.

In parallel to the phases above, three more activities are executed. These are the knowledge
acquisition where the knowledge to be integrated into the ontology is elicited and where the

sources of this knowledge as well as the techniques used for acquiring it are listed. The second

action is the process of documenting where each step of the development process is carefully

documented for future ontology use or reuse. The last action is the ontology evaluation where

the technical soundness and the applicability to the problem domain are proved. These three

actions are executed throughout the whole development process and are not considered as sep-

arate phases in the ontology development lifecycle.

In difference with the previous two methodologies, Methontology provides the option to

iterate the process and to return to the early phases at any step of the development. This al-

lows fixing conceptual problems that were not discovered during the early development stages.

This also provides a better mechanism of adapting and evolving the ontology. Of course, the
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methodology cannot be directly applied to the field of activity recognition as it has different

objectives but the process can be adapted for the purposes of model based activity recognition.

Furthermore, it does not concerns itself with developing the probabilistic model structure.

5.2.4 Development processes for context aware systems
Human behaviour models for activity recognition aim at representing the available a priori

knowledge needed for providing rich user related information during the inference phase. Thus,

it is reasonable to assume that a model engineering process would improve this knowledge

incorporation. Indulska et al. argue that one of the requirements for context modelling is the

support for software engineering [70]. They also point out that the majority of approaches are
concerned with runtime context representation, querying, and reasoning, not on requirements
analysis, design, or testing. This can be seen in works such as [103, 41]. In this section we

look at some methods for developing context aware systems.

5.2.4.1 Knowledge-based system development lifecycle [61, p. 304]

Gonzalez and Dankel propose a development lifecycle for knowledge-based systems, argu-

ing that in the past knowledge engineering has been performed in an improvised manner [61,

p. 307]. Additionally, they point out that adapting the popular waterfall model is not sufficient

Figure 5.10: The knowledge-based systems development lifecycle proposed by Gonzalez and Dankel

[61, p. 304] (Figure adapted from [61, p. 303].)

for knowledge engineering as it lacks rapid prototyping and incremental development. Thus

they propose a model that combines rapid prototyping, incremental development and a cyclical

lifecycle.

Fig 5.10 shows the lifecycle. It can be seen that it is divided into 10 phases with process

iteration of subset of the phases. The first phase in the model is the problem analysis which

regards the problem and the applicability of knowledge based solution to such problem. Addi-

tionally, the costs for developing such system are calculated in order to determine whether such

system development is warranted. The second phase is the requirements specification where

the knowledge obtained in the first phase is formalised. Based on that the objectives of the

project are set as well as the means for obtaining them. The third phase is the preliminary de-
sign in which the high level decisions for the initial system implementation are defined. These

are the knowledge representation paradigm, the tool chosen for prototyping, and the selection

of system experts. The fourth phase is the rapid prototyping where the initial system proto-

type is designed that should look like the complete system but it should be limited in breadth.

The prototype is then evaluated in the evaluation phase which deals with deciding whether the

prototype could be further developed or discarded. The next phase is the final design which

involves the selection of tools and resources needed for developing the system. Additionally, in
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this phase a high-level description of the system architecture is provided. The seventh phase is

the actual system implementation where the complete knowledge regarding the system has to

be implemented in a computer readable format. The eighth phase is the validation and verifi-
cation where it is tested whether the system is able to solve the problem it was designed for and

whether it is consistent with the requirements and objectives defined earlier. The ninth phase

is the design adjustment where some changes in the design of the system could be made at the

beginning of each iteration. The last phase in the process is the system maintenance and as in

conventional software engineering it deals with documenting, storing and adapting the system.

A model-based activity recognition system can be considered as a knowledge-based sys-

tem, thus the methodology proposed by Gonzalez and Denkel could generally be applied to

such kind of problems. However, although the process allows iterations of the later phases, it

does not have the ability to return to early phases where conceptual problems could be made.

Furthermore, the process does not allow the iteration between some of the phases. This indi-

cates that problems in the early phases, discovered later on, cannot be corrected. Finally, here

once again comes the problem of developing the probabilistic model components.

5.2.4.2 A model driven development method for developing context-aware pervasive sys-
tems [129]

Serral et al. [129] propose a development method for context aware systems that consists of

four phases. The motivation behind the method is to develop context-aware pervasive systems

by developing a set of models that are automatically mapped into system code.

Figure 5.11: The development method for context-aware systems proposed by Serral et al. [129].

The development process can be seen in Fig. 5.11. It is rather simple and straight forward.

The first phase is the conceptual modelling where the system is specified at a high level of

abstraction in the form of PervML models [129]. These models are later used in the second

phase for code generation. In it the PervML models are mapped into Java code and OWL

specifications. The Java code represents the functionalities of the system whereas the OWL

specifications the PervML ontology. The third phase is the driver implementation where the

drivers needed for managing the access from the implementation framework to the devices

are implemented. The final step is the system deployment where the Java implementation is

configured to use the selected drivers.

The proposed method, although labelled as a software engineering method, is rather an

example of the statement by Indulska et al. [70] that most context-aware systems deal with

the runtime model implementation and configuration rather than with problem analysis and

conceptual models. Furthermore, the method is linear and does not allow returning to earlier

phases which could be a disadvantage when conceptual problems are discovered in the later

phases.

5.2.4.3 A context-driven development methodology for context-aware systems [25]

A more complex method for developing context-aware systems is proposed by Choi et al.

[25]. As they explain, context-aware systems demand custom development methodology be-



5.2. DEVELOPMENT PROCESSES FOR MODEL ENGINEERING 149

cause they have specific features such as the need of context modelling and the implementation

of context-dependent services. The process they propose consists of three phases each of which

Figure 5.12: The development method for context-aware systems proposed by Choi et al. [25] (Figure

adapted from [25].).

has various workflows. The first phase is the inception where stakeholders define the scope of

the project, the associated risks and costs. Additionally, the relevant context is identified. The

phase consists of six workflows. The first is the business modelling where the business rules

are defined and the business information is gathered. The second workflow is the business re-
quirements where the stakeholders requirements are collected, the use cases are gathered, and

a specification of both is documented. The next workflow is the context requirements where in

difference with the business requirements, the goal is to gather context information from previ-

ously identified context-sensitive use cases. The fourth workflow in this phase is the analysis.

In it the draft solutions of the use cases are defined. The two main tasks here are to determine

the system platform and to create context-aware use cases. The fifth workflow is the implemen-
tation where a prototype is realised in order to prove the developed concept. The last workflow

is the testing. It involves establishing test cases for acceptance tests.

The second phase is the elaboration phase where the stakeholders analyse the problem,

define the system structure architecture and implement the core architecture. This phase has

the same workflows as the inception phase but in a different context. During the business
modelling the business processes and rules are refined and the business modelling process is

completed. During the business requirements the requirements are also refined and specified

in detail. During the context requirements workflow the gathered context information is cat-

egorised in similar groups in preparation for the context modelling. Additionally, context re-

quirements are elicited. The next workflow is the context modelling where the context model is

designed to meet functional and nonfunctional requirements. During the analysis workflow the

system architecture is determined such that it meets the functional, nonfunctional and context

requirements. Additionally, preliminary system design is performed. This is followed by the

system design where the preliminary design is refined and the realisation of the context repre-

sentation and storage is defined. Later the preliminary architecture framework is implemented

during the implementation workflow.

The last phase is the construction phase where the different system modules are imple-

mented, tested and integrated into the complete system. This phase consists of only two work-

flows. The first is the implementation where the preliminary system implementation is com-

pleted and subcomponents and detailed services are added. The second is the test workflow,

where the different modules are tested to check whether they operate correctly for a given con-
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text. Additionally, the system as a whole is tested whether it operates correctly for the given
context.

The proposed methodology is much more detailed than the one proposed by Serral et al.
[129]. It also allows refinement of the workflows and has a detailed analysis and conceptu-
alising steps. Still, it is possible that the system needs more than just three iterations to be
successfully completed and that could mean iterating the whole process, which is not part of
the proposed process. Here the same problem as in the previous two processes exists: in the
case there is a problem in the early stages, the process does not allow the ability to return to a
previous phase. Furthermore, not surprisingly, it is not able to cope with the development of
the model’s probabilistic elements.

5.2.5 Data analysis processes
So far we looked at different methodologies from the fields of software engineering, mod-

elling and simulation, knowledge and ontologies engineering. The common between them all
is that they all deal with the engineering view of creating a system. They all have a set of
questions that have to be answered, a set of requirements that have to be satisfied, and in return
output a system that is the solution to those questions and requirements, and that is later tested
for satisfiability, further developed and maintained.

On the other hand, the data analysis view is a bit different. In it empirical data is gathered
and analysed in order to answer different questions. As Cohen explains, no matter whether one
is conducting experiments with rats or with programs, there are always three basic research
questions [26, p. 3].

How will a change in the agent’s structure affect its behaviour given a task and an environ-
ment?

How will a change in an agent’s task affect its behaviour in a particular environment?

How will a change in an agent’s environment affect its behaviour on a particular task?

To answer any of these questions based on empirical data, one can apply one of four types of
empirical studies [26, p. 7]. The first are the exploratory studies that deal with causal hypothe-
ses that are tested in observation or manipulation experiments. Basically, that means that huge
amounts of data are collected and later analysed for similarities. The second type of empirical
studies are the assessment studies. They establish baselines and ranges of the behaviour of a
given system, or the corresponding environment. The third type are manipulation experiments
which test hypotheses about causal relations and factors by manipulating them, and determin-
ing effects on measured variables. The last type are the observation experiments. They disclose
effects of factors on measured variables by observing associations between levels of factors and
values of the variables.

As Cohen explains, in the early stages of a project one asks questions that are answered by
exploratory studies, while as the project progresses the answers are obtained by experimental
studies. This shift from exploratory to experimental studies defines the progress in science.
This is also shown in Fig. 5.13 where with the progression form a specific system to more
general, also our understanding shifts from descriptive to causal explanation.

To answer research questions based on empirical studies, Cohen proposes a strategy. This
can also be regarded as a process for data analysis as data analysis is based on exploratory stud-
ies. This process consists of five steps [26, p. 6] and describes a typical empirical generalisation
strategy that is usually used in any data analysis study.



5.2. DEVELOPMENT PROCESSES FOR MODEL ENGINEERING 151

Figure 5.13: The generalisation and understanding of basic research questions [26, p. 3] (Figure adapted

from [26, p. 3].).

1. Implement a program that exhibits a behaviour of interest performed in a specific envi-

ronment.

2. Identify the program’s features, tasks and environments that influence the target be-

haviour.

3. Develop and test a causal model of how the selected features influence the behaviour.

4. When the model is able to provide accurate predictions, generalise the features so that

other variables, programs and features are included in the model.

5. Test whether the general model is able to accurately predict the behaviour of the larger

set of programs, tasks, and environments.

This general approach for answering questions in empirical studies is also reflected in the

state of the art for data analysis processes. Below we look in two such processes.

5.2.5.1 Pattern classification lifecycle [36, p. 14]

A more concrete study design lifecycle is proposed by Duda et al. [36, p. 14]. It concerns

the exploratory study design of pattern recognition. As pattern recognition analyses data for

repeating similarities, the lifecycle includes the data collection, the choice of features to be

compared, the choice of model, the training of the model and its evaluation. Fig. 5.14 shows

Figure 5.14: The pattern classification lifecycle proposed by [36, p. 14] (Figure adapted from [36, p.

14].).

the proposed process. The first phase is the data collection and deals with the data needed for

training and testing the designated system. As a rule, the more the training data, the better

the system performance [36, p. 14]. The second phase is the feature choice. The features

to be compared are usually selected based on preliminary data analysis and on the available

prior knowledge about typical features relevant for the problem domain. The third phase is

the model choice where the model that is to be the solution of the problem is selected. Here,

different models can be selected and later tested to find out which of them is able to represent
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the underlying patterns. The next phase is the model training. This phase deals with the process

of using data to determine the classifier. Based on the patterns learned by the classifier it can

later recognise and classify new data. The last phase is the evaluation, or with other words,

how well is the classifier able to identify patterns in new data. Typical strategies and tests for

performance evaluation can be found in [26, p. 185–235].

This is a typical data analysis approach that can also be recognised in the intuitive devel-

opment process from Chapter 3. However, in our case the development process concentrates

on the manner in which a model is developed. Furthermore, as CCBM proposes substitution of

training data with a-priori knowledge, the fourth model phase is redundant.

5.2.5.2 Cross-Industry Standard Process for Data Mining [131, 21]

Another development method for data analysis comes from the field of data mining. The

method proposed by Shearer is called CRoss-Industry Standard Process for Data Mining

(CRISP-DM) [131] and consists of six recursive phases. The process can be seen in Fig. 5.15.

Figure 5.15: Cross-Industry Standard Process for Data Mining proposed by Shearer [131] (Figure

adapted from [131].).

The first phase is the business understanding which tries to understand the problem from a

business perspective and to convert the gathered knowledge to a data mining definition. It also

deals with developing the preliminary plan for achieving the problem objectives. The second

phase is the data understanding where the initial data is collected and analysed in order to

discover data quality problems, initial insights into the data, or to identify interesting patterns

that can help form hypotheses about the hidden information. The third phase involves the data
preparation where the final dataset or the data to be fed into the modelling tool is prepared. It

involves five steps: first the data to be used is selected based on the problem objectives, then

the data is cleaned, or missing information in ambiguous subsets is estimated and added to the

datasets. The third step is the data construction which involved preparing the data by deriving

new attributes from existing ones or developing new records. Later the data is integrated by

combining information from multiple tables or records to create new records or values. Finally,

the data is formatted to fit the needs of the designated tool.

The fourth phase is the modelling where various modelling techniques are selected and ap-

plied to the problem so that their parameters can be calibrated and optimised. This involves

the selection of the modelling technique, the generation of the test design, the creation of mod-
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els, and finally, their assessment. According to Shearer the model assessment is based on the
analyst domain knowledge, the data mining success criteria, and the desired test design.

The fifth phase is the model evaluation which deals with more detailed evaluation of the
model performance and of its ability to satisfy the business objectives. It involves not only the
evaluation of the model accuracy and generality, but also the representation of the business ob-
jectives, as well as any reasons why the model could be deficient. Finally, it is decided whether
the model has to be finished and deployed or to initiate new iteration of the development pro-
cess, or to set up a completely new data mining project.

The last phase in the project is the deployment where the knowledge gained throughout the
project is organised and presented in a way understandable for the customer. This involves
the development of a strategy for deployment, as well as one for the model monitoring and
maintenance. Additionally, a final project report is produced and the whole project is assessed
in terms of successes and failures.

The CRISP-DM process provides data analysis approach that generally meets the needs of
CCBM and allows the process iteration and improvement. It also takes care of something that is
not an issue in other fields of computer science but is important part of the activity recognition
process: it provides a mechanism for collecting, preparing and using the data to be evaluated.
On the other hand, as most data analysis approaches, it does not go into detail about the con-
crete modelling process. And from our experience with CCBM, exactly this is an essential part
of a successful activity recognition process.

It can be seen that in difference with the engineering methods, the data analysis methods
deal with how to collect, analyse and evaluate data, rather than with what is the best approach to
building a model. They also do not concern themselves with extensive conceptualisation of the
model to be developed. The experience from Chapter 3 showed that this is a major drawback
as many conceptual problems appear first in the model evaluation, when they could be avoided
all together in the presence of more extensive model analysis and design.

5.2.6 The gap between data analysis and engineering
From the above sections it became apparent that depending on the process application, each

process puts more stress on the phases of interest for the concrete model developers. For exam-
ple, in software engineering the processes deal with more detailed software conceptualisation
and design3 and output a validated and deployed software system. The software engineering
processes are relatively general and can be adapted for different problems. Variations of the
waterfall model can be seen in different fields of computer science like the modelling and sim-
ulation lifecycle proposed by Balci et al. [11], the ontology development process Methontology
[48], or the knowledge-based development process proposed by Gonzalez and Dankel [61, p.
304]. The main disadvantage of these methods is that at some point the early analysis and
design phases are no longer revisited which could account to conceptual problems that have to
be solved during the implementation phase. This issue has been addressed by Parnas et al. in
their work A Rational Design Process: How and Why to Fake It [107]. In it they discuss the
problem of freezing early phases and point out that in reality if an error in the early phases is
detected, one will always go back and fix it. They also argue that one usually does not follow
the process exactly as described but rather later on produces documentation that pretends the
process was followed.

3With the exception of the evolutionary software development process that produces a prototype as soon as
possible.
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To solve that problem, recursive development processes are proposed such as the Boehm’s
spiral model [15] or the evolutionary development process [135, p.11]. However, in the case of
the Boehm’s spiral model, the development process itself is still a choice of the developer, with
the only requirement to be repeated until the desired product is outputted. And in the case with
the evolutionary development process, the rapid prototyping does not allow thorough model
conceptualisation which could lead to unexpected problems during the model implementation
and evaluation.

Furthermore, the various processes described in the above sections deliver final products
which differ from the output of a model based activity recognition system. For example, the
output of a software engineering process is a software system that is validated and verified
where by validation and verification the following is meant.

validation: The process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements [IEEE-STD-
610.12] [72, p. 212].

verification: The process of evaluating a system or component to determine whether the
products of a given development phase satisfy the conditions imposed at the start of that
phase [IEEE-STD-610.12] [72, p. 213].

The processes for modelling and simulation, context-aware systems, and ontologies all have
similar understanding for the concepts of validation and verification. The final output of this
phase will be to prove that the system satisfies the previously defined requirements and that
it is a solution to the problem at hand. However, the things look a bit different in the field of
data analysis. Here in addition to the model correctness and suitability for the given problem,
the developer should also concern herself with a more detailed evaluation of the model perfor-
mance. This is due to the fact that there could exist a model that satisfies all requirements, and
that is proved to be a solution of the problem, but that given real data, performs poorly4.

On the other hand, the data analysis processes concentrate on the underlying data and the
information the model can unearth from it rather on a detailed model development process.
Chapter 3 has shown that this could be a drawback for the later model implementation and
evaluation as some problems could have been easily avoided by more thorough conceptualisa-
tion.

Furthermore, most of the processes described above, produce the project documentation
when the project is already completed. Still, the practice with the three experiments in Chapter
3 showed that when the documentation is not produced at the moment a decision is made, it is
almost impossible to later reconstruct the given decision. This indicates that a better process
for documenting the model development is needed.

Finally, one essential issue with the discussed development processes is the lack of mech-
anism for developing the model’s probabilistic structure. A purely rule-based approach would
easily fit into e.g. some adaptation of the waterfall model as the development of elements of the
causal structure does not change the structure of the remaining elements. For example, we can
sequentially develop all actions in the causal model and each newly implemented action will
not change the causal structure of the remaining actions. On the other hand, when dealing with
probabilities, the change of one probabilistic element will change all the remaining elements.
For example, introducing weight to an action will not change just the one action, but will also
have effect on all the remaining actions as each action is weighted with respect to the rest of

4Actually, the experience with modelling with CCBM so far has proven that first versions of the models that
were successfully validated and verified, usually perform poorly provided sensor data.
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the available actions. The same applied to introducing probabilistic action durations. An action
duration will affect the execution time of all the remaining actions. This probabilistic aspect
of approaches that combine logic with Bayesian inference is something that is not regarded in
any of the existing development processes. This is also an essential aspect of the CCBM model
development that has to be carefully considered.

It is obvious that there is a gap between the engineering view of model development and that
of a data analyst. To bridge this gap, in the next sections a development process for engineering
Computational Causal Behaviour Models for activity recognition is proposed.

5.3 Development Process for Computational Causal Behaviour
Models for Activity Recognition

The human behaviour modelling process we propose is based on the process analysis per-
formed in the previous section and on the intuitive development process identified in Chapter
3. It consists of five phases which include not only the model development but also its evalua-
tion and documentation. The goal of the process is to systematically develop a working model
with high activity recognition performance, and meanwhile to increase the ease of tracking and
identifying modelling problems and of finding alternative solutions. It also aims at providing
better model documentation, as in the field of activity recognition it is often the case that a
detailed model documentation is missing [82].

Fig. 5.16 shows the process. It can be seen that the model has two layers. The first one
resembles a standard waterfall model. The first phase in this layer is the analysis phase which
consists of understanding and analysing the problem domain, identifying the model objectives,
and later deriving the model requirements. It also takes care of collecting the data to be anal-
ysed, of deriving actions ontology, and later – of creating the data annotation based on the
actions ontology. The second phase is the model design where modelling solutions for the
objectives are selected. The third phase is the model implementation which is done with Com-
putational Causal Behaviour Models and where in some cases the CCBM modelling toolkit
could be used as it contains a library of solution templates. The fourth phase is the model val-
idation in which the implemented model is validated against an existing plan or a set of plans
and improved based on the annotation. As the developed model aims at recognising user activ-
ities, the modelling process consists of one more phase, namely the model evaluation. In it the
model is employed for recognising activities of daily living and its performance is computed by
comparing the recognised activities to the ground truth. Additionally, the modelling objectives
derived in the first phase are used for success criteria in order to evaluate the model.

The second layer in the development process is introduced due to the need of coping with
the model’s structure that is a combination of causal and probabilistic elements. It consists of
three phases. The first is the development of the causal model and the corresponding observa-
tion model. The second is the development of the action selection heuristics; and the third is
the development of the actions durations. Each of the three phases spreads over three phases
from the first layer: namely, design, implementation, and validation. During the development
of the causal model the appropriate design solutions are chosen, both in terms of causal re-
lations and constraints; and in terms of relations to the observations. Also the parameters to
be inferred are decided upon. These are the parameters and sensor relations that will later be
implemented in the observation model. After the design solutions are made, a minimal model
is implemented, namely the simplest possible model that satisfies the problem. The model is
then compiled and validated against existing plans, and against a collapsed action annotation
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Figure 5.16: Process for developing human behaviour models for activity recognition.

(in other words, annotation without durations). In the case the model is successfully validated,

it can then be enriched. During the second phase, the action selection heuristics are decided

upon. First the heuristics to be used are selected together with the respective values. Later, the

heuristics are incorporated into the already validated model. Finally, the model is once again

compiled and validated against the plans and the collapsed annotation. During the last phase,

the corresponding actions durations are decided upon, then incorporated into the model. The

validation process is then repeated. In this case however, the durative annotation is used. The

execution order of these three phases is necessary because the causal structure has to be com-

pleted in order to be able to introduce action selection heuristics. That is due to the fact that the

selected heuristics will have influence on the whole model, not just on a local element they were
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assigned to. For that reason one has to first ensure that the model is causally correct, before
introducing the probabilistic structure. Similarly, the inappropriate usage of action selection
heuristics could render the correct action non-applicable by assigning too low probability to it.
For that reason the correctness of the heuristics has to be validated before being able to proceed
with introducing the probabilistic action durations. The opposite – first introducing the dura-
tions then the heuristics – could cause the problem that the correct action is never selected, thus
the duration of this action cannot be validated. This could also lead to the designer’s inability
to determine whether the problem is due to the heuristics or to the durations.

Additionally, the process includes the storage of the data that is collected, annotated and
later analysed throughout the developments lifecycle.

Furthermore, the process takes care that each phase is carefully documented so that the
model development and evaluation as well as the decisions made can be easily backtracked.

Finally, the process is iterative one and it is repeated until the desired model effect is
achieved: namely working model with high recognition rate. Furthermore, each of the phases
can be iterated, and one can return to a previous phase without the need of starting the process
from the beginning. Additionally, there are some more complex process dynamics, especially
in the second model layer. They are discussed in detail in the following sections.

Although complex, Fig. 5.16 is just the surface of the process. To understand the different
phases, their relationships and information flow, this section provides a detailed description of
all model components and the corresponding process dynamics.

5.3.1 Analysis and data preparation

On one hand the analysis phase aims at understanding the application problem at hand and
determining the model objectives. It also identifies what kind of human behaviour the model
should be able to represent and finally derives the requirements the model should satisfy. On
the other hand, it deals with the collection of the data that is to be analysed and its annotation.
For that reason it has the following four objectives: (1) to analyse the problem domain; (2) to
collect the data on which the model is to be tested; (3) to derive ontology of relevant activities
to be annotated, theirs attributes and relation to the remaining activities; (4) to annotate the
data based on the developed ontology. Later this will be the ground truth for the future model
evaluation.

Below we discuss these questions and the practices through which to find their answers.

5.3.1.1 Domain analysis

The first step in the analysis phase deals with the problem to be solved, the elements in-
volved in solving it, the objectives the future model should have, the requirements it should
satisfy and the underlying sensor infrastructure. For that reason it is divided into three parts:
the problem analysis where the problem at hand is analysed, the actions that need to be mod-
elled are defined and the sensor infrastructure is decided upon. The second part is the objectives
analysis where the model objectives are derived; and the third part is the requirements analysis
where the requirements the model needs to satisfy are identified.

Problem analysis: The problem analysis deals with the answer of the following questions.
What is the problem to be modelled?: The answer to this question should provide infor-

mation about what kind of behaviour is to be modelled; how many users are involved; what
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are their roles in the problem domain; what is the environment with which the user(s) is(are)
interacting; which elements of the environment are to be modelled and which to be omitted.

What is the application for which the model will be used?: The general answer of this
question is that the model is, of course, designed for activity recognition. However, there are
different applications of activity recognition, e.g. it could provide information to an additional
assistive component that proactively assists the user; it could monitor people who may exhibit
erroneous behaviour caused by illness or age etc. Based on that, the various context information
could be modelled.

What are the actions that will be modelled?: Based on the problem description, one should
compile a list of actions that the user is able to execute within the given problem domain. These
actions will be the building blocks of the corresponding user behaviour.

What kind of sensors do we need to capture these actions?: Based on what is to be modelled
and what we want to recognise, an appropriate sensor infrastructure should be selected. As we
are dealing with real data, it is important to analyse what kind of sensors could be used for cap-
turing the behaviour to be recognised. Additional factors are the costs for such infrastructure,
and the actual model need (after all it does not make sense to use complex sensors that capture
every body movement when one needs to know only the relative user location).

All these questions basically represent the problem analysis produced in Chapter 2.3 (page
19). In it the three problems were identified, the elements to be modelled were defined, and the
corresponding experiments and sensor infrastructure were selected.

Objectives analysis and hypotheses posing: Based on the use cases and their application
domains, the model objectives describe what the designer aims to achieve by building a given
model. They are derived from the problem domain and are based on the requirements5 the
model stakeholders have. The concept of an objective complies with that from the field of
strategic planning and decision making where objective is defined as some pre-established
goal/s; these goals can apply to many different things, as for instance the manufacturing of
a product with costs as low as possible (...) [100, p. 3]. Each objective has a maximisation
function and a threshold value. For example, an objective could be that the model should
produce high recognition rate. The maximisation function then will choose the model with
such parameters that provide the best performance, while the threshold will be that the model
should perform at least as good as a handcrafted model. As an example from the meeting
model, we can say that one of our objectives was to show that the team model performs as
well as hand crafted model. We built the model, then evaluated the estimated activities and
obtained results that were slightly better than a hand crafted HMM used on the same data.
This means that our objective was satisfied. It is also possible that we build several different
models, evaluate them and then choose the one with the highest performance to compare with
the handcrafted model (see Section 3.3.1.3 on page 64). Based on that here objective is defined
in the following manner.

Definition 28. (Objective): A tuple O := (P,T,N), where P is the problem the objective con-
cerns, T is the objective’s threshold value which defines whether an objective is successfully
satisfied, and N is the objective’s maximisation function.

Definition 29. (Maximising an objective): Given an objective O := (P,T,N) and a set of
models M that are solutions to the problem P, M := {m1,m2, ...,mn}, with fO(mi) being the

5Here a stakeholder’s requirement differ from the designer’s requirements defined in Section 2.4 (page 26).
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value associated with the model’s performance concerning this objective. Then an objective’s
maximisation function is given by formula 5.1.

argmax
mmax

fO(mmax) := {mmax|∀mn : fO(mn)≤ fO(mmax)} (5.1)

The derived objectives are later used to evaluate whether a given model was successful in
solving the problem at hand, and in the case of multiple models – which of them showed the
best results.

Along with the objectives definition, one also poses the hypotheses regarding the model that
are to be statistically tested during the model evaluation. The hypotheses could also concern
the data collected for evaluating the model. A hypothesis will be, for example, that a certain
modelling mechanism significantly changes the model performance. Or that the collected data
should have a certain underlying distribution.

The hypotheses could also be defined later during the model development but always before
conducting the tests. The important thing here is that one has to define her hypotheses before
analysing the data or the model results. The opposite – first looking into the data and the results
and then posing hypotheses – could lead to incorrectly interpreting the results. For example,
it is possible that a sensor is malfunctioning producing incorrect readings. If one first poses a
hypothesis about what the data should look like and then sees the deviation from the expected
value, it would be much easier to find out there is a malfunctioning sensor. On the other hand,
personal experience showed that if one first looks in the data and then poses a hypothesis, it is
likely that she will find a reasonable explanation of the readings instead of finding the problem
in the sensor.

Requirements analysis: In Chapter 2 we used requirements analysis in order to select an
appropriate modelling formalism. Beyond that, the requirements are later used in the model
design for identifying additional model relations beside those identified during the annota-
tion process. They also provide information about how to handle contradicting requirements
based on their priority. The requirements analysis comes from the field of software engineering
and complies with the definition given in Section 2.4 (page 26). The requirements analysis
is divided into four steps. These are the requirements collection, requirements classification,
prioritisation, and requirements validation.

Requirements collection: The first step toward defining the modelling requirements is their
identification. That is done based on the problem analysis and the functionality the model has
to possess. The requirements reflect the needs of the model application as well as the user
behaviour to be recognised.

Requirements classification: After collecting the requirements, the next step is classifying
them in different functionality groups. For example, the requirements for the three modelling
use cases discussed in this work, were divided into behaviour-based and application-based, and
each of these groups was further divided into two subgroups (see Section 2.4).

Prioritisation: Each requirement could be assigned a different priority with respect to the
rest of the requirements. Such prioritisation is important when evaluating candidate formalisms
that could satisfy different subsets of the requirements. In such case, the formalism satisfying
the more important requirements would be preferred to the one with the less important require-
ments.

Requirements validation: To find out whether the correct and complete set of requirements
was identified, the requirements are validated according to their semantic properties. The se-
mantic properties of a requirement are based on the software requirements specification (SRS)
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semantic properties described in [39] and the model requirements properties defined in [11].
Namely, each model requirement specification (MRS) should be:

verifiable: represented by the accuracy with which the requirement can be transformed from
higher levels of abstraction into its current form, i.e. how accurately a given abstract
action requirement can be mapped to the concrete requirement in the described problems.

valid: represented by the accuracy with which the requirement represents the real need, i.e.
does the requirement accurately represents the needs of the described problem.

clear: represented by the degree to which the requirement is unambiguous and understand-
able, i.e. are there any doubts about the requirement’s meaning.

complete: represented by the degree to which all parts of a requirement are specified without
missing information, i.e. is there something missing in the requirement’s specification.

consistent: represented by the degree to which the requirements are specified using uniform
notation, terminology, and symbology, and any one requirement does not conflict with
any other.

feasible: represented by the degree of difficulty of implementing a single requirement and
simultaneously meeting competing requirements, i.e. can an action with a given require-
ment be easily modelled without contradicting other requirements.

testable: represented by the degree to which the requirements can easily be tested. A testable
requirement is one that is specified in such a way that a pass/fail criteria can be derived
from its specification.

traceable: represented by the degree to which the requirements related to a particular require-
ment can easily be found.

One way to discover if the properties of the different requirements hold, could be to use
a questionnaire that aims at identifying problems within the requirements specification (see
Appendix C). The data obtained from the requirements validation is then analysed in order
to discover possible problems, discrepancies, or missing specification details. In the case
when a questionnaire is used for validating the requirements, the results could be evaluated
by analysing the following factors6.

• Given n evaluation participants, the number of participants who understood a require-
ment specification is calculated according to ∑

n
i=1 ri, where ri = 1 if the person i under-

stood the requirement specification, and 0 otherwise. This could show us whether the
requirement is defined in a clear and unambiguous way and can point out specifications
that need to be redefined or refined.

• Given n evaluation participants, the number of comments for each requirement is cal-
culated according to ∑

n
i=1 ci, where ci indicates the number of comments a participant

i provided for the requirement in question. This can also pinpoint to under-defined re-
quirements specifications, and the comments themselves can provide useful information
about how the specification can be improved.

6Of course, depending on the hypotheses one has posed, other analysis methods could be applied.
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• Given n evaluation participants, the average score of a requirement property is calculated
by Median(si) where si is the score a participant i has assigned to the property. Here
the median is used instead of the mean because we assumed ordinal data. This shows
how well the requirements were specified, and which aspects of the specifications are
problematic.

5.3.1.2 Data collection

In order to test and evaluate the model to be developed, an experiment has to be conducted
where its participants are acting in an environment supplied with sensors and where they are
asked to follow a specific scenario. The experience showed that to prepare such experiment
and to collect the data, one should take care of the following details.

1. Prepare the use case scenario to be recorded (what is the goal of the experiment; what
behaviour the participants should exhibit; are there some behaviour restrictions).

2. Prepare the sensors infrastructure and test if it works and records in the expected way (as
it is usually not easy to repeat the experiment in case of problems, it is a good idea to
have a backup plan in case of sensors failure).

3. Make sure the participants are aware what exactly their tasks are and how to execute
them.

4. Make sure there is enough storage / capacity / time available to record and store the whole
experiment.

After the data is collected, one should understand it and later prepare it for the future model
evaluation. According to Nisbet et al. [102, p. 51] there are four main issues for data under-
standing. These are the data acquisition, or how to find the data needed for modelling; the data
integration, or how to integrate the data from multiple sources; the data description, or what
the data looks like; and the data assessment, or with other words – how clean7 the dataset is.

The data preparation for future use includes the data cleansing, or how to clean the data;
the data transformation, or how to express the data variables; the data imputation, or how to
handle missing variables; the data weighting and balancing, or the way in which the different
classes are treated; the data filtering, or the treatment of outliners and unwanted data; the data
abstraction, or the handling of temporal data; the data reduction, or the reducing of the amount
of needed data; and the data derivation, or with other words – the creation of new variables.
Nisbet et al. provide a detailed description of all the involved processes [102, p. 51–75].
Although the data preparation process was not discussed in this work, it is an essential part of
the activity recognition process which has to be performed before the designer is able to test
her model on the data.

5.3.1.3 Actions ontology

The actions ontology concerns with deriving the relevant action categories, their attributes
and the relations they have to the rest of the actions in the ontology. The ontology is essential
for annotating the recorded data, as it should provide the needed information about the naming
conventions, the objects that can be assigned to an action, the locations at which the actions

7Here by clean we mean the presence of noise in the sensor readings, as well as missing readings or readings
produced by faulty sensors.
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could be executed etc. It should be coordinated between the project participants and ensured

that all parties later use the same conventions. In other words, the ontology is the baseline

by which the activities are to be labelled, and later developed into model actions with the

corresponding properties. It also ensures that there are no differences in the way a given activity,

or a type of activity is labelled.

To our knowledge there is no general actions ontology or a method according to which

to choose the actions granularity. Many authors decide on the actions granularity depending

on the sensors granularity. If the sensors are not able to capture an action, then it is too fine-

grained to be included into the actions ontology [35, 152]. This however makes the annotation

dependent on the available sensors and not on the executed actions. A context-aware approach

to activity recognition should be able to reason beyond what the sensors are able to observe8.

Thus, it could be reasonable to provide a more fine-grained action ontology where details such

as locations, objects, users are also included in the annotation. When deciding on the fine-

grained annotation one option is to annotate actions that are the smallest intentionally executed

actions. In our case they comply with the definition of atomic actions given in Chapter 1. Such

actions will be those that manipulate objects, or change locations in order to accomplish more

complex activities.

Although there is no general structure for an action ontology, in our experiments we decided

on a uniform action representation structure that allows us to obtain information about the

action being executed, the users, locations, and objects involved in it. Such representation

has the structure action user(s) location(s) object(s). That way during evaluating the model’s

ability to cope with context information, one can easily access the corresponding ground truth.

Fig. 5.17 shows an example structure for the action move from the cooking problem. It can

users:
locations:
objects:
instantiations:

Figure 5.17: Example action ontology for activities annotation

be seen that the actions all include the action name, the users (when such are available), the

locations, and the objects (when available).

5.3.1.4 Data annotation

The next step is the data annotation, where the data instances are assigned a label. In other

words, the sensor readings are assigned the corresponding activity the user was executing at

the time the readings were obtained. This step is important, as it provides the ground truth with

which the model performance is evaluated. Furthermore, the annotation is used for generating

the plans necessary for the model validation, and as observations to validate that the model is

able to infer the given execution sequence and that the actions are assigned the correct durations.

8Chen et al. discuss the problem that sensors are sometimes not able to capture fine-grained activities such

as preparing tea or coffee [23]. These are however typical daily activities that a system dealing with daily living

activities has to be able to reason about.
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To produce useful annotation, one should take care that the data is annotated in an appro-
priate way and format, as discrepancies in the annotation create problems during the validation
and evaluation phases. The derived actions ontology is used for assigning the appropriate at-
tributes to the corresponding action. It also takes care of the correct annotation format being
used. To avoid such problems, one should make sure that:

1. There are no gaps in the annotation. This means that when one action ends, another one
should directly start and there should not be any empty spaces between the actions.

2. The annotation is causally correct. This means that objects do not just appear from one
place to another without being moved, people do not teleport, or do actions at places
where they are not presently located, etc.

From previous experiences with publicly available datasets like the Carnegie Mellon Uni-
versity’s Multi-Modal Activity Database [145] the annotation is usually filled with gaps, miss-
ing information and causally incorrect actions which could cause serious problems in the evalu-
ation of a rule-based approach like CCBM. Having in mind that the annotation is nothing more
than a set of labels without any underlying structure9 we could conclude that nothing forbids
annotating causally impossible sequences of events. This also is not a problem for approaches
that just compare the labels to their estimation. However the moment more complex algebraic
structures have to be validated, this poses a serious problem as the underlying annotation labels
do not represent this structure. For example, the causally incorrect annotation will result in the
definition of plans that are also causally incorrect, and these plans are needed to validate that
the model is able to represent the appropriate behaviour. Furthermore, incorrect annotation will
also reduce the model performance as to evaluate it, the estimated states are compared against
the annotation states10.

The annotation process can be considered as a simplified version of model-driven engineer-
ing where a procedure is developed that has different levels of abstraction and that describes
how to derive a model from another one from the abstraction level immediately above it [45].
The process consists of four steps.

1. From the video log, the domain objects are identified. These are all objects within the
environment that the user is interacting with. Additionally, the different locations within
the environment are identified. These are all locations where the user is manipulating
the objects. Atomic actions are identified based on the manipulated objects. As already
mentioned these are the smallest intentional actions the user executes in order to achieve
a goal.

2. The actions are abstracted from the corresponding objects. These abstracted actions cor-
respond to the upper layers of the actions ontology and represent the action schemes that
will later be implemented in the causal model. Additionally, the objects are abstracted to
object classes that will later represent the parameters in an action scheme.

9That is regardless of the fact that we as a humans see a structure in the labels, e.g. what actions can be executed
when etc. Still the labels themselves are not guided by any rules that define this structure, they are actually nothing
more than a textual representation of the observed actions. This means that there are no rules against producing
causally incorrect annotation.

10Of course, it is possible that the model incorrectly estimated the states in a way that they match the annotation.
In that case the performance will not be decreased, but regardless, it will be misleading.
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3. All instantiations of actions with the corresponding elements in the environment are iden-
tified. These populate the lower layer of the actions ontology and correspond to the
grounded actions the causal model should contain.

4. Finally, the produced annotation sequences were checked for causal correctness to ensure
that each annotation sequence would be a valid and causally correct path. This ensures
that there are no acausal relations between the annotated actions.

5.3.2 Second development layer

The next three phases of the development process – design, implementation, and validation
– fall under the second development layer. As explained before, the need of this layer comes
from the combination of symbolic and probabilistic approaches. Were the model composed of
only symbolic representation, the waterfall model could be easily adjusted to accommodate the
development process. This is due to the fact that on symbolic level one can model each action
in the model without influencing the rest of the action. In that manner one can recursively per-
form analysis, design, implementation, validation, and evaluation achieving the desired model
behaviour. However, in the case when probabilities are present, it is not possible to develop
the corresponding probabilistic structure together with the symbolic structure as a change in
the probabilistic structure of one action will directly affect the probabilistic structure of all the
remaining actions. For example, in Fig. 5.19 (page 167) the weight of one action is set to
different values, while those for the remaining action stay fixed. However, when looking at the
model dynamics during execution, one sees that also the rest of the actions are affected. In that
sense, the symbolic structure of the model has to be developed before the designer is able to
proceed with the probabilistic structure. Furthermore, it is essential to distinguish between the
development of action selection heuristics and the development of action durations, because
before proceeding with the action durations, one has to ensure that the correct action can be
selected at all. This is due to the fact that incorrectly used action selection heuristics could
assign too small probability to the correct action, rendering it improbable regardless of the fact
that it is a valid execution sequence. Considering the probabilistic structure, it is also incorrect
to start with assigning action durations before assigning correct action selection heuristics, as
in the case the action has incorrect heuristics, it will never be selected, thus the action dura-
tion can never be validated. This interaction between causal structure, action heuristics, and
action durations results in the need of introducing the second model layer, where the symbolic
structure is developed first, then the action selection heuristics, and finally the corresponding
action durations. The exact procedure of this process is explained below. The numbers in it
correspond to the numbers in Fig. 5.18.

1. Choose design solutions for the actions to be modelled (e.g. causal relations, representa-
tion of context information, observations that correspond to the actions).

2. Based on the problem description, create a minimal model that is able to explain the
problem. Avoid model overfitting by considering all variations of the behaviour simulta-
neously, rather than concentrating only on one of the datasets. One can create a minimal
model by incrementally adding all actions with only the minimal set of necessary con-
straints.

3. Compile the model in order to check for syntactic and semantic errors.
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Figure 5.18: The second layer of the development process that includes designing, implementing and

validating a model.

4. Validate the model with the plans generated from the annotation. In the case the valida-

tion was successful, continue to the next step, else return to step 1 or 2.

5. Validate the models with the collapsed observations generated from the annotation. This

shows whether the inference engine is able to find the plan given the observations. In

case the step is successful, continue to step 6, else to 1 or 2; in case the action selection

heuristics were already implemented and validated, continue to step 8; in the case the

heuristics were unsuccessfully validated return to 6 or 7 .

6. Choose appropriate action selection heuristics. These could be the goal distance, action

weights, cognitive heuristics [2, p. 132–137] etc.

7. Implement the action selection heuristics if applicable for the problem. Continue to step

4.

8. Choose appropriate action durations based on the domain knowledge, and on the appro-

priate durations probability distribution.

9. Implement the actions durations.

10. In the case the model with its durations compiles, validate the durations.

11. In the case the durations validation was successful, one can now enrich the model by

adding more context information, creating more complex causal relations or more con-

straints for reducing the model size, etc. and repeat the process from the start.

In the following we discuss in detail the different steps of this process starting with design,

then implementation, and finally validation.
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5.3.2.1 Design

The second phase in the CCBM development process is the model design. It deals with
conceptual solutions regarding the model that is to be implemented.

Based on the problem analysis, the model objectives and the requirements, first an appropri-
ate modelling formalism is chosen. As it was already mentioned earlier, throughout this work
we use CCBM for the reasons described in Chapter 3.2. Of course, it is possible that based on
the designer preferences or objectives another modelling formalism is selected. In that case a
modelling formalism is selected according to Formula 2.1 described in Chapter 2 (page 49).

Choosing appropriate modelling solutions: Appropriate modelling solutions are chosen
for the different model objectives and requirements. It is possible to select several different
modelling solutions and later evaluate what is the impact of the given solution to the overall
model performance. As in this phase an implemented model still does not exist, the impact
of the solutions on the performance is evaluated based on a priori assumptions about those
solutions. Later after the model implementation and evaluation, the design solutions could
be reevaluated and substituted with other solutions. For example, requirements for design
solutions could be such as having a small model with less context information versus a bigger
model that contains more prior knowledge and could provide more information about the user
activities.

The concrete impact of modelling solutions for reducing the model complexity was dis-
cussed in Chapter 4 and could be used as a reference when making decisions about the model
design.

Additionally, as CCBM is a causal approach where the actions are described in terms of
precondition-effect pairs, the preconditions and effects for the different actions are extended
based on the actions ontology. The same applies to the causal relationships between the differ-
ent actions and elements in the environment. This is done based on the actions ontology and the
behaviour-based requirements. The handling of conflicting requirements is also decided upon
based on the requirements importance. Furthermore, the mappings of the involved objects and
users to the observations are introduced, as well as the necessary functions in the observation
model that will link the high level states to the observations.

Choosing appropriate action selection heuristics: An important part of the model design
is choosing the action selection heuristics. These are the heuristics that during the inference
influence the decision about the action to be selected. Such heuristics can be:

the goal distance that gives the shortest distance from the initial to the goal state, namely how
many actions have to be executed to reach the goal from the initial situation. The goal
distance is discussed in Formula 3.4 on page 55.

landmarks that, in the case the goal distance cannot be computed due to the size of the model,
search for predicates that have to be set to true in order to reach the goal. The landmarks
are discussed in Chapter 4 on page 128. More details about them can be found in [116,
115].

the revisiting factor, that indicates whether states that were visited once, can be visited again.
With other words, when the revisiting is not allowed, it forbids the execution of actions
repeatedly if they lead to already visited state. The revisiting factor is discussed in For-
mula 3.2 on page 55.
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some cognitive heuristics which Anderson describes in his book The Architecture of Cognition
[2, p. 132–137], for example:

• saliency which assigns weight to an action thus allowing it to be prioritised with

respect to the remaining actions. The saliency is also discussed in Formula 3.3 on

page 55.

• recency which allows the most recently executed action to be prioritised.

• specificity which allows the action that fulfils the most predicates of the goal state

to be prioritised.

The heuristics have to be introduced before the actions’ durations so that artefacts from the

durations cannot cause incorrect choice of heuristics. The opposite – choosing first the dura-

tions and then the heuristics – could result in the inability to select the correct action which will

result in inability to validate the action duration. As no systematic analysis of the influence of

these heuristics was done so far, here we take the saliency as an example of choosing an action

selection heuristic.

An action’s saliency tells us whether some actions are more important than other actions

and what priority they have. The weights can be assigned to the action’s saliency, that is

the importance by which it stands out relative to its neighbours. It is calculated according

to Formula 3.3 in Chapter 3 (page 55). Assigning different saliency values to an action has

influence not only to the action itself, but also on the whole model dynamics. Fig. 5.19 shows

Figure 5.19: Influence of weight on the model entropy and action probability. In it the saliency of action

3 is changed while the rest of the actions have a default saliency of 1. The blue line shows the behaviour

for saliency of 1; the red – of 5; the green – of 10; and the yellow – saliency of 15.

an example of how changing the weight of one action influences the whole model. In it, five

actions are sequentially executed, where all actions have saliency of 1, except for action 3 that

has varying saliency. It can be seen that increasing the action’s saliency decreases the overall

model entropy with a local minimum at action 3. At the same time it increases the action’s

probability and it can be seen that for bigger weights, the probability of action 3 is much higher

than that of the rest of the actions.

In such manner whenever there is available prior knowledge about the importance of differ-

ent actions in a model, one could assign weights to them. However, one should be aware of the

changes they make to the actions’ probabilities in the model. For example, in a model where

from a given state there are many actions from which can be chosen, increasing the saliency
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of one of them will increase its probability of being selected before the other. However, the

opposite is also true – assigning higher weight to action that should not be selected at a given

situation will cause the wrong action to be selected, thus decreasing the model performance.

As a conclusion, one could say that unless the weights are carefully selected, they could cause

more problems than improve the model performance and it is advised to avoid them whenever

possible.

The action selection heuristics can be considered as a separate topic that deserves further

systematic investigation.

5.3.2.2 Choosing appropriate actions’ durations

The next step in the model design is deciding on the model durations and the probability

distribution representing them. These decisions are made based on the prior knowledge about

the actions’ durations, how often they appear in the problem, and whether there is a high vari-

ance in the durations of the different occurrences. Based on this knowledge one should look at

the properties of candidate distributions and choose the most suitable. For example, Fig. 5.20

Figure 5.20: Different duration probability distributions. To the left the exponential probability distribu-

tion is shown, where the different colours represent different rate of decreasing the probability. To the

right the normal probability distribution is shown, where the different colours represent varying mean

and standard deviation.

shows two examples of different probability distributions with varying parameters. The x-axis

is the time steps and the y-axis – the distribution density. The first is the exponential proba-

bility distribution which density is defined by the formula f(x) = λe−λx where λ is the rate

parameter that defines the rate with which the density decreases. Such probability distribution

will be suitable for short actions as the probability of the action happening at the beginning of

the defined duration will be high and will decrease in a relatively short time, making long ac-

tions improbable. Additionally, based on the rate parameter, the length of the actions durations

can be controlled. For example, if there is high variety between the durations of the different

action’s instances, then smaller rate will ensure that also a bit longer actions are included in the

distribution. On the other hand, when the actions have similar length, a higher rate could be

chosen.

The second example in 5.20 is the normal probability distribution that is controlled by its

mean value and standard deviation according to the formula f(x) = 1
σ
√
2π
e
−(x−μ)2

2σ2 where μ is

the mean of the distribution and σ the standard deviation. This kind of probability distribution is
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more suitable for long actions as it can be seen that the density pick is not at the beginning of the
distribution. The mean allows moving the distribution peak along the x-axis, thus controlling
the time at which the most durations are clustered. Similarly, the standard deviation allows
concentrating the density at a given point, or distributing it more evenly along the x-axis, thus
increasing the probability of action instances with varying length.

In such manner by applying the available prior knowledge about the actions’ durations and
comparing it with existing probability distributions, one can choose suitable durations for the
model.

5.3.2.3 Implementation

Based on the design chosen in the previous phase, the initial model implementation is pro-
duced. The implementation is done with CCBM and the model compilation results in a runtime
model with which an inference engine can perform probabilistic activity recognition Details
about the inference engine are provided in [76]. The accompanying CCBM tool support [76]
also allows discovering syntactic and semantic problems at an early stage which improves
reevaluating the design solutions relatively early when an implementation problem is discov-
ered.

Additionally, to support the model developer, the modelling toolkit introduced in Chapter 4
was created. It contains solution templates for reducing the model complexity.

Chapter 4 already discussed in detail what effect these solutions have on the model, how
they should be implemented and in what situations they can be applied. Additionally, example
implementations can be found in Appendix E. Furthermore, in this step the observation model
with its functions is implemented in C++. It gives the connection between high-level activities
and the observed data. It also determines which of the available information to be outputted
during the inference process. Examples of how to build an observation model can be found in
Appendix D.2 (page 216).

The implementation phase is part of all three phases in the second layer. It consists of
first implementing the symbolic model which includes implementing all action templates in
terms of preconditions and effects, implementing the initial and goal world state, the relations
to functions in the observation model, and the observation model itself. Examples of symbolic
models can be seen in Appendix E. Then the action selection heuristics are implemented. They
can either be introduced in the action templates (e.g. the saliency), or as parameters for the
model compilation (e.g. the revisiting factor). An example of action selection heuristic is the
saliency defined in Figure 3.17 on page 76. Examples of how to use the revisiting factor can be
found in [76].

Finally, the action durations are implemented in the action templates. Examples of duration
implementation can be seen in Figure 3.17 on page 76 where the :duration slot defines a normal
duration which exact value is later given in the problem description.

As the process of implementing the model is an iterative one where different steps from
design, implementation and validation interleave with each other, there is no separate imple-
mentation phase in the standard waterfall model sense.

5.3.2.4 Validation

As it can be seen in Fig. 5.18, the validation of the model consists of three parts: validating
the plans, validating whether the model is able to perform state estimation, and finally, validat-
ing the actions’ durations. Below we look in more detail into these three steps.
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Plan validation: In order to validate the model, a plan or a set of plans are generated based
on the annotation. They represent existing execution sequences of the user behaviour for the
given problem. An example of a plan can be seen in Fig. 5.21. In it the number indicates the
time stamp when the action is executed, the asterisk indicates that the action at this time stamp
is a new action. Alternatively, if the action has started in a previous time stamp the asterisk will
be missing. Finally, the grounded action that has to take place is written in brackets.

0,*,(wash hand)
1,*,(wait)
2,*,(move sink counter)
3,*,(take carrot counter)
4,*,(move counter sink)
5,*,(wash carrot)
6,*,(move sink counter)
7,*,(take knife counter)
8,*,(put carrot cutting-board)

Figure 5.21: Extract of a plan from the cooking task.

Fig. 5.18 showed the process of validating and improving the model. The plan(s) could be
created based on the annotation. The plans are then fed to a validator that proves whether the
model contains such plan in its description. If that is not the case, then the model developer
should return to the implementation phase and check whether the actions in the model are cor-
rectly specified and whether there are some contradictions in these specifications. One should
try to identify problems in all available plans and not to concentrate on a single plan as our
experience showed that this usually leads to model overfitting.

Although the annotation should be causally correct, it is sometimes possible that the plan is
actually acausal, which results in the model’s inability to explain it. In such cases one should
return to the actions annotation process and correct any causal discrepancies in the annotation.

Model validation based on state estimation: As the developing of a model with good per-
formance is an incremental process, one should try to perform activity recognition as early as
possible directly with the first working model prototype. This could point out at problems that
otherwise will be discovered when the final product is built. To validate the model, observations
based on the annotation are generated and used for inferring the user(s) actions and states. The
generated observations could have two forms – either a collapsed form (namely each action
is represented by a single observation) so that the durations are not taken into account, or an
extended form where the observations for a given action correspond to the actual actions’ du-
rations. An example of such observations is given in Fig. 2.3 on page 24. In it the observations
are presented either with 1.0 when the observed even was sighted, or with 0.0 when it was not
sighted. In the case of collapsed observations, each new event will be represented just by one
sighting, while in the case of durative observations it will be represented by as many events as
time steps it was observed in the experiment.

The state estimation based on the collapsed observations form aims at pointing out at the
following problems.

• Problems with the action selection (when the incorrect action is selected because the
correct one was assigned a low probability). On a causal level the solution to this problem
would be to check how many actions are possible at the time step the problem appeared
and try to narrow them down by introducing additional constraints; or to introduce better
action selection heuristics.
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• Problems with the action definition (incorrectly used expressions or predicates) that do
not appear during the plan validation but that emerge during the state estimation.

Durations’ validation: To validate the durations, the extended observations are used. As
explained in the design phase, the actions durations are based on prior knowledge about the
relative actions durations and their variance. Depending on that information also the durations’
probability distribution is selected. A good practice is to choose several different distributions
and test them to see which one is most suitable. Additionally, before testing the durations, it is
desired to test the model using exact durations11 calculated from the observations. This is done
to make sure that any other problems are not due to the actions’ durations.

5.3.3 Evaluation

The last phase of the model development is the evaluation phase. In this phase the model
is used for recognising user activities and for evaluating how accurately these activities were
recognised. Additionally, the phase also provides information about the model correctness and
could point at problems that could not be identified earlier. Based on the nature of the model
application, its performance evaluation seriously depends on the underlying sensors infrastruc-
ture and the correctness of the ground truth. During the state and activity estimation, it could
turn out that there are discrepancies between the model and the observations provided by the
sensors. In such case the developer should return to the implementation phase and resolve these
problems.

5.3.3.1 Performance evaluation

The first part of this phase is the performance evaluation. In the field of activity recognition
that is actually the part that provides the most significant information – namely is the model able
to perform activity recognition with a high accuracy. To acquire this information, the output of
the activity estimation is compared to the ground truth (the annotation), and the percentage of
accurately recognised instances is calculated. In order to build a model with high performance
and to avoid unexpected problems late in the model development, it is recommended to start
evaluating the model as soon as there is a compilable version and to continue iterating between
evaluation and model implementation until the desired model performance is achieved. Below
some evaluation metrics one should pay attention to are listed. Most of them are calculated
based on Fig. 5.22 that shows the matrix for calculating accuracy, precision, recall, and speci-
ficity for a two-class problem. For a multi-class problem, a confusion matrix like the one in
Table 5.1 is used.

Figure 5.22: Table for calculating some evaluation metrics. Based on this table the accuracy, precision,
recall, and specificity can be calculated.

11These are durations that are taken from the recorded datasets.
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Confusion matrix: A model’s confusion matrix is a table that allows visualising the perfor-
mance of a model. Each column of the matrix represents the instances of a predicted
class, while each row represents the actual instances in a class. In other words, it shows
whether the model is confusing classes, or in our case – actions. Table 5.1 shows an
example of a confusion matrix for three different actions, where the diagonal contains
the instances that were correctly identified while the remaining cells show how many
instances were incorrectly recognised and with which actions they were confused.

True
Action1 Action2 Action3

Predicted
Action1 10 1 2
Action2 0 12 1
Action3 0 0 15

Table 5.1: Confusion matrix

Accuracy: In the case of activity recognition, the accuracy represents the degree of closeness
of an estimated behaviour to the actual behaviour. Accuracy for a two-class problem is
calculated according to Formula J.1 (page 245) and according to Formulas J.2 (page 245)
or J.3 (page 245) for a multi-class problem. Both formulas can be found in Appendix J.

Precision: The model’s precision represents the proportion of positive test results that are cor-
rectly recognised. It reflects the probability that a positive test represents the underlying
condition being tested for. Precision in a two-class problem is represented by Formula
J.4 (page 245), and by Formula J.5 (page 245) for a multi-class problem.

Recall: The model’s recall represents the proportion of actual positive instances that are cor-
rectly identified as such. It reflects the test’s ability to identify positive results. Recall
for a two-class problem is defined by Formula J.6 in Appendix J (page 246). In the case
of a multi-class problem, the recall equals the accuracy and is calculated according to
Formula J.3 (page 245).

Specificity: The model’s specificity represents the proportion of actual negative instances that
are identified as such. It reflects the test’s ability to identify negative results. Specificity is
represented by Formula J.7 (page 246) for a two-class problem, and according to Formula
J.8 (page 246) for a multi-class problem. Both formulas can be found in Appendix J.

Hypothesis testing and results significance: It was mentioned earlier that one should pose
hypotheses regarding the model performance, results significance, or simply data dis-
tribution. In order to test whether a given hypotheses is accepted or rejected based on
the model results, different statistical methods can be used. Depending on the available
data, its underlying distribution, the number of samples, the number of categories to be
compared etc., different statistical methods can be used. A useful guide for selecting
the appropriate method is provided in [73] where categorisation of the various problems
and the corresponding statistical tests is presented. Fig. J.1 in Appendix J (page 247)
shows the proposed ontology where it can be seen that based on the problem (e.g. how
many groups are to be compared), on the underlying distribution (e.g. normal or non-
normal), the type of data (e.g. nominal or ordinal) one can make a decision about the
test to be applied. After selecting the appropriate tests, the hypothesis testing strategy is
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the following. It is based on the one proposed by Cohen [26, p. 110] and on practical
experiences with hypothesis testing.

1. A null hypothesis is formulated, as well as an alternative hypothesis in the case the
null hypothesis is rejected. For example, in our case this could be that two models
are performing identically.

2. A sample from each category to be tested is obtained. In our case this could be
the performance values of the two models to be compared where each category is
represented by a model.

3. The selected statistical test is performed on the available samples. For example,
if only two models are compared and we do not have any knowledge about the
underlying distribution, Wilcoxon test can be performed.

4. The probability of obtaining the tested sample given the null hypothesis is com-
pared.

5. If the probability is low, the null hypothesis is rejected and the alternative is ac-
cepted. High probability will indicate that the null hypothesis explains the condition
for which the sample is being tested.

Examples of performance evaluation can be seen in Chapter 3 in e.g. Fig. 3.10 on page 66
where the accuracy, precision, and specificity for the meeting model were plotted. Examples
of hypothesis testing can be seen in Appendix H where Friedman test was performed, or in
Appendix I where Wilcoxon test was performed.

5.3.3.2 Success criteria evaluation

Finally, the model success criteria is revisited and empirically proven or disproven whether
the model is able to satisfy it. The success criteria is based on the model objectives, their max-
imisation functions and the associated thresholds. Model that has performance under the objec-
tives’ threshold is considered unsuccessful, or in special cases – partially successful. Whether
the model is partially successful is defined by the requirements and expectations of the model
designer and stakeholders.

Given Equation 5.1, an objective is successful if

N ≥ T, (5.2)

where N is the result from the model with maximum performance and T is the objective’s
threshold value. N is calculated according to Formula 5.1.

5.3.4 Documentation
Important part of the development process is the generation of documentation. This is done

throughout the whole process, with different types of documents and information outputted
during the various phases. The reason for that is the need of documenting every decision or
change along the way of developing the final product, as it is difficult for both developers
and stakeholders to remember decisions made in previous phases. This is especially true for
complex problems, or for problems where more than one person are involved in the project. For
example, changes in the annotation will reflect the future model design and implementation, but
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Table 5.2: Documentation provided in the different development phases

Analysis Design Implementation Validation Evaluation

1) problem descrip-
tion

2) actions to be mod-
elled

3) environment ele-
ments to be modelled

4) datasets description

5) annotation descrip-
tion

6) requirements speci-
fication

7) success criteria and
hypotheses

8) description of the
collapsed actions’ ob-
servations

9) log of changes

1) causal relations be-
tween actions

2) conceptual mod-
elling solutions

3) action durations

4) action heuristics

5) relation between
high level actions and
observations

6) log of changes

1) description of mod-
elled actions

2) description of
available context

3) description of
model parameters

4) log of model
changes

1) plans to be vali-
dated

2) log of changes

1) evaluation scripts

2) description of pa-
rameters used for re-
sults reproducibility

3) description and in-
terpretation of model
results in terms of ac-
curacy, precision, re-
call, specificity, etc.

4) visualisation of
model results

5) log of changes

if these changes are not documented or conveyed to the model developer, the result could be a
model inconsistent with the ground truth.

Table 5.2 shows the documents associated with each development phase. It can be seen
that each step also provides a log of the changes done, as it is often the case that changes in
modelling decisions, annotation, model, evaluation scripts etc. are not described in detail. This
leaves the model user as well as the developer with sometimes unclear current model version.

5.3.5 Results reproducibility
A serious issue in the model development and evaluation is the results reproducibility. By

just changing a single parameter in the model, removing or adding a predicate, the model could
perform in completely different manner. And often such changes are not mentioned, so later
when trying to reproduce given results, one discovers that this is an impossible task. Even
more, changes in the ground truth, or the scripts used for running or evaluating the model, will
most probably also result in different outcome. In a previous work we already discussed such
issues and the resulting problems they could create [82]. Although not a phase in the devel-
opment process, but rather a need throughout the process, here we propose some practices one
should perform to ensure that the reported results are reproducible.

Data
• Make a copy of the original data that is not a subject to changes.
• In case data preprocessing is made, it has to be documented together with the correspond-

ing scripts, tools and parameters used.

Annotation
• Avoid changes in the annotation.
• If such are necessary, provide documentation for each evaluation that describes which

version of the annotation was used.

Model
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• After each change of the model provide information with the time stamp, the change
made and the reason for the change. This could be done in the header of the model, in a
separate file, or through a version control system to ensure that no information about the
model changes is lost.
• Provide a copy of the model used for producing the results together with the results.
• Provide a copy of the observation model used for producing the results.

Inference
• Automate the process so that the information about parameters with which the model

was compiled and the inferred data produced is not lost.
• In the case of approximate inference, avoid using random numbers and instead set the

values to such that can be reproduced later.
• Provide documentation about the time stamp when the inference was performed, the tool

version that was used, the specific parameters with which the execution script was called.

Evaluation
• Automate the evaluation process in the form of e.g. evaluation scripts so that the evalua-

tion can be reproduced.
• Provide a copy of the evaluation script (in the form and version it was used) together with

the data that was evaluated.

Results
• Store the results in a directory(ies) with a reproducible path(s).
• Avoid reporting results with unclear origin, unknown inference settings, or evaluation

scripts.

General
• For each experiment create a directory structure that allows easy reproduction of the

existing scripts and a better traceability of all the elements involved in the activity recog-
nition and evaluation process. Fig. K.1 in Appendix K (page 249) shows an example
directory structure. It can be seen that for each model there is a separate directory that
contains the model components (domain files, problem files and observation files). On
the same level there is a directory containing the data used as observations for the ex-
periment and an additional Model results directory that is automatically generated by the
experiment script. The script also generates all files in the results directory and it can be
seen that together with the estimated behaviour, there are copies of the model files, the
script that was used for running the experiment, and a text file containing all additional
information necessary for repeating the experiment.

5.4 Discussion
The development process introduced in this chapter is based on experiences made on mod-

elling with CCBM and on the state of the art models also discussed in this chapter. The devel-
opment process however was never tested on a new problem in order to validate its advantages
to intuitive modelling. It could also be validated on the problems discussed in this work, how-
ever that has to be done from a different designer to avoid the biased expertise already gathered
during the intuitive model development. For that reason the validation of the model by apply-
ing it to new problems is left to a future work. On the other hand, here we can list the obvious
advantages it has to the intuitive modelling.
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• It provides a detailed procedure describing the model-based activity recognition lifecycle
that clearly states when and what practices have to be applied in order to develop and
evaluate a model for a given problem. On the other hand, the intuitive process discussed
in Chapter 3 is based on trials and errors often resulting from the designer’s inexperience,
or from the inability of the experienced designers to convey the process of modelling.

• The development process poses clear model objectives and clear hypotheses. It also
points at a concrete point during the model development that the hypotheses and objec-
tives have to be defined. On the other hand, the intuitive modelling does not explicitly
state when to pose the hypotheses which often leads to the situation where the hypotheses
and objectives are defined after the results are obtained, thus adjusting them to the results
instead to the problem at hand. This makes the objectives and hypotheses biased.

• It provides a clear mechanism for building correct annotations. It also puts a stress on
the problem that this is an important step in the model development. On the other hand,
the intuitive development process suffered greatly from the lack of correct annotation
that resulted in time consuming procedure of trials and errors in order to identify the
need of such annotation and the subsequent procedure of producing it. Of course, an
experienced designer who has faced this problem will not fall into the same pitfalls, but
for inexperienced designers it will be a major issue.

• It provides a clear procedure for designing, implementing and validating the model. This
is an essential contribution to developing models that combine symbolic and probabilistic
structures. On the other hand, the intuitive process consumed incredible amount of time
before coming to the realisation that symbolic structures have to be explicitly built before
the probabilistic structure. This is due to the fact that in a software engineering sense
one does not distinguish between the implementation of the causal and the probabilistic
structure or the order in which to implement them, because they are just two different
elements that have to be developed. This once again can be avoided when the designer is
experienced but for a novice that would be a problem.

• It gives clear guidelines about validating the model and the associated procedures. This
is an aspect of activity recognition that is not well documented as the designers strive to
obtain high recognition rate without thorough model validation beforehand. This is once
again an aspect that is caused by the data analysis view where the model is validated on
a subset of the data for performance and not for consistency in the model structure.

• It provides an extended summary on methods for model evaluation and significance test-
ing. Although there are extended works on methods and procedures for data analysis and
evaluation, it is often the case that the inexperienced designer has to discover for herself
what are meaningful methods and evaluation procedures. In that sense the development
process provides guidelines for how to proceed in such situations.

• It addresses the problem of results reproducibility, which is a major issue in activity
recognition. Serious amount of time during the intuitive model development was spent
in attempting to reproduce obtained results. This is due to variety of factors such as the
usage of random seed based on the current system time, or using version of the model that
was later changed without documenting the changes. Once again one could argue that an
experienced model developer would have avoided this problem but for the inexperienced
this is a time consuming process of discovery.
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In general, the advantages of the development process to an intuitive one may not lie in the
model performance. They are however easy to see (and even appreciate) in the way in which the
model is developed, and the corresponding time it takes to model something without guidelines,
compared to developing the same when one can follow clear instructions. One could argue that
an experienced designer will not run into all the problems discussed above. However such
designer will not be the one in need of guidance. And even more, to reach the state in which
she does not need to follow an explicit process, she would have spent the same amount of
time and faced the same problems in previous projects. In that sense, an intuitive model could
potentially yield better results, but the amount of time and effort spent to produce such results
will be much more. And there will be no guarantee that the reported results can be reproduced
unless clear structure and guidelines are followed.

Naturally, the question arises whether the introduced development process represents the
designer needs better than state of the art processes. Unfortunately, there are no development
processes proposed in the field of activity recognition, at least not in the model engineering
sense addressed here. For example, Lyons et al. introduce a toolkit for gesture and activ-
ity recognition [91]. According to them it enables the development of gesture based activity
recognition applications. Still it provides just an abstraction to machine learning algorithms
suitable for modelling and recognising gestures. It however does not address the problem of
how to develop a model.

Another example is the lifecycle of ontology-based activity recognition proposed by Chen
et al. [24]. In it they discuss the process of developing ontology-based systems which basi-
cally reflects the ontology-based processes discussed in the beginning of this chapter. It also
addresses how an ontology-based model is build and how activity recognition is performed. It
however, does not address the problem of introducing probabilistic structures as such are not
used. It also does not concern itself with the problems of correct annotation production, model
design, validation, evaluation, or results reproducibility. It is a general ontology-based process
that does not fit the needs of symbolic models making use of probabilistic inference.

Another process for activity recognition proposed by Hartmann aims at describing the pro-
cess of activity recognition of a worker. It includes the collection of the sensor data, the sensor
data processing, followed by the low level activity recognition, which is concluded with the
recognition of more complex activities [63]. Still the proposed process is nothing more than
a variation of the typical data analysis processes discussed in the beginning of this chapter.
It does not provide any information about the way in which the underlying model for activ-
ity recognition has to be developed but rather concerns itself with the typical data mining and
model learning problems.

In that sense, the process proposed here is the first reported attempt to combine software
engineering techniques with typical data mining processes. It is also the first attempt at dealing
with the effects of combining symbolic and probabilistic representations in a human behaviour
model for activity recognition. As a conclusion, we hope that it will provide valuable guidelines
for the new and inexperienced researchers that want to explore the potential of symbolic models
for activity recognition.

5.5 Outlook

In this chapter we investigated different development processes from the fields of software
engineering, modelling and simulation, knowledge based systems, ontological design, and data
mining. The results showed that each field has its specific needs that are covered (sometimes
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partially) by the development processes. There are also processes that can be adopted to fit the
needs of CCBM, yet there are no such that can be taken directly and applied to model based
activity recognition. Were they to be used in their current form, some of the needs discovered
during the model analysis in Chapter 3 will not be satisfied. For that reason, a development pro-
cess was proposed that adopts already existing development models and combines workflows
from software engineering and data mining together with experiences made during modelling
with CCBM. The resulting development process provides a workflow for developing models
for activity recognition problems that enclose the steps from recording an experiment, through
building the model, to evaluating it and documenting the results. Although centred on CCBM,
the process can be looked upon as a guideline for developing any rule-based activity recognition
system that makes use of probabilities.12.

12Of course, some phases will differ depending on the modelling formalism and its specification, but the general
steps through which a data analyst has to go through in order to develop a model based activity recognition system
will be the same.



Chapter 6

The Art of Modelling - A Discussion

“It does not appear reasonable, however, to suppose that one could
provide a general “recipe” for making models, nor that one could

do very much more than modestly enhance the process of
developing intuition.”

William T. Morris

Chapter Summary: This is the conclusion chapter in which Computational Causal Behaviour
Models as a solution to activity recognition problems are discussed. Additionally, the application
of such models to real world problems is discussed as well as the need and applicability of the
corresponding development process. The chapter then summarises the goals and achievements of
this work, as well as its limitations. Finally, it discusses possible future research based on this
work.

Chapter Sources: This chapter contains previously unpublished work.

Questions to be answered in the chapter:

Do we need Computational Causal Behaviour Models for activity recognition problems? (In
Section 6.1)

Do we need the CCBM development process? (In Section 6.1)

What are the goals and achievements of this work? (In Section 6.2)

What are the limitations of the introduced work? (In Section 6.3)

What future research can be done based on this work? (In Section 6.4)

As William T. Morris argues in his article On the Art of Modelling [98], the process of
modelling could be greatly considered as a creative and intuitive one. In it the designer relies
more on her creativity and practice then on some underlying process. On the other hand, he
point out that although one could not provide a general ”recipe” for making models, to develop
ones intuition, this process of development must have a beginning. In other words, even in the
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distant year of 1967 Morris points out that to build successful and appropriate models, there
should be some general guidelines that can be followed.

This is especially true for inexperienced designers that are faced with the problem of ei-
ther using their (sometimes misleading) intuition, or imitating the experienced designers. The
latter however brings the problem of following some pattern or steps without possessing the
understanding of their necessity. And while developing her first models with often unexpected
or surprising effects, one often wonders about the choices made, both in terms of modelling
formalisms, implementation strategies, and approach all together.

This work attempted to find the answers to all those questions that an experienced designer
and data analyst might find trivial, but that for a beginner are essential for building successful
models. In this chapter we point out some questions that might have arisen during the thesis.
Furthermore we discuss the chosen formalism and approach and their applicability to real world
problems; and finally, the need of a development process and its usefulness in actual problems.
Moreover, the achievements and limitations of this work are summarised and the relevant future
work is discussed.

6.1 Is there a real need of Computational Causal Behaviour
Models for activity recognition and the corresponding
development process?

Presenting the model results in Chapter 3 was preceded by a relatively long process of
discovering the modelling requirements, evaluating different formalisms and finally choosing a
rather complex modelling approach that required incredible amount of time and effort to make
”things work right”. So one may wonder, do we really need such complicated and relatively
new approach for which there are no guidelines to show us the pitfalls. Would it not be much
easier to use some already well established formalism with an also well established workflow
and save ourselves the frustration accompanying any new approach?

This are, of course, valid questions and one can easily imagine that using some classifier
or some small HMM will provide the same, or even better results with a much less effort.
Yet, there is not much challenge in such approaches – there is an ever growing amount of
research concerning statistical methods that just label the data based on whatever they are
trained to recognise, or probabilistic approaches that provide exact inference and there is no
much that can go wrong. But what happens when the ever curious user wants to have more
information about the situation she is in? Or when there is the need to reason about the current
user states based on histories – did she got here by mistake or did she execute some previous
action that could explain her presence here? In such situation just mapping the sensor readings
to a predefined label is not enough. And exactly here comes the role of complicated approaches
that are still not well investigated but that promise to be the answer (or one of the answers) to
the growing demand for context awareness and adequate user support. Because in difference
to approaches that just ”label” the data, CCBM provides the ability to incorporate extensive
context information and reason about the user state and the environment surrounding it, based
on some noisy sensor readings. And in difference with other symbolic approaches that rely on
rules alone, CCBM provides the link between logic and probability by taking the high level
states and binding them to a more flexible probabilistic inference engine. This then provides a
mechanism for building models that consist of hundreds of millions of states and that are still
able to reason about the user state in an adequate manner.
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In the case of controlled experiments, that would not be a great issue as they are usually
restricted to just a small set of actions and situations that can be represented by simple models.
But for a real world problems, and that should be the ultimate goal of any activity recognition
system, the ability to encode and later capture diverse behaviour variations in different situa-
tions, suddenly plays an essential role. Simply because otherwise the system would not be able
to cope with the diversity of the human behaviour even in the simplest of situations.

For such problems exactly, CCBM shows to be a promising solution. Of course, one has to
take into account that like any new approach, CCBM, and respectively the designers using it,
are like toddlers learning to walk. There seems to always be a variety of unexpected problems
that one has to understand before being able to go forward. Still, based on those problems we
learn the potential and the limitations of CCBM. Even more they give us the insight needed
for developing successful models without getting lost in the process. The CCBM development
process was the result of gathering those experiences and incorporating them in a structured
workflow. Even more, the corresponding modelling toolkit is a collection of modelling experi-
ence that makes the complexity problem easier to cope with. And in that sense, even though the
art of modelling might be more creativity and intuition than a structured process, the CCBM
development process and modelling toolkit provide the guidelines for how to build this intu-
ition.

Another question that could arise is whether we need a whole development process and a
modelling toolkit for an approach that is not well known. Although some might argue, the an-
swer is yes, we need it, because the experiences made so far and the developed workflow could
save enormous time and effort for the future scientists that use CCBM. And even if CCBM
evolves into a new formalism, or is no longer used, the development process is a guideline
for many model-based activity recognition problems as it bridges the gap between engineering
and data analysis. This alone is a contribution to the field of activity recognition as it usually
concerns itself with runtime models but does not stress on the process of developing the model
itself. On the other hand, established development processes from other fields of research do
not include specific data analysis and activity recognition issues.

In conclusion, the answer to the question Do we really need CCBM and the corresponding
development process? is yes. We needed CCBM as it allowed us to incorporate large amounts
of context information and reason about parameters beyond just the user actions as well as
causes and effects of these actions. The corresponding development process is also necessary
as it incorporates the experiences with CCBM made so far, but it also combines state of the
art engineering and data analysis workflows. Finally, it gives the bridge between these two
different fields of computer science and provides guidelines for any designer who wants to use
the combination of model-based and probabilistic activity recognition.

6.2 Goals and achievements

This work started as an attempt at showing that generative rule-based models are suitable
for context aware activity recognition problems. However in the course of research it became
apparent that even seemingly simple problems are difficult to model without the presence of a
structured and reproducible process. This led to the second part of the thesis – namely, introduc-
ing a development process for Computational Causal Behaviour Models and the corresponding
modelling toolkit.

To summarise the achievements of this work regarding the first problem, it introduced three
problems from our daily life, identified the requirements needed for expressing the behaviour
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dynamics of the three problems, and finally modelled them using Computational Causal Be-
haviour Models. The results showed that the selected rule-based approach is able to represent
the user behaviour and to correctly recognise her actions. It was also shown that symbolic
models are able to reason beyond the activity being executed. Based on the encoded context
information one could also reason about the user whereabouts such as locations, environmen-
tal elements with which she interacts, or changes in the environment or the user herself based
on the actions’ execution. These results led to the conclusion that such symbolic models, and
CCBM in particular, are a powerful means for model-based activity recognition, given they is
applied properly.

To achieve the second goal of the thesis – namely, the introduction of a structured develop-
ment process, the intuitive models were analysed for successful modelling practices, as well as
for the underlying development structure. Based on the need of reducing the model complex-
ity, the successful modelling practices were collected in the CCBM modelling toolkit and their
influence on the model size and dynamics was investigated. It was shown that they are able to
reduce the complexity in terms of states in the model, valid plans, and branching factor. It was
further shown that this also increases the actions probability and decreases the model entropy.
Relevant patterns were also tested on the three modelling problems, and the results compared
to those of the intuitive models. The comparison showed that in general the patterns improve
the model performance and reduce the model complexity.

Later, different state of the art development processes were analysed and their relevance to
the field of model-based activity recognition was discussed. Based on this, and the intuitive
development process identified previously, the CCBM development process was introduced.
It combines typical software engineering phases with relevant practices from data analysis and
activity recognition. Although limited to the specific usage of Computational Causal Behaviour
Models, the general structure of the development process is applicable to any activity recogni-
tion system that makes use of symbolic models. Furthermore, the process can be considered as
a guideline to building Computational Causal Behaviour Models in a structured manner. It also
ensures traceability of modelling solutions and reproducible model results.

Looking back at the goals of the thesis listed in Chapter 1, one can conclude that the cor-
responding objectives were satisfied. The work was able to show that CCBM is suitable for
activity recognition problems, and based on the gained experiences the development process
was introduced along with a collection of modelling patterns.

6.3 Limitations

Along with the achievements of this work, there are, of course, some limitations that have
to be considered. The first originates in the modelling formalism itself. The ability of CCBM
to generate every valid execution sequence also leads to the problem that huge models are
easily generated. Then to achieve the needed effect, additional constraints have to be added
to the actions’ preconditions and effects making it difficult to trace problems in the model
implementation. Even the introduction of a structured development process is unable to entirely
eliminate the traceability problems in a CCBM model. Moreover the resulting model contains
enormous amount of states which often leads to decrease in its ability to correctly recognise the
user actions.

Another problem arises from the combination of a rule-based approach with a probabilistic
inference engine like the particle filter. This sometimes leads to situations where during resam-
pling, some states are not sampled, thus removed from the available states although they exist
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in the model. It is also possible that although the correct action exists in the model, it has so
low probability that it is never chosen. The influence of this combination of symbolic models
with probabilistic reasoning was never investigated in detail but should be an important point
in the future research concerning CCBM.

Furthermore, the introduced modelling toolkit contains only patterns concerning the model
complexity. Other useful patterns that can ensure model reusability were never discussed.
Additionally, the influence of the existing patterns on real models was investigated only in
the case of combination of patterns. The influence on isolated patterns on the performance of a
complex model was however never discussed.

Finally, the applicability of the development process to other rule-based approaches for
activity recognition is still to be tested. The process however contains detailed guidelines for
developing and evaluating CCBM models and we hope that they could be adapted also for other
formalisms.

6.4 Future work

As already mentioned in the previous section, CCBM as a formalism and the corresponding
tool still evolve. It is then reasonable to assume that in the future there will be changes in the
way it looks, its underlying algorithms for probabilistic inference and functionality. Based on
that, there are different aspects that deserve further investigation.

One essential problem in this approach is the huge state space that the causal models can
generate. To cope with that, the modelling toolkit proposed some patterns for state space re-
duction. Still, the structured investigation of the size reduction on causal level could be further
pursued.

On the other hand, the problem with the state space is due to the combination of causal
modelling and probabilistic inference. The inference engine then is sometimes unable to assign
the correct action probability. Thus, artificially reducing the state space on a causal level is
equivalent to curing the symptom and not the cause. Another option could be instead to in-
vestigate different action selection heuristics that should solve the problem without the need of
reducing the state space. The action selection heuristics were mentioned in this work but were
not systematically investigated as they are a whole separate topic in themselves.

Another aspect that deserves further research is the creation of a catalogue with abstract
action templates that can be directly reused without the need of further specialising them. At
present that is problematic without the presence of appropriate action selection heuristics as a
model with such templates can generate incredibly huge state spaces. On the other hand, once
the inference engine is able to assign the highest probability to the correct action, a catalogue of
abstract action templates will seriously reduce the designer workload associated with building
the model.

Another interesting topic that came up during the experiments evaluation is the system-
atic incorporation of sensor information into the system model. It then should be investigated
whether removing sensors and embedding their information into the causal description reduces
the model performance. In case they do not reduce the performance, this could be a way of
reducing the number of sensors needed for successfully recognising the user activities.

Moreover, the systematic identification and investigation of modelling patterns should be
considered. The modelling toolkit in its current form contains only patterns for reducing the
model complexity, but there are a variety of other modelling mechanisms that can serve as
templates for reusable model components. Their systematic collection should be part of the
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future research on modelling with CCBM.
One issue of the modelling process that cost considerable time and effort was discovering

implementation errors and bugs in the models. This was due to the lack of a tool for develop-
ing CCBM models. Without such tool the discovery of syntactic or semantic errors was time
consuming especially in large models with a lot of constraints. The implementation of such
tool should be a matter of future research. The tool then should provide an environment for
designing, implementing, validating, and evaluating Computational Causal Behaviour Models.
It should incorporate the development process and be able to provide automatic documenta-
tion and reproducible evaluation results. It should also provide a mechanism for tracking and
discovering design and implementation errors.

Another aspect that can be pursued is the development of meta models that provide more
user-friendly interfaces for building causal models. At the moment, as the model grows, it
is sometimes difficult to track errors and even small errors could lead to hours of debugging.
A meta model would then allow the designer to develop CCBM models without the need of
manually coding the model. This, of course, would mean one more model transformation, and
one should be well aware of the effects it would cause on the final probabilistic model.

Finally, it was shown that symbolic models can be applied to problem domains that generate
large state spaces. Still the conducted experiments were performed in a controlled environment
and did not contain the full variability a human behaviour could exhibit. A logical next step
would be to show that they are also applicable to real world problems where a varying number
of users interact with the environment in various situations. Furthermore, so far it was shown
that the approach is able to reason about the user whereabouts but it was not empirically shown,
that it is able to perform accurate intention recognition. And in real world situations, the system
should be able to follow multiple goals and from various initial situations. Showing that sym-
bolic approaches are able to cope with real situations will be the first step to providing adequate
user assistance.

As a conclusion, there are many directions in which the research described in this thesis can
continue. There are even more when one also considers the research on the probabilistic models
and the inference engine. Generally, one could say that this work is not the end, but rather just
the beginning of an ongoing and future research concerning Computational Causal Behaviour
Models, their evolution and employment in the field of activity and intention recognition.
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K. Ladha, T. Plötz, and P. Olivier. The french kitchen: task-based learning in an instru-
mented kitchen. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
UbiComp ’12, pages 193–202, Pittsburgh, Pennsylvania, 2012. ACM.

[70] J. Indulska and K. Henricksen. Context awareness. In A. Helal, M. Mokhtari, and B. Ab-
dulrazak, editors, The Engineering Handbook of Smart Technology for Aging, Disability,
and Independence, Computer Engineering Series, pages 585–606. John Wiley & Sons,
Inc., 2008.

[71] Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of Software
Engineering Terminology (IEEE Std 610.12-1990), 1990.

[72] Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary.
A Compilation of IEEE Standard Computer Glossaries. IEEE Press, Piscataway, NJ,
USA, 1991.

[73] Jaykaran. How to select appropriate statistical test? Journal of Pharmaceutical Negative
Results, 1(2):61–63, October 2010.

[74] K. Kaiser and S. Miksch. Treating temporal information in plan and process modeling.
Technical Report Asgaard-TR-2004-1, Institute of Software Technology and Interactive
Systems, Vienna University of Technology, Vienna, February 2004.

[75] J. Kiefer. Modeling individual strategic behavior in human multitasking. In Proceedings
of the 28th Annual Conference of the Cognitive Science Society, pages 25–30, Vancou-
ver, British Columbia, Canada, 2006.
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Appendix A

Objects’ Locations throughout the
Cooking Task Problem

This appendix provides information about the objects’ positions throughout the different
experiment phases. The figures where there is more than one arrow pointing out of an object,
indicates that during this phase, the object could be located at different positions.
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Figure A.1: Objects and their locations throughout the different stages of the cooking task. The arrows
indicate the places where a given object could be located at a given stage of the task execution.



Appendix B

Introduction to Communicating
Sequential Processes

CSP were first introduced by C.A.R. Hoare in 1985 in his book with the same name [67].
In it an object in the world around us acts and interacts with us in terms of events (respectively
actions) that build up behaviour patterns called processes. Here we give a short introduction to
CSP based on the book Communicating Sequential Processes [67].

To express a process, the following conventions are used.

1. Words in lower-case letters denote distinct events, e.g. in the context of activity recogni-
tion move, present, eat. The same applies for the letters a, b, c, d, e.

2. Words with upper-case letters denote specific defined processes, e.g. COOKING, CLEAN-
ING, MEETING.

3. Upper-case letters P, Q, R denote arbitrary processes.

4. Lower-case letters x, y, z are variables denoting events.

5. Upper-case letters A, B, C describe sets of events.

6. Upper-case letters X, Y, Z are variables denoting processes.

7. The alphabet of a process P is denoted as αP , e.g. αMEETING = {enter,present,discuss, leave}

The process with alphabet A which never actually engages in any of the events of A is
called STOPA. This process describes the behaviour of a broken object.

B.1 Prefix
Let x be an event and let P be a process. Then

(x→ P ) (B.1)

describes an object which first engages in the event x and then behaves exactly as described
by P . The process (x→ P ) has the same alphabet as P so the notation cannot be used unless
x ∈ αP

For example, the process (enter → MEETING) is initiated with the action enter and then
continues with the same behaviour as described in the process MEETING.
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B.2 Recursion
The prefix notation can be used for expressing the behaviour of an entire process. For

example, consider a clock whose sole purpose is to tick. The process that describes this clock
will be called CLOCK with an alphabet αCLOCK = {tick}. Now consider a process that has
exactly the same behaviour as CLOCK but that first emits a single tick. Such process can be
described as (tick→ CLOCK). As the behaviour of the second process is indistinguishable
from that of the first, we can conclude that CLOCK = (tick→CLOCK). By simple substitution
of equals, we can now extend the equation:

CLOCK = (tick→ CLOCK) = (tick→ (tick→ CLOCK)) = (tick→ tick→ CLOCK)

This equation can be unfolded as many times as necessary providing a mechanism for repeat-
ing behaviour. However, this notation could be long and tedious, especially if the process is
repeated indefinitely. For that reason a recursion construct is introduced. Given a process X
with an alphabet A, and a prefix with which the process starts F (X), then we express recursion
in the following way.

µX : A.F (X) (B.2)

If we return to the clock example, then the notation CLOCK = µX : {tick}.(tick→X) indicates
that we have a clock ticking indefinitely.

B.3 Traces
A trace of a behaviour of a process is a finite sequence of events that describes the process’s

behaviour until a certain moment in time. A trace is expressed as a sequence of symbols,
separated by commas and enclosed in angular brackets. Given the events x and y

〈x,y〉 (B.3)

indicates that the trace consists of two events: x followed by y. We can also express the
following:
〈x〉 is a trace with a single event x.
〈〉 is an empty sequence containing no events.

For example the process MEETING with an alphabet
αMEETING = {enter,presentA,presentB,presentC,discuss, leave} has the traces
〈enter,presentA,presentB,presentC,discuss, leave〉
〈enter,presentA,presentC,presentB,discuss, leave〉
〈enter,presentB,presentA,presentC,discuss, leave〉
...

B.4 Processes
Above we introduced the idea of a process and the events it is composed of. As we are talk-

ing about communicating sequential processes, there are of course different relations between
these processes. The full set of these relations can be found in Hoare’s book Communicating
Sequential Processes [67]. Here we list just some of them that are important for the definition
of the requirements for human behaviour modelling.
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B.4.1 Nondeterministic choice
Given processes P and Q, then the notation

P uQ (B.4)

denotes a process which behaves either like P or like Q, where the selection is made arbitrarily
and the external environment does not have the knowledge or control over this choice.

For example, we have the process CLEANING-1 = (take-sponge→ CLEANING) which
starts the process of cleaning by taking the sponge, and then we have the process CLEANING-2 =
(turn-on-water→ CLEANING) in which the process starts by turning on the water. Then the
notation (CLEANING-1uCLEANING-2) indicates that the process can start either by taking
the sponge or turning on the water tap but we cannot control which one it will be.

B.4.2 Deterministic choice
Given processes P and Q, then the notation

P []Q (B.5)

denotes a process which behaves either like P or like Q where the environment can control
which of the two will be selected, provided the control is exercised on the very first action.

In the example with the process CLEANING the notation (CLEANING-1[]CLEANING-2)
indicates that either the first or the second process will be executed but which of the two can be
controlled by the environment.

B.4.3 Concurrency
Concurrent processes in CSP are expressed by the operator ||. Given processes P and Q,

then the notation
P ||Q (B.6)

denotes that both processes are executed in parallel. The alphabets of this compound process is
the union of the alphabets of P and Q, namely αP ∪αQ.

For example let’s take the process PRESENTING and the process LISTENING. The nota-
tion (PRESENTING||LISTENING) indicates that the two processes can be executed in parallel.
They indicate that while one person is presenting the other is listening.

B.4.4 Interleaving processes
To express processes that have interleaving actions, CSP uses the operator |||. Given two

processes P and Q, then the notation
P |||Q (B.7)

indicates that the actions in the two processes are interleaved so that each action in the com-
pound process belongs either to P or to Q, or when to both, then the choice of which process
will execute the action is nondeterministic.

For example, let’s take the processes EATING and DRINKING where
αEATING = {take-spoon,eat,put-spoon} and αDRINKING = {take-glass,drink,put-glass}.
Then the notation (EATING|||DRINKING) indicates that the actions of the two processes are
interlaced with each other and any of the actions of the first can be executed in between actions
of the second process.
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B.4.5 Sequential composite processes
To express a composition of sequential processes one uses the operator ;. Given the pro-

cesses P and Q, then the notation
P ;Q (B.8)

indicates that the process was first behaving like P but when it was successfully executed then
it started behaving like Q. If the process P never terminates successfully, neither does the
compound process P ;Q.

For example, if we take the processes EATING and DRINKING and we assume that one
can drink only after successfully finishing the meal, then we denote this relation as (EAT-
ING;DRINKING).

B.4.6 Interruption
To express a composition where the first process is interrupted by another process, the

operator ∧ is used. Given processes P and Q, then the notation

P∧Q (B.9)

indicates that the process P was in progress when it was interrupted by the first occurrence of
an event from process Q.

For example let’s take the processes EATING and PHONE-RINGING. Then the notation
(EATING∧PHONE-RINGING) indicates that the process of eating was interrupted after the
first event of the ringing phone.

B.4.7 Alternation
It is possible that we want to resume our process after it was interrupted from the state it

was in before being interrupted. To denote that the operator ⊗ is used. Given processes P and
Q, then the notation

P ⊗Q (B.10)

indicates that the process P was interrupted by Q but later resumed from the state in which it
was interrupted.

For example, (EATING⊗PHONE-RINGING) indicates that the eating was interrupted by
the ringing phone but that later the person continued eating from where she was interrupted.



Appendix C

Questionnaire for Requirements
Validation

This appendix gives an example for the questions used throughout the requirements analysis
questionnaire, as well as the Likert scale used for each requirement feature.

C.1 Likert scales
The Likert scale is a scale usually involved in problems where questionnaires are used. It

was invented by Rensis Likert in 1932 and basically proposes a format in which responses are
scored along a range [90]. A typical Likert scale consists of a number of Likert items, where the
scale represents the sum of responses from several items. The item, on the other hand, consists
of a question and the possible responses of this questions. The data obtained from the Likert
scales can be considered as ordinal or interval depending on whether one makes the assumption
that the response options are equidistant. There is a lot of discussion whether the data can be
accepted as ratio [20]. In our case the data is assumed to be ordinal and the median is used as
a measure for describing the answers distribution. There is no fixed number of responses per
item, however according to recent research a scale with 5 or 7 points will result in a slightly
higher mean than a 10 point scale [32]. In the questionnaire presented below, a 5-point scale
was used and the attempt was made to design the responses so that they are as equidistant as
possible.

C.2 Example questionnaire
In the questionnaire below, first user related questions are asked to determine her experi-

ence in the field of modelling and activity recognition. Later, for each requirement the follow-
ing properties are evaluated: accuracy, validity, clarity, completeness, feasibility, testability,
traceability, and importance. Additionally, the requirement’s consistence with the rest of the
requirements is evaluated. The results from the study are shown in Appendix C.3.

What is your age?

...........................................................................................................................................................
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What kind of academic degree do you have?

Abitur Bachelor Master Diplom Doctor Professor Other:...................

Have you ever modelled human (user) behaviour with any kind of modelling formalism?

yes, I often build models

yes, I built several models

yes, I built a complex model once

yes, I built a simple model once

no, I have never modelled human behaviour before

In which field of computer science do you work?

activity recognition

modelling and simulation

visual computing

software engineering

student in computer science

other:...........................

If relevant, with what kind of modelling formalisms have you worked before?

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

List two modelling formalisms with which you think the 3 problems could be modelled?

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

Requirement’s Name
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specification: requirement’s specification

Give an example from one of the three problems (3-person meeting, kitchen task assessment,
office scenario) that describes behaviour possessing this requirement.

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

Is the requirement verifiable? How accurately does the requirement’s specification represent
the concrete example you gave?

very accurately accurately not very accurately inaccurately very inaccu-
rately

Is the requirement valid? How accurately does the requirement’s specification represent the
actual requirement needed in the example given by you? (Is that really what you need?)

very accurately accurately not very accurately inaccurately very inaccu-
rately

Is the requirement clear? To what degree is the requirement unambiguous and understand-
able?

very clear clear relatively clear unclear very unclear

Is the requirement complete? Is there some missing information in the requirement’s specifi-
cation?

nothing missing almost nothing some most missing everything missing

If relevant, what information is missing in the requirement’s specification?

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
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Is the requirement feasible? How easy can the requirement be implemented without contra-
dicting competing requirements?

very easy easy moderate difficult very difficult

Is the requirement testable? Do you think the implementation of the requirement will be
possible based on its specification?

highly likely likely plausible unlikely highly unlikely

Is the requirement traceable? Can you easily identify requirements related to this require-
ment?

very easy easy moderate difficult very difficult

How important is this requirement for solving the three modelling problems?

very important important not important optional irrelevant

For each requirement is the requirement consistent? To what degree the requirement is speci-
fied using uniform notation, terminology, and symbology compared to the other require-
ments?

Requirement very consistent consistent relatively consistent inconsistent very inconsistent

sequences
composition
parallelism
interleaving activities
repetition
choice
enabling
disabling
priority
independence
dependence
synchronisation
suspend
resume
probabilistic durations
observation model
unobserved actions
activity recognition

The list with requirements above should contain all requirements needed to describe the prob-
lems. Do you think that the list of requirements is complete?

............................................................................................................................................................

............................................................................................................................................................
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............................................................................................................................................................

Ifnot,whichrequirementsaremissing?

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

C.3 Evaluationresultsfortherequirements’features
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Appendix D

Introduction to Modelling with
Computational Causal Behaviour Models

As it was already mentioned in Chapter 2, CCBM is divided into three parts – a causal
model that consists of domain description and problem description, and an observation model
that provides the connection between the high-level causal model and the observations. Below
we discuss the model parts in detail and later give a short introduction into modelling with
CCBM. The information in this section is based on the technical report ”CCBM-A tool for
activity recognition using Computational Causal Behavior Models” [76].

Modelling with CCBM is relatively straight forward and consists of two parts – the first
is creating causal models, while the second is defining observation models that contain the
link between the causal high-level actions and the underlying observations. Although this work
does not concern itself with the development of the observation models, here we briefly explain
how they are created.

D.1 Causal modelling

As the probabilistic models are automatically generated from the causal model, the mod-
elling load is concentrated in the building of the causal model. For simplicity, the causal model
itself is divided into two separate files – the domain and the problem file. The first contains the
abstract definition of the operators (or action templates) in terms of preconditions and effects as
well as the observation clause that links the described actions to the functions in the observation
model. The second file then contains all problem specific elements, such as the initial state of
the world, the goal state, probabilistic distribution of the actions’ durations, actions’ saliencies
etc.

D.1.1 Domain definition

The domain definition consists of five entries that describe the domain of the modelled
problem. These are the types definition, the predicates definition, the constants definition, the
action templates and the observation clause (see Fig. D.1).

The type definition describes all object types that are used in the domain as well as their
subtypes. To illustrate the CCBM syntax, we take a dummy example from the meeting domain.
In Fig. D.2 for the meeting problem there are five types defined, two of which are subtypes (type
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domain = (define (domain name){domain-entry})

domain-entry =
(:types {name{name} - name}{name})
| (:predicates {(name[declarations])})
| (:constants {constant{constant} - type-name}{constant})
| (:action {action-formula})
| (:observation {observation-formula})

type-name = name
declarations = {{var} - type-name}{var}

Figure D.1: The domain description consists of domain name, types declaration, predicates declaration,
constants declaration, actions declaration, and observations declaration. Figure adapted from Kirste et
al. [76].

seat and stage are subtypes of location). All types that do not have explicitly defined supertype
belong to the general type object.

Furthermore, Fig. D.3 shows an excerpt of the predicates specification for the meeting use
case where three predicates are defined. Here the first element is the name of the predicate
whereas the remaining elements are the variables that are required for the given predicate and
their type.
(:types

seat stage - location
person
activity

)

Figure D.2: The types definition for a meeting
scenario.

(:predicates
(at ?p - person ?l - location)
(has-presented ?p - person)
(seated ?p - person)

)

Figure D.3: The predicates definition for a meeting
scenario.

The next element in the domain definition is the action formula which is an abstract rep-
resentation of an action that later is to be grounded with the objects defined in the problem
description. Fig. D.4 shows the action elements – it consists of a name, a declaration of the
parameters to be assigned to the action after grounding, a saliency value which gives the weight
an action has with respect to the rest of the actions. The next element is the agent definition

action = (:action name
[(:parameters (declarations))]
[(:saliency expression)]
[(:agent atomic-expression)]
[(:irrational)]
[(:duration atomic-formula)]
[(:precondition formula)]
[(:effect effect-formula)]
[(:callbacks callback-list)] )

Figure D.4: The action template elements. Square brackets indicate that the entry is optional. An action
consists of parameters, saliency, agent description, irrational behaviour definition, duration, precondi-
tions, effects, and callbacks that connect the model states to the observation model. Figure adapted from
Kirste et al. [76].

which, when present, implies that the action is used in multi-agent mode; the irrational clause
defines that the action is not to be weeded out even if it is not causally needed for achieving the
goal; the duration clause describes the duration that is assigned to the action – it could be either
a probabilistic distribution or an exact duration. Finally, the precondition and effect clauses
define the state of the world that has to be true in order the action to be executable, and the
state of the world after the action is executed. The last element of the action definition is the
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callbacks which allows mapping callbacks to actions, so at each time step the callback of the
action for each agent will be invoked.

(:action sit-down
:parameters (?p - person ?s - seat)
:duration (exact (sit-duration ?p))
:precondition (and

(at ?p ?s)
(not (seated ?p))
(empty ?s)
)

:effect (and
(not (empty ?s))
(seated ?p)

)
)

Figure D.5: Action sit-down in CCBM notation.

Fig. D.5 shows an example of an action where a durative action is defined. The duration
has an exact value which is later assigned in the problem description. The preconditions and
effects in the action template describe the action sit down that can be executed only when the
person is at the given seat and the seat is empty, while the effect of this action will be that the
person is seated and the seat is no longer empty. Additionally, the action has two parameters,
namely ?p of type person and ?s of type seat indicating that it can be parameterised only with
constants of these types.

The last element from the domain description is the observation clause which gives the re-
lation between the model’s actions and states and the functions in the observation model. Fig.
D.6 shows an example of the observation clause for observing a person ?p at seat ?s. In it,
whenever the predicate (at ?p ?s) is true, the location of the person in the observation model is

(:observation
(forall (?p - person ?s - seat)

(when (at ?p ?s)
(senseLocation ?p (x-coord ?s)

(y-coord ?s)))))

Figure D.6: The observation clause for observing the person is seated.

set to this location with the function (senseLocation ?p (x-coord ?s)(y-coord ?s)).

D.1.2 Problem definition
Having defined the abstract actions in the modelled problem in the same manner as in Fig.

D.5, the domain can now be parameterised. This is done by defining a set of objects that
will take the places of the parameters with the corresponding type, a description of the initial
world state, and the goals that are to be achieved. For that, a separate problem description is
defined which has the structure shown in Fig. D.7, where :domain name is the name of the
corresponding domain specification; :objects are the constants used to replace the variables in
the domain specification; :init defines the initial state of the world, and the specified :duration
provides the information about how long the initial state should last. Finally, the :goal clause
defines the goal that has to be achieved in the given problem.

Fig. D.8 shows an example of a problem description for a meeting domain, where the prob-
lem name is meeting and the corresponding domain is also the meeting domain that contains the
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problem = (define (problem name){problem-entry})

problem-entry =
(:domain name)
| (:objects {constant{constant} - type-name}{constant})
| (:init [:duration atomic-formula]{init-elem})
| (:goal formula)

Figure D.7: Problem definition and its elements. It consists of problem name, the corresponding domain
name, the objects to populate the action templates, the initial state of the world, and the goal state. Figure
adapted from Kirste et al. [76].

predicates and operators (actions) specifications. The objects in this case are the three users:
alice, bob and charlie; and three seats: a, b and c. In the initial world state charlie and bob
are not seated and two of the seats are empty. Additionally, the initial world state contains
information about the durations of the abstract actions defined in the domain description. For
example, the duration of action sit-down for agent alice has exact value of 10. Furthermore, the

(define (problem meeting)
(:domain meeting)

(:objects alice bob charlie- person
a b c - seat)

(:init
:duration (exponential 0.1)

(not (seated bob))
(not (seated charlie))(empty a)
(empty b)(seated alice))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;location assignment ;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(= (loc-id seatA) 0)
(= (loc-id seatB) 1)
(= (loc-id seatC) 2)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;duration assignment;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(= (sit-duration alice) 10)
(= (sit-duration bob) 8)
(= (sit-duration charlie) 20)

(:goal (and
(seated bob)
(seated charlie)))

Figure D.8: Problem definition in CCBM notation

different locations are assigned specific values that are later passed to the observation model
and are used during the estimation process. Finally, the goal that has to be achieved by the
users is that both charlie and bob are seated.

D.2 Creating observation models

The last element needed for generating probabilistic models is the observation model. An
observation model gives the relation P (yt |x), or with other words the probability of sighting
an observation y at time t given the system model state x. The handling of observations is
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provided in a C++ code in the form of a header file that is later used by the CCBM tool to
compile the models.

The observation model should provide the following functions.

void *fetchObservation(void); This function reads the observation yt from the standard
input, stores it wherever it is designated to store, and returns NULL when the end of the
observation sequence is reached.

double observe(StatePtr x); The function provides the probability of seeing the last
observation read by the fetchObservation given the state x, or with other words the
value p(Yt = yt |Xt = x). Here x is a pointer to a bit vector representing the current state.
Furthermore, in the system model the :observation declaration can be used to call
specific C-functions for a given state configuration. Then the execution of these helper
functions is initiated by calling stateObservation(x) at the beginning of observe.

For example, if we take the following observation definition.

(:observation (forall (?p - person ?l - location)
(when (at ?p ?l)(setLocationSensor ?p ?l))))

Then the code generated by the compiler will assume that there is a C++ function void
setLocationSensor(Person p, Location l) with the corresponding types Person and Lo-
cation that also have to be defined in the observation file. Then the generator will insert the
respective constant names in the call. This means that if there is a location seat, and a person
alice, one of the generated calls will be setLocationSensor(alice, seat).

In a similar manner, the functions representing the actions or parameters to be estimates can
be implemented.
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Appendix E

Implementation of Patterns with
Computational Causal Behaviour Models

The appendix contains sample implementation of the patterns discussed in Chapter 4. This
is also the code with which the dummy models in the same chapter were created.

;;;; domain description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain repeat)
(:predicates

(allowed-repeat)
(repeating)
(repeated))

(:action repeat
:parameters ()
:precondition (and

(allowed-repeat)
)

:effect (and
(repeating)))

(:action repeat-finish
:parameters ()
:precondition (repeating)
:effect (and

(repeated)
(not (allowed-repeat)))))

;;;; problem description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (problem repeat)
(:domain repeat)
(:init (allowed-repeat))

(:goal (repeated))
)

Figure E.1: Implementation of an implicit repeating action.
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;;;; domain description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain repeat)

(:types
counter

)

(:predicates
(counting ?i ?j - counter)

)

(:constants
0 1 2 - counter

)

(:action repeat
:parameters (?i ?j - counter)
:precondition (and

(counting ?i ?j)
(or

(and (= ?i 0) (= ?j 0))
(and (= ?i 0) (= ?j 1))
(and (= ?i 1) (= ?j 0))
(and (= ?i 1) (= ?j 1))
(and (= ?i 1) (= ?j 2))

)
)
:effect (and

(when (counting 0 0)(and (not (counting 0 0))(counting 0 1)))
(when (counting 0 1)(and (not (counting 0 1))(counting 1 0)))
(when (counting 1 0)(and (not (counting 1 0))(counting 1 1)))
(when (counting 1 1)(and (not (counting 1 1))(counting 1 2)))
(when (counting 1 2)(and (not (counting 1 2))(counting 2 0)))

)
)

)

;;;; problem description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (problem repeat)
(:domain repeat)
(:init

(counting 0 0)
)

(:goal
(counting 2 0)

)
)

Figure E.2: Implementation of an explicit repeating action.
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;;;; domain description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain abstract)

(:types
type1 type2 type3 - object

)

(:predicates
(manipulated ?o - object)

)

(:constants
object1 object2 - type1
object3 object4 - type2
object5 - type3

)

(:action manipulate
:parameters (?i - object)
:precondition (and

(not (manipulated ?i))
)
:effect (and

(manipulated ?i)
)

)

)

;;;; problem description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (problem abstract)
(:domain abstract)
(:init

)

(:goal (and
(manipulated object1)
(manipulated object2)
(manipulated object3)
(manipulated object4)
(manipulated object5)
)

)
)

Figure E.3: Implementation of an abstract action.
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;;;; domain description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain nonabstract)

(:types type1 type2 type3 - object)

(:predicates
(manipulated1 ?o - type1)
(manipulated2 ?o - type2)
(manipulated3 ?o - type3))

(:constants
object1 object2 - type1
object3 object4 - type2
object5 - type3)

(:action manipulate-type1
:parameters (?i - type1)
:precondition (not (manipulated1 ?i))
:effect (manipulated1 ?i)

)

(:action manipulate-type2
:parameters (?i - type2)
:precondition (not (manipulated2 ?i))
:effect (manipulated2 ?i)

)

(:action manipulate-type3
:parameters (?i - type3)
:precondition (not (manipulated3 ?i))
:effect (manipulated3 ?i)

)
)

;;;; problem description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (problem nonabstract)
(:domain nonabstract)
(:init)

(:goal (and
(manipulated1 object1)
(manipulated1 object2)
(manipulated2 object3)
(manipulated2 object4)
(manipulated3 object5)
)

)
)

Figure E.4: Implementation of a specialised action.
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;;;; domain description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain macro)

(:types
actionNumber)

(:predicates
(doing-something ?i - actionNumber)
(did-something ?i - actionNumber)

)

(:constants
1 2 3 - actionNumber)

(:action begin-do-something
:parameters (?i - actionNumber)
:precondition (and

(not (doing-something ?i))
(not (did-something ?i))
(imply (= ?i 1) (and (not (doing-something 2))(not (doing-something 3))(not (

did-something 2))(not (did-something 3))))
(imply (= ?i 2) (and (doing-something 1)(not (did-something 3))(not (doing-something 3))

))
(imply (= ?i 3) (and (doing-something 1)(doing-something 2)))

)
:effect (doing-something ?i)

)

(:action end-do-something
:parameters (?i - actionNumber)
:precondition (and

(doing-something ?i)
(imply (= ?i 1) (and (did-something 2)(did-something 3)))
(imply (= ?i 2) (and (doing-something 1)(doing-something 3)))
(imply (= ?i 3) (and (doing-something 1)(did-something 2)))

)
:effect (and

(did-something ?i)
(not (doing-something ?i))))

)

;;;; problem description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (problem macro)
(:domain macro)
(:init)

(:goal (and
(did-something 1)
(did-something 2)
(did-something 3)))

)

Figure E.5: Implementation of an explicit macro structure.
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;;;; domain description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain macro)

(:types
actionNumber

)

(:predicates
(doing-something ?i - actionNumber)
(did-something ?i - actionNumber)

)

(:constants
1 2 3 - actionNumber

)

(:action begin-do-something
:parameters (?i - actionNumber)
:precondition (and

(not (doing-something ?i))
(not (did-something ?i))

)
:effect (and

(doing-something ?i)
)

)

(:action end-do-something
:parameters (?i - actionNumber)
:precondition (and

(doing-something ?i)
)
:effect (and

(did-something ?i)
(not (doing-something ?i))

)
)

)

;;;; problem description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (problem macro)
(:domain macro)
(:init)

(:goal (and
(did-something 1)
(did-something 2)
(did-something 3)
)

)
)

Figure E.6: Implementation of an implicit macro structure.
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;;;; domain description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain synchronise)

(:types person)

(:predicates
(doing-something ?p - person)
(can-do-something ?p - person)
(doing-something-sync ?p - person)
(synchronised))

(:constants person1 person2 - person)

(:action do-something
:parameters (?p - person)
:precondition (and

(can-do-something ?p)
(not (doing-something ?p))

)
:effect (and

(doing-something ?p))
)

(:action do-something-sync
:parameters (?p - person)
:precondition (and

(forall (?p - person)
(imply (not (synchronised))(doing-something ?p)))
(not (doing-something-sync ?p))

)
:effect (and

(forall (?p - person)(and
(not (doing-something ?p))
(not (can-do-something ?p))
(synchronised)
))

(doing-something-sync ?p)
)

)
)

;;;; problem description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (problem synchronise)
(:domain synchronise)
(:init

(can-do-something person1)
(can-do-something person2))

(:goal (and
(doing-something-sync person1)
(doing-something-sync person2))

)

Figure E.7: Implementation of synchronisation of team behaviour.
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;;;; domain description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain synchronise)

(:types person)

(:predicates
(doing-something ?p - person)
(can-do-something ?p - person)
(doing-something-sync ?p - person)
(synchronised)

)

(:constants person1 person2 - person)

(:action begin-do-something
:parameters (?p - person)
:precondition (and

(not (doing-something ?p))
(can-do-something ?p))

:effect (and
(doing-something ?p)))

(:action end-do-something
:parameters (?p - person)
:precondition (and

(doing-something ?p))
:effect (and

(did-something ?p)
(not (doing-something ?p))
(not (can-do-something ?p))))

(:action do-something-sync
:parameters (?p - person)
:precondition (and

(forall (?u - person) (did-something ?u))
(not (doing-something-sync ?p)))

:effect (and
(doing-something-sync ?p)))

)

;;;; problem description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (problem synchronise)
(:domain synchronise)
(:init

(can-do-something person1)
(can-do-something person2))

(:goal (and
(doing-something-sync person1)
(doing-something-sync person2)))

)

Figure E.8: Implementation of synchronisation of multi-agent behaviour.
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;;;; domain description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain hierarchy)

(:types
type1 type2 type3 - object

)

(:predicates
(manipulated ?o - object)

)

(:constants
object1 object2 object3 object4 object5 - type1
object6 object7 - type2
object8 - type3

)

(:action manipulate
:parameters (?i - type1)
:precondition (and

(not (manipulated ?i))
)
:effect (and

(manipulated ?i)
)

)
)

;;;; problem description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (problem hierarchy)
(:domain hierarchy)
(:init)

(:goal (and
(manipulated object1)
(manipulated object2)
(manipulated object3)
(manipulated object4)
(manipulated object5)
)

)
)

Figure E.9: Implementation of hierarchical type system.
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;;;; domain description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain combined)

(:types twoObjects - object)

(:predicates
(manipulated ?o - object)
(combined-object1 ?o - two-objects)
(combined-object2 ?o - two-objects)

)

(:constants
object1 object2 object3 object4 object5 object6 object7 object8 object9 object10 - object
object1&2 object3&4 object5&6 object7&8 object9&10 - two-objects

)

(:action manipulate-two-objects
:parameters (?i - two-objects)
:precondition (and

(not (manipulated (combined-object1 ?i)))
(not (manipulated (combined-object2 ?i)))

)
:effect (and

(manipulated (combined-object1 ?i))
(manipulated (combined-object2 ?i))

)
)

)

;;;; problem description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (problem combined)
(:domain combined)
(:init

(= (combined-object1 object1&2) object1)
(= (combined-object2 object1&2) object2)
(= (combined-object1 object3&4) object3)
(= (combined-object2 object3&4) object4)
(= (combined-object1 object5&6) object5)
(= (combined-object2 object5&6) object6)
(= (combined-object1 object7&8) object7)
(= (combined-object2 object7&8) object8)
(= (combined-object1 object9&10) object9)
(= (combined-object2 object9&10) object10))

(:goal (and
(manipulated object1)(manipulated object2)
(manipulated object3)(manipulated object4)
(manipulated object5)(manipulated object6)
(manipulated object7)(manipulated object8)
(manipulated object9)(manipulated object10)))

)

Figure E.10: Implementation of combining objects with combined objects.
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;;;; domain description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain combined)

(:types)

(:predicates
(manipulated ?o - object)
(can-be-together ?o1 ?o2 - object)

)

(:constants
object1 object2 object3 object4 object5 object6 object7 object8 object9 object10 - object

)

(:action manipulate-two-objects
:parameters (?i1 ?i2 - object)
:precondition (and

(not (manipulated ?i1))
(not (manipulated ?i2))
(can-be-together ?i1 ?i2)

)
:effect (and

(manipulated ?i1)
(manipulated ?i2)

)
))

;;;; problem description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (problem combined)
(:domain combined)
(:init
(can-be-together object1 object2)
(can-be-together object3 object4)
(can-be-together object5 object6)
(can-be-together object7 object8)
(can-be-together object9 object10)
)

(:goal (and
(manipulated object1)
(manipulated object2)
(manipulated object3)
(manipulated object4)
(manipulated object5)
(manipulated object6)
(manipulated object7)
(manipulated object8)
(manipulated object9)
(manipulated object10)
)

))

Figure E.11: Implementation of combining objects with lock predicates.
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;;;; domain description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain phases)

(:types action-number)

(:predicates
(doing-something ?i - action-number)

)

(:constants 1 2 3 4 5 6 - actionNumber)

(:action do-something
:parameters (?i - actionNumber)
:precondition (and

(not (doing-something ?i))
(can-do-something ?i)

)
:effect (and

(doing-something ?i)
(not (can-do-something ?i))
(when (and

(not (can-do-something 1))
(not (can-do-something 2))
(= ?i 3)

)
(and

(can-do-something 4)
(can-do-something 5)
(can-do-something 6)

)
)

)
)

)

;;;; problem description ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (problem phases)
(:domain phases)
(:init

(can-do-something 1)
(can-do-something 2)
(can-do-something 3)

)

(:goal (and
(doing-something 1)(doing-something 2)
(doing-something 3)(doing-something 4)
(doing-something 5)
)

)
)

Figure E.12: Implementation of phases.



Appendix F

Introduction to Combinatorics

Here we provide an introduction into combinatorics on which the model complexity dis-
cussed in Chapter 4 are calculated. The information in this appendix are based on the book
Introductory Combinatorics by Richard Brualdi [17].

F.1 Basic counting principles

Let S be a set. Then a partition of S will be a collection S1,S2, ...,Sn of subsets of S such
that each element of S is in exactly one of those subsets:

S = S1∪S2∪ ...∪S3, (F.1)

and where any two subsets are disjoint

Si∩Sj = ∅. (F.2)

Furthermore if we denote the number of elements in S as |S|, we say that |S| is the size of
S. To calculate the size of S based on the sizes of its partitions, we use the following definition
provided in [17, p. 28].

Definition 30. (Addition principle) Suppose that a set S is partitioned into pairwise disjoint
parts S1,S2, ... ,Sn. The number of elements in S can be determined by finding the number of
elements in each of the parts, and adding the numbers together to obtain:

|S|= |S1|+ |S2|+ ...+ |Sn|. (F.3)

The second important principle is the multiplication principle which is used for calculating
the number of combinations in sequentially ordered sets.

Definition 31. (Multiplication principle) Let S be a set of ordered pairs (a,b) of objects, where
the first element a comes from a set of size p, and for each choice of element a there are q choices
for element b. Then the size of S is:

|S|= p∗ q (F.4)
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F.2 Types of counting problems

According to Brualdi many of the counting problems can be divided into the following
categories [17, p. 32].

1. Count the number of ordered arrangements or ordered selections of objects (called per-
mutation)

• without repeating any object,

• with repetition of the permitted objects.

2. Count the number of unordered arrangements or unordered selections of objects (called
combination)

• without repeating any object,

• with repetition of the permitted objects.

F.3 Permutations of sets

Let r be a positive integer. Then the r-permutation of a set S with n elements is an ordered
arrangement of r of the n elements.

For example if we have the set S = {a,b,c}, then the three 1-permutations of S will be

a b c,

the six 2-permutations of S will be

ab ac ba be ca cb,

and the six 3-permutations of S will be

abc acb bac bca cab cba.

Such permutations are denoted as P (n,r) and the number of r-permutations can be com-
puted according to the following formula.

P (n,r) =
n!

(n− r)! (F.5)

Here n! denotes the factorial of a nonnegative integer n which is the product of all positive
integers less than or equal to n,

n! = n(n−1)(n−2)...(n− (n−2))(1) (F.6)
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F.4 Combinations of sets
Let S be a set with n elements. A combination of S denotes an unordered selection of

elements of S. The result of such selection is a subset A of the elements of S: A⊂ S. Now let
r be a nonnegative integer. Then the r-combination (or the r-subset) of a set S of n elements is
an unordered selection of r out of n elements in the set.

For example if we all to obtain all 3-subsets of the set S = {a,b,c,d}, this will result in

{a,b,c},{a,b,d},{a,c,d},{b,c,d}

We denote the number of r− subsets of a set with n elements with
(n
r

)
and calculate it

according to the following formula. (
n

r

)
=

n!

r!(n− r)! (F.7)

The number of all possible subsets of a given set S together with the empty set is called a
power set and is denoted with P (S). It computed by

P (S) = 2|S| (F.8)

For example, if S has n elements, then the number of subsets of S will be 2n.

F.5 Permutations of multisets
A multiset is a set in which not all of the elements are distinct. For example, the set S =

{a,a,b,c,c,c} is a multiset where there are 2 repeating a elements and 3 repeating c elements.
We can calculate the permutations of such set involving k different types of elements each type
with a finite repetition number according to the definition provided in [17, p. 46]

Definition 32. Let S be a multiset with objects of k different types with finite repetition numbers
n1,n2, ...,nk, respectively. Let the size of S be n = n1 +n2 + ...+nk. Then the number of
permutations of S equals:

n!

n1!n2!...nk!
(F.9)
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Appendix G

Model Results for Models Utilising
Patterns

G.1 Performance evaluation of the office scenario model

Figure G.1: The figure shows the model performance for the office scenario. In it the x-axis represents

the different users for all 6 experiments, and the y-axis is the performance. For each of them accuracy,

precision, and specificity are plotted.

G.2 Performance evaluation of the meeting model

Figure G.2: The figure shows the model performance for the long meeting. Here the x-axis represents

the three users and the team. For each of them, the accuracy, precision, and specificity are plotted.

235



236 APPENDIX G. MODEL RESULTS FOR MODELS UTILISING PATTERNS

Performance User 1

Performance User 2

Performance User 3

Performance Team

Figure G.3: The figure shows the improved model performance for the 20 short datasets. The x-axis

shows the 20 meetings, and y-axis the accuracy. From top to bottom, the first row contains the accuracy,

precision, and specificity for user 1, the second row for user 2, the third row for user 3, and the fourth

row for the team behaviour.

G.3 Performance evaluation of the cooking task model
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Performance with objects, places, and locations as observations

Performance with objects and locations as observations

Performance with objects

Performance with places and locations as observations

Performance with locations as observations

Figure G.4: The figure shows the model performance for the cooking task. In it the x-axis represents the

7 experiments, and the y-axis shows the performance. The first column of plots shows the accuracy, the

second the precision, and the third the specificity. The results for different combinations of sensors are

plotted.
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Appendix H

Friedman Test Results

H.1 Interpreting the results of a Friedman test

The Friedman test is a non-parametric statistical test that is used to detect differences in
behaviour across multiple test attempts. It was first introduced by Milton Friedman in his
work The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Vari-
ance [49]. It is applied by ranking each row together, then considering the values of ranks
by columns. In the case of activity recognition, the test can be used to test whether models
differ significantly in their performance. That is done by comparing the results for accuracy,
precision, recall, and specificity of the different models by applying the Friedman test.

Given data {xij}n×k, that is, a matrix with n rows (the blocks), k columns (the treatments)
and a single observation at the intersection of each block and treatment, calculate the ranks
within each block. If there are tied values, assign to each tied value the average of the ranks
that would have been assigned without ties. Replace the data with a new matrix {rij}n×k where
the entry rij is the rank of xij within block i. Then the test statistic can be calculated by the
formula

Q=
n∑

k
j=1(r̄·j− r̄)2

1
n(k−1) ∑

n
i=1∑

k
j=1(rij− r̄)2

, (H.1)

where r̄ is calculated by the formula

r̄ =
1

nk

n

∑
i=1

k

∑
j=1

rij (H.2)

and r̄·j is calculated by the formula

r̄·j =
1

n

n

∑
i=1

rij . (H.3)

It is used in deciding whether two models are significantly different and if the difference in
the produced results is due to chance or due to external factors. The test is calculated according
to Formula H.1 and as a result it outputs three values – the test degree of freedom, the chi
square value (denoted as χ2), and the test p-value. One can then ask the question, what are
these statistics and what do they tell us.

The first statistic is associated with the number of categories involved in the test. It is
calculated as the number of categories minus one.
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The second value is the χ2 which is an approximation of the Q value in Formula H.1. It
summarises the degree of dependence between row and column variables in contingency tables
[26, p. 36].

The last value is the p-value which provides the probability that the deviation of the ob-
served results from the expected results is due to chance and not to external factors. The
standard used as a threshold is p > 0.05 [26, p. 123]. This indicates that any deviation to be
due to chance in 5% of the cases or less. According to Cohen [26, p. 123] one usually does
not reject the null hypothesis unless p < 0.05. Of course, one could choose another p-value as
the threshold for the test significance. Table H.1 shows the corresponding χ2 value for given

Table H.1: Distribution of χ2 for different degrees of freedom and p-values. Table adapted from [42,
Table IV].

Degrees of Freedom (df) Distribution of χ2

0.95 0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.01 0.001 Probability
1 0.004 0.02 0.06 0.15 0.46 1.07 1.64 2.71 3.84 6.64 10.83
2 0.10 0.21 0.45 0.71 1.39 2.41 3.22 4.60 5.99 9.21 13.82
3 0.35 0.58 1.01 1.42 2.37 3.66 4.64 6.25 7.82 11.34 16.27
4 0.71 1.06 1.65 2.20 3.36 4.88 5.99 7.78 9.49 13.28 18.47
5 1.14 1.61 2.34 3.00 4.35 6.06 7.29 9.24 11.07 15.09 20.52
6 1.63 2.20 3.07 3.83 5.35 7.23 8.56 10.64 12.59 16.81 22.46
7 2.17 2.83 3.82 4.67 6.35 8.38 9.80 12.02 14.07 18.48 24.32
8 2.73 3.49 4.59 5.53 7.34 9.52 11.03 13.36 15.51 20.09 26.12
9 3.32 4.17 5.38 6.39 8.34 10.66 12.24 14.68 16.92 21.67 27.88

10 3.94 4.86 6.18 7.27 9.34 11.78 13.44 15.99 18.31 23.21 29.59
Nonsignificant Significant

p-value and degree of freedom. Assuming any difference is significant only when p < 0.05,
Friedman test values that are placed to the left of this threshold confirm the null hypothesis,
while those to the right confirm the first hypothesis. A detailed table of the χ2 distribution
values can be found in [42, Table IV].

Generally, the two hypotheses for the Friedman test are the following.

• Hypothesis 0: the distributions of the different categories are the same and any deviation
of the expected value is due to chance.

• Hypothesis 1: the distributions of the different categories are different and any deviation
from the null hypothesis is due to external factors.

More concretely, for the three modelling problems the hypotheses will be the following.

• Hypothesis 0: the model performance does not differ significantly given the available
datasets.

• Hypothesis 1: the model performance differs significantly given the available datasets.

In case the null hypothesis is accepted, that will indicate that the model performs similarly
for the different datasets and that it is relatively robust to changes in the data. It will also indicate
that the model is relatively general compared to models where the difference in performance is
significant.

In case the null hypothesis is rejected and first hypothesis is accepted, that will indicate that
the model is affected by changes in the data. This will also be an indication that the model is
relatively specific compared to models that do not have significant change in performance.
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The two hypotheses can be interpreted as indicators for under-fitting (when the null hy-
pothesis is accepted), or overfitting (when the null hypothesis is rejected). This combined with
the results from the model performance points out at the bias-variance dilemma where with
decreasing the bias (or the difference between the predicted and the real value), the model
variance increases (the model’s sensitivity to changes in the data).

H.2 Results for the two problems
Below the results for the three modelling problems can be found, both in the case of the

intuitive models from Chapter 3 and the same models with some additional patterns in their
implementation from Chapter 4. Here in the case of the meeting model, n is represented by
the different user roles (user one, user two , user three, and the team), while k is represented
by the available datasets (21 datasets). In the case of the cooking task, n is represented by the
different observations with which the user state is estimated, while k is represented by the 7
available datasets. In the case of the office scenario there was only one type of observations and
due to the varying number of user and their unsynchronised behaviour, each of the users was
considered as a separate dataset. For that reason, n was represented by the accuracy, precision,
and specificity, while k by the available datasets. The same was also calculated for the meeting
problem and the cooking task.

Table H.2: Friedman test results from the two meeting models. The test was performed to check whether
the model results differ given the different datasets. It was performed for the multi-agent model from
Chapter 3, as well as for the multi-agent model from Chapter 4. The significance was tested for accuracy,
precision, and recall.

chi squared degree of freedom p-value
accuracy precision specificity accuracy precision specificity accuracy precision specificity

intuitive 41.23 29.65 40.66 20 20 20 0.003476 0.07574 0.004115
with patterns 35.97 32.46 38.61 20 20 20 0.01549 0.03856 0.007451

Table H.3: Friedman test results from the two cooking models. The test was performed to check whether
the model results differ given the different datasets. It was performed for the model from Chapter 3, as
well as for the model from Chapter 4. The significance was tested for accuracy, precision, and recall.

chi squared degree of freedom p-value
accuracy precision specificity accuracy precision specificity accuracy precision specificity

intuitive 7.2 13.71 11.48 6 6 6 0.3027 0.033 0.07448
with patterns 18.85 21.08 6.85 6 6 6 0.004412 0.001771 0.3343
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Table H.4: Friedman test results for the three modelling problems with combined accuracy, precision
and specificity. The test was performed to check whether the model results differ given the different
datasets. In it the accuracy, precision, and specification for the different user roles (in the three-person
meeting), or the different sensors (in the cooking task), were taken as rows, while the different datasets
were taken as columns.

chi squared degree of freedom p-value
intuitive patterns intuitive patterns intuitive patterns

meeting 55.65 63.90 20 20 3.277e-05 1.742e-06
cooking task 11.88 37 6 6 0.06457 1.761e-06

office scenario 13.95 20.88 8 8 0.08293 0.007449



Appendix I

Wilcoxon Test Results

I.1 Interpreting the results of a Wilcoxon test

The Wilcoxon Rank Sum Test is a non-parametric test which is used in situations where
the underlying distribution is non-normal or when the distribution is not known. It was first
introduced by Frank Wilcoxon in his work Individual Comparisons by Ranking Methods [154].
It is used in deciding whether two models are significantly different and if the difference in
the produced results is due to chance or due to external factors. The test is calculated based
on the sum of sample ranks and as a result it outputs two values – the Wilcoxon statistic value
(denoted as W ), and the test p-value. One can then ask the question, what are these statistics
and what do they tell us.

The first value is the rank assigned to each value in the sample. In the case where the
observations are tied together, or have ties they get the average rank calculated by ∑

n
i=0(rank+i)

i
with n being the number of observations that are tied. When all ranks are calculated, they are
then summed up for each of the two samples and significance is assigned on the sample with
the smaller sum of ranks. More details about the calculation procedure in R can be found in
Statistics: An Introduction Using R [28, p. 79].

The second value is the p-value which provide the probability that the deviation of the
observed results from the expected results is due to chance and not to external factors. The
standard used as a threshold is p > 0.05 [26, p. 123]. This indicates that any deviation to be
due to chance in 5% of the cases or less. According to Cohen [26, p. 123] one usually does not
reject the null hypothesis unless p < 0.05. Of course, one could choose another p-value as the
threshold for the test significance.

To decide on the significance on the difference in results (or with other words, whether to
reject the null hypothesis), on can use lookup tables for the W values. Or alternatively, in the
case the p-value is smaller than the significance threshold value of 0.05%, the null hypothesis
is rejected and the alternative hypothesis is accepted.

In the case of the Wilcoxon test the two hypotheses are the following.

• Hypothesis 0: there is no significant difference between the performance of the two
models and any differences are due to chance.

• Hypothesis 1: there is significant difference between the performance of the two models
and any differences are due to external factors.
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I.2 Results for the three problems
Below the results from the Wilcoxon test comparing the models from Chapter 3 and the

corresponding models with additional patterns from Chapter 4 are given. The test compared
the accuracy, precision, and specificity for each of the given users in the case of the 3-person
meeting; for each of the different observations in the case of the cooking task; while in the
office scenario there was only one type of observations and unsynchronised users so, only one
test per accuracy, precision, and specificity were performed.

Table I.1: Wilcoxon test results for the meeting scenario. The test compares the accuracy, precision,
and specificity for the multi-agent meeting model in Chapter 3 with those of the model in Chapter 4.
The table provides the statistical value that gives the rank assigned to the different user roles and the
corresponding p-value for each user.

statistic value p-value
User 1 User 2 User 3 Team User 1 User 2 User 3 Team

accuracy 231 219 158 231 9.54e-07 6.68e-05 0.00171 9.54e-07
precision 163 108 108 208 1.03e-01 8.12e-01 0.81168 6.07e-04
specificity 224 205 158 201 1.81e-05 1.00e-03 0.14696 1.86e-03

Table I.2: Wilcoxon test results for the cooking task scenario. The test compares the accuracy, precision,
and specificity for the model in Chapter 3 with those of the model in Chapter 4. The table provides the
statistical value that gives the rank assigned to the model performance for the different observations, and
the corresponding p-value for each observation type.

statistic value p-value
OHL OL O HL L OHL OL O HL L

accuracy 27 28 28 15 25 0.0313 0.0156 0.0156 0.9375 0.0781
precision 27 27 28 28 7 0.0313 0.0313 0.0156 0.0156 0.2969
specificity 28 28 28 10 23 0.0156 0.0156 0.0156 0.5781 0.1563

Table I.3: Wilcoxon test results for the office scenario. The test compares the accuracy, precision, and
specificity for the model in Chapter 3 with those of the model in Chapter 4. For each of them the
statistical value and the corresponding p-value are given.

statistic value p-value

accuracy 28 0.0225
precision 35 0.0209
specificity 35 0.0209



Appendix J

Evaluation Metrics for Activity
Recognition

In this appendix we give detailed information about the evaluation metrics typically used in
the field of activity recognition and discussed in Chapter 5. The formulas presented here can
be found in variety of data analysis and machine learning publications, for example in [113].

Accuracy: According to Fig. 5.22 accuracy for a two-class problem is calculated as

AccuracyM =
∑ tp+ ∑ tn

∑ tp+ ∑ tn+ ∑fp+ ∑fn
(J.1)

where M is the model being tested, tp are the the correctly recognised positive instances,
tn are the correctly recognised negative instances, fp are the instances incorrectly recog-
nised as positive, and fn are the instances incorrectly recognised as negative.

When we have a multi-class problem, the accuracy is reduced to calculating the recall
for a multi-class problem. Then given a confusion matrix with N classes, the accuracy
is calculated by taking the sum of the matrix diagonal and dividing it by the number of
classified instances. With other words

AccuracyM (Multi-class) =
∑
N
i=1 eii

∑
N
i=1∑

N
j=1 eij

, (J.2)

where e is a matrix cell. The index ii indicates that only the diagonal of the matrix
is taken. It is then divided by the number of all instances. The formula could also be
represented by using the two-class recall from Equation J.6. In that case it will look the
following way.

AccuracyM (Multi-class) =
∑
N
i=1Recalli

∑
N
i=1∑

N
j=1 eij

, (J.3)

Precision: Using the same notations and according to Fig. 5.22 precision in a two-class
problem is represented by the formula

PrecisionM =
∑ tp

∑ tp+ ∑fp
. (J.4)

In the case of a multi-class problem, the precision is calculated by summing up all preci-
sion values for the individual classes and then dividing them by the number of classified
instances.

PrecisionM (Multi-class) =
∑
N
i=1Precisioni

∑
N
i=1∑

N
j=1 eij

. (J.5)
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Recall: According to Fig. 5.22, recall for a two-class problem is defined by the formula

RecallM =
∑ tp

∑ tp+ ∑fn
. (J.6)

In the case of a multi-class problem, the recall equals the accuracy and is calculated
according to Formula J.3.

Specificity: According to Fig. 5.22 specificity is represented by the formula

SpecificityM =
∑ tn

∑ tn+ ∑fp
. (J.7)

In the case of a multi-class problem it is then calculated by summing up all specificity
values for the individual classes and then dividing them by the number of classified in-
stances.

SpecificityM (Multi-class) =
∑
N
i=1 Specificityi
∑
N
i=1∑

N
j=1 eij

. (J.8)

Hypothesis testing: To test a given hypothesis in a statistical manner one can use different
statistical tests. The process of choosing what kind of test to apply is illustrated in Fig.
J.1.
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Figure J.1: Categorisation of various statistical tests based on the underlying data to be evaluated. Figure
adapted from [73].



248 APPENDIX J. EVALUATION METRICS FOR ACTIVITY RECOGNITION



Appendix K

Example Directory Structure for Results
Reproducibility

In order to yield reproducible results, one has to also provide a reproducible directory struc-

ture where all data, models, experiments, and evaluations are saved. Below is an example

structure that ensures separation between these elements as well easy traceability.

Figure K.1: An example directory structure for better results reproducibility.
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Theses

1. Symbolic modelling of user behaviour allows incorporating prior knowledge in assistive
systems. This reduces the need of training data and provides rich context information
about the user state.

2. For a formalism to be suitable for symbolic modelling of user behaviour, it has to satisfy
a set of requirements concerning the behaviour dynamics to be modelled as well as the
targeted model application.

3. Generative rule-based models are suitable for modelling user behaviour for activity recog-
nition, because they rely on compact algorithmic representation for the transition model
of the underlying dynamic system. They allow coping with large state spaces and be-
haviour variability.

4. Generative rule-based models, combined with Bayesian filters, allow utilising the ability
to model behaviour variability with the ability to reason in probabilistic manner about the
user state, histories and goals. This provides a means for compact representation of com-
plex domains, and interchangeable observation models making the behaviour structure
independent of the underlying sensor infrastructure.

5. The process of creating symbolic models for activity recognition, that make use of Bayesian
filters, is a complex task caused by the combination of symbolic and probabilistic repre-
sentations. This is also true for seemingly trivial problems.

6. To ensure high model performance, traceability of modelling solutions, and results re-
producibility, a structured development process for symbolic human behaviour models
for activity recognition needs to be introduced. This is an aspect of activity recognition
that is often neglected while the stress is put on run time modelling.

7. There is no state of the art development process for symbolic human behaviour models
for activity recognition that discusses the problem of combining symbolic and probabilis-
tic modelling aspects.

8. The introduced development process for symbolic human behaviour models for activ-
ity recognition combines state of the art software engineering development processes
and data analysis techniques, thus bridging the gap between symbolic and probabilistic
model development. It also introduces custom procedures for developing the models’
probabilistic elements. The process ensures model traceability and model and results re-
producibility. It also provides a guideline for building and evaluating symbolic models
for activity recognition.

9. Symbolic models that rely on causal relations build up complex structures. In order to be
able to evaluate the correctness of such structures, the corresponding ground truth has to



correctly represent them. This indicates that the evaluation of such approaches requires
that the corresponding ground truth is represented not only by a set of labels but also that
the relations between these labels are causally correct.

10. Provided there are no well performing action selection mechanisms, there is a need for
modelling mechanisms to reduce the model complexity. Such mechanisms can be ex-
pressed in terms of modelling patterns applicable to different problem domains.

11. The modelling toolkit for Computational Causal Behaviour Models provides mechanisms
for reducing the model complexity in terms of available actions that can be executed from
a given state, number of reachable states, and number of valid plans. These parameters
are controlled through the model predicates and the objects’ type system. Models that
employ these patterns perform better than models developed in an intuitive manner.




