
Task Suspension in Agent Systems

(Draft Paper)

Berndt Farwer

Department of Computer Science, Durham University, Durham, DH1 3LE, U.K.

Abstract

We discuss the similarity of a recent approach to task suspension in agent program-
ming languages with an earlier approach to formalising preemption using a class of
Petri nets, called M-nets. We argue that the theory of agent programming would
benefit from adopting certain features of the Petri-net approach, and thus making
further results for Petri nets applicable in the agent domain.

1 Introduction

Preemption is widely used in a number of contexts, originally in the area
of multi-tasking in operating systems. Informally, it subsumes any kind of
abortion or suspension of computational processes. Certain classes of Petri
nets can be augmented with a subnet that will allow internal and external
preemption operations to be carried out on the net [6]. This can then be used
to define a compositional algebra of preemption with a Petri net semantics.

Recently, suspension has been used in conjunction with multi-agent systems
[9] where conditions are investigated, in which a goal or a plan can be sus-
pended and later on resumed. Several widely used agent programming lan-
guages support the concept of suspension, e.g. Jadex [7] and Jason [2] have
internal mechanisms to suspend plans or goals during the deliberation pro-
cess. The approach of [9] extends this in a way that gives the programmer
some control over suspension and thus adds an active component to suspen-
sion in the agent’s reasoning. This can be used to optimise the planning of
individual agents. It is natural in other areas of computer science to speak
of suspension and resumption of plans, e.g. for (concurrent) systems in which

Email address: berndt.farwer@durham.ac.uk (Berndt Farwer).

22 October 2008

Dagstuhl Seminar Proceedings 08361 
Programming Multi-Agent Systems  
http://drops.dagstuhl.de/opus/volltexte/2008/1638

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the preconditions of sub-tasks may be violated after the main task has been
started. The precise reasons can be manifold, e.g. lack of resources, change of
conditions in the environment. The study of preemption with respect to Petri
nets may help give insights into resource handling and deadlock avoidance for
multi-agent systems.

An extension of an algebra of high-level Petri nets with operations for suspen-
sion and abortion is presented in [6,5]. We discuss this algebraic representation
in the light of agent programming and propose an new sub-class of Petri nets
as a semantics for agent programs that can actively suspend tasks.

2 Background

The presentation in [9] pursues an ad-hoc approach to extend an existing
agent programming language (CAN) to be able to handle suspension of tasks
by adding specific plans to the agents plan library. In this way, the original
programming language is left unchanged and the approach can fairly easily be
adapted to other languages than CAN. Existing programs are not affected and
continue to work as before. The approach, however, lacks a formal foundation
that would handle resources or enable reasoning about deadlocks.

To the author’s knowledge there has not been any attempt to employ methods
known from concurrency theory and algebra, e.g. preemption semantics based
on classes of Petri nets, to a more general framework in computer science
or to the area of agent programming in particular. This paper extends an
algebraic approach to the theory of preemption and adapts it for use with agent
programming. Future work will focus on a further classification of types of
suspension and methods of resumption, based upon a theory of compositional
programs supporting preemption in a resource-sensitive setting.

3 An Algebra for Preemption

The algebra discussed in this section is based on the use of M-nets as a seman-
tics for asynchronous, concurrent systems. The main ideas behind the algebra
presented below are:

• A priority relation between actions or subgoals ensures that the appropriate
steps needed to suspend a task are taken in a way that does not interfere
with the remainder of the concurrent program in an undesired way.
• The concurrency of tasks (intentions) corresponds to concurrency of Petri

net transitions in the semantics.

2



• An algebra of agent programs with priority (APP) corresponds to the alge-
bra of priority M-nets, resp. its extension, preemptible M-nets (P/M-nets).
• The composition of agent programs in APP corresponds to composition of

M-nets.
• Top-down refinement in APP corresponds to refinement of M-nets.
• Subgoals in the agent program can be represented by refinement in the

corresponding M-net.
• The operation π(·) for preemption on M-nets has different orientations:
· internal vs. external preemption, representing internal suspension of inten-
tions by the reasoner (i.e., the agent programming language interpreter)
vs. programmed suspension (i.e., the agent’s own behaviour represented
explicitly in its plans);
· preemption is either abortion or suspension.
• The role of time in preemption is important: In an asynchronous system we

have to ensure that after the start of suspension no action of the suspended
intention will occur until the resumption of the intention (or task/goal).

The most important operations of the proposed algebra are

• sequential composition (a; b);
• parallel composition (a ‖ b);
• choice (a� b);
• “if not a then b” (a� b).

Further operations include iteration, synchronisation, and renaming.

The syntax is given by

The following sections introduce the concepts of M-nets (Section 3.1) and the
agent programming language CAN (Section 4).

3.1 M-nets

M-nets 1 are a class of compositional high-level Petri nets with typed places
and guarded transitions. The net components carry label annotations with
the respective type information. M-Nets form a well-studied category with
nice compositional features. They have been used as a semantics of the con-
current B(PN)2 programming language, including constructs, such as parallel
composition, iteration, guarded commands, handshake communications, com-
munication though buffered channels, and shared variables [1]. A variant of
M-nets, called priority M-nets, has been introduced to add features needed for
the introduction of a preemption operator.

1 Modular multi-labelled nets

3



Let Tok be an enumerable set of types (or colours) and let V ar be an enu-
merable set of variable names with V ar ∩ Tok = ∅.

Definition 1 An M-net is a tuple N = 〈P, T,W, ι〉, with P ∩ T = ∅, W ∈
P ×V ar×T ∪ T ×V ar×P⊕, and ι : P ∪T → Tok∪V ar, where ι(p) ⊆ Tok
is the type of place p ∈ P and ι(t) is a boolean expression over Tok ∪ V ar,
the guard for transition t ∈ T .

Ensuring that we deal only with finite types, will yield a model that is strictly
less powerful than Turing machines. Priority M-nets add a pairwise priority
relation ≺⊆ T × T on transitions to M-nets. t1 ≺ t2 means that t1 has lower
priority that t2, hence the execution of t2 would be preferred over the execution
of t1. Note that ≺ is not assumed to be transitive.

An M-net

• having at least one entry place (that has only outgoing arcs) and one exit
place (that has only incoming arcs);
• whose entry and exit places have a singleton type ({•});
• having only transitions with at least one input place and one output place

is called ex-good . The class of ex-good M-nets forms an algebra [1] with the
following operations:

• Refinement, N [X ← N ′]
• parallel composition,N ‖ N ′, defined as 1N∪2N ′, i.e., disjoint juxtaposition
• sequential composition, N ;N ′, defined as (1N ∪ 2N ′)⊕ ⊗{(1N)•, •(2N ′)}
• choice,N�N ′, defined as (1N∪2N ′)⊕⊗{•(1N), •(2N ′)}⊕⊗{(1N)•, (2N ′)•}
• iteration, [N ∗ N ′ ∗ N ′′], i.e., one execution of N , followed by an arbitrary

number (possibly 0) of executions of N ′ and finally one execution of N ′′
• renaming, N [f ]
• synchronisation, N syA, adding a new transition for pairs of transitions in
N labeled with the appropriate synchronisation symbols (A and Ā)
• restriction, N rsA, i.e. removal of all transitions with action label A or Ā
• scoping, [[A : N ]], essentially synchronisation followed by restriction
• asynchronous link, N tie b

In the above, N , N ′, N ′′ are M-nets, A is a synchronous communication sym-
bol, b is an asynchronous link symbol, f is a renaming function defined on
synchronous communication symbols an asynchronous link symbols, and X
is a hierarchical symbol. For details of the definitions and properties of these
operators, see [1] and [4].

Klaudel and Pommereau [5,6] extend M-nets with a priority relation over
transitions, so that they can use this new class of M-nets as a semantics for
preemption.

4



Definition 2 Let N = 〈P, T,W, ι〉 be an M-net and let ≺⊂ T×T be a pairwise
priority relation, then N≺ = 〈N,≺〉 defines a priority M-net.

The operations on M-nets are straightforwardly extended to priority M-nets.
An additional preemption operation π() is introduced in [5], so that π(()N≺)
is the priority M-net N≺ extended with a sub-net that handles preemption.
This leads to the definition of preemptible M-nets :

Definition 3 A priority M-net N≺ is called P/M-net if either N is an ex-
good M-net and ≺= ∅ or N is formed iteratively using the operations preemp-
tion, refinement, parallel composition, sequential composition, choice, itera-
tion, synchronisation, restriction, scoping, asynchronous linking, or renaming
on priority M-nets.

The augmented net can now be subject to the usual Petri net analysis and
established techniques, for instance for deadlock avoidance, can be employed.

4 CAN

CAN is a high-level agent programming language. It is similar to AgentSpeak
[8,3] and similar BDI agent systems 2 . CAN’s explicit goal construct captures
both the declarative and procedural aspects of a goal. In CAN, when a plan
fails, another applicable plan (if any) is automatically attempted. This equates
to the default failure handling mechanism typically found in most BDI lan-
guage interpreters.

In CAN, plans are written e : c ← P , where e is an event, c is a context con-
dition, and P is the program or plan body. The plan bodies of CAN programs
take the following form:

P := a | +b | −b | ?φ | ! e | P ;P | P ‖ P |

Goal(φ, P, φ) | P � P | (|{ψ : P, . . . , ψ : P}|) | nil

Here, a is an action, b is a belief, e is an event, and ψ and φ are logical formulae
over agent beliefs. ψ : P represents a guarded plan, and (|{ψ1 : P1, . . . , ψn :
Pn}|) denotes a set of such plans from which the agent can choose. P1 � P2

will try to execute P1 and only start executing P2 if P1 fails.

In [9], Thangarajah et al define a transition system whose states (basic agent
configurations) are 〈B,P 〉, consisting of a belief base B and a current intention

2 BDI stands for the belief, desire, intention paradigm

5



P . Methods, i.e. plans, for suspending and resuming goals are then added to an
existing program. These methods are given in the CAN syntax and represent
regular plan bodies. The semantics, however, gives way to very inefficient
processing of these methods, so that an implementation closer to the M-net
semantics is desirable.

Proposition 4 The operational semantics of CAN can be faithfully modeled
by a subclass of M-nets, giving rise to a more efficient implementation and to
compositionality.

Task instances are introduced and the agent program is augmented in [9]
with a set of rules to handle suspension. Furthermore, each plan has to be
transformed so that it becomes aware of the additional information, i.e. beliefs,
that is introduced to initiate the suspension of a task.

Section 5 explains the idea for a Petri-net-based semantics for CAN.

5 M-nets as CAN Semantics

We modify the standard operations on M-nets and priority M-nets to accom-
modate agent specific needs and add some new operations. A summary of the
new and modified operations is given below. We introduce the class of agent
M-nets (a-M-nets) based on ex-good priority M-nets: Each a-M-Net has a sin-
gle token in a distinguished start place marked entry. It furthermore has two
distinguished exit places, marked exit and fail. 3 It is assumed that once a
token reaches one of the exit places no other tokens remain in the net. This
property is easily shown for the simplest kind of a-M-net, the action-M-net,
shown in Figure 1. This represents an action, as found in agent plans, and has
the possibilities of successfully executing the action and failing. By induction,
the property also holds for composed a-M-nets.

failexit

entry

a

Fig. 1. A simple action-M-net

3 a-M-nets are special cases of ex-good M-nets with just one entry place and exactly
two (distinguishable) exit places. It is easy to see that every ex-good M-net can be
transformed into an equivalent ex-good M-net with just one entry place.

6



Figures 2 to 4 schematically show some operations on a-M-nets and a reduction
to a simpler equivalent net, were possible. To simplify the illustrations, arc,
place, and transition inscriptions have been omitted. The reduction works by
removing p ∈ P and t ∈ T from the net together with their arcs, whenever
p• = {t} and there is a p′ ∈ P , such that t• = {p′}. A new arc (t′, p) is
introduced for each t′ ∈ •p.

fail fail

fail

;
exit

exit

exit

=

entry

entry

entry

failexit

entry

≈

Fig. 2. Operation ; on action-M-nets

║

fail failexitexit

entryentry

entry

failexit

=

Fig. 3. Operation ‖ on action-M-nets

Other CAN operations can be modelled with similar ease. Embedding M-nets
within an object-net formalism would naturally extend the semantics with

7



failexit

entryentry

entry

fail failexitexit

=

failexit

entry

≈

Fig. 4. Operation � on action-M-nets

notions of environment and mobility. This will give rise to a semantics that
can inherently deal with the important issues in agent programming, namely
concurrency, resources, and location.

6 Conclusion

In this paper we have used a class of Petri nets to give a true concurrent
semantics to preemtible/suspendible systems. Since Petri nets are inherently
asynchronous, this semantics is very well suited in the area of agent systems,
where agents are assumed to act autonomously on a distributed system and
communicate asynchronously over this distributed network.

The discussion in this paper has remainder largely informal, so the next major
step towards a theory of suspension for agent programming is to formalise the
ideas further and establish the formal system as a foundation for the exten-
sion of well-known agent programming languages. Using our theory, based on
M-nets, as a foundation would instantly lead to compositionality, which is a
prerequisite for successfully using suspension methods for multi-agent reason-
ing.

Petri nets as semantics have much to offer for agent programming, especially
when it comes to plans involving resources. It can be important for resources to
be released for use by other plans in the case of goal suspension. On the other
hand, this may lead to yet further deadlock situations. It is clearly necessary
for agent programming to study the consequences of dealing with resources in
different ways. Results on Petri nets (including strategies for deadlock avoid-
ance) can help in gaining a better understanding of how to deal with these
issues in agent reasoning with bounded resources.

8



Future work will be carried out on formalising the presentation given in this
extended abstract, in particular with respect to the use of resources in the
suspension of agent programs.

References

[1] Eike Best, Wojciech Fraczak, Richard P. Hopkins, and Elisabeth Pelz. M-nets: An
algebra of high-level petri nets, with an application to the semantics of concurrent
programming languages. Acta Informatica, 35(10):813–857, 1998.

[2] Rafael H. Bordini and Jomi F. Hübner. Jason: A
Java-based interperter for an extended version of AgentSpeak, 2006. Available
from http://jason.sourceforge.net.

[3] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming
Multi-Agent Systems in AgentSpeak using Jason. Wiley, 2007. ISBN: 978-0-470-
02900-8.

[4] Raymond Devillers, Hanna Klaudel, and Robert-C. Riemann. General
parameterised refinement and recursion for the m-net calculus. Theoretical
Computer Science, 300(1-3):259–300, 2003.

[5] Hanna Klaudel and Franck Pommereau. A concurrent and compositional petri
net semantics of preemption. In Integrated Formal Methods: Second International
Conference, IFM 2000, Dagstuhl Castle, Germany, November 2000. Proceedings,
volume 1945 of Lecture Notes in Computer Science, pages 318–337. Springer-
Verlag, 2000.

[6] Hanna Klaudel and Franck Pommereau. A class of composable and preemptible
high-level petri nets with an application to multi-tasking systems. Fundamenta
Informaticae, 50(1):33–55, 2002.

[7] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A BDI
reasoning engine. In Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal
El Fallah Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms
and Applications. Springer, 2005.

[8] Anand S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language. In Agents Breaking Away — Proc. Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World (MAAMAW), volume
1038 of Lecture Notes in Computer Science, pages 42–55. Springer, 1996.

[9] John Thangarajah, James Harland, David Morley, and Neil Yorke-Smith.
Suspending and resuming tasks in BDI agents. In Proceedings of AAMAS’08,
pages 405–412, 2008.

9




