23 research outputs found

    Optimal Regenerator Placement for Dedicated Path Protection in Impairment-Aware WDM Networks

    Get PDF
    Building resilient Wavelength Division Multiplexed (WDM) optical networks is an important area of research. This thesis deals with the design of reliable WDM networks where physical layer impairments are taken into account. This research addresses both the regenerator placement problem (RPP) and the routing with regenerator problem (RRP) in impairment-aware WDM networks, using dedicated path protection. Both the problems have been tackled using linear Integer formulations which can be implemented, using a solver such as the CPLEX. For solving RPP, two solutions have been proposed - i) a formulation that gives optimal solutions which works only for small networks, and ii) a highly effective heuristic which given an optimal solution in 97.5 to 99% of cases for networks having a size up to 60 nodes

    Cross-layer modeling and optimization of next-generation internet networks

    Get PDF
    Scaling traditional telecommunication networks so that they are able to cope with the volume of future traffic demands and the stringent European Commission (EC) regulations on emissions would entail unaffordable investments. For this very reason, the design of an innovative ultra-high bandwidth power-efficient network architecture is nowadays a bold topic within the research community. So far, the independent evolution of network layers has resulted in isolated, and hence, far-from-optimal contributions, which have eventually led to the issues today's networks are facing such as inefficient energy strategy, limited network scalability and flexibility, reduced network manageability and increased overall network and customer services costs. Consequently, there is currently large consensus among network operators and the research community that cross-layer interaction and coordination is fundamental for the proper architectural design of next-generation Internet networks. This thesis actively contributes to the this goal by addressing the modeling, optimization and performance analysis of a set of potential technologies to be deployed in future cross-layer network architectures. By applying a transversal design approach (i.e., joint consideration of several network layers), we aim for achieving the maximization of the integration of the different network layers involved in each specific problem. To this end, Part I provides a comprehensive evaluation of optical transport networks (OTNs) based on layer 2 (L2) sub-wavelength switching (SWS) technologies, also taking into consideration the impact of physical layer impairments (PLIs) (L0 phenomena). Indeed, the recent and relevant advances in optical technologies have dramatically increased the impact that PLIs have on the optical signal quality, particularly in the context of SWS networks. Then, in Part II of the thesis, we present a set of case studies where it is shown that the application of operations research (OR) methodologies in the desing/planning stage of future cross-layer Internet network architectures leads to the successful joint optimization of key network performance indicators (KPIs) such as cost (i.e., CAPEX/OPEX), resources usage and energy consumption. OR can definitely play an important role by allowing network designers/architects to obtain good near-optimal solutions to real-sized problems within practical running times

    Optimization of WDM Optical Networks

    Get PDF
    Optical network, with its enormous data carrying capability, has become the obvious choice for today\u27s high speed communication networks. Wavelength Division Multiplexing (WDM) technology and Traffic Grooming techniques enable us to efficiently exploit the huge bandwidth capacity of optical fibers. Wide area translucent networks use sparse placement of regenerators to overcome the physical impairments and wavelength constraints introduced by all optical (transparent) networks, and achieve a performance level close to fully switched (opaque) networks at a much lesser network cost. In this dissertation we discuss our research on several issues on the optimal design of optical networks, including optimal traffic grooming in WDM optical networks, optimal regenerator placement problem (RRP) in translucent networks, dynamic lightpath allocation and dynamic survivable lightpath allocation in translucent networks and static lightpath allocation in translucent networks. With extensive simulation experiments, we have established the effectiveness and efficiencies of our proposed algorithms

    Regenerator placement and fault management in multi-wavelength optical networks.

    Get PDF
    Shen, Dong.Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (p. 98-106).Abstracts in English and Chinese.Abstract --- p.i鎽樿 --- p.ivAcknowledgements --- p.vTable of Contents --- p.viChapter Chapter 1 --- Background --- p.1Chapter 1.1 --- Translucent Optical Networks --- p.1Chapter 1.1.1 --- The Way Towards Translucent --- p.1Chapter 1.1.2 --- Translucent Optical Network Architecture Design and Planning --- p.3Chapter 1.1.3 --- Other Research Topics in Translucent Optical Networks --- p.6Chapter 1.2 --- Fault Monitoring in All-Optical Networks --- p.12Chapter 1.2.1 --- Fault Monitoring in Network Layer's Perspective --- p.12Chapter 1.2.2 --- Passive Optical Monitoring --- p.14Chapter 1.2.3 --- Proactive Optical Monitoring --- p.16Chapter 1.3 --- Contributions --- p.17Chapter 1.3.1 --- Translucent Optical Network Planning with Heterogeneous Modulation Formats --- p.17Chapter 1.3.2 --- Multiplexing Optimization in Translucent Optical Networks --- p.19Chapter 1.3.3 --- An Efficient Regenerator Placement and Wavelength Assignment Scheme in Translucent Optical Networks --- p.20Chapter 1.3.4 --- Adaptive Fault Monitoring in All-Optical Networks Utilizing Real-Time Data Traffic --- p.20Chapter 1.4 --- Organization of Thesis --- p.22Chapter Chapter 2 --- Regenerator Placement and Resource Allocation Optimization in Translucent Optical Networks --- p.23Chapter 2.1 --- Introduction --- p.23Chapter 2.2 --- Translucent Optical Network Planning with Heterogeneous Modulation Formats --- p.25Chapter 2.2.1 --- Motivation and Problem Statements --- p.25Chapter 2.2.2 --- A Two-Step Planning Algorithm Using Two Modulation Formats to Realize Any-to-Any Topology Connectivity --- p.28Chapter 2.2.3 --- Illustrative Examples --- p.30Chapter 2.2.3 --- ILP Formulation of Minimizing Translucent Optical Network Cost with Two Modulation Formats under Static Traffic Demands --- p.34Chapter 2.2.4 --- Illustrative Numeric Examples --- p.42Chapter 2.3 --- Resource Allocation Optimization in Translucent Optical Networks --- p.45Chapter 2.3.1 --- Multiplexing Optimization with Auxiliary Graph --- p.45Chapter 2.3.2 --- Simulation Study of Proposed Algorithm --- p.51Chapter 2.3.3 --- An Efficient Regenerator Placement and Wavelength Assignment Solution --- p.55Chapter 2.3.4 --- Simulation Study of Proposed Algorithm --- p.60Chapter 2.4 --- Summary --- p.64Chapter Chapter 3 --- Adaptive Fault Monitoring in All-Optical Networks Utilizing Real-Time Data Traffic --- p.65Chapter 3.1 --- Introduction --- p.65Chapter 3.2 --- Adaptive Fault Monitoring --- p.68Chapter 3.2.1 --- System Framework --- p.68Chapter 3.2.2 --- Phase 1: Passive Monitoring --- p.70Chapter 3.2.3 --- Phase 2: Proactive Probing --- p.71Chapter 3.2.4 --- Control Plane Design and Analysis --- p.80Chapter 3.2.5 --- Physical Layer Implementation and Suggestions --- p.83Chapter 3.3 --- Placement of Label Monitors --- p.83Chapter 3.3.1 --- ILP Formulation --- p.84Chapter 3.3.2 --- Simulation Studies --- p.86Chapter 3.3.3 --- Discussion of Topology Evolution Adaptiveness --- p.93Chapter 3.4 --- Summary --- p.95Chapter Chapter 4 --- Conclusions and Future Work --- p.95Chapter 4.1 --- Conclusions --- p.96Chapter 4.2 --- Future Work --- p.97Bibliography --- p.98Publications during M.Phil Study --- p.10

    Scalable Column Generation Models and Algorithms for Optical Network Planning Problems

    Get PDF
    Column Generation Method has been proved to be a powerful tool to model and solve large scale optimization problems in various practical domains such as operation management, logistics and computer design. Such a decomposition approach has been also applied in telecommunication for several classes of classical network design and planning problems with a great success. In this thesis, we confirm that Column Generation Methodology is also a powerful tool in solving several contemporary network design problems that come from a rising worldwide demand of heavy traffic (100Gbps, 400Gbps, and 1Tbps) with emphasis on cost-effective and resilient networks. Such problems are very challenging in terms of complexity as well as solution quality. Research in this thesis attacks four challenging design problems in optical networks: design of p-cycles subject to wavelength continuity, design of dependent and independent p-cycles against multiple failures, design of survivable virtual topologies against multiple failures, design of a multirate optical network architecture. For each design problem, we develop a new mathematical models based on Column Generation Decomposition scheme. Numerical results show that Column Generation methodology is the right choice to deal with hard network design problems since it allows us to efficiently solve large scale network instances which have been puzzles for the current state of art. Additionally, the thesis reveals the great flexibility of Column Generation in formulating design problems that have quite different natures as well as requirements. Obtained results in this thesis show that, firstly, the design of p-cycles should be under a wavelength continuity assumption in order to save the converter cost since the difference between the capacity requirement under wavelength conversion vs. under wavelength continuity is insignificant. Secondly, such results which come from our new general design model for failure dependent p-cycles prove the fact that failure dependent p-cycles save significantly spare capacity than failure independent p-cycles. Thirdly, large instances can be quasi-optimally solved in case of survivable topology designs thanks to our new path-formulation model with online generation of augmenting paths. Lastly, the importance of high capacity devices such as 100Gbps transceiver and the impact of the restriction on number of regeneration sites to the provisioning cost of multirate WDM networks are revealed through our new hierarchical Column Generation model

    Routing, spectrum allocation and regenerator placement in flexible-grid optical networks

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013.Thesis (Master's) -- Bilkent University, 2013.Includes bibliographical references leaves 57-61.Tremendous increase in the number of wireless devices has been resulting in huge growth in the Internet traffic. This growth necessitates efficient usage of resources in the optical networks, which form the backbone of the Internet. Recently proposed flexible optical networks can adjust the optical layer transmission parameters to take advantage of existing channel conditions thereby increasing the resource utilization efficiency. Therefore, flexible optical network is a promising solution to fulfill growing future demand of IP traffic. Apart from efficient usage of the optical spectrum, the degradation of the optical signal as it propagates over the fiber is another problem. In such cases, the optical signal must be regenerated when a lightpath travels longer than the maximum optical reach. However, regenerators are expensive devices with high operational costs. Therefore, they should be placed carefully to reduce the capital and operational network costs. In this dissertation, we deal with the joint routing, spectrum allocation and regenerator placement (RSA-RP) problem for flexible optical networks. Our aim is to find the route and allocate spectrum for each traffic demand by assigning minimum number of nodes as regenerator sites. Firstly, we introduce a novel mixed integer linear programming (MILP) formulation for the joint RSA-RP problem. Since this formulation is not practical for large networks, we propose a decoupled formulation where the RSA-RP problem is decomposed into two phases. In the first step, we find routes and locations of regenerators assuming a full wavelength converting network. Then, we allocate the spectrum to each demand in the second phase. The decoupled model can be used to solve the RSA-RP problem for reasonably sized optical networks. We show that the decoupled model can find optimum solutions for 92% of the all cases tested for the NSFNET topology and 99% of the all cases tested for the Deutsche Telecom topology. We also show that the locations of regenerator sites significantly depend on network parameters such as the node degree and lengths of the links adjacent to the node.Kahya, AlperM.S

    Resource Allocation for Periodic Traffic Demands in WDM Networks

    Get PDF
    Recent research has clearly established that holding-time-aware routing and wavelength assignment (RWA) schemes lead to significant improvements in resource utilization for scheduled traffic. By exploiting the knowledge of the demand holding times, this thesis proposes new traffic grooming techniques to achieve more efficient resource utilization with the goal of minimizing resources such as bandwidth, wavelength channels, transceivers, and energy consumption. This thesis also introduces a new model, the segmented sliding window model, where a demand may be decomposed into two or more components and each component can be sent separately. This technique is suitable for applications where continuous data transmission is not strictly required such as large file transfers for grid computing. Integer linear program (ILP) formulations and an efficient heuristic are put forward for resource allocation under the proposed segmented sliding window model. It is shown that the proposed model can lead to significantly higher throughput, even over existing holding-time-aware models

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producci贸n Cient铆ficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Econom铆a, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT

    Energy-efficient design of optical transport networks

    Get PDF
    Energy efficiency is becoming a key factor in the design and operation of telecommunications networks as a way to reduce operational expenditures and the carbon footprint associated to telecom operators. This Ph.D. thesis evaluates and proposes novel energy-efficient approaches in three design areas of optical transport networks: (1) Network architectures and operation modes; (2) Resilience schemes; and (3) Optical amplifier placements. The solutions proposed in these areas are shown to significantly reduce the power consumption in realistic deployment scenarios and could be applied by telecom operators in the near and medium-term future to enhance the energy efficiency of optical transport networks

    Off-line and in-operation optical core networks planning

    Get PDF
    The ever increasing IP traffic volume has finally brought to light the high inefficiency of current wavelength-routed over rigid-grid optical networks in matching the client layer requirements. Such an issue results in the deployment of large-size, expensive and power-consuming Multiprotocol Label Switching (MPLS) layers to perform the required grooming/aggregation functionality. To deal with this problem, the emerging flexgrid technology, allowing for reduced size frequency grids, is being standardized. Flexgrid optical networks divide the spectrum into frequency slots providing finer granularity than rigid networks based on Dense Wavelength Division Multiplexing (DWDM). To find a feasible allocation, new Routing and Spectrum Allocation (RSA) algorithms for flexgrid optical networks need to be designed and evaluated. Furthermore, due to the flexibility of flexible optical networks, the aggregation functions and statistical multiplexing can be partially located in the optical layer. In addition, given the special characteristics of flexible optical networks, the traditional mechanisms for protection and recovery must be reformulated. Optical transport platforms are designed to facilitate the setting up and tearing down of optical connections (lightpaths). Combining remotely configurable optical cross-connects (OXCs) with a control plane provides the capability of automated lightpath set-up for regular provisioning, and real-time reaction to the failures, being thus able to reduce Operational Expenditures (OPEX). However, to exploit existing capacity, increase dynamicity, and provide automation in future networks, current management architectures, utilizing legacy Network Management Systems (NMS) need to be radically transformed. This thesis is devoted to design optical networks and to devise algorithms to operate them. Network design objective consists of: i. Analyzing the cost implications that a set of frequency slot widths have on the Capital Expenditures (CAPEX) investments required to deploy MPLS-over-flexgrid networks; ii. Studying recovery schemes, where a new recovery scheme specifically designed for flexgrid-based optical networks is proposed. As for network operation, we focus on: i. Studying provisioning, where two provisioning algorithms are proposed: the first one targets at solving the RSA problem in flexgrid networks, whereas the second one studies provisioning considering optical impairments in translucent DWDM networks; ii. Getting back to the recovery problem, we focus on algorithms to cope with restoration in dynamic scenarios. Several algorithms are proposed for both single layer and multilayer networks to be deployed in the centralized Path Computation Element (PCE); iii. One of the main problems in flexgrid networks is spectrum defragmentation. In view of that, we propose an algorithm to reallocate already established optical connections so as to make room for incoming requests. This algorithm is extended with elasticity to deal with time-varying traffic. The above algorithms are firstly implemented and validated by using simulation, and finally experimentally assessed in real test-beds. In view of PCE architectures do not facilitate network reconfiguration, we propose a control and management architecture to allow the network to be dynamically operated; network resources can be made available by reconfiguring and/or re-optimizing the network on demand and in real-time. We call that as in-operation network planning. It shall be mentioned that part of the work reported in this thesis has been done within the framework of several European and National projects, namely STRONGEST (FP7-247674), IDEALIST (FP7-ICT-2011-8), and GEANT (FP7-238875) funded by the European Commission, and ENGINE (TEC2008-02634) and ELASTIC (TEC2011-27310) funded by the Spanish Science Ministry.El volumen creciente del tr谩fico IP, finalmente, ha puesto de manifiesto la alta ineficiencia de las redes 贸pticas actuales de grid r铆gido basadas en WDM en la adecuaci贸n a los requisitos de capa de cliente. Dicho problema genera que se deba desplegar una red con capas MPLS de gran tama帽o, costosa y de alto consumo energ茅tico para poder realizar la funcionalidad de agregaci贸n requerida. Para hacer frente a este problema, la tecnolog铆a flexgrid emergente, que permite grids con frecuencias de menor tama帽o, est谩 siendo estandarizada. Las redes 贸pticas flexgrid dividen el espectro en slots de frecuencia, lo que proporciona una granularidad m谩s fina en comparaci贸n a las redes r铆gidas basadas en WDM. Para encontrar una asignaci贸n factible, nuevos algoritmos de enrutamiento y asignaci贸n de espectro (RSA) para redes 贸pticas flexgrid deben ser dise帽ados y evaluados. Adem谩s, debido a la flexibilidad de las redes 贸pticas flexibles, las funciones de agregaci贸n y de multiplexaci贸n estad铆stica pueden ser parcialmente situadas en la capa 贸ptica. Asimismo, dadas las caracter铆sticas especiales de las redes 贸pticas flexibles, los mecanismos tradicionales de protecci贸n y recuperaci贸n deben reformularse. Las plataformas de transporte 贸pticas est谩n dise帽adas para facilitar la creaci贸n y destrucci贸n de conexiones 贸pticas. La combinaci贸n de OXCs configurables remotamente con un plano de control, proporciona la capacidad de crear conexiones autom谩ticamente para el aprovisionamiento habitual, y la reacci贸n en tiempo real a los fallos, para as铆 poder reducir el OPEX. Sin embargo, para aprovechar la capacidad existente, aumentar la dinamicidad y proporcionar automatizaci贸n a las redes del futuro, las arquitecturas actuales de gesti贸n, que utilizan sistemas legados de NMS, necesitan ser transformadas de manera radical. Esta tesis est谩 dedicada al dise帽o de redes 贸pticas y a la creaci贸n de algoritmos para operarlas. El objetivo de dise帽o de red se compone de: 1. El an谩lisis de las implicancias en el costo que tiene un conjunto de slots de frecuencia en el CAPEX necesario para implementar redes MPLS-over-flexgrid; 2. El estudio de esquemas de recuperaci贸n, donde se propone un nuevo esquema de recuperaci贸n dise帽ado espec铆ficamente para las redes 贸pticas basadas en flexgrid. En cuanto a la operaci贸n de la red: 1. El estudio de aprovisionamiento, donde se proponen dos algoritmos de aprovisionamiento: el primero de ellos tiene como objetivo solucionar el problema de RSA en redes flexgrid, mientras que el segundo estudia aprovisionamiento considerando la degradaci贸n 贸ptica en redes WDM transl煤cidas; 2. Volviendo al problema de la recuperaci贸n, nos centramos en algoritmos de restauraci贸n para escenarios din谩micos. Se proponen varios algoritmos, tanto para redes mono-capa como multi-capa, que ser谩n desplegados en un PCE centralizado; 3. Uno de los principales problemas en las redes flexgrid es la desfragmentaci贸n del espectro. Para ello, se propone un algoritmo para reasignar las conexiones 贸pticas ya establecidas con el fin de hacer espacio a las entrantes. Este algoritmo se extiende con elasticidad para ser utilizado en escenarios con tr谩fico variable en el tiempo. Los algoritmos anteriores son primero implementados y validados utilizando simulaci贸n, y finalmente son evaluados experimentalmente en testbeds reales. En vista de que las arquitecturas de PCE no facilitan la reconfiguraci贸n de la red, proponemos una arquitectura de control y gesti贸n para permitir que la red pueda ser operada de forma din谩mica; hacer que los recursos de la red est茅n disponibles mediante reconfiguraci贸n y/o re-optimizaci贸n de la red bajo demanda y en tiempo real. A eso lo llamamos planificaci贸n en operaci贸n de la red. El trabajo presentado en esta tesis se ha realizado en el marco de proyectos europeos y nacionales: STRONGEST (FP7-247674), IDEALIST (FP7-2011-8), y GEANT (FP7-238875) financiados por la CE, y ENGINE (TEC2008-02634) y ELASTIC (TEC2011-27310) financiados por el MINEC
    corecore