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疏 — A b s t r a c t 

This thesis has addressed two important network design aspects of optical 

wavelength routing networks, namely, regenerator placement problem for translucent 

optical networks and fault monitoring in all-optical networks. 

Regenerator Placement and Resource Allocation Optimization for Translucent 

Optical Networks 

In this part, we have proposed a cost-effective design to reduce the required network 

deployment cost in translucent optical networks by adopting two modulation formats 

so as to achieve two different optical reaches (the maximum distance an optical 

signal can travel without O-E-0 regeneration). Two cases representing two common 

scenarios, namely, ensuring any-to-any connectivity over the network and serving a 

forecast traffic demand matrix, have been investigated using multiple modulation 

formats. For the any-to-any connectivity case, we have tackled the regenerator 

placement problem with a two-step planning algorithm. In the second scenario, by 

proposing detailed and exact regenerator site architecture, accommodating a pool of 

back-to-back transponders, we have formulated an Integer Linear Programming (ILP) 

to minimize the overall network deployment CAPEX including the transponder cost 

and the regenerator site cost, coupled with routing and wavelength assignment task. 

In the second part, we have investigated two practical problems. First, we have 

combined the important traffic grooming task with O-E-0 regenerator placement, by 
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constructing an auxiliary graph, over which different grooming policies can be 

applied. Second, by constructing complex decision graph and running shortest path 

algorithm, our proposed solution could find the optimal wavelength assignment 

scheme compared to those intuitive schemes in terms of cost evaluated by the total 

number of O-E-0 regenerators required for both signal regeneration and wavelength 

conversion. 

Adaptive Fault Monitoring in All-Optical Networks Utilizing Real-Time Data 

Traffic 

All-optical DWDM networks are vulnerable to physical failures, such as fiber cut, 

optical cross-connect (OXC) malfunction and optical amplifier breakdown. Due to 

the extremely large transmission capacity of all-optical networks, these possible 

failures may be translated to disastrous communication disruption. Hence, fault 

detection is one of the crucial aspects in network management to assure network 

reliability and availability. With the increased complexity of the network topology, 

fault detection and localization may incur significant management and operating 

costs. Thus, an efficient and cost-effective fault detection and localization system is 

highly desirable to assure the specified levels of quality of service. In this thesis, we 

have proposed a novel fault detection and localization scheme for all-optical 

networks with the information of the real-time data traffic. Our adaptive fault 

localization framework is based on combining passive and proactive monitoring 

solutions, together with adaptive management in two phases. Numerical results have 

indicated that our proposed scheme has good scalability, in terms of the number of 
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fault monitors required. Also, we have showed that our framework allows more 

flexible network design, and requires much less monitoring bandwidth when 

compared with the passive monitoring solutions. 
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摘要 

本文主要解决两个重要的骨干光网络设计规划问题：半透明光网络中的光信号 

再生节点的选择和资源分配策略的优化设计，以及提出了一种全新的利用实时 

动态光路由信息，自适应的发送光路探针来完成组成光骨干网络的光纤的存活 

性的监控机制。 

半透明光网络中的再生节点的选择和资源分配策略的优化设计： 

本部分主要分成两个子问题。第一，在之前的半透明网络设计中通常假设只利 

用某一种光调制技术，而本文探讨了在两种常用的设计场景下利用两种光调制 

码型技术在半透明光网络规划中可能带来的成本节省优势。一种场景是为保证 

任何节点都能顺利和其他光节点通信，如何选择光信号的再生节点并决定相应 

节点的光接发器类型（对于于不同的调制码型）以保证所投资的资源成本最低。 

对此，我们主要提出了一种涉及图论中connected dominating set的规划算法来有 

效的找到最优的结果。另一种场景是在给定整改网络的流量矩阵的情况下，我 

们提出了利用整数线性规划（ILP)来实现总体网络规划所耗成本的最小的资源 

分配设计，一其中包括了再生节点和光路由选择以及波长分配的。第二个子问题 

主要从实际运营商的角度来考虑。首先，针对流量疏导（traffic grooming)和光 

信号的再生资源需求问题，我们设计了一种用辅助图把两者统一到一起做综合 

决策。其次，我们通过把波长分配策略和再生器的位置选择问题整合到一张决 

策图上的方式，完成了可观的网络成本节省。 

自适应的全光网络存活性监控机制设计： 

未来全光网络的生存性（survivability)和可靠性（reliability)是非常重要的特 

性，因为一旦有错误发生，如光纤的断裂或者光节点的损坏，都可能引起巨大 

的损失。因此，面对越来越复杂的网络服务要求和拓扑，一种高可扩展性和高 

性价比的全光网络错误监控机制十分必要。 

本文提出并设计了一种全新的自适应的光网络存活性监控机制。我们的自适应 

光网络监控机制通过把被动式的监控光网络错误的设计原理和主动式的定位光 

网络错误的设计算法相结合的方式，充分利用实时的光路由信息和闲置状态的 

波长资源来实习自动控制全光网络的监控。大量随机网络拓扑的仿真结果显示 

我们提出的监控机制具有很好的可扩展性；通过在几个实际的网络拓扑上和被 

动式监控设计原理的仿真比较结果，我们的方法使用更加少的监控器并且非常 

容易适应拓扑结构的变化和演进。 
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Chapter 1 Background 

Nowadays, as the information technology evolves, the underlying global backbone 

network infrastructure is facing increasing challenges. The continuous and rapid 

growth in traffic demand of Internet backbone have been driven by the trend to 

maximize information technology benefit, such as the mobile broadband industry 

which is estimated to have 50 billion connections by 2020, the exploding online HD 

video streaming services, as well as the revolutionary cloud enabling service. Optical 

networks adopting Wavelength Division Multiplexing (WDM) technology are 

considered to be the best choice for the backbone network of Internet. With WDM, a 

single fiber is capable of carrying up to hundreds of parallel optical wavelengths each 

of which carries up to 100 Gbps. In this chapter, we will introduce some important 

problems in optical WDM networks. 

1.1 Translucent Optical Networks 

1.1.1 The Way Towards Translucent 

In the current academic literature of optical networking, a network is referred as 

transparent if all the nodes on the network are equipped with all-optical cross 

connects (OXCs) or reconfigurable optical add-drop multiplexer(ROADM) without 

any electronic regeneration function. Each light-path must be routed from its source 

to its destination without any electronic processing at intermediate nodes en route. A 

transparent optical network possesses the advantage of modulation format 
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transparency, bit-rate transparency and protocol transparency. Despite these great 

advantages, a transparent network at current stage, however, suffers from the 

physical layer impairments induced by the underlying transmission fiber system, 

such as chromatic dispersion, polarization mode dispersion, nonlinear effects, and 

crosstalks, especially when the transmission data rate increases from lOGbps to 

40Gbps and lOOGbps. These largely limit the route distance and flexibility of the 

network. The opposite of a transparent network is a so-called opaque network in 

which all channels are detected at each node, and their corresponding payloads are 

then electronically regenerated and switched to any new outgoing wavelength. 

Although there is no reach constraint for an opaque network, the tremendous cost to 

deploy fully-capable electronic switching at each node prohibits large scale network 

rollout. 

To seek a graceful balance between network design cost and service provisioning 

performance, translucent optical network architecture has been proposed [1]. 

Generally, it uses a set of sparsely but strategically placed electronic regeneration 

resource, which is used to provide 3R function, namely, re-amplify, re-shape, and 

re-time, to the optical signals so that the optical signals can travel for another long 

path until reaching the next node with regeneration resource or the corresponding 

destination. Rather than using purely optical or electronic switching, a translucent 

optical network is a compromise between all-optical switching and all-electrical 

switching, showing the inherent cost-effective property together with the ability to 

overcome the physical impairment limitations. 
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1.1.2 Translucent Optical Network Architecture Design and 

Planning 

Clearly, the first consideration in translucent network design is about how to plan the 

regeneration resource, in the WDM networks, subject to specific service provision 

requirements. Currently, three major types of architecture, island of transparency, 

sparsely placed regeneration sites, and selective regeneration, have been proposed in 

the literature, and will be introduced in the flowing sub-sections. 

Island of Transparency 

In the architecture known as 'island of transparency' [2], a large-scale optical 

network is divided into several domains (i.e. islands) of optical transparency. In the 

same domain, a light-path can transparently reach any node without any intermediate 

signal regeneration. However, for communications between different domains, 

electronic switches (ESs) are used at the domain boundaries. These switches act as 

3R regenerators and wavelength converters in addition to relaying the light-paths 

crossing the domain boundaries. 

Partitioning a large transport network into several small sub-networks can simplify 

network control and management, as each sub-network can be maintained 

individually. Moreover, it matches the concept of operator domain that the operator 

could deploy equipments from different vendors, regardless of the interoperability 

capability. Also, even for a single vendor system, the isolation allows carriers to 

upgrade network capacity separately on independent time scale. 
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The key disadvantage of this island of transparency scheme is its extra regeneration 

induced by the simple and flexible nature of the architecture, indicating a trade-off 

between operational cost and capital cost. 

In such type of translucent network, one important issue is how to efficiently and 

economically partition a large-scale optical network into several sub-networks. The 

input of the problem would be the original physical topology and optical reach, and 

the objective is to minimize the number of island border nodes. Based on the original 

work of A. Saleh [2], Karasan & Arisoylu [3] addressed the transparent domain 

partition by employing an ILP model and a heuristic to continuously merge the graph 

faces to clusters (i.e. transparent islands) to minimize the number of total divided 

transparent islands. In [4], Shen, Wayne and Tucker further studied a more detailed 

design taking the ASE noise into optical reach evaluation model and proposed an 

efficient island-division approach. 

Sparsely Placed Regeneration Sites 

A translucent optical network can be more general than island of transparency 

architecture, in which a set of nodes are selected to have regeneration capability, 

named as regeneration site. If a connection route is too long to be carried in only 

optical domain, then it must go through one or more regeneration sites. Within the 

regeneration site, two potential implementation methods have been studied. Either all 

the traffic transiting these sites needs to do O-E-0 conversion, or they have optically 

by-pass flinction so that regeneration only occurs when needed. 
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Rather than partitioning the network into sub-networks as in the island of 

transparency architecture, the chief objective of this design principle is to 

strategically choose the designated regeneration sites from all the network nodes. A 

range of heuristic solutions have been proposed to solve the problem. Yang and 

Ramamurthy [5] proposed heuristics such as "nodal degree first," “centered node 

first," etc, to allocate regeneration sites, specifically for the network cases with 

topological information only and more information on forecast traffic information. 

Another strategy aimed to place the minimum number of regeneration sites while 

ensuring any-to-any connectivity, subject to certain optical reach over the network, 

was first presented in [6], and later was proved to be NP-Complete in [7]. It modeled 

the regeneration sites allocation problem to be equivalent to compute the minimal 

Connected Dominating Set (CDS) of an auxiliary topology. Due to the fact that 

NP-Complete Problem is computational intractable, some heuristics [6] are proposed 

to handle large scale network cases. 

Selective Regeneration 

The third investigated design option is so-called selective regeneration, allowing all 

the nodes to perform regeneration and regenerating a demand when needed. The 

regeneration decision is made per demand, together with the flexibility of choosing 

regeneration locations, thus yielding the fewest regeneration times needed. This 

strategy is commonly advocated and employed by the current telecommunication 

industry carriers [8]. Not much previous work was dedicated to this area of 

translucent network design, although we believe there are still many interesting 
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problems and optimization margin remaining to be explored in academic research. 

1.1.3 Other Research Topics in Translucent Optical Networks 

Light-path Routing and Wavelength Assignment 

With the chosen translucent network architecture, the next task that a carrier faces, is 

to maximize its investment by attracting more clients and satisfying their demands, 

which is usually denoted as routing and wavelength assignment (RWA). 

For the island of transparency architecture, the issue becomes how to establish 

light-path connections that may exist within a single island or traverse multiple 

transparent islands. It is straightforward to route light-path services between a pair of 

nodes within the same transparent island, using the shortest path routing algorithm or 

other routing and wavelength assignment algorithms developed in transparent 

networks. Furthermore, for a node pair requests across several islands, a hierarchical 

routing strategy has been proposed to efficiently choose routes across multiple 

domains [1]. Such hierarchical strategy models the translucent network in two layers, 

with top one including all abstract island nodes and the bottom one containing 

extended information of each abstract node. Based on such a model, light-path 

routing and wavelength assignment was implemented in two steps from the top layer 

to the bottom layer. Ideally, a route that transited the minimum number of transparent 

islands was first found in the top layer, and a transparent path between the two 

border nodes was searched at the transit abstract border node. 

Most of the research effort in light-path routing and wavelength assignment within 
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translucent optical networks has been devoted to sparsely placed regeneration sites 

case, which can be further divided into two categories by the assumed traffic nature. 

For the static case, a set of light-path demands or a forecast traffic matrix, the system 

optical reach as well as the topology are given, the objective is to serve the maximal 

number of demands or minimizing the consumed resource after satisfying all the 

demands. Tang in [9] presented a complete ILP formulation to address the 

regeneration site selection and RWA simultaneously by introducing a graph 

transformation scheme. Mayssa in [10] proposed a heuristic called Cross 

Optimization for RWA and Regenerator Placement (C0R2P), tackling the problems 

separately and step-by-step. As for another well-investigated case, under the 

stochastic nature of dynamic traffic demands assumption, the aim was to minimize 

the request blocking probability. In [5], algorithms such as fragmentation, trace back, 

and hybrid weighted shortest path first were shown and evaluated with simulation 

results. Besides, a 2D-Dijkstra's algorithm that jointly considered both topological 

and wavelength information in [11] was used to route the dynamic traffic demands. 

Survivability in Translucent Optical Networks 

Same as all other networks, survivability issue also plays a crucial role in translucent 

optical network design and operations, as the clients' services and applications are all 

counting on the reliability of the infrastructure network. Specifically, due to the 

tremendous bandwidths that a single fiber link carries enabled by WDM technology, 

the penalty induced by any fiber link or node failure could be prohibitive, making the 

survivability even more important in optical backbone networks. 
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Various proposed approaches to support survivability in transparent WDM networks 

can be generally divided into protection and restoration techniques. Protection 

techniques use pre-assigned and extra bandwidth to assure survivability, which are 

also referred as proactive approaches. In contrast, restoration techniques reroute the 

affected traffic after a failure happens. Protection techniques can be further divided 

into link, segment and path protection. They can also be divided into dedicated and 

shared protection based on whether the backup network resource is allowed to be 

shared by different traffic or not. Restoration techniques can also be divided into link, 

segment and path restoration. 

In order to employ protection technique, a straightforward way to provide 

survivability in translucent networks, is to put these pre-assigned protection 

light-paths into the original working light-paths planning stage, equivalent to have a 

set of extra demands to be served. The work in [12] addressed the issue of 

survivability in optical mesh networks considering optical layer protection and 

realistic optical signal quality constraints. Three kinds of resource sharing scenarios, 

including wavelength-link sharing, regenerator (i.e. OEO) sharing among protection 

light-paths, and regenerator sharing between working and protection paths, were 

investigated in this work. On the other hand, restoration design principle can also be 

applied. For instance, the authors in [13] notice it is technically easier to assume 

failure detection at the opaque nodes only and thus natural to consider viewing the 

transparent path segments between opaque nodes as the entities to be protected for 

network survivability, as opposed to single spans or entire end-to-end paths in 
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translucent optical networks, inspiring them to explore the segment-based scheme by 

formatting the restoration capacity planning problem as an ILP. 

Traffic Grooming in Translucent Optical Networks 

Regarding the discrepancy between the client request bandwidths, of which a large 

portion are at lower bit rate like OC-3,OC-12,or OC-48, and the underlying 

light-path channel capacity up to OC-192 or even higher, it is necessary to multiplex 

these diverse low-speed requests into light-paths with an efficient strategy, so as to 

maximize the utilization of the network. The problem, denoted as traffic grooming 

task in optical WDM networks, has been extensively studied. 

Traffic grooming in translucent optical networks differs from the conventional 

situation where an ideal optical layer is assumed. In another word, we have to put the 

optical reach constraint into consideration when dealing with the same problem in 

translucent networks. Furthermore，previously, all the studies assumed all the nodes 

own the traffic grooming capability, depending on which a lot of works are done in 

either static traffic case or dynamic traffic case, with the objective to minimize the 

network resource consumed, maximize the served traffic demand number [14] or 

reduce the blocking probability [15]. Then, in [16], Zhu's investigation have 

indicated that an optical network with sparse traffic grooming capability would 

achieve performance close to that of a network with full range of traffic grooming 

capability on each node, where sparse traffic grooming capacity means only a few 

nodes had the traffic grooming capacity. Zhu's work [16] inspired Slien and Tucker 
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to look into the sparse traffic grooming problem in translucent optical networks, of 

which the opaque nodes set within the network were naturally selected to have traffic 

grooming capacity [17]. They examined how the number of opaque switch nodes and 

their placement affected the performance of traffic grooming. Their simulation 

studies indicated that with an increase in the number of opaque switch nodes, the 

performance of sub-wavelength traffic grooming was improved, as expected. 

Moreover, performance improvement saturated with an increasing number of opaque 

switch nodes under some networks topologies. However, this trend was not general 

for any type of topology. This study was claimed to be the first attempt dedicated to 

sparse traffic grooming in a translucent optical network. The study in [17] was based 

on the sparsely placed regeneration site architecture, as presented in the previous 

section, while the paper [8] from Shen investigated the traffic grooming problem in 

selective regeneration architecture taking the optical reach into constraint. They 

proposed an efficient heuristic by grabbing the neck of the light-path method. It was 

interesting to notice their attempt to distinguish layer-zero regeneration, represented 

by a 3R O-E-0 regenerator with no traffic grooming capacity, between layer-one 

regeneration using a pair of back-to-back transponders allowing electronic packets 

processing. 

In general, more attention should be paid to this area, as the scenario combining both 

traffic grooming and physical layer impairments is quite of practical concerns 
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Exploring the Wavelength Conversion Functions of Regeneration 

It is well known that O-E-0 conversion function provided by regeneration module 

could easily be coupled with wavelength conversion ability, without loss of 

generality. The wavelength-continuity constraint, refers that a given light-path 

connection should be composed of identical wavelengths on the links traversed by 

the light-path imposed on the RWA problem in optical networks. Thus, a potential 

investigation problem is how to explore this inherent wavelength conversion function 

to mitigate the wavelength-continuity constraint while planning regeneration 

modules into the translucent networks. 

Regardless of the physical layer impairment, former studies, have already dedicated a 

lot of efforts on how to place wavelength converters sparsely to solve the wavelength 

contention problem induce by the wavelength-continuity constraint [18'. 

Nevertheless, some but not much original work have focused on the combination of 

regenerator placement and wavelength assignment. In [5], Yang's routing algorithm 

did consider the wavelength conversion capability of regenerators although his 

placement algorithm did not. In another study [19], regardless of its original aim, 

Angela L.Chiu did try to address the regenerator placement and wavelength 

assignment consideration together, by choosing the regenerator combination which 

minimized the sum of the inverse of available wavelengths over all separated 

light-paths. More research in this area is expected to strike a graceful balance 

between wavelength conversion and signal regeneration. 
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1.2 Fault Monitoring in All-Optical Networks 

As stated in the abstract part, all-optical networks are vulnerable to physical failures, 

such as fiber cut, optical cross-connect (OXC) or ROADM malfunction and optical 

amplifier breakdown. Due to the extremely large transmission capacity of all-optical 

networks, these possible failures may be translated to disastrous communication 

disruption. Hence, fault management is one of the crucial aspects in network 

management to assure network reliability and availability. All the other network 

management modules, such as configuration management, security management, 

performance management and account management, are counting on the information 

provided by the fault detection and localization subsystem. In this section we will 

present some basic building blocks in fault management in all-optical networks, 

followed by current fault detection and localization research trends, in this thesis, we 

mainly focus on the fault detection and localization task in fault management. 

1.2.1 Fault Monitoring in Network Layer's Perspective 

Basically, fault monitoring can be provided either in those upper layers in the 

network, e.g., ATM, IP, SONET, SDH, etc, or in the optical layer individually. In 

addition, they can be provided together in a cross-layer manner [20]. The decision 

generally depends on the tradeoff between the required hardware cost and the fault 

detection time, and may differ from case to case in practical network 

implementations. The fault monitoring schemes in each layer, have their own 

functionalities and characteristics. As an example, in SONET networks, the 
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network-management system employs mechanisms such as BER measurement, 

optical trace, and alarm management to perform fault management at each node. In 

particular, these functionalities may be carried over various types of optical-layer 

overhead [21], including pilot tone, subcarrier-modulated overhead, optical 

supervisory channel, rate-preserving overhead, and digital-wrapper overhead. 

However, all these overheads are detected at some intermediate nodes along the 

light-path, which may not be acceptable in all-optical networks. In the case of higher 

layer, fault management mechanisms in some routing protocols such as IS-IS 

(Intermediate System-Intermediate System) and OSPF (Open Shortest Path First) use 

update messages to identify inter-domain and intra-domain routing failures[22]. 
•I 

Compared with optical layer monitoring schemes, upper layer protocols required less 

hardware support but more signaling efforts for fault monitoring. As a result, optical 

layer monitoring schemes generally respond much faster to a failure event, thus is 

preferred in achieving fast failure localization. Specifically, if we further restrict the 

dominant failure scenario to be the fiber-cut, which is common in optical WDM 

networks, optical layer fault monitoring becomes even more advantageous as such 

fiber-cut failure usually leads to much more fault alarms in upper layer monitoring 

schemes than in optical layer monitoring. 

In the following introduction, we will throw our efforts to optical layer fault 

monitoring schemes review, in particular, to monitor fiber-link failures. 
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1.2.2 Passive Optical Monitoring 

Currently, in all-optical WDM networks, employing optical layer monitoring scheme, 

a link failure is detected and localized simply based on the on-off status of some 

supervisory optical signals. This requires additional wavelength channels to transmit 

the supervisory optical signals, and some special devices called monitors [23] to 

check the on-off status and generate alarms upon a failure event. This incurred 

hardware cost is necessary for achieving fast link failure localization at the optical 

layer, and has to be minimized. Generally, the monitor generates the events - alarms, 

as inputs to the fault diagnosis engine, which could be a fault-to-link mapping 

database. Using various algorithms, the fault diagnosis engine identifies a set of 

network elements whose failures may have caused the input alarms. Due to the 

passive nature of waiting for alarms from monitors, this type of monitoring scheme is 

called as passive optical monitoring in this thesis, although there is no standard 

definition in the literature. There are two common passive optical monitoring 

schemes, namely, monitoring-cycle (m-cycle) and monitoring trail (m-trail). 

Monitoring Cycle (m-cycle) 

At first, when there is not so many links in the optical networks, a link-based 

monitoring scheme would be enough, where each individual optical link needs a 

dedicated monitor. Obviously, 100% link failure localization can be easily ensured in 

this case. However, as the optical WDM network scales from ring topology to mesh 

topology, the excess hardware cost and the network management cost associated 
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with the ever-growing number of monitors, in this link-based scheme, hinder its large 

scale adoption for future WDM networks. 

In order to mitigate this problem, researchers have proposed to predefine a set of 

supervisory light-paths and assign one monitor to each of them. In such situation, one 

monitor is capable of generating alarm upon any link failure on the supervisory 

light-path. Those alarm signals can be denoted by a binary alarm code, in which each 

binary bit indicates whether the corresponding monitor alarms or not. If the set of 

supervisory or monitoring light-paths are properly allocated such that each link 

failure will trigger alarms in a unique set of monitors, then the failure can be 

localized by identifying the unique alarm code. With this design principle, the 

number of monitors placed would be largely reduced. 

At this stage, the major design issue is how to design such supervisory light-paths in 

the WDM networks. The first attempt employing the above monitoring idea in [24], 

introduced the concept of simple m-cycle, where a set of simple cycles, each mapped 

to a specific light-path, were found to cover the network topology. A simple m-cycle 

was an optical loopback of supervisory wavelengths and it passes through each 

on-cycle node exactly once. Based on this work, ILP formulation and heuristic are 

presented in a series of works in [25]. The m-cycle concept was also extended to 

non-simple m-cycle in [26]. A non-simple m-cycle is allowed to pass through a node 

multiple times. In particular, non-simple m-cycles could better explore mesh 

connectivity of a network than simple m-cycles due to the more flexible monitoring 

structure, therefore bringing better cost saving margin. 
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Monitoring Trail (m-trail) 

Both simple m-cycle and non-simple m-cycle used the cycle as the monitoring 

structure. Despite its simplicity and the beauty of cycle, the monitoring structure, 

essentially a light-path in WDM networks, is not necessarily a cycle. On the contrary, 

A line or a trail structure should match the nature of a monitoring light-path in a 

better way. Motivated by the observation, Wu and Ho made their exploration of 

monitoring trail design in [27]. It differed from simple and non-simple m-cycles by 

removing the cycle constraint, and thus an m-trail would be taken as an acyclic 

supervisory light-path with an associated monitor equipped at the destination node of 

the m-trail. A m-trail could also pass through a node multiple times. Clearly, m-trail 

provided the most flexible monitoring structure in utilizing mesh connectivity of the 

optical WDM network, and therefore required the minimum monitoring cost 

compared with other optical layer monitoring schemes. 

1.2.3 Proactive Optical Monitoring 

Another design principle, in contrast to passive optical monitoring, is denoted as 

proactive optical monitoring. Generally in proactive optical monitoring, optical probe 

signals are sequentially sent along a set of designed light-paths, and the network state 

is inferred from the result of this set of optical probe measurements [21]. The design 

objective is to minimize the diagnosis effort, the average number of probes, to locate 

failures. 

To the best of our knowledge, Yonggang Wen and Vincent Chan[21] were the first 
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group of researchers studied the details of proactive probing scheme in all-optical 

network fault monitoring. In [21], by establishing a mathematical equivalence 

between the fault-diagnosis problem and the source-coding problem in information 

theory, an information theoretic approach were reported, where probabilistic link 

failures were localized by analyzing the syndromes of the minimum number of probe 

signals. A class of run-length probing schemes with low computation complexity 

was then developed to handle such network diagnose problems. However, limited by 

the inherent sequential nature of run-length probing scheme, the number of probing 

steps might be quite large for some network failure patterns and/or in some large 

networks, thus it might take a relative long time to localize the failure, which might 

not be acceptable in all-optical networks. Motivated by the shortcomings, they 

ftirther proposed the non-adaptive fault diagnosis scheme in [28]. Instead of sending 

optical probing signals sequentially, a pre-determined set of probing signals were 

sent in parallel to probe the network state of health, through which the step of 

proactive probing would be largely reduced. 

1.3 Contributions 

1.3.1 Translucent Optical Network Planning with Heterogeneous 

Modulation Formats 

As discussed above, the most significant difference between translucent and 

transparent optical networks is the maximum distance that the optical signal can 

travel without regeneration due to the physical layer impairment, denoted as optical 
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reach. To overcome this constraint, expensive O-E-0 regeneration module is needed 

to be deployed in translucent optical networks. A major portion of research effort has 

been dedicated to finding the most cost-effective regeneration module placement 

method. However, most of the researchers in translucent optical network planning 

usually put too much attention in designing extremely complex planning algorithm as 

to reduce the cost in network layer. 

In this thesis, under the sparsely placed regeneration sites architecture, we argue that 

by taking a cross-layer perspective, considerable network deployment cost saving 

can be achieved. Specifically, almost all the previous works assumed that only one 

type of optical modulation format was employed in the transmission system. 

Recently, many advanced modulation formats have been developed in optical 

transmission system and they have different optical reaches. Here, to the best of our 

knowledge, we have made the first attempt to explore the opportunity to use two 

modulation formats/two optical reaches in optical translucent optical network 

planning problem. 

In the following chapter, we will address the translucent optical network planning 

problem in two different scenarios. 

First, in order to realize any-to-any connectivity in a typical translucent optical 

network, where "connectivity" means that at least one physical layer impairment 

feasible path exists in the network, we have proposed a two-step planning algorithm 

to choose the regeneration nodes and nodes for different modulation format. Then 
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with the two-step algorithm, we have compared the overall cost of the case 

employing two modulation formats and the cases applying either one of the 

modulation formats individually. The result has shown that our design principle and 

algorithm can further reduce the planning cost. 

Secondly, given the traffic matrix consisting of a set of light-path requests, the 

network topology and two optical reaches, we have formulated an ILP to minimize 

the network deployment cost involving optical transponders and regeneration site 

cost, coupled with routing and wavelength assignment. The novel point of our ILP is 

that we put both the capital and operational cost in translucent optical networks into 

the formulation. Several network cases have been considered to verify our 

formulation. 

1.3.2 Multiplexing Optimization in Translucent Optical Networks 

In this section, we have proposed a graph-based solution to the traffic grooming 

problem discussed in section 1.1.3. We use multiplexing optimization to denote the 

section, since the original problem is from the telecommunication industry, in which 

the term multiplexing is used for representing the traffic problem. As mentioned in 

section 1.1.2, the carriers usually prefer the selective regeneration architecture due to 

its flexibility, low cost and the well match to the business model. Thus, we have 

propose a novel multiplexing graph model and multiple multiplexing policies to 

perform low-bandwidth-connection routing and multiplexing optimization in 

DWDM mesh networks, combined with the incremental traffic model and physical 
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layer constraints. Based on this graph model, we can automatically determine where 

to route over the network, where to use existing available multiplexing wavelength 

connection channels, whether/where to create new multiplexing wavelength 

connections, where to add regenerators, and what is the overall investment cost: all 

the information a planner would like to know. 

1.3.3 An Efficient Regenerator Placement and Wavelength 

Assignment Scheme in Translucent Optical Networks 

We have shown that not much research effort has been dedicated to explore the 

wavelength conversion capability of regeneration module in section 1.2.3. In this part, 

we provide a novel auxiliary graph model to combine regenerator placement and 

wavelength assignment together. By assigning the right cost weight to the auxiliary 

graph edges, we can easily decide where to place regenerators and which wavelength 

to select by running the least cost algorithm over the graph, such that the overall 

number of regenerators required is minimized. 

1.3.4 Adaptive Fault Monitoring in All-Optical Networks Utilizing 

Real-Time Data Traffic 

Based on the introduction of passive and proactive optical monitoring schemes, we 

can identify their drawbacks as follows. 

For passive optical monitoring, as the network topology is becoming more complex, 

much effort has to be made to design a feasible m-cycle coverage solution. 

Furthermore, even if a feasible cycle set is found, the cost of the required monitors is 
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quite substantial. Besides, the extra monitoring bandwidth cost is also getting high, 

as each monitoring cycle requires one distinct wavelength in an all-optical WDM 

network. For proactive probing scheme, it can only be applied to Eulerian networks, 

each of which contains an Euler trail (a path containing all the links without 

repetition). Although the authors in [21] have further improved their scheme to 

accommodate node failures and have demonstrated that all network topologies could 

be transformed to Eulerian networks, it is still unrealistic to configure the switching 

nodes to meet the requirements, as it may disrupt the existing connections and may 

largely increase the management cost. Besides, the requirement on the probing time 

and frequency is still not yet resolved. 

Motivated by the pros and cons of both passive and proactive detection solutions, we 

propose a novel fault detection and localization scheme for all-optical networks with 

the information of real-time data traffic. Our adaptive fault localization framework is 

based on combining passive and proactive monitoring solutions, together with 

adaptive management in two phases. Numerical results from solving a simple 

monitor placement ILP have indicated that our proposed scheme has good scalability, 

in terms of the number of fault monitors required. Also, we have shown that our 

framework allows more flexible network design, and requires much less monitoring 

bandwidth when compared with the passive monitoring solutions. 
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1.4 Organization of Thesis 

Chapter 2 discusses the translucent optical network planning by employing 

heterogeneous modulation formats under two commonly referred scenarios with 

sparsely placed regeneration sites architecture. Also, chapter 2 presents a 

graph-based solution for traffic grooming optimization problem, and an integrated 

regenerator placement and wavelength assignment scheme by building an auxiliary 

graph, both of which are under the selective regeneration architecture in translucent 

optical networks. 

Chapter 3 presents an adaptive fault monitoring in all-optical networks utilizing 

real-time data traffic, by combining the passive and proactive monitoring ideas. 

Chapter 4 concludes this thesis and suggests the possible future research topics. 
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Chapter 2 Regenerator Placement and Resource 

Allocation Optimization in Translucent Optical 

Networks 

2.1 Introduction 

Nowadays, translucent optical networks are envisioned as one of the most practical 

solutions to overcome the limitation of optical reach in transparent optical networks, 

constrained by possible physical layer impairments including both linear and 

nonlinear effects [29]. Optical reach refers to the distance that an optical signal can 

travel before its quality degrades to a level that requires regeneration. One crucial 

task in translucent optical network design is to strategically place the expensive 

regeneration resource, so as to fulfil the system requirements. As shown in section 

1.1.2, there are three types of mainstream translucent architecture, namely, island of 

transparency, sparsely placed regeneration sites and selective regeneration [30], each 

with its unique property. 

Under the sparsely placed regeneration sites architecture, extensive study has been 

conducted in terms of regeneration site placement number minimization, usually 

referred as regeneration node placement problem. In [5], Yang and Ramamurthy 

presented the detailed node structure with regeneration capability, and then proposes 

several heuristic such as "nodal degree first," "centered node first," etc, to allocate 

regeneration sites, specifically for the network cases with topological information 

only and more information on forecast traffic information. On the other hand, 
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researchers in [31] tried to maximize the transparency benefit of the optical networks 

by modeling the regeneration placement as finding the minimal connected 

dominating set (CDS) of a virtual graph. This award-winning solution was later 

verified and proved by Arunabha Sen in [7], in addition to which they proved 

regenerator placement problem is NP-complete. Our first contribution is based on 

the same architecture, where a set of nodes with the network are chosen to have 

regeneration capability, while the novel point of our solutions comes from the idea to 

use more than one optical modulation formats in the underlying transmission system. 

We show that by careful design, substantial capital cost can be saved, under two 

different investigation scenarios. There are several papers talking about using 

multiple modulation formats to serve mixed line rate requests in transparent optical 

networks [32-33], and to the best of our knowledge, it is the first attempt in 

translucent optical network design. 

As for the selective regeneration architecture, advocated by the carriers, not much 

work is done in this area. The authors of [34] proposed an algorithm that deals with 

translucent network design under static traffic pattern. This approach deployed a 

regenerator for a demand at any intermediate node along its route, if necessary. Their 

aim was to minimize the number of rejected demands as well as the number of 

required regenerators. Shen proposed an efficient heuristic by grabbing the neck of 

the light-path method in [8] to deal with the traffic grooming problem where a set of 

low-bit-rate requests needed to be satisfied by the high-bit-rate light-path, with 

regenerator placement for each demand, if necessary. Motivated by the lack of study 
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under this architecture, we have proposed two efficient graph-aided solutions for two 

different problems, provided by the telecommunication industry. One is named as 

multiplexing optimization since we tackle the similar traffic grooming problem in [8； 

in more elegant way, while for the other problem, we build an auxiliary graph to 

integrate the regenerator placement and wavelength assignment tasks so that the 

overall number of regenerators is reduced. 

The remainder of this chapter is organized as follows. In Section 2.2, the two-step 

planning algorithm and ILP formulation employing two modulation formats together 

with their corresponding illustrate examples under sparsely placed regeneration sites 

architecture is presented. In Section 2.3, a graph-based solution for traffic grooming 

optimization problem, and an integrated regenerator placement and wavelength 

assignment scheme by building an auxiliary graph, both of which are under the 

selective regeneration architecture in translucent optical networks, are presented. 

Section 2.4 summarizes the chapter. 

2.2 Translucent Optical Network Planning with 

Heterogeneous Modulation Formats 

2.2.1 Motivation and Problem Statements 

In a translucent optical network [1], several regeneration capable nodes are 

strategically placed in the network, so as to assure the traffic requests can reach their 

respective destinations with accepted quality. Optical reach refers to the distance that 

an optical signal can travel before its quality degrades to a level that requires 
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regeneration. It is often limited by the physical layer impairments in the optical 

transmission links. In view of optical transmission, the modulation format of the 

optical signal has significant impact on the achievable optical reach [35-36；. 

Generally, the larger the optical reach, the more expensive the corresponding 

transceiver[35]. With intrinsic property of heterogeneous route distances in most 

optical networks, more than one modulation formats for the optical signals may be 

employed for different links, so as to optimize the optical reach requirement for 

different traffic requests, and thus reduces the number of required regeneration nodes. 

In this section, we propose a novel network planning architecture and algorithm to 

reduce the network cost in a translucent optical network by employed 

non-return-to-zero (NRZ) and carrier -suppressed- return-to-zero (CS-RZ) formats 

for optical signals running on different routes, as these two modulation formats are 

suggested in [35] for 40Gb/s systems. Our results show that it is a cost effective 

design for future backbone network planning. Please note that the heterogeneous 

modulation formats considered are not restricted to NRZ and CS-RZ for our 

algorithm. All other feasible advanced modulation formats can be taken into 

consideration at the network planning stage. 

Node Architecture and Network Model 

A typical optical regeneration node comprises a core optical cross-connect (OXC) 

module, a number of optical transceivers and a 3R electronic regeneration card[5:. 

NRZ node and CS-RZ node have similar architectures as the optical regeneration 

node, except that there is no regeneration card and are incorporated with different 
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type of transceivers. Shown in Fig. 

Optical Core 一 \ 2.1, at each node, the wavelengths 

IZZZ \ O X C / I 
\ | \ / — I X on the incoming fiber links are 

— de-multiplexed and switched by the 
/ m : H I 

_ ——~~core OXC switching module, 

Transceivers p U U P ^ R E l e c t r o n ! before being multiplexed onto the 
r Processing 

L ll Module 
outgoing fiber links. For a NRZ or 

Access Function CS-RZ node, there are N 
Fig. 2.1: Regeneration node Architecture 

transceiver pairs. Moreover, we 

assume that M regenerator cards are equipped at each optical regeneration node in 

the 3R electronic regeneration module. The number of transceivers and regenerator 

cards in different types of network nodes is listed in Table I. Each regeneration node 

can receive and transmit both NRZ and CS-RZ signals. As the CS-RZ signals are 

generated by carving the pulses from the NRZ signals using an additional optical 

modulator and both of them use P-I-N photodiodes as the receiver, NRZ nodes and 

CS-RZ nodes can communicate with each other without any format conversion. 
TABLE I NUMBER OF TRANSCEIVERS TN NRZ / CS-RZ / REGENERATION NODES 

CS-RZ Regenerator 
Transceiver Transceiver Card 

NRZ node “ ； ； 

N 

CS-RZ node - ； 
N 

Regeneration node � , 
N N M 
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2.2.2 A Two-step Planning Algorithm Using Two Modulation 

Formats to Realize Any-to-Any Topology Connectivity 

In this section, we describe a two-step algorithm to place regeneration nodes, NRZ 

and CS-RZ nodes, in the network. To simplify the model, we use physical distance to 

represent the physical impairments accumulated along the route. More specific 

physical impairments evaluation model could be used like amplifier noise as the 

metrics. Note that the major constraint of our design is to make sure every node pair 

could establish at least one physical impairment feasible connection between them. 

That is so called any-to-any topology connectivity. 

In general, the first step of the algorithm does basic preprocessing and computing 

while the second step is implemented to select the optimal planning map cosisting of 

regeneration ndoes, NRZ nodes and CS-RZ nodes. 

Input: G(V，E), an undirected graph representing the network topology. Each link 

consists of a pair of fibers in opposite direction. RNRZ and Res denote the optical 

reach of NRZ and CS-RZ modulation formats. 

Step 1: 

Stepl.l: Use Dijkstra algorithm to get the shortest path between each node pair. 

Record the result in a matrix [Lsd]- This matrix will be used to justify whether 

a physical impairment feasible path exists between a node pair in the 

following steps. 

Step 1.2: If only NRZ modulation format (Rmz) is employed, find the minimum 
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number of regeneration node required to make sure that at least one feasible 

path exists between each node pair, denoted as m. This step is to find the 

minimum connected dominating set of G(V,E) if the optical reach is RNRZ [5. • 

Step 1.3: If only CS-RZ modulation format {Res) is employed, find the minimum 

number of regeneration nodes, denoted as n , required to make sure that 

at least one physical impairment feasible path between each node pair This 

step is similar with step2. We assume that Res�RNRZ and the difference is 

large enough to make n<m. 

Step 2: 

Stepl.l : Initialize i=m-l. If there are i regeneration nodes in the network, denoted as 

regeneration node set Set(R), where n<i<m-l, find all the possible 

combinations of Set(R) subject to the following constraints: 

Constraint 1 For each node pair in Set(R), at least one feasible path exists 

with optical reach Res As in our model, every regeneration node has CS-RZ 

transceivers. 

Constraint 2 For nodes that are not in Set(R), denoted as Set(T), there is at 

least one feasible path within Res from each of them to at least one node in 

Set(R). 

For each combination, pick out those nodes in Set(T) of which the physical 

distances to each node in Set(R) are greater than RNRZ denoted as P type node. 

Get the number of P type nodes for each combination and record those 

combinations with the least number of P type node. Note that a P type node 
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will become CS-RZ node and the rest nodes are NRZ nodes. The aim of this 

step is to find the node planning map with minimum overall network cost 

comprises the costs of regeneration nodes, NRZ nodes and CS-RZ nodes if 

there are i regeneration nodes. /=/-/; if />w, go to Step 4; else, go to Step5. 

Step2.2: Given the cost of NRZ transceiver {CMZ), CS-RZ transceiver {CCS-RZ) and 

regenerator card {CRE), get the minimum normalized overall network cost of 

those placement maps from Step4 for each i. 

Output: The regeneration node set Set(R), the NRZ node set Set(NRZ), the CS-RZ 

node set Set (CS-RZ). 

2.2.3 Illustrative Examples 

Our design is applied on two network topologies, namely NSFNET (see Fig. 2.2) and 

Pacific Bell Network (see Fig. 2.3), where all link lengths are in the unit of km. In 

our test, N=M=4. The values of M and N make no difference to the test conclusion. 

Since transmission of 40 DWDM channels over 1,700 km of SSMF using the CS-RZ 

format [35] has been demonstrated, considering that the sensitivity of CS-RZ has 1-2 

dB improvement compared to NRZ, the optical reaches of CS-RZ and NRZ in 

40-Gb/s are assumed to be 1700 km [35] and 1140 km (the maximum link length of 

the NSFNET topology and in the l-2dB), respectively. The cost of the conventional 

NRZ transceiver is normalized to a value of 1, while the relative costs of a 

regenerator card and a CS-RZ transceiver are assumed to be higher than NRZ 

transceiver [36]. Table II lists the network node map of the heterogeneous-format (or 
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hybrid) design in the two topologies, using our proposed algorithm, as discuss in 

section 2.2.2. Fig. 2.4 and Fig. 2.5 illustrate the final node map from Table II. 

Fig. 2.2: 14-node 21-links NSFNET (Link lengths are in the unit of km) 

\ 5 0 e o o ^ ^ ^ ^ l ^ 5 � � Z 450/ 

V 替 d 
^oy \ ^ 5 � 广 

Q 5 5 0 _ ( g ) 500 
Fig. 2.3: 15-node 21-links Pacific Bell Network (Link lengths are in the unit of km) 

3 1 



T A B L E I I N O D E M A P OF H E T E R O G E N E O U S - F O R M A T D E S I G N 

Regeneration node CS-RZ node 

NSFNET 8 ^ 

Pacific Bell Network 0 9,11,13 

With this heterogeneous-format design, the relative network cost savings are 

estimated, as compared to the network designs with all NRZ nodes and with all 

CS-RZ nodes. Considering NSFNET, it is found that relative cost savings of 10% 

R e g e n e r a t i o n n o d e C S - R Z n o d e N R Z node 

Fig. 2.4: The node map of applying the two-step planning algorithm over NSFNET network 

V f ^ i 
_ ^ _ @ 500 

^ R e g e n e r a t i o n n o d e Q C S - R Z n o d e @ N R Z n o d e 

Fig. 2.5: The node map of applying the two-step planning algorithm over Pacific Bell network 
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Fig. 2.6: Normalized network cost of Pacific Bell Network with different network designs, under different assumed 

optical reach values of the NRZ format 

and 12.3% are achieved, as compared to the cases of all NRZ nodes and all CS-RZ 

nodes, respectively, under the assumption that the cost of a regenerator card and cost 

of CS-RZ transmitter are 1.5 and 1.2, with respect to the normalized cost 1 of NRZ 

transmitter. Similarly, for Pacific Bell Network, the respective relative cost savings 

are 18.7% and 11.6%. 

Besides, the difference in the optical reach of the two chosen modulation formats 

also has significant impact on the heterogeneous-format design. For example, if the 

assumed optical reach value of NRZ format is varied from 1140 km to 1500 km, 

while that of CS-RZ format remains unchanged (1700 km), the normalized network 

cost of Pacific Bell Network under different design varies, as depicted in Fig. 2.6. As 

the optical reach of NRZ format is getting closer to that of CS-RZ format, the 
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advantage of using heterogeneous-format design starts to lose, due to the reduced 

optical reach difference and the relatively lower cost of the NRZ nodes. From Fig. 

2.6，after the optical reach of NRZ format exceeds 1350 km, the network design with 

all NRZ nodes becomes as cost-effective as the heterogeneous-format design. 

2.2.3 ILP Formulation of Minimizing Translucent Optical Network 

Cost with Two Modulation Formats under Static Traffic Demands 

As discussed in section 1.3.1, other than ensuring any-to-any connectivity objective 

discussed in the last section, serving a forecast traffic matrix made up of a set of 

fixed light-path demands remains to be a crucial task in practical optical network 

planning[37]. In this part, to further illustrate our proposed heterogeneous 

modulation format design philosophy, we formulate an ILP tailored uniquely for the 

problem, specifically utilizing the two optical reaches. In the following discussion, 

we will first present the architecture of the regeneration site and then explain the ILP 

formulation in detail. 

Regeneration Site Architecture 

Typically, two possible 3R regeneration methods are used in the telecommunication 

industry[30], excluding all-optical 3R regenerator since it is still expensive and 

immature. One is through a pair of back-to-back transponders via a patch cable, 

while the other is through a dedicated regenerator card, shown in Fig. 2.7. 
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Fig. 2.7: Two 3R regeneration implementation choices 
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Fig. 2.8: The Regeneration Site Architecture including a pool of transponders 

In our ILP formulation, we choose to use the back-to-back architecture, as it allows 

easier cost modelling despite the fact the regenerator card can also be used in our ILP 

formulation. In addition, the back-to-back architecture provides true add-drop 

function compared to regenerator card [30]. 
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Our investigation is based on the sparsely placed regeneration site model, with a 

bundle of regeneration modules or resources. Combined with our back-to-back 

transponder regeneration strategy, we show in Fig. 2.8, how the transponders are 

arranged in the regeneration site. For those nodes selected to be regeneration site, we 

deploy an empty site rack at that node, with certain capacity limit. Then, if a 

light-path needs to be regenerated, a pair of transponders is put into one slot of the 

rack via back-to-back connection. As shown in Fig. 2.8, either type of transponder 

can be used, which could largely facilitate component management, and in turn 

reduce the operation cost. 

ILP Formulation 

The inputs of the problem are listed as follows: 

^ The network topology G = {V, E) is given as a weighted undirected graph.厂is 

the set of network nodes. E is the set of weighted links, with the weight 

representing the physical distance of the link. 

y Two types of transponders, with respect to two modulation formats employed. 

Type 1 transponder has optical reach R! and cost Cj while Type 2 owning optical 

reach R2 and cost C2. 

^ The cost to deploy a regeneration site at any node is set to be Qhe as input. This 

parameter is used to balance the capital cost and the operational cost, under the 

reasoning that the more regeneration sites maintain, the higher your operation 

cost. 
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Z AT is the set of static traffic demands as given. 

y N denotes the maximal number of transponders that could be deployed at a 

regeneration site. 

Z Q is the set of wavelengths in each link. 

V py(u,v) the link set in physical layer topology consisting the virtual link (u,v). 

Z a is di constant with extremely small value. 

With the network physical topology G = (V，E) and optical reach i?/and R2, we run 

the shortest path algorithm to get the distance matrix of all the node pairs in the 

network. With the distance matrix, we create two new virtual topologies whereas the 

node set V is same as that in the physical topology. In one virtual topology, if the 

distance of a node pair is not greater than optical reach R!, we create one direct edge, 

between this node pair, denoted as Type 1 plane. For another virtual topology, if the 

distance of anode pair is not greater than optical reach R2, we create one direct edge, 

between this node pair, denoted as Type 2 plane. 

The variables for the ILP are defined as follows: 

V Boolean variable R(w) indicates whether node ueV is selected to have 

regeneration site. 

V Integer variable n\{u) denoting the number of Type 1 transponder in node u. 

‘ Integer variable m{u) denoting the number of Type 2 transponder in node u. 

Z Boolean variable F]" indicates whether request k use transponder Type 1 (=1) 
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not (=0) at the source. 

Z Boolean variable indicates whether request A: use transponder Type 1 (= 1) or 

not (=0) at the destination. 

rk 1 

乂 Boolean variable 人；’w indicates whether wavelength w on the link from node 

w to V is occupied by request k (=1) or not (=0)，in the Type 1 plane. 

2 

V Boolean variable Ju\v\w indicates whether wavelength w on the link from 

node w, to V' is occupied by request /:(=!) or not (=0), in the Type 2 plane. 

V Boolean variable fm,n,w indicates whether wavelength w on the link from 

node m to 以 is occupied by request A: (=1) or not (=0), in the physical topology. 

The objective of the ILP is: 

R ( w ) + C\n\{u) + Cimiu)' 

Minimize: + 工 [ 〔 . ( i — 巧 ” + C i T ^ + C 2( l — + C i i ^ / ] ( 二 画 ” 

kE:K 

Subject to: 

Regeneration Site Capacity Constraint: 

Vu GV,0< m(U) (2-2) 

Vu < n2(u) (2-3) 

V w G V, m{u) + n2{u) < N (2-4) 

Commodity flow constraints: 

Simply, we use src(k), dst(k) to denote the source node and destination node of 
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request k, respectively. In addition, out(u) and out(u') denotes the outgoing adjacent 

node set of u in Type 1 plane and Type 2 plane, while int(u) and int(u，) represents 

the incoming adjacent node set of u in Type 1 plane and Type 2 plane, respectively. 

\/k^K,s^src(k\ Z E = F,' .2-5) 
weQ vGout(s) 

U , s � = src(k\ I Z f巧,= (2-6) 
weflv'eout{s') 

^keK,t = dst(k\ I Z fvj]^ = F^ n-7) 
WGQ veint(,) 

^^kGK,r = dst{k), I I f � � w 小 F ; n 
weClv'eint{t') ’， � ） 

VkGK,W = u，GV(：^ src(klt dst{k)) 

S [ I I S [ Z 识 I / g j (2-9) 
weD veow/(w) v'Eout(u') weQ veint{u) v'mt{u) 

Virtual topology and physical topology mapping constraint: 

VkeK,VueV,VweQ 

Z / : ， l - | M M | ) + l (2-10) 
(m,n)epy(u,v) 

VkeK,Vu = u'EV,VweQ 

Z C.-\pyiu\v)\h\ (2-11) 
{m,n)epy{u'y) 

Wavelength usage constraints: 

V^ € K, Vm, neV,Vwen 

f 二 fk 

(2-12) 
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"^k £K,\fm,neV,yweQ 

X - ^ (2-13) 
keK 

Regeneration Site Specification constraint: 

\fu = u'eV{t src{k),t dst{k)) 

� I ^ m I S 4 2 , ’ , ) 测 (2-14) 
ZteA： weQ veout{u) v'eout{u) 

Vwe�(9^ sr(ik\t dst(Ji)) 

^ ( X fu'i.^ I = niu) (2.15) 
k这 WGQ veout{u) veint{u) 

= src{kl^ dst{k)) 

I [ S ( I S f > } j = niu) (2-16) 
keK weQ v'Eoutiu) v'eint{u) 

The objective function (2-1) minimizes the total cost to serve all the light-paths in set 

K, consisting of the regeneration site cost and transponder cost. Specifically, the first 

term of the objective (^^[CsueR{u) + C\n\{u) + Cimiu)]) determines the overall cost 
ueV 

within those sparsely placed regeneration sites while the second term quantifies the 

necessary investment at those source and destination nodes. 

Equation (2-2) and (2-3) ensures that the number of two types of transponders at 

a regeneration site could not be less than zero. 

V Equation (2-4) ensures that the total number of transponders allowed in a 

regeneration site does not exceed N. 

V Equation (2-5) and (2-6) ensures either Type 1 or Type 2 transponder is used at 

the source node of request k, V/c e AT. 

4 0 



Equations (2-7) to (2-8) ensures that either Type 1 or Type 2 transponder is used 

at the destination node of request e K. 

Z Equation (2-9) ensures that the incoming flow is the same as the outgoing flow 

for every node which is neither a source nor a destination of request k, \/k G K. 

Z Equation (2-10) ensures that the if the wavelength w of a virtual link (u，v) in 

Type 1 plane is used, the wavelength w on those physical links covered by(u,v) 

should be assigned to (u，v)( O , n) e py{u, v)). 

Z Equation (2-11) ensures that the if the wavelength w of a virtual link (u',v') in 

Type 2 plane is used, the wavelength w on those physical links covered by(u，,v，） 

should be assigned to (u，,v’)（ O , n) e py{u ’, v •)). 

Z Equation (2-12) ensures that the light-path is bidirectional. 

Z Equation (2-13) ensures that a particular wavelength on any link can only be 

used for one light-path demand at most. 

Z Equation (2-14) ensures that for every node which is neither a source nor a 

destination for a certain request, it is selected to be a regeneration site as long as 

the requested flow passed through it. 

Z (2-15) and (2-16) calculate the number of Type 1 and Type 2 transponders in 

each regeneration site. 
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2.2.4 Illustrative Numeric Examples 

It is well known that ILP is time-consuming computing task. Thus, we employ a 

small network, specifically a six-node eight-link network [38] as shown in Fig. 2.9, 

with link distance attached to illustrate our formation and compare with other two 

cases where either one of the modulation format is used, all of which are optimal 

results. 

3 2 4 Z 

W 4 3 2 4 6 4 

3 6 8 \ Z 

Fig. 2.9: A six-node eight-link network used for illustration 

With 9 wavelengths available on each link, we set the /?； to be the maximal link 

length within the network, 632km, assuming no in-line regeneration needed. For R2, 

two values, xl,5 and x2.0 of Rj’ are tested for sensitivity purpose. The traffic matrix 

includes 15 light-path demands, meaning that every node pair has a light-path to be 

established. In addition, the cost of the type 1 transponder (Cj) associated with Rj 

is normalized to be 1 while type 2 transponder (C2) has cost 1.5 [36]. In order to 

minimize the number of regeneration sites, we tune the CsUe to be 20. 

The two simulated cases' results are shown in Table III and Table IV. 
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TABLE III TRANSPONDER MAP RESULT OF CASE 1 

尸632 Transponder transponder placed at each Overall 

placed at source 
Network 

R2=9A%{XL5 Ri) and destination regeneration site, if any 

Cost 
C尸 1, G=1.5 Type 1 Type 2 Site Type 1 Type 2 

Location 
Only type 1 30 - Node 1 10 - 90 

transponder is used Node 2 10 -

Only type 2 - 30 Node 2 - 8 103 

transponder is used Node 4 - 4 

Both of the 26 4 Node 2 6 2 85 

transponder types 
are used | Node 4 4 0 

TABLE IV TRANSPONDER MAP RESULT OF CASE 2 

尸632 Transponder T ^ s p o n d e r placed at each Overall 

placed at source 
I? ? " I ? � Network 

and destination regeneration site, if any 

C尸 1, C W . 5 Type 1 Type 2 ^ T y p e 1 Type 2 Cost 
Location 

Only type 1 30 - Node 1 10 - 90 

transponder is used Node 2 10 -

Only type 2 - 30 Node 1 - —1 ^ 

transponder is used - . 

Both of the 17 13 Node 3 1 1 ^ 

transponder types 

are used “ 

From the Table III and Table TV, the first conclusion is that heterogeneous design 

can always achieve cost saving compared with the other two design cases. For 

instance，in the second case, the savings are 13.2% and 34.4%, with respect to using 

Type 2 transponder and Type 1 transponder only. The reason behind this conclusion 
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IS obvious, as heterogeneous design has more options when setting up a new 

connection without any penalty. In addition, based on the test results of using one 

optical reach with its corresponding transponder cost, 632km/90, 948km/103, 

1264km/68, we derive that for a specific network, there should be an optimal optical 

reach and transponder cost combination that minimize the overall network cost, in 

accordance with the conclusion from [36], which could be a further investigation 

topic. 

Although our proposed ILP formulation, specifically tailored for heterogeneous 

design under fixed traffic matrix, performs well, it is worth noting that there is also 

some trade off involved, if examined carefully. Recent results show that for WDM 

adjacent channels employing different data rates and modulation formats, the optical 

reach performance of each modulation format can deteriorate [39-41]. Since our 

design could possibly induce such situation, we argue that can be largely different. 

First, the study in [32] use different modulation formats for different data rates while 

in our case, the data rate is the same which could alleviate the penalty induced. Also, 

if smart wavelength assignment policy like avoiding allocating adjacent channels 

with different modulation formats is used, the situation can also be much better. 

Actually, the second method will be our next potential research direction under the 

same problem settings. 

4 4 



2.3 Resource Allocation Optimization in Translucent 

Optical Networks 

The above two sub-problems are based on the sparsely regenerator placement design 

principle, receiving much research interests. In practice, the telecommunication 

carriers, like service providers AT&T, Verizon and Sprint in US, may model and 

tackle the regenerator placement problem is a different way that is named as selective 

regeneration, where regeneration modules or resources are placed on demand and 

can be put at any node[8,30]. In another saying, there is no regeneration site 

definition here. As mentioned before, lack of research under selective regeneration 

architecture has inspired us to investigate the issue from a real network operator's 

perspective, coupled with two important aspects, namely traffic grooming and 

wavelength assignment. Specifically, our contribution in this sub-chapter includes a 

graph based solution for traffic grooming problem and a way to constructing an 

auxiliary graph that integrates the wavelength assignment task into regenerator 

placement problem, in a selective regeneration translucent optical networks. 

2.3.1 Multiplexing Optimization with Auxiliary Graph 

Currently, the operational dense wavelength division multiplexing (DWDM) optical 

network is able to support up to 100 wavelengths per fiber and 40 Gbps per 

wavelength, while most connection requests are at much smaller granularities, such 

as 2.5 Gbps and 10 Gbps. Service providers have to install muxponders at the two 

ends of the wavelength path to create a multiplexing wavelength connection to 
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provide multiple channels per wavelength. The lower bandwidth connection requests 

will use these underlying channels. This is called multiplexing in DWDM networks, 

in the industry, referred as traffic grooming in the academics. Multiplexing 

optimization is to determine when and where to create 40-Gbps multiplexing 

wavelength connections, which is an important task for cost effective optical network 

planning. Most of studies in this area focus on either static traffic or dynamic traffic 

model [14-15]. In this study, we focus on incremental traffic model, i.e. low 

bandwidth connections arrive one by one and are maintained in the network for a 

relatively long period. This traffic model is more practical for real DWDM networks. 

Also, existing studies in this area seldom consider the optical layer impairments, 

ASE noise, dispersion, and nonlinear effects. In fact, these effects have significant 

impacts on the longest distance that an optical signal can travel without regeneration, 

denoted as optical reach, defined above already, which in turn affects the ultimate 

network cost [8]. In this part, we propose a novel multiplexing graph model and 

multiple multiplexing policies to perform low-bandwidth-connection routing and 

multiplexing optimization in DWDM mesh networks, combined with the incremental 

traffic model and physical layer constraints. Based on this graph model, we can 

automatically determine where to route over the network, where to use existing 

available multiplexing wavelength connection channels, whether/where to create new 

multiplexing wavelength connections, where to add regenerators, and what is the 

overall investment cost: all the information a planner would like to know. Clearly, it 

is under the selective regeneration framework. Also, the solution could be easily 
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extended to other cases such as 2.5G over lOG or 40G over lOOG. 

Problem Statement and Graph Model 

In DWDM networks, a connection cost is usually modelled by two parts: optical 

transponder (OT) cost and common cost. The OT is an optical-electrical-optical 

device that is still very expensive. There are two types of OTs, named as term OT 

and regen OT[42],shown in Fig. 2.10. When a new wavelength connection is 

t̂® S B 
1 erm OT Regen OT 

Fig. 2.10: The Structure of Term OT and Regen OT 

established, a pair of term OTs is required at the two end offices of the wavelength 

connection. Regen OT, also referred as regenerator, is required when a wavelength 

connection is longer than the optical reach [42]. Typically, a pair of term OT cost 

more than a Regen OT. Common cost includes optical system device cost, fiber cost, 

optical amplifier cost, installation cost, etc., and it is averaged as cost per 

X_channel-mile[43]. In our multiplexing optimization problem, the objective is to 

minimize the overall network cost including OT cost and common cost during the 

lifetime of the DWDM network. For a specific low bandwidth request, there are 

numerous ways to provision the connection, such as establishing a new long 

multiplexing wavelength connection directly between source and destination, or 

reusing some spare channels of existing multiplexing wavelength connections 
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(with/without creating some new short multiplexing wavelength connections). 

Different decisions may affect future connections. In the incremental traffic model, 

we know current network status and we need to provision the new connection request 

without knowing future traffic. Here we propose four multiplexing policies and 

compare their performance. To accomplish it, we present a novel multiplexing graph 

model to realize different multiplexing policies by manipulating the cost of graph 

edges: 

Step 1: With the DWDM network physical topology and optical reach, we run the 

shortest path algorithm to get the distance matrix of all the node pairs in the network. 

With the distance matrix, we create a new graph G(V，E) whereas the node set V is 

same as that in the physical topology. If the distance of a node pair is not greater than 

optical reach, we create one direct edge, e, between this node pair. We set its weight 

w(e) as one regen OT cost plus its common cost, where the common cost is 

calculated as its distance mileage multiplied with the per >._channel-mile cost. 

Step 2: If we need to establish new multiplexing wavelength connection between a 

node-pair where the distance is greater than the optical reach, the most cost-effective 

way is to route through the shortest path since it requires the least total regen OT cost 

and common cost. It is easy to verify that the cost to establish a direct multiplexing 

wavelength connection between a node-pair is the total path weight plus two term 

OT cost minus one regen OT cost. For all the node pairs with distance longer than 

optical reach, we find the shortest path over G(V，E), then create a new edge between 

them and use the above adjusted path cost as its weight. 
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With the above the two steps, we build a full mesh graph, named as multiplexing 

graph. The weight of each edge reflects the cost to establish a direct or multiplexing 

wavelength connection between its end nodes. 

Physical Topology 

700 m i l e s 6 0 0 miles 

Graph Model 

cost of a pair of Term J cost of a pair of Term^v J 
»、OTs+700*(common cost) OTs+600*(common costj^^V""'^ 

cost of a pair of Term OTs +cost of a 
regenerator+1300*(common cost) 

Fig. 2.11: A graph model construction example based on physical topology when optical reach is 1200 miles 

To further illustrate the model building process, Fig. 2.11 shows a sample graph 

model construction, based on the simple linear physical topology and the 1200-mile 

optical reach. For simplification, we only consider 10-Gbps connections over 

40-Gbps wavelengths while our model can be extended to lower bandwidth 

connections. Various multiplexing policies can be applied on the same multiplexing 

graph constructed as above. We treat each potential multiplexing wavelength 

connection as one link with each link having four channels and build a new graph G , 

(V，E，人 where we create up to 4 links into E, for each edge e in E of G(V，E). Then 

we assign different costs to those links according to following four policies and run 

the least cost routing to select the most cost-efficient route: 
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Investment cost: the first channel of a multiplexing wavelength connection is 

responsible for the entire wavelength connection cost and the other channels are free. 

The reason is that we only need OT capital investment and wavelength resource 

during multiplexing wavelength connection creation for the first channel request. We 

assign the total OT cost and common cost to a new multiplexing wavelength 

connection edge and zero to existing multiplexing wavelength connection edge with 

available channels. Such a policy tends to attract 10-Gbps connections to use existing 

multiplexing wavelength connection channels, no matter how long the light-path 

could be. 

Average cost: the four channels share the multiplexing wavelength connection cost 

evenly. We assign one fourth of the total OT cost and common cost to each channel 

of the multiplexing wavelength connection including new and existing ones. Such a 

policy tends to encourage creating new multiplexing wavelength connections 

everywhere with the shortest path. 

Weighted cost: the four channels share the multiplexing wavelength connection cost 

unevenly, e.g., with the decreasing weights such as 40:30:20:10 for the 1st, 2nd, 3rd 

and 4th channels. That is, we assign 40% of the total OT cost and common cost to 

new multiplexing wavelength connection edges, 30% or 20% or 10% of the total cost 

to existing multiplexing wavelength connection edges with 3 or 2 or 1 free channels, 

respectively. Such a policy is trying to balance the investment cost and the average 

cost policies. 
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Major-Minor cost: The previous three policies do not consider any traffic pattern. 

But actually, a rough traffic matrix is available and can be helpful. In this policy, we 

first classify network nodes as major or minor nodes. For example, we can classify 

the top 50% nodes in terms of total historical/forecast traffic as major nodes and 

others as minor nodes. The major and minor node pairs have different 

weight-assignment rules. For example, 35:30:20:15 for major to major edges, 

60:20:10:10 for minor to minor edges, and 47.5:25:15:12.5 for major to minor edges. 

The basic idea is to encourage multiplexing wavelength connections between 

major-major node pair and discourage multiplexing wavelength connections between 

minor-minor node pair, to increase the possibility of low-cost multiplexing. 

2.3.2 Simulation Study of Proposed Algorithm 

In this section, we present the simulation results of the above four multiplexing 

policies in CORONET [43] topology and the corresponding traffic pattern. Note that, 

the traffic here refers to the wavelength service traffic only supported by a set of 

nodes within the topology. In the CORONET topology, there are 100 nodes globally, 

and 40 of them support wavelength services. For our simulation, we consider only 

those nodes and links within US continent, including 74 nodes, 96 links and 30 nodes 

with wavelength services, and 16 nodes are classified as major nodes. Also, we 

assume each link represents one pair of fiber between the two end nodes, and each 

fiber can accommodate 100 wavelengths. To evaluate the overall cost, we normalize 

the term OT cost, regen OT cost and common cost to be 0.75,1 and 
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0.0006/?i—channel-mile based on our study on real networks. As for the input traffic 

from CORONET project, we randomly generate 10-Gbps connections using 

CORONET traffic matrix and route them one by one under different multiplexing 

policies. We collect both OT cost and common cost of the four policies in three 

different cases, where the optical reach is set to be 1400 km, 1700 km and 2000 km, 

as shown in Fig. 2.12. Also, we calculate the occupancy ratio of the four policies 

with different optical reaches, defined as the number of channels actually used over 

the total channels provisioned via multiplexing wavelength connections, as shown in 

Fig. 2.13. Each case, we simulated 100 times and average results which is in 95% 

confidence interval. 

I Policy4&2000 • • • H 
PolicyS&2000 H H H B H H i 
Policy2&2000 • • • • • • • 1 
Policyl&ZOOO • • • • • • • • • • • • H ： - ： -

Poncy4&1700 • • • • • • i 
Pollcy3&1700 H H H H H aOTCost 

：： 

Policy2&1700 • • • ^ • • • ^ H Common Cost 
Policyl&1700 • ^ • • • • • • • • H 
Policy4&1400 H H H H H 

I Policy3&1400 • • • • • • H 
Policy2&l400 [ H H H H B H H i 
Policyl&l400 • • • • • • • • ^ • • • • • H 

0 500 1000 1500 2000 2500 3000 

Normalized Cost 
•‘ 

F i g . 2 . 1 2 : Nomalized network cost of four policies with different optica丨 reaches 
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Fig. 2.13: Channel Occupy Ratio of four policies with different optical reaches 

From our performance evaluation results, we noticed that both investment cost policy 

and average cost policy do not perform well compared with weighted cost and 

major-minor cost policies, shown in Fig. 2.12, since investment cost policy will route 

long path to use existing multiplexing wavelength connections without considering 

future connection requests, confirmed by the highest occupancy ratio of channels 

shown in Fig. 2.13. Average cost policy will try to create multiplexing wavelength 

connections between any two network nodes to route over shortest path. This method 

inevitably causes lower channel occupancy ratio, illustrated in Fig. 2.13. This policy 

may have smallest cost for connection request on average, but due to low occupancy 

ratio，the total cost is still high. Weighted cost policy is trying to make a balance 

between investment cost policy and average cost policy while major-minor cost 
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policy encourages more multiplexing wavelength connections between major-major 

network nodes and few multiplexing wavelength connections between minor-minor 

network nodes. This policy matches planners' intuition well. With the well-tuned 

weights for major and minor offices, it should and does outperform other policies. 

The same set of multiplexing policies have been applied on to a commercial service 

provider's DWDM network with real traffic numbers and results in the same 

observation on both total cost and occupancy ratios. In fact, the major-minor cost 

policy has been implemented in AT&T internal optical network planning tool, named 

as BIRDSEYE. 

This part deals with a complex problem that carriers are facing, routing lower speed 

connections over high speed DWDM networks. We have proposed a new 

multiplexing graph model incorporating the physical layer constraints, appeared in 

the form of regenerator cost in the graph model. By manipulating graph edge cost, 

we can easily achieve different objectives using different multiplexing heuristics. 

Based on this model, we have proposed several multiplexing policies and evaluate 

their performance using CORONET network topology and traffic as well as the real 

network topology and traffic. The results have shown that our proposed major-minor 

cost policy can provide significant network cost savings compared to other policies. 
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2.3.3 An Efficient Regenerator Placement and Wavelength 

Assignment Solution 

In 2.3.2, we investigate the traffic grooming problem coupled with regenerator 

placement under selective regeneration architecture. In this part, we will describe 

another interesting problem and then present an integrated graph-based solution for it, 

with selective regeneration architecture assumption. 

Regenerator placement and wavelength assignment (RPWA) are two major tasks 

during wavelength service provisioning in optical networks [19]. Regenerators are 

necessary but expensive. Within an optical network, a wavelength connection has to 

be regenerated after travelling a certain long distance (typically 1500km or longer) 

via an optical-electronic-optical (OEO) regenerator due to the physical impairments 

in fibers. This distance limit is called optical reach. Also a regenerator is required to 

perform wavelength conversion if there is no common free wavelength along the 

selected route which is called wavelength-continuous constraint. However, 

wavelength change at regeneration locations is not preferred, unless necessary. This 

is because a wavelength connection with the same wavelength at two sides of a 

regenerator would greatly facilitate site loop back testing, failure identification, and 

maintenance in field operations at the regenerator site. Thus in this study, we make 

the number of regenerator minimization as our first objective and the number of 

wavelength change minimization as our second objective. 

In an optical network, a regenerator is required mainly due to either optical reach 

constraint or wavelength continuous constraint. As a regenerator due to optical reach 
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is inevitable, we can only reduce the number of regenerators due to wavelength 

continuous constraint. Wavelength assignment has significant impact on continuous 

wavelength availability. Previous studies often provide separate solutions to the 

RPWA problem [19]. In this study, we propose an integrated approach to this 

problem. Specifically, we provide a novel auxiliary graph model to combine 

regenerator placement and wavelength assignment together. By assigning the right 

cost weight to the auxiliary graph edges, we can easily decide where to place 

regenerators and which wavelength to select by running the least cost algorithm over 

the graph, such that the overall number of regenerators required is minimized. 

Problem Statement 

Fig. 2.14 shows a partial network with 8 ROADM (Re-configiirable Optical 

Add-Drop Multiplexing) nodes and 7 links. Assume the optical reach is 2 hops. We 

have connection 1 BCG on wavelength 1, and connection 2 HDE with wavelength 1. 

For a new connection 3, ABCDEF, the minimal number of regenerators is 2 due to 

optical reach. Problem is the placement of the two regenerators and the choice of the 

wavelength. An intuitive algorithm would place the regenerator greedily choosing 

node C and node E for regenerators and wavelength 2 for the first 2 wavelength 

connections and wavelength 1 for third wavelength connection with first-fit 

wavelength assignment. This solution would leave wavelength 1 on link CD. 

However, a better selection would be to place the two regenerators at node C and 

node D, and select wavelength 2 for wavelength connections ABC and DEF, but 

wavelength 1 for link CD. The reason is that wavelength 1 on link CD cannot be 
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0 
Connection 1: BCG with wavelength 1 
Connection 2: HDE with wavelength 1 
Connection 3: ABCDEF with 2 hops maximal reachabil ity 

Fig. 2.14: An example of regenerator placement and wavelength assignment 

expanded to any other node while wavelength 2 on link CD could be expanded to 

node G or node H. 

This example illustrates the basic idea of our approach: 

Given an optical network topology G(V，E)’ where Vis the set of ROADM nodes and 

E is the set of optical links, and network status, i.e., the available wavelengths at 

each optical links, for a specific wavelength requesKsource, destination�，place 

minimal regenerators and choose wavelength with the least wavelength 

fragmentation in the network. 

In the following part, to cope with the requirement, we will present one auxiliary 

graph RPWA algorithm. By assigning proper weights on the graph edges, a shortest 

weight path will produce the right regenerator placement and wavelength assignment 

to reduce the number of regenerators needed due to wavelength continuous 

constraint. 
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Auxiliary Graph Approach 

Given a graph G(VyE), reachability matrix M created by optical reach, number of 

wavelengths per link w, for any circuit request 0,/)，we first find the shortest distance 

path as the route ".’r%t). Then we construct the following auxiliary graph: 

® ( D © — — ® ® 

® 0 © ® @ . © © ®0 © ； \ 

\ e e e . — . . © ® ® ® - € r / 
\ . ' / 

\ . , ‘ i / 
-•. ； 5 ；；... a ！； ： / 
、 一 . . © ®.....—© ®..... 0 ® ....—. 

Links between two nodes have weight: regen cost 
Links inside a node have weight: C1+C2, 
C1: wavelength channel change penalty 
C2: wavelength fragmentation penalty 

t Fig. 2.15: Auxiliary graph construction example 

• For node v e {s,t}, we build w virtual nodes and one edge from v to 

each of the virtual nodes with edge weight 0, where w is the number of 

wavelengths supported in a fiber. 

• For each node v G R\{s,t}, we build 2w virtual nodes and one 

edge from v^' to v̂ -̂  with edge weight w'』，where i and j range from 1 to w, and w'-" 

二C1+C2. Here CI represents the wavelength change penalty: if i equals j, CI is 

0，else CI is Cw; C2 stands for wavelength fragment penalty: after the 

connection chooses wavelengths i and j on two sides of node v, we count the 

available degree of node v on wavelength i and wavelength j, say x' and y , and 

then the wavelength fragment penalty flinction is set as: 
C2=ei� i+ eizyi. However, 

if the available degree x is zero, we set the 1/x item as -1. The reason is that we 
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reduced one wavelength fragment and the penalty value o f -1 means rewarding. 

The exponential function guarantees the value as positive. 

• For each link e G E, if e is in route R, find all feasible channels in e, a(e). So for 

each wavelength ？le a(e), find the two end nodes of e, Ag and Ze, locate the two 

virtual nodes Ae^^and Ze'^or s\ tMf at the end of the request), and create an edge 

between them with weight Cr+kwe, where Cr is the regenerator cost and We is 

l/a(e), here a(e) is the current available channels on link e, and k is a scaling 

factor for adjusting the relative cost of We to Q. The basic idea of We is to 

encourage the usage of links with more available channels. 

• Similarly for each express link e e M, if e is in route R, find all available 

channels in e, a(e). So for each wavelength 人e a(e), find the two end nodes of e, 

Ae and Ze, locate the two virtual nodes Ae^^ and t̂  if at the end of the 

request), and create an edge between them with weight C,+kWe, where C, is the 

regenerator cost and We is l/a(e), and a(e) is the current available channels on 

link e. 

• Find the shortest path from s to t. Setting Cr » We and Cr » w'-", the shortest 

path will use minimal number of regenerators, with minimal wavelength 

changes. 

Fig. 2.15 shows the graph construction result based on the example in Fig. 2.14, 

where the wavelength 1 is used in link BC and link DE. 
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2.3.4 Simulation Study of Proposed Algorithm 

In this section, we compare our proposed auxiliary graph approach two other 

different approaches. Please note that we simply use shortest distance path between 

any two nodes as selected route and thus all the three approaches are applied on the 

same route. By fixing the route, we are focusing on the regenerator placement and 

wavelength assignment only. The following is the detail description of other two 

approaches. 

Approach 2: After finding the shortest distance path between source and destination, 

we first list all the regeneration node placement combination with the least 

regenerator number along the path, since there are probably multiple placement 

results having the same number of regenerators. For instance, the case in Fig. 2.14 

can place regenerators at node C and E, node B and D, or node C and D, all of which 

needs 2 regenerators to serve the request. Then, this placement solution would 

choose the regenerator combination that minimizes the sum of the inverse of 

available wavelengths over all separated wavelength connections [19], i.e., min 

Zl/A(y, where AfiJ is the available wavelengths on wavelength connection i due to 

regenerator placement. In the above process, first-fit wavelength assignment is used 

to select wavelength for different segments. 

Approach 3: For any specific circuit request, we first find the shortest distance path 

as the route. Then starting from the source node, greedily choose the farthest 

reachable node with available common wavelength, i.e., the distance between the 

selected node and source node is still within optical reach, as the next regeneration 
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node and also as the next starting node, until the destination node of the request is 

reached. In the above process, first-fit wavelength assignment is used to select 

wavelength for different segments. Again, we use first-fit as the wavelength 

assignment scheme. 

We apply approach 2, approach 3 and the auxiliary graph approach (approach 1) over 

CORONET [43] topology, with uniform distributed traffic pattern. In the CORONET 

topology, there are 100 nodes globally. For our simulation, we consider only those 

nodes and links in US, including 74 nodes, 96 links. Also, we assume each link 

represents one pair of fiber between the two end nodes, with each fiber supporting 40 

channels cases'.We randomly generate wavelength service request one by one until 

the certain amount of requests are served. Other simulation parameters are set as 

follows: optical reach is 2000km; Wavelength change penalty Cw is set 1 while the 

scaling factor k is set 10; regenerator cost C, is 800. We collect the overall number of 

regenerators as well as the number of wavelength changes of the three approaches 

with the same request arrival process. Also, we calculate the number of regenerators 

needed, using the placement method of approach 3 without wavelength continuous 

constraint, as the benchmark to get the number of regenerators for optical signal 

regeneration, denoted as N—, thus getting the number of regenerators used for 

wavelength conversion of the three different policies by subtracting from the 

overall number of regenerators needed for each policy. Fig. 2.16 shows the 

wavelength conversion regenerator number results, while Fig. 2.17 illustrates the 

I CORONET assumes 100 channels per fiber. In this study, we use smaller fiber channel size to observe the performance. 
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number of wavelength change results, with different number of overall served 

requests. Each case, we simulated 100 times and average results which is in 95% 

confidence interval. 
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From Fig. 2.16, it is easy to find that our auxiliary graph approach uses the least 

number of regenerators for wavelength conversion. This is mainly due to wavelength 

fragmentation reduction by integrating the regenerator placement and wavelength 

assignment together through constructing the auxiliary graph model, while the other 

two approaches do not provide such intelligent handling. In fact, as the network is 

getting more and more congested, the performance advantage becomes more 

significant, as a result of more wavelength fragmentation reduction possibility. On 

the other hand, approach 2 and approach 3, despite their simplicity, do not consider 

the wavelength fragmentation effect for future request, thus resulting in more 

regenerators needed for wavelength conversion. Furthermore, Fig. 2.17 clearly 

verifies our expectation that our auxiliary graph approach introduces the minimal 

times of wavelength change, preferred by the service provider due to field operation 

convenience, since we add the wavelength change penalty in the auxiliary graph. 

In this part, we present a novel auxiliary graph approach to address the RPWA 

problem. Our basic idea is to reduce wavelength fragmentation during current 

regenerator placement and wavelength assignment for future request, such that the 

total regenerator required for wavelength conversion is minimized. Simulation 

results indicate that our proposed approach outperforms other common heuristics 

significantly. This study illustrates that we can reduce the number of regenerators 

required for wavelength conversion by carefully designing RPWA approach that 

takes future requests into consideration. 

Also, the graph approach is more like a general tool in terms of potential applications 
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regarding the flexibility of assigning weights policies. 

2.4 Summary 

We have studied four sub-problems in translucent optical networks. The first two 

problems are based on the sparsely placed regeneration site architecture, in which we 

attempt to use multiple modulation formats to adapt the underlying diverse optical 

reach requirements. A two-step planning algorithm and an ILP are presented to deal 

with topology connectivity and traffic matrix serving objective, respectively, while 

trying to minimize the overall network cost including transponder and regeneration 

site cost. Additionally, we have investigated another two important problems under 

the selective regeneration architecture in translucent optical networks with 

graph-based solutions. For the multiplexing optimization problem, we have showed 

the way to build a decision making graph over which different multiplexing policies 

can be easily applied together with regenerator placement and wavelength 

assignment task. Then a new optimization opportunity is identified by combining the 

regenerator placement and wavelength assignment task together into a auxiliary 

graph, through which both the number of regenerators needed for wavelength 

conversion and the wavelength conversion frequency are largely reduced. Other than 

the problems themselves, we believe that we have demonstrated the possibility and 

usefulness of applying decision making graph approach in optical network planning 

research area, which could be used as a common method to solve such problems. 
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Chapter 3 Adaptive Fault Monitoring in All-Optical 

Networks Utilizing Real-Time Data Traffic 

As mentioned in the abstract, in this chapter we propose a novel fault detection and 

localization scheme for all-optical networks with the information of real-time data 

traffic. Our adaptive fault localization framework is based on combining passive and 

proactive monitoring solutions, together with adaptive management in two phases. 

Numerical results indicate that our proposed scheme has good scalability, in terms of 

the number of fault monitors required. Also, we show that our framework allows 

more flexible network design, and requires much less monitoring bandwidth when 

compared with the passive monitoring solutions. 

3.1 Introduction 

Owing to the tremendous bandwidth demand of Internet traffic, optical fiber, with its 

vast transmission capacity, is the only promising transmission medium for backbone 

networks. With the recent development of optical fiber transmission technology and 

wavelength division multiplexing (WDM) technique, reduction in optical component 

cost, as well as the transparency to diverse modulation formats and protocols, has 

enhanced the feasibility and practicality of all-optical networks [44]. Nevertheless, 

all-optical networks are vulnerable to physical failures, such as fiber cut, optical 

cross-connect (OXC) malfunction and optical amplifier breakdown [29]. Due to the 

extremely large transmission capacity of all-optical networks, these possible failures 
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may be translated to disastrous communication disruption. Hence, fault management 

IS one of the crucial aspects in network management to assure network reliability and 

availability. With the increased complexity of the network topology, fault detection 

and localization may incur significant management and operating costs. Thus, an 

efficient and cost-effective fault detection and localization system is highly desirable 

to assure the specified levels of quality of service [45]. In this paper, we propose a 

novel adaptive fault monitoring framework to fulfill these requirements in all-optical 

networks. 

In all-optical networks, fault localization is more complicated than that in opaque 

networks as the impact of a single fault may propagate without electronic boundary. 

Until recently, there have been two major solutions to monitor link failures in 

all-optical networks, namely passive detection and localization [25], as well as 

proactive detection and localization [21]. Passive monitoring solution places 

equipment called monitor to collect fault alarms over the whole network and localize 

the failure according to the alarms received from all monitors. Link-based 

monitoring is the most straightforward and conventional passive monitoring solution 

that requires one monitor per link. To reduce the number of monitors, the concept of 

monitoring cycle (m-cycle) [24] has been introduced. However, as the network 

topology is becoming more complex, much effort has to be made to design a feasible 

m-cycle coverage solution. Furthermore, even if a feasible cycle set is found, the cost 

of the required monitors is quite substantial. Besides, the extra monitoring bandwidth 

cost is also getting high, as each monitoring cycle requires one distinct wavelength in 
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an all-optical WDM network. On the other hand, the authors in [21] have proposed 

an efficient failure detection and localization scheme by sending out a series of 

proactive probes with perfect feedback. The idea behind proactive detection is to 

fiilly utilize the unique property of all-optical light-path. In other words, one 

light-path could detect a number of consecutive fiber links simultaneously, if no 

failure is incurred. With the proactive monitoring scheme, it has been proved that the 

probing effort can achieve approximately the entropy of the network state under the 

probability link failure model assumption, in terms of information theory. 

Nevertheless, this proactive monitoring scheme may not be practical to be employed 

in practical transparent optical networks. First, this proactive probing scheme can 

only be applied to Eulerian networks, each of which contains an Euler trail (a path 

containing all the links without repetition). Although the authors in [21] have further 

improved their scheme to accommodate node failures and have demonstrated that all 

network topologies could be transformed to Eulerian networks, it is still unrealistic to 

configure the switching nodes to meet the requirements, as it may disrupt the existing 

connections and may largely increase the management cost. Besides, the requirement 

on the probing time and frequency is still not yet resolved. 

Motivated by the pros and cons of both passive and proactive detection solutions, we 

have developed a novel fault detection and localization framework that utilizes the 

concept of adaptive network management. Compared with the passive monitoring 

solutions, our proposed adaptive solution requires fewer monitors and incurs minimal 

bandwidth cost. Meanwhile, our framework is complete and practical, when 
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compared with the proactive monitoring scheme in [21]. In general, our framework 

makes use of the real-time network traffic, whose routes are flexible to form the real 

monitoring trails, to passively monitor the network link states, and then proactively 

sends probes to detect more link states according the passive monitoring result. 

3.2 Adaptive Fault Monitoring 

3.2.1 System Framework 

In this section, we introduce the concept and architecture of our adaptive fault 

monitoring scheme for all-optical networks. Single link failure is assumed in this 

work, as it is the dominant scenario, and a link between two nodes represents a single 

fiber supporting bidirectional transmission. The framework will still work for the 

case of unidirectional transmissions, only with doubled number of links to be 

monitored. In principle, it is possible to include multiple concurrent failures 

monitoring capability into our scheme, however bringing higher system complexity. 

In our system, a central control facility, which maintains the network resource 

information in a database, is assumed to be responsible for client request collection, 

routing path computation, light-path establishment by parallelly configuring the 

corresponding OXCs along the selected path, as well as failure detection and 

recovery. To achieve all these functions, a separated control plane is necessary. It 

can be implemented with either out of fiber configuration or in-fiber configuration, 

such as a dedicated wavelength channel. From the reliability point of view [46], it is 

more reasonable to adopt the out-of-fiber configuration, rather than the in-fiber 
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configuration. For instance, the out-of-fiber configuration allows us to use different 

schemes to assure survivability, while the in-fiber configuration protection scheme 

should design mechanisms combining the data plane and the control plane. Besides, 

the out-of-fiber configuration supports the separation of the control plane and the 

data plane, which is crucial for maintaining network operation properly, in case of 

any failure in the data plane. In this work, we design a novel mechanism to perform 

fault localization in an all-optical network architecture consisting of physically 

separated data and control planes, in which we try to minimize the capital cost to 

monitor the data plane network link state by fully utilizing the separated data plane 

and control plane architecture, combined with real-time data traffic. 

Passive Solution Proactive Solution Adaptive Solution 

r — ^ IT 

Passive Proactive I Passive 
Monijoring p Probing H Monitonng 

；[ ” Yes \ 

Diagnosis I l_J~Diagnosis A丨丨 Links Alive? 

” NO 

( F ^ r e L o c a t ^ ( ^ r e L o c l t i ^ Proac t ive~ 
Probing 

(F^lure Locatio^ 

Fig. 3.1 Fault monitoring solutions: passive, proactive, and adaptive 

Fig. 3.1 shows the basic idea of our scheme, comparing with both passive and 

proactive monitoring solutions. The overall process of our scheme comprises two 

phases. The first phase (Phase 1) is passive monitoring. One special feature of our 
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passive monitoring system is to send passive monitoring probes according to the data 

plane traffic condition and its routing method. Hence, the collected link state 

information (alive or failed) in the whole network merely depends on the previous 

traffic condition and its routing method, without any interruption to the data traffic. 

This feature will be further discussed in the later sections. After a short period of 

time, the network management plane checks all the received link state information 

and makes decision whether it is necessary to execute Phase 2. If Phase 2 is executed, 

the management plane triggers the designated source nodes to send probes to certain 

destination nodes so as to estimate the exact location of the failed link. In general, as 

one light-path may be disrupted by a few possible fiber cuts in an all-optical network, 

Phase 1 aims to narrow down and sort out the possible failed links, while Phase 2 can 

further determine the actual location of the failure. 

3.2.2 Phase 1: Passive Monitoring 

The fault monitoring framework discussed in the previous section can be realized by 

a novel technique, namely label tracing monitoring (LTM). Ideally, there are three 

components in a LTM system: Label Source (LS), Link Label (LL) and Label 

Monitor (LM). LS injects link labels into the network, while different LLs are 

designed to denote different links in the network. LM is placed to gather labels in 

order to retrieve link state information. Fig. 3.2 is a simple example to illustrate how 

these three components function. Each LS is capable of generating a path label (PL) 

that contains the all link labels from source to destination in a light-path. As shown in 
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Fig. 3.2，a light-path LPl is to be established from LSI to LS3. The central control 

facility receives such request and configures the corresponding OXCs. It further asks 

LSI to embed a path label (a,b’c) into the real time data traffic. This path label will 

be detected only at the LMs along the path, if any. In this example, the path label 

(a,b,c) is received at the LM. As this label is detected at the end of link b, the system 

can only retrieve information that links a and b are alive (denoted as a* and b*), 

since the labels in a path label is ordered. Similarly, if another light-path LP2 is set 

up from LS3 to LS2, only label c can be retrieved at the LM (denoted as c*). If these 

two light-paths are set up simultaneously, labels a*, b* and c* will all be received at 

the LM, which indicates that no link failure happens. This procedure is regarded as 

Phase 1. It is passive, as no pre-designed probing scheme is involved. The probes are 

sent according to the traffic pattern, which makes control cost low. The goal for 

Phase 1 is to fully utilize the randomness of the real traffic and thus reduces the 

management cost. 

LPl:PL(a，b，c) PL(a”产，c) 

LL(b) Q LL(c) Q 

^ PL(i 气b) LP2:PL(c’b) 

Fig. 3.2: An example to illustrate the label tracing monitoring (LTM) system 

3.2.3 Phase 2: Proactive Probing 

At a certain time checkpoint, the system will check the label information received at 
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the LMs. If all link labels in the whole network are collected, it means all links are 

alive and thus Phase 2 will not be executed. Phase 2 is executed if there are one or 

more link labels missing. 

As stated before, Phase 2 proactive probing is based on the result of the Phase 1. To 

avoid any disturbance to the data plane traffic, Phase 2 proactive probing tries to 

utilize the free wavelength resource in the network to do the link fault diagnosis. In 

other words, with the available wavelength resource, a set of LM locations and the 

missing link labels at the LM after Phase 1, a feasible probing algorithm is executed 

to detect the states of those links with missing link labels. 

First of all, we introduce a graph model commonly used in traffic grooming problem 

to represent the available wavelength resource in the whole network. The graph 

model has W planes, where W is the number of wavelengths supported by the 

network. Each plane, denoted as G;i(V;i,, E^), corresponds to a particular wavelength 

X and the nodes, Vx, , in each plane correspond to the nodes in the physical 

topology. In each plane, there is an edge, Ex, between two nodes if a fiber link 

exists between the two nodes, and the relative wavelength is free in that fiber link. 

With this graph model information, we design a heuristic for network diagnosis. The 

basic idea is trying to find a set of proactive trails that could uniquely identify fault 

that may happen to those links with missing link labels after Phase 1，by observing 

the instant link labels at LMs. The proactive trail formation rule is similar to that in 

[47]. In our algorithm, a trail, which denotes a light-path, ends at a certain LM on a 

particular wavelength plane. Nevertheless, due to the limited wavelength resource, 
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there may not be enough trails which can localize any single link failure. To 

overcome this problem, we adopt a well studied concept, shared risk link group 

(SRLG) [48], to represent a group of links that cannot be distinguished by the current 

proactive trail formation. Ideally, there is only one member in each shared risk link 

group. The process of our algorithm is simple. After the greedy trail formation, we 

proactively send labels along these chosen paths. If no link failure is detected, we 

move to the next round of proactive trail formation to cover those links with missing 

link labels. On the contrary, if a link failure is detected, a candidate failed link group 

would be uniquely identified. With the failed link group, the mesh topology fault 

localization problem has been transformed to linear topology which is much easier to 

solve. 

Before illustration of the proactive failure detection algorithm, we first discuss the 

principle of formation of SRLG. In each wavelength plane 几,that is Ĝ /厂儿五;lA 

LM又 is the set of LMs using wavelength A. Those links whose link labels are not 

received in Phase 1, and are present distinctly in its own wavelength plane, are 

assigned to hji, where / uE /Tfo r all As. The algorithms, as illustrated in Fig. 3.3, are 

adopted to form a monitoring trail set, denoted as J石 that cover the links in /u. The 

breadth-first search algorithm is adopted, starting from each LM placed in Gx(Vx, E ^ 

until all the nodes connected to every LM are included in the same connected 

component. In graph theory, a connected component [49] of an undirected graph is 

a sub-graph in which any two vertices are connected to each other by paths, and 

which is connected to no additional vertices. Clearly, there are two possible 

7 3 



situations at this stage. One includes only single LM in the connected component, 

while the other contains multiple LMs. Thus, we have developed two heuristic 

forming policies, namely, trail formation policy for connected graph with single LM 

and trail formation policy for connected graph with multiple LMs, for trail formation 

under these two cases, respectively. Consequently, after all wavelength planes have 

been considered, an initial set of SRLG, denoted as I, where / ^ e / f o r all As, is formed 

as proactive trails. 

Initialize G ^ ' f ' ^ f ^ , Label Monitor set LM^ , 
a nd link set h^J^H. h 

Yes-

For each LM in LM^ run Breadth-First Algorithm 
， over G识hEj i j and record the searching results 

in tables.-

1 f 

Trail formation policy Trail formation policy 
for connected graph for connected graph 
with single LM with multiple LMs 

r r 
/ ‘ * 

END-

Fig. 3.3: Flowchart of the algorithm to form monitoring trail set in each wavelength plane 
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We present the details of the first heuristic, namely, trail formation policy for 

connected graph with single LM in the following table. 

Trail formation policy for connected graph with single label monitor (LM) 

Stepl: Reduce the original G^fyjoEji) by eliminating those sub-graph component with no link G h^ 

Step2: Using the obtained tables from the breadth-first searching algorithm in the previous step, starting 

from the only LM as the source, 

if (the first link lEh又 is found) 

{ form the trail t connecting / to the only label monitor with the shortest path. 

hx=hx-i. 

Go to Step3; 

} 
else go to Step4; 

Step3: Delete the trail t from Gx(V;^,Ex), update the tables from breadth-first searching algorithm, 

and go back to Step2. 

Step4: if {hx=0) go to Step5 

else { check whether if any links in h^ can be connected to trails in /义. 

If yes, update /义. 

} 
Step5: Return /义 

END 

The Step 1 is used to eliminate those links and nodes that will never been used to 

form the trail in h as there are no links belonging to /u around them. In step 2, we 

argue that we can use the result of previous breadth-first algorithm results to speed 

up trail form process. Generally, the heuristic is greedily forming trails covering links 

belonging to recursively by deleting used wavelength links from the original graph. 

The Step 4 is used to make sure that no links belonging to /^that could be easily add 

to the formed trail are missed, to maximize the number of links could be covered in 

h 
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We present the details of the second heuristic, namely, trail formation policy for 

connected graph with multiple LMs in the following table. 

Trail Format ion policy for connected graph with multiple label monitors (LMsl 

Stepl: Reduce the original by eliminating those sub-graph component with no l ink^/ i i 

Step2: Let LM\= LM^ 

Step3: Use the obtained tables from the breadth-first searching algorithm in the previous step. The search 

starts from every LM in LM\ over The nodes covered in every searching step have the 

same link distances to their respective source LMs. 

if (the first Wnk l^hx is found in the searching path of a label monitor m^LM\) 
{ form the trail t connecting I to m with the shortest path; 

If multiple links exist, break the tie by choosing the link which will block the minimal number 

of uncovered links in hx to be formed in potential trails. 

LM\-m, 

h = h^t-
Delete the trail t from G 又 u p d a t e the tables from breadth-first searching algorithm, and 

go back to Step3 

I 
else { 

if [hji:0) go to Step4 

else { L M \ = - L M ; , - L M \ \ 

LMx=LM';j 
if iLM*x^0) go back to Step3; 

else go to Step4 

} 
} 

Step4: For those remaining links in h^, check whether if any one of them can be connected to trails in 

if (yes), update /义 

StepS: Return /义 

END 

The general process is similar with the above algorithm except that we tend to 

distribute the trails to different LMs as it intuitively has better resource efficiency. 

The initial set of SRLG, /, is then used as the input for the following proactive failure 

detection algorithm, as illustrated below. 

Here are the notations in the proactive failure detection algorithm.. 
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U: all the links that are not detected alive in Phase 1 ； 

T\ the selected proactive trails; 

S\ link set to be covered in J; 

Wp: the graph model showing free wavelength resource of the whole network; 

L: As a subset of U, denoting those links that are not covered by T while through 

which at least one light-path can reach some LM in the current Wp. 

Proactive Failure Detection Algorithm in Phase 2 

StepO: L=U, and S=0 

Let T:1 

Update S, L and Wp 

Select a link I randomly from L 

Compute a trail t passing through the nearest LM and I from Wp 

T=T U t 

Update S, L and Wp 

End 

Step2: if a set of SLRG, p, appear in the same set of trails 

Sort the link group inp into different groups if there is at least one different trail t between any two 

different groups in Wp 

T=T U t 

End 

Step3: Execute selected probing along the trails in T; 

Return failure shared risk link group I* 

if 

{ 
Update U and I according to T 

Return to StepO 

} 
else All links are alive 

else FaiIure_Location(/*) //Failure_Location(.) is a function used to localize the exact location of 

fault within a shared risk link group// 
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Fig. 3.4: An example to illustrate the procedures of Phase 2 

To further illustrate this proactive failure detection algorithm, a simple example is 

shown in Fig. 3.4, where the six-node topology supports two wavelengths X\ and 入2. 

In this example, two light-paths are established in Phase 1，due to the real traffic 

requests. One is from LS5 to LM generating PL(c) on wavelength X], while the other 

one is sourced at LS3 and sends PL(e,d) to LM on wavelength >̂ 2. As a result, the LM 

receives link label \JL{c,e,d} during Phase 1 and regards link c, e, d as currently active. 

At a certain time instant, the control plane checks the link label information at the 

LM to find that link labels, namely, a, b and/，have not yet received. Thus, we have 

U={a,b,f} and L=U. To completely diagnose all network link states, Phase 2, the 

proactive failure detection algorithm, is executed according to the result of Phase 1 

and the current network wavelength resource. To accomplish that, first, we randomly 
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pick a link from those links with missing link labels, including a, b and / i n L. We 

assume that f is selected, without loss of generality. Please note that the order in 

which links are selected does not affect our final failure localization results. Then a 

trail passing through the nearest LM and / i s computed in the graph model. The trail 

is added to set T and those links with missing link labels along the trail is added to S. 

In the above case, one and the only one of the possible trail (f,e,d) on wavelength A； is 

put into T, while link f is added to S, Now, updating the graph model means that the 

light-path from LS2 to LM on A； plane is removed. Here, since link a and link b are 

still not covered and only one trail, passing through both of them, exists in the graph 

model, we will group the two links as a unique link group that can be treated as a 

virtual link，corresponding the updating set I in Step 3 of the algorithm. With this 

transformation, there is only one SRLG including physical links a and b in L, and 

therefore the same procedure is employed to this link class, as happened to link f . 

Thus, another trail {a,h,c) on wavelength 义2 is added to T. This greedy proactive trail 

formation policy is performed until L is empty. In the above simple example, the two 

trails, {f,e,d) and 0 Ac) , can already locate the fiber failure at l i n k / 

Obviously, for more complicated cases, those covered SRLG appeared in the same 

set of trails may arise after the initial trail formation procedure. To address this 

problem, if the unused wavelength resource is available, the algorithm will add new 

trails to distinguish these SRLGs. Otherwise, these SRLGs will be grouped as a larger 

SRLG With this greedy proactive probing along the selected trails, we are able to 

uniquely identify a failed link group if a failure happens to those links covered in 
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proactive trail set T. If no failure happens, the algorithm will recursively update and 

probe the remaining un-covered links until a failure is identified or all the link labels 

are received. 

3.2.4 Control Plane Design and Analysis 

In this section, the design of the control plane will be discussed. Two important 

concepts, namely, Reliable Label (RL) and Reliable Time (RT), are defined to 

facilitate our discussions. 

Reliable Label (RL): The labels stored at LMs which indicate the respective links 

are alive with probability p. 

Reliable Time (RT): For each collected label at LMs, the time interval within which 

the label is treated as a RL from the instant the label is 

received. 

Due to the intuitive fact that the occurrence probability of a link failure is getting 

larger when the respective link label is missing for a longer period of time, a 

threshold value for RT is selected to put probing effort on links with larger failure 

probability. The probability is determined by real network conditions and is 

monotonically decreasing with RT. Basically, RT is equivalent to the assumption 

used in [21] that the link state will not change during the proactive probing process, 

that is, within a certain time interval after the moment the label is detected. Thus, the 

previously detected link information will be reliable in the following proactive time. 

In the design of the control plane, network monitoring is performed in time intervals 
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of AT, as illustrated in Fig. 3.5. Within each time interval, a time instant is set as 

Check Point (CP), at which the system will check the RL list at LMs and make 

decisions for the execution of Phase 2. Phase 2 will be performed in the following 

time period between CP and the end of the current time interval AT, so as to limit the 

fault recovery time. At the end of Phase 2, fault notification will be issued if there is 

still any links with missing link labels. The time interval between two consecutive CP 

is also equal to AT. In case that Phase 1 and Phase 2 are performed in parallel, Phase 

1 is collecting labels all the time, while Phase 2 periodically sends probes according 

to the RL list at each CP. Moreover, the longest time interval between failure 

occurrence and failure detection is bounded in our scheme, as explained in lemma 1. 

Phase Phase Phase 
. 2 . 2 . 2 

Phase ： 〜 ： ： 
J ^ Phase I ： 

^ 1 ^ Phase S … 
‘ ！ Phase 

^ •； 1 

AT AT AT 

Fig. 3.5: Timeline of the proposed adaptive monitoring scheme 

Lemma 1: For any network topology, if all the nodes are LS，with at least one LM, 

single link failure localization time is bounded by RT+AT 

P^oof- In our fault localization scheme, the missing link label after Phase 2 

corresponds to the failed link. From the start instant of each period, two possible 

situations for each link may occur. First, if there is at least one passive probe 

(light-path established in Phase 1) passing through it before being received at some 
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LMs, it will be detected at the first CP after its latest RT ends. Thus, if a link fails 

after its label having been collected at some LMs, the worst case would be that its RT 

ends just after a CP and this link is not included in any shared risk link groups in the 

following Phase 2 detection. In that case, an additional AT would be needed. 

Therefore, the worst case fault localization time would be RT+zir. On the other hand, 

if there is no passive probe passing through certain links or a failure occurred before 

the passive probe is sent, the worst case fault localization time would be AT, since 

Phase 2 will be executed to detect the respective label for the failed link. 

Lemma 1 proves that our fault detection and localization scheme is reliable and 

complete. By choosing RT and AT flexibly, our scheme can be adjusted adaptively 

according to different network link failure models and QoS specifications, in terms 

of reliability. For instance, the checktime interval AT can be reduced in a network 

that requires short recovery time. Hence, the system can locate the possible link 

failure within a shorter period. On the other hand, if the network operator is more 

concerned about the fault management cost than the recovery time, increasing AT can 

reduce the average amount of control messages sent in a certain period. Moreover, if 

fiber links in a particular network are exposed in a hostile or fast changing 

environment, the RT can be set to a smaller value. Besides, our scheme performs 

better when the real traffic load is getting higher, as more link labels will be received 

at the LMs in Phase 1. Hence, the network can improve the QoS, in terms of 

reliability, at about the same management cost. 
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3.2.5 Physical Layer Implementation and Suggestions 

A path label will be sent out when a light-path has been established and the label will 

travel along the light-path along with the data. As the label is used to denote the path 

information of the light-path on a particular wavelength, there will be several 

light-paths going through the input port of the label monitor on different wavelengths. 

In order to gather the link label information from different light-paths, as much as 

possible, it will be desirable to have a low-cost label monitor, which can monitor the 

links labels on several different wavelengths, simultaneously. For example, subcarrier 

multiplexing may be employed to support multiple different labels, each of which are 

carried on a distinct subcarrier frequency. On the other hand, code-division multiple 

access (CDMA) is also a feasible alternative, as proposed in [50]. It integrates a 

direct-sequence CDMA (DS-CDMA) technique with a complementary constant weigh 

code (CCWC). DS-CDMA is used to multiplex different link labels at baseband 

frequencies and CCWC is used to overlay the low-speed label into the high-speed 

payload. Instead of CCWC, Manchester coding or coded marked inversion (CMI) 

coding may also be used to encode the payload, such that there is a spectral null at DC, 

and thus enabling the insertion of the low-speed label. 

3.3 Placement of Label Monitors 

In the previous sections, we have illustrated the architecture and the principles of our 

adaptive fault monitoring system in an all-optical network. In this section, the LM 
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placement problem is discussed. It is shown that our scheme can be embedded into 

optical networks without any disturbance incurred to the data plane control. 

Moreover, among the three components (LS, LM and LL), the deployment cost of 

LM dominates the monitoring system cost. Therefore, it is highly desirable to 

minimize the number of the required label monitors and monitoring ports. 

3.3.1 ILP Formulation 

Problem Formation 

Given a network topology G(V’E), F represents the set of all nodes and E denotes the 

set of all links. Also, bidirectional fiber link is assumed. In our adaptive scheme, each 

link of the network uses a unique value as its link label (LL). As discussed in section 

2, we simply assume that every node of the network is a label source (LS), since LS 

actually introduces negligible cost compared with the cost of LM. Our objective is to 

place the minimum number of monitors in the network, subject to the constraint that 

all link labels can be collected at LMs in Phase if AT is long enough. To realize 

this objective, we present a simple placement solution formulated as an integer linear 

programming (ILP). 

Minimum LM Placement 

As discussed in sections 1 and 2, where and how the probes are sent in Phase 1 are 

determined by the data plane traffic and its routing method. Without loss of 

generality, the most common routing method, fixed-altemative �-shortest paths 

routing, for the data plane, is chosen, where k is set to be 2. Please note that, in this 
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ILP formulation, no actual traffic model parameters, such as the time interval 

distribution between two consecutive requests and holding time of requests are 

involved. We simply assume the traffic demands are uniformly distributed to all node 

pairs, indicating that all the k pre-computed paths will be used. In terms of future 

backbone all-optical networks, we believe the traffic nature would be increasingly 

dynamic. Yet, all other wavelength routing algorithms could be used and all possible 

traffic models could be adopted. The following formulation is an example, for 

illustration. The ILP is as follows: 

Minimize： ^ N i D i 
i^V 

Subject to： ^ C i j D i > 1 j eE 
isV 

Notations: 

V : The node set of the topology; 
E : The link set of the topology; 
Ni: Degree of node /; 
A： Placement binary variable. Z), =1 means that node i is selected to place a LM; 

otherwise, A =0; 
Cij: Binary input of the network. Q =1 indicates that link j is included at least once 

by those two shortest paths between node i and all the other nodes. 

In general, our objective is to minimize the overall number of LMs，ports subjected 

to the constraint that all the link labels could be possibly received at any LMs in 

Phase 1. Variable Di represents the decision whether node i is selected to be LM. 

Since each LM should receive and monitor all the links attached to it, Ni, the degree 

of node i, is added as weight to include this property in the monitoring cost objective 

function which is to minimize. C" is a binary input value, indicating that if linky is 

included at least once by those two shortest paths between node i and all the other 

nodes. It can be achieved by offline computing the hop distance based 2 shortest 
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paths between every node pair, using Dijkstra algorithm. We would like to point out 

that the traffic from any of the other nodes to this LM is a broader concept because 

LM can collect labels that pass through it, in addition to those destined at this LM. 

In the above ILP formulation input, k could be chosen to be other values. Larger k 

usually means smaller number of LMs required. Thus, the link status information 

collected in Phase 1 is reduced and this may increase the burden of Phase 2. 

Besides，the LM placement method could consider other alternative routing 

algorithms, such as adaptive dynamic routing, in which routing decision is made on 

the fly depending on the network wavelength resource. However, as there is no fixed 

route between the source and the destination in adaptive dynamic routing, a heuristic 

would be required to choose those hub nodes, for instance, via ranking the nodes 

with their node degrees. 

3.3.2 Simulation Studies 

In this section, we present the numerical results of our proposed framework and the 

comparison with M-Trail, which is a popular previously proposed solution for single 

link failure localization in all-optical networks. 

ILP Formulation Results over Random Topology 

We have applied our ILP formulation to a number of randomly generated topologies 

to evaluate the performance of our LM placement scheme. The network model was 

implemented using C/C++ with a free library, called ip—solve, included in Microsoft 

Visio Studio 2005. In the above ILP formulation input, the value of k was set to be 2. 
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The traffic demands were uniformly distributed to all node pairs. For different 

number of nodes, we start our placement from a ring topology (average node degree 

is 2) until a fully mesh network [25] is formed. For each average node degree value, 

denoted as AND, we randomly generated 100 topologies to get the average number 

of the monitor ports, which is set to be the cost value of our results, while the 

maximum monitor ports and the minimum monitor ports in those 100 topologies, are 

also presented. Fig. 3.6 and Fig. 3.7 show the monitor costs of different network 

sizes to realize Phase 1 function under AND values of 4 and 6. From Fig. 3.6 and Fig. 

3.7, we have found that the monitor cost does not increase if the number of nodes 

and links maintaining the same average node degree. It is a very useful property, 

indicating that our adaptive scheme has great scalability, in terms of monitoring cost. 

The reason is also intuitive. As the number of links to be monitored increases, the 

number of LSs also increases by approximately the same ratio {AND). As the number 

of network nodes increases, the overall possible light-path in the network will also 

increase. Thus, those new links can be covered easily by the new possible light-path 

without extra monitoring cost. Fig. 3.8 puts the test results on networks with average 

node degree of 2, 4 and 6 in the same figure. Figs. 3.9, 3.10, 3.11，3.12 and 3.13 show 

the monitor cost versus AND, for different number of nodes, together with the 

maximum and the minimum test results, in form of error bars, out of the 100 

topologies used. Fig. 3.14 puts the test results on networks with node numbers of 6, 

10, 14’ 20 and 24, in the same figure. It is clear that our adaptive system cost increases 

with network AND, but not with the number of nodes. Moreover, the monitor cost is 
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Fig. 3.14: Monitor cost(number of monitoring ports) versus AND with same node number 

Monitoring Cost Comparison with M-Cycle and M-Trail Design 

One major advantage of our adaptive monitoring framework, as compared with 

M-Trail and M-Cycle, is that almost no dedicated bandwidth is consumed for 

monitoring, since our adaptive scheme uses the free wavelengths of the data plane, 

while M-Trail and M-Cycle may require a significant number of dedicated 

monitoring channels, as the network dimension increases. Furthermore, the number 

of monitors required in our framework, M-Trail and M-Cycle are compared. Table 1 

shows the results of our monitor placement, together with the respective data 

extracted from the original M-Cycle design and M-Trail design [24,27], for 

comparison. Several commonly used topologies, as shown in Fig. 3.15, are 

considered. 
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禱 
ARPA2 SmailNet 

NSFNET Bellcore 

Fig. 3.15: Several commonly used topologies for monitor number comparison (shaded nodes denote monitoring 

locations using proposed scheme) 

TABLE V M O N I T O R N U M B E R COMPARISON WITH M - C Y C L E [ 2 4 ] A N D M - T R A I L [ 2 7； 

Network M-Cycle M-Trail Proposed 
topology Adaptive Scheme 

ARPA2 20 cycles 11 trails 2 ports 
SmailNet 13 cycles 6 trails 7 ports 
NSFNET 10 cycles Information not available* 4 ports 
Bellcore 16 cycles Information not available* 5 ports 

*The authors are not able to find the references on the number of trails in those network topologies from available 

resources. 

3.3.3 Discussion of Topology Evolution Adaptiveness 

In the previous sections, we have presented a hybrid and adaptive fault localization 

framework which works by combining passive monitoring on real-time data traffic 

and proactive monitoring solutions together. By monitoring real-time data traffic in 

Phase 1, we can reduce the number of proactive probes in Phase 2. Moreover，the fast 
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changing real-time data traffic in optical networks will reduce the required number of 

\ i added node ) 尸 

Fig. 3.16: Monitoring solutions updated using different monitoring schemes(proposed scheme and M-Trail) when 

network topology changes (a) the original network (b) the new network (shaded nodes denote monitoring locations using 

proposed scheme and arrows denote monitoring trails using M-Trail scheme) 

fault monitors to be placed in the network, compared with previous passive monitoring 

schemes, which utilize static monitoring traces or routes, since a large amount of link 

states are monitored by a single label monitor in our scheme. In addition, it is noticed 

that the number of monitors to be placed in the network is proportional to the average 

node degree of the optical network. Hence, any insertion of network nodes will not 

increase the monitoring cost much as long as the average node degree of the optical 

network is maintained. Fig. 3.16 shows an example of how the monitoring solution 

changes when the network topology changes, i.e. addition or deletion of network 

nodes. In Fig. 3.16(a), M-trail scheme requires 4 trails marked by the different styles 

arrows, while our scheme requires the placement of the monitor at network node 0. 

When network node 7 is inserted to the network, as shown in Fig. 3.16(b), although the 

total number of trails can be kept constant, the trail configuration has to be changed. 

This leads to the change of the placement of monitors, lasers, and even the connection 

pattern of the supervisory channel at the network nodes. Nevertheless, our scheme 

requires no additional modification, in this example. Further analysis will be 
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conducted to examine the robustness of our proposed scheme under network topology 

changes. Besides, M-trail's ILP calculation [27] requires large number of constraints, 

which increases the complexity of computation. The situation would get even worst 

for network with larger dimension. Due to the ease of the computation of the monitor 

location of our scheme, much less computation time is required whenever there are 

changes in the network topology. 

3.4 Summary 

We have proposed a novel and practical adaptive fault monitoring scheme in 

all-optical networks based on label tracing monitoring (LTM) method. A simple yet 

effective monitor placement method using ILP is presented. Our results show that our 

adaptive fault localization scheme has great scalability in terms of the lowest number 

of fault monitors required. Besides, our scheme performs better, in terms of design 

flexibility and minimal additional dedicated monitoring bandwidth, than the common 

passive monitoring solutions. 
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Chapter 4 Conclusions and Future Work 

4.1 Conclusions 

Two important aspects of optical networks have been investigated, in this thesis. 

To alleviate the physical layer impairments influence induced by current stage 

optical transmission technology, as well as achieve cost-effective light-path 

provision, we have first explored a novel sparsely placed regeneration site based 

translucent optical network architecture employing heterogeneous modulation format 

under two problem settings, and have used several numeric studies to verify our 

cost-saving expectations; Then, we have proceeded to study the regenerator 

placement problem in selective regeneration architecture, together with a traffic 

grooming objective. By constructing a graph incorporating regenerator placement 

and traffic grooming, and manipulating the weights of those links in the graph, we 

can simply run shortest path algorithm over that graph to know where to route over 

the network, where to use existing available multiplexing wavelength connection 

channels, whether/where to create new multiplexing wavelength connections, where 

to add regenerators, and what is the overall investment cost: all the information a 

planner would like to know，defined as routing policy. Simulation results clearly 

have demonstrated the correctness of our approach; on the other hand, we have 

described and identified a new optimization opportunity in reducing the number of 

regenerators needed for wavelength conversion. Based on the same design 

philosophy, an auxiliary graph is built to fully explore the optimization opportunity, 
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and consequently, substantial cost saving is achieved through extensive network data 

simulation. 

The chapter 2 is dedicated to tackle the "Quality of Transmission" problem for 

current technology stage, to some extent, while chapter 3 is the first effort to expand 

conventional fault monitoring framework horizon, a crucial part to ensure "Quality 

of Service", by combining two popular existing schemes, that is passive monitoring 

and proactive monitoring, in future all-optical networks. 

4.2 Future Work 

First, although ILP can find the optimal solutions to the regeneration site and 

transponder placement problem in 2.2.3, it generally requires intractable computing 

time, meaning that we have to develop efficient heuristic to handle large scale of 

problem sets, which happened to be our next investigation stop. 

In addition, other than the original objective, we also plan to study the impact of 

using different modulation formats for adjacent channels. Hopefully, we can propose 

an integrated solution to solve the planning problem while minimizing the influence 

induced by heterogeneous modulation format, if any. 

As for the adaptive fault monitoring framework, we plan to further quantify the time 

line analysis with control plane message processing protocol if practical failure cases 

and services are present. 
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