101 research outputs found

    A survey on wireless body area networks for eHealthcare systems in residential environments

    Get PDF
    The progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to the base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments

    Efficient vertical handover in heterogeneous low-power wide-area networks

    Get PDF
    As the Internet of Things (IoT) continues to expand, the need to combine communication technologies to cope with the limitations of one another and to support more diverse requirements will proceed to increase. Consequently, we started to see IoT devices being equipped with multiple radio technologies to connect to different networks over time. However, the detection of the available radio technologies in an energy-efficient way for devices with limited battery capacity and processing power has not yet been investigated. As this is not a straightforward task, a novel approach in such heterogeneous networks is required. This article analyzes different low-power wide-area network technologies and how they can be integrated in such a heterogeneous system. Our contributions are threefold. First, an optimal protocol stack for a constrained device with access to multiple communication technologies is put forward to hide the underlying complexity for the application layer. Next, the architecture to hide the complexity of a heterogeneous network is presented. Finally, it is demonstrated how devices with limited processing power and battery capacity can have access to higher bandwidth networks combined with longer range networks and on top are able to save energy compared to their homogeneous counterparts, by measuring the impact of the novel vertical handover algorithm

    Standardized low-power wireless communication technologies for distributed sensing applications

    Get PDF
    Recent standardization efforts on low-power wireless communication technologies, including time-slotted channel hopping (TSCH) and DASH7 Alliance Mode (D7AM), are starting to change industrial sensing applications, enabling networks to scale up to thousands of nodes whilst achieving high reliability. Past technologies, such as ZigBee, rooted in IEEE 802.15.4, and ISO 18000-7, rooted in frame-slotted ALOHA (FSA), are based on contention medium access control (MAC) layers and have very poor performance in dense networks, thus preventing the Internet of Things (IoT) paradigm from really taking off. Industrial sensing applications, such as those being deployed in oil refineries, have stringent requirements on data reliability and are being built using new standards. Despite the benefits of these new technologies, industrial shifts are not happening due to the enormous technology development and adoption costs and the fact that new standards are not well-known and completely understood. In this article, we provide a deep analysis of TSCH and D7AM, outlining operational and implementation details with the aim of facilitating the adoption of these technologies to sensor application developers.Peer ReviewedPostprint (published version

    Wireless Communication Solution for Distributed Structural Health Monitoring

    Get PDF
    This paper describes a design of wireless distributed SHM (Structure Health Monitoring) system with a particular emphasis on comparison of wireless communication standards. The presented solution is being deployed in the TULCOEMPA project. Several wireless communication standards are compared, with their benefits, disadvantages and typical areas of application. A choice of proper ISM (Industrial Scientific Medical) band and reasons for use of Wireless Sensor Networks are also discussed. The last part of this paper presents the proposed structure and designed prototype. The chosen architecture of the system and the program algorithm used for communication and measurements are described

    Development of a Random Time-Frequency Access Protocol for M2M Communication

    Get PDF
    This thesis focuses on the design and development of the random time-frequency access protocol in Machine-to-Machine (M2M) communication systems and covers different aspects of the data collision problem in these systems. The randomisation algorithm, used to access channels in the frequency domain, represents the key factor that affects data collisions. This thesis presents a new randomisation algorithm for the channel selection process for M2M technologies. The new algorithm is based on a uniform randomisation distribution and is called the Uniform Randomisation Channel Selection Technique (URCST). This new channel selection algorithm improves system performance and provides a low probability of collision with minimum complexity, power consumption, and hardware resources. Also, URCST is a general randomisation technique which can be utilised by different M2M technologies. The analysis presented in this research confirms that using URCST improves system performance for different M2M technologies, such as Weightless-N and Sigfox, with a massive number of devices. The thesis also provides a rigorous and flexible mathematical model for the random time-frequency access protocol which can precisely describe the performance of different M2M technologies. This model covers various scenarios with multiple groups of devices that employ different transmission characteristics like the number of connected devices, the number of message copies, the number of channels, the payload size, and transmission time. In addition, new and robust simulation testbeds have been built and developed in this research to evaluate the performance of different M2M technologies that utilise the random time-frequency access protocol. These testbeds cover the channel histogram, the probability of collisions, and the mathematical model. The testbeds were designed to support the multiple message copies approach with various groups of devices that are connected to the same base station and employ different transmission characteristics. Utilising the newly developed channel selection algorithm, mathematical model, and testbeds, the research offers a detailed and thorough analysis of the performance of Weightless-N and Sigfox in terms of the message lost ratio (MLR) and power consumption. The analysis shows some useful insights into the performance of M2M systems. For instance, while using multiple message copies improves the system performance, it might degrade the reliability of the system as the number of devices increases beyond a specific limit. Therefore, increasing the number of message copies can be disadvantageous to M2M communication performance

    Supporting Transportation System Management and Operations Using Internet of Things Technology

    Get PDF
    Low power wide-area network (LPWAN) technology aims to provide long range and low power wireless communication. It can serve as an alternative technology for data transmissions in many application scenarios (e.g., parking monitoring and remote flood sensing). In order to explore its feasibility in transportation systems, this project conducted a review of relevant literature to understand the current status of LPWAN applications. An online survey that targeted professionals concerned with transportation was also developed to elicit input about their experiences in using LPWAN technology for their projects. The literature review and survey results showed that LPWAN’s application in the U.S. is still in an early stage. Many agencies were not familiar with LPWAN technology, and only a few off-the-shelf LPWAN products are currently available that may be directly used for transportation systems. To conceptually explore data transmission, a set of lab tests, using a primary LPWAN technology, namely LoRa, were performed on a university campus area as well as in a rural area. The lab tests showed that several key factors, such as the mounting heights of devices, distance between the gateway and sensor nodes, and brands of devices affected the LPWAN’s performance. Building upon these efforts, the research team proposed a high-level field test plan for facilitating a potential Phase 2 study that will address primary technical issues concerning the feasibility of transmitting data of different sizes, data transmission frequency, and transmission rate, deployment requirements, etc

    Middleware and communication technologies for structural health monitoring of critical infrastructures: a survey

    Get PDF
    Critical Infrastructure Protection (CIP) has become a priority for every country around the world with the aim of reducing vulnerabilities and improving protection of Critical Infrastructures (CI) against terrorist attacks or natural disasters, among other threats. As part of CIP, Structural Health Monitoring (SHM) is defined as the process of gathering basic information that allows detecting, locating and quantifying vulnerabilities early on (fatigue cracking, degradation of boundary conditions, etc.) thereby improving, the resilience of the CI. Recent advances in electronics, wireless communication and software are expected to open the door to a new era of densely connected devices sharing information worldwide, known as the Internet of Things (IoT), in which Wireless Sensor Networks (WSNs) play an important role. The combined use of IoT/WSNs together with industrial sensors in SHM provide an ad-hoc, inexpensive and easy way of deploying a monitoring system, where data can be shared among different entities. SHM requirements are challenging and diverse and therefore several different technologies may be used in the same deployment. At the same time the use of a middleware can substantially simplify and speed up the development of applications for SHM. Taking into account the challenges of SHM systems, this paper provides a review of the most novel and relevant wireless technologies and a state-of-the-art middleware for WSNs focusing on SHM specific requirements

    Low Power Wide Area Networks (LPWAN): Technology Review And Experimental Study on Mobility Effect

    Get PDF
    In the past decade, we have witnessed explosive growth in the number of low-power embedded and Internet-connected devices, reinforcing the new paradigm, Internet of Things (IoT). IoT devices like smartphones, home security systems, smart electric meters, garage parking indicators, etc., have penetrated deeply into our daily lives. These IoT devices are increasingly attached and operated in mobile objects like unmanned vehicles, trains, airplanes, etc. The low power wide area network (LPWAN), due to its long-range, low-power and low-cost communication capability, is actively considered by academia and industry as the future wireless communication standard for IoT. However, despite the increasing popularity of mobile IoT, little is known about the suitability of LPWAN for those mobile IoT applications in which nodes have varying degrees of mobility. To fill this knowledge gap, in this thesis:1. We present a thorough review on LPWAN technology focusing on the mobility effect. 2. We conduct an experimental study to evaluate, analyze, and characterize LPWAN in both indoor and outdoor mobile environments.Our experimental results indicate that the performance of LPWAN is surprisingly susceptible to mobility, even to minor human mobility, and the effect of mobility significantly escalates as the distance to the gateway increases. These results call for development of new mobility-aware LPWAN protocols to support mobile IoT
    • 

    corecore