702 research outputs found

    Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by Leveraging Lightweight All-ConvNet and Transfer Learning

    Full text link
    Gesture recognition using low-resolution instantaneous HD-sEMG images opens up new avenues for the development of more fluid and natural muscle-computer interfaces. However, the data variability between inter-session and inter-subject scenarios presents a great challenge. The existing approaches employed very large and complex deep ConvNet or 2SRNN-based domain adaptation methods to approximate the distribution shift caused by these inter-session and inter-subject data variability. Hence, these methods also require learning over millions of training parameters and a large pre-trained and target domain dataset in both the pre-training and adaptation stages. As a result, it makes high-end resource-bounded and computationally very expensive for deployment in real-time applications. To overcome this problem, we propose a lightweight All-ConvNet+TL model that leverages lightweight All-ConvNet and transfer learning (TL) for the enhancement of inter-session and inter-subject gesture recognition performance. The All-ConvNet+TL model consists solely of convolutional layers, a simple yet efficient framework for learning invariant and discriminative representations to address the distribution shifts caused by inter-session and inter-subject data variability. Experiments on four datasets demonstrate that our proposed methods outperform the most complex existing approaches by a large margin and achieve state-of-the-art results on inter-session and inter-subject scenarios and perform on par or competitively on intra-session gesture recognition. These performance gaps increase even more when a tiny amount (e.g., a single trial) of data is available on the target domain for adaptation. These outstanding experimental results provide evidence that the current state-of-the-art models may be overparameterized for sEMG-based inter-session and inter-subject gesture recognition tasks

    Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning

    Get PDF
    In recent years, deep learning algorithms have become increasingly more prominent for their unparalleled ability to automatically learn discriminant features from large amounts of data. However, within the field of electromyography-based gesture recognition, deep learning algorithms are seldom employed as they require an unreasonable amount of effort from a single person, to generate tens of thousands of examples. This work's hypothesis is that general, informative features can be learned from the large amounts of data generated by aggregating the signals of multiple users, thus reducing the recording burden while enhancing gesture recognition. Consequently, this paper proposes applying transfer learning on aggregated data from multiple users, while leveraging the capacity of deep learning algorithms to learn discriminant features from large datasets. Two datasets comprised of 19 and 17 able-bodied participants respectively (the first one is employed for pre-training) were recorded for this work, using the Myo Armband. A third Myo Armband dataset was taken from the NinaPro database and is comprised of 10 able-bodied participants. Three different deep learning networks employing three different modalities as input (raw EMG, Spectrograms and Continuous Wavelet Transform (CWT)) are tested on the second and third dataset. The proposed transfer learning scheme is shown to systematically and significantly enhance the performance for all three networks on the two datasets, achieving an offline accuracy of 98.31% for 7 gestures over 17 participants for the CWT-based ConvNet and 68.98% for 18 gestures over 10 participants for the raw EMG-based ConvNet. Finally, a use-case study employing eight able-bodied participants suggests that real-time feedback allows users to adapt their muscle activation strategy which reduces the degradation in accuracy normally experienced over time.Comment: Source code and datasets available: https://github.com/Giguelingueling/MyoArmbandDatase

    sEMG-based hand gesture recognition with deep learning

    Get PDF
    Hand gesture recognition based on surface electromyographic (sEMG) signals is a promising approach for the development of Human-Machine Interfaces (HMIs) with a natural control, such as intuitive robot interfaces or poly-articulated prostheses. However, real-world applications are limited by reliability problems due to motion artifacts, postural and temporal variability, and sensor re-positioning. This master thesis is the first application of deep learning on the Unibo-INAIL dataset, the first public sEMG dataset exploring the variability between subjects, sessions and arm postures, by collecting data over 8 sessions of each of 7 able-bodied subjects executing 6 hand gestures in 4 arm postures. In the most recent studies, the variability is addressed with training strategies based on training set composition, which improve inter-posture and inter-day generalization of classical (i.e. non-deep) machine learning classifiers, among which the RBF-kernel SVM yields the highest accuracy. The deep architecture realized in this work is a 1d-CNN implemented in Pytorch, inspired by a 2d-CNN reported to perform well on other public benchmark databases. On this 1d-CNN, various training strategies based on training set composition were implemented and tested. Multi-session training proves to yield higher inter-session validation accuracies than single-session training. Two-posture training proves to be the best postural training (proving the benefit of training on more than one posture), and yields 81.2% inter-posture test accuracy. Five-day training proves to be the best multi-day training, and yields 75.9% inter-day test accuracy. All results are close to the baseline. Moreover, the results of multi-day trainings highlight the phenomenon of user adaptation, indicating that training should also prioritize recent data. Though not better than the baseline, the achieved classification accuracies rightfully place the 1d-CNN among the candidates for further research

    Guidage non-intrusif d'un bras robotique à l'aide d'un bracelet myoélectrique à électrode sèche

    Get PDF
    Depuis plusieurs années la robotique est vue comme une solution clef pour améliorer la qualité de vie des personnes ayant subi une amputation. Pour créer de nouvelles prothèses intelligentes qui peuvent être facilement intégrées à la vie quotidienne et acceptée par ces personnes, celles-ci doivent être non-intrusives, fiables et peu coûteuses. L’électromyographie de surface fournit une interface intuitive et non intrusive basée sur l’activité musculaire de l’utilisateur permettant d’interagir avec des robots. Cependant, malgré des recherches approfondies dans le domaine de la classification des signaux sEMG, les classificateurs actuels manquent toujours de fiabilité, car ils ne sont pas robustes face au bruit à court terme (par exemple, petit déplacement des électrodes, fatigue musculaire) ou à long terme (par exemple, changement de la masse musculaire et des tissus adipeux) et requiert donc de recalibrer le classifieur de façon périodique. L’objectif de mon projet de recherche est de proposer une interface myoélectrique humain-robot basé sur des algorithmes d’apprentissage par transfert et d’adaptation de domaine afin d’augmenter la fiabilité du système à long-terme, tout en minimisant l’intrusivité (au niveau du temps de préparation) de ce genre de système. L’aspect non intrusif est obtenu en utilisant un bracelet à électrode sèche possédant dix canaux. Ce bracelet (3DC Armband) est de notre (Docteur Gabriel Gagnon-Turcotte, mes co-directeurs et moi-même) conception et a été réalisé durant mon doctorat. À l’heure d’écrire ces lignes, le 3DC Armband est le bracelet sans fil pour l’enregistrement de signaux sEMG le plus performant disponible. Contrairement aux dispositifs utilisant des électrodes à base de gel qui nécessitent un rasage de l’avant-bras, un nettoyage de la zone de placement et l’application d’un gel conducteur avant l’utilisation, le brassard du 3DC peut simplement être placé sur l’avant-bras sans aucune préparation. Cependant, cette facilité d’utilisation entraîne une diminution de la qualité de l’information du signal. Cette diminution provient du fait que les électrodes sèches obtiennent un signal plus bruité que celle à base de gel. En outre, des méthodes invasives peuvent réduire les déplacements d’électrodes lors de l’utilisation, contrairement au brassard. Pour remédier à cette dégradation de l’information, le projet de recherche s’appuiera sur l’apprentissage profond, et plus précisément sur les réseaux convolutionels. Le projet de recherche a été divisé en trois phases. La première porte sur la conception d’un classifieur permettant la reconnaissance de gestes de la main en temps réel. La deuxième porte sur l’implémentation d’un algorithme d’apprentissage par transfert afin de pouvoir profiter des données provenant d’autres personnes, permettant ainsi d’améliorer la classification des mouvements de la main pour un nouvel individu tout en diminuant le temps de préparation nécessaire pour utiliser le système. La troisième phase consiste en l’élaboration et l’implémentation des algorithmes d’adaptation de domaine et d’apprentissage faiblement supervisé afin de créer un classifieur qui soit robuste au changement à long terme.For several years, robotics has been seen as a key solution to improve the quality of life of people living with upper-limb disabilities. To create new, smart prostheses that can easily be integrated into everyday life, they must be non-intrusive, reliable and inexpensive. Surface electromyography provides an intuitive interface based on a user’s muscle activity to interact with robots. However, despite extensive research in the field of sEMG signal classification, current classifiers still lack reliability due to their lack of robustness to short-term (e.g. small electrode displacement, muscle fatigue) or long-term (e.g. change in muscle mass and adipose tissue) noise. In practice, this mean that to be useful, classifier needs to be periodically re-calibrated, a time consuming process. The goal of my research project is to proposes a human-robot myoelectric interface based on transfer learning and domain adaptation algorithms to increase the reliability of the system in the long term, while at the same time reducing the intrusiveness (in terms of hardware and preparation time) of this kind of systems. The non-intrusive aspect is achieved from a dry-electrode armband featuring ten channels. This armband, named the 3DC Armband is from our (Dr. Gabriel Gagnon-Turcotte, my co-directors and myself) conception and was realized during my doctorate. At the time of writing, the 3DC Armband offers the best performance for currently available dry-electrodes, surface electromyographic armbands. Unlike gel-based electrodes which require intrusive skin preparation (i.e. shaving, cleaning the skin and applying conductive gel), the 3DC Armband can simply be placed on the forearm without any preparation. However, this ease of use results in a decrease in the quality of information. This decrease is due to the fact that the signal recorded by dry electrodes is inherently noisier than gel-based ones. In addition, other systems use invasive methods (intramuscular electromyography) to capture a cleaner signal and reduce the source of noises (e.g. electrode shift). To remedy this degradation of information resulting from the non-intrusiveness of the armband, this research project will rely on deep learning, and more specifically on convolutional networks. The research project was divided into three phases. The first is the design of a classifier allowing the recognition of hand gestures in real-time. The second is the implementation of a transfer learning algorithm to take advantage of the data recorded across multiple users, thereby improving the system’s accuracy, while decreasing the time required to use the system. The third phase is the development and implementation of a domain adaptation and self-supervised learning to enhance the classifier’s robustness to long-term changes

    Multikernel convolutional neural network for sEMG based hand gesture classification

    Get PDF
    openIl riconoscimento dei gesti della mano è un argomento ampiamente discusso in letteratura, dove vengono analizzate diverse tecniche sia in termini di tipi di segnale in ingresso che di algoritmi. Tra i più utilizzati ci sono i segnali elettromiografici (sEMG), già ampiamente sfruttati nelle applicazioni di interazione uomo-macchina (HMI). Determinare come decodificare le informazioni contenute nei segnali EMG in modo robusto e accurato è un problema chiave per il quale è urgente trovare una soluzione. Recentemente, molti incarichi di riconoscimento dei pattern EMG sono stati affrontati utilizzando metodi di deep learning. Nonostante le elevate prestazioni di questi ultimi, le loro capacità di generalizzazione sono spesso limitate dall'elevata eterogeneità tra i soggetti, l'impedenza cutanea, il posizionamento dei sensori, ecc. Inoltre, poiché questo progetto è focalizzato sull'applicazione in tempo reale di protesi, ci sono maggiori vincoli sui tempi di risposta del sistema che riducono la complessità dei modelli. In questa tesi è stata testata una rete neurale convoluzionale multi-kernel su diversi dataset pubblici per verificare la sua generalizzabilità. Inoltre, è stata analizzata la capacità del modello di superare i limiti inter-soggetto e inter-sessione in giorni diversi, preservando i vincoli legati a un sistema embedded. I risultati confermano le difficoltà incontrate nell'estrazione di informazioni dai segnali emg; tuttavia, dimostrano la possibilità di ottenere buone prestazioni per un uso robusto di mani prostetiche. Inoltre, è possibile ottenere prestazioni migliori personalizzando il modello con tecniche di transfer learning e di adattamento al dominio.Hand gesture recognition is a widely discussed topic in the literature, where different techniques are analyzed in terms of both input signal types and algorithms. Among the most widely used are electromyographic signals (sEMG), which are already widely exploited in human-computer interaction (HMI) applications. Determining how to decode the information contained in EMG signals robustly and accurately is a key problem for which a solution is urgently needed. Recently, many EMG pattern recognition tasks have been addressed using deep learning methods. Despite their high performance, their generalization capabilities are often limited by high heterogeneity among subjects, skin impedance, sensor placement, etc. In addition, because this project is focused on the real-time application of prostheses, there are greater constraints on the system response times that reduce the complexity of the models. In this thesis, a multi-kernel convolutional neural network was tested on several public datasets to verify its generalizability. In addition, the model's ability to overcome inter-subject and inter-session constraints on different days while preserving the constraints associated with an embedded system was analyzed. The results confirm the difficulties encountered in extracting information from emg signals; however, they demonstrate the possibility of achieving good performance for robust use of prosthetic hands. In addition, better performance can be achieved by customizing the model with transfer learning and domain-adaptationtechniques

    A CNN-LSTM Hybrid Model for Wrist Kinematics Estimation Using Surface Electromyography

    Get PDF
    Convolutional neural network (CNN) has been widely exploited for simultaneous and proportional myoelectric control due to its capability of deriving informative, representative and transferable features from surface electromyography (sEMG). However, muscle contractions have strong temporal dependencies but conventional CNN can only exploit spatial correlations. Considering that long short-term memory neural network (LSTM) is able to capture long-term and non-linear dynamics of time-series data, in this paper we propose a CNN-LSTM hybrid model to fully explore the temporal-spatial information in sEMG. Firstly, CNN is utilized to extract deep features from sEMG spectrum, then these features are processed via LSTM-based sequence regression to estimate wrist kinematics. Six healthy participants are recruited for the participatory collection and motion analysis under various experimental setups. Estimation results in both intra-session and inter-session evaluations illustrate that CNN-LSTM significantly outperforms CNN, LSTM and several representative machine learning approaches, particularly when complex wrist movements are activated
    • …
    corecore